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Abstract
Speech-to-speech translation is a framework which recognises speech in an input language,

translates it to a target language and synthesises speech in this target language. In such a

system, variations in the speech signal which are inherent to natural human speech are lost,

as the information goes through the different building blocks of the translation process. The

work presented in this thesis addresses aspects of speech synthesis which are lost in traditional

speech-to-speech translation approaches.

The main research axis of this thesis is the study of prosody for speech synthesis and emphasis

preservation.

A first investigation of regional accents of spoken French is carried out to understand the

sensitivity of native listeners with respect to accented speech synthesis. Listening tests show

that standard adaptation methods for speech synthesis are not sufficient for listeners to

perceive accentedness. On the other hand, combining adaptation with original prosody allows

perception of accents.

Addressing the need of a more suitable prosody model, a physiologically plausible intonation

model is proposed. Inspired by the command-response model, it has basic components,

which can be related to muscle responses to nerve impulses. These components are assumed

to be a representation of muscle control of the vocal folds. A motivation for such a model

is its theoretical language independence, based on the fact that humans share the same

vocal apparatus. An automatic parameter extraction method which integrates a perceptually

relevant measure is proposed with the model. This approach is evaluated and compared with

the standard command-response model.

Two corpora including sentences with emphasised words are presented, in the context of the

SIWIS project. The first is a multilingual corpus with speech from multiple speaker; the second

is a high quality speech synthesis oriented corpus from a professional speaker.

Two broad uses of the model are evaluated. The first shows that it is difficult to predict model

parameters; however the second shows that parameters can be transferred in the context of

emphasis synthesis. A relation between model parameters and linguistic features such as

stress and accent is demonstrated. Similar observations are made between the parameters and

emphasis. Following, we investigate the extraction of atoms in emphasised speech and their

transfer in neutral speech, which turns out to elicit emphasis perception. Using clustering

methods, this is extended to the emphasis of other words, using linguistic context. This

approach is validated by listening tests, in the case of English.
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Résumé
La synthèse vocale est une partie inhérente de la traduction parole à parole. Elle permet de

restituer un signal de parole dans la langue voulue, après reconnaissance et traduction d’un

signal de parole dans une langue source. Malgré l’existence de systèmes capables de traduire

la parole, la parole synthétique en sortie de ces systèmes reste générique et ne reflète pas des

nuances de l’utilisateur, présentes dans le signal d’entrée. Cette thèse traite des aspects de la

communication que la représentation textuelle, vecteur de l’information dans un systeme de

traduction parole à parole, ne contient pas.

La ligne de recherche centrale des travaux présentés dans cette thèse est l’étude de la prosodie

pour la synthèse et la restitution d’accents sur certains mots dans la phrase.

La nécessité d’une prosodie correcte lors de la synthèse est d’abord motivée par une étude sur

la perception d’accents régionaux du français. Cette étude, conduite à l’aide de tests d’écoute,

de méthodes de synthèse et de modifications de la prosodie, démontre que les méthodes

d’adaptation standard d’un système de synthèse sont insuffisantes pour percevoir les accents

régionaux, et que l’utilisation de la prosodie originale permet à des natifs de déceler l’intensité

des accents des locuteurs.

Dans le cadre multilingue de la traduction parole à parole, un modèle d’intonation théorique-

ment indépendant de la langue est proposé. Similaire au modèle commande-réponse, qui

décompose l’intonation en plusieurs éléments pour décrire les variations à court et moyen

termes, le modèle proposé s’appuie sur une description du contour de l’intonation par des

éléments de base, inspirés des réponses musculaires à des impulsions nerveuses. Cette for-

mulation rend le modèle plausible d’un point de vue physiologique, et vise à prendre en

compte la formation de l’intonation par les cordes vocales. Le modèle est proposé avec une

méthode automatique d’extraction des paramètres prenant en compte l’aspect perceptif de

l’intonation. Cette approche, évaluée et comparée au modèle commande-réponse standard,

permet d’atteindre un niveau de modélisation avec la précision voulue.

Deux corpus de parole incluant des mots spécifiquement accentués sont construits afin de

permettre l’étude et l’application de nos méthodes d’accentuation. Le premier contient des

phrases prononcées dans plusieurs langues par plusieurs locuteurs. Le second est un corpus

de haute qualité enregistré par une actrice professionnelle, destiné entre autres à la synthèse

vocale du français.

Deux applications du modèle proposé sont evaluées par la suite : la prédiction d’intonation

pour la synthèse de parole, qui s’avère difficile, et la synthèse d’intonation de mots accentués,

dans le cadre de la restitution d’accents sur les mots voulus dans une phrase. Une étude des
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paramètres du modèle démontre leur relation avec des descriptions linguistiques du texte,

telles que l’accentuation des syllabes, et avec l’accentuation de mots spécifiques. Après un

simple transfert de composantes dans l’intonation de mots accentués vers les mots neutres

prononcés dans le même contexte, l’utilisation d’arbres de décision pour générer ces com-

posantes afin de les substituer à celles d’un mot neutre permet de susciter la perception de

l’accentuation sur ce mot neutre. Des tests perceptifs corroborent l’efficacité de cette méthode

dans un scénario monolingue.

Mots clefs : modélisation de l’intonation, accents régionaux, synthèse de l’intonation, synthèse

de mots accentués, prosodie, synthèse vocale, traduction parole à parole
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1 Introduction

1.1 Motivation

1.1.1 The Swiss Context

Switzerland is surrounded by countries with different languages and cultures: Germany,

France, Italy, Liechtenstein and Austria. As a consequence, like a few other countries, it is

a multicultural nation which has multiple official languages: German, French, Italian, and

Romansh1.

Figure 1.1 – Map of Switzerland with language spoken in each region.2

1Art. 4 of the Federal Constitution of the Swiss Confederation, see https://www.admin.ch/ch/e/rs/1/101.en.pdf
2Source: Swiss Federal Statistical Office http://www.bfs.admin.ch
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Figure 1.1 shows the distribution of languages spoken within Switzerland. Although there

are some bilingual or even trilingual areas, most of the regions are monolingual. The fact

that some people are not able to speak the language of a region when they travel in their own

country makes evident the need for a translation medium. More generally, at the international

level, there are thousands of languages spoken in the world (about 6000 are identified) and

learning them all is practically impossible. Speech-to-speech translation (S2ST) consists of

recognising speech in a source language, translating it and synthesising the translation in the

target language. The input and output of such a system are both speech. The following section

introduces S2ST.

1.1.2 Speech-to-Speech Translation

Speech-to-speech translation enables communication between individuals speaking different

languages, through some device (e.g. Figure 1.2 between French and German).

Figure 1.2 – Speech-to-speech translation. The boy speaks in French, it gets translated to
German by a device3.

The 3 main building blocks of such a system are:

• Automatic speech recognition (ASR), which converts speech into text

3© Coralie Jenny, http://ateliercocoshi.wixsite.com/portfolio, used with permission.
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• Machine translation (MT), which translates the text from one language to another

• Text-to-speech (TTS) synthesis, which converts text into speech.

Automatic Speech Recognition

Automatic speech recognition is the start of the S2ST chain. Its role in a classical setting is to

disregard the variability between different speakers’ speech, and the variability in the voice

of a speaker uttering the same sentence in different ways, in order to capture only what the

speaker said. The performance of state of the art ASR systems is very good in clean conditions.

Following the deep learning trend in various research fields such as image classification

[Krizhevsky et al., 2012] or natural language processing [Collobert and Weston, 2008], most

of the systems have evolved from hidden Markov model (HMM)-based ASR [Rabiner, 1989]

towards deep neural network (DNN)-based ASR [Hinton et al., 2012].

Machine Translation

Machine translation is probably the most difficult problem in the context of S2ST, as it will

start from an imperfect input, as errors in ASR exist. Some of the difficulties that can be

encountered in this task include the pronunciation of words, which varies considerably in

a dialogue compared with the pronunciation of read and well articulated speech. Another

aspect is the variability in language structures, e.g. if English and French are relatively close

in terms of sentence structure — meaning that some mapping can be done between words

to some extent — it is not the case between English and Mandarin, where some ideas can be

expressed in very different ways. The MT problem is not addressed in this work, and MT is

assumed to work flawlessly for our work on other modules.

Text-To-Speech Synthesis

Text-to-speech synthesis can be achieved by many different techniques, the most widely

used ones being unit selection and statistical parametric speech synthesis (SPSS). The first

one consists of selecting speech units from natural speech recordings and concatenating

them to produce the desired output in the most natural way as possible, based on target

and concatenation costs. This is one of the best methods for producing natural sounding

speech, however it requires a fair amount of data, and cannot handle the generation of sound

combinations which are not in the database. Additionally, this method is solely speaker

dependent hence inflexible. SPSS, on the other hand, relies on the parameterisation of

speech (acoustic features) and statistical models which can predict the acoustic parameters

to synthesise. As for ASR state of the art systems, in TTS the most commonly used statistical

models are HMM [Tokuda et al., 2002b; Zen et al., 2009] and more recently DNN [Zen et al.,

2013] and their variants, e.g. [Zen and Sak, 2015; Zen and Senior, 2014].
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1.1.3 Personalised Speech-to-Speech Translation

As described above, the building blocks of an S2ST system are generally dealt with separately.

That means that the personality, or voice characteristics of the user — who inputs speech in

the system — are suppressed to obtain better performance for the first two tasks (ASR and

MT). This implies a generic output, with the same TTS voice for all the users, which for a

human to human conversation would sound rather unnatural. Some commercial applications

have recently achieved online S2ST, e.g. Skype™ 2, but this solution is not personalised. In the

last decade, personalised S2ST received some attention from the speech research community,

with projects such as EMIME [Kurimo et al., 2010]3. Personalising S2ST consists of being able

to produce an output that is specific to the user, meaning that if speaker X speaks in language

A, then the output in language B should have the same voice as speaker X. The key to the

realisation of such a system relies on the adaptation of the output voice using data from the

input language. Adapting the TTS module in this context is referred to as cross-lingual speaker

adaptation (CLSA), and consists of adapting a system in one language with data in another

language [Chen et al., 2009; Gibson et al., 2010; Liang, 2012; Liang and Dines, 2011; Oura et al.,

2010; Peng et al., 2010; Wu et al., 2008, 2009; Yoshimura et al., 2013].

1.1.4 Prosody in Translation

As described earlier, in a classical S2ST system, information about the speaker would be

lost when the speech is processed by ASR. CLSA aims at “fixing” this issue by adapting the

TTS to the speaker’s voice. In addition to the speaker’s voice characteristics, his/her prosody

would be lost in the process as well. Prosody, which is not about what was said but rather

how it was said, carries information about the speaker identity, mood, social background,

emotions, speaking style and intentions. If some of the parameters controlling prosody can

be easily adapted locally for a TTS system, such as the average and ranges of speaking rate,

intonation and intensity, it is rather difficult to translate prosody in some specific given

context. Agüero et al. [2006] have investigated prosody generation for S2ST by exploiting

intonation, and pauses [Agüero et al., 2008]. Later, a few approaches to intent transfer have

been proposed [Anumanchipalli et al., 2012; Do et al., 2015a,b, 2016a,b]. Transferring — or

translating — intent basically means to be able to emphasise correctly the words in the TTS

output, to reproduce the underlying meaning expressed through prosody in the input speech.

A more complete literature survey on these aspects is included later.

1.2 Scope of the Thesis

The goal of this thesis is to investigate how TTS synthesis systems could be improved in the

context of S2ST by using information present in the input of the speech translation system

which is traditionally lost in ASR and MT steps.

2http://www.skype.com
3Effective Multilingual Interaction in Mobile Environments, more details at http://www.emime.org/
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As brought up earlier, there are several aspect of TTS models that could benefit from using

some information in the source speech, although it is in a different language from the target

speech. In the context of Swiss languages, regional accents play an important role in the

identification of speakers’ origins. It is then worth investigating how speech synthesis models

can be adapted to generate regional accents, and what aspects are important for the listeners

to perceive accentedness. Along with speaker identity, the way things are said is an important

aspect of human communication, as it allows disambiguation, or focus on some informa-

tion. The variations observed can partly be attributed to the speaker’s intonation. Different

languages use intonation in different ways, however all humans produce it using the same

vocal apparatus. This thesis focuses on the modelling of intonation in a theoretically language

independent manner. Later, the modelling of intonation in TTS is investigated, with the goal

of having a flexible system whose parameters can be controlled. The synthesis of word-level

focus, combined with focus detection in the input speech, can be a way to translate intention

in the context of S2ST. In this work, we restrict ourselves to the synthesis of emphasis, which

aims at being further used in an end-to-end system.

1.3 Main Contributions

The main contributions of the thesis, presented in the following chapters, can be summarised

as follows:

1. A French speaker dependent speech corpus was recorded. As no high quality speaker

dependent speech database freely available for the French language, a corpus design

was made and a voice talent was recorded, with specific instructions. The database

can be used for TTS purposes, includes multiple styles, and has an acted emphasis

component, useful for studies on emphasised speech.

2. The adaptation of standard French TTS models to Swiss regional accented speech is

not sufficient for listeners to perceive the Swiss accent. Using correct prosody alone

with standard French pronunciation increases the perception of Swiss accent, and when

combined with model adaptation is not perceived significantly differently from original

Swiss speech in terms of accentedness.

3. A new intonation model was proposed, which is a generalisation of the command-

response model. The components of the model differ from the original command-

response model and are less restrictive. The model is physiologically plausible, which

makes it theoretically language independent. It is proposed with an extraction method,

based on the matching pursuit algorithm. A perceptually relevant measure is proposed

and integrated in weighted matching pursuit method to extract meaningful components.

4. The aforementioned model was used in an intonation prediction scenario: several

attempts to use statistical modelling to predict its parameters were made. The peculiari-

ties of the model turned out to make the prediction of the parameters from standard
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TTS contextual labels difficult.

5. The relevance of the generalised command-response model components with respect

to prosodic contexts reveals that the components share mutual information with accent

and stress information. Emphasis is also found to share mutual information with

the parameters of the model components. Intonation-based emphasis synthesis is

investigated using the model and modification of synthetic speech. The generation of

emphasis-specific word-level intonation proves able to produce emphasis.

1.4 Outline

The thesis has 7 chapters. Chapter 2 introduces some notions and previous work, as well as

databases and methods used in the thesis.

Chapter 3 presents the procedure for recording a new database which is coherent with existing

databases, and with some additional features.

Chapter 4 is an investigation of the regional accent perception for the case of French in

Switzerland as opposed to the French accent from France. We use TTS, speaker adaptation

and analysis-synthesis to modify segmental and suprasegmental parameters to evaluate how

segmental and suprasegmental aspects are perceived for this specific regional accent.

In Chapter 5, a new intonation model is proposed. Intonation modelling background is

introduced, and work on generalising the command-response model is presented. Our method

to decompose intonation into prosodic elements is explained, and its performance evaluated.

The model is compared with the standard command-response model.

In Chapter 6, we investigate the use of the generalised command-response model for the task

of intonation generation. Several statistical methods are tested to predict the parameters of

the command-response model.

Chapter 7 tackles intonation-based emphasis synthesis, using the model introduced in Chap-

ter 5. After an analysis of model parameter relevance, clustering methods are used to generate

emphasis-specific intonation components.

Finally, Chapter 8 gives some summary and conclusions on the work presented in the preced-

ing chapters, with some limitations and possible future directions that could be built up on

this work.
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2 Background

In this chapter, we introduce several notions and methods on which the work of the thesis

is based. Text-to-speech synthesis is introduced as it is at the core of the work, and the

various aspects investigated revolve around it. As we are particularly interested in prosody, its

general aspects from a signal processing point of view are presented, and more specifically,

an overview of the state of the art of intonation modelling is given. In the context of S2ST,

emphasis conservation in translation is introduced. Finally, we present the speech databases

and evaluation methods used in this work.

2.1 Text-to-Speech Synthesis

A text-to-speech (TTS) synthesis method, as its name indicates it, converts text into speech, in

other words, characters into an acoustic signal. The two main categories of speech synthesiser

which are currently used are concatenative TTS, and statistical parametric speech synthe-

sis (SPSS) including hidden Markov model-based and deep neural network-based speech

synthesis.

The former consists of finding speech segments in a database and concatenating them. Unit-

selection TTS is a subcategory of concatenative systems, which chooses and concatenates

speech segments of variable lengths according to target and concatenation cost functions

[Hunt and Black, 1996]. It generally results in very high quality synthetic speech, as long as

the recorded database — which has to be from a single speaker — is big enough to cover the

possible cases for the system usage, and is of high quality. The main inconveniences of this

method are that it is costly, as a lot of data needs to be recorded, and that it is not flexible, i.e.

only speech from the same speaker, with the same speaking style can be synthesised.

SPSS approaches, on the other hand, model speech parameters using knowledge of speech

signals and speech production, and use statistical models to connect text — or a representation

of text, like a sequence of phonemes — and parameters that compose speech. Generative

models are suitable to predict speech parameters from linguistic context — derived from text

7
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by rule-based methods. Then speech can be reconstructed from the synthetic parameters.

One of the advantages of SPSS systems is the flexibility introduced by the parameterisation of

speech: parameters can be modified to result in a modification in the output speech; another

advantage is the ability to build systems from a relatively small amount of data. On the other

hand, SPSS does not achieve the same quality of speech as the best concatenative techniques,

although recently some methods allow the synthesis of decent quality speech. The remainder

of the thesis deals with SPSS, unless stated otherwise.

2.1.1 Statistical Parametric Speech Synthesis

Statistical parametric speech synthesis consists of using a representation of speech which

captures its characteristics, and a statistical model which can learn links between text and

the speech parameters from data. This section gives a sufficient overview of state of the art

methods to support the research in the rest of the thesis.

Source-Filter Model

Speech production can be modelled by a source-filter model, where the source represents

characteristics of signals produced at the vocal folds, such as periodicity which results from

regular opening and closing of the vocal folds; and the filter is a representation of the vocal

tract which shapes the resonance of the source waves. In traditional SPSS systems, the source-

filter model is used to parameterise speech (with various representations); a simple hypothesis

is that voiced and unvoiced excitation signals could be represented by a periodic impulse

train (the fundamental frequency, F0) and white noise, respectively. The vocal tract filter

represents the spectral envelope of speech. The speech signal is then the convolution of these

two components:

s(n) = e(n)∗h(n) (2.1)

where s(n) is the speech signal, e(n) is the excitation and h(n) is the impulse response of the

vocal tract system.

The source-filter model is one accepted parameterisation of speech, and most representa-

tions of speech that are used in parametric TTS follow the same principle. Some standard

representations of the spectral information often used in SPSS are mel-(generalised) cepstral

coefficients [Tokuda et al., 1994], or line spectrum pairs [Soong and Juang, 1984]. The ra-

tio between impulses and white noise used in mixed excitation can lead to buzziness while

resynthesising speech from extracted parameters — caused by erroneous voiced / unvoiced

decision and the presence of strong harmonics at higher frequencies. To overcome this, some

vocoders — tools that enable decomposition into a parametric form and reconstruction of

speech from these parameters — introduce various methods which “soften” the voiced /

unvoiced decision. Some typical methods are band aperiodicity, introduced by Kawahara
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et al. [1999], or harmonic to noise ratio (HNR) [Garner et al., 2013]. More recently, sinusoidal

vocoders have been shown to give more consistent performance than source-filter vocoders.

For more details, the reader can refer to an experimental comparison of vocoder types by Hu

et al. [2013].

In this work, multiple F0 extractors were used and are mentioned where necessary. For the

spectral parameters, unless stated otherwise the STRAIGHT vocoder was used [Kawahara

et al., 1999].

HMM-based Speech Synthesis

A hidden Markov model is a finite state machine which can generate a sequence of observa-

tions. It is generally constructed with multiple hidden states, and defined by its transition

probabilities between states and the emission probability distribution of each state. The states

are hidden, because we do not know the sequence of states, but we know the observation

which is emitted by the states. Figure 2.1 shows a 5 state left-to-right HMM without skips.

s0 s1
π1

a1,1

s2
a1,2

a2,2

s3
a2,3

a3,3

s4
a3,4

o1

b1(o1)

o2

b2(o2)

o3

b3(o3)

Figure 2.1 – A 5 state left-to-right HMM with no skip. {si }4
i=0 are the states (only {si }3

i=1 are
emitting states). Outputs {ok } are emitted following emission probability densities.

In this figure, ai j is the transition probability from state si to s j , bi is the output probability

distribution of state si , ok the observation emitted by state si with the probability bi (ok ).

Intuitively, if we know the state sequence, i.e. how many time steps are spent in each state,

generating an observation consists of generating parameters following the output distribution

of each state. An N-state HMM is then described by A = {
ai j

}N
i , j=1, B = {bi (o)}N

i=1 and Π =
{πi }N

i=1.

The set of parameters describing HMMs is denoted for convenience:

λ= (A,B,Π) (2.2)

Using HMMs for Synthesis In contrast to the case of ASR, where the goal is to retrieve the

most probable sequence of words (or sub-word units), in synthesis, the goal is to retrieve

samples from the model given a word sequence. This can be defined as:
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ô = argmax
o

p(o | w,λ̂) (2.3)

= argmax
o

∑
∀q

p(o,q | w,λ̂) (2.4)

≈ argmax
o

max
q

p(o | q,λ̂)p(q | w,λ̂) (2.5)

with ô the estimated observation, w the word or sentence, λ̂ the estimated model parameters,

q the sequence of states, and p(.) the probability density. Equation (2.5) can be approximately

divided into two problems:

q̂ = argmax
q

P (q | w,λ̂) (2.6)

ô = argmax
o

p(o | q̂,λ̂) (2.7)

In short, one should first estimate the state sequence, given the word or sentence and model

parameters; then estimate the output observation given the state sequence and model pa-

rameters. The state sequence is obtained by estimating state durations. Some constraints

on continuity and derivatives are added to ensure that there are no discontinuities at state

transitions. The introduction of dynamic features (1st and 2nd order derivatives of the static

features in most cases) then allows generation of parameter trajectories which evolve smoothly

in time, as continuous speech signals do. In HMMs, the duration modelling is quite simple

but not very reasonable, therefore hidden semi-Markov models (HSMMs) are typically used,

as they enable explicit modelling of state duration distributions (replacing state transition

probabilities). Various distributions can be used to model state durations, the most commonly

used for convenience in the HMM framework being the Gaussian distribution. The training

aspects of HMM-based synthesis are not discussed in this work, but comprehensive and

detailed introductions are given by Zen et al. [2009] and Yamagishi [2006b].

Modelling Context In ASR, the context around a representation of a phoneme is generally

limited to triphones, i.e. the preceding and succeeding phonemes are taken into account

in text representation. For TTS, a much larger context is needed. This difference can be

explained by the fact that in ASR, the long term dependencies do not increase the performances

of the system while in TTS, we are trying to model the high level variability observed —

such as different prosodic patterns — in different contexts. This extended context usually

includes several preceding and succeeding phonemes, type of phoneme (vowel, fricative,

plosive, etc.), syllable level information (accented or not, stressed or not, etc.), word-level

features, relative positions of phonemes, syllables, words in the higher unit, etc. The number of
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possible combination of contexts becomes huge when the context window increases (meaning

that contextual factors are given for the current phoneme, syllable, word, but also for the

neighbouring units). As a consequence, the data required to learn parameters for each of the

combinations will practically not be available.

To deal with the huge number of possible HMM states, clustering techniques have been

proposed to share model parameters among states in each cluster. Using decision trees is one

of the standard methods introduced by Young et al. [1994] and Yoshimura et al. [1999]. In a

decision tree, at each node except the leaf nodes a binary contextual question, such as “is the

current phoneme a vowel?” or “is the next syllable accented?”, allows splitting the data into

two, based on some measure between the two sets described by the question. The leaf nodes

have state output distributions. In the case of unseen context (i.e. if one wants to synthesise

some context which was not in the training data), going down in the tree starting from the root

node allows reaching one of the leaf nodes, which in the case of a “good” tree will have similar

context to the target context. The big set of questions allows generating big trees which will

take into account many aspects of the context.

Due to the way HMMs are trained, i.e. in a multi-stream way, it is possible to cluster different

parameters in different ways. Thus, the F0 stream may be clustered differently from the

spectral parameters. This makes sense as different parameters are related differently to the

context; it allows capturing higher level relations between prosodic features and linguistic

context.

DNN-based speech synthesis

Deep neural networks (DNNs) have recently become the state of the art method for many

applications, not only in speech processing, but also in image processing or natural language

processing for example. A DNN is an artificial neural network (ANN) with many layers. Al-

though ANNs have been proposed for ASR tasks some 30 years ago (e.g. the work of Bourlard

and Wellekens [1987]) they have become successful only recently, due to the advances in hard-

ware and availability of large amounts of data, which allow training of such systems. DNNs

have started to be used in TTS only very recently, with the first published research presented

in 2013 by Zen et al. [2013]. Figure 2.2 shows an example of DNN architecture typically used

for TTS. Note that in this example, the number of units per layer is rather small for displaying

purposes, but thousands of units are normally used for this task.

The {xi }N
i=1 correspond to the input layer units, with N the number of input features, {hi , j }L,Ki

i , j=1

is the j th hidden unit from layer i , with L the number of hidden layers, and Ki the number

of nodes in layer i . {oi }No
i=1 are the outputs, with No the number of output features. At each

node (here, the hidden units, also called neurons), the input consists of a linear combination

of the values from the previous layer, and a non-linear activation function gives the output.
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x3

x2

x1

h14
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Figure 2.2 – Example of feed-forward DNN with 3 hidden layers, 4 units per layer.

For instance, at the output of unit i of layer l , the value would be:

hi ,l = f

(
Kl−1∑
k=1

wk,l−1hk,l−1 +bi ,l

)
(2.8)

where f is the activation function, wk,l−1 is the weight between unit hk,l−1 and hi ,l , Kl−1 is the

number of units of the previous layer (l −1) and bi ,l is a bias term. One standard activation

function used in DNN approaches is the sigmoid function:

f (y) = 1

1+e−y (2.9)

where y is typically the sum in equation (2.8).

In SPSS, DNNs are generally used with the same type of input features as in HMM-based

synthesis. To fit the DNN architecture, these features are converted to binary classes, cor-

responding to the answer to a binary question used in clustering in HMM-based TTS or

numerical values (for instance the number of words in the sentence). DNNs can then be seen

as a way to replace the decision trees of HMM-based synthesis, as their architecture allows

going directly from contextual features to acoustic features.

Other approaches combining SPSS and unit-selection methods, known as hybrid approaches,

are at the core of commercial systems, and produce high quality speech. At the time of writing,

a new method called “Wavenet” (a generative model for raw audio) was proposed by Google’s

DeepMind team, which allows direct synthesis of speech samples, without having to use a

representation of speech [van den Oord et al., 2016]. Based on causal convolutional networks,

it has shown ability to produce highly natural sounding speech (outperforming both SPSS and

unit-selection methods), but the method is still in its infancy and has a high computational

cost at the moment.
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2.2. Prosody

2.1.2 Speaker Adaptation - Adaptive Training

One of the advantages of statistical parametric synthesis is the possibility to modify model

parameters to generate modifications in the output speech. This is interesting as one can

imagine transforming a synthetic voice to sound like a particular speaker. In a unit selection

system, that would imply collecting a lot of data from this target speaker. By using statistical

modelling, it is possible to estimate transforms to go from one voice (for instance an average

voice) to another (the target speaker’s voice). In the TTS context, it is useful as it allows

adapting the trained models to sound like a target speaker using only little data. There are

several methods to perform speaker adaptation, based on linear regression (LR), maximum

a posteriori (MAP), or a combination of them. The most common methods are maximum

likelihood linear regression (MLLR), constrained MLLR (CMLLR), structural maximum a

posteriori linear regression (SMAPLR) and constrained SMAPLR (CSMAPLR). The transform

functions used rely on maximum likelihood and MAP criteria [Yamagishi et al., 2009]. In the

unconstrained case, only mean vectors are adapted, while in the constrained scenario, the

covariance matrix is also adapted to estimate the transforms. Yamagishi et al. [2009] showed

that using gender dependent models (training average voice using only speakers from one

gender) and adapting them with a combination of CSMAPLR and MAP adaptation was giving

better and more stable performance.

Speaker adaptive training (SAT) consists of training an average voice using speech from

many different speakers, and requires a smaller amount of data per speaker than regular

speaker dependent training. However, because of the speakers’ voice characteristics, there is a

variability that should be taken into account to estimate the models. This is done by expressing

the difference between each training speaker’s voice and the average voice as a linear regression

function of mean vectors of the state output and duration distributions. MLLR is typically

used as a speaker normalisation technique to reduce the influence of speaker differences

in terms of voice characteristics. For a better understanding of speaker adaptive training, a

detailed and comprehensive analysis is given by J. Yamagishi’s PhD thesis [Yamagishi, 2006a],

or Yamagishi and Kobayashi [2007]. An average voice trained using SAT can be adapted using

standard speaker adaptation methods, and it was shown to obtain better speech quality than

using only speaker dependent model when having only a small amount of data from the target

speaker [Yamagishi and Kobayashi, 2007].

Speaker adaptation and speaker adaptive training for DNN-based synthesis have started only

recently to receive some attention, and the research on these topics is still taking its first steps,

with only few successful approaches reported so far [Fan et al., 2015].

2.2 Prosody

The word prosody comes from the Greek word προσῳδία [prosO:(i)día:], “song sung to music,

tone of a syllable”, later evolving in the Latin word prosodia, “accent of a syllable”, taking

its current form in the late 15th century. A definition of the current word could be: “the
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components of speech that are not individual phonetic segments”1. In other words, it is

an aspect which is not related to the sounds that are emitted — and perceived — for each

phoneme, but rather the way they are produced and perceived. As it was underlined in

Chapter 1, it is not what is said, but rather how it is said. It encompasses characteristics about

the speaker’s voice, emotional state, speaking style, socio-linguistic background, intentions.

2.2.1 Prosody in the Speech Signal

In a speech signal, prosody is generally associated with 3 components: the intonation — or

speech melody —, the rhythm — including speech rate and its variations — and intensity.

The intonation of the speech signal is characterised by the fundamental frequency of speech,

denoted F0, which can be related to the frequency of the vocal fold vibrations. In the source-

filter model, this corresponds to the harmonic source. Various methods can extract F0 from a

speech signal. Many models trying to represent intonation exist, we present some of them in

Section 2.2.2.

Intensity corresponds to the loudness of speech. It is the energy of the speech signal. In the

case of digital speech signal, it is simply calculated as the sum of squared amplitude of each

sample in the desired time window.

The rhythm is the speed with which the speaker utters syllables, words, and sentences. The

speech rate, which can be calculated at the phoneme, syllable, word or sentence level is quite

variable according to the language, speaker and speaking style. Related to the speaking rate,

the pauses and their durations are another very important aspect of prosody.

2.2.2 Intonation Modelling

Modelling intonation in the context of this thesis consists of finding a representation of F0

that allows analysis and possibly synthesis of it. Many intonation models have been proposed,

each of them having pros and cons. We give a review of the most pertinent ones to this thesis,

which is by no means exhaustive.

There are two main approaches to model intonation: directly modelling pitch, or trying to

simulate the pitch production process. If the former category counts numerous models, e.g.

Bailly and Holm [2005]; Hirst and Espesser [1993]; Pierrehumbert [1981]; Taylor [2000]; the

latter has only few models, e.g. Fujisaki and Nagashima [1969]; Kochanski and Shih [2003].

Most of the models allow analysis and representation of the pitch, however they cannot be

used directly with existing generative models in the same fashion as other features, such as in

the HMM synthesis framework.

Hirst and Espesser [1993] model the intonation contour as a sequence of specific F0 target

points. In this approach, the intonation contour is approximated by a (piece-wise) quadratic

1https://en.wikipedia.org/wiki/Prosody_(linguistics)
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spline function, using an algorithm called Momel (for “modelling melody”). This yields

some smooth continuous version of the macromelodic characteristics of intonation. The

parameters of the spline functions can be used to get back this version of F0, which makes

Momel reversible. A further step which was taken was to extract from this spline some

“interesting” points, defining intonation as a sequence of tonal segments which are labelled

using an alphabet of 8 symbols. This labelling system, presented by Hirst and Di Cristo

[1998], is called INTSINT, for INternational Transcription System for INTonation. The possible

segment labels are assumed to be absolute tones (top, mid or bottom), relative tones (higher,

same or lower) or iterative relative tones (upstepped or downstepped). These labels, associated

with the key and span of the speaker which defines their minimal and maximal pitch values in

a logarithmic scale, allow characterising a curve modelled by Momel.

The Tilt model describes F0 as a sequence of events with specific shapes that can be automati-

cally extracted with an obvious synthesis step [Taylor, 2000]. Each tilt component is a measure

of the shape and amplitude of an event in the prosodic (intonation) contour. The intonational

stream is then a sequence of events which each have a rising and falling component. They

are characterised by their position, amplitude and some tilt parameter, shaping the event,

which varies between −1.0 for a fall and +1.0 for a rise, where 0.0 has equal sized rise and

fall components. The amplitude is directly linked to the phonetic prominence of the event,

while its duration is simply the sum of the rising and falling component durations. In the

reconstruction phase, the contour is interpolated linearly between events.

Another model derived by Bailly and Holm [2005], called Superposition of Functional Contours

(SFC), is a data driven approach, based on the superposition of elementary contours extracted

with the use of neural networks. The first two models try to directly model intonation with

no attempt to understand its underlying production process. SFC, on the other hand, mostly

relies on metalinguistic information, trying to link high level linguistics to acoustic realisations.

It is a data-driven method which uses artificial neural networks to learn how to generate

the superpositional contours given metalinguistic functions. The intonation contour is then

decomposed into a variable number of function contours. There is no constraint on the shape

of these elementary contours, the model should learn from multiple instances of different

functions in the database. Although it is an explicit model of prosody, this model is close to

recent integrated modelling of intonation in TTS systems, as it tries to learn structure from the

data.

Only a few models actually try to explain the intonation by investigating its production aspect.

The most popular model in this category is the command response (CR) model of Fujisaki and

Nagashima [1969]. This model, based on earlier work from Öhman [1967], decomposes the

intonation into additive physiologically meaningful components. Two types of components

allow modelling an intonation contour: phrase components, which are long term components,

assumed to model the effect of the translation of the thyroid cartilage on the vocal fold tension;

and accent components, which are short term components, assumed to model the effect of

the rotation of the thyroid cartilage on the vocal fold tension. The relation between the vocal
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fold tension and the fundamental frequency is then straightforward [Fujisaki, 2006]. This

model is discussed in further detail in Section 5.3, Chapter 5.

Another example, proposed by Kochanski and Shih [2000] is Stem-ML, which stands for Soft

template Markup Language. It is a model of intonation which, although it was originally

developed to model Chinese tones, was designed to be language independent. It is somewhere

between linguistics and the physical tool that produces F0. The intonation production process

is described as an optimisation problem where the maximisation of two functions is sought:

the ease of production and the speaker’s estimate of the efficiency of the specific prosody on the

listener. The former is approximated by a function of the pitch derivatives; the latter is based

on the error between prosody targets (defined by tags) and the realised prosody.

Some of these models have been successfully implemented in the context of TTS, as external

prosody models [Bailly and Gorisch, 2006; Kameoka et al., 2010; Yoshizato et al., 2012; Zhang

et al., 2006]. The following section discusses state of the art methods to model intonation

in TTS, namely methods which are well integrated in the framework used for other acoustic

features.

2.2.3 Intonation Modelling for TTS

In the context of speech synthesis, intonation is generally modelled within the framework of

the method used, namely HMMs and DNNs.

In the first steps of HMM-based synthesis, a multi-space probability distribution (MSD)-HMM

was developed and became a standard way of handling the fact that speech can be voiced

or unvoiced [Tokuda et al., 2002a]. In the unvoiced regions, F0 does not actually exist, then

it can be represented by a unique symbol whose meaning is “no value”. In a traditional

HMM, the state output distribution is generally modelled by a Gaussian or another probability

distribution. MSD-HMMs allow generating values from different spaces. In the case of F0

modelling, the observation sequence can be seen as a mixed sequence of outputs from a space

with dimension one (single continuous value) for voiced regions and a space with dimension

zero (a unique symbol) for unvoiced regions.

In DNN-based synthesis, F0 is modelled frame by frame, along with other acoustic parameters

(spectral parameters) with some smoothing generally done after generating the parameters.

The voiced-unvoiced decision is typically modelled by a binary value and is learnt along with

other features in the DNN training, or by using MSD as in the HMM case. The linguistic

context, input of the DNN, being at the frame level, contains information of higher level than

phoneme and word, but also intra-phone information, with some features such as “position

in the phoneme”, to model patterns.

Recently, some work was done using continuous F0 and it was shown that continuous F0

improves the perceived naturalness of synthesis [Latorre et al., 2011; Yu and Young, 2011]. This

was further improved by hierarchical modelling using continuous wavelet decomposition to
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separate the different levels of variation in F0 into multiple continuous features, on different

scales [Suni et al., 2013]. In this work, the authors exploit the multi-stream architecture of

an HMM-based TTS framework to cluster these different temporal scale components with

different decision trees. This method was later extended and exploited in DNN-based TTS by

Ribeiro et al. [2016a].

Another approach consists of post-processing the synthetic F0, output of the HMMs. An

example of what can be done to improve the output of HMM synthesis is given by Hirose et al.

[2011, 2012]. Based on the command response (CR) model [Fujisaki and Nagashima, 1969],

the idea is to estimate the F0 model commands from linguistic information, and then optimise

them according to the F0 generated by HMMs. By modifying the estimated parameters, it

becomes possible to increase the expressivity of the synthetic speech. Another attempt to

integrate the CR model in HMM-based TTS was made by Hashimoto et al. [2012], where

parameterised F0, generated by the CR model, was used for training the HMM intonation

features. This improved the quality of the synthetic speech as modelling the F0 smoothed its

contour before training.

Some interesting work on prosody in speech synthesis, dealing mainly with models which are

external to the TTS framework, can be found in a recent collection of work by Hirose and Tao

[2015].

2.3 Emphasis

Emphasis in speech can be defined as a specific segment of a sentence (often one word, or

group of words) which is given particular importance, something which “stands out”. It is

usually referred to as prominence, focus, or saliency.

According to Nakajima et al. [2014]:

“In human speech, emphasis can be regrouped at least into four functions based on

analysis in conventional literature [...] (bold portions show emphasized words and

phrases).

1. Expressing linguistic “focus”:

e.g., “Taro did.” (as an answer to “who did ...?”)

2. Expressing “contrast”:

e.g., “not A but B”

3. Expressing “element of surprise”:

e.g., “I heard he was sick, but he had much energy.”

4. Disambiguating grammatical structure: clarifying parallel and dependency

structure:

e.g., to distinguish “{old men} and women” from “old {men and women}” in

“old men and women””
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In other words, a prominent word indicates new information, disambiguation, attention to

a particular aspect of the sentence or contrast. In the context of this work, we focus on the

emphasis of isolated word / group of words.

2.3.1 Prominence of Words

For humans, there is not one way of uttering a sentence. In some sentences, most of the words

can be emphasised, to imply different underlying meanings. For instance:

• Jack didn’t eat fish yesterday. (Someone else ate fish)

• Jack didn’t eat fish yesterday. (He did not eat it)

• Jack didn’t eat fish yesterday. (He did not eat fish, he may have done something else

related to fish)

• Jack didn’t eat fish yesterday. (He ate something else)

• Jack didn’t eat fish yesterday. (He ate fish another day)

In a speech signal, aspects related to prosody are the ones which are the most concerned

with emphasis. An emphasised word will manifest itself by pauses before and / or after the

word, a slower speaking rate in the word, a higher energy in the word, an increased activity

in the intonation, or a combination of these features. Emphasis production is language and

speaker dependent: different speakers use different cues to express emphasis, and emphasis

is delivered differently according to the spoken language.

2.3.2 Word Emphasis Detection and Synthesis

In the context of automatic speech processing, two tasks related to emphasis are generally

pertinent: the detection of these prominent words, and their generation. In an S2ST scenario,

emphasis detection can be seen as a complementary task for ASR, and emphasis synthesis as

a complementary task for TTS.

Emphasis Detection

The literature provides many examples of emphasis detection, with very different approaches.

Some techniques are based on pitch, e.g. the work of Kennedy and Ellis [2003] and Arons

[1994]. Heldner et al. [1999] used a combination of intensity and spectral tilt. Liang [2016]

used a data-driven method, by considering emphatic words as outliers with respect to prosody.

Recently, in the context of the SIWIS project and this thesis, a method using multi-level

demodulation was proposed by Cernak and Honnet [2015], combining stress and syllable

modulation peaks to detect emphatic words. Cernak et al. [2016] later proposed an interesting
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approach where a phonological vocoder is used to detect differences in the phonological

realisation between emphasised and neutral words. Gerazov et al. [2016] investigated the use

of a prosodic model originally developed for intonation, by modelling the three main aspects

of prosody (intonation, intensity and rhythm) to detect emphasis.

Emphasis Synthesis

Generating emphasis means bringing the listener to perceive emphasis on some desired target

word(s). Strom et al. [2007] designed a corpus with many different phonetic contexts, with the

same “emphasised” context: A set of three sentences which requires specific emphasis on a

name, repeated with about 1100 different names, to cover all the possible diphones, in the

context of an emphasised syllable. An example given in their paper is (bold letters indicate

words to be emphasised):

“It was Erwin who did it!”

“No, it was Eliza who did it!”

“It was Eliza, not Erwin!”

Then, using this corpus, in the context of unit-selection TTS, the authors integrate prominence

labels in their target cost function.

Another approach, proposed by Ochi et al. [2009], exploits the command-response intonation

model of Fujisaki and Hirose [1984], as it predicts F0 using this model, and then alter the

commands to control the emphasis at will. Hirose et al. [2012] followed the same idea by

proposing an intonation contour reshaping method, based on the command-response model

as well, in the context of HMM-based synthesis.

Yu et al. [2010] proposed two approaches to emphasis synthesis, using features of decision

trees: a two-pass decision tree state clustering, which clusters states first using emphasis

related context and then extends the tree using standard contextual features; factorised

decision trees, which allow the exploitation of all the data rather than fragmenting it into

emphasised/non-emphasised subsets.

2.3.3 Emphasis in Translation

In the context of speech-to-speech translation, there have been attempts to preserve intentions

in the translation, in other words, trying to translate emphasis of some words in the input

language to the output language. A traditional S2ST system would simply lose any emphasis

information at the stage of ASR, the goal of these approaches being to retrieve and use this

information.

One way to preserve emphasis in translation is to detect emphasis in the input language, use

machine translation as a carrier, and synthesise the sentence with emphasis in the output
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language. In that sense, the methods described in the previous sections can be applied in such

a scenario. This general approach is investigated in this thesis, in Chapter 7 where emphasis

synthesis is tackled, and was at the core of the SIWIS project with several methods for emphasis

detection proposed by Cernak and Honnet [2015], Cernak et al. [2016] and Liang [2016], or

Gerazov et al. [2016] in the SP2 project2.

Other methods try to directly exploit the input data to reproduce emphasis in the output

language. Anumanchipalli et al. [2012] proposed an intent transfer method for S2ST. In this

work, a conversion function between accent vectors of the source and target language is

trained, based on tilt accent vectors. At synthesis time, for the neutral words, word-level tilt

vectors are predicted, and using the conversion function, the emphasised word tilt vector is

predicted using the emphasised word vector from the input sentence.

More recently, Do et al. [2015a] proposed a more complete and integrated framework with

the use of linear regression HSMMs to preserve word-level emphasis in S2ST. An emphasis

weight sequence is estimated for an observation sequence and its transcription using the

expectation maximisation algorithm [Dempster et al., 1977]. The translation of emphasis is

then performed by estimating the emphasis weight sequence in the target language given

the sequence from the input language with conditional random fields (CRF). At the synthesis

stage, the speech parameter vector sequence maximises the likelihood function given the

state sequence, the word-level emphasis sequence and the model parameters (it is the same

as in equation (2.7), with in addition the word emphasis sequence for conditioning). Later,

Do et al. [2015b] investigated pause prediction to improve emphasis in the context of S2ST.

Following their previous work, the authors used a similar method, where CRFs were employed

to predict the pauses in the output language given the pauses in input language. Later, with the

increasing interest of the research community in deep learning, Do et al. [2016a] proposed to

use long short term memory (LSTM) neural networks to encode and decode emphasis, which

slightly improved upon the performance of the CRF-based method. The same authors also

proposed to use cluster adaptive training (CAT) with a continuous emphasis representation (as

opposed to the binary or multi-level representation that they used before) [Do et al., 2016b].

In the more general context of prosody in S2ST, Agüero et al. [2006] proposed to exploit

information which was present in the input language speech signal and to use it for the

synthesis of speech in the output language. By learning the relations between intonation

in both languages, using this approach improved the naturalness of the TTS output. Pause

transfer in S2ST was also proposed by Agüero et al. [2008].

2.4 Datasets

This section gives a brief introduction of the speech databases used in this work and their

application in the context of the thesis.

2See https://www.idiap.ch/scientific-research/projects/sp2
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2.4.1 Multi Speaker Databases

To train HMM-based TTS systems using adaptive training, speech from multiple speakers can

be used. Here we describe three datasets that were used for this purpose.

WSJ

The Wall Street Journal (WSJ) corpus [Paul and Baker, 1992] is an American English speech

database, consisting of read speech from multiple speakers. It was originally recorded for

research on ASR. The recorded sentences were taken from news from the Wall Street Journal

news text.

SI84 set This dataset consists of speech from 83 (43 male and 40 female) speakers, originally

designed for speaker independent (SI) model building. It contains 7085 sentences amounting

to 13.66 hours of speech. The SI84 subset of the WSJ corpus was used to evaluate our intonation

model (Chapter 5) and to train an English HMM-based TTS system (Chapter 7).

The CMU Arctic Databases

The CMU Arctic databases, by Kominek and Black [2004], were designed and recorded for the

purpose of speech synthesis research. They are high quality single speaker speech databases

of about 1200 utterance each. The sentences are phonetically balanced, and recorded in

studio conditions. The speech comes with corresponding transcriptions in the Festival format

[Black et al., 1997], that can easily be used to build a TTS system. They are widely used in TTS

research and have been integrated in speech synthesis system demos3. Some of the CMU

Arctic databases were used in the evaluation of our intonation model in Chapter 5.

BREF

BREF [Lamel et al., 1991] is another speech database dedicated to ASR research. It is a French

read-speech corpus designed for speech recognition model training and testing. The sentences

to be read by the speakers were chosen from the French newspaper Le Monde. It consists of

recordings from 120 selected speakers (55 males and 65 females), recorded in a sound-proof

room. The complete database represents more than 100 hours of speech. In this work, we

used BREF to build some French TTS models to evaluate French accents (Chapter 4) and to

evaluate our intonation model (Chapter 5).

3e.g. in HTS demo, see http://hts.sp.nitech.ac.jp/; and more recently in an Idlak Tangle recipe, see https:
//github.com/bpotard/idlak
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PhonDat

PhonDat [Hess et al., 1995] is a corpus of German speech from 201 different speakers. Each

speaker read a sub-corpus of 450 different sentences (including single words and two short

passages of prose text). The corpus contains a total of 21,681 recorded utterances. It is provided

with a phonological segmentation by hand of a small subset and an automatic alignment of

the whole corpus. Phondat was used to evaluate our intonation model (Chapter 5).

2.4.2 The PFC Corpus

The PFC project (“Phonologie du Français Contemporain”)4 consisted of recordings from

multiple speakers from various French speaking regions, in an attempt to collect speech data

from a vast geographical area. It gathers read speech and guided or free conversational speech,

from many different locations from French speaking regions of the world. The recordings were

done at the homes of the speakers, in an attempt to avoid collecting “lab speech”. The dataset

from the PFC database [Durand et al., 2009] used in this work consists of read speech by Swiss

French speakers and French speakers from Paris. The data was recorded in 5 cities: Paris

(France) and 4 cities in 4 different Swiss cantons: Martigny (Valais), Nyon (Vaud), Neuchâtel

(Neuchâtel), and Geneva (Geneva). For each location, 4 male and 4 female speakers born and

raised in the city were recorded. This corpus was used to investigate Swiss French accents

(Chapter 4).

2.4.3 The SIWIS Multilingual Database

One of the goals of the SIWIS project was to investigate Swiss languages in the context of

speech-to-speech translation. To this end, a multilingual multi-speaker database with empha-

sis was recorded [Goldman et al., 2016]. As a simple overview, the data consists of speech from

bilingual and trilingual speakers, in at least two of the database languages: English, French,

German and Italian. The sentences recorded in each language have the same meaning, there-

fore the corpus is parallel in the language sense, in a similar fashion to the EMIME bilingual

corpus [Wester, 2010]. The recorded data consists of news read speech, and a short excerpt of a

novel. Another aspect of this corpus is its emphasis component: for a fraction of the sentences,

the speakers were asked to emphasise a specific predetermined word in the sentence. As

these sentences were also recorded in a neutral fashion, it makes the corpus parallel from an

emphasis point of view. In total, about 24 hours of speech were recorded from 36 speakers.

More details on the design of the database are provided in Chapter 3, Section 3.2 as it is a

contribution of this thesis.

4See http://www.projet-pfc.net
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2.4.4 Blizzard Challenge Databases

The Blizzard challenge5 is an annual competition whose goal is to evaluate the quality of

synthetic speech using various data-driven methods on the same speech corpus [Black and

Tokuda, 2005]. For this, high quality speech databases are built and made available to the

participants.

The Blizzard Challenge 2008

In 2008, the competitors had to build a UK English voice and a Mandarin voice [Karaiskos

et al., 2008]. Roger is the name of the UK English data that was recorded to this end — being

the name of the speaker who gave his voice for it. It consists of about 15 hours of recordings

with a “fairly standard RP accent”. Designed by Strom et al. [2006, 2007], the first purpose

of the corpus was to build unit-selection TTS systems with expressive prosody, namely by

integrating prominence and emphasis modelling. It contains, among other things, children’s

stories, read news and word lists. A part of the corpus also consisted of sentences with an

explicit structure, to elicit emphatic productions in specific contexts. This corpus was used for

emphasis studies in Chapter 7.

The Blizzard Challenge 2011

For the 2011 edition of the Blizzard challenge [King and Karaiskos, 2011], the participants

were asked to build a voice using US English data provided by Lessac Technologies. The

data, described by Wilhelms-Tricarico et al. [2011], consists of 16.6 hours of speech from a

professional female voice talent known as Nancy. The text to be read by the speaker was

annotated using “Lessemes”, which are annotations which “explicitly capture the musicality

of speech, [avoiding] the artificial separation of prosodic and linguistic features of speech.”

Eventually, the speaker was presented with text and musical score-like representation of

Lessemes. The speaker is a trained singer and had to follow intonation patterns depicted by

the annotation. This corpus was used in the context of intonation synthesis in Chapter 6, and

for analyses of our intonation model in Chapter 7.

2.4.5 French Female Voice

There is a fair number of high quality speaker dependent speech databases available for

English language. This is not true for French: although some multi-speaker databases exist,

and one can find relatively good quality free French audiobooks online6, to the best knowledge

of the author, there is no free French speech corpus allowing building high quality speech

synthesis systems. The main limitation of audiobook speech is that it is not segmented and,

despite some tools such as ALISA [Stan et al., 2016], developed in the context of the Simple4All

5See http://www.festvox.org/blizzard/
6e.g. Candide, by Voltaire freely available on LibriVox: https://librivox.org/candide-by-voltaire/
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project, requires a lot of work to be well segmented. Within the SIWIS project, a French voice

talent was recorded, aimed at several use cases. It contains 10 hours of speech, recorded

by a native French female speaker selected from a voice talent bank. The data consists of

read speech from multiple styles, with text coming from French parliament debates and from

novels. Similarly to the SIWIS database, the speaker was asked to emphasise specific words for

a set of about 1600 sentences. More details on the corpus design, text selection and recordings

are given in Section 3.3 of Chapter 3, as it is a contribution of this thesis.

2.5 Evaluation Methods

In the field of text-to-speech synthesis, there are two complementary ways of evaluating the

output of a system: objective evaluations, and subjective evaluations. The former consists of

comparing synthetic speech to natural human speech via mathematical quantities. The latter

consists of asking listeners’ opinion about, for instance, quality of speech, intelligibility, or

their preference between samples.

2.5.1 Objective Measures

When it comes to evaluate speech synthesiser outputs, the standard procedure is to measure

the distance between synthetic parameters and parameters extracted from real speech. These

typically corresponds to mel cepstral distortion for the spectral part when mel cepstral coeffi-

cients are used, and root mean square error (RMSE) and correlation for F0. In the context of this

thesis, the objective measures concern the accuracy of the intonation that can be synthesised,

therefore, RMSE and correlation are the standard objective measures. Some other measures,

relevant to specific tasks, are introduced in some chapters when used.

2.5.2 Listening Tests

The complexity of the speech signal makes it rather difficult to evaluate speech quality using

only objective measures. Also, measuring synthetic features before vocoding does not take

into account the vocoder flaws in the evaluation. A typical method to evaluate the quality or

other aspects of synthetic speech is to ask some subjects to listen to samples and to rate the

desired aspect.

Standard Listening Tests

There are many ways to design listening tests, depending on the purpose of the evaluation.

When evaluating a system, mean opinion score (MOS) tests are usually carried out: the

listeners have to rate some aspect of speech on a given scale (typically, the naturalness between

1 and 5 where 1 is very unnatural, 5 completely natural). A typical method to compare two

systems consists of using a preference test where listeners have to decide for pairs of sentences
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which one they prefer, or if they have no preference. The MUSHRA (MUltiple Stimuli with

Hidden Reference and Anchor) test has recently started to be used more and more to compare

multiple systems and rank them: listeners have to rank all the systems on a continuous scale

for the same stimulus generated by each of them. In the case where the intelligibility is

investigated, transcription tests are employed: as the name suggests, the listeners have to

transcribe what they hear. Another commonly used test is the same/different evaluation,

where listeners are asked for each pair if they perceive both versions as exactly the same, or

different; this type of test was conducted in Chapter 6.

Other Listening Tests

Some other more specific listening tests can be employed, where the instructions are related

to the evaluation of particular aspects of speech. In this thesis, we conducted some listening

tests related to:

1. Accentedness: in the context of regional accents, the listeners were asked the degree of

accent of the speaker, i.e. how strong they perceived the accent of the speaker. This type

of test was conducted in Chapter 4.

2. Emphasis word identification: the listeners were asked to choose which word or group

of words was the most emphasised in the sentence they had to listen to.

3. Emphasis strength: related to the previous task, the listeners had to precise how strong

they thought the emphasised word they had chosen was. The last 2 tests were carried

jointly in Chapter 7.

A Note about Listening Tests

Last year, a very interesting survey was done by Wester et al. [2015] about the quality and

validity of listening tests in TTS research. The main conclusion of this piece of work was that

to obtain a stable level of significance, 30 listeners at least should take part in the evaluation.

The paper also gives some useful guidelines to listening tests for speech synthesis evaluation,

that the listening tests conducted in the context of this thesis follow.
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3 Data

With the evaluation of speech-to-speech translation and emphasis studies in mind, this

chapter presents the design and recording of two speech databases. Both were created in the

context of the SIWIS project.

The first database is a multilingual corpus which contains parallel speech in several language

pairs, from several speakers. It also contains sentences with emphasised words, which are

then available from multiple speakers.

The second database is a French high quality speech corpus, aimed at building TTS systems,

investigate multiple styles, and emphasis. The speech comes from a French voice talent, and

contains about ten hours of speech, including emphasised words in many different contexts.

The first database was joint work with a project partner and was published in the following

paper:

– Jean-Philippe Goldman, Pierre-Edouard Honnet, Rob Clark, Philip N. Garner, Maria

Ivanova, Alexandros Lazaridis, Hui Liang, Tiago Macedo, Beat Pfister, Manuel Sam

Ribeiro, Eric Wehrli, and Junichi Yamagishi. The SIWIS database: a multilingual speech

database with acted emphasis. In Proceedings of Interspeech, pages 1532–1535, San

Francisco, CA, USA, September 2016

The second database was also joint work, although specified mainly by the candidate. It has

not been published yet.

3.1 Motivation

The SIWIS project is a personalised speech-to-speech translation (S2ST) project, which aims

at investigating S2ST in Swiss languages. One of the goals of the project is to enable the

multilinguality of the ASR and TTS systems. Another line of research at the core of the project

is the modelling of prosody for synthesis in the context of S2ST.

27



Chapter 3. Data

In an attempt to study intonation in the context of intent transfer, based on the detection and

synthesis of word emphasis, the two databases presented in this chapter were designed to

contain some speech with emphasis. In Section 3.2, we introduce a database which should

serve both multilingual study and emphasis study purposes. In Section 3.3, we introduce a

database that can be used to build high quality French speech synthesis systems, and allows

investigations of the emphasis aspect in various contexts.

3.2 The SIWIS Database: a Multi Speaker Multilingual Data

The EMIME bilingual database, by Wester [2010], is a bilingual database containing several

language mappings: English/Finnish and English/German. This bilingual data was aimed at

investigation of cross lingual speaker adaptation.

Towards the same ends but with an inclination towards prosody aspects, and a bias towards

Swiss languages, a multilingual database was recorded for the SIWIS project. As it was inspired

by the EMIME bilingual database, it consists of speech from bilingual or trilingual speakers,

with parallel content. The following pairs of languages were recorded to cover all the possible

mappings amongst the four languages of interest: English, French, German and Italian.

3.2.1 Text Material

For each language, 3 different scenarios were proposed, with a similar architecture. Each set

of 171 prompts for each language was divided into 5 parts as follows:

• europarl: 25 Europarl statements among which 20 declaratives and 5 interrogatives.

The Europarl corpus was used to have a parallel meaning across languages [Koehn,

2005].

• news: 100 sentences from newspapers: 80 declaratives and 20 interrogatives.

• sus: 20 semantically unpredictable sentences, which can be used for intelligibility

assessment.

• focus: 25 Europarl statements. This is a subset of the europarl part, but one word,

written in capital letters in the prompt, was emphasised, i.e. pronounced with a focus.

• prince: A selected continuous passage from Le Petit Prince, with a length of about 240

words with some interrogative sentences and some direct and indirect discourse. The

text was presented as a single prompt to ensure consistency in the prosody. The speaker

was asked to read it with involvement.
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3.2. The SIWIS Database: a Multi Speaker Multilingual Data

3.2.2 Speaker Selection

Candidates were asked to read a short excerpt of Le Petit Prince of Antoine de Saint-Éxupéry

in at least two of the four languages. The speakers were then selected based on their foreign

accentedness: at least 3 experts in linguistics rated the strength of the candidates’ foreign

accent on a scale from 0 to 3 (0 for strong foreign accent, 1 for noticeable foreign accent, 2

for very slight foreign accent and 3 for no foreign accent). To be selected, the speakers had to

obtain an average evaluation of at least 2.5 and no evaluation below 2. Eventually, 36 speakers

were selected : 22 bilingual and 14 trilingual. Figure 3.1 gives the number of speakers recorded

for each language pair.

French German

English Italian

12

5

20
13

4
10

Figure 3.1 – Mapping between language pairs. The number of bilingual speakers recorded for
each pair is indicated on the arrows.

3.2.3 Recordings

The recordings took place in a anechoic booth in which were placed a dynamic microphone

MX418/C SHURE at 10-20 cm from the speaker with a pop shield, and a keyboard to control

the prompts scrolling. The prompts were visible to the subject on a screen outside of the

booth. A clone screen was visible to the operator to supervise the session. The sound device

USBPre2 was used to record the signal into a 44.1 kHz mono 16bit format.

The SpeechRecorder 4 software (from the Institute of Phonetics and Speech Processing of the

Ludwig-Maximilians-Universität München) was used to present the prompts one by one. The

prompts were randomly mixed within the 4 first parts (i.e except the prince part which was

presented as a single prompt). The prompt was presented to the speaker who could take a few

seconds to read it mentally. Then, he or she pronounced it and had to press a key to either

jump to the next prompt or re-record the same prompt. Redoing the same prompt was done

in case of stuttering, hesitation or wrong reading. The speakers usually realised they had to

restart the same prompt by themselves. Nevertheless, the operator could also ask them to do

so.
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Chapter 3. Data

3.2.4 Database Content

Table 3.1 summarises the content of the database. Note that the labels correspond to HTS-like

labels1, and their automatic alignment was done using TTS average voice models for each

language. The emphasis marks on the labels were added manually, at the word level.

Table 3.1 – Recording numbers, durations and aligned labels.

Language Sessions Prompts Total dur. Labels With emphasis Words
French 31 5332 512 min. 4474 440 61815
English 22 3771 350 min. 3597 303 41023
German 17 2903 266 min. 2561 276 25660
Italian 16 2738 287 min. — — —
Total 86 14744 1415 min. 10632 1019 128498

∼ 23.6 hrs.

3.3 Single Speaker French Database

Few databases exist with sentences containing emphasised words. In English, one of the

recent Blizzard Challenge datasets provided a high quality somewhat expressive speech corpus

[Karaiskos et al., 2008]. The speaker, Roger, was asked to utter some of the sentences with a

specific emphasis on one or two words, as described in Chapter 2, Section 2.3. While their

approach allows covering all the possible diphones in an emphasised word, the context of this

emphasised word is limited to a specific scenario.

To enable studies of emphasis intonation in a more variable context, we designed a speech

corpus which contains emphasised words in many different contexts. The emphasised data

collected was a part of a bigger high quality French speech database whose primary target

application is speech synthesis. Below, we describe the database design, recordings and give

some statistics about the data.

3.3.1 Text Material

The text selected for recordings consists of six parts:

• parl: consists of 4500 isolated sentences from French parliament debates.

• book: consists of 3500 isolated sentences from French novels.

• siwis: consists of 75 sentences from the SIWIS database.

• sus: consists of 100 semantically unpredictable sentences.

• emph: consists of 1575 sentences taken from the 4 other sets.

1A description is available in the documentation of the HTS demo, available at http://hts.sp.nitech.ac.jp/
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3.3. Single Speaker French Database

• chap: consists of a full book chapter.

These 6 subsets serve different purposes. A detailed explanation on the text collection and

preparation, as well as the purpose of each set is given below.

parl With the primary goal being the construction of TTS systems, the text was taken from

debates between June 2012 and July 2015 at the French parliament. The main advantages of

using such data are its free and open access, and its contemporary aspect: the vocabulary

used in the debates reflects the current language in the society. The text data was downloaded

from the French national assembly website2. A first selection was done to get the best diphone

coverage as possible, using a greedy algorithm. A selection based on the sentence length,

removing the shortest and longest sentences, allowed reducing the sentence set. Many sen-

tences with the same recurrent structure were manually removed, for instance sentences like

“La parole est à Monsieur David Douillet.”

book In order to have copyright free material, five French books were selected from two

authors: Zadig and Micromegas from Voltaire, and Voyage au centre de la Terre, L’Île mystérieuse

and Vingt mille lieues sous les mers from Jules Verne3. After removing very short and very long

sentences, a first random sentence selection was made. A manual checking was done in order

to remove the sentence containing names which pronunciation could be ambiguous.

siwis This set corresponds to the sentences from the SIWIS database for which the speakers

were asked to emphasise specific words. Recording the same data allows us to have parallel

data from one database to the other. The sentences come from the Europarl corpus.

sus These sentences were partly taken from the SIWIS database, for which 20 such sentences

were selected and recorded. The remaining 80 sentences were generated on a sentence

generator website4. The generator randomly produces sentences respecting grammatical

rules. The set of generated sentences was manually checked to remove sentences which made

sense. This subset was recorded for testing, as semantically unpredictable sentences are good

candidates to evaluate intelligibility for instance.

emph These sentences are aimed at studies on emphasis. In a similar fashion to the SIWIS

database, this allows collecting the same sentences in 2 different styles: one in a neutral style,

and one in which the speaker is asked to emphasise a specific word more than the rest of the

2The URLs follow the syntax http://www.assemblee-nationale.fr/14/cri/2012-2013/20130001.asp, where 14
stands for the 14th term of office, cri for integral report, 2012-2013 for the current session year, 2013 for the current
civil year, 0 for ordinary session, 001 indicates that it is the first session of the year.

3The books are freely available on http://beq.ebooksgratuits.com
4http://romainvaleri.online.fr/
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utterance. The 1575 sentences consist of 800 sentences from parl, 600 sentences from book,

all the 75 sentences from siwis, and all the 100 sentences from sus.

chap This part is a full chapter taken from the French book Vingt mille lieues sous les mers

from Jules Verne (Chapter III of the book). It amounts to approximately 1800 words. The fact

that the sentences are not isolated like in the other sets makes it attractive for studies on higher

level prosody. The style of reading, because of the material which contains both dialogues and

narration, makes this part of the database more expressive by design.

3.3.2 Speaker and Recordings

The recordings were conducted by a professional voice recording agency called Voice Bunny5.

The speaker was selected from a pool of native female French voice talents, by the author of

this thesis who is a native French speaker. The instructions were provided to the speaker as

follows:

• For parl, book, siwis, sus: read each sentence in an isolated manner, with a long pause

(> 2 s.) between each sentence.

• For emph: read the sentence with focus on the indicated word, e.g.:

“Lourde [read out this bold word with emphasis] erreur, madame la ministre !”

• For chap: read the full chapter in an expressive manner, without long pauses between

sentences.

The sentences with emphasis were recorded after their neutral version, in order not to in-

fluence the speaker to reproduce the patterns that they were asked to produce in that case.

Finally, the book chapter was read in one session, in order to have the dependencies that

one can expect when reading a long text, e.g. the gradual downdrift of intonation along a

paragraph, and reset when starting a new paragraph.

The data was recorded and provided in 44.1kHz mono 16 bits. Adobe Audition6 was used for

processing. 30 minutes of recordings generally required 90 minutes of processing, editing

and checking from the voice actress. In total, 23 sessions were necessary to complete the

recordings.

3.3.3 Database Content

Table 3.2 gives the amount of recorded speech in terms of utterances and time. The times

without silences were estimated based on the automatic alignment performed on the con-

textual labels, and correspond to the times between the start and end of speech (meaning

5https://voicebunny.com
6http://www.adobe.com/products/audition.html
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that the mid-sentence pauses are counted as speech). The first five parts of the database were

segmented by finding long silences, and keeping short silences before and after actual speech;

the full chapter was not segmented.

Table 3.2 – Amount of speech data recorded.

Style # of sentences (sessions) Time (inc. silences) Time (no silence)
parl 4500 (6) 4h02 3h44
book 3500 (11) 5h00 4h45
siwis 75 (1) 3.8min 3.5min
sus 100 (1) 4.5min 4min
emph 1575 (5) 1h33 1h26
chap —7(1) 10.5min 10.5min
Total 9750 (238) 10h54 10h13

Figure 3.2 illustrates the position of the emphasised words, both in an absolute and relative

manner. The relative position was simply obtained by dividing the position by the total

number of words, including intermediate silences. Many emphasised words are located in

the second half of the sentence, but their absolute position is generally lower than 10, mostly

because the majority of the sentences are short. There are in total 1695 annotated emphasised

words, for 1575 sentences (some sentences had multiple emphasised words).

Figure 3.2 – Emphasised word positions. Left: absolute position, right: relative position in the
sentence.

Table 3.3 gives the distribution of the emphasised words by number of syllables. 95% of the

emphasised words contain 3 or fewer syllables.

Table 3.3 – Number of syllables in emphasised words.

# syllables 1 2 3 4 5 6 Total
# words 803 568 246 67 10 1 1695

When looking at the word-level context as defined by the HTS label format, the 1695 words

8This part was not segmented in sentences.
8sus and emph were recorded in the same session as one of the book sessions.
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correspond to 1450 different contexts (to have the same context, 2 words need to have exactly

the same number of syllables, position in the phrase and utterance, part-of-speech, etc.).

3.4 Summary

This chapter presented the design, recording and content of two new freely available speech

databases.

The first one contains about 24 hours of speech, from 36 bilingual or trilingual speakers who

did not have a foreign accent in the recorded language. The languages of the database are

English, French, German and Italian. Each speaker uttered about 170 sentences in two or

three languages, where the sentences had the same meaning, making the corpus parallel for

languages. Another feature of the corpus is the word-level emphasis acted by the speakers, in

a parallel manner — both neutral and emphasised versions of the sentences are available. The

database is freely available for research 9.

The second database is a high quality French database, containing speech from multiple styles.

Its primary purpose is speech synthesis, but it also contains sentences with emphasis on

specific words, in many contexts. It will be released with no restrictions on the usage.

Both databases are used in the following chapters of the thesis, for studies on intonation and

emphasis, in the context of speech-to-speech translation and intent preservation.

9Available at: http://bit.ly/siwisData.
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4 Swiss French Accents in TTS Adapta-
tion

In this chapter, we take a look at the regional accents of French native speakers in Switzerland.

For S2ST in the Swiss context, regional accents (and dialects, in the case of Swiss German) can

have an important role in interactions. Although there are no big differences between standard

French accent and Swiss French accent, native listeners are generally able to distinguish easily

the origin of the speaker.

French speech resources are not rare, as far as metropolitan France French accent, which

is considered as standard accent and defined as “Français de référence” by Morin [2000], is

concerned. On the other hand, Swiss accented French speech is more scarce. For this reason,

we are interested in the possibility to adapt standard French TTS systems to Swiss accent.

We assess the accentedness of natural and synthetic speech through subjective evaluation.

Using speech synthesis and analysis by synthesis methods, we modify both segmental and

suprasegmental aspects of standard French synthetic acoustic parameters, and show the limits

of speaker adaptation techniques to emulate Swiss French accent with little data. We compare

standard French HMM-based TTS output with models adapted to Swiss French accent, and

with the same synthetic speech augmented with natural Swiss French prosody.

The contributions presented in this chapter were originally published in the following confer-

ence papers:

– Pierre-Edouard Honnet, Alexandros Lazaridis, Jean-Philippe Goldman, and Philip N.

Garner. Prosody in Swiss French accents: Investigation using analysis by synthesis. In

Speech Prosody, Dublin, Ireland, May 2014

– Pierre-Edouard Honnet and Philip N. Garner. Importance of prosody in Swiss French

accent for speech synthesis. In Nouveaux cahiers de linguistique française, September

2014
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4.1 French Accents in Swiss Regions

4.1.1 Regional Accents in Automatic Speech Processing

In ASR, regional or foreign accents and dialects of a language bring variations that decrease

performance of systems. It was shown by Huang et al. [2001] that the two main sources of inter-

speaker variation were gender and accent. Kat and Fung [1999] proposed two solutions to

overcome the variability introduced by accent: using a wide training database which includes

accented data, or building accent-specific systems which will be used according to the accent

of the speech to be recognised. In the literature, there are many other attempts to tackle the

accent issue (mainly for non-native accented speech) in ASR by using adaptation techniques

[Aalburg and Hoege, 2004; He and Zhao, 2003; Liu and Fung, 2000]. More generally, ASR

systems are often confronted with non-native accents, and need to counteract effects of the

accent component.

Conversely, in TTS, producing accented speech is desirable for some applications like S2ST,

foreign language learning and dialect synthesis. Synthesising accented speech is still a quite

new and challenging area. In most cases, different accents are modelled separately using

different training data. There is only limited recent work on regional accent adaptation in TTS.

Astrinaki et al. [2013] proposed interpolation of TTS models using closest speakers to a chosen

geographical position. In this way, the English voice has average characteristics of these

speakers, representing the specific regional accent. Another work by Gutierrez-Osuna and

Felps [2010] consists of generating intermediary accent transformations between native and

foreign speakers, to evaluate pronunciation of learners (in the context of computer assisted

pronunciation training). This research, which is some kind of interpolation between native

and non native accented speech, can be seen as part of TTS for under-resourced languages

and cross-lingual speaker adaptation for TTS.

There are some other areas of automatic speech processing that are concerned with regional

accents, for instance accent identification [Hanani et al., 2013; Huang et al., 2007; Omar and

Pelecanos, 2010; Teixeira et al., 1996]. Swiss French accents have been investigated in this

aspect by Lazaridis et al. [2014a], using speaker identification techniques. Prosodic features

for accent discrimination were also investigated [Lazaridis et al., 2014b].

4.1.2 Peculiarities of Swiss Accents

The perception of different regional accents in a language can result from several sources. In

French, the accents vary because of different factors according to the regions. For instance,

there are noticeable differences at the pronunciation level of some phones between “Français

de Référence” (FR) defined by Morin [2000] as standard pronunciation, and Canadian French

(or Quebec French) [Côté, 2012]. As far as Swiss accents are concerned, between FR and

Swiss French the differences in pronunciation are limited, and would rather express through

prosody than in pronunciation. Speakers from these two categories are geographically close,
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and “Romandie”, also called “Suisse romande” (i.e. the French speaking part of Switzerland)

would not be distinguished from Eastern and Southeastern France linguistically according to

Knecht [1979].

We are interested in the adaptation of standard French TTS systems to regional Swiss accents.

The following sections investigate both segmental and suprasegmental variations between FR

and Swiss French, and their perception by native French speakers.

4.2 Segmental Variation Perception

4.2.1 Pronunciation of Swiss French

Segmental variations correspond to the pronunciation of basic sound units, most of the time

phonemes. In this section we investigate the adaptation of a standard average TTS voice

trained with FR speech to Swiss accented speakers. This enables the study of how segmental

variations are perceived when adaptation is performed.

It is commonly agreed that there is not one Swiss French accent, but Swiss accents [Martinet,

1971]. Accents inside Suisse Romande vary from one canton (administrative region) to another.

It is even known that people from one city can distinguish accents from others cities in the

same canton [Andreassen and Lyche, 2009]. On the other hand, the various Swiss accents

share some common peculiarities.

Métral [1977] gave an overview of the segmental aspects of Swiss accents. The main differences

that are observed between FR and Swiss accent at a global level, meaning by considering all the

Swiss accents together, concern the openness of some vowels. An example is the pronunciation

of [œ] which becomes [ø], as in “jeune” (young, in English) which becomes “jeûne” (which

in standard French is the word for fasting in English). This type of confusion happens in

final syllables, when the [œ] is not before [r], for all the regions of Romandie. The survey

conducted by Métral [1977] is somehow biased as acknowledged, due to the social status of

the persons interrogated on the distinction between open and closed vowels: the subjects

with less education actually tend to confuse vowels more than the majority of the subjects in

that work. There are other vowel pairs for which the distinction is different between FR and

Swiss accents, either on the open / close or on the front / back dimension. Table 4.1 gives a few

examples of pronunciations that can be found in Swiss regions as opposed to FR underlined

by Metral.

Differences can also be observed in the prosody of both types of French, these aspects are

discussed in Section 4.3.
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Table 4.1 – Examples of pronunciation difference between FR and Swiss French vowel pro-
nunciations and how they differ.

Vowel in FR (diff) Vowel in Swiss French (diff) Example (Swiss pronunciation)
[œ] (open-mid) [ø] (close-mid) jeune (jeûne)
[E] (front open-mid) [@] (central close-mid) messe (meùsse)
[e] (close-mid) [E] (open-mid) école (ècole)
[o] (back) [œ] (front) abricot (abrikeù)

4.2.2 Perception of Swiss vs French Pronunciations

We want to evaluate how Swiss and French pronunciation of French are perceived when

performing model adaptation, in terms of regional accentedness. Our hypothesis is that

segmental level adaptation is not enough to emulate the Swiss accent. To demonstrate it,

we compare multiple systems, which are first adapted with Swiss speech data and then

supplemented with real prosody. The evaluation is done through subjective listening tests. We

expect that listeners will perceive the Swiss accent more when adapting the system with Swiss

speech, but that the “true” natural prosody is necessary to perceive the accent as strongly as in

the original speech.

Adaptation to Swiss Accent

To evaluate the effect of adaptation of a TTS system to Swiss regional speech, we use a standard

French statistical parametric speech synthesis (SPSS) system and adapt its acoustic parameters

using a speaker adaptation strategy. Then, to assess how correct prosody affects accentedness,

prosodic parameters are modified to match those of original speech. Figure 4.1 gives an

overview of the complete procedure. Raw data is in grey, features in red, the models are in

green and the final outputs are in blue. The three outputs correspond from left to right to:

• the output of the models after adaptation to Swiss accent

• the output of the models after adaptation when providing time alignment

• the output of the models after adaptation when providing time alignment and the

original F0 (extracted from natural speech).

These three outputs are compared against vocoded original speech from the Swiss speakers,

and with the average output of the standard French system.

Data

The data used comes from two databases: the BREF database [Lamel et al., 1991] and a part of

the PFC database [Durand et al., 2009] with additional content [Avanzi, 2014].
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Swiss speaker original speech

Duration Intonation

Average regional
output + duration

Average regional
output + duration + F0

Average regional
output

Average regional TTS model

Synthesis Synthesis Synthesis

Adaptation to Swiss regional accent

Average standard French TTS model

Training

Standard French speechSwiss regional speech

Figure 4.1 – Adaptation of standard French TTS system to Swiss French accent, using original
prosody. Raw data is in grey, features in red, the models are in green and the final outputs are
in blue.

These two databases are described in more details in Chapter 2. As a quick reminder, BREF

is a read speech corpus with text from the French newspaper Le Monde. The speech from 10

male speakers was used for this work. The PFC corpus is composed of read speech and free

conversational speech. In this work, the common content read speech was used; 12 speakers

were selected among the 20 male speakers available, originating from 5 cities: Paris (France),

Geneva (Geneva canton), Martigny (Valais), Neuchâtel (Neuchâtel canton) and Nyon (Vaud).

Experimental Settings

Training The average TTS models were trained on a subset of the BREF database composed

of 6857 sentences (about 12 hours of speech) from 10 male speakers. We used 39 mel cepstral
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coefficient with energy coefficient, log F0, 21 band aperiodicities extracted every 5 milliseconds

with the STRAIGHT vocoder [Kawahara et al., 1999] and their first and second order derivatives.

5 emitting state left-to-right HSMMs with no skip were trained with full-context labels using the

version 2.1 of HTS [Zen et al., 2007] and speaker adaptive training [Yamagishi and Kobayashi,

2007]. The training resulted in an average male standard French voice.

Adaptation The adaptation was done for each city, yielding 5 systems. For each group of

speakers, we used 20 sentences per speaker, leaving a test sentence out for evaluation. For

Paris, 2 speakers were used, for Geneva 3 speakers, for Martigny 1 speaker (in this case it is a

standard speaker adaptation), for Neuchâtel 2 speakers and for Nyon 4 speakers.

Synthesis The same sentence was synthesised for each of the 5 adapted systems:

“La côte escarpée du mont St Pierre, qui mène au village, connaît des barrages

chaque fois que les opposants de tous les bords manifestent leur colère.”

The choice of the sentence was done according to previous studies on Swiss accent evalua-

tion [Avanzi et al., 2013; Racine et al., 2013]. It was segmented manually and the orthographic

transcriptions were corrected manually before full-context label creation (adding pauses and

hesitations). Features were extracted from Swiss French data the same way as for the training

data. The trained TTS models were then used to estimate the duration of Swiss speech data.

For each synthetic file, three versions were created as depicted in Figure 4.1.

To add duration information, we first extracted the duration information from the original

waveforms using forced alignment: given the speech features, their corresponding transcrip-

tion (full-context phonetic labels in our case) and some French TTS models, the Viterbi

algorithm was used to estimate phone and state boundaries. Using the state duration in-

formation, a forced-aligned synthesis was performed, i.e. parameter generation given the

known state sequence (it means, if we refer to the way synthesis is done from the models, as

described in chapter 2, estimating only equation (2.7), as q is imposed). The resulting speech

was composed of synthetic parameters, but aligned in time with the original speech, i.e. the

phoneme durations were the same as original ones.

For the system with duration information and intonation, time alignment was also performed,

and we replaced the synthetic intonation (logF0) with the original one. After vocoding, the

output was a speech signal composed of synthetic spectrum and aperiodicity coupled with

original duration and intonation. The reason for using both original intonation and duration

is that it is not possible to use only original intonation, because the other parameters (spectral

information) have to be aligned with the excitation part to reconstruct the speech signal.
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4.2. Segmental Variation Perception

The vocoded version, which just decomposes the speech and reconstructs it, was used to

have a reference of the accentedness of original files. We used a vocoder to emulate the best

possible parametric speech synthesis.

Subjective Evaluation

A listening test was conducted in order to evaluate the degree of accent of each version of the

sentence for each system and each speaker. For this purpose, a webpage was built enabling

subjects to listen to:

• the average model output (1 sample)

• the adapted model output (5 samples)

• the adapted model output with original duration (12 samples)

• the adapted model output with original duration and intonation (12 samples)

• the vocoded file (12 samples)

The vocoded version is perceptually very close to the original recorded speech as only an

analysis and resynthesis is performed. For each file, the listeners had to give a degree of Swiss

accent between 1 and 5, 1 being “no accent” and 5 “strong accent” (in the instructions, “no

accent” was defined as standard accent and close to Paris accent). The listeners could listen to

the files as many times as they wanted.

4.2.3 Results

19 native French speakers participated in the study. 7 subjects were Swiss (mainly from Vaud

and Valais), the 12 remaining were all French. Among the participants, 4 were females and 15

were males. Figure 4.2 shows the average perceived degree of accent for the different systems.

For each speaker, the left-most bar (in black) corresponds to the output of the TTS models

adapted to the speaker’s regional accent, and the right-most (in green) corresponds to the

original sentence from the speaker vocoded. The red bar corresponds to the average perceived

accent when adding duration information, and the blue one when adding duration and

intonation. For comparison, the average voice output had an average score of 1.42 (standard

deviation 0.49).

The first general observation that can be made is that in all the cases, adding duration increases

the perceived degree of accent compared to the adapted model outputs. In the majority of

the cases, adding original intonation increases the perceived accentedness compared to

the version with duration information. The version with original prosody (duration and

intonation) are the closest to the original vocoded files in 67% of the cases (8/12).
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Figure 4.2 – Mean degree of accent for each version of the sentence for the 12 speakers. Black
is adapted output, red with duration, blue with duration and intonation, green is original
vocoded.

A Wilcoxon signed rank test was performed for each speaker between each pair among the

four versions, as the data is ordinal [Clark et al., 2007]. Because the points on the scale have

an order but cannot be considered as equally spaced, it is valid to calculate means for the

data, but not statistically meaningful to compare them. However, the comparison can be

done on the medians. We found that for every speaker, there was no significant difference

between the scores obtained for the vocoded version and for synthesis with duration and

intonation information, no significant difference between vocoded version and for synthesis

with duration information, and no significant difference between version with duration and

version with duration and intonation. That means that adding duration or adding duration

and intonation allows an approximation of the real accentedness level for all the speakers.

In all the cases, there was a significant difference between the vocoded version and the adapted

output with no prosodic information (p −value < 0.05). For all the speakers from Geneva and

Neuchâtel, there was a significant difference between the adapted version, and the version

with duration information. The same observation was made for 2 out of the 4 speakers from

Nyon. Speakers from Paris and the speaker from Martigny did not show significant difference

between these two systems, which can be expected as the system already has “Paris accent”

for the Parisian speakers, and standard speaker adaptation was performed for the Martigny

speaker, so duration models were adapted to his voice. Finally, when comparing the adapted

output with the version with duration and intonation, all the speakers from Geneva, Nyon and

Paris showed significantly different scores, while for speakers from Neuchâtel and Martigny,

the scores did not differ significantly. The same reason as for the duration case could explain

the similarity for speaker from Martigny, however it does not explain why speakers from
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4.2. Segmental Variation Perception

Neuchâtel are not perceived significantly differently in these two settings.

Table 4.2 gives the mean distance between the different combinations for each speaker. It is

simply calculated using the sum of absolute difference for each sample on all listeners’ scores:

Distancek (S1,S2) = 1

L

L∑
l=1

∣∣scorek,l (S1)− scorek,l (S2)
∣∣ (4.1)

where S1 and S2 are the two systems being compared, k the speaker, L the number of listeners,

and scorek,l (S) the score of the sample from system S for speaker k given by listener l .

Table 4.2 – Mean distances between configurations per speaker

Systems GE24 GE27 GE55 M A24 N E31 N E75
ave-dur 0.95 1.16 1.63 0.89 1.00 1.11
ave-int 1.11 1.00 1.79 0.74 0.58 1.47
dur-int 0.89 1.11 0.89 0.58 0.95 0.89
ada-dur 0.89 1.11 1.47 0.89 0.89 1.00
ada-int 1.16 1.16 1.63 0.63 0.58 1.26
ave-ada 0.47 0.47 0.47 0.74 0.53 0.53
ave-voc 1.68 1.68 1.47 1.42 1.32 1.74
ada-voc 1.63 1.63 1.53 1.21 0.89 1.53
dur-voc 1.16 1.26 0.89 1.16 1.37 1.47
int-voc 0.89 1.00 1.05 1.21 0.95 1.00

Systems N Y 31 N Y 32 N Y 59 N Y 70 PA33 PA86
ave-dur 1.21 1.00 1.16 1.00 0.89 1.79
ave-int 1.53 1.21 1.47 0.79 1.00 1.63
dur-int 0.63 0.42 0.74 0.53 0.63 1.21
ada-dur 1.00 0.89 0.74 0.89 0.79 1.37
ada-int 1.21 1.11 0.95 0.89 0.79 1.53
ave-ada 0.53 0.53 0.53 0.53 0.63 0.63
ave-voc 1.89 1.53 1.58 1.58 1.68 2.63
ada-voc 1.58 1.11 1.16 1.26 1.58 2.21
dur-voc 1.00 1.16 0.95 1.42 1.00 1.37
int-voc 0.79 0.95 0.84 1.11 0.89 1.21

“ave” corresponds to average voice output, “ada” to adapted model output, “dur” to adapted

voice with original duration, “int” to adapted voice with original duration and intonation, and

“voc” corresponds to vocoded.

The last 4 lines are the distances between each of the system under test and the vocoded

samples, which can be seen as targets. The average trend is a reduction of the distance with

the vocoded version when adapting, a further reduction when adding duration information
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and finally when adding intonation. This is in accordance with the absolute scores presented

in Figure 4.2. In 9 cases, the closest to vocoded is the system adapted along with all prosodic

information. In 2 cases, adding only duration yields the closest score to vocoded speech.

Finally, in one case, adaptation alone gives the closest result to vocoded speech: the speech

from this speaker (N E31) was perceived as slightly accented only, and his intonation was

relatively neutral compared to other speakers. If we compare with the other speaker from the

same region, N E71, we can see that that speaker has a very strong accent, which may have

influenced the adaptation enough to perceive the same degree of accent as N E31.

Table 4.3 gives the mean differences between systems over all speakers, showing the average

trends presented in the previous table; with the reduction of the distance between scores of

the different systems with the vocoded samples when adding prosodic cues.

Table 4.3 – Mean distances between configurations

average adapted duration intonation vocoded
average 0 0.55 1.15 1.19 1.68
adapted 0 0.99 1.08 1.44
duration 0 0.79 1.18
intonation 0 0.99
vocoded 0

If we measure the absolute differences between scores per speaker, we observe that from

average standard French output to regional accent adapted output with original duration and

intonation, the mean distance is reduced by 41%. If we only use duration, the reduction is

of 30%. In comparison, with only adaptation, and no correction of prosody, the distance is

reduced by only 14%.

We see that perceptually, adding prosodic cues increases significantly the degree of accent of

the synthetic speech. Even though we cannot conclude that there is no difference between our

adapted models supplanted with original prosody, in terms of accentedness, the systems are

not perceived significantly differently. As far as adapted models are concerned, the significant

difference observed between the output of the models adapted to regional accents and the

original vocoded speech demonstrates our hypothesis, which was that adaptation is not

enough to perceive accents as strong as the original.

4.3 Suprasegmental Variation Perception

After looking at the segmental variations between accents, we observed that prosodic aspects

play an important role in accent perception. In this section we investigate the fusion of

standard French pronunciation with Swiss French prosody.
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4.3.1 Perception of Swiss Prosody

There are some divergences, as often in the area of prosody, on the rhythm topic, i.e. Swiss

speakers are known to speak slower than French. Miller [2007] showed that on read speech

samples, the speaking rate was the same for French and Swiss (from Vaud canton) speakers,

but the articulatory rate (excluding pauses) was slower for Swiss speakers. French speakers

use more pauses, which decreases their speaking rate. Schwab and Racine [2013] recently led

an empirical study to verify whether Swiss people indeed speak slower than French people or

not. The findings showed that pause frequency and duration were not different among some

French, Belgian and Swiss speakers. However, articulation rate was found to be slower for

Swiss speakers.

Schwab et al. [2012] compared two Swiss regional accents with French accent, regarding

penultimate accentuation, showing that Swiss speakers are more likely to accentuate penulti-

mate syllables than French speakers. Variations were also observed among Swiss regions with

different strategies in expressing prominence on these syllables.

These two aspects of regional accents were further investigated by Avanzi et al. [2012] using

the PFC corpus: irrespective of the style of speech (read speech or free conversational speech),

for French speakers, 5.25% of the penultimate syllables in clitic groups were identified as

prominent, while for Swiss speakers, the percentage of prominent penultimate syllables was

between 11.47% and 15.13%, being 2 to 3 times more than for French speakers. The accen-

tuation of penultimate syllables is mainly expressed through intonation and energy. To be

rigorous, one should actually say that Swiss tend to accentuate both penultimate and ultimate

syllables at the intonation level, with an increase of intensity on the syllable preceding the

tonic, i.e. the ultimate syllable in standard French. Métral [1977] affirmed that the intonation

patterns vary from one canton to another, and that the realisation of penultimate accentuation

is less present in Valais French, where the intonation patterns are different from the rest of

Romandie. Concerning speech rate, French and Swiss from Martigny were found to speak

faster than the other Swiss speakers (Geneva, Neuchâtel, Nyon). Another general observation

made was that older Swiss speakers tend to speak slower than younger ones, while for French

variety no significant different was found related to age. Finally, one of the conclusions was

that slower speech rate correlates with the perception of more penultimate syllables, probably

because when the speech is faster it is more difficult to perceive them.

As a consequence of a higher tendency to accentuate penultimate syllables, Swiss speakers

are often said to produce more variations in their intonation, however it is hard to study the

phenomenon due to the variety of intonation patterns. By accentuating different syllables,

they generate different intonation patterns that may sound more “lively” or “singing” to French

listeners.
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4.3.2 Simulating Swiss Prosody in French Speech

We are now interested in the perception of Swiss accent when its prosody is mixed with

standard French pronunciation. Our hypothesis is that by having the original Swiss prosody,

even if the pronunciation comes from FR models, listeners will perceive the Swiss accent. In

other words, as we previously observed that adapting TTS models was not enough to perceive

Swiss accents, we now evaluate how using standard French pronunciation with Swiss prosody

is perceived.

Swiss speaker original speech

Duration Intonation Spectrum

Average voice
output

Average voice
output + duration

Average voice
output + duration + F0

Vocoded speech

Synthesis Synthesis Synthesis

Average standard French TTS model

Training

Standard French speech

Figure 4.3 – Using original prosody to simulate Swiss accent in standard French TTS. Raw data
is in grey, features in red, the models are in green and the final outputs are in blue.

Figure 4.3 shows the different outputs after altering the synthetic prosody, and the vocoded

speech. The difference with the systems in Section 4.2 is that in this case, there is no adaptation

of the TTS model to Swiss accents. As we use standard French pronunciation, we keep the

average standard French model, and only the prosodic parameters are replaced with Swiss

ones.

Data and Models

The data used for these experiments were the same as in Section 4.2 for training the TTS

models. As there was no adaptation involved in these experiments, we only used the same test

sentence for the same 12 speakers.

For the synthesis part, the baseline was the average standard French voice trained on BREF

data. The acoustic features were extracted the same way as in the previous section.

46



4.3. Suprasegmental Variation Perception

Subjective Evaluation

The same common sentence as in the previous section was selected for the 10 Swiss and 2

French male speakers from our PFC dataset. The same (manually corrected) full-context labels

were used for forced-aligned synthesis.

A listening test was conducted in order to evaluate the degree of accent of the file generated as

described in Section 4.2.2. For this purpose, a webpage was built enabling subjects to listen to:

• 1 completely synthetic file (output of TTS model)

• 12 files with original duration (1 per speaker)

• 12 files with original duration and intonation (1 per speaker)

• 12 vocoded files from original speech (1 per speaker)

which sums up to 37 files in total. As in the previous experiment, the vocoded version allows

simulating the best possible synthesis, with a lessened vocoder effect in the results. As in the

previous experiment, for each file, the listeners had to give a degree of Swiss accent between 1

and 5, 1 being “no accent” and 5 “strong accent”. The listeners could listen to the files as many

times as they wanted and the test took approximately 10 minutes.

4.3.3 Results

28 subjects took the test. Among them, there were 17 males and 11 females, 23 were French

and 5 were Swiss (from Vaud, Valais, Neuchâtel and St Gallen).

Figure 4.4 shows the mean and standard deviation of the three versions of the file for each

speaker; the fourth version displayed in black, which is identical for all the speakers, cor-

responds to the average voice output. The means and variances show that when adding

intonation and duration the values get closer to the vocoded version than just adding duration,

and modifying only duration gives closer values than the average voice output, as we expected.

For the speakers with highest degree of accent (based on the vocoded version), N E75, N Y 31,

N Y 32, N Y 59 and N Y 70 (PA86 has different behaviour), the means of the intonation + du-

ration version is still much lower than the vocoded one. PA86 is a 86 year old Parisian and

although he does not have a Swiss accent, his accent was perceived as strong. The average

voice being based on French accent and pronunciation, he has the same pronunciation as

the average voice. Adding the prosody resulted in a degree of accent close to the original,

explained by both correct prosody and pronunciation.

These results are confirmed by a Wilcoxon signed rank test which was performed for each

speaker between each pair among the four versions presented (3, and the baseline average

voice).
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Figure 4.4 – Mean degree of accent for each version for the 12 speakers. Output of average TTS,
with duration information, with duration and intonation, vocoded version.

In the case of average version versus vocoded version, 9 out of the 12 speakers have significantly

different scores (p −value < 0.01); GE24, GE27 and PA33, corresponding to the least accented

speakers, are not significantly different.

In the case of the version with duration information versus the vocoded version, 7 still have

significantly different scores: M A24 and N E31 are not significantly different.

Finally, when adding original intonation, the 5 speakers mentioned earlier as very different

(N E75, N Y 31, N Y 32, N Y 59 and N Y 70) from the vocoded version are still significantly differ-

ent. In that case, the other 7 are not significantly different from the vocoded version (including

GE55 and PA86).

Table 4.4 shows the means of absolute differences between scores per speaker. For each

speaker, a comparison was made between 2 versions of the file among the average voice output

(ave), the version including duration (dur), the version including duration and intonation (int)

and the vocoded version which is the reference (voc). In 8 cases out of 12, the combination of

duration and intonation is closer to the vocoded version (values in bold). The 4 other cases

give the advantage to the version including only duration information.

Table 4.5 gives the global absolute difference between each system. The last column gives the

distance between the vocoded speech and the other versions. We can see that between the

average voice output and the version with duration information we reduce the distance to the

vocoded version by 20%, between the version with duration and the version including duration

and intonation, the reduction is 11% and the overall improvement from average to duration

and intonation version gives 29% improvement. A Wilcoxon signed rank test confirmed that
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Table 4.4 – Mean distances between configurations per speaker

Systems GE24 GE27 GE55 M A24 N E31 N E75
ave-dur 1.04 0.82 0.96 0.96 0.96 0.86
ave-int 1.29 1.32 1.25 1.18 1.21 1.04
dur-int 0.61 0.79 1.07 1.14 0.75 0.68
ave-voc 1.68 1.93 1.54 1.25 1.57 1.54
dur-voc 0.93 1.54 1.36 1.64 0.96 1.04
int-voc 0.96 1.25 1.57 1.07 1.00 1.00

Systems N Y 31 N Y 32 N Y 59 N Y 70 PA33 PA86
ave-dur 0.89 0.96 0.93 0.79 1.29 0.64
ave-int 1.29 1.14 1.61 1.39 1.50 1.29
dur-int 0.61 0.96 0.89 1.11 1.00 0.93
ave-voc 1.75 1.89 1.60 1.60 2.21 1.79
dur-voc 1.29 1.57 1.39 1.39 1.64 1.57
int-voc 1.39 1.46 1.21 1.14 1.21 1.21

the differences between score absolute differences were significant (p −value < 0.01 in the 3

cases).

Table 4.5 – Mean distances between configurations

average duration intonation vocoded
average 0 0.93 1.29 1.70
duration 0 0.88 1.36
intonation 0 1.21
vocoded 0

It demonstrates that prosody plays an important role in Swiss accent perception. However,

for the most accented speakers, prosody alone is not enough to obtain the same degree of

accent. In these cases, adequate pronunciation is required to perceive the Swiss accent. This

is backed up by the fact that accented Parisian speech can be produced with standard French

pronunciation and specific prosody.

The low number of Swiss subjects did not allow the evaluation of the difference in accent

perception between French and Swiss listeners, but the numbers showed the same trends for

both groups.

4.4 Conclusion

In this chapter we investigated Swiss French regional accent perception in the context of

speech synthesis. The adaptation of TTS models from average standard accent to Swiss re-

gional accents proved not to be sufficient to let native French listeners perceive the Swiss

49



Chapter 4. Swiss French Accents in TTS Adaptation

accent. The experiments demonstrated our first hypothesis, that the standard speaker adapta-

tion techniques could not adapt the prosodic characteristics of the Swiss speakers.

Our second hypothesis was that Swiss prosody mixed with standard French pronunciation

would be perceived as Swiss accented. When analysing the perception of Swiss accent when

using only Swiss prosody along with standard French pronunciation, we observed that using

the real duration consistently increases the degree of accent perceived by the listeners, and

that using the real intonation increases the perceived degree of accent even more. Therefore,

this hypothesis was only partially demonstrated: using only prosody increased the perception

of French accent, however prosody alone was not sufficient to emulate regional accents,

especially when the speaker’s accent was strong.

By combining speaker adaptation and prosody modification, we managed to synthesise

speech with a degree of accent perceived as not significantly different from the real accented

speech. This means that prosody should be dealt with in a different manner from the acoustic

parameters which evolve at the segmental level. The incapacity of the models to produce

adequate prosody prevents the variations observed in regional accents to be perceived when

synthesising speech. For this reason, the remainder of this thesis concentrates on intonation

modelling and in the next chapter, we propose a new intonation model to attempt to better

model speech intonation in the context of S2ST.
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5 Intonation Modelling

In this chapter, a novel physiologically based intonation model using perceptual relevance is

introduced. As has been underlined in Chapter 4, correct prosody is needed to achieve the

synthesis of regional accents. Furthermore, we are motivated by the possibility to translate

prosodic events, e.g. make a (group of) word(s) prominent in the target language when its

corresponding (group of) word(s) was emphasised in the source language.

In our approach, the matching pursuit (MP) algorithm is used to decompose the intonation

contour. We introduce a perceptually relevant weighting function in the decomposition

process, to extract perceptually relevant components. The components — high order damped

system impulse responses — are physiologically plausible and can be compared with the

components of the command-response model [Fujisaki and Nagashima, 1969]. In this chapter,

along with the model, a simple automatic method is proposed to extract its parameters. The

physiological aspect of the proposed model is interesting as it makes the model theoretically

language independent. The model is evaluated on speech from three languages and multiple

speakers.

The work presented in this chapter was a piece of collaborative work with Dr. Branislav Gerazov

and Aleksandar Gjoreski, both based in the Faculty of Electrical Engineering and Information

Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia, and originally published

in the following papers:

– Pierre-Edouard Honnet, Branislav Gerazov, and Philip N. Garner. Atom decomposition-

based intonation modelling. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 4744–4748, Brisbane, Australia, April 2015.

IEEE

– Branislav Gerazov, Pierre-Edouard Honnet, Aleksandar Gjoreski, and Philip N. Garner.

Weighted correlation based atom decomposition intonation modelling. In Proceedings

of Interspeech, pages 1601–1605, Dresden, Germany, September 2015
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5.1 Background

The need for correct intonation in TTS systems as well as the more general study of intonation

have motivated the creation of different intonation and / or prosody models. In the context

of TTS, adaptive systems — almost exclusively statistical parametric speech synthesis (SPSS)

— are of great interest in the research community. The current state of the art systems for

SPSS are based on HMMs [Tokuda et al., 2002b; Zen et al., 2009] and DNNs [Zen et al., 2013].

HMM-based speech synthesis deals with intonation in a frame-wise manner: each frame from

the training speech database has a value — or a null value in the case of an unvoiced frame

— and HMM states are trained using these values. At synthesis time, F0 is generated frame

by frame, based on the HMM parameters, and its suprasegmental aspect is modelled using

decision trees. This results in a speech often qualified as “flat” or lacking expressivity, which is

due to the oversmoothing of HMMs [Toda and Tokuda, 2005].

There are three main ways of tackling the flatness of HMM-based speech synthesis at the

intonation level: post-process the synthetic intonation coming from HMMs, use a different

representation of F0 in the HMMs or use an external prosody model that combines with other

HMM parameters. A more detailed review of some of the most standard models is given in

Chapter 2, Section 2.2. As a reminder, we give an overview of some of these models.

1. Within the framework of statistical paremetric speech synthesis, F0 is typically handled

in the same way as other acoustic features, that is frame-wise. In HMM-based TTS,

multi-space probability distribution (MSD)-HMMs are used to take into account the

fact that speech can be voiced or unvoiced [Tokuda et al., 2002a]. More recently, some

work was done using continuous F0 and it was shown that continuous F0 improves the

perceived naturalness of synthesis [Latorre et al., 2011; Yu and Young, 2011]. Another

approach was proposed recently using continuous wavelet decomposition to separate

the different levels of variation in F0 [Suni et al., 2013]. In DNN-based synthesis, F0

is modelled like the other acoustic features, and the input context given to the DNN

contains similar linguistic information, and some additional features related to the

position of the current frame (position in the phone, syllable, word, etc.).

2. In the second category, Hirose et al. [2011, 2012] proposed to use the command response

(CR) model [Fujisaki and Nagashima, 1969] to estimate the F0 model commands from

linguistic information, and then optimise them according to the F0 generated by HMMs.

The goal was to increase the expressivity and to make some segments more prominent in

the synthetic speech by altering the extracted intonation commands. Another attempt

to integrate the CR model in HMM-based TTS was made by Hashimoto et al. [2012],

where parameterised F0, generated by the CR model — and therefore smoothed contour

— was used for training the HMM intonation features, to avoid modelling noise.

3. The external prosody models, or intonation models are numerous. Among them, Hirst

et al. [2000] model the intonation contour as a sequence of specific F0 target points.
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5.2. Physiology of Intonation Production

The Tilt model describes it as a sequence of events with specific shapes that can be

automatically extracted with an obvious resynthesis step [Taylor, 2000]. Another model

derived by Bailly and Holm [2005], called superposition of functional contours (SFC),

is a data driven approach which is based on the superposition of elementary contours

extracted with the use of neural networks. The first two models try to directly model

intonation with no attempt to understand its underlying production process. SFC, on

the other hand, mostly relies on metalinguistic information. Only a few models actually

try to explain the intonation by investigating its production aspect. The most famous

model in this category is the command response (CR) model of Fujisaki and Nagashima

[1969]. This model decomposes the intonation into additive physiologically meaningful

components.

5.2 Physiology of Intonation Production

In mimicking the abilities of humans in a machine, it is natural to try to mimic human

physiological processes. Doing so is attractive as a technological advancement, and can be

seen as an attempt to understand the underlying processes. Furthermore, such a model

provides theoretical language independence. The vocal instrument of humans obviously does

not depend on the language they speak, therefore, the way their muscles control vocal folds —

consequently intonation — should not change from one language to another.

5.2.1 Cricothyroid Muscles and F0

Fujisaki [2006] describes the F0 contour as the superposition of multiple components in the

log domain. By relating the tension of the vocal folds with their length, the author derives log

F0 as the sum of: a base component (related to the size and density of the membrane) which is

assumed to be constant for a given speaker, speaking style and emotional state, and two time

varying components related to the activation of the muscles controlling the vocal folds. The

first is a global phrase component and the second is a sequence of local accent components.

In the CR model, these two components are associated to the activation of two parts of the

cricothyroid (CT), both generating a rise in the F0 through a slow translatory movement and a

fast rotary movement of the thyroid cartilage, respectively.

The CR model also allows for negative phrase and accent commands. Negative phrase com-

mands are used to model the phrase final drops in F0 in some languages [Fujisaki and Hirose,

1984; Hirose and Fujisaki, 1982]. Negative accent commands are necessary for the modelling

of tonal languages such as Mandarin and Thai, as well as languages with pitch accents, such

as Swedish and Bengali [Fujisaki, 2004, 2006; Fujisaki et al., 1993, 1998; Saha et al., 2011]. Both

of these negative components are attributed to the opposite rotary movement of the thyroid,

which in turn is credited to the thyrohyoid (TH) muscle [Fujisaki, 2006].
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5.2.2 Other Muscles Related to Vocal Fold Control

Collier [1975] investigated relations between muscles and F0 by analysing electromyographic

(EMG) activity in laryngeal muscles and air pressure, by sampling them simultaneously. In

accordance with Fujisaki’s findings [Fujisaki, 2006], the CT muscle was found to be responsible

for most of the major F0 changes (both rising and falling), while subglottal pressure was found

to control the gradually falling baseline of F0. The sternohyoid (SH) and thyrohyoid (TH) were

found to have no or negligible effect on F0.

Later, a detailed analysis of intonation production was given by Strik [1994]. In this work, four

physiological sources of F0 change were identified by assessing their influence on pitch using

measurements that included (EMG) recordings of the relevant laryngeal muscles:

1. Cricothyroid (CT) muscle – rotates the thyroid cartilage with respect to the cricoid,

stretching the vocal folds and raising F0,

2. Vocalis (VOC) muscle – found within the vocal folds, its contraction decreases vocal

cord length, but increases their tensile stress, the net effect being a rise in F0 [Titze and

Martin, 1998],

3. Sternohyoid (SH) muscle – one of three strap muscles used to alter the position of the

larynx; lowers the larynx decreasing vocal cord tension and F0,

4. Subglottal pressure (Psb ) – increased Psb is found to linearly correlate to increased F0.

The measurements presented by Strik [1994] show that the CT and VOC activations are

correlated and cause a rise in F0 , as do peaks in Psb. By contrast, the activation of SH

coincides with drops in F0 . Another important observation to point out is that only the

Psb signal has a global component, while the others feature only local ones.

5.3 A Generalised Command-Response Model

5.3.1 The Command-Response Model

The command-response model, by Fujisaki and Nagashima [1969], is one of the most inter-

esting models as it provides a physical meaning to pitch and has several components taking

into account medium and short term variations in pitch. It therefore fits in our target model,

which should account for pitch production and its understanding. It assumes that the pitch

(more precisely, the logarithm of fundamental frequency) is the superposition of a base value

(fixed for a speaker), phrase components (slow varying) and accent components (short term

variations). These components are the response to phrase and accent commands, occurring

at the beginning of a phrase (impulse) and during a syllable (step function) respectively. The

CR model has been used successfully to model the intonation of multiple languages, e.g.

Japanese [Fujisaki and Hirose, 1984], Swedish [Fujisaki et al., 1993], Chinese [Fujisaki et al.,

2000], Bengali [Saha et al., 2011].
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Its mathematical formulation is the following:

• One second-order, critically-damped linear filter in response to an impulse-like phrase

command

Gpi (t ) =
{

α2
i te−αi t if t ≥ 0

0 if t < 0
(5.1)

where α2
i is the natural angular frequency of the i th phrase control mechanism compo-

nent Gpi , and is assumed to be constant within an utterance.

• Another second-order, critically-damped linear filter in response to a stepwise accent

command

Ga j (t ) =
{

min[1− (1+β j t )e−β j t ,γ] if t ≥ 0

0 if t < 0
(5.2)

where β2
j is the natural angular frequency of the j th accent control mechanism compo-

nent, assumed to be constant within an utterance, while the maximum threshold γ is

typically set to 0.9.

• The full logarithmic F0 contour is given by:

lnF0(t ) = lnFb +
I∑

i=1
Api Gpi (t −T0i )+

J∑
j=1

Aa j {Ga j (t −T1 j )−Ga j (t −T2 j )} (5.3)

where Fb is the bias level, I is the number of phrase components, J is the number of

accent components, Api is the magnitude of i th phrase command, Aa j is the amplitude

of j th accent command, T0i , T1 j and T2 j are the time of the impulse for the phrase

command i , onset and offset times of the current accent command j respectively.

Several methods have been proposed to extract the parameters, e.g. those of Agüero and

Bonafonte [2005]; Agüero et al. [2004]; Kameoka et al. [2010]; Mixdorff [2000]; Narusawa et al.

[2002], but the task proved to be difficult, and is still a matter for research [Torres and Gurlekian,

2016].

5.3.2 Generalised Components

The command-response model was successfully implemented in a TTS framework using

specific topology HMMs by Kameoka et al. [2015]. Substates were introduced to model the

duration of each state, and each state modelled prosodic events such as the step function for

accent components and impulse for phrase components. By translating the CR model into a
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probabilistic model, Kameoka et al. [2015] were able to successfully extract model parameters

and to generate them in the context of TTS.

Based on the fact that substate HMMs can be used to model a step function, and that the step

response function to the accent command is equivalent to the impulse response to a train of

impulses, we can say that a step function is equal to a sequence of impulses if the impulses

are separated by only one frame: for all the time steps between the beginning and the end of

the step function, the value of the signal is one; it is zero elsewhere. Accent components could

then simply be modelled using the same type of damped system and replace step functions

by impulses as for phrase component. From a command-response point of view, signals are

carried from the brain to muscles in nerves by means of impulses rather than by absolute

levels. The typical response of a muscle to such impulses is a muscle twitch, as depicted in

figure 5.1. This can be seen as the lowest muscular activity unit, then the contraction of a

muscle would be attributed to sequences of impulses with a period shorter than that of the

twitch.

Muscle
response

Nerve
impulse

Time

A
m
p
lit
u
d
e

Figure 5.1 – Muscle twitch response to a nerve impulse.

The matching pursuit (MP) algorithm of Mallat and Zhang [1993] is a good candidate to

decompose a signal in its basic elements, in our case muscle response to impulses. The next

section introduces matching pursuit and its application to intonation modelling. Because

of the way MP extract components from a signal, in our case the F0 contour, a sequence of

impulse responses to imitate the response to a step function is practically unlikely. To relax

the constraints on the parameters introduced for the CR model, and as a way to generalise it

in accordance with the possibility that more than 2 muscles control the vocal cords — and

consequently the F0 — we use the following damped systems:

Gk,θ(t ) = 1

θkΓ(k)
t k−1e−t/θ for t ≥ 0 (5.4)

Notice that this is the definition of a gamma distribution. The order k was assumed to be 2 in

the CR model. Plamondon [1995] advocates the use of the log-normal distribution shaped

response rather than the gamma distribution. This comes from the central limit theorem:
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the log-normal arises as a limiting case of many impulses travelling some distance from the

brain the muscle, the muscle itself being a compound of contractile fibers. Higher order

gamma distribution shaped functions tend to log-normal, and it should be noted that they

are indistinguishable down to a small level of detail. Prom-on et al. [2009] showed that higher

orders better model the vocal fold tension control. Following these conclusions, the order of

the impulse response we use is relaxed to be higher than the original order 2. Also, the flexibility

introduced by using different scale parameters θ allows wider atoms. These atoms prove to be

able to model flat accents, especially with several impulses. To relate with equation (5.1), k = 2

and θ = 1/α.

5.3.3 Matching Pursuit and Weighted RMS

Decomposition using Matching Pursuit

The matching pursuit algorithm [Mallat and Zhang, 1993] allows approximation of a signal

as a linear combination of kernel functions — or atoms — taken from a dictionary. This

dictionary is of fixed size, and contains predefined possible atoms. Figure 5.2 gives an example

of dictionary, using the functions defined in equation (5.4), where k = 6 and θ can take the

different values given in the legend. In an iterative manner, the algorithm finds the atom with

the best correlation with the signal and then subtracts its weighted version until some desired

accuracy is reached. The position of this best fitting atom is found by sliding all the possible

atoms frame by frame, and its amplitude is directly given by the correlation with the signal to

be decomposed. This process reduces the reconstruction error by local optimisations. For a

given signal s[n], and given a set of unit-normed kernel functions {φm}, the signal would be

decomposed as:

s[n] =
K∑

k=1
ckφ

k [n −nk ]+e[n] (5.5)

where K is the number of atoms used to reach the desired accuracy, ck is the correlation

between the residual signal at step k −1 and φk [n −nk ]; e[n] is the residual. There can be

different stopping criteria for the decomposition, such as the norm of the residual, the number

of atoms, the correlation between the reconstruction and original signal, or the absolute

amplitude of the last extracted atom.

The similarity with equation (5.3) resides in that the F0 decomposition used in the CR model

is a sum of kernel functions, where the functions are impulse and step function responses.

We use the matching pursuit to decompose F0 contours; the atoms used are of the form

of equation (5.4). As it is based on correlation, the MP algorithm applied to intonation

decomposition, using gamma distribution-shaped atoms, will result in modelling of both

voiced and unvoiced regions of speech. It means that in unvoiced regions, where F0 does not
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Figure 5.2 – Gamma distribution for k = 6, for various θ values.

(necessarily) exist, MP will try to match atoms to the interpolated values; it is hence likely to

fit some errors from the pitch tracker. The (erroneous) atoms extracted in unvoiced regions

will then have repercussions in surrounding voiced regions: small atoms will be extracted to

correct the errors introduced by wrongly extracted atoms. The details are given in the following

section in which we integrate perceptually relevant information in the decomposition process.

Selection of Atoms Based on Weighted RMSE

As discussed above, one obvious issue which arises when simply applying matching pursuit to

a continuous F0 contour is the unnecessary modelling of unvoiced parts of F0. Most intonation

models use discontinuous pitch trackers and then interpolate unvoiced regions using, for

instance, spline interpolation [Yu and Young, 2011]. Then some methods concentrate the

effort of modelling on the voiced parts, e.g. Mixdorff [2000]; Narusawa et al. [2002]; while

others simply model everything equally, e.g. Hirst et al. [2000]; Taylor [2000]. To avoid the

latter, one needs a way of assessing which parts of the F0 contour are perceptually relevant, to

focus on their modelling.

Two perceptually relevant objective measures of F0 contour similarity — the weighted root-

mean-square (WRMS) distance (5.6), and the weighted correlation (WCORR) coefficient (5.7)

— were introduced by Hermes [1998].

W RMSE =
√∑

i w(i )( f1(i )− f2(i ))2∑
i w(i )

(5.6)

W CORR =
∑

i w(i )( f1(i )− f1m)( f2(i )− f2m)√∑
i (w(i )( f1(i )− f1m)2)

∑
i (w(i )( f2(i )− f2m)2)

(5.7)
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Here f1 and f2 are the two F0 contours that are being compared, f1m and f2m are their re-

spective means, and w(i ) is the weighting function. The weighting function is defined as the

maximum amplitude of the subharmonic sumspectrum (SHS), which is a weighted sum of the

harmonics contributing to the pitch that was introduced by Hermes [1988].

The two proposed measures were aimed at automating the evaluation of student performance

when teaching intonation [Hermes, 1998]. The results showed that the measures correlated

well with the similarity categorisation done by five experienced phoneticians. Namely, the

WRMSE was found to have a correlation of 0.679, to the experts’ visual ratings, while the

WCORR correlated better, at 0.67, with their auditory ratings. In both cases the inter-expert

agreement was at 0.69 and 0.65, for the two tasks, showing that higher correlations cannot be

obtained. Moreover, approximate thresholds were calculated for classifying the perceptual

similarity of two intonation contours using the objective measures. The thresholds for WCORR

are given in Table 5.1.

Table 5.1 – Weighted correlation thresholds for perceptual similarity of two F0 contours found
by Hermes [1998].

Category WCORR Perceptual F0 similarity
1 > 0.978 no differences
2 > 0.946 differences audible
3 > 0.896 differences clearly audible
4 > 0.827 linguistic differences
5 < 0.827 completely different

In our work we modify the WRMSE and WCORR to assess the perceptual similarity of our

modelled pitch contour compared to the originally extracted F0. The modification are detailed

below. The weighted RMS error (WRMSE) and the weighted correlation were calculated

according to equations (5.8) and (5.9). Here f0 is the reference F0, f̂0 is the modelled F0, i.e.

its reconstruction, f0m and f̂0m are their respective means, and w(i ) again is the weighting

function.

W RMSE =
√∑

i w(i )( f̂0(i )− f0(i ))2∑
i w(i )

(5.8)

W CORR =
∑

i w(i ) f̂0(i ) f0(i )√∑
i w(i ) f0(i )2 ∑

i w(i ) f̂0(i )2
(5.9)

In our implementation, the measures are modified as follows:
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1. We do not normalise the F0 contours with their mean, as no offset is to be expected in

our application scenario. In Hermes’ work, the comparison was done between different

speakers, so it is expected that the contours would have different means and variances

related to speaker dependency.

2. We define the weighting function to be Equation (5.10), where p(i ) is an approximation

of the probability of voicing (POV), as defined by Ghahremani et al. [2014], and e(i ) is

the energy contour of the speech signal. This is in accordance with newer trends in

perceptual intonation studies [d’Alessandro et al., 2011; Rilliard et al., 2011]. It makes

sense as regions of speech with higher energy and higher probability of voicing will

have more impact on the perception of intonation — and speech, more generally. The

introduction of a continuous POV estimate in equation (5.10), allows the elimination of

hard thresholds that were used to determine voicing by d’Alessandro et al. [2011] from

our algorithm, making it more robust.

w(i ) = p(i )e(i ) (5.10)

In a first attempt to reduce the erroneous atom extraction, we used the WRMSE to give

increased importance to the modelling of perceptually relevant segments of the F0 contour

[Honnet et al., 2015]. To this end, we introduced an atom selection algorithm that uses

the WRMSE to keep only the perceptually significant atoms from the set of atoms extracted

using the traditional matching pursuit algorithm. A summary of the procedure is given in

Algorithm 1.

The outlined algorithm proved to be apt at eliminating the extraneous atoms generated with

the MP framework. This allowed for improved intonation modelling using the introduced

gamma distribution-shaped atoms. The performance of the algorithm was verified across

three different languages and both on male and female speakers (one of each gender for each

language, so a total of six speakers) [Honnet et al., 2015].

Nonetheless, eliminating atoms at will from the set generated by the matching pursuit algo-

rithm (MP) raised inconsistencies in the modelling process. Namely, sometimes when an atom

which did not contribute significantly to the WRMSE was eliminated from the set, its influence

in voiced regions was also eliminated. This means that the atoms that the MP algorithm fitted

after it were then lacking in accuracy when modelling the F0 contour. In other words, the

subsequent atoms were compensating for, or taking into account, an atom that was not there

anymore.
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Algorithm 1 Atom decomposition with weighted RMSE based atom selection.

1: procedure ATOM DECOMPOSITION WITH WRMSE SELECTION

2: Extract F0, energy and POV from waveform.
3: Subtract Fb = F0min.
4: Extract F0p using matching pursuit and subtract it.
5: Extract atoms using matching pursuit:
6: Loop:
7: if WRMSE ≤ Threshold then
8: goto End.
9: else

10: if Atom decreases WRMSE by more than 0.001 then
11: Keep the atom and goto Loop.
12: else
13: Discard the atom and goto Loop.

14: End.

5.4 Weighted Matching Pursuit for Perceptually Relevant Decom-

position

To improve our previous approach, we incorporated the perceptually relevant F0 contour

similarity measures, this time the weighted correlation defined in equation (5.9), as a cost

function directly into the matching pursuit framework [Gerazov et al., 2015]. The introduced

weighted correlation atom decomposition (WCAD) algorithm directly extracts the atoms

which are perceptually relevant, eliminating the need for subsequent atom selection. Another

improvement in the algorithm is the introduction of a novel phrase atom extraction algorithm.

These two key modifications make WCAD a more consistent, integrated algorithm, with added

physiological plausibility.

5.4.1 Introducing a New Correlation Measure in MP

A summary of the weighted correlation atom decomposition (WCAD) algorithm is given in

Algorithm 2. The algorithm integrates the weighted correlation in the calculation of the cost

function of the matching pursuit algorithm, and accommodates the peculiarities of the phrase

atom extraction.

At the start of the algorithm, the energy e and POV p are calculated from the waveform. These

are then used to calculate the weighting function w using equation (5.10). Next, the phrase

atom is extracted from the utterance. In concordance with Strik’s findings, we fit a single phrase

atom per breath group. In the first step we estimate the start and end times of phonation,

ts and te , by thresholding the energy e with a starting threshold value T hs and a terminal

threshold value T he . This is done by selecting the first of consecutive frames for which the

energy is higher than the threshold. This is simply done to avoid modelling the noise in the F0

contour before and after the speech. The time instant ts is used to align the position of the
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Algorithm 2 Weighted Correlation Atom Decomposition algorithm.

1: procedure WCORR ATOM DECOMPOSITION

2: Extract f0,e (energy) and p (POV) from waveform.
3: Calculate w from e and p.
4: Extract ts and te of phonation, based on T hs and T he .
5: Find θ f for F0p (phrase atom) at position ts that maximises WCORR · CORR for ts ≤ t ≤

te − toff.
6: Calculate F0p amplitude using CORR.
7: fdiff = f0 −F0p .
8: frecon = F0p .
9: Loop:

10: Find (local) Atom with maximum WCORR · CORR with fdiff for t > ts .
11: Calculate Atom amplitude using CORR.
12: Increment Counter Atom.
13: fdiff = fdiff − Atom.
14: frecon = frecon + Atom.
15: if ( WCORRnorm( frecon, f0) > threshold(WCORRnorm) ) then
16: goto End.
17: else
18: goto Loop.

19: End.

maximum of the phrase atom tr m with the start of phonation in the utterance.

In the next step, θ f is chosen to maximise the cost function calculated as the product of

WCORR, as defined in equation (5.9), and the standard correlation function CORR, between

the phrase atom and the F0 contour. This product is used instead of using the WCORR itself as

a cost function. It was introduced to circumvent deadlocks due to zeros in the CORR function

occurring at places where the WCORR has local maxima.

The cost function was calculated within the range of F0 between ts and te − toff, where toff is

an offset time introduced to eliminate the phrase-final fall and rise in intonation from the

phrase atom fitting. The extracted phrase atom amplitude is calculated using the standard

correlation, after which the phrase atom is subtracted from f0 to give the difference fdiff. The

phrase atom is also used to initialise the F0 reconstruction frecon.

In the next part of the algorithm, local atoms are extracted from fdiff in a loop. At each iteration,

the atom that maximises the cost function WCORR · CORR the most is selected, disregarding

the parts of fdiff before ts and after te . Each atom is subtracted from fdiff before the next

iteration, and also added to frecon. The loop is repeated until either 1) the reconstruction

WCORR reaches the selected threshold value, or 2) the chosen maximum number of atoms is

reached.

We have chosen our stopping criteria to be the WCORR over the SNR (signal to noise ratio

between the signal and the residual) used in a standard matching pursuit implementation, the
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matching pursuit toolkit (MPTK) [Krstulovic̀ and Gribonval, 2006], because of its determined

perceptual significance. Since the thresholds determined by Hermes [1998] are based on

the WCORR calculated between the zero-mean versions of both f0 and frecon, we follow suit

and calculate the WCORR using equation (5.7). This weighted correlation of the zero-mean

normalised F0 contours is labelled WCORRnorm. The WCORRnorm is calculated for the part of

the F0 contour that was actually modelled by our WCAD algorithm, as bounded by ts and te .

5.4.2 A New Phrase Component

The introduced phrase atoms are based on the qualitative shape of the global component of

the subglottal pressure Psb seen in the plots of the results obtained by Strik [1994]. There, the

global component starts with a peak at the start of phonation and then steadily decreases

towards 0 with a time constant relative to the length of the utterance. The rise-time is much

shorter than the fall-time, reflecting the nature of the physiological production of the Psb , in

which an initial pressure build-up that precedes speech, is followed by its gradual release that

sustains phonation. This complex behaviour is provided by the interplay of the diaphragm

and the rib cage muscles.

The phrase atoms are a modified version of the local atoms defined in equation (5.4), in that

they follow one time constant θr during their rise, and another θ f during their fall (5.11).

Looking at Strik’s plots, one can observe that the rise-time of the Psb is consistent to a certain

extent across the different utterances [Strik, 1994]. Since we lack objective measurements to

properly model the rise time, but we still need the rising part when modelling consecutive

utterances, we arbitrarily use a fixed θr to represent a fast rise time across the phrase atoms. On

the other hand, θ f is chosen to maximise the cost function in the matching pursuit framework,

basically fitting the F0 as well as possible taking into account our perceptual measure. In

equation (5.11), tr m refers to the time instant in which the rising portion of the atom reaches

its maximum, calculated according to equation (5.12). In the descending portion, the phrase

atom starts from this maximum value and decreases towards 0. In order to compensate for

the difference between tr m and the maximum time instant t f m of the fall function defined

in (5.13), the time index t ′ is introduced in equation (5.11), calculated using (5.14).

Gk,θr ,θ f (t ) =

⎧⎪⎪⎨
⎪⎪⎩

1
θk

r Γ(k)
t k−1e−t/θr for 0 ≤ t ≤ tr m

1
θk

f Γ(k)
t ′k−1e−t ′/θ f for t > tr m

(5.11)

tr m = (k −1)θr (5.12)
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t f m = (k −1)θ f (5.13)

t ′ = t − (tr m − t f m) (5.14)

5.5 Model Evaluation

To assess the plausibility and comparative performance of the introduced Weighted Corre-

lation Atom Decomposition model we have designed 2 experiments. The first one (detailed

in Section 5.5.3) analyses its ability to accurately capture the intonation dynamics, as well

as the relative number of atoms required to reach a set modelling accuracy. The second one

(Section 5.5.4) compares our generalised CR model with a state of the art implementation of

the standard CR model.

5.5.1 Data Selection

The experiments were conducted on a large number of files, including speech in three different

languages from both genders. This selection aims to demonstrate the language independent

aspect of the model. Four databases were used: the SI84 set of the WSJ corpus [Paul and Baker,

1992] and CMU Arctic databases [Kominek and Black, 2004] for English, BREF [Lamel et al.,

1991] for French and Phondat [Hess et al., 1995] for German. More detail on each of these

dataset can be found in Chapter 2, Section 2.4. The data can be seen as two main datasets:

• The CMU Arctic data consisted of two speakers: a male speaker, bdl, and a female

speaker, clb. This set is aimed at evaluating the performance on the algorithm on the

intra speaker variability aspect, as a lot of data from each speaker is available.

• The second set, using speech from many speakers and three languages, aims at evaluat-

ing the algorithm on multi-lingual and multi-speaker aspects.

On the first dataset, from the utterances recorded for these 2 speakers, we manually selected

the ones for which the used pitch extractor [Ghahremani et al., 2014]1 gave reliable results.

The validity of the F0 contours was assessed through comparison with two other pitch tracker

outputs: STRAIGHT [Kawahara et al., 1999] and SSP from Garner et al. [2013]2. The final

dataset totals 1,729 utterances with a duration of 1.5 hours.

1See: http://kaldi.sourceforge.net/
2Available at: https://github.com/idiap/ssp
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On the second dataset, a first random selection of the sentences was made, including 7,085

sentences from WSJ, 15,981 from BREF and 21,587 from Phondat. To avoid using files for

which the pitch tracker yields unreliable contours, we performed a pitch comparison using

the same 3 pitch trackers: SSP [Garner et al., 2013], the STRAIGHT vocoder [Kawahara et al.,

1999] and the Kaldi pitch tracker [Ghahremani et al., 2014]. For all the files, the pitch was

extracted with these 3 tools, and RMSE and correlation were calculated for each pair (Kaldi vs

STRAIGHT, Kaldi vs SSP, SSP vs STRAIGHT). The files for which correlation was lower than

0.99 or RMSE was higher than 50Hz for at least one pair were discarded. As a result, 2,453 files

were selected for WSJ, 6,387 for BREF, and 4,433 for Phondat. Finally, to balance the subsets

for each language, 8,964 files (about 12.6 hours of speech) were kept by discarding the shortest

(sometimes corresponding to single words) and longest files. Details are given in table 5.2

Table 5.2 – Data used for the experiments.

Database # of sentences # of speakers (male/female) Hours of speech
Arctic 1729 2 (1/1) 1.5
WSJ 2453 76 (37/39) 5.1
BREF 2799 23 (10/13) 4.9
PhonDat 3712 164 (78/86) 2.6
Total 10693 263 (126/139) 14.1

5.5.2 WCAD Algorithm Parameters

The parameters used in the WCAD algorithm were determined through qualitative assess-

ment of its performance on a set of randomly chosen utterances from the first dataset (the

CMU Arctic database). It is reasonable to suppose that the optimal parameters are speaker

dependent, but for convenience we pool them together and assume speaker independence.

To determine the optimal order of our model k that is used in generating the gamma shaped

phrase and accent atoms (5.4), the difference in WCAD performance for the various k-s was

analysed. Figure 5.3 shows the average WCORR versus the number of atoms per syllable

for k-s in the range 2–7, for the French female speaker group. The curves were obtained by

averaging the values over the whole French female speaker dataset. The curves are smooth

because of the antialiasing of the plotting program 3, and the large amount of data. Figure 5.7

shows the same measure for all the values for k = 6 with the mean curve. We can see that

k = 4,5,6,7 generally gives better performance than k = 2,3. The same trend is observable

for all the speaker groups. This is in line with the findings of Prom-on et al. [2009]. However,

the high variance across the utterances makes it difficult to clearly favour one k. Moreover

there is no plausible reason to use several orders in our model, so we assume that using order

6 is reasonable, as it gives a slightly better average performance than the k of 4 used in our

previous work [Honnet et al., 2015], and the improvement when going to order 7 is small. For

further discussion on the choice of order, the reader can refer to the work of Prom-on et al.

3We used the Matplotlib library for python, http://matplotlib.org/
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[2009].

Figure 5.3 – WCORR vs number of atoms per syllable for the French female speakers for
different values of k.

To determine the start and end of phonation, respectively ts and te , we chose equal threshold

values T hs and T he of 0.01 for the normalised energy. The offset time toff subtracted from

te to leave out possible phrase-final falls and rises in F0 was set to 150 ms. The θr for the

rising part of the phrase atoms was fixed at 0.5. The range for the θ f for the falling part of

the phrase atoms was set to 0.1–10, and for the θ of local atoms to 0.01–0.05. This way, the

constructed dictionaries provide an atom variability sufficient for the function of the WCAD

algorithm. The maximum θ f of 10 covers the long utterances with a slowly decreasing global

Psb component. And the θ range encompasses the area where the θ-s concentrate, as can be

seen in the histogram of their distribution in Figure 5.4. The lower values of θ correspond to

shorter atoms, which are mostly used for modelling sharper variations. The atoms using these

low values have low amplitude; they help modelling the noise in intonation contours and

getting higher accuracy in the reconstruction. Empirically, an alternative stopping criterion

was set to a maximum of 10 atoms per second.

5.5.3 Model Performance

The plausibility of the WCAD algorithm is determined through assessing 1) how well it can

model the F0 contour, and 2) how many atoms it needs to do so. In order to determine this,

we analyse the contribution of each of the atoms as they are added in each iteration of the

modelling procedure. More specifically, we analyse how much does the addition of each

atom increase the WCORRnorm between the original and modelled F0 contours. We use the

WCORRnorm, in order to assess the perceptual quality of the modelled F0 using the thresholds

discussed in Section 5.5.2. To extract the continuous F0 and POV estimates we use the pitch
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Figure 5.4 – Histogram of the distribution of θ of local atoms for the French female speakers.

tracker implemented in Kaldi by Ghahremani et al. [2014].

Our hypothesis is that, because of the nature of the matching pursuit algorithm on which

WCAD is built, our algorithm will progressively increase the WCORR with the addition of each

of the atoms, reaching a saturation point at the optimal number of atoms. We also hypothesise

that relatively few atoms will be needed to construct a model perceptually close to the F0

contour.

5.5.4 Comparison with Command-Response Model

In addition, we assess the comparative performance of our algorithm with the results obtained

with Mixdorff’s CR parameter extraction tool [Mixdorff, 2000]. We calculate the WCORRnorm

obtained with the CR model, and use it to assess the perceptual quality of the modelled

contour, comparing it with our WCAD results.

Our hypothesis is that WCAD results would be comparable with those obtained with the CR

model at a comparable number of atoms per syllable, and that the GCR model can reach higher

accuracies than the CR model, due to possibility to change the threshold when decomposing

a contour.

5.5.5 Results

Example of Decomposition

Example results of the Weighted Correlation based Atom Decomposition algorithm are given

in Figure 5.5 for the utterance arctic_a0112.wav taken from speaker bdl in the CMU Arctic
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dataset. The plots show the original F0 contour, the extracted phrase atom and the extracted

local atoms, and the reconstructed F0. In order to obtain a clearer plot, only local atoms with

amplitudes above 0.3 were used. As a comparison, the standard CR model extracted with

Mixdorff’s tool of the same example utterance is also given.

Figure 5.5 – Reconstruction of F0 contour using the generalised CR model (1st panel), atoms
extracted using the WCAD algorithm (2nd), and weighting function used (3rd); compared to
the reconstruction using the standard CR model (4th), phrase and accent commands extracted
using Mixdorff’s tool (5th), and the voicing vector used (6th), for an utterance from bdl.

We can see from the plots that the WCAD algorithm, with the limit put on the atom amplitude,

extracts 1 phrase atom and 5 local atoms to model relatively well the F0. Mixdorff’s tool extracts

1 phrase command and 3 accent commands to model the same utterance. The lower number

of components is advantageous, but the standard CR model, however, fails to capture the

phrase-final drop in F0. Phrase-final drops were accounted for only later in the standard CR

model, through the addition of negative phrase-final phrase commands [Fujisaki, 2004], and

they are not automatically extracted by Mixdorff’s tool.
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On the other hand, the lack of negative accent commands for English in the CR model,

precludes the proper placement of the phrase component. An example of this can be seen

in Figure 5.6, in which the accent commands compensate for the wrongly placed phrase

command. The WCAD algorithm, on the other hand, is not limited to using only positive local

atoms, allowing it to do a better job at fitting the phrase atom, while at the same time being

physiologically more plausible. For these two examples, we can see that the WCAD algorithm

extracts a phrase component which looks like an average of F0 movements. This smooth

version of the F0 curve makes sense physiologically as it would assure minimal activations,

and thus conservation of energy. By contrast, the phrase component extracted by Mixdorff’s

algorithm is placed at the minimum of the F0 curved. This can lead to incorrect accent

commands: as one can see in Figure 5.6, to compensate for the offset between the extracted

phrase component and what should be the actual phrase component, many erroneous step

functions are used and stacked together to bring the contour up.

Results From Experiments

In the examples shown in Figures 5.5 and 5.6, we have limited WCAD to large amplitude atoms.

The algorithm can, however, iteratively extract atoms to bring the modelled F0 close to the

original to an arbitrary degree, in terms of the cost function used. To analyse this performance

we have calculated the WCORRnorm at each iteration of the algorithm and plotted it as a point

in the WCORR — atom/syllable plane, for all of the utterances for both speaker groups (male

/ female) from BREF. The results are shown in Figure 5.7 as grey dots. The figure also shows

the average WCORRnorm relative to the number of atoms/syllable, averaged across all the

sentences for each speaker group, as a black curve.

The average WCORRnorm plots obtained for the different speaker groups from the multilingual

set are plotted for comparison in Figure 5.8. The curves represent the average performance of

the GCR with k = 6 per speaker group, while the dots represent the performance of Mixdorff’s

tool at the sentence level for the same speakers and sentences. In Mixdorff’s case, each

sentence is represented by a dot as it only gives one decomposition result. In the GCR case,

according to the number of local component we extract, we get different WCORR, hence the

average curves. To calculate the WCORR for the standard model we only used the part of the

F0 contour that was between the start and end of voicing.

We can see that, as hypothesised, at the start the WCAD algorithm gives rapid improvements in

the WCORRnorm with the inclusion of the first (larger) atoms in the model. The improvement

in WCORR then gradually decreases as more (smaller) atoms are introduced. The plots show

that the improvements in WCORR reach a saturation point around 1 atom/syllable for all of

the speaker groups of all databases, hinting at a deeper link between the syllable unit and

elementary intonation atoms.

The results show that the WCAD algorithm performs equally well for speakers of different

languages and gender. The female speakers show a slightly lower performance of the GCR
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Figure 5.6 – Reconstruction of F0 contour using the generalised CR model (1st plot), atoms
extracted using the WCAD algorithm (2nd), and weighting function used (3rd); compared to
the reconstruction using the standard CR model (4th), phrase and accent commands extracted
using Mixdorff’s tool (5th), and the voicing vector used (6th), for an utterance from clb.

model, as they often have more variations in their intonation, requiring more components to

get the same precision. The hypothesis that speaker and language play a role in the complexity

of the patterns comes naturally, however, the WCAD algorithm does not have an inconsistent

behaviour across all of the data used, suggesting both speaker and language independence.

Compared to the standard CR model, the WCAD algorithm underperforms when using a

smaller number of atoms in some cases (first dataset), but its accuracy reaches and goes

beyond that of the CR model as more atoms are added. It is important to note that in the

case of the plotted dots obtained from the CR model, “atoms/syllable” actually represents

“commands/syllable”, and that the commands in the CR model actually represent a response

to a sequence of pulse excitations, as discussed in Section 5.3.2. On the other hand, the atoms

in our generalised CR model correspond to single pulsed excitations, making straightforward
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Figure 5.7 – Weighted correlation of the zero-mean normalised F0 contours relative to the
number of atoms per syllable for all of the utterances for the French female (top plot) and
male (bottom) speakers (gray points), and the calculated average curve (black), for k = 6.

comparison on this plot slightly biased.

In order to get a sense of the number of atoms/syllable needed for the WCAD algorithm to

reach a certain perceptual accuracy in modelling the F0 contour, we used the different WCORR

perceptual thresholds presented in Table 5.1 as stopping criteria. The results of this analysis

are given in Table 5.3. The table lists the average number of atoms/syllable needed to reach

the different perceptual WCORR thresholds, for each of the speakers or speaker groups. We

can see that to reach perceptual indistinguishability (Category 1) WCAD uses on average 1

atom per syllable for the first dataset, as was also hinted by the WCORR plots in Figure 5.7. In

the second dataset case, fewer atoms are needed to reach such perceptual quality. If we relax

this accuracy condition and go with an F0 model that permits some perceptual difference
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Figure 5.8 – Average weighted correlation of the zero-mean normalised F0 contours relative to
the number of atoms per syllable for the different speaker categories from the multilingual set,
for k = 6 (curves). The WCORRs obtained with Mixdorff’s implementation of the CR model are
shown for comparison (dots, triangles and diamonds).

(Category 2), the generalised CR model needs on average a little more than half of this atom

rate, i.e. 1 atom for every 2 syllables.

Table 5.3 – Number of atoms/syllable needed on average to reach a chosen perceptual WCORR
threshold with the GCR model, for each speaker group from both datasets.

Speaker Group Cat 1 Cat 2 Cat 3 Cat 4
Arctic bdl 0.75 0.48 0.34 0.24
Arctic clb 1.27 0.74 0.45 0.29
Group En M 0.69 0.53 0.34 0.26
Group En F 0.90 0.62 0.47 0.34
Group Fr M 0.71 0.47 0.32 0.22
Group Fr F 0.93 0.70 0.54 0.41
Group Ge M 0.81 0.52 0.41 0.29
Group Ge F 0.79 0.60 0.41 0.33
Arctic Average 1.01 0.61 0.39 0.26
Group Average 0.78 0.57 0.43 0.32

As a comparison to the performance obtained with the CR model, Table 5.4 gives the average

WCORR, and the average total number of phrase and accent commands in the standard CR

model for each speaker group. We can see that Mixdorff’s tool gives a model with a WCORR

of 0.96 on average for the first dataset, which corresponds to Category 2 from Table 5.1, and

of 0.91 for the second dataset, which corresponds to Category 3. The average number of

commands/syllable is 0.49 for the first dataset and 0.48 for the second. This number is to

be compared with the results obtained with the WCAD algorithm at 0.61 for Category 2 (first
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dataset), and 0.43 atoms/syllable for Category 3 (second dataset). In the first dataset case,

a few more atoms are required for the GCR model compared to the standard CR model for

reaching the same perceptual quality, while for the second dataset which has more variability,

the GCR requires fewer atoms than the standard CR model. This affirms the comparable

performance of our algorithm.

Table 5.4 – Average WCORR and number of atoms/syllable obtained by the standard CR model,
for each speaker group

Speaker Group WCORR Cat commands com/syl
Arctic bdl 0.96 2 5.7 0.48
Arctic clb 0.96 2 6.1 0.51
Group En M 0.94 3 12 0.46
Group En F 0.91 3 14 0.47
Group Fr M 0.95 2 12 0.46
Group Fr F 0.94 3 12 0.48
Group Ge M 0.91 3 5 0.51
Group Ge F 0.83 4 5 0.50
Arctic Average 0.96 2 5.9 0.49
Group Average 0.91 3 10 0.48

Discussion

The example figures (5.5, 5.6) demonstrate the qualitative advantages of the more flexible GCR

model over the standard CR model. The native allowance of negative atoms in the GCR model,

as well as the design of the phrase atoms and the algorithm used to extract them, have allowed

the extraction of an observably better phrase component. These two advantages result in

better, physiologically more plausible modelling results overall.

The experiments confirmed the plausibility of the GCR model, and the WCAD algorithm as a

means for the extraction of its parameters. The results show that the model can successfully

capture the intonation dynamics for different speakers and languages to an arbitrary precision.

The built-in WCORR measurement allows the user to set the perceptual quality of the modelled

intonation patterns. The results show that high perceptual quality can be obtained with the

model when using around 1 atom per syllable.

The results from the comparison showed that the WCAD algorithm gives comparable mod-

elling performance to the standard CR model in terms of perceptual quality at a given atom/-

syllable rate. It also accentuates the added flexibility of WCAD due to its iterative nature, which

allows for an arbitrary modelling precision to be achieved. Namely, the results demonstrated

that as more and more atoms are being added, the WCAD algorithm reaches WCORR-s that

cannot be reached by the standard CR model. This is an inherent advantage of the introduced

intonation model.

An additional point that we need to emphasise when we compare the GCR to the CR model
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is that the parameters of the GCR model can be extracted fully automatically using the pro-

posed WCAD algorithm. On the other hand, there is no automatic way to extract the “right”

parameters for the CR model. Even advanced tools such as Mixdorff’s that we used, are prone

to erroneous output and need expert adjustment.

5.6 Conclusion

In this chapter, we presented a new intonation model that we call the generalised command-

response model which decomposes F0 into physiologically meaningful components. As its

name indicates, it is a generalisation of the command-response model, in the sense that

the constraints on the components are relaxed (we use higher order than the standard CR

model). The GCR comes with a simple decomposition method based on the matching pursuit

algorithm: the process will extract components in an iterative manner until it reaches a

predefined stopping criterion. Compared to the CR model, different shapes are used for both

global and local components, remaining damped system impulse responses. A modified

version of the matching pursuit was proposed: instead of using correlation to find an atom at

each iteration, a weighted correlation with a perceptual relevance is used as cost function, and

allows use of a perceptually relevant stopping criterion.

The model was evaluated on speech from multiple languages and multiple speakers, and

compared against an implementation of the standard CR model. It proved able to reach

high accuracies with a reasonable number of components. Interestingly, it was found that

about one atom per syllable was enough to model the F0 curve reasonably well. Overall, we

demonstrated that the model fits the curve as well or better than the CR model, with a similar

number of components.

However, achieving a high reconstruction accuracy with the WCAD algorithm introduces

atoms which model the noise inherent to the intonation curve. It is a difficult problem to

automatically separate the prosodically meaningful events from the microprosodic noise

with no linguistic and paralinguistic information. The following two chapters investigate

applications of the GCR model: the possibility to learn the model parameters, in the context

of synthesising intonation for TTS (Chapter 6); and the use of the model to transfer emphasis

(Chapter 7). Finding linguistic meaning of the atoms has received some attention in the work

of some project partners: Delić et al. [2016] found a high correlation between high and low

tonal events in the ToBI system and positive and negative atoms respectively. Szaszák et al.

[2016] also used atom decomposition for emphasis detection. In the same line of work, mutual

information between linguistic labels and model parameters is investigated in Chapter 7, in

the context of intonation-based emphasis transfer.
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Generating prosody is a problem that is inherent to text-to-speech (TTS) synthesis. As the

current TTS systems are able to synthesise reasonable quality speech, one of the criticisms

which tends to come regularly is the lack of expressivity in the output speech. Prosody is the

main vector for allowing expressivity and the standard TTS methods show their limits when it

comes to model it.

We propose to use the GCR model (Chapter 5) to predict intonation. The model is physio-

logically based and aims at modelling intonation in a language independent manner. We

assess the importance of the model parameters by human subjective evaluation. Then, using

different statistical methods, we attempt to generate the model parameters, which could

then be used for synthesising intonation. In this chapter, only local component prediction is

investigated. The task of intonation prediction is evaluated on a large single speaker English

speech corpus.

The work presented in this chapter was done in the context of an internship at the National

Institute of Informatics (NII), Tokyo, Japan. Some research decisions were based on taking

advantage of particular tools available at NII.

The work has not been published, mainly because the results are somewhat negative1. This in

turn leads to the focus on transfer in the later chapters.

6.1 Background

Two types of approach are discussed in this section: intonation synthesis integrated in the

TTS framework, and intonation synthesis in an external fashion.

1No reflection on NII
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6.1.1 Integrated Modelling

The state of the art of intonation synthesis in the context of TTS was introduced in Chapter 2,

Section 2.2.3. This is in the case of statistical parametric speech synthesis (SPSS). The two

main approaches to the SPSS problem are HMMs and DNNs (and their variants). In both

cases, intonation is treated like another acoustic parameter, such as spectral information. A

relation is learned between linguistic labels and F0 values (or a scaled version of it).

In the case of HMM, F0 is modelled at the state level. This means that the emission probability

density of each state will contain mean and variance (if normal distributions are used, as is

generally the case) of F0 for a specific sub-unit of a phone in a specific context. Decision trees

handle the task of clustering the states which have similar distributions, and supra-segmental

information is more likely to have an effect on F0 than segmental details, e.g. the position of a

word in the sentence, combined with the number of words in that sentence would probably

bring more information about intonation than if the current phone is an “a” or an “o”. The

voiced / unvoiced decision is traditionally handled by the use of multi-space probability

distribution HMMs [Tokuda et al., 2002a]. More details are given in Chapter 2, Section 2.2.3. It

is also possible to use continuous F0, or a different continuous decomposition of it, and use

different methods to model the frame voicing decision, e.g. [Ribeiro and Clark, 2015; Suni

et al., 2013; Yu and Young, 2011].

In DNN-based speech synthesis, F0 is modelled in the same way as other acoustic features.

Each output frame is generated according to an input feature vector (linguistic context). In

addition to the features which are used in HMM-based synthesis, some information about

relative position within the phones is given, to model the evolution of the features more

finely. A parallel can be made with the states of an HMM: a phone is not modelled with only

1 state but generally with 5 emitting states, which allow the modelling of articulation with

neighbouring phonemes.

Recently, some work was done to try to separate the suprasegmental aspect from the segmental

aspect in the training of deep networks. Ribeiro et al. [2016b] investigated how training

separate networks and then combining their synthetic output was affecting the synthetic

speech. It was found that a parallel structure was improving upon the baseline architecture.

6.1.2 External Modelling

Another type of approach to synthesise intonation consists of building models which are

specifically designed for the task of intonation generation. It is known that synthetic speech is

generally perceived as “over-neutral”, attributed to a “flat” intonation. One of the reasons for

the flat intonation is the use of statistical models, which are learning averages (and ranges) of

F0 in specific contexts. Relevant models to this chapter are discussed in this section.

Bailly and Gorisch [2006] proposed applying the superposition of functional contours (SFC) of

Bailly and Holm [2005] to German intonation generation. In this work, the authors manually
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labelled a German speech corpus containing only declarative sentences for which phonetic

and prosodic (borders and accents) segmentation was provided. Their annotation is on several

levels: the first (highest) level is the sentence modality, in this case it is always declarative

sentence. Then, the dependencies of each unit (where units can be words, groups, phrases,

clauses) are considered, meaning that a unit can have a left dependency (linking the current

unit with the preceding one), right dependency, interdependency (when the two units have the

same “governor”), or independency (when none of the previous dependencies can be applied).

As German is a compound language, some morphological decomposition was annotated

(e.g. the word “Energiepolitisches” is parsed as “[[Energie]AM[Politisches]]”)2. Like English,

German has lexical stress and the accents are annotated. Finally, emphasis was encoded at the

word level. These annotations are used to train the prosodic models. This work was evaluated

on 10 test sentences (with a relatively small training set of 70 sentences), and although the

method resulted in mediocre objective and subjective measures, it is an interesting approach

as the constraints on the different prosodic components are relatively relaxed.

Kameoka et al. [2015] proposed one of the most interesting approaches, in the context of

intonation synthesis using a physiologically plausible model, the command-response model

of Fujisaki and Nagashima [1969]. HMMs with a particular topology were employed to model

the activations of global and local components. As a result, the system, constrained by some

rules on the possible activation of components, can be in different states, corresponding to

having an impulse for phrase command, no command, or an active command for accent (step

function). It was extended by the use of substate HMMs, allowing modelling of the duration,

related to the time spent in each state. By translating the CR model into a probabilistic model,

Kameoka et al. [2015] were able to successfully extract model parameters and to generate

them in the context of TTS for Japanese. As the CR model was originally developed by building

on Japanese intonation theories, the link between its component and linguistic events is well

established. This is one of the reason for the success of this method, which focuses only on

declarative sentences as well.

6.2 Relation Between GCR Parameters and Perception

Before tackling the task of synthesising F0 using the GCR model, a perceptive evaluation was

carried out to measure the importance of the position of local atoms. Our hypothesis is that

modifying slightly the position of local atoms should not bring perceivable differences in the

speech signal, but that if the shift becomes important, the speech will be distorted.

6.2.1 Generating Test Material

To assess the importance of the position of the main impulses in our model, we attempt to

modify the time at which the most important atoms — in a perceptually relevant way — occur.

2In English, “energy policy”.
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Here are the steps to generate our test files:

1. Extract parameters using WCAD algorithm (parameters are position, amplitude and θ)

2. Shift the most prominent atom by n frames, n ∈ {−5,−3,−2,−1,0,1,2,3,5} where the

frame shift is 5 milliseconds.

3. Reconstruct intonation using modified parameter atoms

4. Resynthesise speech using altered intonation.

The test data consisted of 20 sentences randomly selected from the Blizzard challenge 2011

corpus, provided by Wilhelms-Tricarico et al. [2011], described in Chapter 2, Section 2.4. As

a reminder, this data consists of US English speech uttered by a female voice talent. The

prompts were annotated for the speaker to read with target intonation patterns, making the

data somewhat expressive.

For the atom extraction, we used two stopping criteria: a maximum number of atoms, related

to the length of the utterance (there could be maximum 10 atoms per second), and a limit on

the magnitude of the atoms (the atoms had to have an absolute amplitude greater than 0.3).

9 systems were then tested, with different shifts in the position of the most important atom

(this atom could have a positive or negative amplitude). These were compared against a

simple analysis-synthesis version of the same audio files.

6.2.2 Listening Tests

31 native English listeners, mostly in the age range 18–25 (students at the University of Edin-

burgh), took the subjective listening test in separate sound proof booths, with high quality

headphones. The subjects were asked if pairs of samples sounded exactly the same or not.

Each pair was composed of a vocoded version of the original file and a reconstructed version

after modifying the position of the most prominent atom (or simple reconstruction after

decomposition using our model in the case of the system S0).

The listeners had to judge 180 pairs of audio files: 20 reference files against each of the 9

versions described earlier.
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6.2.3 Results

Figure 6.1 – Subjective listening test on the effect of atom position. 1 for identical, 0 for
different. Red lines are medians, red dots are means.

The results of the listening tests are shown in figure 6.1. The value 1 corresponds to the cases

where listeners perceived the speech as exactly the same as the original, 0 corresponds to

different (with no information on how big the difference was). In the boxplot, the values are

averaged at the sentence level, to account for the random choice of sentence. It can be seen

that for a shift greater than 1 frame in the position of the most prominent atom, the perception

of the reconstructed speech is different, due to some small distortion in the speech. The fact

that we modified the position of the most important atom makes the modification have a

bigger impact than if another random atom was shifted. A two-tailed paired t-test on the score

of each sentence in the test set (average of scores given by the listeners) was performed on

each pair of systems. This showed that all pairs of systems were significantly different at the

level of p < 0.01, except the pairs (S3m / S3p), (S2m / S2p) and (S1m / S1p). This means that,

from a perceptual point of view, shifting the most important atom, even by a small amount, is

modifying significantly the perception of native listeners.

Our hypothesis, that small shifts in the position would not be perceivable by the listeners,

was refuted, as even the smallest shift were perceived by some portion of the listeners. The

intuition that the bigger the shift, the more perceivable difference was confirmed, which

indicates higher degradation of the speech when the position of major atoms is altered. Ideally,

when trying to predict atoms, the precision in the position should be a major concern; however,

a shift of 1 frame seems acceptable to keep perceptual similarity as the means indicate that a

majority of listeners do not distinguish it from the natural speech. The differences underlined

in these results are when the most prominent atoms are modified, but it is expected and

reasonable to assume that on other atoms, a small shift will be tolerable.
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6.3 Synthesising GCR Parameters

Our motivation is to be able to predict intonation from linguistic context. Instead of following

the frame by frame prediction used in state of the art system, we want to use our intonation

model as a representation of the intonation. Predicting intonation then means predicting

the model parameters. The reconstruction of intonation given the model parameters is

straightforward. In the work presented here, only local component prediction is investigated.

Our hypothesis is that statistical models can be trained to learn the relation between linguistic

features and the model parameters, therefore enabling the synthesis of intonation contours.

Two statistical modelling approaches are investigated in this chapter: support vector machines

(SVM) and deep neural networks (DNN). The task of the models is to output the parameters of

our intonation model given a certain linguistic context as input.

6.3.1 Support Vector Machines

Support vector machines are classifiers. In that sense, they are generally not used to predict

parameters, but rather separate distinct classes. To fit our task to SVMs, we therefore turn

it into a classification problem: the classifier should output a binary answer to the question

“Does this frame correspond to an atom?”. In other words, the system would predict the

position of positive frames, where we define a positive frame as a frame with an atom.

SVM Generalities

First introduced by Boser et al. [1992], SVMs are binary classifiers, whose goal is to separate

two classes in some feature space by a hyperplane. The distance between the two classes

should be maximised, and support vectors are the data points from each class which are the

closest to the hyperplane. In most real case scenarios, a linear separation in the space where

the data lies is not possible. Two methods allow reducing the problem: the introduction of

a soft margin, and the projection of the data into a different space. The former, introduced

by Cortes and Vapnik [1995], consists of allowing the classifier to ignore some data points, or

place them on the wrong side of the margin, which in the best case can disregard wrongly

labelled data. The latter, which is a projection into a higher dimension space, is performed to

try to separate better the classes, as in the example depicted in Figure 6.2, where the data is

projected from input space (in 2 dimensions) to the feature space (in 3 dimensions). For this, a

non-linear kernel function is typically used.

SVM Specifications

To fit our task, we choose to predict the presence or absence of an atom at the frame level. The

presence of an atom as we define it here consists of the presence of an impulse which triggers

3Source: http://www.imtech.res.in/raghava/rbpred/svm.jpg
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Figure 6.2 – SVM: projection in higher dimension space.3

a response — an atom. To this end, the input features will consist of a linguistic feature vector

for each frame. To be consistent with the speech synthesis framework, we use almost the

same linguistic features as in the case of a standard TTS system. In addition to the features

commonly used4, some information about the relative position of the frame in the phoneme,

in the utterance and on the length of the utterance. As we are interested mostly in high level

linguistic features, we reduce the feature set by removing segmental information such as the

phone identity which, because it is encoded in a one hot manner, requires many dimensions.

Balancing the Data

In our case, as can be seen from the atom decomposition results in Chapter 5, the impulses

corresponding to the presence of an atom are sparse. It means that, from a frame-level

modelling point of view, only few frames contain an atom command: in the data used in the

experiments (see Section 6.4), the presence of atom in a frame occurs less than 2% of the

time only. It is known that SVMs do not perform well with unbalanced data. To overcome the

under-representation of the positive class, we propose to “add noise” on the atom position. To

do so, the following procedure was used: if t is the position of a positive frame, the surrounding

frames were added in the positive class by duplicating them as positive frames, and keeping

their negative frame version. Then, for a positive frame t , we would have:

• frame t −4 is added once as a +ve sample and remains once as a -ve sample (1+1-)

• frame t −3 is added twice as a +ve sample and remains once as a -ve sample (2+1-)

• frame t −2 is added 3 times as a +ve sample and remains once as a -ve sample (3+1-)

• frame t −1 is added 4 times as a +ve sample and remains once as a -ve sample (4+1-)

• frame t is added 4 times as a +ve sample in addition to the existing +ve sample (5+)

• frame t +1 is added 4 times as a +ve sample and remains once as a -ve sample (4+1-)

4For instance in the HTS demo feature set, see http://hts.sp.nitech.ac.jp/
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• frame t +2 is added 3 times as a +ve sample and remains once as a -ve sample (3+1-)

• frame t +3 is added twice as a +ve sample and remains once as a -ve sample (2+1-)

• frame t +4 is added once as a +ve sample and remains once as a -ve sample (1+1-)

The noise added on the position should increase the robustness of the learnt models, and be

more adaptive to unseen data. This noise introduction may however reduce the precision of

the model to identify which frames are positive. We did not add noise on other contextual

features as it would be difficult to modify them and remain consistent (for instance, it is not

easy to modify randomly the position of the syllable in the word and keep the other features

consistent with this new position). In our case, the features are still consistent — as accurately

as the automatic text analyser and the automatic time alignment allow — and only nearby

frames are duplicated as positive examples. This addition of noise on the position may seem

contradictory with the findings of Section 6.2, where it was shown that position had to be very

precise. However, if predicting atoms in a region around the real position is possible, with

more importance on this position, we expect that the output of the models can be processed

to retrieve the wanted position.

6.3.2 Deep Neural Networks

Deep neural networks have become a standard data-driven approach in many research fields.

They have shown a great ability to improve the state of the art in speech applications such

as ASR with e.g. the work of Veselỳ et al. [2013], TTS starting with the work of Zen et al.

[2013], in various tasks of natural language processing [Collobert and Weston, 2008], or in

image processing for classification, e.g. Krizhevsky et al. [2012]. Following the trends in the

speech synthesis community, we investigate the use of DNNs in the prediction of our model

parameters.

DNN Generalities

DNNs are introduced in Chapter 2 as an inherent part of statistical parametric speech synthesis

research. A deep neural network is essentially a multiple layer network composed of hidden

units, themselves composed of nodes (or neurons). Depending on the architecture of the

network, the nodes are connected as desired. In a simple feed-forward architecture, neurons

are connected from one layer to the next one, and the outputs of one layer become the inputs

of the next layer. Then for each node in a layer, a weight is applied on each output of the

previous layer, and the sum of the weighted values of each node connected to the current

node with a bias term is passed through some activation function. The outputs will then be

used as inputs for the next layers or as posterior features, in the last (output) layer.
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Synthesising All Parameters

As we are working in the framework of DNN-based TTS, we decided to adopt a frame-by-frame

strategy. One possible way to present the task of atom parameter generation to the DNN is

to make it learn the relation between linguistic features and output parameters at the frame

level. In the input it means using the same features as in the SVM case. In the output, as the

frame indicates the timing (or position), we can generate parameters, and only the output

frames which have a value for amplitude and θ should be considered, the others indicating

the absence of an atom. For this setting, we used one of the standard activation functions, the

sigmoid function.

An additional feature was investigated for atom parameter prediction: the phrase component

of the model. The values of the phrase contour for each frame were normalised and then used

as input features of the DNN. This was done following the assumption that the phrase can be

predicted, and that we are investigating local component synthesis only.

Synthesising Parameters Separately

As we anticipate that it may be difficult to generate all the parameters at once, we investigate

the prediction of atom parameters in a separate manner:

• Predicting atom position: As a first task, we train a network to predict only the presence

or absence of an atom. This is the same task as for the SVM-based approach. With

this knowledge, we can than predict other parameters. As we expect a binary output, a

softmax layer was used as output layer, because of its ability to classify distinct classes,

here presence or absence of atom. The softmax activation function is discussed in

Section 6.4.

• Synthesis of amplitude and θ: training a network for positive frames only, meaning that

in that case, we assume the presence of an atom. The prediction will then focus on the

amplitude and θ of atoms.

The combination of positions and other parameters should allow the reconstruction of all

the local components. In that case, we do not change the input features compared to the

“synthesising all at once” approach.

6.4 Experiments

In this section, we present experimental evaluation of the proposed methods, namely pre-

dicting atom positions with SVM, predicting all parameters with one DNN, and predicting

position and other parameters separately using different DNNs.
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6.4.1 Experimental Setup and Evaluation Method

Data

As for the evaluation of atom position in the listening test in Section 6.2, we used the Blizzard

Challenge 2011 data. The corpus contains 16.6 hours of speech, for about 12000 sentences.

Training / Testing Sets For the DNN training, we used 9,000 sentences. For testing the

models, 1000 held-out sentences were used. In the SVM case, due to the high computational

cost of training, we used about 40 minutes of speech, or about 500 sentences corresponding

to 500,000 frames. The test set in that case consisted of about 72,000 frames (80 sentences,

approximately 10 minutes of speech), and in the case of artificially augmented data about

100,000 frames). In the case of separate training, we used the same 9,000 sentences, which

corresponded to about 160,000 frames.

Features

The features used for the different experiments are the same, simply varying in normalisation

or size of the feature set.

Input Features There were two sets of linguistic features. The full feature set was based

on the feature set defined by Takaki et al. [2015]. The original vector dimension was 897:

858 binary features for categorical linguistic contexts, 36 numerical features for numerical

linguistic contexts, and 3 numerical features for the position of the current frame and duration

of the current phoneme. Two other features were added: the length of the utterance and the

relative position of the current frame in the utterance.

A reduced feature set was created by deleting some segmental information, as their influence

on the intonation contour is small. As described earlier, features like the phone identity were

left out of the reduced set as they require many dimensions for little long term dependency rel-

evance. In that case, the final feature vector size was 169. In the DNN training, the normalised

phrase component values were added as an input feature, to provide more context about the

long term intonation component. The experimental results presented here were based on this

reduced feature set, as little difference was observed between the full set and the reduced set

in terms of system performance. Note that in the DNN case, we added the normalised phrase

component values, then having a 170 dimension input feature vector.

Output Features In the case of SVM, the output consisted of a single value, which could be

positive or negative according to the class of the frame. For the DNNs, in the case of positive

frame only training and in the case where we trained all the features, there were 2 outputs:

amplitude and θ. The training for position prediction had 2 outputs to model the 2 classes
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presence and absence of atom.

The atom parameters were extracted using the weighted correlation based atom decomposi-

tion, with the same settings as for the listening test material generation: two stopping criteria

were used, a maximum of 10 atoms per second and a minimum absolute amplitude of 0.3 for

each atom.

In all the cases, the input features were normalised to have zero-mean and unit-variance. For

the DNNs, output features were normalised to be within the range 0.1–1.0, while the SVM

classes were labelled as 1 or -1, for presence or absence of atom, respectively, and consistently

with the chosen tool.

Models

SVM In the SVM case, the Gaussian radial basis function (RBF) was used as kernel function:

k(xi,xj) = exp(−γ ∣∣xi −xj
∣∣2),γ> 0 (6.1)

where xi and xj are feature vectors in the input space, and γ= 1
2σ2 where σ2 is the variance.

A first grid search was performed on two parameters: the soft margin C , and the free param-

eter of the Gaussian radial basis function γ, within the ranges C ∈ {2−1,1,2,22, ..,216} and γ ∈
{2−10,2−9, ..,23}. A second grid search was conducted on a reduced range to try to refine the pa-

rameters: C ∈ {2048,3072,4096,8192,12288,16384,32768} and γ ∈ {2−5,2−4,2−3,2−2,2−1,1,2}.

Results are presented on the second set. For the experiments , the libsvm library5, implemen-

tation of Fan et al. [2005], was used.

DNN for Modelling All Parameters Using the same framework as for DNN-based speech

synthesis, we investigated various numbers and sizes of layers in this work: between 1 and 5

layers containing between 128 and 2048 units. The sigmoid function was used, with RMSE as

minimisation criterion. DNNs were trained using back propagation. The implementation of

the neural networks was the same as Takaki et al. [2015], and provided by the first author of

this work.

Modelling Position of Atoms In this case, as we were interested in classifying the frames like

in the SVM case, the softmax function was used in the output layer.

5Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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The softmax function is defined as:

f (y j ) = e−y j

K∑
k=1

e−yk

(6.2)

where y j is the input of node i , and the {y1, y2, .., yK } are the inputs of the K nodes of the same

layer. It is commonly used as an output layer in classification tasks. As can be seen from its

formulation, when the input is high its value will be increased with respect to other nodes, the

sum of all of them remaining equal to one. The cross entropy was used as a cost function. In

the context of this work, only a smaller architecture was investigated: the network had two

hidden layers containing 128 units and using sigmoid function, and one output layer using

softmax function.

Modelling Positive Frame Parameters The architecture of the DNNs in this case was the

same as in the modelling all the parameters case. The number of layers was between 1 and 4,

and the number of units in each layer between 128 and 1024. The difference was in the training

and testing sets, which only contained the positive frames. In the results, the architectures

with 1024 units per layer are not presented, as they performed significantly worse than other

systems and sometimes could not be trained successfully. This was probably due to a too

small training set with respect to the number of parameters to be trained in the network. The

case 4 layers with 512 units could not be trained either and is therefore not in the results.

Evaluation Metrics

In order to measure the accuracy of the proposed systems, several aspects are evaluated.

In accordance with the fact that the position of prominent atoms is very important in the

perception of the speech, the first factor that we are interested in is the position of the atoms.

In the case where we try to predict amplitude and position only for positive frames, we want to

evaluate how close these parameters are from the ground truth ones. Finally, we are interested

in the reconstructed F0 contour, which is the final output of the full intonation prediction

system.

Evaluation of Position Prediction using The Gamma Factor One of the peculiarities of the

model is that it consists of a series of discrete events, called “commands”, which are basically

impulses — or spikes — that would then be passed through some filters. As underlined earlier,

the position of the impulses – or position at which the atoms are triggered – is a key element

in the prediction of the intonation contour. To evaluate the position of these atoms, a measure

that takes into account the nature of such time sequences is needed. The gamma factor, or

coincidence measure, is a measure that makes it possible to compare two spike sequences
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and was introduced by Kistler et al. [1997]:

Γ= Nc −2NdΔν

Nd +Nm

2

1−2ν
(6.3)

where Nc is the number of coincident spikes, Nm the number of spikes generated by the model

for this utterance, Nd the number of spikes in the data for this utterance, Δ the time interval to

search for coincident atom (half window size) and ν is the spike generation frequency of the

model (spikes/second generated by the model in average).

This measure should help us to compare the position of the generated commands with the

original ones (extracted from the intonation contour with our decomposition method). The Δ

parameter is the interval in which we estimate that the error is acceptable for localization, and

the information from the listening tests should allow us to set it up accordingly. A value of 1

means that both spike sequences are identical, while a value of 0 means that the model spike

sequence is random, a value lower than 0 then means that the model is performing worse

than random.

Evaluation of Parameters for Positive Frames In the case of positive frames, for the separate

training strategy, we measure the correlation and RMSE of the amplitudes of the atoms. This

is done only on a few frames per sentence, but as the positive frames are in a chronological

order, we measure if the network could learn the temporal evolution of the parameters, even

though the input features are disconnected, as the frames are not actual neighbours.

Evaluation of F0 Curves Finally, in the case where we have all the parameters, i.e. the DNN

predicting all the features, and the DNN predicting only other parameters given the position,

we can reconstruct the F0 contour and compare it with the original. For this, we use standard

measures: root mean square error (RMSE) and correlation. This will give an idea of how the

end-to-end local atom prediction performs.

6.4.2 Results

We start by presenting some raw results from SVM and DNN systems, and follow with some

post-processing of the system outputs. Overall results are then presented and discussed.

Example Results

Figure 6.3 shows a typical output of an SVM system tested on a sentence with standard

frequency of atoms. Figure 6.4 shows the output of the same system for the same sentence,

tested with the “noisy” version, where artificial positive frames are added around the real
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positive frames. The second version of the sentence is more representative of the training data

provided to the system. Figure 6.5 shows the raw output of a DNN for a test sentence (scaled

to the actual test file), with the sequence of amplitudes. It differs from the SVM case as we are

trying to predict amplitudes jointly with the atom position. Figure 6.6 shows an example of

output from the neural network trained with a softmax output layer.

Figure 6.3 – SVM output example. The parameters are C = 215 and γ= 2−5. Dark is synthetic,
light is extracted impulse sequence.

Figure 6.4 – SVM output example on noisy test file. The parameters are C = 215 and γ= 2−5.
Dark is synthetic, light is extracted impulse sequence.

Figure 6.5 – DNN output example. The DNN has 5 layers and 256 units per layer. Dark is
synthetic, light is extracted impulse sequence.
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Figure 6.6 – Neural network with softmax layer output example. The curves are scaled for
displaying purposes. The network had 2 layers of 128 units and a softmax output layer. Dark is
synthetic, light is extracted impulse sequence.

One obvious observation from these plots is that the output in both SVM and DNN systems

should be processed to be compared with the original spike sequences. In the case of the

network with a softmax layer, no processing is needed as the decision is already made binary

by the softmax layer. However, it seems that the network is not able to learn the position of the

impulses, but rather regions were atoms are likely to exist. In this example, the regions where

the function is not activated correspond to silences or phrase breaks. This means that the

network was able to learn simple “probability of producing an atom” relation with the labels.

Overall, this architecture does not seem suited to the precise prediction of atom position.

Need for Output Post-Processing

In the case of SVM, one simple way to transform the output of the system to a format which

enables comparison with the original spike sequence is to put a threshold on the output stream,

yielding a binary classification. Figure 6.7 shows the same sentence as Figure 6.3 and 6.4,

after applying a threshold at 0 on the output, in both cases. For DNN, another approach was

taken: the local maxima which are greater than the median and the local minima which are

lower than the median are turned into impulses, conserving their value at that time step (the

median value is assumed to be 0 in a non normalised vector). In the case where everything

is modelled at once, this is first done on amplitude output values. Then the position of the

impulses in the amplitude sequence is used as impulse positions for the θ values, this way

impulses are aligned in the two output streams. Figure 6.8 shows the same sentence as in

Figure 6.5, post-processed using this strategy.
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Figure 6.7 – Post-processed SVM output amplitude example. Top: original test file, bottom:
test file with noise on position. The parameters are C = 215 and γ = 2−5. Dark curves are
synthetic, light are extracted impulse sequences (with added noise in second case).

Figure 6.8 – Post-processed DNN output amplitude example. The DNN has 5 layers and 256
units per layer. Dark is synthetic, light is extracted impulse sequence.

Gamma Factor Analysis

Figure 6.9 presents the gamma factor means and variances obtained for the SVM systems, with

80 sentences as test data in the first case, and the same 80 sentences augmented with noise

on the position in the second case. The mean performance and variance of each system are

given. The Δ parameter was set to 0.005s, which corresponds to one frame shift, the coincident

spikes can then be either one frame earlier or one frame later than the ground truth ones.

Figure 6.10 presents the mean and variance of the gamma factor obtained for the DNN systems,
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calculated on 1000 test sentences.

Figure 6.9 – Γ factor for SVM systems as a function of γ, for different C values. Top: on real test
file, bottom: same test files with noise on position.

In the SVM case, we see that the results are slightly better when testing on data with noise

on the position, which is expected as this data is more similar to the training set. This is

insufficient to estimate precise positions. SVMs seem to be able to learn regions where atom

commands are likely to fire, however the precision on the atom positions is not good enough.

Overall, the inter-system variance is very small and located around chance level, with an

average performance between Γ=−0.18 and Γ= 0.04 in the clean case. When testing on noisy

data, the values span between Γ=−0.36 and Γ= 0.46. On clean data, the best performance is

obtained with the system for γ= 2−5 and C = 3072, with an average of Γ= 0.04. Consistently,

the same system gives the best results with noisy data with an average of Γ= 0.46. However

this performance is not significantly different from other systems. Furthermore, considering
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Figure 6.10 – Γ factor for DNN systems as a function of the number of units per layer, for
different number of layers.

the shape of the data, the use of gamma factor for evaluation may not be relevant in that case.

For the DNN, the results are somehow similar to the SVM case, with a precision which is

very low. The results are between Γ=−0.03 and Γ= 0.02, close to the chance level. The best

performance was obtained with 3 layers of 512 units, but is still very poor (Γ= 0.02). The fact

that the training is done at the sentence level, implying some continuity on the output, shows

not to be suited to the task. In the experiments using a softmax output layer, the gamma

factor was still low with an average of Γ = 0.04. In that case, when looking at the results at

the sentence level, it seems that for most sentences, the number of coincident spikes was

equal to the number of spikes in the data, but the number of spikes produced by the model

and its frequency were very high, as the output was activated continuously in large regions,

as illustrated in Figure 6.6. One of the reason for this continuous activation is the continuity

in the labels: the difference in the input features varies smoothly in time. For instance, the

features related to the position of the frame in the various contexts (phone, word, sentence),

are simply incremented of a time step between two consecutive frames.

The results obtained with respect to the coincidence measure showed the inadequacy of both

approaches to predict accurately atom positions from mere linguistic features. To assess the

overall performance in the prediction of the local component contours, we investigate the

parameters generated when the network is trained with only amplitude and θ parameters,

and the reconstruction of F0 given these system output parameters.

Analysis of Generated Parameters and Reconstructed F0

A subset of 100 sentences was randomly selected among the 1000 sentences, to calculate the

reconstruction of the full F0 curve using output amplitude and θ generated by the neural

networks.
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Table 6.1 – Average RMSE between generated and extracted parameters. Left table: amplitude;
right table: θ.

Layers
Units

128 256 512

1 0.03 0.03 0.03
2 0.03 0.15 0.71
3 0.03 0.03 0.03
4 0.03 0.03 —

Layers
Units

128 256 512

1 0.30 0.30 0.30
2 0.29 0.30 0.30
3 0.29 0.29 0.30
4 0.30 0.30 —

Table 6.2 – Average correlation between generated and extracted parameters. Left table:
amplitude; right table: θ.

Layers
Units

128 256 512

1 0.50 0.51 0.52
2 0.56 0.07 0.08
3 0.51 0.55 0.53
4 0.50 0.51 —

Layers
Units

128 256 512

1 0.27 0.29 0.27
2 0.30 0.28 0.26
3 0.30 0.30 0.26
4 0.29 0.27 —

First, a rescaling of the data was done, at a global level: the minimum and maximum values of

the features had been lost, because of the normalisation (between 0 and 1) before training.

Therefore, the data had to be rescaled.

Before reconstruction, we analyse how close the generated parameters are to the parameters

extracted from the natural speech. Table 6.1 gives the RMSE between the extracted parameters

and the parameters generated by the multiple systems trained only on positive frames, while

Table 6.2 gives the correlation. There is no significant difference in the performance of the

various architectures, except for the systems using 2 layers and more than 128 units per layer

which perform worse. The RMSE is very high for the θ parameter, and although it may seem

low for amplitudes, considering that the measured values were normalised between 0 and

1, they are also higher than acceptable, because the range of amplitudes is very high and

many amplitudes which are relatively small are compressed in the normalised version. The

correlation coefficients, which measure how similarly parameters evolve from one atom to

another, are also low.

The reconstruction step given the rescaled generated parameters is trivial: from the position,

amplitude and θ of each atom, the atom curve can be reconstructed, then the final contour is

simply the sum of all local atoms with the phrase component in the log domain.

Table 6.3 gives the median RMSE and correlation between the reconstructed curve and the F0

extracted from natural speech. Both RMSE and correlation were calculated only for voiced

frames, according to the voicing obtained from the TEMPO pitch tracker of Kawahara et al.

[1999]. The variance in the results for each system is very large, and the mean performances

are affected by large errors for some sentences. The values provided in these tables are to be
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Table 6.3 – Median measures between reconstructed and extracted F0. Left: RMSE (Hz); right:
correlation

Layers
Units

128 256 512

1 42.6 43.8 42.6
2 42.2 65.1 7520
3 40.6 42.6 42.6
4 43.1 41.2 —

Layers
Units

128 256 512

1 0.918 0.915 0.918
2 0.918 0.813 0.228
3 0.922 0.914 0.921
4 0.915 0.921 —

compared with the RMSE and correlation obtained between the phrase component alone

and extracted F0, and with the same measures between the reconstructed F0 using extracted

atoms and the extracted contour. The median modelling accuracy of the phrase component

alone reaches an RMSE of 36.5Hz and a correlation of 0.933. The reconstruction given atoms

gives an RMSE of 6.6Hz and a correlation of 0.998. From these numbers, the results are in

line with the results on generated parameter errors, and none of the systems seem able to

generate coherent parameters. The result is then that the phrase component, which gives a

first approximation of the contour deteriorates when adding generated atoms. This means

that the statistical modelling techniques employed in this work are not able to predict atoms

in this scenario.

General Discussion

From all the results presented before, the main observations are that both SVM and DNN with

a softmax layer seem able to learn that certain segments of the signal have a higher probability

to feature atoms than others. In the examples shown in Figure 6.6 and 6.7, we can see some

activated regions around actual impulses. In the case of the DNN, the regions where the

output is 0 are related to silences. It is unlikely to have atoms in the silent regions, from the

way they are extracted (based on a probability of voicing and energy weight, see Chapter 5).

Consequently, from the silence labels, the model seems able to learn that there is a very low

probability of having atoms.

Although the proposed methods are able, in most cases, to find regions with high probability

of having atoms, they both fail in the precise localisation of these atoms. A few reasons could

be the cause of this difficulty: no weight related to the importance of the atom (e.g. amplitude)

is given as an information for the system to know which samples are more important than

others. Consequently, an atom with an amplitude of 0.05 will have the same effect as an

atom with an amplitude of 3 in the training, although these atoms do not have the same

role in the modelling of the intonation contour. Another factor is the absence of information

regarding other atoms: considering the whole F0 contour, it is obvious that atoms are not

totally independent from each other. Therefore, some information about other atoms should

be provided to the model in order to predict atoms at a specific frame.
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In the case where the training was aimed at synthesising parameters only for positive frames,

the architectures investigated were not able to learn from the data. This may be partly due

to the construction of the networks, which rely on continuity in the input and output, and is

absent in this scenario. The task of predicting discrete events may not be realisable using this

type of network. Even though the parameters generated are different from the ones extracted

from the signal, the final reconstruction of the F0 contour could still be somehow natural.

Analyses showed that it was not the case, and that the synthetic atoms tended to cause the

base component to deteriorate rather than improve. Informal listening tests confirmed that

the resulting output was not suited to speech synthesis.

6.5 Conclusion

In this chapter, we investigated the use of the generalised command-response model proposed

earlier for generating intonation, in the context of speech synthesis. A listening test showed

that the position of high magnitude atoms was crucial to perceive the speech as identical to

the original samples. This implies that the most prominent atoms are located in key regions

of the intonation contour and that disturbing their position, even from a very small shift, is

perceptible by native listeners.

Several standard statistical methods were explored to try to predict the parameters of the

model, in the TTS framework. SVM and DNN proved able to learn regions of the sentence

where atoms were likely to exist, but failed to predict accurately the position of these atoms.

Several reason may explain this inability, including the dependency between atoms which is

not modelled and their relative importance, which is also ignored and therefore gives an equal

weight to all atoms in training.

In trying to divide the task of predicting position and other parameters, DNNs were trained

using only frames which contained atoms. The architectures investigated did not allow

synthesis of acceptable contours, and the synthesised parameters showed low correlation and

large error with the extracted ones. The fact that the parameters correspond to discrete event

description and that the neural networks model some continuity in this framework may be

partly responsible for the low performance observed.

The use of our GCR model to model of all the local intonation components for synthesis was

revealed to be a challenging task, but there are several possible alternatives that could be

investigated for intonation event position prediction. Modifying the cost function in the DNN

training to optimise the gamma factor at the sentence level could be interesting. Another idea

could be to adapt the method proposed by Kameoka et al. [2015] to the GCR model, removing

some constraints on the components and their non negativity. Another approach, inspired by

the way we model intonation, would be to investigate spiking neuron-based methods. Finally,

the way the output of the systems was post-processed might not be optimal, and a precise

location of maxima could reduce the imprecision of the models.
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Chapter 6. Intonation Synthesis

Although these lines of research seem appropriate to aim the synthesis of intonation, this

thesis further exploits some properties of the model in a different way. By construction and its

parameterisation, the model lends itself to studying specific prosodic events. In this direction,

in the next chapter, we focus on the analysis of events in the intonation related to prominence.
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7 Intonation-based Emphasis Transfer

As was underlined in the introduction (Chapter 1), speech-to-speech translation systems

are a reality, at least for some of the most resource-rich languages. However, at this stage,

the synthesis part of such systems outputs a generic synthetic voice, which can fast turn

monotonous in use, but also neglect the transmission of the implicit meaning of a sentence.

In this chapter, we propose to use the GCR model described in Chapter 5 for the synthesis of

emphasis. As a complementary task to speech synthesis and intonation modelling, emphasis

can add value to synthetic speech, especially in the S2ST context as it would allow translating

more than just textual information.

After an analysis of model parameters in the neutral and emphasised contexts, we propose two

approaches exploiting atoms to produce emphasis in synthetic speech. The first one simply

consists of the transfer of local components from an emphasised word to a neutral word with

the same context. The second approach consists of training predictors to generate atoms in

the desired linguistic context, for an emphasised word.

The contributions presented in this chapter contain some unpublished work, and some

extension of the work published in the following papers:

– Pierre-Edouard Honnet and Philip N. Garner. Emphasis recreation for TTS using into-

nation atoms. In Proceedings of the 9th ISCA Speech Synthesis Workshop, pages 14–20,

Sunnyvale, CA, USA, September 2016a

– Pierre-Edouard Honnet and Philip N. Garner. Intonation atom-based emphasis transfer.

Idiap-RR Idiap-RR-14-2016, Idiap, 5 2016b

This work is closely related to some collaborative work on emphasis detection published in

the two following papers:

– Milos Cernak and Pierre-Edouard Honnet. An empirical model of emphatic word
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detection. In Proceedings of Interspeech, pages 573–577, Dresden, Germany, September

2015

– Milos Cernak, Afsaneh Asaei, Pierre-Edouard Honnet, Philip N. Garner, and Hervé

Bourlard. Sound pattern matching for automatic prosodic event detection. In Proceed-

ings of Interspeech, pages 170–174, September 2016

7.1 Background

7.1.1 Prosody in S2ST

To improve S2ST systems, speech researchers have tried to personalise them, using for in-

stance cross-lingual speaker adaptation, which is the adaptation of TTS models in the target

language (L2), given some data in a different language, the source language (L1). This is

typically achieved by mapping input and output language TTS models to evaluate transforms

at the model or at the feature level, e.g. the work of Liang and Dines [2011]; Wu et al. [2009];

Yoshimura et al. [2013].

On prosodic aspects, modelling around the S2ST context has gained interest in the last decade,

with first approaches proposed by Agüero et al. [2005]; Agüero et al. [2006]. This work consisted

of the exploitation of information in the intonation of input speech in the source language to

improve the naturalness of the synthetic speech in the output language. By using a modified

version of the CR model of Fujisaki and Nagashima [1969] to characterise the intonation of the

source speech, this approach relies on a mapping of accent groups between languages. This

method allows feeding source language information to annotate text in the target language

in the S2ST framework, if a parallel corpus is provided to train the annotation model, and

the languages are close: the clustering algorithm works under the assumption that some

pitch movements in one language have a correspondence with pitch movements in the other

language.

7.1.2 Emphasis in S2ST

In this chapter, we consider emphasis for an isolated word or group of words, from a synthesis

point of view, meaning that we are interested in generating some target (group of) word(s) in

a more prominent way than the rest of the utterance. Emphasis is introduced in Chapter 2,

Section 2.3 in the context of automatic speech processing, including automatic emphasis

detection, synthesis and emphasis transfer in S2ST.

In an S2ST scenario, one can easily understand that the users may be interested in translating

not only their speech, but also their intentions or underlying meaning, through prominence.

A parallel can be made with instant messaging, or social networks, in which users are inserting

“smileys”, “emoticons” or “emojis” to make sure that the other users understand the intentions

of the message. Tsiartas et al. [2013] conducted a large-scale human evaluation on the per-
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ception of S2ST quality and showed that the perceived quality of S2ST was correlated with

cross-lingual prosodic emphatic transfer. In other words, emphasising the correct words in

the output language in TTS based on the emphasised words in the input language helps in the

S2ST task. It is straightforward to imagine a system that can retrieve emphasis, tag the words

that were emphasised in the translation, and synthesise speech taking this prominence into

account, like in the example provided in Figure 7.1.

Speech

in L1
ASR

Text

in L1

Machine

Translation Text

in L2

TTS
Speech

in L2

Emphasis

detection
Emphasis

information

Emphasis

information

Figure 7.1 – Integrating emphasis in speech-to-speech translation.

In such a setting, emphasis detection can be achieved by any method, purely based on signal

processing, such as the work of Kennedy and Ellis [2003], Arons [1994], Heldner et al. [1999]

or Cernak and Honnet [2015]; or using data-driven models which focus on the difference

between neutral speech and emphasised speech, like the work of Liang [2016] or Cernak et al.

[2016]. In this chapter, we are concerned with the part in the grey dashed frame: emphasis

synthesis.

The task of emphasis synthesis has been approached in unit-selection-based TTS by Strom

et al. [2007] using recordings of emphasised speech covering the phonetic space of diphones.

Another data-driven approach proposed by Yu et al. [2010] exploits decision trees to distinguish

emphasis from neutral speech in the training of HMM-based TTS systems. Other methods

applying post-processing for instance to the intonation were proposed by Hirose et al. [2012];

Ochi et al. [2009].

Alternative approaches trying to directly exploit the input data to reproduce emphasis in

the output language have been proposed by Anumanchipalli et al. [2012], with a mapping

between input and output intonational feature vectors; or more recently, Do et al. [2015a] who

proposed a more complete and integrated framework with the use of linear regression HSMMs

to preserve word-level emphasis in S2ST. The addition of pause “transfer” was proposed later

[Do et al., 2015b], and the recent trends in speech processing made previous methods evolve

toward deep learning [Do et al., 2016a]. Pause transfer was investigated earlier in this context

by Agüero et al. [2008].
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7.2 Emphasis Analysis using the GCR Model

To assess the relevance of the parameters extracted from our model, we examined the mutual

information shared between the parameters and some linguistic features. Our hypothesis is

that the statistics on parameters will differ between the neutral and emphasised case.

7.2.1 Data and Model Settings

Analyses are conducted on several datasets: a subset of the SIWIS database described in the

previous chapter, in Section 3.2, which contains sentences with emphasised words, and their

neutral version. The emphasised part of the French female speaker database, described in

the same chapter, in Section 3.3, was used in the same fashion. A subset of the Blizzard 2011

database [Wilhelms-Tricarico et al., 2011] was used to evaluate mutual information between

parameters and accent and stress. Finally, the part of the Blizzard 2008 [Karaiskos et al., 2008]

database containing emphasis was also used in the analyses.

The analyses consist of finding the relevance of our model parameters with respect to linguistic

cues. For this reason, in the remainder of the chapter, atom parameters are the features em-

ployed. They were extracted using the weighted correlation algorithm described in Chapter 5,

with the following parameters fixed:

• the order of the components was fixed to k = 6, following results obtained in Chapter 5.

• the range of possible θ for the local components was 0.01–0.05.

• the two stopping criteria used were: a weighted correlation threshold of 0.99 in the

speech segment, i.e. excluding the starting and ending silences, and a maximum of 10

atoms per second.

7.2.2 Atom Frequency

For this first analysis, we selected three speakers numbered 26, 28 and 29 from the SIWIS

database. For speaker 29 (female), we used both English and French data, for speaker 26 (male)

English data and for speaker 28 (male) French data. These speakers were selected because

the vocoder used — the STRAIGHT vocoder [Kawahara et al., 1999] — worked well for them.

For each language and each speaker, we used 25 neutral sentences and the 25 same sentences

with emphasis on a word. Thus, 100 neutral sentences were compared with their emphatic

versions.

We first look at the number of atoms needed to model the local behaviour of F0 in the empha-

sised word. We do not investigate duration modifications in this work. However, to compare

the number of commands in the neutral and focused case, we measure the duration of the

word under investigation for each sentence in table 7.1. The average difference between the
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7.2. Emphasis Analysis using the GCR Model

Table 7.1 – Number of atoms and additional duration (in sec.) needed on average for target
word per speaker.

Speaker Neutral Emphasised Difference (norm) Duration difference (sec.)
29 (EN) 5.28 7.48 2.20 (-1.98) 0.28
26 (EN) 5.36 8.80 2.03 (2.58) 0.20
29 (FR) 5.08 7.96 2.88 (-2.56) 0.33
28 (FR) 7.20 10.56 3.36 (-1.05) 0.27
ALL 5.73 8.70 2.97 (-0.75) 0.27

duration of the emphasised word and the neutral word is calculated and given with the average

number of atoms and their difference (emphasised - neutral) in the two contexts for each

speaker. The difference between the number of atoms required for emphasised and neutral

cases is also given when normalised over time inside brackets in the 4th column.

As we might expect, more atoms are needed to model the target word in the emphasised case.

We might think that one of the reasons for this is the fact that the words have a longer duration,

but looking at the difference in number of atoms normalised over the duration of the words

(inside brackets in the 4th column), we can see that in average, there are fewer atoms per

second in the emphasised version of the word. This is interesting as it shows that the way the

atoms are distributed in the emphatic word is not only related to the duration of the word, as

compared to the neutral case.

By comparison, the regions outside the target word typically have 30 atoms, and require just

3 more on average in the emphatic case. The ratio of numbers of atoms between emphatic

and neutral is 1.1 ± 0.04 on average, which can be explained by a slightly slower speaking rate,

used for increasing the emphasis on the target word (for duration, the ratio is 1.19 ± 0.02).

To evaluate further the relation between parameters and linguistics, we analyse mutual infor-

mation in the following section.

7.2.3 Mutual Information

By looking at mutual information, we expect to find some clues on how atom parameters relate

with linguistic features. We first measure the mutual information between atom parameters

(amplitude, position and θ) and classical contextual features, and then look at the differences

between neutral and emphatic data. Our hypothesis is that when a word is emphasised, the

model will extract different types of atoms, then we should observe some difference in mutual

information between emphasis and atom parameters. If we denote the labels as L and the

model features as Fi , the mutual information was calculated the following way:

I (L,Fi ) =∑
l

∑
f ∈Fi

p(l , f ) log2

(
p(l , f )

p(l )p( f )

)
(7.1)
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with p(l , f ) the joint probability of L and Fi , and p(l ) and p( f ) their respective marginal

probabilities. These probabilities are maximum likelihood estimates based on occurrences in

the data. The model parameters were quantised in different ways for the different databases,

according to their distributions. For the relative position of the atom in the word, or in the

syllable, a simple linear quantisation was done between 0 and 10 for all the datasets. For θ

values, the original values were in the range 0.01–0.05, and were simply scaled to be in the

range 1–9, for all the datasets. Amplitudes were quantised differently as different distributions

were found for the different datasets. Appendix A gives the parameter distributions for the

French database, on which the rescaling was based. For the SIWIS data, amplitude was

rescaled between 0 and 10; for the Roger data, it was rescaled in the range -4–5, and for the

French data, between -10 and 10. The labels l are binary. The results presented are normalised

by dividing the mutual information by the entropy of the labels, defined as:

H(L) =−∑
l

p(l ) log2(p(l )) (7.2)

Table 7.2 shows normalised mutual information in the case of the single English female speaker

of the Blizzard 2011 database, for about 300 neutral read sentences. The labels are syllable

level labels.

Table 7.2 – Normalised mutual information between atoms and linguistic features for neutral
speech, at the syllable level.

Pos Amp θ Amp & θ Pos & Amp Pos & θ Pos & Amp & θ

Accent 11.1 11.1 8.7 13 23.3 22.6 23.3
Stress 8.1 8.2 6.8 9.5 22.3 21.8 22.2
Acc. & Stress 13.9 13.4 11 16 27.1 26.6 27.3
Acc. or Stress 7.7 7.9 6.2 9.1 23.8 23.2 23.7

The results indicate that mutual information between amplitude and accent and between

relative position in the syllable and accent are the highest for single feature and single context.

As can be expected, the syllables which are both accented and stressed have higher mutual

information with atom parameters. We also notice that using all atom parameters (amplitude,

position and θ) does not bring more information than using position and amplitude only.

Given these initial observations, we looked at the mutual information between amplitude,

position and number of atoms per syllable, and accent, stress and emphasis. In that case,

the data consisted of about 300 sentences from several English speakers, in two scenarios:

neutral sentence and sentence with one emphasised word or group of words. This data comes

from the multilingual SIWIS database. To compare both cases, the same “target words” were

used: the word emphasised in the emphasised case was selected as target word, and in the

neutral case it was also tagged as emphasised, to see its effect on the parameters. The results

are presented in table 7.3.
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Table 7.3 – Normalised mutual information between atoms and linguistic features [neutral /
emphasised].

Position Amplitude Natoms in Syllable
Neut Emph Neut Emph Neut Emph

Accent 14.1 14.9 12.4 13.0 8.4 8.8
Stress 11.4 11.5 10.3 10.4 7.3 7.8
Emphasis 24.0 20.6 20.8 17.4 11.9 18.9
Acc. & Stress 18.0 18.8 15.6 16.0 10.3 10.8
Emph. & Stress 48.3 35.2 40.5 29.8 26.6 44.4
Emph. & Acc. 60.4 55.8 53.8 47.5 38.2 56.1

In this table, we can see that the highest difference in mutual information between emphasised

and neutral data is observable between emphasis and the number of atoms in the syllable.

This contradicts our hypothesis that the atoms in an emphasised word are different from the

ones in a neutral word. One possible explanation for this finding is that the F0 curve presents

more variations in the region of emphasised word, resulting in a need for more atoms to fit

the curve. To verify further the difference between the “principal” atoms in each word, we

looked at the same measures as in table 7.3, but with a constraint on the number of atoms:

we selected only the first n atoms — ranked by amplitude — in the emphasised word, where

n is the number of atoms in the same target word in the neutral case. In the cases where the

neutral version had more atoms, the number of atoms kept was restricted in the same way, to

always have the same number of atoms. Table 7.4 gives the results for mutual information

with the same number of atoms.

Table 7.4 – Normalised mutual information between atom parameters and linguistic features
[neutral / emphasised] using the same number of atoms.

Position Amplitude θ

Neut Emph Neut Emph Neut Emph
Accent 14.3 14.8 12.5 13 9.9 10.6
Stress 11.3 11.8 10.2 10.3 8.5 8.9
Emphasis 28.5 29.8 24.6 25.2 21.7 23.7
Acc. & Stress 18.3 18.9 15.7 16.4 12.1 12.9
Emph. & Stress 57.8 60 48 51.9 41.7 46.9
Emph. & Acc. 74.9 78.1 65.6 69.9 60 62.8

We can see that when the number of atoms is the same for the neutral and emphasised case,

mutual information between both amplitude and position and accent, stress and emphasis is

higher in the emphasised case. This is particularly true for emphasis. Then, in addition to the

fact that emphasis manifests itself with more atoms, emphasis seems to be expressed through

different patterns for the components: different positions, amplitudes and θ. It validates our

intuition, that when a word is emphasised, the components resulting from the decomposition

are distinguishable from the neutral case.
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Table 7.5 gives the same results as table 7.4, for Roger data, on a bigger number of sentences, but

with fewer different contexts for the emphasised words. In this case, there is no neutral version

of the sentences, and there are only 3 different sentence schemes, as described in Chapter 2,

Section 2.3. We also investigate the weighted correlation obtained during decomposition,

which is directly linked to amplitude, but carries additional information about voicing and

energy. More details on the weighted correlation are given in Chapter 5, Section 5.3.3.

Table 7.5 – Normalised mutual information between emphasis and atom parameters on Roger
data.

Position Amplitude θ wcorr
Emphasis 11.0 9.3 7.6 10.1
Accent 11.6 9.0 8.3 10.1
Stress 16.3 10.8 9.6 11.5

All the features seem to behave in a similar fashion, and the results indicate that in this

case, stress is the feature which shares most information with atom parameters. It can be

explained by the fact that the sentences are short, and the number of emphasised words is

not so unbalanced compared to the number of neutral words. In that case, we can expect that

stress is more important. The results can also be explained by the expressivity of the data. The

speaker delivered rather expressive speech, and would have naturally emphasised stressed

syllables in all words more than an average speaker.

We also performed similar analyses on the French female speaker database, but the only

contextual label investigated was the emphasis of the word. French being a language lacking

lexical stress, it is not straightforward to obtain reliable annotations for stress and accent from

text analysis. Table 7.6 provides normalised mutual information between the emphasis binary

label and atom parameters, for the sentences containing emphasis and their neutral versions,

so a set of 1575 sentences in each case. The labels and relative positions were calculated at the

word level in this case.

Table 7.6 – Normalised mutual information between emphasis and atom parameters for
French.

Position Amplitude θ wcorr
Neut Emph Neut Emph Neut Emph Neut Emph

Emphasis 56.7 57.3 98.4 101.1 23.9 27.4 27.4 34.7

As was done for the results presented in table 7.4, we present analyses with restricted number

of atoms, to compare the same numbers. The results present the same behaviour as for the

English data analyses. In this case, θ seems to present larger differences than amplitude

and relative position, hinting larger atoms rather than higher amplitude ones. The weighted

correlation seems to be especially important to distinguish emphasis from neutral words,

which is logical as emphasis would also manifest itself in energy.

From all these analyses, the main conclusion that can be drawn is that the atoms extracted in
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emphasised words have more pronounced features than in neutral words. However, it is not

obvious how intonation is affected by the presence of emphasis on a particular word.

Preliminary observations revealed that using the GCR approach to model the F0, and simply

modifying the amplitude or θ of the atoms, i.e transforming them into bigger atoms, is not

resulting in emphasis. The next sections present two approaches to simulate emphasis in

speech, based on atom transfer and on atom prediction.

7.3 Atom Transfer

As discussed earlier (Chapter 6, Section 6.5), our intonation model lends itself to emphasis

transfer in the sense that it has local components shaping the F0 contour, and the combination

of these components to shape word contours indicates specific prosodic events, such as

emphasis. We showed that the model parameters share mutual information with the emphasis

label, where the emphasis label is an annotation of known word emphasis. In the same line of

research, it was recently demonstrated by Delić et al. [2016] that the model atoms correlate

with ToBI markers [Silverman et al., 1992]. Another use of the model was found in the detection

of emphasis or stress [Szaszák et al., 2016]. Based on these results, we believe that atoms can

convey emphasis. Our hypothesis is then that using atoms from an emphasised word can

elicit emphasis in a neutral word with a similar context.

7.3.1 Transfer of Prominent Atoms

In a first attempt at generating emphasis in neutral speech, we investigate the simple addition

of some local components from an emphasised word to a neutral version of the same word in

the same context. Figure 7.2 gives an overview of the approach.

The idea here is to identify the most prominent local atoms in the emphasised word, and as

a proof of concept to transfer them to a neutral version of the same sentence. Doing so on

natural speech will allow evaluating the capabilities of prominent atoms in different versions

of the same word in the same context.

The procedure is then the following:

1. The atoms are first extracted in both scenarios (neutral / emphasised).

2. Given the position of the words in the sentence through automatic label alignement, and

the knowledge of which word is emphasised, the atoms in the target word are identified.

3. Only the most prominent atoms are selected.

4. As the two versions of the sentence have different durations, for the target word and the

other words, we calculate the relative position of the atoms in each syllable.
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Transfer local
components to target

Speech with
artificial emphasis

Phrase & local
components

Intonation
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Intonation
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Figure 7.2 – Emphasis transfer in a neutral sentence. POV stands for probability of voicing.
Inputs are grey, features light red, output is blue.

5. Selected atoms are transferred to the corresponding syllable in the neutral sentence

target word.

6. The F0 contour is reconstructed

7. The speech is resynthesised.

To show that most prominent atoms are important for emphasis perception, we select only

the most prominent atoms — atoms with the highest absolute amplitude — and transfer them

to the approximate position in the neutral sentence. In this particular context, it is easy to find

the corresponding position, because the words are the same and thus have the same number

of syllables at the same position; moreover we can assume that their relative durations are

extended in a similar fashion.

7.3.2 Evaluation

Data

Our goal is to investigate local emphasis on some words in full sentences. For that, we use a

part of the multilingual SIWIS database, described in Chapter 3 Section 3.2. The experiments

were conducted on the parallel set of sentences with emphasis: each sentence was uttered

once in a neutral way, and once with specific focus on a predefined word. The speakers were

told which word to emphasise before reading the focused version.

The data used for the emphasis transfer experiment is a subset of the dataset described above:
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speaker 29 was selected, and the evalution was carried out only on the English sentences, to

ease subjective listening tests.

Experimental Setup

Initial experiments showed that adding atoms from the syllable which directly precedes the

emphasised word did not bring perceivable difference, therefore only the main atoms inside

the target word were transferred. It was found empirically that transferring more than 3

components did not improve the perception of emphasis, thus only 3 atoms — or fewer in the

case where there were fewer atoms in the word — were given to the neutral sentence. It is also

in line with the average additional number of atoms needed to model the target word found

in Section 7.2.2. In particular, for the 20 sentences selected for this speaker, we found that

2.4 additional atoms were needed on average in the emphatic case. The procedure described

earlier is used to extract, select and transfer atoms to the neutral word. The STRAIGHT vocoder

[Kawahara et al., 1999] was used to extract spectral parameters and for resynthesis.

Listening Tests

A subjective listening test was conducted to evaluate the validity of our approach. The listeners

were asked to listen to the samples in a random order and identify which word in the sentence

sounded the most emphasised, and for this word give a level of emphasis with a 3-level

choice: clear, moderate or slight emphasis. Each subject had to listen to 3 versions of 20

sentences, S1–S20, for a total of 60 audio samples. One version consisted of the original

neutral sentence, another one the original sentence with emphasis, and the last one the

neutral sentence with artificial emphasis. An example for each level of emphasis was given

in the instructions, to understand how to rate the degree of emphasis. The listeners always

had to identify a “most emphasised” word in order to control that emphasis transfer had an

effect compared to the neutral sentences. We expected listeners to rate the neutral sentences

as slightly emphasised, the original emphatic version as clearly or moderately emphasised,

and the artifically emphasised version closer to the emphatic version, as the aim is to increase

the impression of emphasis on the target word.

30 subjects participated in the test, with a high majority of non native fluent English speakers,

most of them being in the age range 26–35.

7.3.3 Results

Figure 7.3 shows an example of transfer for a sentence with the two logF0 contours of the

same sentence in the two different contexts, and the resulting contour (S6 in the results). For

the logF0 curves, the green indicates a high probability of voicing, while the blue indicates a

high probability of being in an unvoiced region. The syllable boundaries are displayed, with

the coloured region being the target word, “somewhat”. In the bottom panel, we can see the
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Figure 7.3 – Example of logF0 contour and local commands for the sentence “The matter
seems to be somewhat confused.”. Top panel: sentence with emphasis on the word “somewhat”.
Middle: neutral sentence. Bottom: neutral sentence with transferred emphasis on the word
“somewhat”.

original neutral contour in dashed grey, while the modified curve presents an increased F0.

The atom commands are displayed in black, and we can see that 3 components were added to

the neutral sentence.

Figure 7.4 shows the number of people identifying the target word as most emphasised for

each sentence. For each triplet of bars, the left-most one corresponds to the neutral version

of the sentence, the middle one is the neutral with emphasis transfer and the right-most the

original emphasised version. The height of the full bars corresponds to the number of votes for

the target word independently of the strength of the emphasis. The different colours account

for the level of emphasis that the voters chose when they chose the target word. The darkest

(bottom) colour stands for clear emphasis, medium for moderate emphasis and the lightest

one (top) for slight emphasis.

We observe 2 main trends in the results:

• In 8 cases — S1, S3, S4, S6, S7, S17, S20 — the number of people perceiving the target
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Figure 7.4 – Atom transfer subjective listening test results. Red = clear, orange = moderate,
yellow = slight emphasis. A missing bar indicates 0 vote for the target word.

word as emphasised increased. For 3 of these cases, a majority of people voted for the

target word when intonation was modified. For the other 5 cases, the perception of

emphasis increased significantly when modifying the intonation, but did not reach

the majority of votes. These 8 cases showed that the emphasis is consistently shifted

towards the target word, with a higher level of emphasis.

• In 11 other cases out of the 20, the majority of the listeners voted for the target word in

the neutral case, even though the speaker did not have any particular instructions. For 4

of these cases, adding atoms decreased the number of votes for the target word, however

in all these cases, the number of subjects choosing a clear emphasis increased, and the

number of moderate emphasis also increased. In 2 cases the total number stayed the

same, but there was an increase in the number of clear, and in moderate emphasis. In

the 5 other cases, the total number always increased and the level of emphasis was also

rated higher. These 11 cases showed that when the emphasis is already perceived on the

target word, its strength is increased when adding emphasis atoms.

• In the last case (S5), adding local components from the emphasised word intonation

was not enough to make the perception of emphasis change for the listeners, the target

word being a non content word. Most of the listeners kept the main content word as

most emphasised.

Discussion

The global trend in the results confirms the hypothesis: transferring local components from

an emphasised word to a neutral sentence increases the impression of emphasis in the target

word in most of the cases. We can also see that the way emphasis is perceived — in other words

how strong the emphasis is — is affected by adding local positive or negative components.

The modification of the resulting intonation contour increases the strength of the emphasis.
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In some cases, emphasis was not perceived on the target word mainly because of the reset at

the beginning of the sentence — sentences start with a raising intonation before gradually

decreasing. It may have been confusing for the listeners — and this was feedback from some

of the listeners — to choose between a slightly emphasised word in the middle of an utterance

and the natural higher pitch that occurs at the start of speech.

We cannot expect the intonation alone to help the listeners to perfectly perceive the emphasis

on the target words, however the results indicate that it consistently increases the perception

of the emphasis and its strength. The initial hypothesis, that adding atoms extracted in an

emphasised word in natural speech to a neutral version of the same word can elicit emphasis

perception, is then demonstrated to some extent. In the next section we go on to try modelling

the emphasis in different contexts, enabling the synthesis of emphasis on a target word without

having an emphasised version of the same word.

7.4 Atom Generation for Word-level Emphasis

In this section, we investigate the use of clustering methods to predict the local intonation

components of emphasised words. It fits in the emphasis synthesis part of the diagram in

Figure 7.1, in the grey dashed frame. Using emphasised word F0 decomposition in context, we

attempt to predict the model parameters for an emphasised word in some specific context.

The frame-wise prediction of the model parameters attempts in Chapter 6 were revealed

to be challenging. To understand it better, we modify the parameterisation of the model

characteristics and try to model jointly word-level components. Our hypothesis is that the

local model components can be used as word-level intonation to synthesise emphasised

words. We restrict ourselves to the intra-lingual case, but due to the language independence

of the intonation model used, it seems reasonable to assume that this method can work for

any given language.

7.4.1 Atom Generation using Random Forests

The general idea of the proposed approach is illustrated in Figure 7.5. Having an external

model which takes linguistic features as input allows generating emphasis related parameters

in the same context as for traditional speech synthesis.

Regression Trees

Decision trees were briefly introduced in Chapter 2, in the context of state clustering for HMM-

based speech synthesis. A decision tree is a clustering method which splits a training dataset

based on some criterion at each node of the tree except the leaf nodes. In a classification

decision tree, the leaf nodes contain class values. In the case of a regression tree, the value is

the mean of the training samples observed in the branch. If an unseen context is given, the
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Linguistic features

Speech with
artificial emphasis

Vocoder

Neutral
Features

HMM-based
TTS system

Emphasised word
atom model

Emphasised
word atoms

Figure 7.5 – Emphasis synthesis using external atom generation. Input is grey, models green,
features light red, output is blue.

output will be the average of the leaf nodes which are reachable for the most similar context.

Random Forests

Random forests, introduced by Breiman [2001], are a combination of tree predictors. The

idea behind random forests is to train multiple decision trees on a subset of the training data,

to avoid overfitting of single trees to the training set. These subsets are generally created by

randomly selecting data from the full training set. At test time, the output is the mode of the

classes of the individual trees. For these reasons, random forests are known to work better than

single trees. A random forest can be used for regression as well, on the exact same principle. In

this case, at test time, the mean of the trees is the output. Because of their demonstrated better

modelling capabilities, random forests were investigated for prediction of atom parameters

given word-level linguistic features.

Predicting Word-level Parameters In order to exploit random forests, we propose the fol-

lowing strategy: contextual factors are used to cluster atom parameters, where the parameters

are described in a single output vector. In each emphasised word, some preliminary observa-

tions to characterise the system showed that most variations were captured using 5 or fewer

atoms per word. This leads to a heuristic but reasonable upper limit on the number used in

the experiments. It results in an output vector of dimension 15. In the cases where the number
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of atoms is lower than 5, the vector is filled with zeros to meet the desired size. The first 5

extracted atoms — the 5 atoms with the highest weighted correlation — are selected, and then

ordered by position, to keep a consistency among all emphasised words.

Two strategies were investigated to integrate the generated atoms in synthetic speech:

• Replacing local atoms in the target word by the generated atoms. This is done by

extracting model components on the synthetic F0 contour, identifying the atoms inside

the target word, removing them and adding the generated components to the contour.

• Adding generated atoms to the synthetic F0. In a similar fashion to the approach

described in Section 7.3, the output of the system was simply added to the F0 contour in

the target word.

7.4.2 Evaluation

Data

We used two English datasets containing emphasis in these experiments: a subset of the

SIWIS emphasis data, and the emphasis data from the Blizzard challenge 2008 database, both

described earlier. Additionally, a TTS system trained on the WSJ corpus was used.

Training / Testing Sets 100 neutral sentences from speaker 29 of the SIWIS database were

used for adaptation of our HMM-based TTS average voice. Then a ten-fold cross-validation

strategy was used for emphasis experiments: 5 combinations of 20 adaptation sentences and

5 test sentences were tested, to be able to synthesise all the test files without having them in

training / adaptation sets. The same strategy was adopted for the training of random forests.

For the experiments on Roger data, a single speaker HMM-based TTS system was trained

on about 4400 sentences which did not contain specific emphasis. We used a total of 1671

sentences with one or two emphasised words (2211 emphasised words). This set was divided

into a training set of 1879 emphasised words, corresponding to 1476 sentences, and a testing

set of 332 words, from 321 sentences. As the words were processed independently, for the

sentences with two emphasised words, one could be in the training set and the other in the

testing set.

Features

The linguistic features investigated are word-level features, including syllable-level informa-

tion concerning stress and accent. For each word, the position of the stressed and or accented

syllables was used with a maximum of 3 stressed syllables and 2 accented syllables1 The

1using 3 accented syllables was investigated as some words in the data contained 3 accented syllables, but the
position of the 3rd accent was found not to be informative.
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selected set of features is a subset of the standard linguistic features of HMM-based speech

synthesis:

• Number of syllables in the word

• gPOS (guess part of speech) of the word

• Stress position(s) in the word [0-3]

• Accent position(s) in the word [0-2]

• Word position in the phrase

• TOBI endtone of the phrase

• Phrase position in the utterance

• Number of phrases in the utterance

• Number of words in the utterance

• Number of syllables in the utterance

Systems

Baselines For the experiments on SIWIS data, an HMM-based TTS average voice was trained

using WSJ corpus SI84 dataset (described in Chapter 2, Section 2.4. The voice was adapted

to the target speaker characteristics by using 100 neutral sentences. Test sentences were

synthesised using these models, to generate a neutral synthetic version. Then a second

adaptation was done using 20 emphasised sentences to synthesise the 5 remaining sentences2.

The second adaptation was done 5 different times to cover all the possible test sentences. In

the end, two versions were available for each sentence: one from the neutral HMMs, one from

the emphasis-adapted HMMs. For the second version, time alignment was used at synthesis

time, as the duration models deteriorated severely during adaptation.

For the experiments on Roger data, an HMM-based TTS system was built, and the test sen-

tences were synthesised in two fashions: one without giving any other information than the

standard contextual features obtained from text analysis, and one with timing information,

obtained from automatic time alignment done using the original sentences.

2An attempt was made to build an HMM system using automatically labelled emphasis on the same neutral
speech, followed by adaptation using manual emphasis annotation on emphasised data, and then synthesise
emphasised words, but it did not work, most probably because the automatic labelling of the neutral data
performed poorly.
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Random Forests For the SIWIS data, two strategies were investigated: training random

forests to predict word-level atom parameters, which were later adapted using emphasised

data, and training random forests using only emphasised words. In the first case (denoted

RF1 later), about 60,000 words from the WSJ corpus were used to train 25 trees. Then the

emphasised words from 303 sentences from the SIWIS database were used to refine the model

with 3 more trees, and finally 20 of the 25 sentences from speaker 29 were used to train 2 more

trees, while the remaining 5 were kept for testing. This was repeated 5 times for the different

sets to cover all the test sentences. In the second case (denoted RF2 later), the initial 15 trees

were trained using the 303 sentences, and then, as in the first case, 20 sentences were used

to train 3 more trees. For the Roger set, multiple numbers of trees were investigated, in the

range 15–30. All the training data was used in this case. The random forests were trained in

both cases using mean square error as a training criterion, with no limitation on the size of the

trees.

Addition and Replacement The addition of atoms was investigated only for the SIWIS data,

and ought to be compared with the approach proposed in Section 7.3. For that reason, the

addition of atoms was performed on the neutral HMM output F0, that we expect to be similar

to the neutral real speech. For each test sentence, the five generated atoms were placed at

their respective predicted positions in the target word.

The replacement of atoms was performed on both SIWIS and Roger data. After generation of

the atoms, the model parameters were extracted on the synthetic F0, the atoms in the target

word dismissed, and the five predicted atoms were added to the global contour in this word.

Listening Tests

A listening test was conducted on systems from both databases. Table 7.7 gives the description

of each system presented to the listeners.

Table 7.7 – System description.

System name Description
roger-voc Vocoded emphasised version of the sentence (Roger). Reference.
roger-hmm-neut HMM-based output (Roger). Baseline.
roger-hmm-align HMM-based output using time alignment (Roger).
roger-replace-rf Local component replacement with random forest output (Roger).
siwis-voc-neut Vocoded neutral version of the sentence (SIWIS).
siwis-voc-emph Vocoded emphasised version of the sentence (SIWIS). Reference.
siwis-hmm-neut Neutral HMM-based output (SIWIS). Baseline.
siwis-hmm-emph Adapted HMM-based output using time alignment (SIWIS).
siwis-replace-rf Local component replacement with random forest output (SIWIS).
siwis-add-rf Addition of random forest output to full contour (SIWIS).
siwis-transfer Transfer of atoms from emphasised speech to neutral speech (SIWIS).

The test was designed as a MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor)
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test. The subjects were asked to rate the emphasis of the target word for each sentence, where

the target word was capitalised. They could use a slider to rate each sample comparatively with

others. The slider had 5 indications: “No emphasis”, “Slight emphasis”, “Noticeable emphasis”,

“Normal emphasis”, and “Strong emphasis”, in that order. In the SIWIS data case, each of the

20 test file had 7 versions, and in the Roger case, there were 4 versions of 9 sentences (3 times

each of the 3 different patterns). In both cases, the reference was the system with emphasised

vocoded speech (roger-voc and siwis-voc-emph), and the baseline the neutral HMM output

(roger-hmm-neut and siwis-hmm-neut).

The vocoded version of the neutral (siwis-voc-neut) and emphasised (siwis-voc-emph) nat-

ural sentences are the ground truth files which should give the least and most emphasis,

respectively. One of the systems, siwis-transfer, is the system used in Section 7.3. The atoms

generated for siwis-add-rf were the output of a random forest trained with 18 estimators,

from the strategy using only emphasised words for training (RF2). In this case, the generated

atoms were added in the target word in the siwis-hmm-neut output F0. The siwis-hmm-neut

sentences were generated using automatic time alignment on the neutral version of the sen-

tences. Thus, this method is directly compared with the original neutral vocoded speech, and

with the method proposed in the previous section, where atoms from emphasised speech

are transferred. The same atoms were used for the siwis-replace-rf approach, however in

that case the local atoms in the contour synthesised by the siwis-hmm-emph system were

replaced by the generated atoms. This way, we want to evaluate the replacement of atoms on

the adapted HMMs.

In the Roger case, we did not have a neutral version of the original speech, so we expect the

roger-hmm-neut system to produce the least emphasised speech. The reference will be, as

for the SIWIS case, the vocoded original speech with emphasis, siwis-voc-emph. The roger-

hmm-align method is expected to be perceived as more emphasised than roger-hmm-neut,

because the duration information of original speech is present. Finally, the roger-replace-rf

approach is expected to be the closest to the reference, as atoms generated by the random

forest will replace local components of the roger-hmm-emph output F0.

The BeaqleJS (Browser based Evaluation of Audio Quality and comparative Listening Envi-

ronment) framework of Kraft and Zölzer [2014]3 was used to create the web-based listening

test.

7.4.3 Results

F0 Reconstruction

Figure 7.6 shows an example of local component replacement on the SIWIS data, on the

baseline HMM output F0.

3Available at https://github.com/HSU-ANT/beaqlejs.
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Figure 7.6 – Example of reconstructed F0 contour after replacing atoms for the sentence “The
Commission has debated the action plan for the next five years.” The continuous darker blue
curve is the original F0, the dashed and darkest one is the baseline synthetic F0, and the
lightest continuous one is the proposed one (atom replacement). The coloured region delimits
the target word.

In this case, we can see that in the target word, the replacement of local atoms by the ones

generated by the random forest reduces the difference in F0 with the real contour in the target

word region.

Table 7.8 gives the average RMSE and correlation of three systems at the word level for the

emphasised word in each case, and at the utterance level, for the SIWIS dataset. RF1 is

the system trained using neutral and emphasised data, RF2 is the system trained using only

emphasised data. The word-level values are calculated on a reconstruction of the local contour

only using local atoms in the word, for both real speech and the three systems.

Table 7.9 gives RMSE and correlation for different number of trees in the random forests, on

the Roger dataset, at the sentence level, and inside the target word only. We also give the same

measures for the F0 generated by the HMMs, and the same contour after extraction of the

model parameters and reconstruction. Here the word-level values are simply calculated by

restricting the calculation window to the word boundaries, so they include global component.

For all the measures, RMSE and correlation are calculated on voiced frames only, based on the

STRAIGHT voicing extracted from the natural reference speech.

Table 7.8 – Average correlation and RMSE at the word level, and utterance level, for SIWIS data.

Measure

System
HMM RF1 RF2

RMSE word (logF0) 0.14 0.12 0.11

RMSE sent (F0 in Hz) 40 37 37

Correlation word (logF0) 0.01 0.12 0.12

Correlation sent (F0) 0.96 0.92 0.92
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Table 7.9 – Average correlation and RMSE at the word level, and utterance level, for Roger data,
for different sizes of random forest.

Measure

Ntrees HMM HMMrecons 15 18 21 24 27 30

RMSE word (Hz) 16.16 16.17 14.86 14.93 15.0 15.0 14.97 15.0

RMSE sent (Hz) 19.32 45.83 39.34 39.37 39.39 39.38 39.38 39.39

Correlation word 0.898 0.959 0.960 0.960 0.960 0.959 0.959 0.959

Correlation sent 0.894 0.914 0.927 0.926 0.926 0.926 0.926 0.926

SIWIS set, table 7.8 At the word level, the results are showing a low correlation, especially

for the baseline system. In that case, we can expect that the way parameters were extracted

has an impact on the local decomposition. Because the phrase component was imposed to

be the same as in the original log F0 contour, the algorithm may extract atoms in a different

way to compensate the fact that this phrase component is not fitting optimally the synthetic

log F0, e.g. in some cases where the contour is actually lower than the phrase component,

negative atoms would be extracted, which may lead to negative correlation for some word-level

contours. There is no significant difference between the two other systems for this measure.

The RMSE at the word level is showing similar trend, with similar results for the baseline and

the RF models. The RF models show slightly lower RMSE, but with no significant difference.

When looking at the whole sentence, the baseline shows worse correlation when using the

log F0, but higher correlation when calculating it only on voiced frames. On the other hand,

the RMSE is slightly lower in the RF cases compared to the HMM. The fact that we use a

parametric version of the synthetic curve along with the atoms generated by the RF models

results in a smoother version, which may allow to reduce some error, hence the lower RMSE.

At the same time, it can explain that correlation is a bit higher in the HMM case, because

the model may smooth some patterns which should actually be modelled. One thing that

should be underlined is that the HMM models have been adapted using emphasised data, and

that the synthetic speech sounds generally more pronounced than before emphasis-specific

adaptation. However, in the case where we did not use time aligned labels, the duration

prediction output extremely slow speech, compared to the neutral model.

Roger set, table 7.9 The results do not seem very informative as all the systems perform very

similarly. At the word level, the proposed systems slightly decrease the RMS distance with

the reference compared to both HMM output and decomposed-reconstructed HMM output.

Similarly, the correlation is increasing while replacing atoms but does not show significant

difference among the different systems. At the sentence level, we observe a degradation in

the RMS measure, which is increased by the extraction of parameters followed by reconstruc-

tion. When replacing local components with the random forest outputs, the error is slightly

decreased but remains much higher than for the baseline. This observation is a logical conse-
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quence of the reduction of RMSE in a segment of the sentence (the target word). On the other

hand, the correlation is increased after extraction-reconstruction of the HMM output, and

the replacement of local components further increases the correlation, with no significant

difference among the different settings. These results contrast with the trends observed on

the SIWIS data. This could be explained by two reasons: first, in the SIWIS case, the phrase

component on the HMM output was imposed for the decomposition, while in the Roger

case, it was extracted in the standard manner; second, in the Roger case, a lot more data was

available to train the random forests, and the context was very limited, thus the task was

simpler.

It is difficult to conclude from the results as the objective measures do not show significant

differences among the proposed systems, although some slight improvement over the baseline

is observable. Also, observing only the F0 contour without looking at the repercussions on the

final waveform may not be enough to conclude on the emphasis of words. The listening tests

are expected to reflect the perception of emphasis from a human perspective.

Listening Test Results

32 listeners participated in the subjective test, with their majority being non native but fluent

English speakers, mostly aged in the range 25–36 years old. The completion of the test took

an average of about 25 minutes. Figure 7.7 shows boxplots of the ratings obtained for each

approach, for both datasets. Detailed boxplots for each sentence are given in Appendix B,

Figures B.1 and B.2.

Figure 7.7 – MUSHRA listening test results per dataset. Left: SIWIS data, right: Roger data. The
red dots are the means, the read lines are the medians, the boxes indicate

For the SIWIS case, we can see two main clusters for the systems. In the first group, we observe

that the addition of atoms to the output has little effect on the perception of emphasis on the

target word. The transfer of atoms using real atoms, however, seems to slightly increase the

perceived strength of emphasis on the target word. The emphasis in the second group, which

represents the adapted HMM output, the system with atom replacement and the reference, is

perceived as stronger than the first group. To analyse further these observations, a two-tailed
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paired t-test on the absolute values given by the listeners was performed on each pair, with

a Holm-Bonferroni correction to account for multiple comparisons. All the pairs of systems

were significantly different at the level of p < 0.01, except the pairs: (voc-neut / hmm-neut),

(voc-neut / add-rf), (hmm-neut / add-rf) and (hmm-emph / replace-rf). This implies that

in this case, the replacement of atoms in emphasis-adapted HMM output does not change

the emphasis perceived on the target word, and both remain signficantly different from the

reference. The transfer is significantly different from the first three systems, but it is reasonable

to think that this is due to the fact that the added atoms in that case come from real emphasised

speech.

The Roger boxplot gives more explicit differences between the methods under evaluation.

In this case, giving the duration of each phoneme to the synthesiser results in an increase

of the perceived emphasis strength, which is further increased by the replacement of local

components with the ones generated by the random forest. Finally, the emphasis in the

reference file, which is produced naturally, is perceived as the strongest. Again, to validate

the results, we conducted a two-tailed paired t-test with a Holm-Bonferroni correction on

each system pair. All pairs of systems were significantly different at the level of p < 0.01. This

confirms the visible differences between each system, and demonstrates that the proposed

method significantly improves a simple time aligned based synthesis, in terms of emphasis

production. The proposed method is still significantly different from the original emphasised

speech.

General Discussion

The objective results on F0 presented on the task of emphasis synthesis using the GCR model

showed that when having enough data, and in similar context, the replacement of local

components in the target word F0 contour helped in reducing the error at the word level, and

in increasing the correlation both at the word and sentence level.

The listening tests demonstrated that listeners perceive significantly differently HMM output,

HMM output when duration information is provided, HMM output with duration with atom

replacement and the original emphasised speech. The replacement of local components

significantly increased the perceived strength of emphasis in the Roger case, where a lot of

training data was available, and needed to be modelled for only a limited context. Adding

atoms did not change the perceived emphasis compared with natural and synthetic neutral

speech in the SIWIS scenario. The replacement of local components did not differ significantly

from emphasis-specific adapted HMM output, which was rated close to natural emphasis,

although significantly different.

To improve the emphasis generation, distribution parameters could be used instead of values

in the tree leaves, if enough data is available to train reasonable models. On the synthesis

aspect, the proposed method could be applied with some complementary method, such as

duration alteration, intensity modification, or model adaptation, if data is available.
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Emphasis Transfer Scenarios Following the same idea as existing emphasis translation

system, we propose two possible ways of exploiting the atoms in the input language to affect

the prominence of words in the output language. In the first case, one system per language

could be used, and the knowledge of which word should be emphasised would enable the

synthesis of emphasis through F0 modification. Another method could consist of using atom

information from the input sentence together with linguistic context from both the input

language and output language sentences, and try to predict the atoms for the output sentence.

This second approach could benefit from approaches such as sequence to sequence learning,

introduced by Sutskever et al. [2014] and recently applied to machine translation by Luong

et al. [2015]. However, these methods imply having a lot of parallel bilingual data.

7.5 Conclusion

In this chapter, we exploited the capabilities of the GCR model, introduced in previous chap-

ters, in terms of emphasis modelling for speech synthesis.

In analyses of the linguistic relevance of atom parameters, it was shown that these parameters

share mutual information with stress, accent and emphasis. With a consistently higher number

of components required to model emphasised words, the model also seems to use different

combinations of parameters to describe these words.

Two approaches were proposed to simulate emphasis in synthetic speech in an external

fashion, i.e. outside of the TTS framework. The first one, demonstrated on natural speech,

consisted of using intonation components from natural emphasised speech, and directly

adding them to the intonation contour of a neutral word. Listening tests demonstrated that in

most cases, this could lead subjects to perceive emphasis on the target word. This method,

proposed only in the scenario where both emphasised and neutral versions of the sentence

are available, was investigated in the context of emphasis specific word-level intonation

modelling. Random forests were employed for the task of intonation component prediction,

and failed when these components were only transferred to the target word on synthetic

speech. However, when replacing local components of the synthetic intonation contour by

the same generated components, we demonstrated that the emphasis strength perception

was improved, compared to a simple duration alteration, performing similarly to an HMM-

based TTS system adapted using emphasised speech. This validated our hypothesis that

local components can be used as word-level intonation to synthesise emphasised word. This

indicates that intonation manifests itself with different patterns in emphasised words, rather

than existing on top of background prosody.

Overall, the best approach proved to combine well with the exploitation of duration informa-

tion from actual emphasised speech: when synthesising from neutral HMM-based speech

synthesis with given phone durations, replacing local components by synthetic ones generated

by random forests significantly increased the perceived perception. This work aims to be

further investigated in the context of emphasis translation, for speech-to-speech translation.
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8.1 Conclusions

In this thesis, we investigated prosody modelling for speech synthesis and emphasis genera-

tion. These aspects of speech synthesis are concerned with the lack of nuance in the output

speech in a traditional speech-to-speech translation system, introduced by the sequential

processing of information, with independent building blocks.

With the confirmation of the need for better prosody modelling in speech synthesis in mind,

an initial investigation of regional accents of French was conducted. Through listening tests,

we evaluated how native French listeners perceived Swiss regional accents, on synthetic

speech adapted with standard methods, and when partial original prosody was provided.

Simple adaptation of TTS models using accented speech was shown to be insufficient for the

listeners to perceive accentedness. Mixing standard French pronunciation, i.e. segmental

level characteristics, with Swiss prosody including rhythm and intonation showed some ability

to increase the perceived accentedness, but not to the extent of naturally accented speech.

Combining these two methods — standard adaptation, and replacing prosody with natural

one — resulted in speech with a degree of accent perceived as not significantly different from

real accented speech.

In an attempt at modelling intonation in a theoretically language independent manner, a phys-

iologically plausible model was proposed. The model, inspired by the command-response

model, and by muscle response to nerve impulses, can be viewed as a generalised command-

response model, in that some of the constraints on the basic components of intonation are

relaxed. The model was proposed with an extraction algorithm, which automatically decom-

poses intonation in components which are assumed to correlate with muscle control of the

vocal folds. This algorithm, based on the matching pursuit algorithm, integrates perceptually

relevant measures based on the energy and probability of voicing of the speech segments, and

should therefore extract perceptually relevant components.

This intonation model was applied to intonation synthesis, using statistical modelling methods.

We evaluated the importance of the intonation component positions in the perception of the

full modelled intonation, and found that the position of the most prominent components

was crucial and needed high precision. Two statistical models were investigated in the task of
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model component prediction: support vector machines and deep neural networks. Although

these approaches seem able to learn regions where components are likely to exist, their

precision is not sufficient to predict a full coherent intonation contour.

In the context of intonation-based emphasis synthesis, two databases were designed and

recorded for the SIWIS project. Both corpora contain emphasis on specific words. The first one

is multi-lingual and with mutliple speakers, while the second one was recorded by a French

speaking voice talent and consists of high quality speech.

Linguistic relevance of the atom parameters was found in measuring mutual information

between our intonation model parameters and accent, stress and emphasis. A first approach

to emphasis replication was proposed by simply extracting intonation components in an

emphasised word and adding them to the contour of the same word, initially uttered in a

neutral way. Then, using random forests, intonation atoms were predicted from linguistic

context, and the knowledge that they were emphasised. Replacing local components of

intonation in a neutral sentence by the predicted components proved to elicit emphasis

perception, when enough data was available to train the models.

8.2 Perspectives

Along with the work presented throughout the thesis, limitations in some proposed approaches

exist, and could be considered as future directions for research.

One of the issues partially addressed in this work concerns the characterisation of the model

parameters. While it was shown that atom parameters share mutual information with accent,

stress and emphasis, it would be interesting to investigate and understand their relation with

other linguistic features.

The prediction of full intonation contours using standard statistical models was revealed to be

a challenging task. Other approaches are proposed in the conclusion of Chapter 6, including

changing the optimisation criterion, or investigating different types of networks. The way

output features are parameterised in the emphasis synthesis scenario, i.e. the structure of the

output vector, could also be investigated, for a sentence level prediction.

The work presented on emphasis synthesis, limited to the alteration of intonation, could be

extended in multiple ways. One possible line of research consists of combining the method

with duration and intensity modification, for a stronger perceptual effect. Moving to cross-

lingual transfer is another interesting direction, for which possible approaches are introduced

in Chapter 7. They include mapping words in the translation framework and synthesis of local

components as proposed in this thesis, or using linguistic context from both languages with

components extracted from input speech to predict components of the target language. An

interesting line of future work would be to integrate the prediction of the intonation events in

the translation, using for instance a neural based approach.
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A Atom Parameters in Emphasised
Speech

In this appendix, we give some statistics about the French database recorded within the SIWIS

project. These statistics are the results of analyses on the decomposition of the intonation

contour of the emph set, and the same sentences in the neutral case.

Figure A.1 shows the distribution for each of the parameters inside the emphasised words, and

inside the same words in the neutral version. We can see that in the neutral case, atoms tend

to be distributed slightly more often at the beginning of the word, with larger atoms (larger

θs) and with higher absolute amplitudes (more atoms in the tails, fewer in the low amplitude

region around 0). To try to balance the values when doing a quantisation on the amplitudes,

the following mapping was done:

Table A.1 – Amplitude quantisation.

Quantised to -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Upper limit -1.4 -1 -0.7 -0.5 -0.4 -0.33 -0.26 -0.2 -0.12 0.12

Quantised to 1 2 3 4 5 6 7 8 9 10
Upper limit 0.18 0.23 0.29 0.38 0.5 0.7 1 1.4 2
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Appendix A. Atom Parameters in Emphasised Speech

Figure A.1 – Comparison of atom parameters between neutral and emphasised case.
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B Emphasis Synthesis Listening Test
Results

This appendix provides more detailed result plots of the listening tests conducted in Chapter 7,

where the subjects were asked to rate the strength of the emphasis on a target word. Figure B.1

shows the sentence by sentence results for the 4 methods tested on the Roger set, while

Figure B.2 shows the ratings of the 7 methods used in the SIWIS data case. The trends observed

on these plots are the same as in the general case, presented in Chapter 7, Section 7.4.

Figure B.1 – MUSHRA results per sentence for Roger data. The systems are from left to right:
hmm-neut, hmm-align, replace-rf, reference.
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Appendix B. Emphasis Synthesis Listening Test Results

Figure B.2 – MUSHRA results per sentence for SIWIS data. The systems are from left to right:
voc-neut, hmm-neut, replace-rf, transfer, hmm-emph, add-rf, reference.
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