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Abstract
Multiscale or multiphysics partial differential equations are used to model a wide range of
physical systems with various applications, e.g. from material and natural science to problems
in biology or engineering. When the ratio between the smallest scale in the problem and
the size of the physical domain (also the size of the solution) is very small, the numerical
approximation of the effective behaviour with classical numerical methods, such as the finite
element method (FEM), can become computationally prohibitive. Indeed, as the smallest
scale in the problem has to be fully resolved, one obtains a discretization of the computational
domain with a very large number of degrees of freedom.

In the first part of the thesis, we derive a finite element heterogeneous multiscale method
(FE-HMM) applied to the wave equation in a linear elastic medium. We state the FE-HMM
and give robust a priori error estimates with explicit convergence rates for the macro and
micro discretizations. For simplicity, we start with the static highly heterogeneous linear
problem and, then, add the time dependency and consider the wave propagation in a highly
heterogeneous linear elastic medium.

In the second part of the thesis we are interested in problems in which the scales are well
separated only in some regions of the computational domain, with possibly a continuum of
scales in the complementary domain. Such problems arise in various situations, for example
in heterogeneous composite materials whose effective properties can be well captured by
assuming a (locally) periodic microstructure that can however not be valid near defects
of the material. In our modeling, the smallest scale is supposed to be still discretized at
the continuum level, but for some applications atomistic scale should be considered. Our
coupling method is based on a domain decomposition into a family of overlapping domains.
Virtual (interface) controls are introduced as boundary conditions, and act as unknown traces
or fluxes. Our method is formulated as a minimization problem with states equations as
constraints. The optimal boundary controls of two overlapping domains are found by an
heterogeneous optimization problem that is based on minimizing the discrepancy between
the two models on, at first, the overlapping region, and at second, over the boundary of the
overlapping region. The fully discrete optimization based method couples the continuous
or discontinuous Galerkin FE-HMM with the FEM. The well-posedness of our method, in
continuous and discrete forms, are established and (fully discrete) a priori error estimates are
derived.

Key words: multiscale problems, heterogeneous multiscale method, homogenization, lin-
ear elasticity problems, wave equation, global to local methods, domain decompositions,
optimization based methods.
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Résumé
Les équations aux dérivées partielles à multi-échelles ou multi-physiques sont utilisées pour
modéliser une large classe de systèmes physiques présents par exemple dans les sciences
matérielles et naturelles ou en biologie et ingénierie. Lorsque le rapport entre la plus petite
échelle du problème et la taille du domaine physique (ou aussi la taille de la solution) est
très petit, l’approximation numérique du comportement effectif de la solution avec des
méthodes numériques classiques, telles que la méthode des éléments finis (MEF), peut devenir
computationellement prohibitive. En effet la plus petite échelle du problème doit être résolue
et l’on obtient une discrétisation du domaine computationnel avec un très grand nombre de
degrés de liberté.

Dans la première partie de la thèse, nous donnons une méthode multi-échelle d’éléments finis
appliquée à l’équation d’ondes dans un milieu élastique linéaire. Nous établissons la méthode
et donnons des estimations d’erreur a priori avec des ordres de convergence explicites pour
la discrétisation macroscopique et microscopique. Nous commençons par traiter un pro-
blème statique dans un milieu élastique linéaire multi-échelles et ensuite nous considérons la
propagation d’une onde dans ce milieu.

Dans la deuxième partie de la thèse, nous nous intéressons à des problèmes dans lesquels les
échelles ne sont bien séparées les unes des autres que dans certaines régions du domaine. De
tels problèmes sont fréquents et on les trouve, par exemple, dans des matériaux composites
dont les propriétés effectives peuvent êtres capturées en assumant une microstructure (lo-
calement) périodique, mais qui n’est peut-être pas valide autour de défauts présents dans le
matériau. Dans notre modélisation, nous supposons que la plus petite échelle est toujours
discrétisée au niveau continu, mais notons que dans certaines applications, des échelles
atomistiques doivent êtres considérées. Notre méthode est basée sur une décomposition
du domaine en une famille de sous-domaines qui se chevauchent. Des contrôles virtuels
(d’interface) sont introduits comme conditions inconnues aux bords et agissent comme traces
ou comme flux. Notre méthode est reformulée comme un problème de minimisation sous
contraintes, avec pour contraintes des équations d’état. Ici, les contrôles optimaux de deux
sous-domaines qui s’intersectent sont trouvés en minimisant la différence entre les deux mo-
dèles soit sur le chevauchement soit le bord du chevauchement. La méthode d’optimisation
est ensuite donnée dans sa forme discrète et couple la méthode d’éléments finis multi-échelles
hétérogène avec la MEF. L’existence et l’unicité de la méthode, dans sa forme continue et
discrète, sont prouvées, et nous donnons une analyse a priori de notre méthode.

Mots clefs : problèmes multi-échelles, méthodes multi-échelles hétérogènes, homogénéisa-
tion, problèmes d’élasticité linéaire, méthodes globales à locales, décomposition de domaines,
méthodes basées sur l’optimisation.
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Notations

d spatial dimension

ε one or several microscopic scales

C > 0 generic constant whose value can change at any occurrence

Y d-dimensional unit cube (0,1)d

Ω spatial domain Ω⊂Rd with ε�|Ω|

O,D sets O,D ⊂Ω

|O| measure of the set O

B Banach space

[0,T ] finite time interval T ∈R,T > 0

ei vectors of the canonical basis of Rd , i = 1, . . . ,d

|r | Euclidean norm of the vector r ∈Rd

‖a‖F Frobenius norm for matrice a ∈Rd×d ,‖a‖F =
√∑

i , j |ai j |2

Id identity matrix in Rd×d
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Notations

Functions spaces

C k (O) k-times continuously differentiable functions f : O →R,O ⊂Rd ,k ∈N

C∞
per (Y ) subset of C∞(Rd ) of periodic functions on Y

W k,p (Ω) usual Sobolev space on Ω⊂Rd with k ∈N and 1≤ p ≤∞

H k (Ω) Sobolev space W k,2(Ω) on Ω⊂Rd ,k ∈N

H k (TH ) broken Sobolev space H k (TH )= {v ∈ L2(Ω) | v ∈H k (K ),∀K ∈TH }

for a partition TH of Ω,k ∈N

H 1
0 (Ω) subspace of H 1(Ω) with vanishing trace on the boundary of Ω

H 1
l oc (D) defined as H 1

loc (ω1)= {u ∈H 1(O) | for any open set O with O ⊂D}

H 1
per (Y ) defined as the closure of C∞

per (Y ) for the H 1 norm

W 1
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1 Introduction

In seismic modeling engineers are often interested in the macroscopic behavior of the solid

undergoing deformation; for example, it can be the shaking and displacement of the Earth’s

surface as a response to an earthquake. If small heterogeneities are present in the solid, e.g.,

if the solid is a fractured medium or if it is made of a layered material, engineers need to

have a reliable method that includes the heterogeneities in the macroscopic outcome. This is

an example of a multiscale problem, or multiphysic problem, as it involves physical laws at

different levels. Indeed, the propagation of the earthquake happens at a macroscopic level,

whereas the heterogeneities are microscopic. In Figure 1.1, we illustrate three heterogeneous

multiscale media. Multiphysics or multiscale problems regroup a wide range of problems

arising in physical science, biology, chemistry or geoscience.

One scale methods, that are traditionally used in modeling, might produce inaccurate results

or might even be impossible to process numerically. Assuming that a microscopic model is

available, using all the microscopic information to model the problem is in practice not feasible.

Furthermore, considering a macroscopic model without including the small heterogeneities

is computationally efficient but might give an unrealistic outcome. One scale modeling is

therefore not a suitable option. As stated by E in [53],"[i]t would be nice to have a strategy

that combines the efficiency of macroscale models and the accuracy of microscale models."

Multiscale modeling proposes to consider simultaneously the models at the different levels

in order to describe the effective properties without resolving all the small features of the

medium. This offers a better understanding of physical processes by including the different

levels of details in "on-the-fly" computations.

Numerical multiscale methods. In the past decades, various methods have been developed

to resolve partial differential equations (PDEs) with highly heterogeneous coefficients, see

Chapter 2 for a brief review. Multiscale methods can be characterized in two categories. In the

first one, we regroup methods that are based on a global extraction of the fine scale information,

and where all the fine scale information are used and processed. Such methods are therefore

computationally expensive, but they do not require structural assumptions on the fine scales.

1



Chapter 1. Introduction

(a) (b) (c)

Figure 1.1 – Illustration of multiscale media, (a) layered, (b) fractured, and (c) locally periodic
media.

The second class of numerical methods is closely related to the homogenization theory. They

are based on representative local computations and on a global to local downscaling. As a

consequence, they are much more efficient than the methods in the first class, but they rely

on a clear separation of scales.

In this thesis, we focus on multiscale problems belonging to the class of homogenization

problems. Homogenization is the tool for finding the best averaging process that can be

used to model the macroscopic description of the multiscale system. Let L ε(uε) = f be a

heterogeneous multiscale PDE, and when ε goes to zero, the homogenization theory ensures

that uε converges (in a weak sense) towards u0, the solution of a homogenized PDE L 0(u0)= f .

The coefficents of the homogenized operator L 0 are independent of the small scale ε but are,

however, often unknown.

In Part I, we developed a numerical multiscale method for the wave equation in a linear elastic

medium with highly heterogeneous coefficients. The method is based on the framework of

the heterogeneous multiscale method (HMM) developed by E and Engquist [54] (see [55, 8]

for a review). The HMM can be summed up in two components,

an effective system: the global behavior of a heterogeneous system should be described

by an effective macroscopic system. The homogenized problem L 0(u0)= f is a good

effective model, but as the data of L 0 are generally unknown, one needs to use a

numerical homogenized method for the problem L 0(u0)= f .

a macro to micro modeling: the unknown macroscopic data used in the effective nu-

merical method are needed at macro nodes. Micro simulations are conducted in small

sampling domains around the macro nodes, using the available microscopic problems

L ε. The macroscopic data are recovered from the micro simulations using averaging.

These two steps are based on the assumptions that the scales are well separated; that is when

the fine scale information can be described by a quantity ε and the ratio of the length scale

of the macroscopic behavior of the problem to the size ε is large. The HMM framework has

2



been applied to, amongst others, multiscale elliptic or parabolic or Stokes equations, or to

the multiscale wave equation and the linear elastic equation. In Part I, we focus on the wave

propagation, for short time, in a heterogeneous linear elastic medium with well-separated

scales.

In Part II, we consider problems that are between scale separation and non-scale separation,

and, aim at designing a new multiscale method for elliptic problems with non-separated

small scales. This is the case, for example, when the coefficients oscillate at several scales

that are indistinguishable. Figure 1.2 illustrates two tensors, one with scale separation and

the other without scale separation. Such problems arise in many situations, for example in

composite material design, in which the effective model might not be valid near a crack or a

defect. Our aim is to couple a homogenized solver with a heterogeneous solver using domain

decomposition, minimization, and optimization techniques. The HMM framework is used in

regions with scale separation, whereas in regions without scale separation, a fine scale solver

is chosen.

Main contributions. In this thesis, we design and analyze a numerical multiscale method,

based on the HMM framework, for two types of multiscale problems.

In Part I, we derive and analyze the finite element heterogeneous multiscale method (FE-

HMM), for the wave equation in a linear elastic medium with highly heterogeneous coefficients

with explicit separation of scales. In Chapter 2, we review the FE-HMM for elliptic multiscale

problems derived in [3] and state the a priori error analysis. In Chapter 3, we consider, at

first, a highly heterogeneous linear elasticity problem and extend the FE-HMM with piecewise

macro and micro finite elements given in [2] to finite element spaces of order p ≥ 1. A priori

error estimates are given and numerical experiments are proposed to assess the convergence

rates. In the second part of Chapter 3, we are interested in the propagation of a wave in

a heterogeneous linear elastic medium for short times. We extend the FE-HMM for the

heterogeneous wave equation given by Abdulle and Grote in [9, 10] to heterogeneous linear

elastic waves. A priori error estimates are proved, and we verify the sharpness of the error

bounds through various numerical experiments. A conclusion and outlook are given at the

end of Part I.

In Part II, we develop a numerical multiscale method, based on optimization techniques, for

problems with and without scale separation. Our model problem is an elliptic problem with

highly heterogeneous coefficients. We address the following issue.

First issue. When the fine scales are not well separated in some subregions of the

computational domain, no explicit small lengths ε are available to characterize the

highly heterogeneous structure of the media. Therefore, the HMM procedure, which

needs the fine scale information only inside sampling domains of (small) sizeδ, is similar

(in efficiency and accuracy) to a fine scale solver. Indeed, without the characteristic

length ε, we often set δ to the size of the partition used in the discretization. As a

3



Chapter 1. Introduction

(a)

(b)

Figure 1.2 – (a) Locally periodic tensor with scale separation, and (b) tensor without scale
separation.

4



consequence, all fine scales are needed and processed.

In Chapter 5, we mention two global to local methods that give good a H 1 approximation of

the fine scale solution in subregions of interest. We review the L2 global to local projection

method derived by Babuška and Lipton in [27] and the goal-oriented adaptive method given by

Oden and Vemaganti in [95]. Nevertheless, in such methods, a second issue can be addressed.

Second issue. Global to local methods rely on the existence of a good precomputed L2

approximation of the fine scale solution. The computation of this L2 approximation can

be computationally expensive and the quality of the numerical solution, obtained form

the global to local method, depends on the quality of the L2 approximation.

In Chapter 6, we consider an elliptic problem with a highly heterogeneous tensor that exhibits

scale separation only in some regions of the computational domain. In the regions with scale

separation, homogenization methods can be used, whereas in the regions without explicit

separation of scales, a fine scale solver is preferred. We propose a multiscale method that

couples a homogenized PDE with a heterogeneous PDE. The method is inspired by virtual

control methods and overlapping domain decomposition [71, 87], and is formulated as a

minimization problem under constraints. Such ideas have appeared earlier in the literature

for coupling of different type of partial differential equations [65, 49, 46] and for atomistic-

to-continuum coupling [97, 98]. Chapter 6 is based on the minimization problem over the

overlapping regions using the L2 norm. We prove existence and uniqueness of the optimal

solution of the coupling, following Lions’ theory of optimal controls [85], and derive a priori

error estimates for the method. Using classical periodic correctors in the regions with scale

separation, we prove strong convergence in H 1 of order O (ε) in the regions without scale

separation, and of order O (ε1/2) for the regions with scale separation.

The fully discrete optimization based method is given in the second part of Chapter 6. We

couple the DG-FE-HMM with the FEM, prove the well-posedness of the method and give the

fully discrete a priori error analysis. The continuous and discrete analysis of the method are

based on Caccioppoli inequalities and on a strong version of the Cauchy–Schwarz inequality.

We give explicit convergence rates with respect to the macro and micro mesh sizes, and pro-

pose numerical examples to verify the convergence rates. Further, we compare our coupling

method with other coupling strategies. In contrast to [27] and [95], our method does not rely

on the existence of a good precomputed L2 approximation of the heterogeneous solution.

In Chapter 7, we propose numerical improvements of our method. The first numerical

improvement is to use another cost function in the minimization problem.

Minimization over the boundary. We consider an optimization based coupling method

with a minimization over the boundary of the overlapping regions instead of the mini-

mization in the overlapping regions. This reduces the number of degrees of freedom in

the optimization based problem.

5



Chapter 1. Introduction

We prove the well-posedness and derive a priori error estimates for the coupling method based

on this new minimization problem.

The second improvement is done in the partitions used in the fine and coarse scale solvers.

At first, in Chapter 6, we consider a fine and a coarse scale partitions with identical finite

elements in the overlapping regions. As the mesh size in the fine scale regions should be

small to resolve the heterogeneities of the problem, the number of degrees of freedom in

the overlapping regions and the computational cost of the coupling method become large.

Indeed, we recall that in the overlap, the FE-HMM is used and thus that we need to resolve

fine scale problems in sampling domains in each element of the overlapping region. This is

computationally expensive as the fine scale are resolved everywhere in the domain.

Interpolation in the overlap. We use an interpolation in the overlapping between the

fine and coarse partitions used to resolve the heterogeneous and homogenized PDEs

respectively.

Through various numerical examples, we show that the computational costs of the method

is significantly reduced without affecting the efficiency of the method. Part II ends with a

conclusion and an outlook of perspective for future research.
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In the first part of the thesis, we develop a numerical homogenization method for the wave

equation in a heterogeneous linear elasticity medium

∂t t uε−div(aε(x) : e(uε))= f ,

where e is the linearized strain tensor, uε corresponds to the displacement of the domain,

and where the tensor aε is highly heterogeneous and varies at the small scale ε> 0. Solving

such problems with standard methods, such as the finite element method or the finite volume

method, is often not feasible. Indeed, a good approximation of uε requires that the fine scales

of the problem are fully resolved by the spatial mesh, which is computationally expensive.

Numerical homogenization methods should be used instead.

Outline of Part I. The outline of Part I is as follows.

In Chapter 2, we consider an elliptic heterogeneous multiscale problem −div(aε(x)∇uε)= f ,

and give an introduction to the multiscale methods available to resolve such problems. With-

out attempting to be exhaustive, we recall two important approaches to resolve multiscale

problems. The chapter starts with the standard finite element method (FEM) and the discontin-

uous Galerkin finite element method (DG-FEM), which are efficient tools to solve single-scale

problems. Then, the theory of homogenization is given, with details about periodic homoge-

nization, and an overview of different multiscale methods is proposed. We mention methods

based on coarse oscillatory basis functions that encode the high variations of the data in

the multiscale problem; we review the multiscale finite element method (MsFEM) and the

localized orthogonal decomposition method (LOD). Then, we mention numerical methods

that are based on homogenization theory, and dedicate one section to the finite element

heterogeneous multiscale method (FE-HMM), which is the numerical multiscale method

used in this thesis. Then, its discontinuous counterpart, the DG-FE-HMM, is given, and their

a priori error analysis are recalled. Numerical experiments and limitations of the FE-HMM

(DG-FE-HMM) are presented, as a step towards global to local methods presented in the Part

II of this thesis.

In Chapter 3, we consider a wave propagation through an heterogeneous linear elasticity

medium ∂t t uε − div(aε(x) : e(uε)) = f , and we separate the chapter in two parts. In the

first part we give the finite element heterogeneous multiscale method applied to a linear

multiscale static elasticity problem −div(aε(x) : e(uε))= f . We recall the a priori analysis and

give numerical experiments to assess the convergence rates. In the second part, we consider

the wave equation in a domain filled with an heterogeneous linear elasticity medium. We then

give the FE-HMM and the a priori analysis. The chapter ends with numerical experiments

applied to various examples.

Publications. The first part of Chapter 3 about linear elasticity is based on [A. Abdulle, O.

Jecker, ENUMATH 2015 Proceedings, 2016].
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2 Multiscale methods for elliptic prob-
lems

In this chapter, we review the heterogeneous multiscale methods (HMM) based on the finite

element method, using an elliptic multiscale equation as a model problem (see amongst

others [54, 56, 20, 3]). We relate the HMM method to other multiscale methods.

Let Ω ⊂ Rd , with d = 1,2,3, be a convex polygonal domain with Lipschitz boundary Γ, and

consider an elliptic model problem

−div(aε(x)∇uε)= f , in Ω,

uε = 0, on Γ,
(2.1)

where the right-hand side f is a source term in L2(Ω), and the tensor aε describes the mul-

tiscale structure of the problem. The index ε> 0 represents the small scale of the problems

and determines the rapid variations in the tensor aε. We assume that the tensor aε is in

(L∞(Ω))d×d and that aε is uniformly elliptic and bounded, i.e.,

∃0<λ≤Λ : λ|ξ|2 ≤ aε(x)ξ ·ξ, and |aε(x)ξ| ≤Λ|ξ|, ∀ξ ∈Rd , a.e. x ∈Ω, ε> 0. (2.2)

A weak solution uε of the model problem (2.1) is obtained from the variational formulation

Bε(uε, w)= F (w), ∀w ∈H 1
0 (Ω), (2.3)

where the bilinear form Bε : H 1(Ω)×H 1(Ω)→ R and the right-hand side F : H 1(Ω)→ R are

given by

Bε(v, w)=
∫
Ω

aε(x)∇v ·∇wdx and F (w)=
∫
Ω

f wdx. (2.4)

Thanks to the Lax–Milgram lemma, the problem (2.3) admits a family {uε}, indexed by the

microscopic scale ε, of unique solutions which are bounded by the data of the problem (2.1);

i.e.,

‖uε‖H 1(Ω) ≤C‖ f ‖L2(Ω),

where the constant C is independent of ε (but depends on the coercivity constants of aε (2.2)).
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The size of the miscrostructure prevents us to solve problem (2.1) with a numerical scheme

such as the finite element method (FEM) or the finite volume method. Indeed, assuming that

uε ∈H l+1(Ω), l > 0, and that uH is an approximation of uε, obtained by a p-order FEM on a

discretization of Ω with mesh size H ; classical FEM theory (see Ciarlet in [41]) gives a standard

a priori error estimate

‖uε−uH‖H 1(Ω) ≤C H s |uε|H s+1(Ω), s =min{l , p}.

However, it holds ‖uε‖H s+1(Ω) ≤Cε−s‖ f ‖H s−1(Ω), leading to an a priori error estimate bounded

by C (H/ε)s , which gives a good approximation of uε only if H � ε. As the size of the multiscale

structure is microscopic, it leads to a discretization with a very large number of degrees of

freedom, and thus the cost of such methods is prohibitive.

Numerical methods based on homogenization theory [54, 3] give a good L2 approximation

of the fine scale solution uε, i.e., such methods numerically capture the global behavior of

uε. Techniques exist to add the missing fine scale information to the coarse scale numerical

solution and obtain a good approximation of uε in the H 1 norm, as well.

Outline. In Section 2.1, we give standard numerical methods for elliptic problems with a

single-scale tensor. In Section 2.2, we briefly give the homogenization theory with a focus on

periodic homogenization. A review of some numerical homogenization methods is presented

in Section 2.3. The numerical homogenization method used in this thesis is the finite element

heterogeneous multiscale method (FE-HMM) and is the subject of Section 2.4. A priori error

estimates and a numerical example are given in Sections 2.5 and 2.6, respectively.

2.1 Standard numerical methods for elliptic problems

Standard numerical methods for elliptic problems play a major role in the design of a numeri-

cal heterogeneous multiscale scheme. In this section, we recall the standard finite element

method (FEM) [33, 42, 41] and its discontinuous version (DG-FEM)[76].

Let us lose the multiscale nature of the elliptic model problem (2.1) and consider a single-scale

elliptic problem: find u ∈H 1(Ω) such that

−div(a(x)∇u)= f , in Ω,

u = 0, on Γ,
(2.5)

where f ∈ L2(Ω) and a ∈ (L∞(Ω))d×d verifies (2.2).

An approximation of the solution of problem (2.5) is constructed via the Galerkin method,

which consists in finding a solution, in a finite dimensional subspace of H 1
0 (Ω), of a discrete

problem similar to the problem (2.5). In order to apply the Galerkin method, one needs to

construct finite dimensional subspaces VH of the space H 1
0 (Ω) (which is the space of the

solutions of problem (2.5)). The inclusion VH ⊂H 1
0 (Ω) can be violated and the resulting finite

12



2.1. Standard numerical methods for elliptic problems

element method will be non-conforming (DG-FEM, see 2.1.2), as opposed to the conforming

finite element method (FEM, see 2.1.1).

2.1.1 Finite element method (FEM)

Let TH be a partition of Ω, where Ω is divided into a finite number of elements K ; the mesh

size H > 0 is given by the maximum diameter of the elements, i.e., H = maxK∈TH HK . The

family {TH } of partitions is assumed to be admissible and shape-regular [41],

(T1) admissible: Ω=⋃K∈TH
K , and the intersection between two elements is either empty, a

vertex, or a common face;

(T2) shape-regular: there exists σ> 0 such that hK
ρK
≤σ, where ρK is the diameter of the larger

circle contained in the element K , for all K ∈TH and for all TH ∈ {TH }.

For each partition TH in the family {TH }, a finite element space of degree p ≥ 1 can be defined

by

V p
0 (Ω,TH )= {v H ∈H 1

0 (Ω) | v H |K ∈Rp (K ),∀K ∈TH }, (2.6)

where the space Rp (K ) denotes the space P p (K ) of polynomials on K of total degree at most

p if the element K is simplicial, or the space Qp (K ) of polynomials on K of degree at most p

in each variable, if the element K is rectangular.

The numerical approximation of u, the solution of problem (2.5), satisfies the discrete problem:

find uH ∈V p
0 (Ω,TH ) such that

B(uH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (2.7)

where the bilinear form B : H 1(Ω)×H 1(Ω) → R and the right-hand side F : H 1(Ω) → R are

given by

B(v, w)=
∫
Ω

a(x)∇v ·∇wdx and F (w)=
∫
Ω

f wdx. (2.8)

The discrete problem (2.7) is well-posed thanks to the Lax–Milgram lemma, and explicit

convergence rates between uH and u can be derived following classical results [41, Ch. 3].

Assuming that the data are smooth enough to have u ∈H p+1(Ω), it holds

‖u−uH‖H 1(Ω) ≤C H p |u|H p+1(Ω), ‖u−uH‖L2(Ω) ≤C H p+1|u|H p+1(Ω), (2.9)

where the constant C is independent of H .
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Finite element method with numerical quadrature

In practice, the approximations of the integrals in the bilinear form B and right-hand side F

defined in (2.8), require a numerical quadrature formula. We state results given in [41, 42].

Let K̂ ⊂Rd be a reference element, either simplicial or quadrilateral, and consider a contin-

uous diffeomorphism FK : K̂ →K that denotes the parametrization of each element K ∈TH .

A quadrature formula (QF) on K̂ is the set of couples {x̂ j ,ω̂ j }J
j=1 composed of integration

nodes x̂ j and weights ω̂ j , with J ∈N. When using the FEM with a quadrature formula, there

is no guarantee that the approximation converges to the exact solution with the standard

convergence rates given in (2.9). However, with suitable assumptions, one could recover the

same rates as the FEM with exact integration [41],

(Q1) ω̂ j > 0, for j = 1, . . . , J , and
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 ≥ α̂‖∇p̂‖2
L2(K̂ )

, for all p̂ ∈Rp (K̂ ) and some

α̂> 0;

(Q2)
∫

K̂ p̂(x̂)dx =∑J
j=1 ω̂ j p̂(x̂ j ), for all p̂ ∈Rσ(K̂ ) with σ=max{2p−2, p} if K̂ is simplicial, or

σ=max{2p−1, p+1} is K̂ is a rectangle.

For simplicial FE, assumption (Q2) implies (Q1) with an equality and α̂= 1. The quadrature

formula over the reference element K̂ induces a quadrature formula {x j ,K ,ω j ,K }J
j=1 over K

with x j ,K = FK (x̂ j ) and ω j ,K = ω̂ j det(∂FK ), for j = 1, . . . , J .

Let uH
QF be the numerical approximation of u the solution of problem (2.5) using the FEM

where the integrals are computed using a quadrature formula; i.e., uH
QF ∈V p

0 (Ω,TH ) satisfies

B H (uH
QF , w H )= ∑

K∈TH

J∑
j=1

ω j ,K f (x j ,K )w H (x j ,K ), ∀w H ∈V p
0 (Ω,TH ),

where the bilinear form B H : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R is defined by

B H (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K a(x j ,K )∇v H (x j ,K ) ·∇w H (x j ,K ),

where we assume that f and a can be evaluated at the quadrature points x j ,K . The well-

posedness follows from the Lax–Milgram lemma together with assumption (Q1), see [41,

Ch. 4. §4.1.]. Let assumptions (Q1) and (Q2) hold and assume that u ∈ H p+1(Ω), and a ∈
(W p+m,∞(Ω))d×d , m = 0,1. Then, the convergence rates are

‖u−uH
QF ‖H 1(Ω) ≤C H p |u|H p+1(Ω), if m = 0,

‖u−uH
QF ‖L2(Ω) ≤C H p+1|u|H p+1(Ω), if m = 1,

(2.10)

where the constant C is independent of H .
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2.1.2 Discontinuous finite element method (DG-FEM)

Flexibility in the mesh and local conservation properties are sometimes required in many

problems, and this is made possible by the use of discontinuous approximations in the finite

element spaces. The first discontinuous Galerkin method was introduced by Reed and Hill

[76] for hyperbolic equations and the first analysis was given by Lesaint and Raviart [82]

for linear problems. It has then be adapted to elliptic and parabolic equations leading to a

number of DG methods; we cite the original method for Navier–Stokes equation by Bassi and

Rebay [29], or for diffusion problems by Brezzi et al [35]. In this thesis, we focus on interior

penalty discontinuous Galerkin FEM [51, 25], where the FE spaces are allowed to be spaces

of discontinuous polynomials and where the continuity of the approximation is made by

including penalty terms. A review of discontinuous methods is proposed in [26].

In here, for simplicity, we restrict to simplicial finite elements, but notice that the discontinu-

ous FEM can be extended to quadrilateral FE.

Let {TH } be a shape-regular (T2) family of triangulations over Ω, composed of simplicial

elements K with diameter hK , such that Ω=⋃K∈TH
K and H =maxK∈TH hK . For each triangu-

lation TH in {TH }, we denote by E the set of d −1 dimensional interfaces of the mesh TH ; it

regroups the edges for d = 2 or the faces for d = 3. For two neighboring finite elements K+,K−
in the triangulation TH , an interior interface e is in the set E if ē = K+ ∩K−. Similarly, for a

finite element K ∈TH , a boundary interface e is in E if ē =K ∩Γ. The mesh allows for hanging

nodes, thus we assume that E is composed of the smallest common interface between two

neighboring elements. For any piecewise smooth functions v , we define the jump and average

by

�v� = v+nK+ + v−nK− , and {v}= 1

2
(v++ v−), for interior interfaces,

�v� = vn, and {v}= v, for boundary interfaces,
(2.11)

where n,nK± , denote the unit outward normal vectors to Γ and K± respectively.

For each triangulation TH in the family {TH }, a FE space of degree p ≥ 1 can be defined as

V p (Ω,TH )= {v H ∈ L2(Ω) | v H |K ∈P p (K ),∀K ∈TH },

where P p (K ) is the space of polynomials on K of total degree at most p. As opposed to the

conforming FE, it holds V p (Ω,TH ) � H 1
0 (Ω). We can however, define a piecewise Sobolev

space

H l (TH )=ΠK∈TH H l (K ), l ≥ 1,

and then obtain V p (Ω,TH )⊂H 1(TH ).

The interior penalty (IP) discontinuous Galerkin FE method reads: find uH ∈V p (Ω,TH ) such

that

BDG (uH , w H )= F (w H ), ∀w H ∈V p (Ω,TH ), (2.12)
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where the right hand side F is given by equation (2.8), and the bilinear form BDG : H 1(TH )×
H 1(TH )→R is defined by

BDG (v H , w H )=
∫
Ω

a(x)∇v H ·∇w H dx+∑
e∈E

∫
e
μe�v H ��w H �ds

−∑
e∈E

∫
e
({a(x)∇v H })�w H �ds,

where the second term is called the interior penalty term and μe , the penalty weighting

functions, that penalize the jumps of the functions at the interface e. The penalty weighting

functions are given by μe =αh−1
e , with α> 0 and he is the size of the interface e.

The bilinear form BDG can be made symmetric by adding a term {a(x)∇w H }�uH � in the last

integral; this leads to the symmetric IP method with a bilinear form given by

BDG (v H , w H )=
∫
Ω

a(x)∇v H ·∇w H dx+∑
e∈E

∫
e
μe�v H ��w H �ds

−∑
e∈E

∫
e
({a(x)∇v H }�w H �+ {a(x)∇w H }�v H �)ds.

(2.13)

An appropriate space must be considered for the analysis (see [25]), and we define a space

V (TH ) as

V (TH )=V p (Ω,TH )+H 1
0 (Ω)∩H 2(Ω), V (TH )⊂H 2(TH ),

equipped with a mesh-dependent norm

|||v ||| =
(
‖∇v‖2

L2(Ω)+
∑

K∈TH

h2
K |v |22,K +|v |2∗

)1/2

, (2.14)

where

|v |2m,K =
∑
|s|=m

‖∂s v‖2
L2(K ), ‖∇v‖2

L2(Ω) =
∑

K∈TH

|v |21,K , and |v |2∗ =
∑
e∈E

‖μe�v�‖2
L2(e).

Thanks to a discrete Poincaré inequality [25, Lemma 2.1]; i.e.,

‖v‖L2(Ω) ≤C (‖∇v‖2
L2(Ω)+|v |2∗)1/2,

it holds that (2.14) is a norm over the space V (TH ). The well-posedness of the discrete

problem (2.12) follows from the Lax–Milgram lemma, provided that the bilinear form BDG is

bounded and stable. The latter holds if the parameter α> 0 in the penalty weighting functions

μe is chosen sufficiently large [61]. Optimal convergence rates are obtained; assume that

u ∈H p+1(Ω), it holds

∣∣∣∣∣∣u−uH
∣∣∣∣∣∣≤C H p |u|H p+1(Ω), and ‖u−uH‖L2(Ω) ≤C H p+1|u|H p+1(Ω).
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2.2 Homogenization theory

The aim of homogenization theory is to capture the global (macroscopic or coarse) behavior

of a heterogeneous system. To this end, we consider the heterogeneous problem (2.1) where

the multiple scale are represented by ε> 0. When the heterogeneities are made smaller and

smaller, i.e., when ε tends to zero, the material is progressively replaced by a homogenized

one whose solution is a good approximation of the global behavior of the solution uε of (2.1).

Homogenization theory [80, 30] is the tool to establish the global behavior of uε, when ε tends

to zero.

The family of solutions {uε} is bounded by the data in H 1
0 (Ω), thus there exist a subsequence

{uε′}, and an element u0 ∈H 1
0 (Ω) such that weak convergence is obtained; i.e.,

uε′ � u0, weakly in H 1
0 (Ω).

It can be easily established that the vector aε∇uε is bounded by the data of the problem (2.1);

therefore, there exist a subsequence {aε′∇uε′} and a quantity ξ0 ∈ L2(Ω) such that

aε′∇uε′ � ξ0 weakly in L2(Ω)d .

Further, it holds

div(ξ0)= f , in Ω. (2.15)

The limit u0 is our quantity of interest and natural questions arise such as: is u0 a solution of

an elliptic boundary value in Ω and if so, can it be uniquely determined? In view of problem

(2.15), these questions are answered if we can find a link between ξ0 and u0. Homogenization

gives positive answers to the two questions and the key resides in the convergence of the

tensor aε when ε goes to zero. Notice that the right hand side f can also be varying at the fine

scale ε and we refer to [80, 44] for such treatments.

G and H-convergences were introduced by Spagnolo and de Giorgi [106, 45], Tartar [108], and

further by Murat and Tartar [90], and deal with the convergence of the solutions of problem

(2.1). The notion of G-convergence is concerned with the convergence of uε for boundary

problems with symmetric tensor aε, whereas the H-convergence deals with the convergence

of uε and aε∇uε for any matrices aε ∈ (L∞(Ω))d×d satisfying (2.2). The H-convergence reads:

for any family of tensor aε ∈ (L∞(Ω))d×d , there exists a tensor a0 such that a subsequence {uε′}

of {uε}, satisfies

uε′ � u0 weakly in H 1
0 (Ω), aε′∇uε′ � a0∇u0 weakly in L2(Ω)d ,

and where the limit u0 is the solution of the so-called homogenization problem

−div(a0(x)∇u0)= f , in Ω,

u0 = 0, on Γ.
(2.16)
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Note that a0 satisfies (2.2), with a different upper bound Λ, and that the homogenization

problem (2.16) is well-posed, thanks to the Lax–Milgram lemma. Even though, there exists

a unique u0 solution of (2.16), the limit u0 depends, a priori, on the subsequence {uε′}. The

uniqueness of the limit would hold if the sequence {uε} converges weakly to u0, i.e., if the

convergence holds for any subsequence {uε′} of {uε}. Further, in general, no explicit formulas

are available for the homogenized tensor a0.

However, in some situations, in particular in the periodic case, one can show that the tensor

a0 is independent of the subsequence {uε′}, which in turn implies that u0 is unique.

2.2.1 Periodic homogenization

Restricting the class of admissible tensors aε to periodic ones leads to explicit equations for the

homogenized tensor a0. As a result, one obtains a tensor a0 independently of the subsequence

{ε′} which implies that the homogenized solution u0 is also independent of {ε′}, and that

the sequence {uε} converges to u0. The homogenized tensor is described using solutions of

auxiliary periodic problems.

Let Y be the unit hypercube in Rd , i.e., Y = [0,1]d . Consider aε ∈ (L∞(Ω))d×d a Y -periodic

tensor in the fast variable, i.e., aε(x)= a(x, x/ε)= a(x, y) is Y -periodic in y and assume that

a(x, y) ∈C (Ω;L∞per (Y )). Explicit equations are available for the homogenized tensor a0; i.e.,

a0(x)=
∫

Y
a(x, y)(Id +∇χ(x, y))dy,

where ∇χ(x, y) = (∇χ1(x, y), . . . ,∇χd (x, y)) ∈ Rd×d and Id is the d ×d identity matrix. The

functions χi (x, y) are defined as the unique solutions of the cell problems

∫
Y

a(x, y)∇χi (x, y) ·∇wdy =−
∫

Y
a(x, y)ei ·∇wdy, ∀w ∈W 1

per (Y ), (2.17)

where {ei } is the canonical basis of Rd .

The sequence uε converges towards the homogenized solution u0 strongly in L2(Ω), but weakly

in H 1(Ω). Assuming sufficient regularity on the domain and the data, it holds

‖uε−u0‖L2(Ω) ≤Cε, and ‖uε− (u0+εu1(x, x/ε))‖H 1(Ω) ≤Cε1/2, (2.18)

where u1 is given by

u1(x, x/ε)=
d∑

j=1
χ j (x, x/ε)

∂u0(x)

∂x j
.

The estimate (2.18) holds if a(·, y) ∈W 1,∞(Y ), and u0 ∈H 2(Ω), see [80]. Further, thanks to the

regularity of aε, we have χ j ∈W 1,∞(Y ). The regularity on aε can be relaxed to a(·, y) ∈W 1,p (Y )

for p > 2, and χ j ∈W 1,p (Y )∩C 1,s(Y ) for s = 1−d/p. For the proof of (2.18), we refer to [80, 89].
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2.3 A brief review of numerical homogenization methods

Many problems are concerned with rapidly varying data with multiple scales. Although the

standard methods introduced in Section 2.1 provide us with an efficient tool to solve single-

scale problems, i.e., when no multiple scales are involved, such methods fail for multiple scale

problems. To obtain a good approximation uH , the FEM requires a discretization of Ω with a

mesh size H satisfying H � ε (see the FEM errors (2.9)). This is consistent with the fact that

the multiple scale variations in the data must be fully resolved by the numerical method. This

leads to a discretization of the domain Ω with a number of degrees of freedom of the order

O (ε−d ), and as ε goes to zero the cost of the method becomes prohibitive. This motivates the

need for different numerical methods.

In this section, we give a brief review of some numerical homogenization methods. Such

methods are split into two categories; the first one regroups the methods based on a global

extraction of the fine scale information, whereas the second one regroups the methods based

on a global to local downscaling, which is closely related to the homogenization theory. The

latter supplement macroscopic data, computed through micro computations, to obtain a

solution of an effective equation, which is solved using a macro solver. The main difference

between the two classes of methods lies in the extraction of the fine scale information; in the

first class all the information about the multiscale nature of the tensor are used, as opposed to

the second class of methods, where the small scales are needed only in some small subdomains

of Ω.

In the first category, one can find, amongst others, the multiscale finite element method

[78, 79], the generalized multiscale finite element method [57], the wavelet-based numerical

homogenization [50], and the localized orthogonal decomposition method [88].

The second class of methods regroups, amongst others, the heterogeneous multiscale method

[54], high-dimensional finite element methods [77], and the zero-order regularization of local

problems [68, 69, 70]. The HMM is the method used in this thesis and will be explained in

details in Section 2.4.

Although different, all numerical homogenization methods deal with the approximation of

the solution uε (also u0 in the process), and are based on two different discretization levels

on Ω; one coarse scale level to describe the macroscopic behavior of the fine scale solution,

and at least one fine scale level to recover the missing fine scale information. The numerical

homogenized solution lives in the coarse finite element space, and is considered as a good L2

approximation of the fine scale solution uε, if the coarse mesh size is not too large. However,

as the numerical homogenized solution corresponds to an average of uε, it lacks the fine scale

information, making it a bad approximation in H 1.

The number of numerical homogenization methods is large, and the purpose of the thesis is

not to review all existing methods. We therefore, chose to focus only on two methods in each

category given above.
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Outline of Section 2.3. The outline is as follows. In 2.3.1 we discuss two methods based on

the global extraction of the fine scales; the multiscale finite element method and the localized

orthogonal decomposition method. In 2.3.2 we give one method based on homogenization;

the high-dimensional finite element method.

2.3.1 Numerical methods based on global extractions of the small scales

The methods considered here are based on solving fine scale problems locally in an overlap-

ping partition of Ω. The fine scales are recovered globally on the domain Ω, as it is covered by

the union of the overlapping subdomains. In that sense, all the available information about

the fine scales are needed and used. This leads to numerical methods with a computational

complexity depending on the number of degrees of freedom of the fine grid.

In here, we chose to give a detailed description of the MsFEM and the LOD. The LOD aims at

reducing a high-dimensional finite element space, and we note that other methods use the

same strategy. We cited the generalized MsFEM [57], but refer as well to recent developments

[39] and [40].

Multiscale finite element method

The multiscale finite element method (MsFEM) was first introduced by Hou and Wu [78] and

further developed in [79]. The idea is to adapt the basis functions to the local properties of

the problems; this is done by enriching the nodal basis functions of the finite element space

with the local fine scales. The numerical approximation of the solution uε is obtained from

the Galerkin method applied to the set of enriched functions. For higher order MsFEM, we

refer to [24, 75].

The classical formulation of the MsFEM produces resonance errors due to the unnatural

forced boundary conditions used in the local problems. Indeed, in each macro element of the

partition of Ω, the method requires the new multiscale basis functions to be equal to the coarse

nodal basis functions on the boundary of the finite element. This implies strong oscillations

close to the boundary of the coarse element, and lead to a pollution in the quality of the

multiscale approximation — a term ε/H . In order to decrease these effects, oversampling can

be applied; the local problems are not solved in the macro element K , but in a slightly larger

domain U (K ). The obtained solution is restricted to the finite element K and only this part is

used as the new multiscale basis function. Hence, the information coming from U (K ) \ K is

ignored. This strategy improves the final approximation, which is now, non-conforming.

We briefly give the main components of the general MsFEM. Let {TH } be a family of coarse

partitions over Ω, into elements K of mesh size hK , and set H =maxK∈TH hK . The mesh size

H > 0 is, typically, larger than the fine scale, i.e. H � ε. For each partition TH ∈ {TH }, one

defines a macro finite element space of degree p ≥ 1, V p
0 (Ω,TH ) following (2.6).
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The fine scale levels are defined as follows. Around each coarse element K , we define a shape

regular domain U (K ), i.e., K ⊂U (K ) and consider a family of fine partitions {Th} with the

requirement that the fine scales are fully resolved in the grids, i.e., h ≤ ε. For each partition Th

of {Th} we define a micro finite element space of degree p ≥ 1, V p (U (K ),Th), defined as in

(2.6). Further, we assume that both family of partitions are admissible (T1) and shape-regular

(T2). Consider {ϕH
K ,i }nK

i=1 the set of coarse basis functions in V p
0 (Ω,TH ) with support on K , and

where nK denotes the number of nodes in the element K — nK depends on the dimension d ,

the degree p of the finite element space, and on whether K is simplicial or quadrilateral. To

each basis function, we seek Qh
K (ϕH

K ,i ) ∈V p (U (K ),Th) such that

∫
U (K )

aε(x)∇Qh
K (ϕH

K ,i ) ·∇w hdx =−
∫

U (K )
aε(x)∇ϕH

K ,i ·∇w hdx, ∀wh ∈V p (U (K ),Th).

The multiscale basis functions can be constructed by ϕH
K ,i +Qh

K (ϕH
K ,i ), for all i = 1, . . . ,nK and

for all K ∈TH . The multiscale finite element space V p
ms(Ω,TH ) is obtained by the span of the

multiscale basis functions. The coarse MsFEM approximation is the solution of the variational

formulation: find uH ∈V p
ms(Ω,TH ) such that

∑
K∈TH

|K |
∫

K
aε(x)(∇uH +∇Qh

K (uH )) ·∇w H dx =
∫
Ω

f w H dx, ∀w H ∈V p
ms(Ω,TH ).

The multiscale approximation of uε is defined by

uH
ms =

∑
K∈TH

1K (uH +Qh
K (uH )).

where 1K is the indicator function of K .

Assume that aε is locally periodic in the fast variable; e.g. aε(x)= a(x, x/ε), where a(x, y) is

Y -periodic in y . Further assume that uε ∈ H 2(Ω). Then, an a priori error estimate can be

derived [79, 24]; i.e.,

( ∑
K∈TH

‖∇(uε−uH
ms)‖2

L2(K )

)1/2

≤C

(
ε

dH
+ε1/2+H + h

ε

)
,

where dH =minK∈TH dist(K ,∂U (K )).

Localized orthogonal decomposition method

The localized orthogonal decomposition method (LOD) was initially proposed by Malqvist

and Peterseim [88]. The ides behind the LOD is to reduce a high-dimensional finite element

space by sorting out functions in a kernel of a coarse scale interpolation operator. Let {TH } be

a family of partitions over Ω, and, to each partition TH in {TH }, consider a fine refinement

Th of TH , where each element is at least refined twice. For each TH and Th , we construct

FE spaces of degree p ≥ 1, V p
0 (Ω,TH ) and V p

0 (Ω,Th), as defined in (2.6). The goal is to split

21



Chapter 2. Multiscale methods for elliptic problems

the fine space V p
0 (Ω,Th) into a coarse FE space V p

ms(Ω,TH ) and a fine space Vh containing

negligible information, i.e.,

V p
0 (Ω,Th)=V p

ms(Ω,TH )⊕Vh .

Let {xi }ni nt

i=1 , be the set of interior nodes in the mesh TH , and consider ϕH
i the nodal basis

function such that ϕH
i (x j )= δi j , for i , j = 1, . . . ,ni nt . One consider a Clément-type operator,

IH : H 1
0 (Ω)→V p (Ω,TH ), defined as

IH (v)=
ni nt∑
i=1

vxi ϕ
H
i , with vxi =

(v,ϕH
i )L2(Ω)

(1,ϕH
i )L2(Ω)

.

The fine space Vh is given by the kernel of the operator IH on V p (Ω,Th); i.e.,

Vh = {vh ∈Vh | IH (vh)= 0},

and one notices that all the fine scale information that are not captured by the coarse scale

FE space V p (Ω,TH ) are present in Vh . The multiscale basis used to construct the Galerkin

approximation of the homogenized solution u0, are living in the space V p
ms(Ω,TH ), which is

given by the Bε-orthogonal complement of the space Vh onto the fine scale space V p (Ω,Th).

More precisely, V p
ms(Ω,TH )= ker(Ph), where Ph : V p (Ω,Th)→Vh satisfies

∫
Ω

aε(x)∇Ph(vh) ·∇w hdx =
∫
Ω

aε(x)∇vh ·∇w hdx, ∀wh ∈Vh .

Notice that it requires to solve a fine scale problem for each coarse basis function on the whole

domain Ω. To solve that issue, one localizes the decompositions by using patches Uk (K ) that

consists of a coarse element K ∈TH and k-layers of coarse elements around, i.e., for each

k ∈N, and K ∈TH , one constructs iteratively a sequence of patches {Uk (K )} by

U0(K )=K , Uk (K )=⋃{T ∈TH | T ∪Uk−1(K ) �= �}, k = 1,2, . . . .

Now instead of considering Vh on Ω, the strategy proposed by [88] is to consider

Vh(Uk (K ))= {vh ∈Vh | vh = 0 in Ω\Uk (K )}.

Then, one defines a local corrector QK
h : V p (Ω,TH )→Vh(Uk (K )) by: for each ϕH in the space

V p (Ω,TH ) the corrector QK
h (ϕH ) ∈Vh(Uk (K )) satisfies

∫
Uk (K )

aε(x)∇QK
h (ϕH ) ·∇w hdx =−

∫
K

aε(x)∇ϕH ·∇w H dx, ∀wh ∈Vh(Uk (K )).

The multiscale FE space V p
ms,k (Ω,TH ) is given by

V p
ms,k (Ω,TH )= {ϕH +Qh(ϕH ) |ϕH ∈V p (Ω,TH )},
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where Qh(ϕH ) is a global corrector defined by

Qh(ϕH )= ∑
K∈TH

QK
h (ϕH ).

The variational formulation of the LOD method reads: find uH
ms ∈V p

ms,k (Ω,TH ) such that

Bε(uH
ms , w H )=

∫
Ω

f w H dx, ∀w H ∈V p
ms,k (Ω,TH ),

where Bε is given in (2.4). An a priori error estimate for the LOD is available [88, 73]

‖uε−uH
ms‖H 1(Ω) ≤C (H +k

d
2 θk )+ inf

vh∈V p (Ω,Th )
‖uε− vh‖H 1(Ω),

where 0< θ < 1 represents the exponential decay of QK
h (ϕH ) to zero in Ω\ K .

2.3.2 Numerical methods based on homogenization

Here, we discuss methods that are directly related to homogenization theory. Their nature

differ from the methods given in 2.3.1, in the sense that the methods presented here are based

on local computations in subdomains of diameter δ� H . One can then guess the homog-

enized tensor a0 from these computations and obtain, on a coarse grid, the homogenized

solution u0 as a solution of an effective equation. The complexity of such methods reduces

drastically, since the fine scales are resolved only in small subdomains. However, they rely on

homogenization theory, which requires assumptions on the heterogeneous tensor aε, such

as scale separation, periodicity, or statistical distributions. Once the homogenized solution

is computed, post-processing procedures can be applied and fine scale information can be

recovered. From that strategy, we turn the L2 approximation of the fine scale solution uε

into an H 1 approximation. Global to local post-processing (or global to local downscaling)

methods such as the L2 global to local projection method [27] or the goal-oriented adaptive

method [95] are the subject of Chapter 5.

The thesis focuses on multiscale problems with two scales and uses the heterogeneous mul-

tiscale method. Although it relies on homogenization theory as well, the heterogeneous

multiscale method (HMM) is detailed in Section 2.4.

It is well-known, that the fine scale information in the solution of problem (2.1) has been lost

in the homogenization process. Correctors can be added to the homogenized solution to gain

the lost oscillations, but they are as costly as a fine scale solver like the FEM. For two-scales

problems, the classical procedure to recover the fine scale is to do a multiscale asymptotic

expansion and then prove the convergence using Tartar energy method, see [30, 44]. However,

the generalization to multiple scales is not trivial, and we chose here to review one method

that addresses this issue. We note that a fully discrete analysis of the FE-HMM for problems

with N well separated scales is given by Abdulle and Bai in [6].
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High-dimensional FEM for multiple scales elliptic problems

Nguetseng [91] and later Allaire [21] developed a new method for the two-scale convergence,

where the asymptotic extension and the energy method are put together in one method. A

generalization of this method to multiple scale problems can be found in [23] for periodic

homogenization. Allaire and Briane [23] obtain a multidimensional limiting equation that

contains the full fine scale information, i.e., recovery of the physical oscillations on all length

scales in the exact solution.

Hoang and Schwab in [77] introduced a multiscale FEM for elliptic problems with scale

separation based on [23], which allows us to fully resolve the fine scales with a degree of

freedom that is of log-linear complexity in 1/H and obtain robust convergence rates in the H 1

norm. Let Ω ∈Rd be a bounded domain a consider Problem (2.1) with n+1-scales described

by ε, i.e., aε(x) = a(x, x/ε1, . . . , x/εn) is a symmetric and bounded matrix function of n +1

variables taking values in Rd×d , satisfies the assumption (2.2) and is Y -periodic with respect

to yi = x/εi , for all i = 1, . . . ,n. For n = 1, we recover the classical two-scale homogenization

problem. The limit of uε when ε converges to zero is posed on a tensorized domain R(n+1)d

and in order to obtain robust convergence, the FE spaces are chosen to be sparse tensor

products FE spaces. Scale separation is assumed in the following sense: for ε1, . . . ,εn , positive

functions of ε all converging to zero when ε tends to zero, we assume

lim
ε→0

εi+1

εi
= 0, ∀i = 1, . . . ,n.

Let Y1, . . . ,Yn denote n unit cells for the n fast scales. The sequence {uε} is said to (n+1)-scale

converge to u0(x, y1, . . . , yn) ∈ L2(Ω×Y1× . . .Yn) if

lim
ε→0

∫
Ω

uεϕ(x,
x

ε1
, . . . ,

x

εn
)dx =

∫
Ω

∫
Y1

. . .
∫

Yn

u0(x, y1, . . . , yn)ϕ(x, y1, . . . , yn)dxdy1 . . .dyn ,

for ϕ ∈ L2(Ω,C 1
per(Y1× . . .×Yn)). A compactness result allows us to extract from any bounded

sequence {uε}, a subsequence that (n+1)-scale converge to u0. We denote the converging

subsequence by {uε}.

The variational formulation of problem (2.1) is: find (u,u1, . . . ,un) ∈V such that

B((u, {ui }), (ϕ, {ϕi }))

=
∫
Ω

∫
Y1

. . .
∫

Yn

a

(
∇x u+

n∑
i=1
∇yi ui

)
·
(
∇xϕ+

n∑
i=1
∇yi ϕi

)
dxdy1 . . .dyn (2.19)

=
∫
Ω

f ϕdx, ∀(ϕ, {ϕi }) ∈V,

where V is given by

V= {(ϕ, {ϕi }) |ϕ ∈H 1
0 (Ω),ϕi ∈ L2(Ω×Y1 . . .×Yi−1, H 1

per(Yi )/R), i = 1, . . . ,n}.
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2.3. A brief review of numerical homogenization methods

They look for numerical solution in a sparse tensor product FE space [77]. A sparse tensor

product FE space in Ω×Y1× . . .×Yn is constructed with hierarchical sequences of FE spaces

in the macro and micro domains. For the macro variable, we consider a sequence {V l }∞l=0
of subspaces of H 1(Ω) and for the micro variables, {V l

per}∞l=0 subspaces of H 1
per(Y ) such that

V l ⊂V l+1 and V l
per ⊂V l+1

per , for all l = 0,1, . . .. In order to define the sparse tensor product, we

state some orthogonal projections defined in [77]

P l1
per : H 1

per(Y )→V l
per,

P l0
per : L2(Y )→V l

per,

P l0 : L2(Ω)→V l .

The sparse tensor product FE spaces are

Ṽ L
i =

⊕
0≤ j0+...+ ji≤L

W j0 ⊗W j10
per ⊗ . . .⊗W ji−10

per ⊗W ji 1
per , ∀i = 1, . . . ,n,

where the W -spaces are defined with the orthogonal projection given previously as

W l = (P l0−P (l−1)0)V l ,

W l0
per = (P l0

per−P (l−1)0
per )V l

per,

W l1
per = (P l1

per−P (l−1)1
per )V l

per.

The sparse FE space for the approximation of the variational problem (2.19) is

ṼL = {(ũ, {ũL
i }) | ũL ∈V L

0 , ũL
i ∈ Ṽ L

i , i = 1, . . . ,n},

where the space V L
0 is the full tensor product spaces defined similarly to Ṽ L

i , where one sums

on 0 ≤ jk ≤ L,k = 0,1, . . . , i instead of 0 ≤ j0+ . . .+ ji ≤ L. The numerical approximation of

(u, {ui }), solution of (2.19) is (ũL , {ũL
i }) ∈ ṼL solution of

B(ũL , {ũL
i };ϕ̃L , {ϕ̃L

i })=
∫
Ω

f ϕ̃L
i dx, ∀(ϕ̃L , {ϕ̃L

i }) ∈ ṼL .

Robust convergence to the physical solution uε is stated in [77] for a tensor product of h-FE

spaces. Ideally, one would like a convergence similar to (2.18) using the FE functions uL
1

and ũL
1 . However, as the norms of uL

1 and ũL
1 might be unbounded, a post-processing of the

function u1 is done, using a folding operator U ε defined in [43].

For the multiple scale case, error estimates is harder to obtain and might not even exist.

However, one is able to construct a numerical corrector for the special case where εi+1/εi is

an integer and established convergence in H 1-norm[77].
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Definition 2.3.1. Let ψ ∈ L1(Ω×Y1× . . .×Yn), the folding operator U ε
n is defined by

U ε
n(ψ)(x)=

∫
Y1

. . .
∫

Yn

ψ

(
ε1

[
x

ε

]
+ε1z1,

ε2

ε1

[
ε1

ε2

{
x

ε1

}]
+ ε2

ε1
z2, . . . ,

εn

εn−1

[
εn−1

εn

{
x

εn−1

}]
+ εn

εn−1
zn ,

{
x

εn

})
d zn . . .d z1,

where {x/ε} := x/ε− [x/ε]

Using the folding operator U ε
n , the functions u1, . . . ,un approximate the oscillations of {uε} as

ε goes to 0.

Lemma 2.3.2. For the problem (2.1) with scale separation, it holds

lim
ε→0

‖∇uε−U ε
n(∇x u+∇y1 u1+ . . .+∇yn un)‖L2(Ω) = 0

Schwab and Hoang [77] obtain the following error estimate for the multiple scale analysis,

where the dependencies on ε and the FE spaces are dropped.

Theorem 2.3.3. With the sparse tensor product FE approximation, it holds

lim
ε→0

L→∞
‖∇x uε(x)−U ε

n(∇x ũL +∇y1 ũL
1 + . . .+∇yn ũL

n)‖L2(Ω) = 0.

2.4 Finite Element Heterogeneous Multiscale Method

The finite element heterogeneous multiscale method (FE-HMM or often purely HMM) was

initially introduced by E and Engquist [54]. The original idea of the method is to guess the

unknown homogenized equation (2.16) by solving local sample problems around macroscopic

quadrature points. These local problems are often formulated in analogy to the cell problems

in classical homogenization theory for locally periodic structures.

The attractivity of such methods is the possibility to obtain numerical approximations that

correctly describe the macroscopic behavior of the multiscale problem at a cost that however is

independent of the smallest scale. This can be achieved when the small scales can be localized,

i.e., when the problem features scale separation. In Figure 2.1, we plot a tensor with scale

separation for different values of ε with a sampling domain of size ε; the sampling domains are

represented with a black square. In Figure 2.2, we plot a tensor which does not have explicit

separation of scales, the tensor is oscillatory at various small scales that are not well-separated.

Therefore, we cannot explicitly identify a value ε or δ, for the sampling domains. In Figure 2.2,

we zoomed in a portion of the tensor of size 1/10.
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ε

ε = 1
4

ε = 1
8

ε = 1
16

Figure 2.1 – Locally periodic tensor with explicit scale separation and with sampling domain
(black squares) of size ε, for ε= 1/4,1/8, and 1/16.

Figure 2.2 – Highly oscillatory tensor with non separated micro scales.

The framework that makes this family of multiscale methods efficient is that of a simultaneous

coupling of a macro and a micro method. Rigorous convergence analysis has been established

for locally periodic coefficients or random stationary coefficients [1, 56, 3]. We mention as

well, the FE-HMM for the Stokes multiscale problems [7], the advection-diffusion multiscale

problems [11] and non-linear mutliscale parabolic problems [12].

From the homogenization theory (reviewed in Section 2.2) the exact heterogeneous solution

uε of problem (2.1) can be decomposed into a coarse (homogenized), oscillations-free, part

u0, and a fine part u1 := (uε−u0)/ε. The fine part u1 is rapidly oscillating at a frequency of

order ε, but remains bounded in L∞; it holds ‖u1‖L∞(Ω) = O (1) and ‖∇u1‖L2(Ω) = O (ε−1). In

particular, provided sufficient regularity (see (2.18)), this implies

‖uε−u0‖L2(Ω) = ‖ε u1‖L2(Ω) ≤Cε.
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The heterogeneous multiscale method can be now divided in two main components: a macro-

scopic scheme for the approximation of the macro variables on a coarse grid (i.e. approxi-

mating the unknown homogenized coefficient a0 and consequently also the homogenized

solution u0) and a recovery of the fine scale data (i.e. computing local approximations of the

fine scale part u1).

Let {TH } be a family of coarse, admissible (T1), and shape-regular (T2) partitions over the

domain Ω. We allow the mesh size to be larger than the fine scales, i.e., H � ε. For each

partition TH in {TH }, we can define a macro FE space on Ω of degree p ≥ 1 by V p
0 (Ω,TH )

following (2.6).

Let K̂ be a reference triangle and consider a quadrature formula on K̂ defined as in 2.1.1.

In each macro element K ∈ TH , we consider a quadrature formula {x j ,K ,ω j ,K }, j = 1, . . . , J

composed of nodes x j ,K and weights ω j ,K , and derived from the quadrature formula on K̂ .

The quadrature formula satisfies (Q1) and (Q2). In each macro element K ∈TH , we construct

sampling domains Kδ j = x j ,K +δ(−1/2,1/2)d , i.e. a cube of diameter δ�H , that is centered

around the quadrature point x j ,K . The sampling domains Kδ j are used to sample the effective

macroscopic coefficient a0 at the quadrature points x j ,K and to use a0(x j ,K ) as representative

values for the whole coarse element K . The notation Kδ j should be understood as Kδ(x j ,K ),

but we drop the dependency on x j ,K to simplify the heavy notations.

Let {Th(Kδ j )} be a family of admissible (T1) and shape-regular (T2) partitions, of size h ≤ ε,

over the sampling domain Kδ j . We make an abuse of notations and use Th to denote Th(Kδ j ).

For each partition Th in {Th}, we define a micro FE space on Kδ j of degree q ≥ 1 by

V q (Kδ j ,Th)= {vh ∈W (Kδ j ) | vh |K ∈Rq (K ),∀K ∈Th}, (2.20)

where the Sobolev space W (Kδ j ) ⊂ H 1(Kδ j ) incorporates the boundary condition imposed

on the sampling domain. The space W (Kδ j ) sets the coupling conditions between the macro

and micro problems via boundary conditions; we use either periodic boundary conditions or

homogeneous Dirichlet boundary conditions, i.e.,

W (Kδ j )=H 1
per (Kδ j ), for periodic coupling, (2.21)

W (Kδ j )=H 1
0 (Kδ j ), for Dirichlet coupling. (2.22)

To obtain uniqueness of the micro solutions with the periodic coupling, we consider as

solutions the functions with zero mean over Kδ j .

In each sampling domain Kδ j , we find the micro contribution to the macro stiffness matrix, by

solving elliptic problems with periodic or Dirichlet boundary conditions. The fine scales are

then used only inside Kδ j .
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•

• •
(Ω,TH)

K

•xj,K

(Kδj ,Th)

δ

Figure 2.3 – Illustration of the FE-HMM procedure with a macro and micro partitions. The
quadrature points (black bullets) are obtained with a QF of order 2.

The FE-HMM procedure is sketched in Figure 2.3. It is defined as follows: find uh
j on the

sampling domain Kδ j such that uh
j −uH

lin, j ∈V q (Kδ j ,Th) and

∫
Kδ j

aε(x)∇uh
j ·∇zhdx = 0, ∀zh ∈V q (Kδ j ,Th), (2.23)

where uH
lin, j is a linearization of the macro function uH at the quadrature node x j ,K ; i.e.,

uH
lin, j (x)=uH (x j ,K )+ (x−x j ,K ) ·∇uH (x j ,K ), x ∈K . (2.24)

For piecewise linear functions, it holds that uH
lin, j = uH . Here, we use the notation uH

lin, j instead

of uH
lin,x j ,K

.

Problems (2.23) are well-posed as the tensor aε is bounded and uniformly elliptic (2.2). The

variational formulation of the finite element heterogeneous multiscale method (FE-HMM)

states [54, 3]: find uH ∈V p
0 (Ω,TH ) such that

BH (uH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (2.25)

where the bilinear form BH : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R is defined by

BH (uH , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)∇uh
j ·∇w h

j dx (2.26)

and the right-hand side F : V p
0 (Ω,TH )→R by

F (w H )=
∫
Ω

f w H dx.

The function uh
j (resp. wh

j ) is the solution of the micro problems (2.23) and satisfies uh
j −uH

lin, j ∈
V q (Kδ j ,Th) (resp. wh

j −w H
lin, j ∈V q (Kδ j ,Th)). The numerical homogenized tensor in a macro

element K is denoted by a0
K (or sometimes a0,h

K ) and can be obtained during the assembly
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process, using the solutions of the micro problems. Let {ei } be the canonical basis of Rd . For

each ei and in each sampling domain Kδ j , we seek ψi ,h
Kδ j

∈V q (Kδ j ,Th) the solution of

∫
Kδ j

aε(x)∇ψi ,h
Kδ j
·∇zhdx =−

∫
Kδ j

aε(x)ei ·∇zhdx, ∀zh ∈V q (Kδ j ,Th), (2.27)

where the boundary conditions are given by the Sobolev space W (Kδ j ). Without further

assumptions on the heterogeneous tensor aε, we can define

a0
K (x j ,K )= 1

|Kδ j |
∫

Kδ j

aε(x)

(
I + J T

ψh
Kδ j

)
dx, (2.28)

where J T
ψh

Kδ j

is a d ×d matrix given by
(

J�
ψh

Kδ j

)
i k = ∂ψi ,h

Kδ j
(x)/∂xk .

Remark 2.4.1. With further assumptions on the tensor aε, such as periodicity, a0
K from (2.28)

is a good approximation of the homogenized tensor a0. The error between a0 and a0
K at a

quadrature point x j ,K is decomposed into a micro and a modeling error. Details are given in

[3, 4, 5], and are recalled in Section 2.5.

A standard FEM based on the quadrature formulas can be applied on the homogenized

problem (2.16), this leads to a variational formulation: find u0,H ∈V p
0 (Ω,TH ) such that

B0,H (u0,H , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (2.29)

where the bilinear form B0,H : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R is given by

B0,H (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K a0(x j ,K )∇v H (x j ,K ) ·∇w H (x j ,K ), (2.30)

provided that a0 is well-defined at the quadrature points x j ,K .

Reformulation of the FE-HMM

We can write the FE-HMM bilinear form BH (2.26) in terms of the macro functions uH , v H ∈
V p

0 (Ω,TH ) and the numerical homogenized tensor a0
K . As we have uh

j −uH
lin, j ∈V q (Kδ j ,Th), it

can be used as a test function in a scaled version of (2.23); i.e.,

1

|Kδ j |
∫

Kδ j

aε(x)∇uh
j ·∇(uh

j −uH
lin, j )dx = 0.

Then, we have the following Lemma (see [4, Lemma 12] and [5, Lemma 5.4] for a proof).

Lemma 2.4.2. Let v H , w H ∈V p
0 (Ω,TH ) and vh

j (resp. wh
j ) be such that vh

j −v H
lin, j ∈V q (Kδ j ,Th)

(resp. wh
j −w H

lin, j ∈V q (Kδ j ,Th)) and obtained from the micro problems (2.23), and where v H
lin, j

30



2.4. Finite Element Heterogeneous Multiscale Method

(resp. w H
lin, j ) are defined by (2.24). Further, let a0

K be defined by (2.28). Then, we have

1

|Kδ j |
∫

Kδ j

aε(x)∇vh
j ·∇w h

j dx = 1

|K |
∫

K
a0

K (x j ,K )∇v H
lin, j ·∇w H

lin, j dx.

The bilinear form BH (2.26) of the FE-HMM can be reformulated as

BH (uH , v H )= ∑
K∈TH

J∑
j=1

ω j ,K a0
K (x j ,K )∇uH (x j ,K ) ·∇v H (x j ,K ), (2.31)

where we used ∇uH
lin, j (x)≡∇uH (x j ,K ) (resp. ∇v H

lin, j (x)≡∇v H (x j ,K )) for x ∈K . Notice that the

reformulation (2.31) looks like a FEM bilinear form with quadrature points and weights for a

coarse problem.

By considering the micro problems (2.27) in the exact Sobolev spaces W (Kδ j ), one obtains a

semi-discrete FE-HMM problem, which will be useful for the a priori error analysis in Section

2.5. Let ψi
Kδ j

∈W (Kδ j ) be the solution of

∫
Kδ j

aε(x)∇ψi
Kδ j
·∇zdx =−

∫
Kδ j

aε(x)ei ·∇zdx, ∀z ∈W (Kδ j ), (2.32)

where W (Kδ j ) is defined by (2.21) or (2.22). Let ā0
K be given by

ā0
K (x j ,K )= 1

|Kδ j |
∫

Kδ j

aε(x)

(
I + J T

ψKδ j

)
dx, (2.33)

where J T
ψKδ j

is a d ×d matrix given by

(
J�ψKδ j

)
i k
= ∂ψi

Kδ j
(x)/∂xk . Similarly to Lemma 2.4.2, it

holds.

Lemma 2.4.3. Let v H , w H ∈ V p
0 (Ω,TH ) and vh

j (resp. wh
j ) be such that vh

j − v H
lin, j ∈W (Kδ j )

(reps. wh
j −w H

lin, j ∈W (Kδ j )) and obtained from the micro problems (2.23) in W (Kδ j ), and where

v H
lin, j (resp. w H

lin, j ) are defined by (2.24). Further, let ā0
K be defined by (2.33). Then, we have

1

|Kδ j |
∫

Kδ j

aε(x)∇v j ·∇w j dx = 1

|K |
∫

K
ā0

K (x j ,K )∇v H
lin, j ·∇w H

lin, j dx.

Then, the semi-discrete FE-HMM reads: find ūH ∈V p
0 (Ω,TH ) such that

B̄H (ūH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (2.34)

where the bilinear form B̄H : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R is given by

B̄H (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K ā0
K (x j ,K )∇v H (x j ,K ) ·∇w H (x j ,K ).
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2.4.1 Discontinuous Galerkin FE-HMM

In this section, the heterogeneous multiscale method is combined with the interior penalty

discontinuous Galerkin method. The obtained method is denoted here by DG-FE-HMM [5].

As in 2.1.2 about discontinuous Galerkin FEM, we restrict the method to simplicial finite

elements.

Let {TH } be a family of shape-regular (T2) triangulations over the computational domain Ω,

with mesh size H =maxK∈TH hK greater than the fine scales ε. Consider a quadrature formula

{x̂ j ,K ,ω̂ j ,K } on a reference element K̂ , and assume that the quadrature formula verifies the

assumption (Q2). The quadrature formula is exact for polynomials of degree 2p−2. In order

to reduce the cost of the method, we take the minimal J such that the quadrature formula is

still exact.

For each triangulation TH in {TH }, we define a FE space of degree p as

V p (Ω,TH )= {v H ∈ L2(Ω) | v H |K ∈P p (K ),∀K ∈TH },

where P p (K ) is the space of polynomials on K of total degree at most p. In order to reduce

the cost of the method, we take the minimal J such that the quadrature formula is still

exact, i.e., J = 1
2 p(p + 1) if d = 2, or J = 1

6 p(p + 1)(p + 2) if d = 3. Following the FE-HMM

strategy, the bilinear form BDG (2.13) is modified to allow large mesh size H : it is defined as

BH ,DG : V p (Ω,TH )×V p (Ω,TH )→R

BH ,DG (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)∇vh
j ·∇w h

j dx+∑
e∈E

∫
e
μe�v H ��w H �ds

−∑
e∈E

∫
e

(
{Πaε∇vh

j
}�w H �+ {Πaε∇w h

j
}�v H �

)
ds,

where vh
j (resp. wh

j ) is the solution of the micro problems (2.23) in the micro FE space

V q (Kδ j ,Th) defined in (2.20). Further for each macro element K ∈TH , we define a quantity

Πaε∇vh
j
∈P p−1(K )d as

Πaε∇vh
j
(x j ,K )= 1

|Kδ j |
∫

Kδ j

aε(x)∇vh
j dx, j = 1, . . . , J .

Then we can define the average {Πaε∇vh
j
(x j ,K )} as in (2.11). The DG-FE-HMM reads: find

uH ∈V p (Ω,TH ) such that

BH ,DG (uH , w H )= F (w H ), ∀w H ∈V p (Ω,TH ), (2.35)

where the right-hand side F is given by (2.8).
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2.5 A priori error analysis for the (DG-)FE-HMM

In this section, we are interested in the a priori error estimates for the FE-HMM and DG-FE-

HMM derived in [3, 4, 5]. We focus on the error between u0, the exact homogenized solution

obtained by solving the homogenized problem (2.16), and uH , the numerical homogenized

approximation obtained from problem (2.25), if the FE-HMM is used, or by (2.35), if the

DG-FE-HMM is used instead. The difference between u0 and uH is decomposed into

‖u0−uH‖ ≤ eMAC+eMOD+eMIC,

respectively, the macro, modeling, and micro errors. The norm ‖·‖ stands for the norms ‖·‖H 1 ,

‖ ·‖L2 , or for the DG norm |||·||| defined in equation (2.14). Using the numerical approximations

u0,H and ūH , given by (2.29) and (2.34), respectively, one obtains that the macro, modeling,

and micro errors are

eMAC = ‖u0−u0,H‖,

eMOD = ‖u0,H − ūH‖,

eMIC = ‖ūH −uH‖.

The modeling and micro errors can also be given in terms of the homogenized tensor a0 and

the two tensors ā0
K , and a0

K , defined in (2.28) and (2.33), respectively,

eMOD = sup
K∈TH ,x j ,K ∈K

‖a0(x j ,K )− ā0
K (x j ,K )‖F ,

eMIC = sup
K∈TH ,x j ,K ∈K

‖ā0(x j ,K )−a0
K (x j ,K )‖F .

We start by giving the estimates for the FE-HMM and then for the DG-FE-HMM.

A priori error estimates for the FE-HMM

One can obtain an estimate for the macro and micro errors with no assumptions on the tensor

aε besides the ellipticity (2.2). However, specific knowledge about aε is needed for an estimate

of the modeling error.

Macro error. Let u0 be the homogenized solution of problem (2.16) and u0,H be its FEM

approximation given by problem (2.29). Assume that the bilinear form (2.30) is based on a

quadrature formula satisfying (Q1) and (Q2), and that (2.10) holds. Assume that u0 ∈H p+1(Ω),

and that a0 ∈ (W p+m,∞(Ω))d×d , with m = 0,1 then

eMAC,H 1 = ‖u0−u0,H‖H 1(Ω) ≤C H p , for m = 0

eMAC,L2 = ‖u0−u0,H‖L2(Ω) ≤C H p+1, for m = 1.
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Micro error. For the micro error, some assumptions on the micro functions ψi
Kδ j

, the solutions

of (2.32), are needed; i.e.,

(H1) |ψi
Kδ j
|H q+1(Kδ j ) ≤Cε−q |Kδ j |1/2, for all i = 1, . . . ,d , q ∈N, and where C is independent of ε,

x j ,K , and Kδ j .

Let ūH and uH be the solutions of problems (2.34) and (2.25), respectively, with the same

coupling conditions (either periodic (2.21) or Dirichlet (2.22)). Then, assuming (H1), it holds

eMIC = ‖ūH −uH‖H 1(Ω) ≤
(

h

ε

)2q

,

where q is the degree of the micro FE space V q (Kδ j ,Th).

Modeling error. First, we assume that aε is locally periodic in the fast variable y ; i.e.,

(H2) aε(x)= a(x, x/ε)= a(x, y) is Y -periodic in y .

Let u0,H and ūH be given by problems (2.29) and (2.34), respectively. Then, assuming (H2),

the modeling error eMOD = ‖u0,H − ūH‖H 1(Ω) can be bounded by

eMOD ≤Cε, if W (Kδ j )=H 1
per(Kδ j ), δ/ε ∈N,

eMOD ≤C (δ+ ε

δ
), if W (Kδ j )=H 1

0 (Kδ j ), δ/ε ∉N,δ> ε.
(2.36)

Further, if we collocate the slow variable x in aε to the quadrature points x j ,K , i.e., we replace

a(x, x/ε) by a(x j ,K , x/ε) in the macro (2.26) and micro (2.27) bilinear forms, we obtain

eMOD = 0, if W (Kδ j )=H 1
per(Kδ j ), δ/ε ∈N,

eMOD ≤C
ε

δ
, if W (Kδ j )=H 1

0 (Kδ j ), δ/ε ∉N,δ> ε.
(2.37)

We can give a fully discrete analysis of the FE-HMM, and refer to [3, 4] and the references

therein for complete analysis and proofs.

Theorem 2.5.1. Let u0,uH be the solutions of (2.16) and (2.25) respectively. Further suppose

that u0 ∈H p+1(Ω). Assume that the bilinear form (2.30) is based on a QF satisfying (Q1) and

(Q2), and that (2.10) and (H1) hold. Let a0 ∈ (W p+m,∞(Ω))d×d , for m = 0,1. Further, assume

that the same coupling conditions are used in the semi-discrete problem (2.34) and in the

FE-HMM (2.25), we have

‖u0−uH‖H 1(Ω) ≤C

(
H p +

(
h

ε

)2q

+eMOD

)
, for m = 0,

‖u0−uH‖L2(Ω) ≤C

(
H p+1+

(
h

ε

)2q

+eMOD

)
, for m = 1,

where C is independent of ε, H , and h. If (H2) holds, the modeling error eMOD is given by (2.36)

or (2.37), depending on whether we consider collocation or not.
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A priori error estimates for the DG-FE-HMM

Similar convergence rates to the FE-HMM can be derived for the DG-FE-HMM. As the effect

of numerical quadrature in DG-FEM for elliptic problems with variable coefficients has not

been treated yet (to the best of our knowledge), we will assume that the tensor a0 is piecewise

constant in any K ∈TH ; i.e.,

(H3) aε(x)= a(x, y) is Y -periodic in y , and for any K ∈TH , a(·, y) is constant in K .

Then, if the assumptions of Theorem 2.5.1 and hypothesis (H3) hold, we have

∣∣∣∣∣∣u0−uH
∣∣∣∣∣∣≤C

(
H p +

(
h

ε

)2q

+eMOD

)
, for m = 0

‖u0−uH‖L2(Ω) ≤C

(
H p+1+

(
h

ε

)2q

+eMOD

)
, for m = 1,

where C is independent of ε, H , and h, and where the modeling error eMOD is given by (2.36)

or (2.37), depending on whether we consider collocation or not.

Notice that when the tensor is locally periodic, the optimal choice for the boundary condition

in the micro problem (2.32) (for both FE-HMM and DG-FE-HMM) is to use periodic boundary

conditions with δ/ε ∈N.

Post-processing procedure

It is known that the homogenized solution u0 is a good L2-approximation of the heteroge-

neous solution uε, but that u0 fails to approximate uε in H 1 due to the lack of the fine scale

information. A post-processing procedure can be done by using the micro functions uh
j ,

computed during the FE-HMM procedure, to correct the numerical homogenized solution

uH . In each sampling domain Kδ j ⊂ K , we can access uh
j −uH and periodically extend it to

the whole macro element K ,

ur ec
H (x)= uH (x)+ (uh

j −uH )(x− [x]Kδ j
), x ∈K ,

where [x]Kδ j
is the unique combination δ

∑d
i=1 bi ei , bi ∈Z, such that (x−[x]Kδ j

) ∈Kδ j . In order

to derive a priori error estimates between the reconstructed solution ur ec
H and uε, we assume

that the tensor aε is Y -periodic in y and verifies aε(x)= a(x, x/ε)= a(x, y). If one assume P 1

macro and micro FE spaces and periodic coupling with δ= ε, the reconstructed solution can

be written as

ur ec
H (x)= uH (x)+

d∑
i=1

εχi ,h(x− [x]Kε
, x/ε)

∂uH (x)

∂xi
, x ∈K .

Further details about the reconstruction, as well as the proof of convergence, can be found in

[3]. Suppose that the assumptions of Theorem 2.5.1 holds for p = 1 and q = 1, and that the
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Macro FE u0 Micro FE H 1 norm L2 norm

P 1 H 2(Ω)
P 1 �

Nmac =Nmi c Nmac =Nmi c

P 2 N 1/4
mac =Nmi c

�
Nmac =Nmi c

P 2 H 3(Ω)
P 1 Nmac =Nmi c N 3/2

mac =Nmi c

P 2 �
Nmac =Nmi c N 3/4

mac =Nmi c

Table 2.1 – Best refinement strategies for optimal convergence rates.

map x ∈ Ω̄→Dαχ(x, ·) is Lipschitz continuous for |α| = 1, it holds

‖uε−ur ec
H ‖H̄ 1(Ω) ≤C

(
H + h

ε
+�ε

)
,

where the constant C > 0 is independent of H ,h, and ε.

Costs of the (DG-)FE-HMM

To obtain the optimal convergence rates, one balances the macro and micro errors in the

following way [3],

H p ∼
(

h

ε

)2q

, for the H 1 norm , H p+1 ∼
(

h

ε

)2q

, for the L2 norm ,

where p and q denote the macro and micro degrees of the macro and micro FE spaces,

respectively. Let TH ∈ {TH } be a coarse partition of Ω and Th ∈ {Th} be a fine partition of

the sampling domains Kδ j , and use Nmac (resp. Nmi c ) to denote the total number of degrees

of freedom used for the macro (resp. micro) solver. Further, assume that δ/ε ∈N, and that
h
ε ∼N−1

mi c . To have optimal rates, we set h
ε ∼H p/(2q) for the H 1 norm, and h

ε ∼H (p+1)/(2q) for

the L2 norm. Then,

N d
mi c ∼

(
h

ε

)−d

∼H− d p
2q ∼N

d p
2q

mac , for the H 1 norm ,

N d
mi c ∼

(
h

ε

)−d

∼H− d(p+1)
2q ∼N

d(p+1)
2q

mac , for the L2 norm ,

in particular for p = q = 1; Nmi c =
�

Nmac for the H 1 norm, and Nmi c =Nmac , for the L2 norm.

Table 2.1 sums up the optimal convergence rates.

36



2.6. Numerical results

2.6 Numerical results

In here, we test the FE-HMM on a heterogeneous elliptic problem in order to assess the

convergence rates given in Theorem 2.5.1. We consider a two-dimensional elliptic problem in

Ω= [0,1]2,

−div(aε(x)∇uε)= f ,

with zero Dirichlet boundary condition on Γ, f ≡ 1, and a tensor aε(x)= (cos(2πx1/ε)+2)I2,

with x = (x1, x2) ∈Ω. The tensor is Y -periodic in the fast-variable, i.e., aε(x)= a(x/ε)= a(y),

y = (y1, y2) ∈ Y . Explicit equations are available to compute the homogenized tensor a0,

a0 =
((∫

Y
1

a(y) dy1

)−1
0

0 2

)
=
(�

3 0

0 2

)
.

A reference homogenized solution u0 is computed on a very fine mesh with the tensor a0.

From Theorem 2.5.1, if u0 ∈H p+1(Ω), the a priori error estimates between u0 and its FE-HMM

approximation uH are

‖u0−uH‖H 1(Ω) ≤C

(
H p +

(
h

ε

)2q)
,

‖u0−uH‖L2(Ω) ≤C

(
H p+1+

(
h

ε

)2q)
,

where one notices that the modeling error is zero, i.e., eMOD = 0, as the tensor only depends on

the fast variable x/ε. When we refine the macro mesh, the convergence rates are expected to

reach a threshold value depending on the micro mesh size. An optimal convergence rate can be

obtained if the macro and micro meshes are balanced following the refinement strategies given

in Table 2.1. In Figure 2.4a, we plot the H 1 (in red, bullets) and L2 (in blue, diamonds) errors

between u0 and uH obtained with P 1 macro and micro FE, with H = 1/4,1/8,1/16, . . . ,1/512,

for micro mesh size of h/ε= 1/4,1/8,1/16,1/32,1/64,1/128. In Figure 2.4b,we conduct the

same experiment with P 2 macro FE and P 1 micro FE. We see that in both figures the conver-

gence rate follow the a priori results. Further, we see that the optimal refinements follow the

ratio h2q =H p for the H 1 norm and h2q =H p+1 for the L2 norm; in Figures 2.4a and 2.4b, the

optimal refinements for the H 1 and L2 convergence rates are plotted in black (dotted) and we

see that the H 1 and L2 errors follow the optimal refinement.

2.7 Summary

In this chapter, we consider a highly heterogeneous two-scales multiscale elliptic problem

and give a review of numerical multiscale methods used to solve such problems. We discuss

two important classes of multiscale methods; the methods based on a global extraction of the

small scales and the methods based on homogenization theory. In the first class, we reviewed
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Figure 2.4 – Periodic homogenization, H 1 (bullets, red) and L2 (diamonds, blue) errors between
u0 and uH obtained with (a) P 1 macro and micro FE and (b) P 2 macro and P 1 micro FE.
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2.7. Summary

the MsFEM and the LOD methods, and in the second class of methods, we gave a review of the

high-dimensional FEM and the FE-HMM. The FE-HMM is given in details with its fully discrete

a priori error analysis and a numerical example to verify the convergence rates. The strength

of the FE-HMM is that the method has a cost independent of the smallest scale present in the

problem. However, it relies on a clear separation of scales. The first class of methods, does not

requires that the small scales should be well-separated, but the methods use and process all

the fine scale information. This leads to computationally expensive methods.
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3 Multiscale method for the wave equa-
tion in linear elastic heterogeneous
media
In this chapter, we give the finite element heterogeneous multiscale method applied to the

wave equation in linear elastic heterogeneous media for short times. This chapter is based on

the article [14].

Let Ω⊂Rd , d = 1,2,3, be a domain filled with a linear elastic medium and seek uε the solution

of

∂t t uε−div(aε(x) : e(uε))= f , in Ω, (3.1)

where f ∈ L2(0,T ;L2(Ω))d and e is a linearized strain tensor. Further, we consider homoge-

neous Dirichlet boundary conditions on Γ and initial conditions at the time t = 0. The solution

uε = (uε
1, . . . ,uε

d ) corresponds to the displacement of the wave and uε
i =uε

i (t ), for all i = 1, . . . ,d .

The superscript ε> 0 in the tensor aε denotes the small scales present in the medium. The

tensor aε is a fourth-order tensor verifying aε
i j kl (x) ∈ L∞(Ω), for i , j ,k, l = 1, . . . ,d , and, for

some constants 0<λ≤Λ<+∞,

aε
i j kl = aε

j i kl = aε
kl i j , (3.2)

λ|M |2 ≤ aεM : M , (3.3)

|aεM | ≤Λ|M |, for any symmetric matrix M . (3.4)

In addition, for any square matrices M , M1, and M2, we set

aεM1 : M2 =
d∑

i , j ,k,l=1
aε

i j kl M1i j M2kl ,

|M | = (M : M)1/2 =
(

d∑
i , j=1

M 2
i j

)1/2

.

A weak solution uε of problem (3.1) is obtained from the variational formulation

Bε(uε, w)= F (w), ∀w ∈H 1
0 (Ω)d .
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The bilinear form Bε : H 1(Ω)d ×H 1(Ω)d →R is given by

Bε(v, w)= 〈∂t t v, w〉+
∫
Ω

aε(x)e(v) : e(w)dx,

where 〈·, ·〉 denotes the dual product 〈·, ·〉H−1,H 1 . The right hand side F : H 1(Ω)d →R is defined

by

F (w)=
∫
Ω

f wdx.

When the boundary conditions are non-zero, additional terms are present in the weak formu-

lation, involving the lifting of the Dirichlet data and the Neumann boundary conditions.

Outline. In the first part of this chapter, we drop the time dependency and focus on the linear

elasticity problem with highly oscillatory coefficients. We give the FE-HMM and derive a priori

error estimates. Numerical examples are given to assess the convergence rates. In the second

part of this chapter, we consider the wave equation in a linear elastic medium. A priori error

estimates are given and various numerical examples, inspired from seismic problems, are

proposed.
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Heterogeneous multiscale method for
linear elasticity problems
In here, we introduce the heterogeneous multiscale method for linear elasticity problems,

following the FE-HMM derived by Abdulle in [2]. This part is based on the article [14].

Outline. In Section 3.1 we briefly state the homogenization theory applied to multiscale linear

elasticity problems. In Section 3.2 we give the finite element heterogeneous multiscale method

and in Section 3.3, we derive the fully discrete a priori error analysis. This part ends with some

numerical examples given in Section 3.4.

We consider the linear elasticity equation in a bounded domain Ω ⊂ Rd , d = 1,2,3, with

homogeneous Dirichlet conditions on a Lipschitz continuous boundary Γ. The problem reads:

find uε such that

− ∂

∂x j

(
aε

i j kl (x)
∂uε

k

∂xl

)
= fi , in Ω,

uε
i = 0, on Γ,

(3.5)

for i = 1, . . . ,d and where the right-hand side f is in L2(Ω)d . The superscript ε > 0 denotes,

again, the multiscale nature of the problem, and the tensor aε is a fourth-order tensor, with

aε
i j kl (x) ∈ L∞(Ω) for i , j ,k, l = 1, . . . ,d . The tensor verifies the assumptions (3.2), (3.3), and

(3.4). We define the linearized strain tensor e, for i , j = 1, . . . ,d , by

e(u)= (ei j (u))1≤i , j≤d , ei j (u)= 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
.

The weak formulation of problem (3.5) reads: find uε ∈H1
0(Ω)d such that

Bε(uε, w)= F (w), ∀w ∈H 1
0 (Ω)d . (3.6)

where the bilinear form Bε : H 1(Ω)d ×H 1(Ω)d →R and the right-hand side f : H 1(Ω)d →R are

given by

Bε(v, w)=
∫
Ω

aε(x)e(v) : e(w)dx, and F (w)=
∫
Ω

f wdx.

The weak formulation (3.6) is well-posed and therefore admits a family of unique solutions
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{uε}, indexed by the subscript ε. Further it holds

‖uε‖H 1(Ω) ≤C‖ f ‖L2(Ω),

where the norm over H 1(Ω)d is given by

‖u‖H 1(Ω) =
(

d∑
i , j=1

∫
Ω

(
∂ui

∂x j

)2

dx+
d∑

i=1

∫
Ω

u2
i dx

)1/2

, u ∈H 1(Ω)d .

The existence and uniqueness of uε follows from the first Korn inequality; i.e.,

‖v‖H 1(Ω) ≤C

(∫
Ω
|e(v)|2dx

)1/2

. (3.7)

Indeed, using the coercivity of the tensor aε and the first Korn inequality (3.7), one can show

that the bilinear form Bε is coercive; i.e.,

Bε(v, v)=
∫
Ω

aε(x)e(v) : e(v)dx ≥C

(∫
Ω
|e(v)|2dx

)
≥C‖v‖2

H 1(Ω), ∀v ∈H 1
0 (Ω)d .

We define a norm |||·||| over H 1
0 (Ω)d by

|||v ||| =
(∫

Ω
|e(v)|2dx

)1/2

. (3.8)

For the proof that |||·||| is indeed a norm over H 1
0 (Ω)d , we refer to [96, Theorem 2.5].

As a consequence of the Korn inequalities, we have the following equivalence, see [96, 80];

there exist two constants C1,C2 > 0 such that

C1‖v‖H 1(Ω) ≤ |||v ||| ≤C2‖v‖H 1(Ω), v ∈H 1
0 (Ω)d .

Remark 3.0.1. Non-homogeneous Dirichlet conditions and Neumann boundary conditions

can be considered instead of homogeneous Dirichlet boundary conditions. The existence and

uniqueness of uε is proved using the second Korn inequality [80, Theorem 2.4]; i.e.,

‖v‖H 1(Ω) ≤C

(
‖v‖2

L2(Ω)+
(∫

Ω
|e(v)|2dx

))1/2

.

3.1 Homogenization of linear elasticity problems and basic results

Solving (3.6) with standard FEM requires the mesh size to be smaller than the fine scales, which

is prohibitive if ε is small. However, the effective dynamics of the problem can be described

using the homogenization theory. The homogenization of an elliptic partial differential

equation in a linear elastic medium is treated in [52, 96, 102, 99] and the references therein.
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From the theory of H-convergence [90, 22], it can be established that a subsequence of the fam-

ily of solutions {uε} converges weakly to an effective solution u0, satisfying the homogenized

formulation

B 0(u0, w)= F (w), ∀w ∈H 1
0 (Ω)d , (3.9)

where B 0 : H 1(Ω)d ×H 1(Ω)d →R is defined by

B 0(v, w)=
∫
Ω

a0(x)e(v) : e(w)dx.

The homogenized tensor a0 verifies the properties (3.2), (3.3), and (3.4) for some constants

0 < λ0 ≤ Λ0 ≤ ∞. As in Chapter 2, no explicit equations are available, in general, for the

homogenized tensor a0; however, under additional information on the small scale of the

tensor aε, such as periodicity, it holds

a0
i j kl (x)= 1

|Y |
∫

Y
ai j kl (x, y)+

d∑
h,m=1

ai j hm(x, y)
∂χkl

h (x, y)

∂ym
dy, x ∈Ω,

where Y = [0,1]d is the d-dimensional hypercube. The functions χkl ∈ Wper (Y ) are the

solutions of the micro problems

− ∂

∂y j

(
ai j hm

∂χkl
h

∂ym

)
= ∂ai j kl

∂y j
, in Y , for i = 1, . . . ,d , (3.10)

with periodic boundary conditions. In weak form, the micro problem (3.10) reads: find

χkl ∈Wper (Y ) solution of

∫
Y

a(x, y)e(χkl ) : e(z) d y =
∫

Y
a(x, y)e(I kl ) : e(z)dy, ∀z ∈Wper (Y ), (3.11)

where I kl = (I kl
h ) is given by

I kl
h = ylδhk .

The micro problems (3.11) are well-posed thanks to the first Korn inequality for the periodic

case [96]; i.e.,

‖v‖H 1(Y ) ≤C

(∫
Y
|e(v)|2dy

)1/2

.

3.2 FE-HMM for linear elasticity

In this section, we derive the multiscale FEM for the problem (3.5). The FE-HMM gives us a

macroscopic solution, approximation of u0, based on a macro to micro procedure without

knowing the homogenized tensor a0. The FE-HMM is explained in details in Section 2.4 for

highly heterogeneous multiscale elliptic PDEs.
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Macro problem. Let {TH } be a family of admissible (T1) and shape-regular (T2) partitions over

Ω with mesh size H � ε given by H =maxK∈TH hK . In each macro element K , we consider

integration nodes x j ,K and weights ω j ,K , for j = 1, . . . , J , and construct sampling domains

Kδ j = x j ,K +δ[−1/2,1/2]d , with 0< δ�H . To ensure that a FEM with numerical quadrature

converges to the exact solution with the rates obtained from a FEM with exact integration, we

assume that the QF over each K is induced by a QF over a reference element K̂ and that they

verify the assumptions (Q1) and (Q2).

For each partition TH in {TH }, we define a macro FE space of degree p ≥ 1 by

V p
0 (Ω,TH )= {v H ∈H 1

0 (Ω)d | v H |K ∈Rp (K )d , ∀K ∈TH }, (3.12)

where Rp (K ) is the space P p (K ) of polynomials on K of degree at most p if K is simplicial, or

the space Qp (K ) of polynomials on K of degree at most p in each variables if K is rectangular.

We construct a macro bilinear form BH : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R by

BH (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)e(vh
j ) : e(wh

j )dx, (3.13)

where vh
j (resp. wh

j ) is the solution of the micro problem (3.16) on the sampling domain Kδ j .

The FE-HMM reads: find uH in V p
0 (Ω,TH ) such that

BH (uH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ). (3.14)

Micro problem. Let {Th} be a family of admissible (T1) and shape-regular (T2) partitions over

Kδ j , for j = 1, . . . , J , of mesh size h ≤ ε, with h =maxK∈Th hK . For each micro partition Th , we

define a micro FE space of degree q ≥ 1, on the sampling domain Kδ j , as

V q (Kδ j ,Th)= {vh ∈W (Kδ j ) | vh |K ∈Rq (K )d , ∀K ∈Th}. (3.15)

The micro problems read: find uh
j such that (uh

j −uH
lin, j ) ∈V q (Kδ j ,Th) and

∫
Kδ j

aε(x)e(uh
j ) : e(zh)dx = 0, ∀zh ∈V q (Kδ j ,Th), (3.16)

where uH
lin, j (x)= uH (x j ,K )+ (x−x j ,K )e(uH (x j ,K )) is a linearization of uH taken at the quadra-

ture node x j ,K . Here, we use again the notation uH
lin, j to denote uH

lin,Kδ j
. We recall that the

space W (Kδ j ) sets the coupling between the micro and macro solvers and depends on the

choice of boundary conditions in problem (3.16); i.e.,

W (Kδ j )=H 1
per(Kδ j )d , for periodic coupling, (3.17)

W (Kδ j )=H 1
0 (Kδ j )d , for Dirichlet coupling. (3.18)
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The FE-HMM problem (3.14) is well-posed and admits a unique solution. The following

Proposition has been proved in [2] for piecewise linear FE, and we give here the proof for FE of

order p ≥ 1.

Proposition 3.2.1. The problem (3.14) has a unique solution uH ∈V p
0 (Ω,TH ) which verifies

‖uH‖H 1(Ω) ≤C‖ f ‖L2(Ω),

where C is independent of ε, H , and h.

Proof. We prove the well-posedness by showing that the bilinear form BH (3.13) is coercive

and bounded. Let uH ∈V p
0 (Ω,TH ), then uh

j −uH
lin, j is in the space V q (Kδ j ,Th) and can be used

as a test function in the micro problems (3.16); i.e.,

∫
Kδ j

aε(x)e(uh
j ) : e(uh

j −uH
lin, j )dx = 0.

By linearity, it holds

∫
Kδ j

aε(x)e(uh
j ) : e(uh

j )dx =
∫

Kδ j

aε(x)e(uh
j ) : e(uH

lin, j )dx.

Then, using the assumptions (3.2), (3.3), and (3.4) made on the tensor aε, we obtain the

following bound

∫
Kδ j

|e(uh
j )|2dx ≤C

∫
Kδ j

aε(x)e(uh
j ) : e(uh

j )dx ≤C
∫

Kδ j

e(uh
j ) : e(uH

lin, j )dx.

Using the Cauchy–Schwarz inequality, we obtain

‖e(uh
j )‖L2(Kδ j ) ≤C‖e(uH

lin, j )‖L2(Kδ j ).

The bilinear form BH defined in (3.13) is bounded; i.e.,

BH (uH , v H )≤C
∑

K∈TH

J∑
j=1

ω j ,K

|Kδ j |
‖e(uh

j )‖L2(Kδ j )‖e(vh
j )‖L2(Kδ j )

≤C
∑

K∈TH

J∑
j=1

ω j ,K

|Kδ j |
‖e(uH

lin, j )‖L2(Kδ j )‖e(v H
lin, j )‖L2(Kδ j )

≤C‖uH‖H 1(Ω)‖v H‖H 1(Ω),

where we used that e(uH
lin, j (x)) = e(uH (x j ,K )), for all x ∈ K . We now show that the bilinear

form BH is coercive. Following [2, Lemma 4.3] using that e(uH
lin, j ) is constant in K , that the
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difference uh
j −uH

lin, j is in V q (Kδ j ,Th), and that uh
j −uH

lin, j = 0 on ∂Kδ j , it holds

∫
Kδ j

e(uh
j ) : e(uh

j )dx =
∫

Kδ j

(e(uh
j )−e(uH

lin, j )) : (e(uh
j )−e(uH

lin, j ))dx+
∫

Kδ j

e(uH
lin, j ) : e(uH

lin, j )dx

≥
∫

Kδ j

e(uH
lin, j ) : e(uH

lin, j )dx.

Then, BH is coercive; i.e.,

BH (uH ,uH )≥C
∑

K∈TH

J∑
j=1

ω j ,K

|Kδ j |
‖e(uH

lin, j )‖2
L2(Kδ j )

≥C
∑

K∈TH

‖e(uH )‖2
L2(K )

≥C‖uH‖2
H 1(Ω).

The existence and uniqueness of a solution uH of problem (3.14) is a consequence of the

Lax–Milgram lemma.

3.3 A priori error analysis

In this section we give a priori error estimates for the FE-HMM method applied to linear

elasticity problems; note that such results have been first derived in [2] for piecewise linear FE.

The error is decomposed into a macro, modeling, and micro error,

‖u0−uH‖ ≤ eMAC+eMOD+eMIC,

where the norm ‖ ·‖ stands for the L2 norm or the H 1 norm.

Macro error. Let u0,H ∈V p
0 (Ω,TH ) be an approximation of the exact solution u0, obtained by

solving the homogenized problem (3.9) using the FEM with a numerical quadrature verifying

the assumptions (Q1) and (Q2). Assuming that a0
i j kl (x) ∈W 1,∞(Ω), for i , j ,k, l = 1, . . . ,d , the

problem reads: find u0,H ∈V p
0 (Ω,TH ) such that

B 0
H (u0,H , w H )= F (w H ), ∀w H ∈V p

0 (Ω,TH ), (3.19)

where the bilinear form B 0
H : V p

0 (Ω,TH )×V p
0 (Ω,TH )→R is defined by

B 0
H (v H , w H )= ∑

K∈TH

J∑
j=1

ω j ,K a0(x j ,K )e(v H (x j ,K )) : e(w H (x j ,K )).

The macro error is given by difference between u0 and u0,H . Let u0 be the homogenized

solution of problem (3.9) and let u0,H ∈V p
0 (Ω,TH ) be the solution of (3.19). Further, assuming
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that u0 ∈H p+1(Ω), and that a0
i j kl ∈ (W p+m,∞(Ω)), for i , j ,k, l = 1, . . . ,d and m = 0,1, it holds

eMAC,H 1 = ‖u0−u0,H‖H 1(Ω) ≤C H p , for m = 0,

eMAC,L2 = ‖u0−u0,H‖L2(Ω) ≤C H p+1, for m = 1,

where the constant is independent of H ,h, and ε.

Further, we can derive an estimate for the difference between the bilinear forms B 0 and B 0
H .

Proposition 3.3.1. Let v H , w H ∈ V p
0 (Ω,TH ) and a0

i j kl ∈W p+m,∞(Ω) for all i , j ,k, l = 1, . . . ,d

and m = 0,1, it holds

|B 0(v H , w H )−B 0
H (v H , w H )| ≤C H p+m max

i , j ,k,l
‖a0

i j kl‖W p+m,∞(Ω)‖v H‖H̄ p+m (Ω)‖w H‖H̄ 1+m (Ω),

where C is independent of H ,h, and ε.

Proof. see [41, Chapter 4] and [42].

Micro Error. We focus now on the error made in the discretization of the micro problems.

Let us consider a semi-discrete problem, where the micro solutions are taken in the exact

Sobolev spaces, and look for the solution ūH ∈V p
0 (Ω,TH ) of

B̄H (ūH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (3.20)

where the bilinear form B̄H is given by

B̄H (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)e(v j ) : e(w j )dx, (3.21)

where v j , w j ∈W (Kδ j ) are the solutions of (3.16). We assume that the micro solutions χl m (the

solutions of equation (3.10)) are smooth enough; i.e.,

(H1) εχlm ∈H q+1(Kδ j )d with ‖Dα(εχlm)‖L∞(Kδ j ) ≤Cε−|α|+1 , for α≤ q+1, l ,m = 1, . . . ,d .

Proposition 3.3.2. Let v H , w H ∈V p
0 (Ω,TH ), and consider the same coupling condition (either

(3.17) or (3.18)) for the micro problem in the discrete and semi-discrete problems. Suppose that

εχl m ∈H q+1(Kδ j )d and that assumption (H1) holds for α= q+1, with q > 1. Then,

|B̄H (v H , w H )−BH (v H , w H )| ≤C

(
h

ε

)2q

‖v H‖H 1(Ω)‖w H‖H 1(Ω), ∀v H , w H ∈V p
0 (Ω,TH )

where C is independent of H ,h, and ε. The bilinear forms B̄H and BH are defined in (3.21) and

(3.13), respectively.
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Proof. Using the Cauchy–Schwarz inequality and the ellipticity of aε, we obtain

|B̄H (v H , w H )−BH (v H , w H )| =
∣∣∣∣∣
∑

K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)(e(v j ) : e(w j )−e(vh
j ) : e(wh

j ))dx

∣∣∣∣∣
≤C

∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
‖e(vh

j )−e(v j )‖L2(Kδ j )‖e(wh
j )−e(w j )‖L2(Kδ j ),

and where we used that v j , w j are the solutions of (3.16). We bound each term following [2,

Lemma 4.3] and [3, Lemma 10]. We obtain∫
Kδ j

|e(vh
j )−e(v j )|2dx ≤C |e(v H

lin, j )|2h2q |Kδ j |max
k,l ,m

‖εχlm
k ‖2

W q+1,∞(Kδ j )

≤C

(
h

ε

)2q

|Kδ j ||e(v H
lin, j )|2.

Using the fact that e(v H
lin, j ) is constant in K and that the norm |||·||| is equivalent to ‖ ·‖H 1 , we

can conclude that

|B̄H (v H , w H )−BH (v H , w H )| ≤C

(
h

ε

)2q

‖v H‖H 1(Ω)‖w H‖H 1(Ω).

The micro error is given by the error between the FE-HMM solution uH and the semi-discrete

solution ūH , see [2, 3] for details. Let uH and ūH be given by (3.14) and (3.20), respectively,

and assume the same coupling conditions (either (3.17) or (3.18)) for the micro problems.

Further, suppose that the assumptions made in Proposition 3.3.2 hold. Then,

eMIC = ‖uH − ūH‖H 1(Ω) ≤C

(
h

ε

)2q

, (3.22)

where the constant C is independent of H ,h, and ε.

Modeling Error. We gave bounds for the macro error ‖u0−u0,H‖ and the micro error ‖ūH −
uH‖, thus it remains to bound the error between u0,H and ūH , which corresponds to the

so-called modeling error. Notice that, for the macro and micro errors, no assumptions were

made on the micro scale in the tensor aε. To derive explicit bounds on the micro error, we

assume that the tensor is (locally) periodic,

(H2) aε(x)= a(x, x/ε)= a(x, y) is Y -periodic in y , where Y = (0,1)d .

If an explicit separation of scale is present in the tensor, we can collocate the slow variable x

at the quadrature nodes x j ,K in the tensor aε. By doing so, we define a semi-discrete bilinear
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form B̃H : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R by

B̃H (v H , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

a(x j ,K , x/ε)e(v j ) : e(w j )dx,

where v j , w j ∈W (Kδ j ) are the solutions of the cell problems (3.16) with aε(x) replaced by

a(x j ,K , x/ε). We define ũH to be the solution of

B̃H (ũH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ). (3.23)

The modeling error can then be given. Let ūH and ũH be the solutions of problems (3.20)

and (3.23) respectively, with periodic coupling conditions. Suppose that (H2) holds and that

δ/ε ∈N. If ai j kl (x, y) ∈W 1,∞(Ω,L∞(Y )), for all i , j ,k, l = 1, . . . ,d , then

u0,H = ũH , and eMOD = ‖u0,H − ūH‖H 1(Ω) ≤Cε,

where the constant C is independent of H ,h, and ε, and where u0,H is the solution of problem

(3.19).

As in the a priori error analysis for elliptic problem (2.5), it holds

eMOD ≤Cε, if W (Kδ j )=H 1
per(Kδ j )d , δ/ε ∈N,

eMOD ≤C (δ+ ε

δ
), if W (Kδ j )=H 1

0 (Kδ j )d , δ/ε ∉N,δ> ε.
(3.24)

Further, if we collocate the slow variable x in the tensor aε to the quadrature points x j ,K in the

macro (3.13) and micro (3.16) bilinear forms, we obtain

eMOD = 0, if W (Kδ j )=H 1
per(Kδ j )d , δ/ε ∈N,

eMOD ≤C
ε

δ
, if W (Kδ j )=H 1

0 (Kδ j )d , δ/ε ∉N,δ> ε.
(3.25)

Considering δ/ε ∉N leads to boundary layers and a deterioration of the modeling error.

Collecting all the previous results leads to the following theorem.

Theorem 3.3.3. Let u0 and uH be the solutions of (3.9) and (3.14), respectively. Assume that

u0 ∈H p+1(Ω)d , and that the hypothesis (H1) holds. Further, assume that the hypothesis for the

macro error and proposition 3.3.2 hold. Then,

‖u0−uH‖H 1(Ω) ≤C

(
H p +

(
h

ε

)2q

+eMOD

)
,

‖u0−uH‖L2(Ω) ≤C

(
H p+1+

(
h

ε

)2q

+eMOD

)
.

If in addition, the hypothesis (H2) holds, the modeling error eMOD is given by (3.24) or (3.25).
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Recovery of the homogenized tensor

The homogenized tensor can be approximated during the assembling process of the FE-HMM,

and one obtains error estimates between the exact homogenized tensor and its numerical

approximation. This is done by following the lines of [3, Section 3.3.2.] and [2, Section 5.].

For general symmetric tensors and sampling domains, we can define, at each quadrature

point x j ,K , two tensors a0,h
K = (a0,h

i klm(x j ,K )) and ā0
K = (ā0

i klm(x j ,K )), for i ,k, l ,m = 1, . . . ,d ; i.e.,

a0,h
i klm(x j ,K )= 1

|Kδ j |
∫

Kδ j

aε(x)e(ϕh
j i k ) : e(ϕh

j l m)dx, (3.26)

where the functions ϕh
j i k ∈V q (Kδ j ,Th) are the solutions of (3.16) for i ,k ∈ {1, . . . ,d}, and

ā0
i klm(x j ,K )= 1

|Kδ j |
∫

Kδ j

aε(x)e(ϕ j i k ) : e(ϕ j l m)dx,

where ϕ j i k are the solutions of (3.16) in the exact Sobolev space W (Kδ j ).

Theorem 3.3.4. Let a0,h
K be the numerical tensor (3.26) computed with the FE-HMM using

micro FE of order q ≥ 1 and assume that (H2) holds. Then

|a0,h
i klm(x j ,K )−a0

i klm(x j ,K )| ≤C

((
h

ε

)2q

+eMOD

)
,

where the modeling error is given by (3.24) or (3.25).

Proof. As a0,h
K and e(v H (x j ,K )) are constant in the macro element K , it holds

1

|Kδ j |
∫

Kδ j

aε(x)e(vh
j ) : e(wh

j )dx = 1

|K |
∫

K
a0,h

K (x)e(v H (x j ,K )) : e(w H (x j ,K ))dx

Then, similarly,

1

|Kδ j |
∫

Kδ j

aε(x)e(ϕh
j i k ) : e(ϕh

j l m)dx = 1

|K |
∫

K
a0,h

K (x)e(ϕH
i ,k (x j ,K )) : e(ϕH

l ,m(x j ,K ))dx,

for i ,k, l ,m = 1, . . . ,d . The result follows by a triangular inequality

|a0,h
i klm(x j ,K )−a0

i klm(x j ,K )| ≤ |a0,h
i klm(x j ,K )− ā0

i klm(x j ,K )|
+ |ā0

i klm(x j ,K )−a0
i klm(x j ,K )|,

and by noting that

|a0,h
i klm(x j ,K )− ā0

i klm(x j ,K )| =
∣∣∣∣∣ 1

|Kδ j |
∫

Kδ j

aε(x)(e(ϕh
j i k ) : e(ϕh

j l m)−e(ϕ j i k ) : e(ϕ j lm))dx

∣∣∣∣∣ .
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The difference between ā0
K and a0 follows from the lines of [3, Theorem 12] and Proposition

3.3.2.

3.4 Numerical results for the FE-HMM applied to linear elasticity

problems

In this section we present numerical examples to verify the sharpness of the bounds obtained

in Theorems 3.3.3 and 3.3.4. The numerical results presented here can be found in [14].

In Table 3.1, we recall the best refinement strategies, derived in Section 2.5, for the optimal H 1

and L2 convergence rates with minimal computational cost.

Outline of Section 3.4. At first, we show that the macro convergence rates in H are sharp when

using piecewise and quadratic finite elements spaces. At second, we investigate the effect of

the micro error on the convergence rates. Then, we look at the influence of the modeling error

in the total error, and ends this section by showing that the micro convergence rates are sharp

in the micro mesh size h.

In the experiments, we take a periodic tensor aε(x)= a(x/ε)= a(y) given by

a(y)=

⎛
⎜⎝

sin(2πy1)+2 0 0

0 sin(2πy2)+2 0

0 0 10

⎞
⎟⎠ .

In that case, explicit equations are available to compute a0 (see [80, 44]), and one obtains

a0 =

⎛
⎜⎝
�

3 0 0

0
�

3 0

0 0 10

⎞
⎟⎠ .

Let u0 ∈H p+1(Ω), and uH ∈V p
0 (Ω,TH ), it holds

‖u0−uH‖H 1(Ω) ≤C (H p +
(

h

ε

)2q

+eMOD)

‖u0−uH‖L2(Ω) ≤C (H p+1+
(

h

ε

)2q

+eMOD).

Notice that the modeling error is either zero ( periodic coupling) or ε/δ (Dirichlet coupling)

due to collocation of the variable x to the quadrature points x j ,K in the tensor aε used in the

bilinear forms.
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Macro FE u0 Micro FE H 1 norm L2 norm

P 1 H 2(Ω)
P 1 �

Nmac =Nmi c Nmac =Nmi c

P 2 N 1/4
mac =Nmi c

�
Nmac =Nmi c

P 2 H 3(Ω)
P 1 Nmac =Nmi c N 3/2

mac =Nmi c

P 2 �
Nmac =Nmi c N 3/4

mac =Nmi c

Table 3.1 – Best refinement strategies for optimal convergence rates.
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Figure 3.1 – H 1 (bullets, full) and L2 (diamonds, dashed) errors between u0 (the solution of
(3.9)) and uH (the solution of (3.14)) in Ω for (a) P 1 macro and micro FE spaces and (b) P 2

macro and micro FE spaces.

Experiment 1. We start by showing that the macro convergence rates in H are sharp. Let

ε = 1/10, and consider equation (3.5) in Ω = [0,1]2 with homogeneous Dirichlet boundary

condition, a right-hand side f ≡ 1. A reference solution for u0 is computed on a very fine mesh

obtained from the initial mesh by uniform refinement. We use periodic coupling with δ= ε in

order to have zero modeling error. Further, the micro degrees of freedom are chosen such that

the micro error can be neglected, and take H = 1/8,1/16,1/32,1/64, and 1/128. In Figure 3.1a,

we monitor the H 1 and L2 errors to the homogenized solution u0 for the piecewise macro and

micro FE-HMM. The solution u0 is in H 2(Ω) and one can see the linear and quadratic rates

for the piecewise H 1 and L2 errors, respectively. However, as one can see in Figure 3.1b, u0 is

not smooth enough to observe the H 2 and H 3 convergence rates for the quadratic H 1 and L2

norms, respectively. The optimal rates can be seen in Figure 3.2 where we restrict the errors to

a subdomain ω⊂Ω to avoid corner singularities.
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Figure 3.2 – H 1 (bullets, full) and L2 (diamonds, dashed) errors between u0 (the solution of
(3.9)) and uH (the solution of (3.14)) in ω⊂Ω for P 2 macro and micro FE.

Experiment 2. Consider now problem (3.5) with f ≡ 1, on an L-shaped domain centered

around (0,0) with width 2. We impose free Neumann boundary conditions on the sets

{x = 0, y ∈ [−1,0]} and {y = 0, x ∈ [0,1]}, and homogeneous Dirichlet boundary conditions

elsewhere.

In Figure 3.3a one can see the reference displacement in comparison to the initial coarse mesh

with H = 1/4. Using periodic coupling and δ= ε, we compute the FE-HMM solutions for P 1

macro and micro FE and for P 2 macro and micro FE; they are shown in Figures 3.3b and 3.3c,

respectively.

In Figures 3.4a and 3.4b, we plot the H 1 and L2 convergence rates for P 1 macro and micro FE

spaces. We take H = 1/8,1/16, . . . ,1/512. The optimal refinement follows the ratio given in

Table 3.1.
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Figure 3.3 – (a) Reference solution. Finite element solution uH for P 1 macro and micro FE (b),
and P 2 macro and micro FE (c).
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Figure 3.4 – H 1 (a) and L2 (b) errors between u0 and uH for piecewise macro and micro FE
spaces.

We show next the influence of the modeling error on the same problem with sampling domains

Kδ with δ> ε. We take H = 1/8,1/16,1/32, and 1/64, with micro mesh size sufficiently small to

eliminate the micro error. We use piecewise FE for the macro and micro mesh size. The size of

the sampling domains Kδ are δ= 5/3ε and δ= 1.1ε, and for those values we solve the micro

problems (3.16) with homogeneous Dirichlet boundary conditions. In Figures 3.5a and 3.5b,

we see that the choice of δ has an important influence on the error. Increasing the size of the

sampling domain from δ= 1.1ε to δ= 5/3ε improves the quality of the error, as expected from

Theorem 3.3.3. The periodic coupling with δ= ε gives the optimal convergence rate since the

modeling error is zero, as predicted by Theorem 3.3.3.

Modeling error and random coefficients. The use of artificial boundary conditions for the

micro problem (3.16) leads to a modeling (or resonance) error of size O (ε/δ) for elliptic

problems. Such error terms also appear for problems with random stationary fields, where

(3.16) is usually defined in the whole Rd [100]. Truncations using either Dirichlet or periodic

boundary conditions can then be used for numerical approximation. In [70], a reduction of

this resonance error is obtained by adding a zero-order term the cell problem (3.16) and using

a suitable Richardson extrapolation of the modified cell problem. Such strategies could also

be of interest for elastic problems.

Finally, we study the bound in Lemma 3.3.4. We use piecewise FE for the macro problem and

compare the exact homogenized tensor with the numerical homogenized tensor. In Figure

3.6, we show the convergence rate

|a0
1111−a0,h

1111| = |
�

3−a0,h
1111|,

for piecewise (full) and quadratic (dashed) micro FE, and observe the expected rates.
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Figure 3.5 – H 1 error (a) and L2 error (b) between the homogenized solution and the FE-HMM
with Dirichlet coupling for δ= 5/3ε (dashed) and δ= 1.1ε (dash-dotted). The error δ= ε (full)
is obtained with periodic coupling.
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Figure 3.6 – Convergence rates |a0− a0,h
K | with respect to N−1

mi c for P 1(full) and P 2(dashed)
micro FE spaces.

3.5 Summary

The finite element heterogeneous multiscale method applied to linear elastic problems is

given here and established the basis for the wave equation in a linear elastic medium treated in

the second part of Chapter 3. A fully discrete a priori error analysis is given and the sharpness

of the error bounds are verified through numerical experiments.
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Multiscale method for the wave equa-
tion in linear elastic heterogeneous
media
In this part, we are concerned with the wave equation in a heterogeneous multiscale linear

elastic medium and study the asymptotic behavior of the displacement uε when ε tends to

zero.

Outline. In Section 3.6 we give the FE-HMM applied to the wave equation. In Section 3.7 we

give the fully discrete a priori error analysis and, in Section 3.8, give numerical examples to

verify the error estimates.

We consider the wave equation for short time T > 0, and seek the heterogeneous solution

uε : [0,T ]→H 1
0 (Ω)d of

∂t t uε(t )−div(aε(x) : e(uε(t )))= f (t ), in Ω× (0,T ]

uε(t )= 0, on Γ× [0,T ],
(3.27)

with initial conditions at the time t = 0,

uε(0)= g1, ∂t uε(0)= g2, in Ω. (3.28)

It holds uε = (uε
1, . . . ,uε

d ), f = ( f1, . . . , fd ), and gi = (gi1 , . . . , gid ) for i = 1,2. We will sometimes

drop the dependency in time and use uε to denote uε(t ).

In weak formulation, problem (3.27) reads: find uε : [0,T ]→H 1
0 (Ω)d such that

〈∂t t uε(t ), w〉+Bε(uε(t ), w)= F (w), ∀w ∈H 1
0 (Ω)d , (3.29)

with the initial conditions (3.28), and where 〈·, ·〉 denotes 〈·, ·〉H−1,H 1 ; if we assume that ∂t t uε(t )

is in L2(Ω)d , then we can use the standard L2 inner product, which is denoted by (·, ·). The

bilinear form Bε : H 1(Ω)d ×H 1(Ω)d →R is given by

Bε(v, w)=
∫
Ω

aε(x)e(v) : e(w)dx,
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and the right hand side F : H 1(Ω)d →R

F (w)=
∫
Ω

f wdx.

The heterogeneous tensor aε is a fourth-order tensor with aε
i j kl (x) ∈ L∞(Ω), for i , j ,k, l =

1, . . . ,d and verifying assumptions (3.2),(3.3), and (3.4). Using Korn’s inequality (3.7), the

bilinear form Bε is symmetric, uniformly elliptic, and bounded in H 1
0 (Ω)d . Further if we

assume sufficient regularity on the data; i.e.,

f ∈ L2(0,T ;L2(Ω)d ), g1 ∈H 1
0 (Ω)d , and g2 ∈ L2(Ω)d ,

we can prove that the weak formulation is well-posed; it holds that the wave equation (3.27)

(or in weak form (3.29)) has a unique (weak) solution uε with

uε ∈ L2(0,T ; H 1
0 (Ω)d ) and ∂t uε ∈ L2(0,T ;L2(Ω)d ).

The solutions uε are in fact more regular (see [86]) because uε ∈ L∞(0,T ; H 1
0 (Ω)d ) with time

derivative ∂t uε ∈ L∞(0,T ;L2(Ω)d ), and even,

uε ∈C ([0,T ]; H 1
0 (Ω)d ) and ∂t uε ∈C ([0,T ];L2(Ω)d ).

Homogenization of the wave equation

The effective dynamics at the macro scale can be approximated using homogenization theory

[30, 96, 44]. By using the theory of H-convergence [90, 22], one can show that the effective be-

havior of the heterogeneous solution uε is well-described by the solution of the homogenized

wave equation for short times T > 0 [30, 44]; i.e., uε converges weakly in H 1 to u0 the solution

of

〈∂t t u0(t ), w〉+B 0(u0(t ), w)= F (w), ∀w ∈H 1
0 (Ω)d . (3.30)

with the initial conditions (3.28), and where B 0 : H 1(Ω)d ×H 1(Ω)d →R is given by

B 0(v, w)=
∫
Ω

a0(x)e(v) : e(w)dx,

where the homogenized tensor a0 verifies (3.2),(3.3), and (3.4) for some constants 0 < λ0 ≤
Λ0 <∞.

When the time is increased, e.g. for time T ε = ε−2T , the heterogeneous solution deviates

from the global behavior set from the homogenized equation and develops a dispersive

behavior due to an interplay between the small scales. To capture this dispersive effect, the

homogenized model requires some additional terms leading to a family of effective Boussinesq-

type equations. We refer to [10, 19] for the treatment of the wave equation in heterogeneous

media for long time with the FE-HMM, and focus on the propagation of a linear elastic wave

propagation for short time.
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3.6. FE-HMM for the wave equation in a linear elastic medium

We mention as well the multiscale method for the long time wave propagation in a hetero-

geneous medium introduced in [59, 60], where finite differences are used instead of finite

elements, and where the authors consider dynamical micro problems.

3.6 FE-HMM for the wave equation in a linear elastic medium

The FE-HMM for the wave equation was introduced in [9] and later in [10] for long time.

Following the macro to micro HMM approach (see Section 2.4), we consider a family of coarse

partitions {TH } over Ω of mesh size H � ε. Let K̂ be a reference element and {ω̂ j , x̂ j } be a

quadrature formula on K̂ . We make the following assumptions; for j = 1, . . . , J , with J ≥ 1, let

ω̂ j > 0 and

(Q1) there exists λ> 0 :
∑J

j=1 ω̂ j |∇p̂(x̂ j )|2 ≥λ‖∇p̂‖2
L2(K̂ )

, for all p̂ ∈Rp (K̂ )d ,

(Q2)
∫

K̂ p̂(x̂)dx̂ =∑J
j=1 ω̂ j p̂(x̂ j ), for all p̂ ∈Rσ(K̂ )d , where σ=max(2p−2, p) if Rσ =P σ, and

σ=max(2p−1, p+1).

Further, for quadrature formula used in the discrete form of the product (·, ·) we assume

(Q3)
∑J

j=1 ω̂ j |p̂(x̂ j )|2 ≥λ‖p̂‖2
L2(K̂ )

, for all p̂ ∈Rp (K̂ )d .

Inside each element K , we define two different QF {ω j ,K , x j ,K } and {ω̃l ,K , x̃l ,K } with j = 1, . . . , J ,

l = 1, . . . ,L, to evaluate the bilinear form BH , and the discrete inner product (·, ·)H , respectively.

We assume that both QF satisfy assumptions (Q1) and (Q2), and further that (Q3) holds for the

QF used in the inner product (·, ·)H .

Around each quadrature node x j ,K we construct a sampling domain Kδ j of size δ� H and

consider a family of fine partitions {Th} over Kδ j , of mesh size h ≤ ε. Let V p
0 (Ω,TH ) be a macro

FE over Ω and V q (Kδ j ,Th) be a micro FE over Kδ j defined as in equations (3.12) and (3.15),

respectively. The FE-HMM reads: find uH ∈V p
0 (Ω,TH ) the solution of

(∂t t uH , w H )H+BH (uH , w H )= F (w H ), ∀w H ∈V p
0 (Ω,TH ), (3.31)

with the initial conditions obtained by nodal interpolation of the data in (3.28), and where

(∂t t v H , w H )H =
∑

K∈TH

L∑
l=1

ω̃l ,K ∂t t v H (x̃l ,K )w H (x̃l ,K ),

F (w H )=
∫
Ω

f w H dx.

and the bilinear form BH : V p
0 (Ω,TH )×V p

0 (Ω,TH )→R is given by

BH (uH , w H )= ∑
K∈TH

J∑
j=1

ω j ,K

|Kδ j |
∫

Kδ j

aε(x)e(uh
j ) : e(wh

j )dx,
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where uh
j (resp. w h

j ) is such that uh
j −uH

lin, j ∈V q (Kδ j ,Th) and

∫
Kδ j

aε(x)e(uh
j ) : e(zh)dx = 0, ∀zh ∈V q (Kδ j ,Th).

The term uH
lin, j (x) corresponds to a linearization of uH at the integration nodes x j ,K , i.e.,

uH
lin, j (x)= uH (x j ,K )+ (x− x j ,K )e(uH (x j ,K )). Note that the micro solutions do not depend on

time and that the micro problems are well-posed; this follows from the Lax–Milgram lemma

together with the Korn’s inequalities.

Following [10], there exist constants C1,C2 > 0 such that

C1‖v H‖L2(Ω) ≤ ‖v H‖H ≤C2‖v H‖L2(Ω), (3.32)

where ‖v H‖2
H = (v H , v H )H.

The problem (3.31) is well-posed; i.e., it admits a unique solution uH ∈ L∞(0,T ;V p
0 (Ω,TH )),

for all ε, H ,h, (see [10, 44]) .

3.7 A priori error analysis

In this section, we give an a priori error analysis for the FE-HMM applied to the wave equation

in a linear elastic medium; it follows [10, Section 4]. We consider an elliptic projection of the

homogenized solution u0, that we denote by πH u0, with

BH (πH u0, w H )=B 0(u0, w H )+〈∂t t u0, w H 〉− (IH∂t t u0, w H )H, (3.33)

where IH is a nodal interpolant satisfying, for all integers m,k with 0≤m ≤ 1 and 2≤ k ≤ p+1,

‖v − IH v‖H m (Ω) ≤C H k−m‖v‖H k (Ω). (3.34)

It holds IH u0 ∈V p
0 (Ω,TH ) and the projection πH u0 ∈V p

0 (Ω,TH ) is uniquely determined as

the solution of a boundary value problem. Further, we can define the initial conditions of the

FE-HMM problem (3.31) by

uH (0)= IH u0(0)= IH g1, ∂t uH (0)= IH∂t u0(0)= IH g2, in Ω.

The goal of the analysis is to find an upper bound for the error

‖∂t (u0−uH )‖L∞(0,T ;L2(Ω)d )+‖u0−uH‖L∞(0,T ;H 1(Ω)d ),

where u0 and uH are the solutions of (3.30) and (3.31) respectively. The key is to use a triangular

inequality together with an estimate for the difference between πH∂k
t u0 and ∂k

t u0 for k = 0,1,2.
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Assuming that the homogenized tensor a0
i j kl (x) ∈ W 1,∞(Ω), for i , j ,k, l = 1, . . . ,d , we can

consider the FEM applied to the homogenized problem (3.30) and obtain the bilinear form

B 0
H : V p (Ω,TH )×V p (Ω,TH )→R

B 0
H (v H , w H )= ∑

K∈TH

J∑
j=1

ω j ,K a0(x j ,K )e(v H (x j ,K )) : e(w H (x j ,K )).

Assuming that the quadrature formula used for the bilinear form B 0
H satisfies (Q1) and (Q2)

and that the one used for (·, ·)H satisfies (Q1), (Q2), and (Q3), the following estimates hold

for v H , w H ∈ V p (Ω,TH ) and a0
i j kl (x) ∈W m+p,∞(Ω), for i , j ,k, l = 1, . . . ,d , with m = 0,1, (see

[41, 42])

|B 0(v H , w H )−B 0
H (v H , w H )| ≤C H p+m max

i , j ,k,l
‖a0

i j kl‖W p+m,∞(Ω)‖v H‖H̄ p+m (Ω)‖w H‖H̄ 1+m (Ω),

(3.35)

|(v H , w H )− (v H , w H )H| ≤C H p+m‖v H‖H̄ p+m (Ω)‖w H‖H̄ 1+m (Ω), (3.36)

where ‖ · ‖H̄ p (Ω) is a broken norm. Then, we have a first error bound. The proof follows the

lines of [10, Lemma 4.6].

Lemma 3.7.1. Let u0 be the solution of (3.30) and suppose that (3.35) and (3.36) hold for m = 0.

Further assume that (3.32) holds and

∂k
t u0 ∈ L2(0,T ; H p+1(Ω)d ), k = 0,1,2,

∂2+k
t u0 ∈ L2(0,T ; H p (Ω)d ), k = 0,1,2,

a0
i j lm ∈W p,∞(Ω), i , j , l ,m = 1, . . . ,d .

Then

‖∂k
t u0−πH∂k

t u0‖L2(0,T ;H 1(Ω)d ) ≤C (H p +eMIC+eMOD),

where the constant C is independent of H ,h, and ε. The micro error eMIC is given by (3.22) and

the modeling error eMOD is given by (3.24) or (3.25).

Proof. We give the proof for k = 0. Using equation (3.33) and the linearity of the forms B0 and

BH , we write

BH (πH u0− IH u0, v H )=B0(u0− IH u0, v H )+B0(IH u0, v H )−BH (IH u0, v H )+ (∂t t u0, v H )

− (IH∂t t u0, v H )H+ (IH∂t t u0, v H )− (IH∂t t u0, v H )

=B 0(u0− IH u0, v H )+B 0(IH u0, v H )−B 0
H (IH u0, v H )

+B 0
H (IH u0, v H )−BH (IH u0, v H )

+ (∂t t u0− IH∂t t u0, v H )+ (IH∂t t u0, v H )− (IH∂t t u0, v H )H. (3.37)

We bound each term of the last equation, and use the short-hand notation ‖ ·‖L2(H p ) to denote
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the norm ‖ ·‖L2(0,T ;H p (Ω)), p ≥ 1. Using the boundedness of B 0, it holds

B 0(u0− IH u0, v H )≤C H p‖u0‖L2(H p+1)‖v H‖L2(H 1),

where we use that IH verifies (3.34). For the second and third terms of (3.37), we use equation

(3.35), with m = 0, and obtain

B 0(IH u0, v H )−B 0
H (IH u0, v H )≤C H p‖IH u0‖L2(H̄ p )‖v H‖L2(H 1) ≤C H p‖u0‖L2(H p+1)‖v H‖L2(H 1).

Then, using [2, Lemma 4.3] and [10, Lemma 4.1], it holds

B 0
H (IH u0, v H )−BH (IH u0, v H )≤C (eMIC+eMOD)‖IH u0‖L2(H 1)‖v H‖L2(H 1)

≤C (eMIC+eMOD)‖u0‖L2(H 1)‖v H‖L2(H 1).

We bound the first inner product of (3.37) by

(∂t t u0− IH∂t t u0, v H )≤C H p‖∂t t u0‖L2(H p )‖v H‖L2(H 1),

where we use equation (3.34). The last term of (3.37) is bounded by

(IH∂t t u0, v H )− (IH∂t t u0, v H )H ≤C H p‖u0‖L2(H p )‖v H‖L2(H 1).

Using the coercivity of BH ,

‖πH u0− IH u0‖2
L2(H 1) ≤C BH (πH u0− IH u0,πH u0− IH u0)

≤C
(
H p‖u0‖L2(H p )+ (eMIC+eMOD)‖u0‖L2(H 1)

+H p‖∂t t u0‖L2(H p )
)‖πH u0− IH u0‖L2(H 1).

We can conclude with an integration, a triangle inequality, and equation (3.34).

A similar error bound holds for the L2 norm.

Lemma 3.7.2. Let u0 be the solution of (3.30) and suppose that (3.35) and (3.36) hold for m = 1.

Further assume that (3.32) holds and

∂k
t u0 ∈ L2(0,T ; H p+1(Ω)d ), k = 0,1,

∂2+k
t u0 ∈ L2(0,T ; H p (Ω)d ), k = 0,1,

a0
i j lm ∈W p+1,∞(Ω), i , j , l ,m = 1, . . . ,d .

Then

‖∂k
t u0−πH∂k

t u0‖L2(0,T ;L2(Ω)d ) ≤C (H p+1+eMIC+eMOD),

where the constant C is independent of H ,h, and ε. The micro error eMIC is given by (3.22) and

the modeling error eMOD is given by (3.24) or (3.25).
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We can now express a bound for the difference between u0 and uH .

Theorem 3.7.3. Let u0 and uH be the solution of (3.30) and (3.31) respectively. Suppose that

(3.35) and (3.36) hold for m = 0. Further assume that (3.32) and (3.34) hold, and that

∂k
t u0 ∈ L2(0,T ; H p+1(Ω)d ), k = 0,1,2,

∂k+2
t u0 ∈ L2(0,T ; H p (Ω)d ), k = 0,1,2,

a0
i j lm ∈W p,∞(Ω), i , j , l ,m = 1, . . . ,d ,

g1 ∈H p+1(Ω)d , g2 ∈H max(2,p)(Ω)d ,

∂k
t uH ∈ L2(0,T ; H 1(Ω)d ), k = 0,1,2.

Then

‖∂t (u0−uH )‖L∞(0,T ;L2(Ω)d )+‖u0−uH‖L∞(0,T ;H 1(Ω)d ) ≤C (H p +eMIC+eMOD),

where the micro error eMIC is given by (3.22) and the modeling error eMOD is given by (3.24) or

(3.25).

Proof. We use the short-hand notation ‖·‖L2(H p ) to denote the norm ‖·‖L2(0,T ;H p (Ω)), p ≥ 1. We

decompose the H 1 error of u0−uH into

‖u0−uH‖L2(H 1) ≤ ‖u0−πH u0‖L2(H 1)+‖πH u0−uH‖L2(H 1).

The first error is bounded by Lemma 3.7.1, thus

‖u0−πH u0‖H 1(Ω) ≤C (H p +eMIC+eMOD).

We write

(∂t t (uH −πH u0), v H )H+BH (uH −πH u0, v H )

= (∂t t uH , v H )H− (∂t tπH u0, v H )H+BH (uH , v H )−BH (πH u0, v H )

= F (v H )− (∂t tπH u0, v H )H−BH (πH u0, v H )

= (∂t t u0, v H )H+B 0(u0, v H )− (∂t tπH u0, v H )H−BH (πH u0, v H )

= (∂t t u0, v H )H+B 0(u0, v H )− (∂t tπH u0, v H )H−B 0(u0, v H )− (∂t t u0, v H )H+ (IH∂t t u0, v H )H

= (IH∂t t u0−∂t tπH u0, v H )H,

We then follow [10], and obtain

1

2

d

d t

(
(∂tηH ,∂tηH )H+BH (ηH ,ηH )

)= (IH∂t t u0−πH∂t t u0,∂tηH )H,

where ηH = (u0−πH u0). We then call ξ(t)= (∂tηH ,∂tηH )H+BH (ηH ,ηH ), and using Young’s
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inequality, it holds

1

2

d

d t
ξ(t )≤C (‖IH∂t t u0−πH∂t t u0‖2

L2(L2)+‖∂tηH‖2
L2(L2)).

We can bound

‖∂tηH‖2
L2(L2) ≤ (∂tηH ,∂tηH )H ≤ (∂tηH ,∂tηH )H+BH (ηH ,ηH )= ξ(t ).

Then, it holds
1

2

d

d t
ξ(t )≤C (‖IH∂t t u0−πH∂t t u0‖2

L2(L2)+ξ(t )),

and, from Gronwall’s inequality, we obtain a bound on supξ(t )

sup
0≤t≤T

ξ(t )≤C (ξ(0)+‖IH∂t t u0−πH∂t t u0‖2
L2(L2)),

and using Lemma 3.7.2, it holds

sup
0≤t≤T

ξ(t )≤C (ξ(0)+H 2(p+1)+ (eMIC+eMOD)2).

It remains to bound ξ(0), by definition,

ξ(0)= ((∂tηH ,∂tηH )H+BH (ηH ,ηH ))|t=0 ≤C (‖∂tηH (0)‖2
L2(Ω)+BH (ηH (0),ηH (0)).

We then obtain

|BH (ηH (0),ηH (0))| ≤C‖ηH (0)‖2
H 1(Ω) =C‖uH (0)−πH u0(0)‖2

H 1(Ω)

=C‖IH g1−πH u0(0)‖2
H 1(Ω)

≤C (‖IH g1− g1‖2
H 1(Ω)+‖u0(0)−πH u0(0)‖2

H 1(Ω))

≤C (H 2p‖g1‖2
H p+1(Ω)+‖u0−πH u0‖2

L2(H 1)+‖∂t u0−πH∂t u0‖2
L2(H 1))

≤C (H 2p‖g1‖2
H p+1(Ω)+H 2p + (eMIC+eMOD)2),

using the continuous embedding of H 1(H 1) into C (H 1), Lemma 3.7.1 together with equation

(3.34) with m = 1,k = p+1, and assuming that g1 ∈H p+1(Ω). Similarly,

‖∂tηH (0)‖L2(Ω) = ‖IH g2−πH∂t u0(0)‖L2(Ω)

≤C (‖IH g2− g2‖L2(Ω)+‖∂t u0(0)−πH∂t u0(0)‖L2(Ω))

≤C (H p‖g2‖H p (Ω)+‖∂t u0−πH∂t u0‖L2(L2)+‖∂t t u0−πH∂t t u0‖L2(L2))

≤C (H p‖g2‖H p (Ω)+H p+1+eMIC+eMOD).

All together,

sup
0≤t≤T

ξ(t )≤C (H 2p + (eMIC+eMOD)2),
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and

‖∂tηH‖2
L∞(0,T ;L2(Ω))+‖ηH‖2

L∞(0,T ;H1(Ω)) ≤C sup
0≤t≤T

ξ(t )≤C (H 2p + (eMIC+eMOD)2).

Following [10], we can also prove L2 a priori error estimates. We state the result in the next

theorem.

Theorem 3.7.4. Let u0 ∈ H 1
0 (Ω)d and uH be the solutions of (3.30) and (3.31) respectively.

Suppose that (3.35) and (3.36) hold for m = 1. Further assume that (3.32) and (3.34) hold, and

that

∂k
t u0 ∈ L2(0,T ; H p+1(Ω)d ), k = 0,1,2,3

∂4
t u0 ∈ L2(0,T ; H p (Ω)d ),

a0
i j lm ∈W p+1,∞(Ω), i , j , l ,m = 1, . . . ,d ,

g1 ∈H p+1(Ω)d ,

∂k
t uH ∈ L2(0,T ; H 1(Ω)d ), k = 0,1.

Then

‖u0−uH‖L∞(0,T ;L2(Ω)d ) ≤C (H p+1+eMIC+eMOD),

where the constant C is independent of H ,h, and ε. The micro error eMIC is given by (3.22) and

the modeling error eMOD is given by (3.24) or (3.25).

3.8 Numerical examples

In this section, we give numerical examples to test the FE-HMM applied to a wave propagation

in a linear elastic medium for short time T > 0; we seek a numerical approximation of u0 the

solution of

∂t t u0−div(a0(x) : e(u0))= f .

We recall the expected convergence rates

‖u0(T )−uH (T )‖H 1(Ω) ≤C (H p +eMIC+eMOD), and

‖u0(T )−uH (T )‖L2(Ω) ≤C (H p+1+eMIC+eMOD).

Outline. The section is organized as follows. In 3.8.1, we verify the sharpness of the conver-

gence rates of Theorem 3.7.3 and Theorem 3.7.4 through two experiments, one with a periodic

tensor and one with a locally periodic tensor. Then, in 3.8.2, we consider a layered material

and compare the FE-HMM with the homogenization method proposed by Schoenberg and

Muir [104]. Finally, in 3.8.3 we construct an arbitrarily random layered medium, where the

randomness is generated from a von-Karman correlation function, and test the FE-HMM.
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3.8.1 Periodic and locally periodic tensor

In here we verify the sharpness of the error bounds of Theorem 3.7.3 and Theorem 3.7.4.

Experiment 1. For the first experiment, we choose a Y -periodic tensor. Let Ω= [−1,1]2 and aε

be given by

aε(x)=

⎛
⎜⎝

sin(2πx1/ε)+2 0 0

0 sin(2πx2/ε)+2 0

0 0 10

⎞
⎟⎠ .

Explicit equations are available for the homogenized tensor a0, and one obtains

a0 =

⎛
⎜⎝
�

3 0 0

0
�

3 0

0 0 10

⎞
⎟⎠ .

We choose Neumann boundary conditions, a Gaussian initial condition g1, and zero initial

condition g2. In this example, the reference solution u0 is computed on a fine mesh obtained

from the initial mesh with uniform refinements. Collocation to the slow variable is used,

setting the modeling error to zero. Further, we set the size of the sampling domain to δ= ε.

We first show the convergence rate for piecewise linear macro and micro FE and for quadratic

macro and micro FE. We chose a discretization in the micro FE such that the micro error can

be neglected. We use a Leapfrog scheme and we impose a CFL condition for stability of

Δt ≤ h f

50
, (3.38)

where h f is the mesh size of the fine mesh used to compute the reference solution. In order to

neglect the error in time, we set the CFL condition to a small value. We chose ε= 1/10, T = 0.2,

and choose an initial mesh size of H = 1/12. At first, we fix the micro mesh size and refine

uniformly the macro mesh size. The CFL condition for the FE-HMM can be chosen much

larger than the CFL condition (3.38) used for the computation of the reference solutions u0

and uε. Indeed, the CFL condition for the FE-HMM depends on the macro mesh size H , e.g.,

(Δt )H M M ≤ H

50
.

The H 1 and L2 errors between the numerical and reference solutions are expected to reach

a threshold value depending on the micro mesh size. In Figures 3.7a and 3.7b, one can see

the H 1 and L2 errors, respectively, at time t = 0.2, with piecewise macro and micro FE, with

H = 1/12, and for the micro mesh sizes h = 1/4,1/8, and h = 1/16. The macro and micro

number of degrees of freedom can be chosen in order to obtain optimal convergence rates.

Indeed, if H ≈ 1
Nmacr o

and h
ε ≈ 1

Nmi cr o
, we obtain, from the convergence rates given in Theorems
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Figure 3.7 – Error between u0 and uH in Ω for (a)H 1 and (b)L2 errors for P 1 macro and micro
FE spaces for different micro mesh sizes.

3.7.3 and 3.7.4,

Nmi cr o =N 1/2
macr o , (H 1 norm), Nmi cr o =Nmacr o , (L2 norm).

The effect of the micro error in the H 1 and L2 norm can be better seen when P 2 macro FE are

used with P 1 micro FE. In Figures 3.8a and 3.8b, we plot the H 1 and L2 errors, respectively,

at time t = 0.2, using P 2 macro and P 1 micro FE with H = 1/6, and micro mesh sizes h =
1/4,1/8,1/16, and h = 1/32. The optimal macro-micro refinements are given by

Nmi cr o =Nmacr o , (H 1 norm), Nmi cr o =N 3/2
macr o , (L2 norm).

We plot horizontal snapshots at the depth z = −0.5 of the displacements in the x and z di-

rections at the final time T = 0.2 second. In Figure 3.9a, we can see the amplitude of the

displacement along the x direction of the homogenized solution in black and the heteroge-

neous solution for ε= 1/50 in red. The z displacement is represented in Figure 3.9b. When ε

is made smaller, we see that the homogenized solution captures the global behavior of the

heterogeneous solution; in Figures 3.10a and 3.10b we compare the two displacements along

the x and z direction, respectively, for ε= 1/100. As the error between the two tensors a0
K and

a0 is small, the global displacement of the numerical homogenized solution uH is similar to

the displacement of the homogenized solution u0 at the final time T = 0.2. Thus, we decided

not to plot uH in Figures 3.9 and 3.10.
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Figure 3.8 – Error between u0 and uH in Ω for (a)H 1 and (b)L2 errors for P 2 macro and P 1

micro FE spaces for different micro mesh sizes.

(a) (b)

Figure 3.9 – Horizontal snapshots at the depth z =−0.5 of the displacements u0( in black) and
uε (in red) in the x and z directions at the final time T = 0.2 second, with ε= 1/50.
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(a) (b)

Figure 3.10 – Horizontal snapshots at the depth z =−0.5 of the displacements u0( in black)
and uε (in red) in the x and z directions at the final time T = 0.2 second, with ε= 1/100.

Experiment 2. In this experiment, we take a locally periodic tensor aε. Let aε be defined by

aε(x)=

⎛
⎜⎝

sin(2πx1/ε)sin(x2
1 x2

2)+2 0 0

0 sin(2πx2/ε)sin(x2
1 x2

2)+2 0

0 0 10

⎞
⎟⎠ .

In that case, the exact homogenized tensor is not known and the reference solution u0 is com-

puted with FE-HMM using a very fine mesh for the macro and micro problems. Collocation is

still used, and we fix the micro mesh size to a very fine value to neglect the micro error. We

set T = 0.1 and chose an initial mesh of size H = 1/8. In Figures 3.11a and 3.11b, we plot H 1

and L2 errors at the final time T , using P 2 macro and P 1 micro FE with sampling domains of

different size δ.

3.8.2 Horizontally layered material

Consider now an horizontally layered material split into horizontal isotropy and vertical

isotropy, and where the tensor aε is given by

aε(x)= aH (x)+aV (x), x ∈Ω.

The subscripts H and V stand for horizontal and vertical, respectively, and ε denotes the width

of the layers. We assume that the domain Ω= [−2,0]2, and that the distribution of the layers

are horizontal-vertical.
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Figure 3.11 – (a) H 1 error and (b) L2 error between u0 and uH in Ω for with a locally periodic
tensor aε using P 2 macro and P 1 micro FE spaces.

We consider that the tensors aH and aV are given by

aH =

⎛
⎜⎝

46 18 0

18 30 0

0 0 7

⎞
⎟⎠ , aV =

⎛
⎜⎝

30 18 0

18 46 0

0 0 7

⎞
⎟⎠ .

For ε= 1/10, the first component of aε is represented in Figure 3.12. We compute the homog-

enized tensor on a cell problem of size δ= 2ε with a mesh size h = 1
1024 to be in accordance

with the numerical results of [62].

For horizontally layered anisotropic elastic media, an effective homogenized tensor can

be derived using an averaging method proposed by Schoenberg and Muir [104]. Detailed

equations for the computations of the homogenized tensor can be found in [37], and one

obtain

a0 =

⎛
⎜⎝

38 18 0

18 36.30 0

0 0 7

⎞
⎟⎠ ,

and the numerical homogenized tensor a0,h
K can be computed during the assembly process

of the FE-HMM using equation (3.26). As the medium is periodic, the value of the numerical

homogenized tensor a0,h
K , computed in the sampling domain Kδ j , is the same at each quadra-

ture node x j ,K . the numerical homogenized tensor a0,h
K obtained with the FE-HMM, using P 1

macro and micro FE, is

a0,h
K =

⎛
⎜⎝

38 18 0

18 36.3158 0

0 0 7

⎞
⎟⎠ ,
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Figure 3.12 – Layered material component aε
1111 for ε= 1/10.

and the error e = |a0,h
K −a0| in percents is

e =

⎛
⎜⎝

0 0 0

0 0.04% 0

0 0 0

⎞
⎟⎠ .

Using quadratic micro FE in the micro problem gives

a0,h
K =

⎛
⎜⎝

37.99 17.99 0

17.99 36.328 0

0 0 7

⎞
⎟⎠ ,

and an error e = |a0,h
K −a0| in percents of

e =

⎛
⎜⎝

0.026% 0.055% 0

0.055% 0.077% 0

0 0 0

⎞
⎟⎠ .

In Figure 3.13a, we plot the reference solution uε at time t = 0.1 for ε = 1/50 and in Figure

3.13b, we plot the numerical homogenized solution. The global behavior of the two solutions

is similar.

3.8.3 Arbitrarily heterogeneous media.

In this experiment, we consider a random layered medium generated by the von-Karman

correlation function [72, 62, 93]

vκ(x)= 1

2κ−1Γ(|κ|)
(∣∣∣x

c

∣∣∣)κ Kκ

(∣∣∣x

c

∣∣∣) ,

where κ is the hurst number, Kκ is a modified Bessel function of order κ, c = (cH ,cV ) is the

correlation distance of the heterogeneities in the medium; cH (cV ) stands for the horizontal

(vertical) size of the heterogeneities. The medium is obtained by filtering a white noise by a
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(a) (b)

Figure 3.13 – Snapshots at time t = 0.1 second of (a) the reference solution uε, and (b) the
homogenized solution for ε= 1/50.

spectral filter, which is the square root of the power spectrum density function (the Fourier

transform) of the von-Karman correlation function. We start by computing the von-Karman

function on a fine grid over Ω, then we compute its Fourier transform and take the square

root; this is the spectral filter. We take a uniform distribution between 0 and 1, compute its

Fourier transform and multiply it by the filter. The random data are then obtained by going

back to the spacial domain Ω.

Discussion in [81], leads us to take negative values of κ; further, in two-dimensional experi-

ments they give a lower bound −3
4 <κ.

The tensor aε is given by summing the random von-Karman medium to a layered tensor with

layer size of ε. The layered tensor aε
L is given by

aε
L =

⎛
⎜⎝

a1111 a1122 0

a1122 a2222 0

0 0 a1212

⎞
⎟⎠ ,

where each entry is layered. Let Kκ be the first order modified Bessel function and set κ=−0.2,

c = (0.2,0.01), and ε= 1/16, the different components of the tensor aε are shown in Figures

3.14a to 3.14f.

As the tensor is four-layered, we take sampling domains of size δ= 4nε, n ∈N∗with a mesh

size h small enough to capture the heterogeneities of the medium, i.e., set by the correlation

distance c. The Schoenberg–Muir averaging method fails for layered media with arbitrary

heterogeneities, and similarly we cannot use the exact formula for the homogenized tensor

in a layered medium [80, 44]. Thus, no explicit equations are available for the homogenized

tensor. However, from the theory of homogenization in random media, the homogenized

tensor at a point x ∈Ω reaches a stable value when δ increases. We take a micro number of
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a0,h
1111 a0,h

1122 a0,h
1112 a0,h

2222 a0,h
2212 a0,h

1212

δ= 8ε 13.5734 4.1497 0.6353 11.0198 1.4192 5.2596

δ= 16ε 13.5824 4.1541 0.6377 11.0261 1.4265 5.2665

δ= 24ε 13.5653 4.137 0.6277 11.0144 1.4028 5.2475

δ= 32ε 13.5822 4.1538 0.6328 11.0600 1.4137 5.2723

δ= 40ε 13.5759 4.1512 0.6354 11.0331 1.4216 5.2662

δ= 48ε 13.5751 4.1534 0.6353 11.0453 1.4218 5.2712

Table 3.2 – Components of the numerical homogenized tensor computed on sampling do-
mains with increasing size δ.

degrees of freedom Nmi cr o = 1025 and increase δ. We set ε = 1/50, c = (ε/2,ε/4) and take

n = 2,3, . . . ,12, leading to sampling domains of sizes 8ε≤ δ< 1 — we omit δ= 4ε as it gives

results slightly off the grid. We take a quadrature point x j ,K , at the center of Ω, and compute

the numerical homogenized tensor a0,h
K at the quadrature point x j ,K . With δ increasing, and

by keeping a mesh size that fully resolve the fine scales, the numerical tensor tends to stabilize

to

a0,h
K =

⎛
⎜⎝

13.575 4.153 0.635

11.045 1.421

5.271

⎞
⎟⎠ , (3.39)

where the blank entries can be filled by symmetry. Table 3.2 gives the values of the numerical

homogenized tensor a0,h
K for different values of δ.

Take homogeneous Neumann boundary conditions and an initial condition given by a Gaus-

sian pulse located at the center of Ω. We consider a CFL condition of

Δt ≤ h f

30
.

Let uH be the numerical homogenized solution computed with FE-HMM using P 2 macro FE

and P 1 micro FE with δ= 8ε with a number of micro degrees of freedom Nmi cr o = 128, where

the micro problems are solved around each macro quadrature points. Consider as well, a nu-

merical solution u0,H computed with the tensor (3.39) obtained by taking a sampling domain

of size δ= 48ε with a number of micro degrees of freedom Nmi cr o = 1024. In Figure 3.15, we

plot snapshots at time t = 0.025,0.05,0.075, and 0.1 second of the numerical homogenized

solutions uH in the first column, the numerical solution u0,H in the second column, and the

reference solution uε in the third column. We can see that the three solutions give similar

behavior, albeit with oscillations for the reference solution. At last, in Figure 3.16, we plot the

reference solution uε for ε= 1/100 at time t = 0.05 and t = 0.1 second. When ε is made smaller

we see that the heterogeneous and homogenized displacements are akin.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14 – Layered von-Karman random medium for ε= 1/16, (a) aε
1111, (b) aε

1122, (c) aε
1112,

(d) aε
2222, (e) aε

2212, and (f) aε
1212.
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Figure 3.15 – Snapshots at time t = 0.025,0.05,0.075, and 0.1 second of the numerical homoge-
nized solution (1st column), the effective solution with the tensor (3.39) (2nd column), and
the reference heterogeneous solution uε (3r d column).
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In Figure 3.17 we compare the numerical homogenized solution computed with the FE-HMM

using a numerical homogenized tensor computed once on a sampling domain of size δ= 8ε

(left column) with the numerical homogenized solution computed with the FE-HMM using a

numerical homogenized tensor computed in each sampling domains, whose sizes are set to

δ= 8ε (right column). Both numerical solution are computed using P 2-macro and P 1-micro

FE. The two solutions give similar displacement.

Further, we compare horizontal snapshots at the depth z = −0.5 in the x-direction and z-

direction. In Figures 3.18a and 3.18b, we compare the x and z displacements of the numerical

homogenized solutions with a0,h
K computed in one sampling domain Kδ j with δ = 48ε (in

blue) with numerical homogenized solution computed with a0,h
K in one sampling domain Kδ j

with δ= 8ε (in black). In Figures 3.18c and 3.18d, we compare the x and z displacement of

the numerical homogenized solution computed with a0,h
K in one sampling domain Kδ j with

δ= 8ε (in black) with the numerical solution where the numerical homogenized tensor a0,h
K is

computed in all sampling domains Kδ j where δ= 8ε (in red). They all give the same behavior.

3.9 Summary

The wave equation in a highly heterogeneous linear elastic medium is considered for short

time, and the finite element heterogeneous multiscale method is given. Fully discrete a priori

error analysis is derived and numerical examples are proposed to verify the sharpness of the

error bounds.
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(a) (b)

(c) (d)

Figure 3.16 – (a) and (c) snapshots at time t = 0.05 and 0.1 second of the reference solution
uε for ε = 1/100, (b) and (d) snapshots at time t = 0.05 and 0.1 second of the numerical
homogenized solution uH .
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Figure 3.17 – Snapshots at time t = 0.025,0.05,0.075, and 0.1 second of the numerical homoge-
nized solution with a0,h

K computed in one sampling domain Kδ j with δ= 8ε, and whose value
is used at each quadrature points (1st column), snapshots of the homogenized solution with
a0,h

K computed in each sampling domain Kδ j with δ= 8ε (2nd column).
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(a) (b)

(c) (d)

Figure 3.18 – Horizontal snapshots at depth z =−0.5 at time t = 0.1 of the (a) x-direction and
(b) z-direction of the numerical homogenized solution with a0,h

K computed in one sampling
domain Kδ j with δ= 48ε (in blue) and with δ= 8ε (in black). Horizontal snapshots of the (c)

x-direction and (d) z-direction of the numerical homogenized solution with a0,h
K computed

in one sampling domain Kδ j with δ= 8ε (in black) and the numerical homogenized solution

with a0,h
K computed in each sampling domain Kδ j with δ= 8ε (in red).
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4 Conclusion and outlook of Part I

The Part I of the thesis, is separated in two chapters. At first, we focus on numerical methods

for multiscale elliptic problems, and at second, we consider the wave equation in a linear

elastic medium with highly heterogeneous coefficients.

The Chapter 2 gives the foundations of the thesis, as we recall there useful theory, different

numerical methods and a priori error analysis that are used throughout the thesis. Advan-

tages and limitations of the proposed numerical methods are given as well. The numerical

multiscale method used in the thesis is the finite element heterogeneous multiscale method

(FE-HMM) based on the HMM framework. The FE-HMM proposes a fast and robust method

to approximate the homogenized solution of a heterogeneous problem, and states a post-

processing procedure to recover the fine scales and gives a good approximation of the fine scale

solution. However, the method relies on homogenization theory, which requires structural

assumptions on aε such as a clear scale separation or certain statistical distributions. If the

period ε is approximatively known, we construct sampling domains Kδ j with size δ satisfying

δ/ε ∉N, but this leads to a deterioration of the modeling error from Cε to C (δ+ ε
δ ), see [56]. If

the tensor has no scale separation, and thus no ε to quantify the size of the heterogeneities,

the size δ is often set to the finite element size of the partition TH over Ω. The fine scales

are then used almost everywhere in Ω and the cost of the FE-HMM is no less than that of a

fine scale solver. Further, the modeling error has only been derived for periodic and random

coefficients, and can therefore not be quantified in terms of explicit convergence rates.

Assuming that in local regions of the domain Ω, the tensor has no explicit separation of scales,

for example near local defects in composite material, but present explicit separation of scales

in the rest of the domain. In such situations, the FE-HMM can be used in regions with scale

separation and a fine scale method (such as the LOD or FEM) should be used elsewhere.

This leads to a coupling between two solvers. In Part II, we propose a new coupling method,

between the FE-HMM and the FEM, based on optimization techniques and virtual control

methods.

In Chapter 3, we derived the FE-HMM for the wave equation in a linear elastic medium. The
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derivation of the method followed the FE-HMM framework for elliptic equations derived

in Chapter 2 with obvious changes. A priori error estimates are given for the linear elastic

problem and for the wave propagation in a linear elastic medium. Explicit convergence rates in

term of the macro and micro mesh sizes are derived and numerical examples, using piecewise

linear and quadratic finite element spaces, are proposed to verify the sharpness of the bounds.

We further test the FE-HMM on layered media and on arbitrarily heterogeneous layered media

and compare the FE-HMM results with numerical method used in seismology.

In future work, we would like to test the FE-HMM on more complicated media, such as the

Marmousi model [32], and test it with existing numerical methods. We only focus on short

time effects, and thus, one future project can be to study the long time effects of a wave

propagating through a heterogeneous linear elastic medium.
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Part IIAn optimization based coupling
method for highly heterogeneous

multiscale elliptic PDEs
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In the second part of the thesis, we derive a new global to local method for a highly heteroge-

neous multiscale elliptic problem

−div(aε(x)∇uε)= f , in Ω.

As opposed to the Part I, the heterogeneous tensor aε, is assumed to have an explicit separation

of scales only in some subregions of the domain Ω. We propose a new coupling strategy

inspired by the virtual control method and based on a decomposition of the physical domain

into a region without scale separation, where the homogenized model is not valid, and a region

where the homogenized solution describes adequately the physical problem.

Outline of Part II. The outline of Part II is as follows.

In Chapter 5, we give an overview of global to local methods and recall the L2 global to local

projection method and the goal-oriented method. The latter acts as a reference method for

our method, and comparison between the two methods are conducted in Chapter 6.

In Chapter 6, we develop a new coupling method based on overlapping domains decomposi-

tions. Virtual (interface) controls are introduced as boundary conditions at the interface be-

tween overlapping subdomains, and the problem is reformulated as a minimization problem

with state equations as constraints. In this chapter, the method is based on the minimization

of the the discrepancy between the models on the overlapping regions. Well-posedness and

a priori error analysis are given, first for the optimization based method in the continuous

case. Then, the fully discrete coupling method is derived, and existence and uniqueness of

the solution are shown. The fully discrete a priori error analysis of the discrete method is

proposed. The two analysis rely on the Caccioppoli inequalities and on a strong version of the

well-known Cauchy–Schwarz inequality. Numerical examples compare the new method with

other existing global to local methods.

In Chapter 7, we propose numerical improvements to the coupling methods. At first, we

consider a minimization over the boundary of the overlapping regions instead of minimizing

over the whole overlapping region, as proposed in Chapter 6. A second improvement is related

to the meshing used in the coupling. In Chapter 6, we used identical FE in the overlapping

regions, whereas in Chapter 7, we use an interpolation between a fine mesh (for the fine scale

solver) and a coarse mesh (for the coarse scale solver). Both improvements reduce the number

of degrees of freedom of the problem as well as the computational time, and, when compared

to the coupling without these improvements, give similar convergence rates.

Publications. The Chapter 6 about the optimization based method and its a priori analysis

is based on [A. Abdulle, O. Jecker, Commun. Math. Sci., 2015] and [A. Abdulle, O. Jecker, A.

Shapeev, Multiscale Model. Simul., 2016]. The Chapter 7 about numerical improvements to

the coupling method is based on [A. Abdulle, O. Jecker, submitted to publication 2016].
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5 Homogenization based global to local
methods

In this chapter, we review some homogenization based global to local methods. The methods

presented here differ from the multiscale methods of Chapter 2, in the sense that global to

local downscaling methods are rather a post-processing step that requires a precomputed

homogenized solution. Such methods could be linked to the post-processing procedure of the

FE-HMM, given in Section 2.4.

In many applications, the microscopic H 1 features are needed in small subdomains of the

physical domain and global to local downscaling methods are a good tool to locally recover

the fine scale information in an efficient way. Further, they exploit Caccioppoli inequalities to

bound a local H 1 error by an L2 error over a larger subdomain.

Consider a heterogeneous multiscale elliptic problem: find uε such that

−div(aε(x)∇uε)= f , in Ω,

uε = g , on Γ,
(5.1)

where g ∈H 1/2(Γ) and aε ∈ (L∞(Ω))d×d , is uniformly bounded and elliptic

∃0<λ≤Λ : λ|ξ|2 ≤ aε(x)ξ ·ξ, and |aε(x)ξ| ≤Λ|ξ|, ∀ξ ∈Rd , a.e. x ∈Ω, ε> 0. (5.2)

The tensor is assumed to have scale separation in Ω, is of the form aε(x)= a(x, x/ε), and is

locally periodic in the fast variable y = x/ε. The FE-HMM (see Section 2.4) gives us a good L2

approximation uH of the heterogeneous solution uε. Let ω⊂Ω be the regions where the fine

scales need to be recovered; for example it could be around a defect or a crack in a material.

The first step is to consider domains ω1, slightly larger than ω, such that ω ⊂ ω1 ⊂ Ω and

denote by ω0 the overlapping regions, i.e., ω0 =ω1 \ω. The spaces ω,ω1, and ω0 can also share

boundaries with Ω.The idea behind the selection of larger domains ω1 it that it allows to apply

Caccioppoli inequalities. Such inequalities are the keys to the error analysis as they bound an

H 1 norm on ω by an L2 norm on ω1.
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Γ

Ω

ω

τ
τω

Ω

Γ

ω1

ω0

Figure 5.1 – Possible domain decompositions with ω (in blue), ω0 (in orange, hatched), and
ω1 =ω∪ω0.

Outline. The outline of this chapter is as follows. In Section 5.1, we recall the Caccioppoli

inequalities. In Section 5.2, we give the L2 global to local projection method, which projects

a numerical homogenized solution onto a specific functions space. In Section 5.3, we recall

the goal-oriented method which resolves, with a fine scale solver, a heterogeneous multiscale

PDE with a numerical homogenized solution as boundary condition.

5.1 Caccioppoli inequalities

In this section, we recall the Caccioppoli inequalities [66] and give some Caccioppoli related

inequalities. Let ω ⊂ ω1 be subdomains of Ω with τ = dist(∂ω,∂ω1) and set Γ = ∂Ω; see

Figure 5.1 for examples of domain decompositions. For a tensor a ∈ (L∞(Ω))d×d verifying

(5.2), we define the set of a-harmonic functions by H (ω1), which consists of functions u ∈
L2(ω1)∩H 1

loc(ω1) such that

B(u, v)=
∫
ω1

a(x)∇u ·∇vdx = 0, ∀v ∈C∞
0 (ω1).

If the domains have shared boundaries, i.e., ∂ω1∩Γ �= �, we define the space of a-harmonic

functions, denoted by H0(ω1), which consists of functions u ∈H (ω1) with zero boundary

condition on ∂ω1∩Γ; and we recall that Γ1 = ∂ω1 \Γ. The following Caccioppoli inequality

holds for interior domains and for domains with shared boundaries.

Theorem 5.1.1 (Caccioppoli inequality [66, 67]). Let u ∈H (ω1), then

‖∇u‖L2(ω) ≤
C

τ
‖u‖L2(ω1),

where C depends on the coercivity constants λ and Λ of the tensor a given by (5.2), and where τ

is the width of the overlapping domain ω0.

Remark 5.1.2. We note that elliptic problem with a non null right-hand side can also be

considered and we refer to [66] for details
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5.2 L2 global to local projection method

We discuss here a global to local approach introduced by Babuška and Lipton [27], and based

on the L2-projection of a numerical homogenized solution onto a specific functions space. To

follow the derivation of the method given in [27], we assume that f = 0 in problem (5.1). In

weak form it reads: find uε such that

Bε(uε, w)= 0, ∀w ∈H 1
0 (Ω), (5.3)

with uε = g on Γ, and where the bilinear form Bε : H 1(Ω)×H 1(Ω)→R is given by

Bε(v, w)=
∫
Ω

aε(x)∇v ·∇wdx. (5.4)

The idea of the method is to project the homogenized solution u0, the solution of (5.3) with a0

instead of aε in the bilinear form Bε given by equation (5.4), onto a functions space spanned

by solutions of local problems. The choice of the functions space is crucial and comes from

the Caccioppoli inequalities.

Remark 5.2.1. One can generalize the method proposed in [27] to non null right-hand side f

in (5.1) as done in [28]. To do so, we need to consider a corrected aε-harmonic space, defined

as

H par(ω1) :=H (ω1)⊕uε
par,

where uε
par denotes a local particular solution of (5.1) in ω1 subject to suitable Dirichlet

boundary conditions on ∂ω1; for example it can be given by the homogenized solution u0.

We will state the result for interior domain decompositions, and refer to [27] for the generaliza-

tion.

Theorem 5.2.2. Let ω⊂ω1 �Ω with τ= dist(∂ω1,∂ω)> 0. Let uε be the solution of problem

(5.3) and u0 be the corresponding homogenized solution, and consider their restrictions on

ω1. The global to local approximation u0
L2 ∈H par(ω1) is given by the L2-projection of u0 onto

H par(ω1) and satisfies

‖u0−u0
L2‖L2(ω1) = inf

w∈H par(ω1)
‖u0−w‖L2(ω1),

and further it holds

‖∇(uε−u0
L2 )‖L2(ω) ≤

C

τ
‖uε−u0‖L2(ω1),

where C depends on the coercivity constants λ and Λ of the tensor a given by (5.2).

As an immediate consequence of Theorem 5.2.2 we have a result for periodic homogenization.

Theorem 5.2.3. Let ω,ω1, uε, and u0 be given as in Theorem 5.2.2. Let aε be Y -periodic in y,

and assume sufficient regularity on the domain and the data to have ‖uε−u0‖L2(Ω) ≤Cε (see
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(2.18)). It holds

‖∇(uε−u0
L2 )‖L2(ω) ≤Cε,

where the constant C > 0 depends only on τ, Λ, and λ.

Proof. Follows from (2.18) together with Theorem 5.2.2.

5.3 Goal-oriented adaptive method

In this section, we recall the goal-oriented method given by Oden and Vemaganti in [95, 109]

and later in [94]. The method can be seen as a model adaptation technique based on local a

posteriori error estimates. The small scale information is needed only in small local domains

and we assume that outside these small domains, the homogenized, effective property can be

used. Let uε be the heterogeneous solution of an elliptic PDE

−div(aε(x)∇uε)= f , in Ω,

and that a coarse scale solution ũ exists and is the solution of a reduced model

−div(ã(x)∇ũ)= f , in Ω. (5.5)

For example, ã can be the homogenized tensor a0, and in that case the function ũ is the

homogenized solution u0. Then a quantity of interest, denoted by L ∈ H−1(Ω), is used to

measure the local physical features. To estimate the error L(uε− ũ), one needs to define a

residual R ∈H−1(Ω) by

R(v, w)=
∫
Ω

(aε− ã)(x)∇v ·∇wdx.

Let aε be symmetric, and define dual problems: find vε ∈H 1(Ω) and ṽ ∈H 1(Ω) with vε = g ,

ṽ = g on Γ and such that

∫
Ω

aε(x)∇w ·∇vεdx = L(w), ∀w ∈H 1
0 (Ω),∫

Ω
ã(x)∇w ·∇ṽdx = L(w), ∀w ∈H 1

0 (Ω).

Consider I ε = I − (aε)−1ã. The following bounds hold [95, Theorem 3.1].

Theorem 5.3.1. Let uε be the solution of (5.1) and ũ be the solution of (5.5). It holds

ηl ow ≤ L(uε− ũ)≤ ηupp .

The lower and upper bounds are

ηlow =
1

4
(η+low )2− 1

4
(η−upp )2+R(ũ, ṽ) and ηupp = 1

4
(η+upp )2− 1

4
(η−low )2+R(ũ, ṽ),
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where

η±upp = (aεI ε∇(ũ± ṽ), I ε∇(ũ± ṽ))1/2
L2(Ω) and η±low

|R(ũ± ṽ , ũ± ṽ)|2
Bε(ũ± ṽ , ũ± ṽ)

.

The algorithm can be given in three steps;

1. solve the reduced model problem (5.5) and obtain ũ;

2. estimate the modeling error L(uε− ũ). Check if it is below a given tolerance, and if not,

determine regions ω where the modeling error is large;

3. enhance the reduced solution ũ by taking into account the fine-scale material into the

regions ω. The problems are formulated as: find u such that

∫
ω

aε(x)∇u ·∇wdx =
∫
ω

f wdx, ∀w ∈H 1
0 (ω),

with u = ũ on ∂ω.

If we consider ũ =u0, the modeling error will be bounded but not small. To solve that issue,

one could take a domain ω1 such that ω ⊂ ω1, and enhance the reduced solution ũ (the

homogenized solution) using step 3 1. Let ω ⊂ω1 ⊂Ω, and let Γ1 = ∂ω1 \Γ. Consider ũ the

solution of

−div(aε(x)∇ũ)= f , in ω1, (5.6)

with ũ = u0 on Γ1 and ũ = g on ∂ω1∩Γ. A priori error estimates can be derived using the

Caccioppoli inequalities.

Theorem 5.3.2. Let uε be the solution of (5.1) and ũ be the solution of (5.6)

‖uε− ũ‖H 1(ω) ≤Cε+‖uε−u0‖H 1/2(Γ1),

where the constant C depends on λ,Λ, and τ.

Remark 5.3.3. In Theorem 5.3.2, the difference between u0 and uε is small only in the L2

norm, and thus by the trace theorems, we have that the difference in the H−1/2 norm is small;

i.e.,

‖uε−u0‖H−1/2(Γ1) ≤C‖uε−u0‖L2(ω1) ≤Cε.

However, the norm in the H 1/2 is bounded but not small.

1An other solution is to add a condition on the reduced model in order to guarantee that the modeling error is
small; i.e., one should consider ũ a solution of the reduced problem (5.5) with

‖ũ−uε‖L2(Ω) ≤Cε, and ‖ũ−uε‖H 1(Ω\ω) ≤Cε.
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5.4 Summary

In this chapter, we reviewed two global to local downscaling methods, the L2 global to local

projection method and the goal-oriented adaptive method. The two methods allow for a recov-

ery of the fine scales in region of interest but are based on the assumption that a precomputed

homogenized solution is available. However, it might be expensive to compute the numerical

homogenized solution with one multiscale method given in Section 2.3. Further the error

estimates depend on the quality of the numerical homogenized solution.
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6 Optimization based coupling method

In this chapter, we propose a new multiscale method for elliptic problems with highly oscilla-

tory coefficients based on virtual controls and optimization techniques. This chapter is based

on the articles [13] and [16].

Consider a heterogeneous multiscale elliptic problem in a convex, polygonal domain Ω⊂Rd ,

with Lipschitz continuous boundary Γ; find uε such that

−div(aε(x)∇uε)= f , in Ω, (6.1)

with some boundary conditions on Γ, and let the tensor aε ∈ (L∞(Ω))d×d be uniformly

bounded and elliptic

∃0<λ≤Λ : λ|ξ|2 ≤ aε(x)ξ ·ξ, and |aε(x)ξ| ≤Λ|ξ|, ∀ξ ∈Rd , a.e. x ∈Ω, ε> 0. (6.2)

As opposed to the Chapter 2, the heterogeneous tensor aε, considered in problem (6.1), is

assumed to have an explicit separation of scales only in some subregions of the domain Ω. By

explicit scale separation, we mean problems where the medium has a characteristic length

that can be defined by a small parameter ε> 0, and where the solution has a scale larger than ε.

We speak of micro and macro scales and are able to separate them explicitly. The assumption

of scale separation allows to take full advantage of the numerical homogenization method

FE-HMM given in Section 2.4, where the fine scales are needed only in sampling domains of

size O (ε). The cost of the method is then reduced as the fine scales are needed only in small

sampling domains and that the partition over Ω can be coarse.

When no separation of scales are considered, the size of the sampling domains remains an

open question and one possible answer is to take sampling domains of size H , where H is the

size of the mesh used to partition Ω. However, this is a costly choice as it results in a numerical

method with a cost no less than that of the FEM. The FE-HMM provides us with a good tool in

regions with scale separation, but in regions without scale separation, the approach should be

different.
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6.1 Literature overview

Numerous methods have been developed in the past decades, and we give here a non-

exhaustive list.

At first, we mentioned the methods based on coarse oscillatory basis functions such as the

MsFEM [58] and the LOD method [88, 74] (for a recap, see 2.3.1). These methods can be

applied to problems with general coefficients — that is without assumptions on separability

— but they come with a high computational cost. Indeed, to precompute the coarse basis

functions, fine scale problems have to be solved on localized coarse elements whose union is

a partition of the computational domain Ω.

At second, we regroups the global to local methods such as the L2 projection method [27]

(see Section 5.2) or the goal-oriented method [95] (see Section 5.3). The L2 projection and

goal-oriented methods couple a numerical homogenization method with a fine scale solver,

with the advantage that the fine scale solver is used only in small local subdomains. However,

these methods rely on the availability of a good numerical homogenized solution on Ω, which

is computationally expensive to obtain; especially when no scale separation are involved and

FE-HMM is used. Further, assuming that the high cost is not an issue, the error estimates of

such methods are dependent on the accuracy of the numerical homogenized solution.

In this thesis, we derive a new coupling strategy inspired by the virtual control method pio-

neered in [71, 87, 65] (see also [49] for recent developments). We note that such problems have

numerous applications in the sciences, we mention for example heterogeneous structures

with defects [63, 31] or steady flow problems with singularities [64]. The coupling strategy de-

rived here shares some similarities with the recent work on atomistic-to-continuum coupling

[97, 98]. For a convergence analysis of quasi-continuum methods, we refer to [83, 84, 17] and

the reference therein. We mention, further, the energy-based coupling method [36], where the

strategy is to compose the energy of the problem from the homogenized and heterogeneous

state equations. Then one steer the system to a stable equilibrium. Atomistic-to-continuum

and energy-based coupling methods arise in the search of a coupling method between dif-

ferent description of material, such as continuous to atomistic coupling in the analysis of

material with defects [107, 110, 105] and the references therein. We cite as-well the recent

work in [46] on the coupling of local and nonlocal diffusions models.

The method is based on a decomposition of the domain Ω into a region without scale sep-

aration, denoted by ω, where the homogenized model is not valid, and a region ω2 where

the homogenized solution describes adequately the physical problem. We consider a neigh-

bourhood of ω, denoted ω0, where both the fine scale and homogenization models are valid;

the subdomain ω0 ⊂ ω2 plays the role of an overlapping region. Figure 6.1 illustrates two

possible domains decompositions, with interior domains ω� (ω∪ω0) �Ω (left) and with

shared boundaries ∂ω∩Γ �= � (right). Note that the domains ω,ω0 can be polyhedrons as well,

and that their representation as circles is a mere choice.
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Γ
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ω0
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Figure 6.1 – Illustration of two possible domains decompositions with interior domains (left)
and with shared boundaries (right).

Outline. The chapter is separated in two parts. In the first part, we derive the continuous

optimization based method, and the second part give the fully discrete optimization based cou-

pling method. Before giving the coupling methods, we recall in Section 6.2, some theoretical

results about optimal and virtual controls, useful for the analysis of the method.

6.2 Optimal control of partial differential equations

In this section, we give basic results about the theory of optimal and virtual controls given by

Lions [85]; we will use its notations. Let L be an elliptic operator and seek u the solution of

L (u)= f ,

with some boundary conditions, and assume that u depends on some value θ; for example

θ could be some boundary conditions or some distributions on the right-hand side f . The

solution u of the elliptic problem is called the state and θ the control.

The goal is then to find a control θ such that it minimizes a cost functional J that depends

on the controls θ (as well as on the state variable u). The controls belong to a Hilbert space

U , which is a functional space describing the role of θ in the elliptic PDE. The admissible

controls θ considered as potential minimizers are found in a space Uad ⊆U called the space

of admissible controls.

The optimal control problem is: find θ ∈Uad such that

J (θ)= inf J (μ), ∀μ ∈Uad .

If U =Uad the optimal control problem is unconstrained, otherwise it is said to be constrained.

We assume that the cost functional J can be written as

J (μ)=π(μ,μ)−2F (μ), ∀μ ∈Uad ,

where π : U ×U →R is a symmetric, bilinear form on U , and F : U →R is a continuous linear
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form on U . The following result given in [85] guarantees the existence and uniqueness of the

optimal control θ. For the proof we refer to [85, Chapter 1] and [101, Theorem 16.1].

Theorem 6.2.1. Let π be a continuous symmetric bilinear form on U . If in addition π is coercive

on U ; i.e.,

π(μ,μ)≥C‖μ‖2
U , ∀μ ∈U , C > 0,

then there exists a unique element θ ∈Uad such that

J (θ)= inf
μ∈Uad

J (μ).

Further, if Uad =U , the optimal control θ satisfies the Euler equation

π(θ,μ)= F (μ), ∀μ ∈U .
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Continuous optimization based
method
In here we give a new coupling method for elliptic problem with highly oscillatory coefficients

with non scale separation.

The domain Ω is decomposed into a family of overlapping domains and virtual (interface) con-

trols are introduced as boundary conditions at the interface between overlapping subdomains.

The interface controls act as unknown traces or fluxes and the problem is reformulated as a

minimization problem with state equations as constraints. The optimal boundary controls of

overlapping domains are found by an optimization problem that is based on minimizing the

discrepancy between the models in the overlapping regions.

Let Ω be a convex, polygonal domain in Rd ,d = 1,2,3, with a boundary Γ= ΓD ∪ΓN ; where

Dirichlet conditions are imposed on ΓD and Neumann conditions on ΓN . We further assume

that ΓD ∩ΓN =� and that ΓD has positive measure. Let f ∈ L2(Ω), gD ∈ H 1/2(ΓD ), and gN ∈
L2(ΓN ), and consider the following second-order elliptic problem: find uε such that

−div(aε(x)∇uε)= f , in Ω,

uε = gD , on ΓD , (6.3)

n · (aε(x)∇uε)= gN , on ΓN ,

where the coefficients of the tensor aε ∈ (L∞(Ω))d×d are highly oscillatory and bounded with

scale separation only in some subregions of Ω. Further, aε is uniformly elliptic (6.2). Thanks

to the Lax–Milgram lemma, problem (6.3) is well-posed, and admits a family of solutions

{uε} indexed by ε. The subscript ε denotes the length of the heterogeneities present in the

region with explicit separation of scales. In general, the heterogeneities in the regions without

separation of scales cannot be characterized by a quantity ε. However, it is convenient to keep

the subscript ε to indicate the presence of heterogeneities.

Outline. We start by recalling the model problem and derive the optimization based coupling

method applied to the model problem. In Section 6.3 we prove that the coupling in the contin-

uous case is well-posed, using some Caccioppoli inequalities and a strong Cauchy–Schwarz

inequality. In Section 6.4, we derive the optimality systems associated to the minimization

problem. In Section 6.5, we derive a priori error estimates, where it is shown that, by using a
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Figure 6.2 – Two possible domains decompositions with Γ1 (in red) and Γ2 (in black) for interior
domains (left) and for domains with shared boundaries (right).

Caccioppoli inequality, the H 1 error estimate in the region without scale separation can be

bounded by an L2 norm. In the region with scale separation an energy approximation towards

the fine scale problems can also be obtained through the use of a locally periodic corrector.

Overall, we are able to obtain H 1 convergence rates towards the fine scale solution over the

whole computational domain Ω.

Model problem. For simplicity, we decompose the domain Ω into two regions; one with scale

separation and the other without. The overlapping domain decomposition is as follows. Let ω

denote a subregion of Ω, without scale separation and consider two overlapping subdomains,

ω1 and ω2, with ω∪ω2 =Ω, and ω⊂ω1. The overlapping region, also referred to by interface

region, is denoted by ω0, and it holds ω1∩ω2 = ω0; Figure 6.2 illustrates possible domain

decompositions. Let the tensor aε be given by

aε(x)= aε
ω(x)1ω(x)+aε

2(x)1ω2 (x), x ∈Ω,

where 1ω (resp. 1ω2 ) denotes the characteristic function associated to the subdomain ω (resp.

ω2). Further, the tensor aε
2 has scale separation, e.g. aε

2(x)= a2(x, x/ε), and is locally periodic

in the fast variable, with period ε> 0, whereas the tensor aε
ω is a highly heterogeneous tensor

without spacial assumptions. From the theory of H-convergence [90], the heterogeneous ten-

sor aε
2 H-converges towards a homogenized tensor a0

2. In ω, the scales are not well separated

in the tensor aε
ω, which prevents the use of numerical homogenization methods. The hetero-

geneities can also be present in the right hand side f , and following homogenization theory,

the smooth part of f converges to a function f 0, when the size of the heterogeneities goes to

zero, see the treatment in [80, 44]. However, depending on the nature of the heterogeneities —

if the source term is singular for example — resolving the micro problems around quadrature

points on a sampling domain of size δ could give unacceptable results, and one might have to

increase the size δ. By doing so, the fine scale are needed almost everywhere in Ω and the cost

becomes prohibitive.

Let Γ1 = ∂ω1 \Γ and Γ2 = ∂ω2 \Γ be Lipschitz continuous boundaries; see Figure 6.2. The

optimization based problem is as follows; in ω1 we solve a heterogeneous boundary value

problem, and in ω2 we solve a homogenized boundary value problem. The two solutions are
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6.2. Optimal control of partial differential equations

defined on the overlap ω0, and to couple the two boundary value problems, we minimize

a cost function involving the difference between the two solutions. In this thesis, we will

consider two costs;

Case 1. Minimization in L2(ω0), with

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0). (case 1)

Case 2. Minimization in L2(Γ1∪Γ2), with

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(Γ1∪Γ2). (case 2)

The first one minimizes the difference over the overlap ω0 and is the subject of this chapter.

The second cost minimizes the difference over the boundary Γ1 ∪Γ2 of ω0; this presents

numerical advantages as it reduces the number of degrees of freedom of the coupling problem.

This second cost is treated in Chapter 7.

The problems reads: find uε
1 ∈H 1(ω1) and u0

2 ∈H 1(ω2), such that the cost function

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0),

is minimized under the following constraints, for i = 1,2,

−div(ai (x)∇ui (θi ))= f , in ωi ,

ui (θi )= θi , on Γi ,

ui (θi )= gD , on ∂ωi ∩ΓD ,

ni · (ai (x)∇ui (θi ))= gN , on ∂ωi ∩ΓN ,

(6.4)

where u1 = uε
1 and u2 =u0

2, and where the boundary conditions θi , which we refer to as virtual

(interface) controls, are to be determined. Here and in what follows, we will sometimes use

the short hand notations ui to denote ui (θi ), for i = 1,2, and

a1 = aε
1 = aε

ω1ω+aε
21ω0 , u1=uε

1,

a2 = a0
2, u2= u0

2.

We define the space of admissible Dirichlet controls U D
i for equations (6.4) by

U D
i = {μi ∈H 1/2(Γi ) | ∃u ∈H 1(ωi ),u|Γi =μi , in the sense of the trace}.

Here, we made the assumptions that the boundary controls are in H 1/2, in order to have

ui ∈H 1(ωi ). By taking less regularity for the controls, we lose the guarantee that ui ∈H 1(ωi ).

However, by the transposition method [86], one can prove the existence and uniqueness of

a very weak solution ui satisfying a very weak formulation of problem (6.4). One could also
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consider Neumann boundary controls instead of Dirichlet controls, and follow the theory with

some adjustments.

For simplicity, we set Uad :=U D
1 ×U D

2 , and define for i = 1,2

H 1
D (ωi )= {u ∈H 1(ωi ) | u = 0 on ∂ωi ∩ΓD },

H 1
D,Γi

(ωi )= {u ∈H 1(ωi ) | u = 0 on ∂ωi ∩ΓD and Γi }.

Let γD : H 1(Ω)→H 1/2(ΓD ) denote a linear continuous map, called the trace map. As gD is in

H 1/2(ΓD ), there exists a function RgD ∈H 1(Ω), called a lifting of the boundary data gD , such

that γD (RgD )= gD . Further, there exists a constant C (Ω) depending on Ω such that

‖RgD‖H 1(Ω) ≤C (Ω)‖gD‖H 1/2(ΓD ).

The strategy is to solve a minimization problem in the space of admissible controls Uad , as

explained in Section 6.2; find (θ1,θ2) ∈Uad such that

J (θ1,θ2)=min
1

2
‖uε

1(μ1)−u0
2(μ2)‖2

L2(ω0), ∀(μ1,μ2) ∈Uad , (6.5)

where uε
1 and u0

2 are the solutions of (6.4). From the theory of optimal control given in Section

6.2, the problem (6.5) admits a unique couple (θ1,θ2) in Uad if the cost functional J is coercive

on a space of controls U , with Uad ⊆U . In Section 6.5 we prove that J is a norm over Uad .

Thus we will set Uad =U leading to an unconstrained optimization based problem.

Following the virtual control method exposed in [65], we split the solutions in two parts,

uε
1(θ1)=uε

1,0+ vε
1(θ1), u0

2(θ2)= u0
2,0+ v0

2(θ2),

The functions ui ,0 are independent of the controls, whereas the functions vi are dependent

of θi , for i = 1,2. One calls (vε
1, v0

2) ∈H 1
D (ω1)×H 1

D (ω2) the state variables, and they satisfy, for

i = 1,2,

−div(ai (x)∇vi )= 0, in ωi ,

vi = θi , on Γi ,

vi = 0, on ∂ωi ∩ΓD ,

ni · (ai (x)∇vi )= 0, on ∂ωi ∩ΓN ,

(6.6)

where v1 = vε
1, and v2 = v0

2. Here again, we have made an abuse of notations and use vi to

denote vi (θi ), for i = 1,2. The function ui ,0 ∈H 1
D,Γi

(ωi ) satisfies,

Bi (ui ,0, w)= F (wi ), ∀w ∈H 1
D,Γi

(ωi ), (6.7)
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where the bilinear form Bi : H 1(ωi )×H 1(ωi )→R is given by

Bi (u, w)=
∫
ωi

ai (x)∇u ·∇wdx, (6.8)

and the right-hand side Fi : H 1(ωi )→R, by

Fi (w)=
∫
ωi

f wdx−
∫
ωi

ai (x)∇RgD ·∇wdx+
∫
∂ωi∩ΓN

gN wds.

The state solution vi ∈H 1
D (ωi ) verifies, for i = 1,2,

Bi (vi , w)= 0, ∀w ∈H 1
D,Γi

(ωi ).

Thanks to the Lax–Milgram lemma, there exist a unique solution u0
2,0 and a family of solutions

{uε
1,0} indexed by ε. Moreover, if the virtual controls θ1 and θ2 are given, the solutions vε

1 and v0
2

can be uniquely determined. The solutions uε
1,0 and u0

2,0 can be computed before the coupling

as they are independent of the virtual controls (θ1,θ2).

6.3 Existence and uniqueness

The well-posedness of the minimization problem (6.5) is proved following the virtual control

theory established by Lions [85] and recalled in Section 6.2. The cost is given by

J (μ1,μ2)= 1

2
‖uε

1(μ1)−u0
2(μ2)‖2

L2(ω0), (μ1,μ2) ∈U .

Using the splitting of the solutions ui (μi ) into vi (μi ) and ui ,0, the cost functions can be written

as

J (μ1,μ2)= 1

2
‖vε

1(μ1)− v0
2(μ2)‖2

L2(ω0)+
1

2
‖uε

1,0−u0
2,0‖2

L2(ω0)

+
∫
ω0

(
vε

1(μ1)− v0
2(μ2)

)(
uε

1,0−u0
2,0

)
dx.

Let us define a bilinear form π : U ×U →R and a form F : U →R; for (μ1,μ2) and (θ1,θ2) ∈U ,

set

π
(
(θ1,θ2), (μ1,μ2)

)=∫
ω0

(
vε

1(θ1)− v0
2(θ2)

)(
vε

1(μ1)− v0
2(μ2)

)
dx, (6.9)

F (μ1,μ2)=−
∫
ω0

(
vε

1(μ1)− v0
2(μ2)

)(
uε

1,0−u0
2,0

)
dx. (6.10)

Then, one can write the cost functions in terms of π and F ,

J (μ1,μ2)= 1

2
π
(
(μ1,μ2), (μ1,μ2)

)−F (μ1,μ2)+ 1

2
‖uε

1,0−u0
2,0‖2

L2(ω0).
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Following [85], the existence and uniqueness of the optimal controls hold if the form π is a

scalar product on the space of admissible controls. In that sense, the optimal control problem

is unconstrained and Theorem 6.2.1 can be applied.

To prove the coercivity of the form π, we need some preliminary inequalities. The first set

of inequalities are related to the Caccioppoli inequalities are stated in Section 5.1 and they

bound a gradient norm by an L2 norm on a slightly larger domain. The second inequality is a

strong version of the Cauchy–Schwarz inequality.

Caccioppoli related inequalities

We recall that for a tensor a ∈ (L∞(Ω))d×d verifying (5.2), the set of a-harmonic functions is

defined by H (ω1), which consists of functions u ∈ L2(ω1)∩H 1
loc(ω1) such that

B(u, v)=
∫
ω1

a(x)∇u ·∇vdx = 0, ∀v ∈C∞
0 (ω1).

Lemma 6.3.1. Let ω0 =ω1 \ω and u ∈H (ω1). Then

‖∇u‖L2(ω) ≤
Λ1/2

λ1/2τ
‖u‖L2(ω0),

where λ and Λ are given by (6.2) and τ is the width of the overlapping domain ω0.

Proof. Let η ∈C 1
0 (ω1) be a cutoff function with η= 1 in ω, η= 0 in ∂ω1, and |∇η| ≤ 1/τ. Further,

η= 0 on Γ1 and supp(∇η)⊂ω0. Then, it holds that η2u ∈H 1
0 (ω1) and

∫
ω1

a∇u ·∇(η2u)dx = 0.

Then,

0=
∫
ω1

a∇u ·∇(η2u)dx = 2
∫
ω1

a∇u ·∇ηηudx+
∫
ω1

a∇u ·∇uη2dx.

Using the ellipticity of a and the definition of η, it holds

λ‖∇u‖2
L2(ω) ≤

∫
ω1

a∇(ηu) ·∇(ηu)dx,
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and ∫
ω1

a∇(ηu) ·∇(ηu)dx =
∫
ω1

a∇(ηu) ·∇(ηu)dx−
∫
ω1

a∇u ·∇(η2u)dx

=
∫
ω1

a∇(ηu)·∇(ηu)dx−2
∫
ω1

a∇u·∇ηηudx−
∫
ω1

a∇u·∇uη2dx

=
∫
ω1

a∇η ·∇ηu2dx

=
∫
ω0

a∇η ·∇ηu2dx

≤ Λ

τ2

∫
ω0

u2dx = Λ

τ2 ‖u‖2
L2(ω0).

Lemma 6.3.2. Let vε
1 and v0

2 be the solutions of (6.6), for i = 1,2, respectively. The following

bounds hold

‖vε
1‖L2(ω) ≤

C

τ
‖vε

1‖L2(ω0),

‖v0
2‖L2(Ω\ω1) ≤

C

τ
‖v0

2‖L2(ω0),

where τ is the width of the overlap and C is a constant depending on λ,Λ, and the Poincaré

constant associated to ω1 and ω2, respectively.

Proof. We prove the Lemma for the function vε
1. Let η be a cutoff function such that η= 1 in ω,

η= 0 in Ω\ω1 and |∇η| ≤ 1/τ. Further, we have supp(∇η)⊂ω0. Then, ηvε
1 ∈H 1

0 (ω1), and due

to (6.6) and using Poincaré inequality, it holds

‖vε
1‖L2(ω) ≤ ‖ηvε

1‖L2(ω1) ≤Cω1‖∇(ηvε
1)‖L2(ω1).

The proof follows from the lines of the Caccioppoli inequality, Lemma 6.3.1, as

‖∇(ηvε
1)‖L2(ω1) ≤

Λ1/2

λ1/2τ
‖vε

1‖L2(ω0).

We obtain

‖vε
1‖L2(ω) ≤Cω1

Λ1/2

λ1/2τ
‖vε

1‖L2(ω0).

The proof is similar for v0
2.

105



Chapter 6. Optimization based coupling method

Strong Cauchy–Schwarz inequality

We recall the problems for the state variables: find vi ∈H 1
D (ωi ) such that

−div(ai (x)∇vi )= 0, in ωi ,

vi = θi , on Γi ,

vi = 0, on ∂ωi ∩ΓD ,

ni · (ai (x)∇vi )= 0, on ∂ωi ∩ΓN ,

(6.11)

where a1 = aε
1 and a2 = a0

2.

Lemma 6.3.3 (Strong Cauchy–Schwarz). Let vε
1 ∈H 1

D (ω1) and v0
2 ∈H 1

D (ω2) be the solutions of

(6.11), for i = 1,2, respectively. Then, there exist an ε0 > 0 and a positive constant Cs < 1 such

that for all ε≤ ε0, it holds

∫
ω0

vε
1 v0

2dx ≤Cs‖vε
1‖L2(ω0)‖v0

2‖L2(ω0).

Proof. We reason by contradiction. Suppose that there exist a sequence of {εn}n≥1 that tends

to zero such that ∫
ω0

vεn
1 v0

2dx >Cn‖vεn
1 ‖L2(ω0)‖v0

2‖L2(ω0), ∀n ≥ 1,

for any sequence {Cn}n≥1 that tends to 1, with Cn < 1. Without loss of generality, we can

normalize the vectors vεn
1 and v2, and obtain

‖vεn
1 ‖L2(ω0) = 1, ‖v0

2‖L2(ω0) = 1 and (vεn
1 , v0

2)L2(ω0) :=
∫
ω0

vεn
1 v0

2dx → 1.

As the sequence of tensors {aεn
1 }n≥1 ∈ (L∞(ω1))d×d is bounded, and uniformly elliptic, by the

H-convergence, there exists a subsequence of {εn}n≥1 still denoted by {εn}n≥1 and a tensor

a0
1 ∈ (L∞(ω1))d×d bounded, and uniformly elliptic such that {aεn

1 }n≥1 H-converges to a0
1. By

definition of the H-convergence, the solution vεn
1 of (6.11) — for the subsequence {εn} — is

such that

i) vεn
1 � v0

1 in H 1(ω1) and,

ii) aεn
1 ∇vεn

1 � a0
1∇v0

1 in L2(ω1)d ,

where v0
1 is the unique solution of

−div(a0
1(x)∇v0

1)= 0, in ω1,

v0
1 = θ1, on Γ1,

v0
1 = 0, on ∂ω1∩ΓD ,

n1 · (a0
1(x)∇v0

1)= 0, on ∂ω1∩ΓN .

As H 1(ω1) is compactly embedded in L2(ω1), strong convergence in L2 of vεn
1 to v0

1, for a
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subsequence of {εn}n≥1, is achieved, i.e.,

vεn
1 → v0

1 in L2(ω1).

By the continuity of the norm, we have that

lim
n→∞(vεn

1 , v2)L2(ω0) = (v0
1, v2)L2(ω0), ‖v0

1‖L2(ω0) ≤ 1 and (v0
1, v2)L2(ω0) = 1.

As

1= (v0
1, v2)L2(ω0) ≤ ‖v0

1‖L2(ω0)‖v2‖L2(ω0) ≤ 1,

we must have that ‖v0
1‖L2(ω0)‖v2‖L2(ω0) = 1 and hence ‖v0

1‖L2(ω0) = 1. The previous inequalities

become equalities; i.e.,

1= (v0
1, v2)L2(ω0) = ‖v0

1‖L2(ω0)‖v2‖L2(ω0).

An equality in Cauchy–Schwarz is possible if and only if v0
1 and v2 are linearly dependent, that

is there exist a constant c > 0 such that v0
1 = cv2 a.e. in ω0. As the norms of v0

1 and v2 are equal

to 1, we can easily conclude that c =±1 and that v0
1 =±v2 a.e. in ω0. Finally, as (v0

1, v2)L2(ω0) = 1

it holds that v0
1 = v2.

Both v0
1 and v2 are the solutions of a homogenized equation and are equal on the overlap,

so we can combine them into a homogenized solution on the entire domain Ω. Further, the

tensor a0
2 and a0

1 are equal in ω0. Indeed, let us continuously extend the tensors aε
2 and aε

1 to

the domain Ω. The tensor aε
1 H-converge to the tensor a0

1 and the tensor aε
2 H-converge to

a0
2, in Ω. It holds that aε

2 = aε
1 in ω0, and using the locality of H-convergence [90, 44], we can

conclude that a0
2 = a0

1 in ω2. Thus they are equal in the overlap.

Let us split ω0 into two disjoint sets ω1
0 and ω2

0 such that ω⊂⊂ω∪ω1
0 ⊂⊂ω∪ω0. As the solutions

v0
1 and v2 are equal in ω0, we can construct a smooth function v̄ over Ω as

v̄(x)=
⎧⎨
⎩v0

1(x), if x ∈ω∪ω1
0,

v2(x), if x ∈ω2 \ω1
0.

The function v̄ is in H 1
D (Ω), has zero Neumann boundary condition on ΓN , and satisfies

∫
Ω

ā0∇v̄ ·∇wdx = 0, ∀w ∈H 1
D (Ω),

where the tensor ā0 is given by

ā0 =
⎧⎨
⎩a0

1 in ω∪ω1
0,

a0
2 in ω2 \ω1

0.
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The solution v̄ must be zero everywhere in Ω, i.e., v̄ ≡ 0, which is a contradiction with

‖v̄‖L2(ω0) = 1.

Thanks to the strong Cauchy–Schwarz inequality, we are now able to prove that the form

π : U ×U →R is an inner product over U .

Lemma 6.3.4. Let ε0 be given by the strong Cauchy–Schwarz lemma, Lemma 6.3.3, and assume

that ε≤ ε0. Then, the form π defines an inner product on U .

Proof. The bilinearity, symmetry, and positivity are clear. We prove that the form is definite,

i.e., π
(
(μ1,μ2), (μ1,μ2)

)= 0 if and only if (μ1,μ2)= (0,0).

On the one hand, if the virtual controls are zero traces or fluxes, the state functions vε
1 and v0

2

must be zero everywhere, as they are solutions of boundary value problems with zero right

hand side and boundary conditions. Thus π
(
(μ1,μ2), (μ1,μ2)

)= 0.

On the other hand, using the strong Cauchy–Schwarz lemma, Lemma 6.3.3,

0=π((μ1,μ2), (μ1,μ2))= ‖vε
1(μ1)− v0

2(μ2)‖2
L2(ω0)

= ‖vε
1(μ1)‖2

L2(ω0)+‖v0
2(μ2)‖2

L2(ω0)−2
∫
ω0

vε
1(μ1)v0

2(μ2)dx

≥ ‖vε
1(μ1)‖2

L2(ω0)+‖v0
2(μ2)‖2

L2(ω0)−2Cs‖vε
1(μ1)‖L2(ω0)‖v0

2(μ2)‖L2(ω0)

≥ (1−Cs)
(
‖vε

1(μ1)‖2
L2(ω0)+‖v0

2(μ2)‖2
L2(ω0)

)
.

As CS < 1, it holds that ‖vε
1(μ1)‖L2(ω0) = ‖v0

2(μ2)‖L2(ω0) = 0 which implies that vε
1 = v0

2 = 0, a.

e. in ω0. By Lemma 6.3.2, we have then that ‖vε
1(μ1)‖L2(ω) = 0 and ‖v0

2(μ2)‖L2(Ω\ω1) = 0, thus

vi = 0 a.e. in ωi , for i = 1,2. Then, we obtain, for i = 1,2,

‖μi‖H 1/2(Γi ) ≤C1‖vi (μi )‖H 1(ωi ) = 0,

where the constants depends on ωi , and the trace operators γi : H 1/2(Γi )→ H 1(ωi ). Thus,

μi = 0 on Γi and the form π is an inner product on U .

We can then define a norm on U induced by the inner product π. For a pair (μ1,μ2) ∈U , we

set

‖(μ1,μ2)‖L�(U ) := ‖vε
1(μ1)− v0

2(μ2)‖L2(ω0). (6.12)

The space U might not be complete with respect to this norm, but we can construct a com-

pletion of U , and solve the minimization problem in the completed space. Let us denote the

completed control space by Û . Using the Hahn–Banach theorem, the inner product π and the

functional F can be continuously extended in a unique way on Û and and we denote by π̂ and
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F̂ , these extensions. The form π̂ is continuous, symmetric, and coercive in Û . The existence

and uniqueness of the optimal pair in Û is given in the next theorem.

Theorem 6.3.5. The minimization problem (6.5) has a unique solution (θ1,θ2) ∈ Û , that

satisfies the Euler–Lagrange equation

π̂
(
(θ1,θ2), (μ1,μ2)

)= F̂ (μ1,μ2), ∀(μ1,μ2) ∈ Û , (6.13)

where π̂ and F̂ are the continuous extensions of π and F given by (6.9) and (6.10).

Proof. The existence and uniqueness of (θ1,θ2) ∈ Û follows from [85, Theorem I. 1.1], as the

form π̂ is symmetric, continuous, and coercive, and F̂ is continuous.

The optimal pair (θ1,θ2) ∈ Û minimizes the cost function, but in general there exist no func-

tions ui ∈ H 1(ωi ) that satisfy (6.4). However, there exists an embedding σ : U → Û such

that σ(U ) is dense in Û . Further, we can identify U with σ(U ) and conclude that (θ1,θ2) is

the limit of a sequence (θ1n ,θ2n)n∈N with ui (θi n) ∈H 1(ωi ) satisfying (6.4). In the sequel, for

simplicity, we assume that the optimal pair is in U and hence ui (θi ) ∈H 1(ωi ), for i = 1,2 (we

then also have vi (θi ) ∈H 1(ωi )).

6.4 Optimality systems

The solution of the minimization problem (6.5) is found by solving an optimality system; this

is the system used in the fully discrete coupling method. We emphasize that the existence and

uniqueness of the optimal controls have already been established as the minimization problem

(6.5) is well-posed (see Section 6.3). We give here the optimality system as an alternative

approach to find the optimal controls (and the state variables).

In this section, we will derive the optimality system following two approaches. The first one

is derived from the Euler–Lagrange equation (6.13) and is referred to as "à la Lions". The

second approach is derived from a Lagrangian functional by taking the Gâteau derivatives.

The existence and uniqueness of the optimal controls can be proved if the optimality system

is well-posed.

We recall that θi ∈U is a Dirichlet boundary data on Γi , and that the state variable vi ∈H 1
D (ωi )

satisfies

−div(ai (x)∇vi )= 0, in ωi ,

vi = θi , on Γi ,

vi = 0, on ∂ωi ∩ΓD ,

ni · (ai (x)∇vi )= 0, on ∂ωi ∩ΓN .
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6.4.1 À la Lions

The solution of the minimization problem can be found by solving an optimality problem

derived from the Euler–Lagrange equation (6.13); i.e.,

π
(
(θ1,θ2), (μ1,μ2)

)= F (μ1,μ2), ∀(μ1,μ2) ∈U .

For the minimization with the cost function (6.5), the optimality system reads: find (v1, v2) ∈
H 1

D (ω1)×H 1
D (ω2), (θ1,θ2) ∈U , and (λ1,λ2) ∈H 1

0 (ω1)×H 1
0 (ω2) such that

Bi (vi (θi ), w)= 0, in ωi , vi = θi , on Γi , ∀w ∈H 1
0 (ωi ), (6.14)

Bi (w,λi )= (−1)i+1
∫
ω0

(
(vε

1(θ1)+uε
1,0)− (v0

2(θ2)+u0
2,0)

)
wdx, ∀w ∈H 1

0 (ωi ), (6.15)∫
ω0

(
(vε

1(θ1)+uε
1,0)− (v0

2(θ2)+u0
2,0)

)
(vε

1(μ1)− v0
2(μ2))dx

=−
∫
Γ1

a1∇λ1n1μ1ds−
∫
Γ2

a2∇λ2n2μ2ds = 0, ∀(μ1,μ2) ∈U . (6.16)

Equation (6.14) is the state equation for vi , equation (6.15) is the adjoint problem correspond-

ing to (6.14), and equation (6.16) is derived from the adjoint problem and using integration by

parts. We recognize the Euler–Lagrange equation. For the derivation of this system, we refer to

[85, 49].

A sufficient and necessary for (θ1,θ2) to be optimal controls is that the set of equations

(6.14),(6.15), and (6.16) form a well-posed system [85, Chapter 2, Theorem 1.4].

6.4.2 Lagrangian functional

Solving optimal control problems can be done using Lagrange multipliers. Assuming that the

admissible set Uad is equal to U , the solution of the optimal control problem can be obtained

as an unconstrained critical point of a Lagrange functional.

Let λi , i = 1,2, be Lagrange multipliers associated to the constraints in ωi . Here one could

consider (vi ,θi ,λi ) ∈H 1
D ×U ×H 1

0 (ωi ) for the unknowns or (vi ,λi ) ∈H 1
D (ωi )×H 1

0 (ωi ). We will

derive the optimality system with the unknown (vi ,λi ), and refer to [101] for the derivation

of the optimality system for (vi ,θi ,λi ). The solution (vε
1,λ1, v0

2,λ2) is the critical point of the

Lagrangian functional L given by

L (vε
1,λ1, v0

2,λ2)= 1

2
‖vε

1− v0
2‖2

L2(ω0)+
1

2
‖uε

1,0−u0
2,0‖2

L2(ω0)+
∫
ω0

(vε
1− v0

2)(uε
1,0−u0

2,0)dx

+〈 f +div(aε
1(x)∇(vε

1+uε
1,0)),λ1〉H−1,H 1

+〈 f +div(a0
2(x)∇(v0

2 +u0
2,0)),λ2〉H−1,H 1 ,

with vi ∈H 1
D (ωi ) and λi ∈H 1

0 (ωi ) with ni · (ai∇λi )= 0 on ∂ωi ∩ΓN , for i = 1,2. Computing the
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Gâteau derivatives for each of the unknowns leads to the optimality system.

∫
ω0

(vε
1− v0

2)w1dx−
∫
ω1

aε
1(x)∇w1 ·∇λ1dx =−

∫
ω0

(uε
1,0−u0

2,0)w1dx, ∀w1 ∈H 1
D (ω1), (6.17)

−
∫
ω0

(vε
1− v0

2)w2dx−
∫
ω2

a0
2(x)∇w2 ·∇λ2dx =

∫
ω0

(uε
1,0−u0

2,0)w2dx, ∀w2 ∈H 1
D (ω2), (6.18)∫

ω1

aε
1(x)∇vε

1 ·∇ξ1dx = F1(ξ1), ∀ξ1 ∈H 1
0 (ω1), (6.19)∫

ω2

a0
2(x)∇v0

2 ·∇ξ2dx = F2(ξ2), ∀ξ2 ∈H 1
0 (ω2), (6.20)

The boundary conditions (θ1,θ2) are hidden in the state functions (vε
1, v0

2), and if the system is

well-posed, it admits a unique solution (θ1,θ2) which are the optimal controls.

One notices that the equations (6.17) and (6.18) are the adjoint equations (6.15), and that

equations (6.19) and (6.20) are the state equations (6.14).

Remark 6.4.1. When considering (vi ,θi ,λi ) as an unknown, the optimality system has two

more equations, obtained by the Gâteau derivatives for θ1 and θ2. These two equations are in

fact given in the Lions’ approach in equation (6.16).

The optimality system can be written in a matrix form as a saddle point problem: find U =
(vε

1, v0
2,λ1,λ2)� such that ⎛

⎜⎝M −B�

B 0

⎞
⎟⎠U =G , (6.21)

where

M({vε
1, v0

2}, {wε
1, w 0

2})=

⎛
⎜⎝

∫
ω0

vε
1 wε

1dx −∫ω0
v0

2 wε
1dx

−∫ω0
vε

1 w0
2dx

∫
ω0

v0
2 w0

2dx

⎞
⎟⎠ ,

B({vε
1, v0

2}, {λ1,λ2}) =

⎛
⎜⎝B1(vε

1,λ1) 0

0 B2(v0
2,λ2)

⎞
⎟⎠ .

The operator M is defined on the space (H 1
D (ω1)×H 1

D (ω2))2, and the operator B on the space

H 1
D (ω1)×H 1

D (ω2)×H 1
0 (ω1)×H 1

0 (ω2).

Well-posedness of the optimality system

To prove the well-posedness of the saddle point problem (6.21), one needs to show that the

form M is coercive and that the bilinear form B is bounded and satisfies an inf-sup condition.
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We follow [34] and write the forms M and B as

M({vε
1, v0

2}, {wε
1, w 0

2})=
∫
ω0

(vε
1− v0

2)(wε
1 −w 0

2)dx

B({vε
1, v0

2}, {λ1,λ2})=B1(vε
1,λ1)+B2(v0

2,λ2).

One has to prove that

1. M is coercive on H 1
D (ω1)×H 1

D (ω2);

2. B is bounded on H 1
D (ω1)×H 1

D (ω2)×H 1
0 (ω1)×H 1

0 (ω2) and satisfies an inf-sup condition;

for all (ξ1,ξ2) ∈H 1
0 (ω1)×H 1

0 (ω2)

sup
wε

1 ,w 0
2

B({wε
1, w 0

2}, {ξ1,ξ2})

‖wε
1‖H 1(ω1)+‖w0

2‖H 1(ω2)
≥C (‖ξ1‖H 1(ω1)+‖ξ2‖H 1(ω2)).

As the state vi and the controls θi are linked through an elliptic boundary value problem,

one could consider the unknown U = (θ1,θ2,λ1,λ2)� ∈U D
1 ×U D

2 ×H 1
0 (ω1)×H 1

0 (ω2) instead

of (vε
1, vε

2,λ1,λ2). The optimality system remains unchanged; the forms M and B are given by

M({θ1,θ2}, {μ1,μ2})=
∫
ω0

(vε
1(θ1)− v0

2(θ2))(vε
1(μ1)− v0

2(μ2))dx

B({θ1,θ2}, {λ1,λ2})=B1(vε
1(θ1),λ1)+B2(v0

2(θ2),λ2).

and prove

1. M is coercive on U ;

2. B is bounded on U D
1 ×U D

2 ×H 1
0 (ω1)×H 1

0 (ω2) and satisfies an inf-sup condition; for all

(ξ1,ξ2) ∈H 1
0 (ω1)×H 1

0 (ω2)

sup
μ1,μ2

B({vε
1(μ1), v0

2(μ2)}, {ξ1,ξ2})

‖(μ1,μ2)‖L∗(U )
≥C (‖ξ1‖H 1(ω1)+‖ξ2‖H 1(ω2)).

In both approaches, we end up with the need to bound an H 1 norm (over ωi or ω0) by an

L2 norm over ωi . The well-posedness of the optimality system derived from the Lagrange

functional remains an open question, as the constant can not be determined. However, this is

not an issue as we already proved that the minimization problem is well-posed (see Section

6.3). Further we note that in the discrete coupling method the well-posedness of the discrete

optimality system can be successfully proved.

6.4.3 Transposition method

When the regularity on the controls (θ1,θ2) is lessened, the existence and uniqueness of a

(weak) solution vi of problem (6.6) is not guaranteed any more. In order to construct and

optimality system, one needs to find a well-posed weak formulation of equation (6.6).
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Previously, we made the strong assumption that the optimal controls (θ1,θ2) are in the space

U , which ensures that the states vi are in H 1(ωi ), for i = 1,2. The bilinear form π is an

inner product on U and using a completion argument on the space U , we obtained that the

completed space U equipped with the inner product π is an Hilbert space; the control space

is denoted by Û and it holds U ⊂ Û . Lion’s theory assures the existence and uniqueness of

the optimal controls in Û (see Section 6.2). However, if θi ∈ Û , we lose the guarantee that

vi ∈H 1(Ω), for i = 1,2.

For simplicity, we will not use the splitting ui =ui ,0+vi and derive the optimialty system using

the transposition method [86] for the unknown ui .

We multiply problem (6.4) with a test function w in H 1(ωi ) vanishing on ∂ωi ∩ΓD and Γi , and

using Green formula, it holds

∫
ωi

ai (x)∇ui ·∇wdx =
∫
ωi

f wdx+
∫
∂ωi

ai (x)∇ui ni wds,

where the boundary integral regroups the Dirichlet and Neumann data; i.e,

∫
∂ωi

ai (x)∇ui ni wds =
∫
Γi

ai (x)∇ui ni wds+
∫
∂ωi∩ΓD

ai (x)∇ui ni wds+
∫
∂ωi∩ΓN

gN wds.

For each smooth test function w vanishing on ∂ωi ∩ΓD and Γi , we obtain

∫
ωi

ai (x)∇ui ·∇wdx =
∫
ωi

f wdx+
∫
∂ωi∩ΓN

gN wds. (6.22)

Considering now a lifting Ri
gD
∈H 1(ωi ) of the Dirichlet data gD , it hold ui = ūi +Ri

gD
, where

ūi = 0 on ∂ωi ∩ΓD . For simplicity of notations, let ui denote ūi . We can reformulate equation

(6.22) as∫
ωi

ai (x)∇ui ·∇wdx =
∫
ωi

f wdx−
∫
ωi

ai (x)∇Ri
gD
·∇wdx+

∫
∂ωi∩ΓN

gN wds. (6.23)

For standard weak solution of (6.23), one needs the existence of a continuous lifting of the

boundary controls θi . The lifting should live in H 1(ωi ), however, such lifting might not exist

due the regularity of θi ∈ Û . To find a weak solution of (6.23), we follow the method of

transposition [86] Let us integrate by part equation (6.23), this gives

−
∫
ωi

ui∇· (ai (x)∇w)dx+
∫
∂ωi

ai (x)∇wni ui ds =
∫
ωi

f wdx−
∫
ωi

ai (x)∇Ri
gD
·∇wdx

+
∫
∂ωi∩ΓN

gN wds,
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with ∫
∂ωi

ai (x)∇wni ui ds =
∫
∂ωi∩ΓN

ai (x)∇wni ui ds+
∫
∂ωi∩ΓD

ai (x)∇wni gD ds

+
∫
Γi

ai (x)∇wniθi ds.

This gives a very weak formulation: find ui ∈ L2
∂ωi∩ΓD

(ωi ) such that

−
∫
ωi

ui∇· (ai (x)∇w)dx =
∫
ωi

f wdx−
∫
ωi

ai (x)∇Ri
gD
·∇wdx+

∫
∂ωi∩ΓN

gN wds

−
∫
∂ωi∩ΓN

ai (x)∇wni ui ds−
∫
Γi

ai (x)∇wniθi ds,

for any test function w ∈H 2(ωi ) with w = 0 on ∂ωi ∩ΓD and Γi . We can further assume that

v has homogeneous Neumann boundary condition on ∂ωi ∩ΓN , i.e., n1 · (ai (x)∇w)= 0. We

remark that the test function w plays the role of the adjoint.

Let λi be Lagrange multipliers associated to the constraints in ωi , i = 1,2, and look for the

critical point of the Lagrangian functional

L (uε
1,θ1,λ1,u0

2,θ2,λ2)= 1

2
‖uε

1−u0
2‖2

L2(ω0)+〈 f +div(aε
1(x)∇uε

1),λ1〉H−1,H 1

+〈 f +div(a0
2(x)∇u0

2),λ2〉H−1,H 1 ,

with ui ∈H 1(ωi ), θi ∈ Ûi , and λi ∈H 2(ωi ) with λi = 0 on ∂ωi ∩ΓD and Γi , and ni · (ai∇λi )= 0

on ∂ωi ∩ΓN , for i = 1,2.

The Lagrangian can be reformulated using the transposition method exposed above; i.e.,

L (uε
1,θ1,λ1,u0

2,θ2,λ2)= 1

2
‖uε

1−u0
2‖2

L2(ω0)+
∫
ω1

f λ1dx+
∫
ω2

f λ2dx+
∫
∂ω1∩ΓN

gNλ1ds

+
∫
∂ω2∩ΓN

gNλ2ds−
∫
Γ1

aε(x)∇λ1n1θ1ds−
∫
Γ2

a0(x)∇λ2n2θ2ds

+
∫
ω1

uε
1∇· (aε

1(x)∇λ1)dx+
∫
ω2

u0
2∇· (a0

2(x)∇λ2)dx

−
∫
ω1

aε
1(x)∇R1

gD
·∇λ1dx−

∫
ω2

a0
2(x)∇R2

gD
·∇λ2dx.

Let us denote by Λi the space of the test functions in the transposition method, i.e.

Λi = {v ∈H 2(ωi ) | v = 0, on Γi and ∂ωi ∩ΓD , and ni (ai∇v)= 0},

Computing the Gâteau derivatives for each of the unknowns leads to the optimality system;
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∫
ω0

(uε
1−u0

2)w1dx+
∫
ω1

w1∇· (aε
1(x)∇λ1)dx = 0, ∀w1 ∈H 1

D (ω1),

−
∫
ω0

(uε
1−u0

2)w2dx+
∫
ω2

w2∇· (a0
2(x)∇λ2)dx = 0, ∀w2 ∈H 1

D (ω2),∫
ω1

uε
1∇· (aε

1(x)∇ξ1)dx−
∫
Γ1

aε
1(x)∇ξ1n1θ1ds = F1(ξ1), ∀ξ1 ∈Λ1,∫

ω2

u0
2∇· (a0

2(x)∇ξ2)dx−
∫
Γ2

a0
2(x)∇ξ2n2θ2ds = F2(ξ2), ∀ξ2 ∈Λ2,

−
∫
Γ1

aε
1(x)∇λ1n1μ1ds = 0, ∀μ1 ∈ Û1,

−
∫
Γ2

a0
2(x)∇λ2n2μ2ds = 0, ∀μ2 ∈ Û2,

where, for i = 1,2,

Fi (ξi )=
∫
ωi

f ξi dx+
∫
∂ωi∩ΓN

gNξi ds−
∫
ωi

ai (x)∇Ri
gD
·∇ξi dx.

6.5 A priori error analysis

In this section, we give an a priori error analysis of the optimization based method. The analy-

sis is separated into a fine and a coarse scale error estimate. The solution of the minimization

problem with constraints (6.4) gives us a fine scale solution in ω1 and a coarse scale solution in

ω2. Looking at the error between the solution of the coupling and the exact fine scale solution

uε, the solution of problem (6.1), on either ω1 or ω2, leads to the estimation of terms on the

boundary Γ1 or Γ2, respectively. In order to avoid such additional error terms, we introduce an

intermediate domain ω+ with ω⊂ω+ ⊂ω1; see Figure 6.3. Then given uε
1(θ1) and u0

2(θ2), the

solutions of the optimization based coupling method, we define

ūε =

⎧⎪⎨
⎪⎩

uε
1(θ1), in ω+,

ur ec
2 (θ2), in Ω\ω+,

(6.24)

where ur ec
2 stands for a correction to the homogenized solution u0

2(θ2) given below. The main

convergence results are

‖uε− ūε‖H 1(ω+) ≤Cε,

‖uε− ūε‖H 1(Ω\ω+) ≤Cε1/2,

where the constants depend on the width of ω+ and the ellipticity constants of the tensor

aε, see equation (6.2). For the analysis, we assume that the tensor is locally periodic in Y ,

and consider the classical locally periodic correctors χ j the solutions of (2.17), but other
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Γ

Ω

ω

Γ

Ω

ω

ω1

ω0

ω2

Figure 6.3 – Illustration of two possible domains decompositions considered in the a priori
error analysis, with interior domains (left) and with shared boundaries (right).

post-processing procedure could be used. The correction ur ec
2 (θ2) is given by

ur ec
2 (x)=u0

2(x)+ε
d∑

j=1
χ j (x, x/ε)

∂u0
2(x)

∂x j
, x ∈Ω\ω+, (6.25)

where u0
2 = u0

2(θ2). We sometimes use u0
2(θ2) and ur ec

2 (θ2) to emphasize the dependency on θ2.

We will however avoid the heavy notation u0
2(θ2)(x) (or ur ec

2 (θ2)(x)) and drop the dependency

on θ2 when writing such maps as functions of x.

6.5.1 A priori error estimates to the fine scale solver in ω+.

The coupled solution restricted to the subregion ω+ is given by the fine scale solution uε
1(θ1),

hence the error becomes

‖uε− ūε‖H 1(ω+) = ‖uε−uε
1(θ1)‖H 1(ω+).

Let τ denote the width of the overlap ω0 and recall that the heterogeneous tensor aε
2 satisfies

the ellipticity condition (6.2). Further, we denote by τ+ the distance between ∂ω+ and ∂ω;

it holds τ+ < τ. Moreover, we suppose that there exists ε0 > 0, such that the strong Cauchy–

Schwarz lemma, Lemma 6.3.3, holds, for all ε≤ ε0.

Let γi : H 1(ωi )→H 1/2(Γi ), i = 1,2, be trace operators and consider the solution uε restricted

to the domain ω2,

−div(aε
2(x)∇uε)= f , in ω2,

uε = γ2(uε), on Γ2,

uε = gD , on ∂ω2∩ΓD ,

n2 · (aε
2(x)∇uε)= gN , on ∂ω2∩ΓN .
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6.5. A priori error analysis

Further, for a fixed ε≤ ε0, we introduce u0 ∈H 1(ω2), the homogenized solution of

−div(a0
2(x)∇u0)= f , in ω2,

u0 = γ2(uε), on Γ2,

u0 = gD , on ∂ω2∩ΓD ,

n2 · (a0
2(x)∇u0)= gN , on ∂ω2∩ΓN .

(6.26)

We assume that strong convergence in the L2 norm is available [80, Sect. 1.4]; i.e.,

‖uε−u0‖L2(ω2) ≤Cε. (6.27)

We follow the framework introduced in [98] and define an operator P : U →H 1(ω1)×H 1(Ω\ω1)

by

(μ1,μ2) "→ P (μ1,μ2)=
⎧⎨
⎩uε

1,0+ vε
1(μ1), in ω1,

u0
2,0+ v0

2(μ2), in Ω\ω1,

where vi are solutions of (6.6), for i = 1,2. We note that for the traces (γ1(uε),γ2(uε)) of the

exact solution uε, we obtain

P (γ1(uε),γ2(uε))=
⎧⎨
⎩uε, in ω1,

u0, in Ω\ω1.

The operator P can be split into P (μ1,μ2)=U0+Q(μ1,μ2), for (μ1,μ2) ∈U , where we define

U0 =
⎧⎨
⎩uε

1,0, in ω1,

u0
2,0, in Ω\ω1,

and Q(μ1,μ2)=
⎧⎨
⎩vε

1(μ1), in ω1,

v0
2(μ2), in Ω\ω1.

(6.28)

Theorem 6.5.1. Let uε and u0 be the solution of (6.1) and (6.26), respectively, and let ūε be

given by (6.24). Suppose that u0 and χ j are regular enough so that (6.27) holds. Let ε0 be given

by the strong Cauchy–Schwarz lemma, Lemma 6.3.3, and assume that ε≤ ε0. Then, we have

‖uε−uε
1(θ1)‖H 1(ω+) ≤Cε,

where the constant C depends on τ, τ+, λ, Λ, and on the domains ω1 and ω2.

Proof. The difference uε−uε
1(θ1) is aε-harmonic in ω1 and Caccioppoli inequality, Lemma

5.1.1, can be applied; that is

‖uε−uε
1(θ1)‖H 1(ω+) ≤

C

τ−τ+
‖uε−uε

1(θ1)‖L2(ω1),

where the constant C depends on the ellipticity constants of the tensor aε. Let us focus on the
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L2 norm; recalling that uε
1(θ1)= P (θ1,θ2), it holds that

‖uε−uε
1(θ1)‖L2(ω1) = ‖uε−P (θ1,θ2)‖L2(ω1)

≤ ‖uε−P (γ1(uε),γ2(uε))‖L2(ω1)+‖P (γ1(uε),γ2(uε))−P (θ1,θ2)‖L2(ω1).

By the definitions of P and uε, the first L2 error is zero and it remains to bound the second

error. Using the splitting of P into U0 and Q, defined in equation (6.28), it holds

‖uε−uε
1(θ1)‖L2(ω1) ≤ ‖P (γ1(uε),γ2(uε))−P (θ1,θ2)‖L2(ω1)

= ‖U0−Q(γ1(uε),γ2(uε))−U0+Q(θ1,θ2)‖L2(ω1)

≤ ‖Q‖‖(γ1(uε),γ2(uε))− (θ1,θ2)‖L∗(U ),

where the norm ‖ · ‖L∗(U ) is induced by the inner product π and is defined in (6.12). Using

Lemmas 6.5.2 and 6.5.3 given below proves the result.

Lemma 6.5.2. Let uε and u0 solve (6.1) and (6.26) respectively, and let (θ1,θ2) ∈ U be the

optimal virtual controls. Then

‖(γ1(uε),γ2(uε)
)− (θ1,θ2)‖L∗(U ) ≤ ‖uε−u0‖L2(ω0).

Proof. By definition, we have

‖(γ1(uε),γ2(uε)
)− (θ1,θ2)‖L∗(U ) =

sup
(μ1,μ2)∈U

|π((γ1(uε),γ2(uε)), (μ1,μ2)
)−π

(
(θ1,θ2), (μ1,μ2)

)|
‖(μ1,μ2)‖L∗(U )

.

We look at the numerator. As the pair (θ1,θ2) minimizes the cost function J , the Euler–Lagrange

formulation (6.13) holds and

π
(
(γ1(uε),γ2(uε)), (μ1,μ2)

)−π((θ1,θ2), (μ1,μ2))=
=
∫
ω0

(
vε

1(γ1(uε))− v0
2(γ2(uε))

)(
vε

1(μ1)− v0
2(μ2)

)
dx

+
∫
ω0

(
vε

1(μ1)− v0
2(μ2)

)
(uε

1,0−u0
2,0)dx

=
∫
ω0

((
vε

1(γ1(uε))+uε
1,0

)− (v0
2(γ2(uε))+u0

2,0

))(
vε

1(μ1)− v0
2(μ2)

)
dx

=
∫
ω0

(uε−u0)
(
vε

1(μ1)− v0
2(μ2)

)
dx ≤ ‖uε−u0‖L2(ω0)‖(μ1,μ2)‖L∗(U ).

The result follows.

To complete the a priori error analysis in the continuous case, we need to bound the norm of

the operator Q.
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6.5. A priori error analysis

Lemma 6.5.3. Let ε0 be given by the strong Cauchy–Schwarz lemma, Lemma 6.3.3, and assume

that ε≤ ε0. The operator Q, defined by (6.28), is bounded from L2(Ω) to L∗(U ); i.e.,

‖Q‖ ≤C ,

where the constant C depends on ω1, ω2, τ, and the strong Cauchy–Schwarz constant, see

Lemma 6.3.3.

Proof. By definition, the norm of the operator Q is given by

‖Q‖ := sup
(μ1,μ2)∈U

‖Q(μ1,μ2)‖L2(Ω)

‖(μ1,μ2)‖L∗(U )
.

For (μ1,μ2) ∈U , we show the existence of a positive constant C such that

‖Q(μ1,μ2)‖2
L2(Ω) ≤C‖(μ1,μ2)‖2

L∗(U ).

For simplicity, we set vi = vi (μi ), i = 1,2. Using Lemma 6.3.2, we have

‖Q(μ1,μ2)‖2
L2(Ω) = ‖vε

1‖2
L2(ω1)+‖v0

2‖2
L2(Ω\ω1)

≤ C (ω1;ω2)

τ2

(
‖vε

1‖2
L2(ω0)+‖v0

2‖2
L2(ω0)

)
.

Next, using the strong Cauchy–Schwarz lemma, Lemma 6.3.3, we obtain

‖(μ1,μ2)‖2
L∗(U ) = ‖vε

1− v0
2‖2

L2(ω0) = ‖vε
1‖2

L2(ω0)+‖v0
2‖2

L2(ω0)−2
∫
ω0

vε
1 v0

2dx

≥ ‖vε
1‖2

L2(ω0)+‖v0
2‖2

L2(ω0)−2Cs‖vε
1‖L2(ω0)‖v0

2‖L2(ω0)

≥ (1−Cs)
(
‖vε

1‖2
L2(ω0)+‖v0

2‖2
L2(ω0)

)
.

Summarizing, this gives

‖Q(μ1,μ2)‖2
L2(Ω) ≤

C (ω1;ω2)

τ2(1−Cs)
‖(μ1,μ2)‖2

L∗(U ).
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6.5.2 A priori error estimates to the reconstructed coarse scale solver in Ω\ω+.

In this section, we give an a priori error estimate in the coarse scale region Ω\ω+. The coupled

solution restricted to the subregion Ω\ω+ is given by ur ec
2 (θ2).

Lemma 6.5.4. Let uε and u0
2 be the solutions of problems (6.1) and (6.4), respectively. Assume

that (6.27) holds, we obtain

‖uε−u0
2(θ2)‖L2(ω2) ≤Cε.

Proof. Let us define an operator P : U →H 1(ω)×H 1(ω2) by

P (μ1,μ2)=
⎧⎨
⎩uε

1,0+ vε
1(μ1), in ω,

u0
2,0+ v0

2(μ2), in ω2,

and consider the decomposition P =U0+Q, following (6.28). It holds u0
2(θ2) = P (θ1,θ2)|ω2 ,

and

‖uε−u0
2(θ2)‖L2(ω2) ≤ ‖uε−P (γ1(uε),γ2(uε))‖L2(ω2)

+‖P (γ1(uε),γ2(uε))−P (θ1,θ2)‖L2(ω2).

The term P (γ1(uε),γ2(uε)), restricted to ω2, is equal to u0
2(γ2(uε)), which is defined as the

homogenized solution u0 obtained in (6.26). Using (6.27), we have

‖uε−u0
2(θ2)‖L2(ω2) ≤ ‖uε−u0‖L2(ω2)+‖P (γ1(uε),γ2(uε))−P (θ1,θ2)‖L2(ω2)

≤Cε+‖Q‖‖(γ1(uε),γ2(uε))− (θ1,θ2)‖L∗(U ).

Following the proof of Lemma 6.5.3, we can show that ‖Q‖ is bounded, and using Lemma

6.5.2, we obtain

‖uε−u0
2(θ2)‖L2(ω2) ≤C1ε+C2‖uε−u0‖L2(ω0) ≤Cε.

Theorem 6.5.5. Let uε be the solution of (6.1) and ur ec
2 (θ2) be given by (6.25). Let a2(x, y) ∈

C (ω2;L∞per (Y )) and χ j ∈Wper(Y ), j = 1, . . . ,d. If in addition, uε ∈H 2(Ω), u0
2(θ2) ∈H 2(ω2), and

χ j ∈W 1,∞(Y ), j = 1, . . . ,d, it holds

‖uε−ur ec
2 (θ2)‖H 1(Ω\ω+) ≤Cε1/2,

where the constant C is independent of ε, but depends on τ, τ+, and the ellipticity constants of

aε
2.

Proof. Recall that u0 is the homogenized solution of (6.26), and using the periodic correctors
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χ j , we have that the reconstructed solution u0,r ec is given by

u0,r ec (x)=u0(x)+ε
d∑

j=1
χ j (x, x/ε)

∂u0(x)

∂x j
.

Using the triangular inequality with u0,r ec , we have

‖uε−ur ec
2 (θ2)‖H 1(Ω\ω+) ≤ ‖uε−u0,r ec‖H 1(Ω\ω+)+‖u0,r ec −ur ec

2 (θ2)‖H 1(Ω\ω+).

The first norm is bounded by Cε1/2; this follows from [80]. The second norm can be bounded

by

‖u0,r ec −ur ec
2 (θ2)‖H 1(Ω\ω+) ≤ ‖u0−u0

2(θ2)‖H 1(Ω\ω+)

+ε‖
d∑

j=1
χ j (x, x/ε)

(
∂u0(x)

∂x j
− ∂u0

2(x)

∂x j

)
‖H 1(Ω\ω+).

Each of the term can be bounded by Cε, using the Caccioppoli inequality, Lemma 5.1.1, on

the difference u0−u0
2(θ2) together with Lemma 6.5.4.

6.6 Summary

In this chapter, we gave a new global to local method based on optimal controls and mini-

mization techniques. The method is based on an overlapping domain decomposition of the

physical domain Ω into a region where a fine scale solver is used and a region where a coarse

scale solver is preferred. The two solvers are coupled through a minimization problem, where

we minimize the difference between the two solutions over the overlapping region; i.e., find

(θ1,θ2) such that

J (θ1,θ2)=min
μ1,μ2

1

2
‖uε

1(μ1)−u0
2(μ2)‖2

L2(ω0).

The well-posedness of the method is proved using Caccioppoli inequalities and a strong

Cauchy–Schwarz inequality. The key to the existence and uniqueness of the optimal controls

is to show that the cost functional is a norm over the space of controls.

Optimality systems can be derived from the minimization problem leading to a system of

equations which can be used in the numerical coupling method. At last, an a priori error

analysis of the optimization based method is proposed and error estimates are given; i.e.,

‖uε−uε
1(θ1)‖H 1(ω+) ≤Cε,

‖uε−ur ec
2 (θ2)‖H 1(Ω\ω+) ≤Cε1/2.
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Fully discrete optimization based
coupling method
In here, we derive a numerical method to solve the optimization based coupling method.

To fully resolve the fine scales in ω1, we need a partition with mesh size that resolves the

fine scales, whereas the partition of Ω \ω1 can be coarse and independent of the smallest

scale thanks to numerical homogenization techniques. In Figure 6.4, we recall the domain

decomposition. In order to allow for flexible meshing, we do not impose continuity of the

numerical homogenization method on Γ1. We choose to use a discontinuous Galerkin method

on ω2 and conform FEM on ω1. Imposing a discontinuity at the interface Γ1 is a consequence

of the choice to consider the same FE in the coarse and fine meshes over the overlap ω0. This

choice is not optimal as it leads to the presence of small FE in the mesh over ω2 and increases

the number of degrees of freedom. To solve that issue, one could do an interpolation between

the coarse and fine mesh in the overlap; this is treated in Chapter 7.

In what follows, we restrict the family of problems (6.3) to homogeneous Dirichlet problems,

i.e., we set gD = 0 and ΓN = {�}; we seek uε such that

−div(aε(x)∇uε)= f , in Ω,

uε = 0, on ΓD .
(6.29)

We denote by H 1
D (ωi ) the set of functions in H 1(ωi ) that vanish on ∂ωi∩ΓD , for i = 1,2. Further

the analysis is conducted for piecewise macro and micro FE; however, the error estimates in

the fine scale region ω+ can be easily adapted to higher order FE, following the Sections 2.1

and 2.5.

Γ

Ω

Γ2

Γ1

Γ

Ω

Γ1

Γ2

ω1

ω0

ω2

Figure 6.4 – Two possible domains decompositions with Γ1 (in red) and Γ2 (in black) for interior
domains (left) and for domains with shared boundaries (right).

123



Chapter 6. Optimization based coupling method

Further, we assume that the strong Cauchy–Schwarz lemma, Lemma 6.3.3, holds, and assume

that ε ≤ ε0. For simplicity of notations, we omit the superscripts ε and 0 in the numerical

approximations of uε
1 (vε

1) and u0
2 (v0

2).

We recall the coupling in its continuous form: find uε
1 ∈H 1(ω1) and u0

2 ∈H 1(ω2), such that the

cost function

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0),

is minimized under the following constraints, for i = 1,2,

−div(ai (x)∇ui (θi ))= f , in ωi ,

ui (θi )= θi , on Γi ,

ui (θi )= gD , on ∂ωi ∩ΓD ,

ni · (ai (x)∇ui (θi ))= gN , on ∂ωi ∩ΓN ,

(6.30)

where u1 =uε
1 and u2 =u0

2.

Outline. In Section 6.7, we give the numerical method for the fine and coarse scale solvers,

and give the numerical agorithm in 6.7.3. In Section 6.8, we give discrete inequalities useful

for well-posedness and a priori error analysis. The existence and uniqueness of the optimal

controls are proved in Section 6.9 and error estimates are given in Section 6.10. In Section 6.11,

we give numerical examples to asses the convergence rates and compare our method with

other goal-oriented numerical methods.

6.7 Numerical method for the optimization based coupling.

The optimization based method couples a fine scale solver with a coarse scale solver. We

choose to couple the FEM in ω1 with the DG-FE-HMM in ω2, and recall in this section the two

numerical methods.

6.7.1 Numerical method for the fine scale solver

Let {Th̃} be a family of partitions over ω1, in simplicial or quadrilateral elements, with mesh

size h̃ � ε where h̃ =maxK∈Th̃
hK , and hK is the diameter of the element K . In addition, we

suppose that the family of partitions {Th̃} is admissible (T1) and shape-regular (T2). For

simplicity, we consider, for each partition Th̃ in the family {Th̃}, a piecewise FE in ω1, given by

V 1
D (ω1,Th̃)= {w ∈H 1

D (ω1) |w|K ∈R1(K ), ∀K ∈Th̃},

where R1 is the space of piecewise linear polynomials on K . Further, we denote by V 1
0 (ω1,Th̃)

the functions in V 1
D (ω1,Th̃) that vanish on ∂ω1.

Let u1,h̃ be the numerical approximation of uε
1, the solution of (6.4) for i = 1. We decompose
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6.7. Numerical method for the optimization based coupling.

u1,h̃ into u1,h̃ =u1,0,h̃ +v1,h̃ , where v1,h̃ ∈V 1
D (ω1,Th̃) is obtained by the optimization method

and u1,0,h̃ ∈V 1
0 (ω1,Th̃) is the solution of

B1(u1,0,h̃ , w1,h̃)= F1(w1,h̃), ∀w1,h̃ ∈V 1
0 (ω1,Th̃), (6.31)

where B1 is defined by (6.8), and F1 is given by

F1(w1,h̃)=
∫
ω1

f w1,h̃dx.

Thanks to the Poincaré inequality, the bilinear form B1 is coercive and bounded over the space

V 1
0 (ω1,Th̃), and the existence and uniqueness of u1,0,h̃ follows from the Lax–Milgram lemma.

We note that a quadrature formula should be considered for the bilinear form B1 and for the

right hand side F1, and we refer to 2.1.1.

6.7.2 Discontinuous Galerkin (DG) method for the coarse scale problem

Let {TH } be a family of partitions over ω2, with discontinuity in Γ1 and mesh size H =
maxK∈TH hK ; further we assume that the family of partitions {TH } are shape-regular (T2). For

each partition TH in the family {TH }, we denote by E the set of (d −1) dimensional elements

of TH that form the boundary Γ1 — it will be edges (for d = 2) or faces (for d = 3). Further,

assume that the set E is composed of the smallest common interface between two elements

K+ and K− of TH , with intersection in Γ1; that is e is in E if e =minK+∩K− and e ⊂ Γ1. As the

solutions of problem (6.4), for i = 2, are assumed to be continuous in ω2 \Γ1, we construct a

piecewise FE space as

V 1
D (ω2,TH )= {v ∈H 1

D (ω2 \Γ1)∩L2(ω2) | v|K ∈R1(K ), ∀K ∈TH },

we denote by V 1
0 (ω2,TH ) the set of functions of V 1

D (ω2,TH ) that vanish over ∂ω2. For v ∈
V 1

D (ω2,TH ), we consider its average {·} and its jump �·� given by

{v}= 1

2
(v++ v−), and �v� = v+n++ v−n−,

where v± := v |K± denotes the trace of v from within K± and n± stands for the unit outward

normal in K±.

Quadrature formula. For piecewise FE spaces, a quadrature formula is given by the pair

(xK , |K |), where xK is the barycenter of K . The sampling domain of size δ around each point

xK is denoted by Kδ = xK +δ[−1/2,1/2]2.

The numerically homogenized tensor a0,h
2 (xK ), around the quadrature point xK , is obtained

using numerical solutions of micro problems defined in the sampling domains Kδ; we note

that a numerical approximation of f 0 can be obtained similarly. Let us consider a partition Th

of Kδ in simplicial or quadrilateral elements K of diameter hK ; the mesh size is h =maxK∈Th hK
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and, as the fine scales should be resolved in Kδ, we impose h ≤ ε. The piecewise micro FE

space is given by

V 1(Kδ,Th)= {vh ∈W (Kδ) | vh
|K ∈R1(K ), ∀K ∈Th},

where W (Kδ) depends on the boundary conditions imposed on the micro problems (2.21) or

(2.22). We introduce discrete micro problems: find ψi ,h
Kδ
∈V 1(Kδ,Th), i = 1, . . . ,d , the solution

of ∫
Kδ

aε
2(x)∇ψi ,h

Kδ
·∇zhdx =−

∫
Kδ

aε
2(x)ei ·∇zhdx, ∀zh ∈V 1(Kδ,Th). (6.32)

The numerically homogenized tensor at a quadrature point xK in a macro element K , is

computed by

a0,h
2 (xK )= 1

|Kδ|
∫

Kδ

aε
2(x)

(
I +∇ψh

Kδ

)
dx, (6.33)

where ∇ψh
Kδ
= (∇ψ1,h

Kδ
, . . . ,∇ψd ,h

Kδ
). Following [5], we define a DG macro bilinear form B2,H :

V 1
D (ω2,TH )×V 1

D (ω2,TH )→R by

B2,H (v2,H , w2,H )= ∑
K∈TH

|K |a0,h
2 (xK )∇v2,H (xK ) ·∇w2,H (xK )

+∑
e∈E

∫
e
μe�v2,H ��w2,H �ds

−∑
e∈E

∫
e

(
{a0,h

2 (xK )∇v2,H (xK )}�w2,H �

+ {a0,h
2 (xK )∇w2,H (xK )}�v2,H �

)
ds,

(6.34)

where the functions μe stand for weighting functions that penalize the jumps of v2,H and w2,H

over the element e in E . They are given by

μe =κh−1
e , (6.35)

with κ> 0, and he is the size of the interface e.

The numerical homogenized solution u2,H is split into u2,H = u2,0,H + v2,H , where v2,H ∈
V 1

D (ω2,TH ) is given by the coupling and u2,0,H ∈V 1
0 (ω2,TH ) is the solution of

B2,H (u2,0,H , w2,H )= F2(w2,H ), ∀w2,H ∈V 1
0 (ω2,TH ). (6.36)

The right hand side F2 is given by

F2(w2,H )= ∑
K∈TH

|K | f (xK )w2,H (xK ).

Remark 6.7.1. Considering non-homogeneous Dirichlet boundary condition gD �= 0 on ΓD

and Neumann condition on ΓN �= {0} leads to some additional terms in the right hand sides F1

and F2 of problems (6.31) and (6.36), respectively. In particular, one should construct a lifting
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of the Dirichlet data as explained in Section 6.5.

Remark 6.7.2. Higher order FE spaces can be considered and we note that the macro FEM

over ω1 and the micro FEM over Kδ j can be easily generalized to higher order FEM. For the

DG-FE-HMM some work needs to be done on the average of the fluxes, and we refer to [5].

6.7.3 Numerical Algorithm

In here, we state the discrete optimization based coupling, give the algorithm, and present the

main convergence results. The well-posedness and the proofs of the errors estimates are given

in the next sections.

The solution (u1,h̃ ,u2,H ) ∈V 1
D (ω1,Th̃)×V 1

D (ω2,TH ) satisfies

min
μ1,h̃ ,μ2,H

1

2
‖u1,h̃(μ1,h̃)−u2,H (μ2,H )‖2

L2(ω0) subject to

⎧⎨
⎩B1(u1,h̃ , w1,h̃) = F1(w1,h̃),

B2,H (u2,H , w2,H )= F2(w2,H ),

for all w1,h̃ ∈V 1
0 (ω1,Th̃) and w2,H ∈V 1

0 (ω2,TH ).

Introducing discrete Lagrange multipliers λ1,h̃ ∈V 1
0 (ω1,Th̃) and λ2,H ∈V 1

0 (ω2,TH ) for each of

the constraint, leads to a discrete optimality system:

find (v1,h̃ ,λ1,h̃ , v2,H ,λ2,H ) ∈V 1
D (ω1,Th̃)×V 1

0 (ω1,Th̃)×V 1
D (ω2,TH )×V 1

0 (ω2,TH ) satisfying

∫
ω0

(v1,h̃ − v2,H )w1,h̃dx−B1(w1,h̃ ,λ1,h̃)=−
∫
ω0

(
u1,0,h̃ −u2,0,H

)
w1,h̃dx, (6.37)

B1(v1,h̃ ,ξ1,h̃)= F1(ξ1,h̃)−B1(u1,0,h̃ ,ξ1,h̃), (6.38)∫
ω0

(v2,H − v1,h̃)w2,H dx−B2,H (w2,H ,λ2,H )=
∫
ω0

(u1,0,h̃ −u2,0,H )w2,H dx, (6.39)

B2,H (v2,H ,ξ2,H )= F2(ξ2,H )−B2,H (u2,0,H ,ξ2,H ), (6.40)

for all w1,h̃ ∈V 1
D (ω1,Th̃), ξ1,h̃ ∈V 1

0 (ω1,Th̃), w2,H ∈V 1
D (ω2,TH ), and ξ2,H ∈V 1

0 (ω2,TH ). Notice

that in the system (6.37) to (6.40), the discrete controls (θ1,h̃ ,θ2,H ) are not in the unknown but

they are hidden in the state variables v1,h̃ and v2,H .

The optimality system (6.37) to (6.40) can be written in matrix form, for the unknown vector

U = (v1,h̃ , v2,H ,λ1,h̃ ,λ2,H )�, as ⎛
⎜⎝M −B�

B 0

⎞
⎟⎠U =G , (6.41)
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where

M({v1,h̃ , v2,H }, {w1,h̃ , w2,H })=

⎛
⎜⎝

∫
ω0

v1,h̃ w1,h̃dx −∫ω0
v2,H w1,h̃dx

−∫ω0
v1,h̃ w2,H dx

∫
ω0

v2,H w2,H dx

⎞
⎟⎠ ,

B({v1,h̃ , v2,H }, {λ1,h̃ ,λ2,H }) =

⎛
⎜⎝B1(v1,h̃ ,λ1,h̃) 0

0 B2,H (v2,H ,λ2,H )

⎞
⎟⎠ .

The algorithm for the numerical coupling method is given below.

1. Find u1,0,h̃ ∈V 1
0 (ω1,Th̃) such that

B1(u1,0,h̃ , w1,h̃)= F1(w1,h̃), ∀w1,h̃ ∈V 1
0 (ω1,Th̃). (6.42)

2. Find u2,0,H ∈V 1
0 (ω2,TH ) such that

B2,H (u2,0,H , w2,H )= F2(w2,H ), ∀w2,H ∈V 1
0 (ω2,TH ). (6.43)

3. Find v1,h̃ ∈V 1
D (ω1,Th̃) and v2,H ∈V 1

D (ω2,TH ) by solving the saddle point problem (6.41).

Remark 6.7.3. The bilinear form B1 and the right-hand side F1 should be replaced by a

discrete bilinear form B1,h̃ and discrete right-hand side F1,h̃ where a quadrature formula is

used. But for simplicity of notations, we keep B1 and F1.

We state the two main convergence results for the fully discrete coupling. The optimization

based method relies on the DG-FE-HMM, thus one should expect to find the DG-FE-HMM

error in the a priori estimates. Further, as we use the Caccioppoli inequalities, we give the L2

error for the DG-FE-HMM. The a priori error is split into a macro, micro and modeling error;

i.e.,

eHMM,L2 ≤ eMAC,L2 +eMIC+eMOD.

The macro and micro errors correspond to FE errors due to the choice of macro and micro

FE methods respectively. The modeling error is due to the upscaling procedure, and will be

influenced by the choice of boundary conditions for (6.32), the size of the sampling domain

δ, and whether we consider collocation in the macro and micro bilinear forms of the slow

variable x to the quadrature points in the tensor aε
2. Details about the DG-FE-HMM error

are given in the Section 2.5. We recall that (θ1,θ2) is the optimal couple of controls that

minimize the cost J and that uε
1(θ1) and u0

2(θ2) are the solutions of (6.30). Let (θ1,h̃ ,θ2,H ) be

the discrete couple of boundary conditions given by the minimization problem (6.5). We recall
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the notations

u1,h̃(θ1,h̃) denotes the fine scale numerical solution in ω1,

u2,H (θ2,H ) denotes the coarse scale numerical solution in ω2.

The coupling solution, denoted by ūh̃H , is defined as

ūh̃H =
⎧⎨
⎩u1,h̃(θ1,h̃), in ω+,

ur ec
2,H (θ2,H ), in Ω\ω+,

(6.44)

where ur ec
2,H (θ2,H ) corresponds to the reconstructed coarse scale solution u2,H (θ2,H ) and is

defined by

ur ec
2,H (x)=u2,H (x)+

d∑
j=1

ψ
j ,h
Kε

(x)
∂u2,H

∂x j
(x), x ∈K ,

where ψ
j ,h
Kε

are the micro solutions of (6.32). As the reconstructed numerical solution might

be discontinuous across elements in ω2, we consider a broken H 1 semi-norm,

‖v‖2
H̄ 1(Ω)

:= ∑
K∈Th (ω+)

‖∇v‖2
L2(K )+

∑
K∈TH (Ω\ω+)

‖∇v‖2
L2(K ).

We next state our main convergence result for the optimization based numerical method. Let

u0 be the homogenized solution of

−div(a0
2(x)∇u0)= f , in ω2,

u0 = γ2(uε), on Γ2,

u0 = 0, on ∂ω2∩ΓD ,

n2 · (a0
2(x)∇u0)= 0, on ∂ω2∩ΓN .

(6.45)

We first have an error estimate in the fine scale region.

Theorem 6.7.4 (A priori error analysis in ω+). Let ε0 be given by the strong Cauchy–Schwarz

lemma, Lemma 6.3.3, and consider ε ≤ ε0. Let uε and u0 be the exact solutions of problems

(6.29) and (6.45), respectively, and ūh̃H be the numerical solution of the coupling (6.44). Assume

uε ∈H s+1(Ω), with s ≤ 1, u0 ∈H 2(ω2), and assume that (6.27) holds, then

‖uε− ūh̃H‖H̄ 1(ω+) ≤C1h̃s |uε|H s+1(ω1)+
C2

τ−τ+
(
h̃s+1|uε|H s+1(ω1)+ε+eHMM,L2

)
,

where the constants are independent of ε, H, h̃, and h. The DG-FE-HMM error eHMM,L2 is given

in Lemmas 6.10.2, 6.10.3, and 6.10.5.

Next, we state an error estimates in the coarse scale region Ω\ω+.
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Theorem 6.7.5 (Error estimates in Ω\ω+). Let uε be the exact solution of problem (6.29) and

ūh̃H be the numerical solution of the coupling (6.44). Let aε
2(x)= a2(x, x/ε), where a2(x, y) is

Y -periodic in y and satisfies a2(x, y) ∈ C (ω2;L∞per(Y )). Let ψ j
Kε

(x) ∈W 1
per(Kε), j = 1, . . . ,d. If

in addition, uε ∈ H 2(Ω), u0
2(θ2) ∈ H 2(ω2), uε

1 ∈ H s+1(ω1), with s ≤ 1, and ψ
j
Kε

(x) ∈W 1,∞(Kε),

j = 1, . . . ,d. It holds,

‖ur ec
2 (θ2)− ūh̃H‖H̄ 1(Ω\ω+) ≤C1ε

1/2+C2

(
h

ε

)
+C3H |u0

2|H 2(ω2)

+ C4

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

where the constants are independent of H , h̃,h, and ε.

6.8 Discrete inequalities

Let ω⊂ω1 ⊂Ω, with τ= dist(∂ω1,∂ω) and consider a partition Th of Ω in simplicial or quadri-

lateral elements K , with mesh size h =maxK∈Th hK , where hK is the diameter of the element K .

Further, we assume that h is smaller than τ and that Th is admissible (T1) and shape-regular

(T2). The inequalities are given for general FE spaces of degree p ≥ 1.

We give a discrete Caccioppoli inequality for functions vh ∈V p (ω1,Th) such that

B1(vh , w h) :=
∫
ω1

a(x)∇vh ·∇w hdx = 0, ∀wh ∈V p
0 (ω1,Th). (6.46)

Discrete versions of the Caccioppoli inequality were first given by Nitsche and Schatz [92]

and Nitsche and Wahlbin [103]. We start this section by recalling the discrete Caccioppoli

inequality and give its proof following the theory given in [92, 103] and more recently in [47].

Let us denote by Ih the Lagrange interpolant, and state a super approximation useful in the

proof of the discrete Caccioppoli inequality.

Lemma 6.8.1 ([47]). Let η ∈ C 1(ω1) with |∇η| ≤ Cτ−1. Then for each vh ∈ V p (ω1,Th) and

K ∈Th, with hK ≤ τ, it holds,

‖η2vh − Ih(η2vh)‖H 1(K ) ≤C

(
hK

τ
‖∇(ηvh)‖L2(K )+

hK

τ2 ‖vh‖L2(K )

)
.

Proof. See [47, Theorem 2.1].

We recall that local inverse inequalities are valid for functions vh ∈V p (ω1,Th); that is

‖∇vh‖L2(K ) ≤C h−1
K ‖vh‖L2(K ), (6.47)

where the constant C is independent of hK .
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We give here the proof of the discrete Caccioppoli inequality adapted to our problem and

notations, but we precise that it follows the steps of the proof of [47, Lemma 3.3].

Lemma 6.8.2 (Discrete Caccioppoli inequality for interior domains). Let vh ∈ V p (ω1,Th)

satisfy equation (6.46) for all wh ∈V p
0 (ω1,Th); it holds

‖∇vh‖L2(ω) ≤C
1

τ
‖vh‖L2(ω1),

where the constant C is independent of h, but depends on λ,Λ, and τ.

Proof. Let η ∈C 1
0 (ω1) be a cutoff function with |∇η| ≤Cτ−1. We have that η satisfies η≡ 0 in

Ω\ω1, η≡ 1 in ω, and |∇η| ≤ 1/τ for points in ω0. By the uniform ellipticity of the tensor a, it

holds

λ‖∇vh‖2
L2(ω) ≤

∫
ω1

a∇vh ·∇vhη2dx.

Using η2vh as a test function in (6.46), and expanding the integral, we obtain

∫
ω1

a∇vh ·∇(η2vh)dx =
∫
ω1

a∇vh ·∇vhη2dx+2
∫
ω1

aη∇vh ·∇ηvhdx,

and thus∫
ω1

a∇vh ·∇vhη2dx =
∫
ω1

a∇vh ·∇(η2vh)dx−2
∫
ω1

(ηa1/2∇vh) · (vh a1/2∇η)dx

≤
∫
ω1

a∇vh ·∇(η2vh)dx+2
∫
ω1

(ηa1/2∇vh) · (vh a1/2∇η)dx

≤B1(vh ,η2vh)+ζ

∫
ω1

a∇vh ·∇vhη2dx+ 1

ζ

∫
ω1

avh∇η ·∇ηvhdx

≤B1(vh ,η2vh)+ζ

∫
ω1

a∇vh ·∇vhη2dx+ Λ

ζτ2 ‖vh‖2
L2(ω1).

The last step is to bound the quantity B1(vh ,η2vh). Let us consider Ih(η2vh) ∈V p (ω1,Th), it

holds

B1(vh , I (η2vh))= 0,

and then

B1(vh ,η2vh)=B1(vh ,η2vh − I (η2vh))=
∫
ω1

a∇vh∇(η2vh − I (η2vh))dx

≤Λ‖∇vh‖L2(ω1)‖∇(η2vh − I (η2vh))‖L2(ω1)

≤Λ
∑

K∈Th

‖∇vh‖L2(K )‖∇(η2vh − I (η2vh))‖L2(K ).
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Using the local inverse inequality (6.47) and Lemma 6.8.1, we obtain

B1(vh ,η2vh)≤CΛ
∑

K∈Th

1

hK
‖vh‖L2(K )

(
hK

τ
‖∇(ηvh)‖L2(K )+

hK

τ2 ‖vh‖L2(K )

)

=Λ
∑

K∈Th

‖vh‖L2(K )
C

τ
‖∇(ηvh)‖L2(K )+

C

τ2 ‖vh‖2
L2(K )

≤Λ
∑

K∈Th

C

τ2

(
1

ζ
+1

)
‖vh‖2

L2(K )+ζ‖∇(ηvh)‖2
L2(K )

≤ CΛ

τ2

(
1

ζ
+1

)
‖vh‖2

L2(ω1)+Λζ‖η∇vh‖2
L2(ω1)+Λζ‖vh∇η‖2

L2(ω1)

≤Λ

(
C

τ2

(
1

ζ
+1+ζ

)
‖vh‖2

L2(ω1)+ζ‖η∇vh‖2
L2(ω1)

)
.

Recalling that

‖η∇vh‖2
L2(ω1) =

∫
ω1

∇vh ·∇vhη2dx ≤ 1

λ

∫
ω1

a∇vh ·∇vhη2dx,

and collecting the previous bounds, it holds

∫
ω1

a∇vh ·∇vhη2dx ≤C
Λ

τ2

(
2

ζ
+1+ζ

)
‖vh‖2

L2(ω1)

+ζ

(
Λ

λ
+1

)∫
ω1

a∇vh ·∇vhη2dx.

This gives, for ζ �= 1/(Λ/λ+1),

(1−ζ(Λ/λ+1))
∫
ω1

a∇vh ·∇vhη2dx ≤C
Λ

τ2

(
2

ζ
+1+ζ

)
‖vh‖2

L2(ω1),

and finally

‖∇vh‖2
L2(ω) ≤

C

(1−ζ(Λ/λ+1))

(
2

ζ
+1+ζ

)
Λ

λτ2 ‖vh‖2
L2(ω1).

Assume now that ∂ω∩Γ �= �. A discrete Caccioppoli inequality can be proved.

Lemma 6.8.3 (Discrete Caccioppoli inequality for domains with shared boundaries). Let

vh ∈V p (ω1,Th) satisfy equation (6.46) for all wh ∈V p
0 (ω1,Th). Further assume that vh = 0 on

∂ω1∩Γ. Then it holds

‖∇vh‖L2(ω) ≤C
1

τ
‖vh‖L2(ω1),

where the constant C is independent of h, but depends on λ,Λ, and τ.

Proof. We consider now a cutoff function η such that η≡ 1 in ω, η≡ 0 in Ω\ω1, and with η≡ 0
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on ∂ω1∩Ω. We can then follow the proof of Lemma 6.8.2, as

B1(vh ,η2vh)=
∫
ω1

a∇vh ·∇(η2vh)dx = 0.

We show that the strong Cauchy–Schwarz lemma, Lemma 6.3.3, is valid for discrete functions.

Lemma 6.8.4. Let ε< ε0 and Cs < 1 be given by the strong Cauchy–Schwarz lemma, Lemma

6.3.3, and let v1,h̃ ∈V p
D (ω1,Th̃) and v2,H ∈V p

D (ω2,TH ) be numerical solutions of (6.41). There

exist h̃0 > 0 and H0 > 0 such that∫
ω0

v1,h̃ v2,H dx ≤Cs‖v1,h̃‖L2(ω0)‖v2,H‖L2(ω0), ∀h̃ < h̃0, H <H0.

Proof. Let {h̃n , Hn}n≥1 be a sequence of mesh sizes converging to zero. We have strong con-

vergence in L2, for a subsequence of {h̃n , Hn}n≥1 still denoted by {h̃n , Hn}n≥1, of the numerical

solutions v1,h̃n
and v2,Hn to the exact solutions vε

1 and v0
2 respectively. Thus

lim
n→∞

∫
ω0

v1,h̃n
v2,Hn dx =

∫
ω0

vε
1 v0

2dx

and

limn→∞‖v1,h̃n
‖L2(ω0) = ‖vε

1‖L2(ω0),

limn→∞‖v2,Hn‖L2(ω0) = ‖v0
2‖L2(ω0).

We recall that the strong Cauchy–Schwarz lemma, Lemma 6.8.4, is valid for vε
1 et v0

2; there

exists an ε0 and a constant 0<Cs < 1, such that for all ε≤ ε0, it holds∫
ω0

vε
1 v0

2dx ≤Cs‖vε
1‖L2(ω0)‖v0

2‖L2(ω0).

Then, using the strong Cauchy–Schwarz inequality, Lemma 6.3.3, for vε
1 and v0

2, it holds

lim
n→∞

∫
ω0

v1,h̃n
v2,Hn dx =

∫
ω0

vε
1 v0

2dx

≤Cs‖vε
1‖L2(ω0)‖v0

2‖L2(ω0)

= lim
n→∞Cs‖v1,h̃n

‖L2(ω0)‖v2,Hn‖L2(ω0).

Then, there exist an ε0 > 0 and a constant 0<Cs < 1, such that for all ε≤ ε0, there exist h̃0 > 0

and H0 > 0, such that∫
ω0

v1,h̃ v2,H dx ≤Cs‖v1,h̃‖L2(ω0)‖v2,H‖L2(ω0), ∀h̃ ≤ h̃0, H ≤H0.
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6.9 Well-posedness of the discrete coupling method

In this section, we prove the well-posedness of the discrete coupling problem. The well-

posedness of the optimization based coupling method can be established using Brezzi’s theory

[34] and the well-posedness of problems (6.42) and (6.43). The Lax–Milgram lemma implies

the existence and uniqueness of u1,0,h̃ ∈V 1
0 (ω1,Th̃).

Due to the discontinuity in TH , the space V 1
0 (ω2,TH ) is not a subspace of H 1

0 (ω2), however, it

will lie in the piecewise Sobolev space

H 2(TH ) := ∏
K∈TH

H 2(K )= {v ∈ L1(ω2) | v|K ∈H 2(K ), ∀K ∈TH }.

Suppose that the exact solution u2,0 of problem (6.7) is in the space H 1
0 (ω2)∩H 2(ω2), we define

the proper space for the analysis as V (ω2) := V 1
0 (ω2,TH )+H 1

0 (ω2)∩H 2(ω2) ⊂ H 2(TH ), see

discussions in [26, 48]. The space V (ω2) is equipped with the norm

|||v |||ω2 :=
(
‖∇v‖2

L2(ω2)+
∑

K∈TH

h2
K |v |22,K +|v |2∗

)1/2

, (6.48)

where

‖∇v‖2
L2(ω2) =

∑
K∈TH

|v |21,K , |v |22,K =
∑
|r |=2

‖∂r v‖2
L2(K ), and |v |2∗ =

∑
e∈E

‖μ1/2
e �v�‖2

L2(e).

One can prove that (6.48) is a norm over V (ω2), using the discrete Poincaré–Friedrichs inequal-

ity [34],

‖v‖2
L2(ω2) ≤C (‖∇v‖2

L2(ω2)+|v |2∗). (6.49)

Thanks to local inverse inequalities [41], restricting the space V (ω2) to V 1
0 (ω2,TH ), reduces

the norm (6.48) to

|||v |||ω2 =
(
‖∇v‖2

L2(ω2)+|v |2∗
)1/2

.

Proposition 6.9.1. There exists a value κ0, that depends only on the properties of the tensor aε

given in (6.2), the shape regularity of TH , and the dimension d, such that for all κ≥ κ0, κ being

defined in (6.35), the bilinear form B2,H (6.34) is stable in V 1
0 (ω2,TH ); i.e.,

B2,H (vH , vH )≥C1|||vH |||2, ∀vH ∈V 1
0 (ω2,TH ).

Furthermore, the bilinear form is bounded; i.e.,

B2,H (vH , wH )≤C2|||vH ||||||wH |||, ∀vH , wH ∈V 1
0 (ω2,TH ).

The constants C1 and C2 are independent of H , h̃,h, and ε.

Proof. See [5, Lemmas 4.3, 4.4, and 5.18 ].
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Theorem 6.9.2. Let assumption (6.2) holds. Then there exists a unique solution u1,0,h̃ of prob-

lem (6.42) which satisfies u1,0,h̃ ∈V 1
0 (ω1,Th̃) and

‖u1,0,h̃‖H 1(ω1) ≤C1‖F1‖H−1(ω1),

with a constant C1 independent of H , h̃, and ε.

Moreover, let κ0 be given by Proposition 6.9.1. Then, the problem (6.43) admits a unique solution

u2,0,H ∈V 1
0 (ω2,TH ) and it holds

∣∣∣∣∣∣u2,0,H
∣∣∣∣∣∣≤C2‖F2‖H−1(ω2),

where the constant C2 is independent of H ,h, h̃, and ε.

Proof. The existence and uniqueness of u1,0,h̃ and u2,0,H follows from Lax–Milgram lemma

and Proposition 6.9.1.

We now prove that the saddle point problem 6.41 is well posed. We introduce V 1(Γi ) as the set

of functions μi ∈U i that are piecewise polynomials on the elements over Γi , i = 1,2. Let us

write the system of equations (6.37) to (6.40) in terms of the discrete virtual controls θ1,h̃ and

θ2,H : find (θ1,h̃ ,λ1,h̃ ,θ2,H ,λ2,H ) ∈V 1(Γ1)×V 1
0 (ω1,Th̃)×V 1(Γ2)×V 1

0 (ω2,TH ) satisfying

π((θ1,h̃ ,θ2,H ), (μ1,h̃ ,μ2,H ))−B((μ1,h̃ ,μ2,H ), (λ1,h̃ ,λ2,H ))=G(μ1,h̃ ,μ2,H ), (6.50)

B((θ1,h̃ ,θ2,H ), (ξ1,h̃ ,ξ2,H ))= 0, (6.51)

for all (μ1,h̃ ,μ2,H ) ∈V 1(Γ1)×V 1(Γ2) and (ξ1,h̃ ,ξ2,H ) ∈V 1
0 (ω1,Th̃)×V 1

0 (ω2,TH ). The forms π, B ,

and G are defined by

π((θ1,h̃ ,θ2,H ), (μ1,h̃ ,μ2,H ))=
∫
ω0

(v1,h̃(θ1,h̃)− v2,H (θ2,H ))(v1,h̃(μ1,h̃)− v2,H (μ2,H ))dx,

B((θ1,h̃ ,θ2,H ), (ξ1,h̃ ,ξ2,H ))=B1(θ1,h̃ ,ξ1,h̃)+B2,H (θ2,H ,ξ2,H ),

G(θ1,h̃ ,θ2,H )=−
∫
ω0

(u1,0,h̃ −u2,0,H )(v1,h̃(θ1,h̃)− v2,H (θ2,H ))dx.

(Note that, in order to avoid overloading of notation, we reuse the notation π in the discrete

context, which should not be confused with (6.9).)

To prove the well-posedness of system (6.50)–(6.51), we need to show that

- The form π is continuous and coercive on V 1(Γ1)×V 1(Γ2) equipped with the inner

product π.

- The form B is continuous and satisfies an inf-sup condition.

The continuity of π can be easily obtained with the Cauchy–Schwarz and the discrete Poincaré

inequality (6.49).
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The coercivity of π can be proved similarly to the continuum case (cf. see Lemma 6.3.4), as is

done in the next lemma.

Lemma 6.9.3. Let ε0 be given by the strong Cauchy–Schwarz lemma, Lemma 6.3.3, and assume

that ε≤ ε0. Then, the form π defines an inner product on V 1(Γ1)×V 1(Γ2).

Proof. We will use the discrete Cauchy–Schwartz lemma, Lemma 6.8.4, with the same ε0 and

Cs , to prove that π is definite. Indeed, arguing as in Lemma 6.3.4 we assume that (μ1,h̃ ,μ2,H ) is

such that

0=π((μ1,h̃ ,μ2,H ), (μ1,h̃ ,μ2,H ))= ‖v1,h̃(μ1,h̃)− v2,H (μ2,H )‖2
L2(ω0)

≥ (1−Cs)
(
‖v1,h̃(μ1,h̃)‖2

L2(ω0)+‖v2,H (μ2,H )‖2
L2(ω0)

)
.

As Cs < 1, it holds that ‖v1,h̃(μ1,h̃)‖L2(ω0) = ‖v2,H (μ2,H )‖L2(ω0) = 0 which implies that v1,h̃(μ1,h̃)=
v2,H (μ2,H )= 0 in ω0 and, in particular, μ1,h̃ = 0 and μ2,H = 0.

Next, we prove the inf-sup condition for the bilinear form B .

Lemma 6.9.4. The form B satisfies

sup
(μ1,h̃ ,μ2,H )

B((μ1,h̃ ,μ2,H ), (ξ1,h̃ ,ξ2,H ))

‖(μ1,h̃ ,μ2,H )‖L∗(U )
≥C

(
‖ξ1,h̃‖H 1(ω1)+

∣∣∣∣∣∣ξ2,H
∣∣∣∣∣∣

ω2

)
,

for all (ξ1,h̃ ,ξ2,H ) ∈V 1
0 (ω1,Th̃)×V 1

0 (ω2,TH ). The constant C is independent of ε.

Proof. Let (ξ1,h̃ ,ξ2,H ) ∈V 1
0 (ω1,Th̃)×V 1

0 (ω2,TH ). By the definition of B , we have

B((μ1,h̃ ,μ2,H ), (ξ1,h̃ ,ξ2,H ))=B1(μ1,h̃ ,ξ1,h̃)+B2,H (μ2,H ,ξ2,H ).

Take (μ1,h̃ ,μ2,H ) ∈ V 1(Γ1)×V 1(Γ2) and by definition there exist vh̃ ∈ V 1(ω1,Th̃) and vH ∈
V 0(ω2,TH ) such that vh̃(μ1,h̃)= ξ1,h̃ ∈V 1

0 (ω1,Th) and vH (μ2,H )= ξ2,H ∈V 1
0 (ω2,TH ) . Then,

B1(μ1,h̃ ,ξ1,h̃)=
∫
ω1

aε
1∇vh̃(μ1,h̃) ·∇ξ1,h̃dx =

∫
ω1

aε
1∇ξ1,h̃ ·∇ξ1,h̃dx ≥C‖ξ1,h̃‖2

H 1(ω1).

Similarly, by the coercivity of B2,H , it holds

B2,H (μ2,H ,ξ2,H )≥C
∣∣∣∣∣∣ξ2,H

∣∣∣∣∣∣2
ω2

.

Thus,

B((μ1,h̃ ,μ2,H ), (ξ1,h̃ ,ξ2,H ))≥C
(
‖ξ1,h̃‖H 1(ω1)+

∣∣∣∣∣∣ξ2,H
∣∣∣∣∣∣

ω2

)2
,
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where the constant is independent of H , h, h̃, and ε. We can conclude as

‖(μ1,h̃ ,μ2,H )‖L∗(U ) ≤ ‖μ1,h̃‖H 1/2(Γ1)+‖μ2,H‖H 1/2(Γ2)

≤C
(
‖vh̃(μ1,h̃)‖H 1(ω1)+

∣∣∣∣∣∣vH (μ2,H )
∣∣∣∣∣∣

ω2

)
=C

(
‖ξ1,h̃‖H 1(ω1)+

∣∣∣∣∣∣ξ2,H
∣∣∣∣∣∣

ω2

)
.

6.10 Fully discrete error estimates

In this section, we derive error estimates for the fully discrete optimization-based method.

A post-processing procedure is used on the coarse solution u2,H (θ2,H ), in order to reach

convergence to the exact solution uε. The norm considered is a broken H 1 semi-norm as we

allow the corrected solution to be discontinuous across elements of Ω\ω. The fully discrete

analysis is then conducted for the error

‖uε− ūh̃H‖H̄ 1(Ω) =
∑

K∈Th (ω+)
‖∇(uε− ūh̃H )‖2

L2(K )+
∑

K∈TH (Ω\ω+)
‖∇(uε− ūh̃H )‖2

L2(K ).

where the numerical solution of the coupling ūh̃H is given by (6.44). In the fully discrete

analysis of the DG-FE-HMM method, the error between the homogenized solution and its

approximation is decomposed into a macro, micro, and modeling error [3]. These errors will

contribute to the a priori estimates of our method.

Remark 6.10.1. In Section 6.5, the error estimates depend on the bound of the operator Q

(6.28). This bound was obtained in Lemma 6.5.3 using Caccioppoli inequalities. In the fully

discrete case, we introduce a discrete operator Qh̃,H , which is a discrete version of the operator

Q and the estimates will depend on ‖Qh̃,H‖. For conforming FE spaces the norm of Qh̃,H

is bounded independently of the mesh sizes h̃,h, and H ; this can be seen by following the

lines of Lemma 6.5.3. For non-conforming meshes, we will assume that ‖Qh̃,H‖ is bounded

independently of h̃,h, and H . In what follows, we will use the notations P,U0, and Q, previously

used in the continuous analysis, to denote the operators in the discrete analysis.

We recall that u0, the solution of (6.26), denotes the homogenized solution over ω2 with

boundary condition on Γ2 given by the trace of the physical solution uε, for a fixed ε. The DG-

FE-HMM method gives us an approximation uH ∈V 1
0 (ω2,TH ) of the homogenized solution

u0. We state here the main results needed to bound ‖u0−uH‖L2(ω2), for further details we refer

to [1, 3, 4], and the references therein. We decompose the DG-FE-HMM error into the macro,

micro, and modeling errors

eHMM,L2 = ‖u0−uH‖L2(ω2) ≤ eMAC+eMIC+eMOD.
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Macro Error

We define u0
H ∈V 1

0 (ω2,TH ) as the FEM approximation of the homogenized problem (6.26),

i.e.,

B 0
2,H (u0

H , wH )= F2(wH ), ∀wH ∈V 1
0 (ω2,TH ), (6.52)

where the bilinear form is given by

B 0
2,H (vH , wH )= ∑

K∈TH

|K |a0
2(xK )∇v H∇w H +∑

e∈E

∫
e
μe�vH ��wH �ds

−∑
e∈E

∫
e

(
{a0

2∇vH }�wH �+ {a0
2∇wH }�vH �

)
ds, ∀vH , wH ∈V 1

0 (ω2,TH ). (6.53)

Using a triangular inequality, the error can be formulated as

‖u0−uH‖L2(ω2) ≤ ‖u0−u0
H‖L2(ω2)+‖u0

H −uH‖L2(ω2)

≤ ‖u0−u0
H‖L2(ω2)+

∣∣∣∣∣∣u0
H −uH

∣∣∣∣∣∣
ω2

= eMAC,L2 +eMIC+eMOD.

To simplify the analysis we make the following assumptions on the structure of the tensor aε
2,

(H1) aε
2(x)= a2(x, x/ε)= a2(x, y) is Y-periodic in y and

a2(·, y)|K is constant within each K ∈TH .

Lemma 6.10.2 (Macro error). Let u0 and u0
H be the solutions of problems (6.26) and (6.52)

respectively. Assume that (6.2) and (H1) hold, and that u0 ∈H 2(ω2). Then,

eMAC,L2 = ‖u0−u0
H‖L2(ω2) ≤C H 2,

where the constant C is independent of H , h̃,h, and ε, but depends on the stability constant of

the bilinear form B 0
2,H .

Proof. See [26].

Micro and modeling Errors

For the micro and modeling errors, we follow [5, Section 5]. We assume the following regularity

on ψi
Kδ

, the non-discretized micro solutions of problem (6.32), in W (Kδ); i.e.,

(H2) |ψi
Kδ
|H 2(Kδ) ≤Cε−1

√|Kδ|, for i = 1, . . . ,d .

To discuss the micro and modeling errors, we recall that a0
2 is the homogenized tensor on

the domain ω2 and that a0,h
2 is the numerical homogenized tensor given by (6.33). Consider,

further the tensor ā0
2 defined by (6.33) using the non-discretized micro functions ψi

Kδ
, the
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solutions of (6.32) in W (Kδ) instead of the discretized functions ψi ,h
Kδ

. The error between the

homogenized tensor a0
2 and its numerical approximation a0,h

2 can be bounded by

sup
K∈TH

‖a0
2(xK )−a0,h

2 (xK )‖F ≤sup
K∈TH

‖a0
2(xK )−ā0

2(xK )‖F +sup
K∈TH

‖ā0
2(xK )−a0,h

2 (xK )‖F ,

where the first term in the right-hand side of the above inequality is denoted by eMOD (model-

ing error) and the second by eMIC (micro error).

Lemma 6.10.3 (Micro and modeling errors). Let u0
H be the solution of (6.52) and uH be the

DG-FE-HMM approximation of u0. Assume that (6.2) holds, then

∣∣∣∣∣∣u0
H −uH

∣∣∣∣∣∣
ω2
≤C sup

K∈TH

‖a0
2(xK )−a0,h

2 (xK )‖F
∣∣∣∣∣∣uH

∣∣∣∣∣∣,
where the constant C is independent of H, h̃, h, and ε. Further, assuming (H2), the Frobenius

norm is bounded by

sup
K∈TH

‖a0
2(xK )−a0,h

2 (xK )‖F ≤ eMOD+C

(
h

ε

)2

,

where the modeling error eMOD is given in Lemma 6.10.5.

Proof. Follows from [5, Section 5].

Remark 6.10.4. Higher order micro error
(

h
ε

)2q
can be obtained for higher order micro FEM,

provided higher order regularity of the micro functions,

|ψi
Kδ
|H q+1(Kδ) ≤Cε−q

√
|Kδ| for i = 1, . . . ,d .

The modeling error eMOD,H 1 will depend on the choice of boundary condition on the micro

problems. We recall that by collocation we mean that we collocate the slow variable x in the

tensor aε
2 to the quadrature points xK in the definitions of the tensor a0

2 and ā0
2.

Lemma 6.10.5 (Modeling error). The modeling error is given by

eMOD =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, V 1(Kδ,Th)⊂W 1
per(Kδ),δ/ε ∈N, and collocation,

C1δ, V 1(Kδ,Th)⊂W 1
per(Kδ),δ/ε ∈N,

C2
ε
δ , V 1(Kδ,Th)⊂H 1

0 (Kδ),δ/ε ∉N, and collocation,

C3
(
δ+ ε

δ

)
, V 1(Kδ,Th)⊂H 1

0 (Kδ),δ/ε ∉N.

Proof. see [1, 3].
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6.10.1 A priori error estimates in the fine scale region

In here, we will prove Theorem 6.7.4.

Proof of Theorem 6.7.4. Let uh̃ ∈V 1
D (ω1,Th̃) be the FE approximation of the physical solution

uε over the mesh Th̃ , i.e. uh̃ = u1,0,h̃ + v1,h̃(I h̃γ1(u)), where I h̃ is the Lagrange interpolant on

Γ1. Classical FE estimate holds; i.e.,

‖uε−uh̃‖H 1(ω+) ≤C h̃s |uε|H s+1(ω1),

where the constant C is independent of H ,h, h̃, and ε. Applying a triangular inequality, we

obtain

‖∇(uε− ūh̃H )‖L2(ω+) ≤C h̃s |uε|H s+1(ω1)+‖∇(uh̃ − ūh̃H )‖L2(ω+).

The numerical solution ūh̃H over ω+ is equal to the numerical fine scale solution u1,h̃(θ1,h̃), it

holds

B1(uh̃ −u1,h̃ , vh̃)= 0, ∀vh̃ ∈V 1
0 (ω1,Th̃),

i.e., the difference uh̃ −u1,h̃(θ1,h̃) is aε-harmonic in ω1 and thus the discrete Caccioppoli

inequality, Lemma 6.8.2, can be applied,

‖∇(uh̃ −u1,h̃(θ1,h̃))‖L2(ω+) ≤
C

(τ−τ+)
‖uh̃ −u1,h̃(θ1,h̃)‖L2(ω1),

where the constant C > 0 is independent of H , h̃,h, and ε, but depends on the ellipticity

constants of the tensor aε. Consider an operator P : V 1(Γ1)×V 1(Γ2)→V 1
D (ω1,Th̃)×V 1

D (Ω \

ω1,TH ) defined as

P (μ1,h̃ ,μ2,H )=
⎧⎨
⎩u1,0,h̃ + v1,h̃(μ1,h̃), in ω1,

u2,0,H + v2,H (μ2,H ), in Ω\ω1.

As in the continuous case, we decompose the operator P as P =U0+Q. Over ω1, it holds

u1,h̃(θ1,h̃)= P (θ1,h̃ ,θ2,H ) and uh̃ = P (I h̃γ1(uε), I Hγ2(uε)). Then,

‖uh̃ −u1,h̃(θ1,h̃)‖L2(ω1) = ‖P (I h̃γ1(uε), I Hγ2(uε))−P (θ1,h̃ ,θ2,H )‖L2(ω1)

≤ ‖Q‖‖(I h̃γ1(uε), I Hγ2(uε))− (θ1,h̃ ,θ2,H )‖L∗(U ).

As (θ1,h̃ ,θ2,H ) are the discrete optimal virtual controls, they satisfy

∫
ω0

(
v1,h̃(θ1,h̃)− v2,H (θ2,H )

)(
v1,h̃(μ1,h̃)− v2,H (μ2,H )

)
dx

=−
∫
ω0

(
v1,h̃(μ1,h̃)− v2,H (μ2,H )

)
(u1,0,h̃ −u2,0,H )dx,
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for all (μ1,h̃ ,μ2,H ) ∈V 1(Γ1)×V 1(Γ2). Then,

‖(I h̃γ1(uε), I Hγ2(uε))− (θ1,h̃ ,θ2,H )‖L∗(U )

= sup
(μ1,h̃ ,μ2,H )

|π((I h̃γ1(uε), I Hγ2(uε)), (μ1,h̃ ,μ2,H )
)−π

(
(θ1,θ2), (μ1,h̃ ,μ2,H )

)|
‖(μ1,h̃ ,μ2,H )‖L∗(U )

,

and following the proof of Lemma 6.5.2,

π
(
(I h̃γ1(uε), I Hγ2(uε)), (μ1,h̃ ,μ2,H )

)−π
(
(θ1,θ2), (μ1,h̃ ,μ2,H )

)
=
∫
ω0

(uh̃ −uH )
(
v1,h̃(μ1,h̃)− v2,H (μ2,H )

)
dx

≤ ‖uh̃ −uH‖L2(ω0)‖(μ1,h̃ ,μ2,H )‖L∗(U ),

where uH =u2,0,H + v2,H (I Hγ2(u)). We obtain that

‖(I h̃γ1(uε), I Hγ2(uε))− (θ1,h̃ ,θ2,H )‖L∗(U ) ≤ ‖uh̃ −uH‖L2(ω0),

and summarizing, we have

‖∇(uh̃ −u1,h̃(θ1,h̃))‖L2(ω+) ≤C‖uh̃ −uH‖L2(ω0).

Then, we decompose the error into

‖uh̃ −uH‖L2(ω0) ≤ ‖uh̃ −uε‖L2(ω0)+‖uε−u0‖L2(ω0)+‖u0−uH‖L2(ω0), (6.54)

provided that the solutions uε and u0 are smooth enough, standard FE estimates and (6.27)

can be applied to bound the first two quantities in (6.54), i.e.,

‖uh̃ −uH‖L2(ω0) ≤C h̃s+1|uε|H s+1(ω1)+Cε+‖u0−uH‖L2(ω0).

We bound the error in ω0 by the error in ω2

‖u0−uH‖L2(ω0) ≤ ‖u0−uH‖L2(ω2) ≤ ‖u0−u0
H‖L2(ω2)+‖u0

H −uH‖L2(ω2).

The two norms corresponds to the DG-FE-HMM error in the L2 norm and are given by Lemmas

6.10.2, 6.10.3, and 6.10.5.

6.10.2 A priori error estimates in the scale separated region

We prove an a priori error bound between uε and ūh̃H in Ω\ω+, where ūh̃H is defined in (6.44).

For simplicity, we assume that δ= ε and choose periodic coupling conditions between the

macro and micro problems. We recall that the reconstructed homogenized solution ur ec
2 , and
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its numerical approximation ur ec
2,H , are given by

ur ec
2 (x)= u0

2(x)+ε
d∑

j=1
χ j (x, x/ε)

∂u0
2(x)

∂x j
, (6.55)

ur ec
2,H (x)= u2,H (x)+

d∑
j=1

ψ
j ,h
Kε

(x)
∂u2,H (x)

∂x j
, (6.56)

where u0
2 =u0

2(θ2) and u2,H =u2,H (θ2,H ) are the exact solution and numerical solution of the

coupling in ω2, respectively, and ψ
j ,h
Kε

are the micro solutions of (6.32). We sometimes use

ur ec
2 (θ2) and ur ec

2,H (θ2,H ) to emphasize the dependence on θ2 and θ2,H , respectively.

We introduce the discrete micro problems on Kε; find uh such that uh −u2,H ∈V 1(Kε,Th) and

∫
Kε

aε
2(x)∇vh ·∇zhdx = 0, ∀zh ∈V 1(Kε,Th). (6.57)

From assumption (H1), the tensor aε
2 is constant in each macro element K ∈TH . This simpli-

fies the analysis as the modeling error is zero. We introduce a semi-discrete problem over ω2:

find ū2,H ∈V 1
D (ω2,TH ) the solution of

B̄2,H (ū2,H , wH )= F2(wH ), ∀wH ∈V 1(ω2,TH ),

ū2,H = θ2,H , on Γ2,

where the bilinear form B̄2,H : V 1(ω2,TH )×V 1(ω2,TH )→R is given by

B̄2,H (vH , wH )= ∑
K∈TH

|K |
|Kε|

∫
Kε

aε
2(x)∇v ·∇wdx+∑

e∈E

∫
e
μe�vH ��wH �ds

−∑
e∈E

∫
e

(
{aε

2∇v}�wH �+ {aε
2∇w}�vH �

)
ds,

where v and w are solutions of (6.57) in the exact Sobolev space W (Kε).

For a vector valued function η, we define the average of the multiscale fluxes as

{η}= 1

2

(
1

|K+
ε |

∫
K +
ε

η+dx+ 1

|K−
ε |

∫
K −
ε

η−dx

)
.

We can then define ūr ec
2,H by

ūr ec
2,H (x)= ū2,H (x)+

d∑
j=1

ψ
j
Kε

(x)
∂ū2,H (x)

∂x j
, x ∈K , (6.58)

where ū2,H = ū2,H (θ2,H ). We use ūr ec
2,H (θ2,H ) to denote the dependence on θ2,H .

We now give the proof of Theorem 6.7.5.
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Proof of Theorem 6.7.5. We decompose the error into

‖uε−ur ec
2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤ ‖uε−ur ec

2 (θ2)‖H̄ 1(Ω\ω+)+‖ur ec
2 (θ2)−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+).

From Theorem 6.5.5, it holds that ‖uε−ur ec
2 (θ2)‖H̄ 1(Ω\ω+) ≤C1ε

1/2. We focus on ‖ur ec
2 (θ2)−

ur ec
2,H (θ2,H )‖H̄ 1(Ω\ω+) and follow [3, Section 3.3.3]. Using the triangular inequality, we obtain

‖uε−ur ec
2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C1ε

1/2+‖ur ec
2 (θ2)−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+)

≤C1ε
1/2+‖ur ec

2 (θ2)− ūrec
2,H (θ2,H )‖H̄ 1(Ω\ω+)

+‖ūrec
2,H (θ2,H )−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+).

Lemma 6.10.7 gives us

‖ur ec
2 (θ2)− ūrec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C3H |u0
2|H 2(ω2)+C4ε

+ C5

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

Further, Lemma 6.10.9 provides us with

‖ūrec
2,H (θ2,H )−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C2

(
h

ε

)
.

Collecting the previous results gives

‖ur ec
2 (θ2)−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C1ε
1/2+C2

(
h

ε

)
+C3H |u0

2|H 2(ω2)

+ C5

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

Remark 6.10.6. Theorem 6.7.5 can be adapted for general tensor aε
2(x) without a two-scale

structure. In that case, the modeling error is present in the last term of the error.

Recall that we assumed periodic coupling with δ= ε and that (H1) and (H2) hold. Further, we

assume Lipschitz continuity of the tensor in the first variable, i.e. a2(x, y) ∈W 1,∞(ω2,L∞(Y )).

Lemma 6.10.7. Let ur ec
2 (θ2) and ūrec

2,H (θ2,H ) be given by (6.55) and (6.58). Assume that u0
2 ∈

H 2(ω2), uε
1 ∈ H s+1(ω1), with s ≤ 1, and that the exact solutions of the micro problems (6.32)

verify (H2). Then

‖ur ec
2 (θ2)− ūr ec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C1H |u0
2|H 2(ω2)+C2ε

+ C3

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
,

where the constants are independent of H , h̃,h, and ε.

143



Chapter 6. Optimization based coupling method

Proof. Using the definitions of ur ec
2 (θ2) and ūr ec

2,H (θ2,H ), it holds

‖ur ec
2 (θ2)− ūr ec

2,H (θ2,H )‖2
H̄ 1(Ω\ω+)

= ∑
K∈TH (Ω\ω+)

‖∇(ur ec
2 (θ2)− ūr ec

2,H (θ2,H ))‖2
L2(K )

≤ ∑
K∈TH (Ω\ω+)

‖∇(u0
2− ū2,H )‖2

L2(K )

+ ∑
K∈TH (Ω\ω+)

‖
d∑

j=1
∇(εχ j (x, x/ε)

∂u0
2

∂x j
−ψ

j
Kε

(x)
∂ū2,H

∂x j

)‖2
L2(K ).

Thanks to (H1), it holds εχ j (x, x/ε) =ψ
j
Kε

(x), and the second norm is bounded by the first

norm plus a term Cε. We recall the bilinear form (6.53) for the problem (6.4) with a quadrature

formula,

B 0
2,H (vH , wH )= ∑

K∈TH

|K |a0
2(xK )∇vH ·∇wH +

∑
e∈E

∫
e
μe�vH ��wH �ds

−∑
e∈E

∫
e

(
{a0

2(xK , x/ε)v}�wH �+ {a0
2(xK , x/ε)w}�vH �

)
ds,

and define û2,H (θ2,H ) ∈V 1
D (ω2,TH ) solution of

B 0
2,H (û2,H , wH )= F2(wH ), ∀wH ∈V 1

0 (ω2,TH ).

By [3, Proposition 14], it holds that ū2,H = û2,H . By hypothesis u0
2(θ2) and ū2,H (θ2,H ) have zero

boundary conditions on ∂ω2∩Γ, and we can use [38, Lemmas 4.1, 4.2],

‖u0
2(θ2)− ū2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C1 inf

w∈V 1
D (ω2,TH ),w=I Hθ2 on Γ2

‖u0
2(θ2)−w‖H̄ 1(ω2)

+ C2

τ+
‖u0

2(θ2)− ū2,H (θ2,H )‖L2(ω2).

The first norm can be bounded by

inf
w
‖u0

2(θ2)−w‖H̄ 1(ω2) ≤ ‖u0
2(θ2)−u2,H (I Hθ2)‖H̄ 1(ω2) ≤C1H |u0

2|H 2(ω2),

where u2,H (I Hθ2) is the FEM solution with an interpolation of θ2 on Γ2. Following the proof of

Theorem 6.7.4, the second part is bounded by

‖u0
2(θ2)− ū2,H (θ2,H )‖L2(ω2) ≤ ‖u0

2(θ2)−u2,H (I Hθ2)‖L2(ω2)

+‖u2,H (I Hθ2)− ū2,H (θ2,H )‖L2(ω2)

≤C1H 2|u0
2|H 2(ω2)+‖Q(I h̃θ1, I Hθ2)−Q(θ1,h̃ ,θ2,H )‖L2(ω2)

≤C1H 2|u0
2|H 2(ω2)+C2‖u1,h̃(I h̃θ1)− ū2,H (I Hθ2)‖L2(ω0),

where we have used that (θ1,h̃ ,θ2,H ) is the optimal couple of the discrete minimization problem
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and that Q is bounded. Finally using the triangular inequality, we have

‖u1,h̃(I h̃θ1)− ū2,H (I Hθ2)‖L2(ω0) ≤ ‖u1,h̃(I h̃θ1)−uε
1(θ1)‖L2(ω0)

+‖uε
1(θ1)−u0

2(θ2)‖L2(ω0)

+‖u0
2(θ2)− ū2,H (I Hθ2)‖L2(ω0)

≤C
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

Summarizing,

‖ur ec
2 (θ2)− ūr ec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C1H |u0
2|H 2(ω2)+C2ε

+ C3

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

The result of the Lemma follows.

Remark 6.10.8. The proof of Lemma 6.10.7, can be generalized for functions with non ho-

mogeneous boundary conditions. This can be done by splitting the solutions into a function

depending of the controls and a function independent of the controls. The proof follows the

same lines.

Lemma 6.10.9. Let ūr ec
2,H (θ2,H ) and ur ec

2,H (θ2,H ) be defined by (6.58) and (6.56), respectively. Then

‖ūr ec
2,H (θ2,H )−ur ec

2,H (θ2,H )‖H̄ 1(Ω\ω+) ≤C

(
h

ε

)
.

Proof. Follows from [3, Section 3.3.3].

6.11 Numerical experiments

In this section we present various numerical experiments to illustrate the convergence rates

and the performance of our coupling method. To facilitate the numerical comparison, we

assume that the meshes Th̃ and TH have the same finite elements in the overlap ω0. The

implementations can be adapted to the case where the meshes are not equal in ω0, using

interpolations between the two meshes. This is treated in Chapter 7.

Outline. In 6.11.1, we give the computational cost of the coupling method and the goal-

oriented method in terms of macro and micro numbers of degrees of freedom (DOF). In 6.11.2,

we assume that TH and Th̃ form a conform partition of the computational domain, and show

the influence of ε and τ in the convergence rates. In 6.11.4 and 6.11.5 we take an elliptic

problem with a crack and an elliptic problem with a singular source term, respectively. In

6.11.6, we consider a domain with a defect of size ε. We compare our coupling method with

other global to local methods.
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6.11.1 Computational costs of the methods

Here, we briefly comment the computational cost of the optimization based method and of

the global to local method [95]. Both methods use the FE-HMM (or DG-FE-HMM) and the

FEM.

Let N denote the total number of DOF of the initial triangulation over Ω, and Nmi c denote

the micro number of DOF to obtain the homogenized conductivity at the quadrature points

of the macro mesh. Further, Nω1 be the number of DOF of the fine triangulation in ω1, and

NΩ\ω1 , Nω2 be the number of DOF of the coarse triangulation over Ω \ω1 and ω2 = Ω\ω,

respectively.

For the classical global to local method, (DG-)FE-HMM provides us with a numerical ho-

mogenized solution uH , which is used as boundary condition on Γ1 and the total cost is

O (N ·Nmi c )+O (Nω1 ).

For the optimization based method, we start by computing the numerical solutions u1,0,h̃ and

u2,0,H , using FEM and (DG-)FE-HMM respectively. The cost is O (Nω1 ) for FEM and O (Nω2 ·
Nmi c ) for (DG-)FE-HMM. Then, we solve a saddle point problem with cost O (Nω1 +NΩ\ω1 ).

We note that the cost of the optimization based method can further be reduced, see Chapter 7

and [15].

6.11.2 Influence of ε and τ in the convergence rates

In here, we conduct two experiments to see the influence of ε and τ in the convergence rates

between the fine scale solution and the numerical solution obtained by the coupling. We

consider an elliptic problem in Ω= [0,1]2 with homogeneous Dirichlet boundary values and a

right-hand side f ≡ 1. Further ω has width 1/8 and is centred around [1/2,1/2].

In ω, we take a highly heterogeneous non-periodic tensor with oscillations at several non

separated scales denoted by aε
1(x1, x2) and, in Ω \ω, we take a tensor with scale separation

denoted by aε
2(x1, x2) and with a locally periodic structure. At first, we take a tensor aε

2 which is

locally Y -periodic in the fast variable with period ε. The a priori error analysis for the FE-HMM

with periodic tensors is well known and was used in the a priori error analysis of our coupling

method given in Section 6.10. The analysis of the FE-HMM with general tensors with scale

separation, has not yet been derived and the modeling error remains unknown. We thus

test our coupling method to a problem where the tensor aε
2 has scale separation but is not

locally periodic in Y . We expect the presence of a modeling error due to the wrong boundary

conditions used in the micro problems.

Infuence of ε. We assume that the union of the meshes TH and Th̃ forms a conform partition

of Ω, with large FE in Ω\ω1 and fine FE in ω, as illustrated in Figure 6.5a. We take different

values of ε and see the influence of the locally periodic wavelength in the coupling strategy.

We conduct the experiments for two tensors, see Figures 6.6a and 6.6b.
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H

(a)

H
(b)

Figure 6.5 – Conform partitions over Ω for (a) τ= 1/8, and (b) τ= 3/16 with ω (in dark blue),
ω0 (in light blue), and Ω\ω1 (in light green).

Example 1. Let aε(x1, x2) be given by

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos

(⌊
8

(
i x2− x1

i +1

)⌋
+#150i x1$+#150x2$

)

aε
2(x1, x2) =

(
2.1+cos(2πx1/ε)cos(2πx2/ε)+ sin(4x2

1 x2
2)

)
I .

Example 2. Let aε(x1, x2) be given by

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos

(⌊
8

(
i x2− x1

i +1

)⌋
+#150i x1$+#150x2$

)

aε
2(x1, x2) = 1

6

(
1.1+ sin(2π(x1/ε)(x2/ε))

1.1+ sin(2πx2/ε)
+ sin(4x2

1 x2
2)+2

)
I .

The second tensor is locally periodic with period ε but not periodic in Y . Boundary layers are

expected in the micro problems due to the wrong boundary conditions. With this tensor, we

are able to test our coupling method to a problem with tensors with scale separation. In Figure

6.7, we illustrate the structure of the Y -periodic tensor sin(2πy1) and the tensor sin(2πy1 y2),

in the reference cell Y .

Consider an initial number of DOF per wavelength of Nε = 3, with ε= 1/8,1/12, and ε= 3/16,

and refine the partition uniformly. The reference fine scale solution is obtained by the FEM

over a very fine mesh. We use collocation in the tensors to the quadrature points. The mesh is

uniformly refined and we expect the convergence rates to reach a threshold value depending

on ε. As the tensor in the second example in not locally periodic, we expect a modeling error

different than zero, whereas in the first example the modeling error is zero. In Figure 6.8a for

the tensor of Example 1, and in Figure 6.8b, for the tensor of Example 2, we see the H 1 norm
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Chapter 6. Optimization based coupling method

(a) (b)

Figure 6.6 – Tensors with coefficients with and without scale separation for (a) the example 1,
and (b) the example 2.

(a) (b)

Figure 6.7 – (a) tensor sin(2πy1) and (b) tensor sin(2πy1 y2) in the unit domain Y .
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Figure 6.8 – H 1 error for different values of ε for the coupling with the tensor of Example 1(a)
and Example 2(b).

between the reference solution and the numerical solution of the coupling, using P 1 macro

and micro FE. The rates are similar for the three values of ε and they become smaller when ε

is decreased. In Figure 6.8b, the saturation in the errors in ω is more pronounced due to the

presence of a modeling error.

Influence of τ. We start by considering the tensor of Example 1 with an initial mesh size of

H = 1/16, and set ε = 1/4. Then we compute a numerical coupling solution for different

values of τ and plot the H 1 error between the fine scale solution uε and the numerical solution

in ω. As not modeling error is present, we take a larger value of ε to enhance the effect of

τ in the error between the reference solution uε and the numerical coupling solution in ω.

We fix the number of DOF of the initial mesh and uniformly refine all elements. The initial

mesh is represented in Figure 6.5b. This refinement is not optimal as the fine micro problems

are resolved around each macro quadrature points, leading to a computationally expensive

method. For τ= 1/16,1/8,3/16, and τ= 1/4, the errors are plotted in Figure 6.9a. We see that

when τ is made smaller, then the error deteriorates.

We then consider the tensor of Example 2 with an initial mesh size of H = 1/16, and set ε= 1/10.

For τ= 1/16,1/8,3/16, and τ= 1/4, the errors are plotted in Figure 6.9b. The convergence rate

deteriorates when τ goes to zero, as expected from the Caccioppoli constant. The effect of τ

on the convergence rates is enhanced due to the presence of the modeling error.
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Figure 6.9 – H 1 error between the fine scale solution and the numerical coupling solution for
different values of τ, using the tensors of (a) the Example 1 and (b) the Example 2.

6.11.3 Influence of micro HMM error

Consider an elliptic problem with aε given by

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos

(⌊
8

(
i x2− x1

i +1

)⌋
+#150i x1$+#150x2$

)

aε
2(x1, x2) =

(
2.1+cos(2πx1/ε)cos(2πx2/ε)+ sin(4x2

1 x2
2)

)
I .

Let ε= 1/20, xc = [1/2,1/2] be the center of Ω, and set ω= xc +1/16[−1,1]d , τ= 1/16, h̃ = 1/16

and H = 1/3. We use collocation and periodic coupling with δ= ε, leading to zero modeling

error. We refine the mesh uniformly and compute the error rates for h/ε= 1/4,1/8,1/16, and

1/32. In Figures 6.10a and 6.10b, we plot the H 1 and L2 errors, respectively. We see that the

error rates reach a threshold value depending on h and ε. As ε is fixed, we can see that the

error, for different values of h, is made smaller until ε is bigger and dominates the errors.

6.11.4 A domain with a crack

Consider an elliptic boundary value problem in Ω= [0,1]2,

−div(aε(x)∇u)= 0, in Ω,

with Dirichlet boundary condition u =ϕ on Γ, where ϕ ∈ [0,2π] is the angle measured coun-

terclockwise from the axis {(x,0.5) : x ≥ 0}. We add free Neumann boundary condition on the

crack {x ∈Ω : x1 ≥ 0, x2 = 0.5}. The homogenization model might not be accurate around the

crack. A mesh refinement of the coarse model around the crack may lead to coarse meshes

with mesh size smaller than ε, hence it requires more work around the crack than the FEM
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Figure 6.10 – (a) H 1 error and (b) L2 error between the fine scale solution and the numerical
coupling solution for different values of h/ε.

with scale resolution. For the treatment of crack problem with the FE-HMM, we cite [18]. We

take a tensor aε — represented in Figure 6.11a for ε = 1/10 — with separation of scale and

locally periodic in Y ,

aε(x1, x2)=
(

1(
1.1+cos

(
2π x1

ε

))2 +
1(

1.1+cos
(
2π x2

ε

))2

)1/2

.

Let xc = [1/2,1/2] be the center of Ω, and let ω1 = xc + 1
15 [−1,1]2. The classical global to local

numerical solution is the approximation of the following problem;

−div(aε∇u)= f , in ω1,

u =u0, on Γ1,
(6.59)

where u0 is the homogenized solution. Recall that ω⊂ω1, and define ω= xc + 1
30 [−1,1]2. We

compute the numerical homogenized solution uH over Ω on the coarse initial mesh, and use

the value of uH as Dirichlet boundary condition on Γ1 and solve problem (6.59) with a fine

scale FEM.

We refine uniformly in ω1 and as the mesh size in ω should be small enough to capture

the microscopic scales of the problem, it would be prohibitive to compute the numerical

homogenized solution at each iteration. The coupling and the classical global to local method

are both performed on the same mesh, where the coarse mesh in Ω\ω1 is left unchanged. We

then compare the numerical solution with a reference solution obtained with a FEM on a very

fine mesh. The reference solution is shown in Figure 6.11d and the numerical optimization

based coupling solution in Figure 6.11c. We plot the H 1 semi-norm for the two methods in

Figure 6.11b. We see that the global to local method (in black) reaches a threshold value, as
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expected due to the use of the numerical homogenized function uH as Dirichlet data on Γ1.

(a)

10−3 10−2
10−2

10−1

h̃
‖∇

·‖
L

2
(ω

)

Optim.-based

Classical g.-l.

(b)

(c) (d)

Figure 6.11 – Crack experiment: (a) tensor for ε= 1/10, (b) H 1 semi-norm in ω, for the opti-
mization based coupling (bullet, red) and the classical coupling (square, black), (c) numerical
optimization-based solution, and (d) reference solution.

6.11.5 Singular source term

In this experiment, we consider an elliptic problem with a singular source term given by

random peaks. The tensor is assumed to have scale separation and is given by

aε(x)= 1

6

(
1.1+ sin

(
2π x1

ε
x2
ε

)
1.1+ sin

(
2π x2

ε

) + sin(4x2
1 x2

2)+2

)
.

Depending on the location of the random peaks, the numerical homogenized right-hand side

f 0 can be wrong, leading to an inaccurate approximation of u0. As in the crack experiments,

we compute a numerical approximation of u0 on a coarse initial mesh and then use it as

boundary condition on Γ1. In Figure 6.12a we show the tensor for ε= 1/25. Let xc = [1/2,1/2]
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(a) (b)

Figure 6.12 – Singular source term experiment: (a) tensor for ε= 1/25, (b) right hand side with
20 random peaks.

be the center of Ω, we set ω = xc + 1
12 [−1,1]2 and ω1 = xc + 1

4 [−1,1]2. In Figure 6.12b, we

illustrate the random source term f with 20 peaks. Figures 6.13a and 6.13b illustrate the

reference solution and the optimization based solutions with the fine scale solution in ω and

the coarse scale solution in Ω\ω. The H 1 error to the reference solution, for ε= 1/10 and 100

random peaks, is shown in Figure 6.14, for the classical global to local method (in black) and

the coupling (in red). While we observe a linear convergence rate for the optimization based

method as predicted by Theorem 6.7.4, we see that the classical coupling leads to saturation

in the error decay. This is due to inaccurate boundary conditions for the fine scale problems.

(a) (b)

Figure 6.13 – Singular source term experiment: (a) reference solution, (b) optimization based
numerical solution.

153



Chapter 6. Optimization based coupling method

10−3 10−2

10−2

10−1

h̃

‖∇
·‖

L
2
(ω

)
Optim.-based

Classical g.-l.

Figure 6.14 – Singular source term experiment: H 1 semi-norm in ω for the optimization based
coupling (bullet, red) and the classical coupling (square, black).

6.11.6 A domain with a defect

We consider a homogenization problem with a local perturbation in the tensor, treated in [31].

The PDE is

−div(aε∇uε)= f , in Ω,

uε = 0, on Γ,

where the tensor is of the form aε = aε
per (x)+bε(x), with aε

per (x) = aper (x, x/ε) is (locally)

periodic and bε ∈ L2(Ω)2 is a local perturbation of size ε. A numerical homogenized solution

uH can be obtained with FE-HMM and produces a good approximation of uε in the L2

norm. To obtain good approximation in the H 1 norm one needs to add correctors. However,

the usual periodic cell problems are not valid as aε is not periodic. One could compute the

periodic correctors corresponding to the tensor aε
per , and use them to correct the homogenized

solution. This will be a good approximation at the large scale but will fail at the fine scale close

to the defect. Following the approach in [31], a new corrector can be computed by adding a

term to the periodic correctors as follows. Let χ j ∈W 1
per (Y ) be the classical periodic correctors

that satisfy the cell problems

∫
Y

aε
per (x)∇χ j ·∇zdy =−

∫
Y

aε
per (x)e j∇zdy, ∀z ∈W 1

per (Y ).

Then, the additional term will be the solution of a Dirichlet boundary value problem in

Kn = [−nε,nε]2, where n is large enough so that the effect of the defect are negligible at the

boundary of Kn . The problem reads: find χ
j
b ∈H 1

0 (Kn)

∫
Kn

aε(x)∇χ j
b ·∇zdx =−

∫
Kn

bε(x)(e j +∇χ j ) ·∇zdx, ∀z ∈H 1
0 (Kn).

One can extend χ j periodically to Kn and obtain a corrector χ̃ j (x)=χ j (x)+χ
j
b(x) for all x ∈Kn .
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In this numerical example, we compute the FE-HMM solution and add to it either the periodic

correctors χ or the modified correctors χ̃. We then compare these two solutions with the

optimization based solution presented in this paper. We will take similar oscillatory data as

given in [31, Section 4.]. Let Ω= [−1,1]2 and define

aε
per (x1, x2)= 3+cos

(
2π

x1

ε

)
+ sin

(
2π

x2

ε

)
,

bε(x1, x2)= 10exp

(
−
(

x2
1

ε2 +
x2

2

ε2

))
,

f (x1, x2)= sin(πx1)cos(πx2).

We use a uniform triangular mesh and compute a reference solution on a very fine mesh. We

compute the periodic correctors on Th(Y ) and extend it to [−nε,nε]2 where n is sufficiently

large. The terms χb are then computed on [−nε,nε]2 with Dirichlet boundary conditions

and adding them to χ, we obtain the non periodic correctors χ̃. In each macro element K

we defined a mesh Thr ec (K ), obtained by uniform refinement of K until the mesh size hr ec is

smaller or equal to h. The two reconstructed solutions read

uε,r ec
H (x)=uH (x)+

d∑
i=1

εχi ,h(x, x/ε)
∂uH (x)

∂xi
,

ũε,r ec
H (x)=uH (x)+

d∑
i=1

εχ̃i ,h(x, x/ε)
∂uH (x)

∂xi
,

where both correctors are defined on [−nε,nε]2 with mesh size h and interpolated to ThK (K ).

In the coupling method, the fine scale region ω1 will be centered around the defect, as its size

is ε, we set ω= [−1/4,1/4]2 and ω1 = [−1/2,1/2]2. The mesh size in ω1 is equal to hr ec and the

mesh size in the coarse region Ω\ω1 is H . We recall that the fine scale reference solution is

given by

ūh̃H =
⎧⎨
⎩u1,h̃ , in ω+,

ur ec
2,H , in Ω\ω+,

where we have chosen ω+ = [−3/8,3/8]2. We compute the error between the reference solution

and the numerical solutions uε,r ec
H , ũε,r ec

H , and ūh̃H in ω1 and in [−ε,ε]2. We first take ε= 1/5,

H = 1/16 and a micro degree of freedom of Nmi cr o = 1
322 .

We look at the relative error between the reference solution and the reconstructed solution

uε,r ec
H (resp. ũε,r ec

H ) for the periodic correctors (resp. non periodic),

‖∇(uε−uε,r ec
H )‖L2(ω1)

‖∇uε‖L2(ω1)
.

As expected (see e.g. [31]), the errors with the two reconstructed solutions are similar in the far

field, and one should look at the error around the defects to see the advantage of the correctors

χ̃. In Table 6.1, we see the relative errors for the three methods for ε= 1/5 and ε= 1/10. In
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Chapter 6. Optimization based coupling method

Method Rel. error in ω1 Rel. error in [−ε,ε]2

ε= 1/5

periodic correctors 0.436 1.589

non-periodic correctors 0.396 0.992

optimization based coupling 0.119 0.030

ε= 1/10

periodic correctors 0.281 1.076

non-periodic correctors 0.260 0.720

optimization based coupling 0.039 0.006

Table 6.1 – Relative error in ω1 and [−ε,ε]2, with ε= 1/5 and ε= 1/10, between the reference
solution and the periodic, non-periodic reconstructed solution, and for the optimization
based solution.

(a) (b) (c)

Figure 6.15 – Error in ω1 between the reference solution and the numerical fine scale solution
obtained with periodic correctors (a), non periodic correctors (b), and by the coupling (c).

Figure 6.15, we display the error in ω1 between the reference solution and the numerical fine

scale solutions obtained with the periodic correctors 6.15a, non-periodic correctors 6.15b, and

the optimization based method 6.15c. While the errors between the periodic and non-periodic

methods are similar in ω1, the difference is more important in [−ε,ε]2, near the defect. There

is however a significant improvement when the optimization based coupling method is used.

This is to be expected as a fine scale solver is used in ω1 and is coupled with a coarse scale

solver. The strength of the method is that it produces a good H 1 approximation of the fine

scale solution on Ω, but allows for a large mesh size H in Ω \ω1. We note that in [31], the

same macro and micro number of degrees of freedom were used, with macro mesh size of

1/1000 leading to a smaller discretization error and a larger difference between the periodic

correctors and the non-periodic correctors. Setting H to such a small value is not necessary

in our experiments as we only need a fine mesh in ω1 and want to take full advantage of the

homogenization techniques in the region with scale separation.

156



6.12. Summary

6.12 Summary

In this chapter, we gave the fully discrete optimization based coupling method , using the FEM

for the fine scale region and the DG-FE-HMM in the coarse scale region. To find the numerical

solution of the coupling, we derived an optimality system using Lagrange multipliers. The

system is written as a saddle point problem, and its well-posedness can be proved using

discrete Caccioppoli inequalities and a discrete strong Cauchy–Schwarz inequality. Fully

discrete a priori error analysis and error estimates are given; i.e.,

‖uε− ūh̃H‖H̄ 1(ω+) ≤C1h̃s |uε|H s+1(ω1)+
C2

τ−τ+
(
h̃s+1|uε|H s+1(ω1)+ε+eHMM,L2

)
,

‖uε− ūh̃H‖H̄ 1(Ω\ω+) ≤C1ε
1/2+C2

(
h

ε

)
+C3H |u0

2|H 2(ω2)

+ C4

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

This chapter ends with numerical experiments. We verified that the method gives a good

approximation of the fine scale solution in the region ω and compare our method with other

global to local methods.
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7 Improvement of meshing and cou-
pling strategy

In this chapter, we present numerical improvements to our optimization based method

derived in Chapter 6. We propose two numerical improvements to decrease the cost and

computational time of the method, which do not affect the global efficiency of the method.

This chapter is based on the article [15].

Let uε be the heterogeneous solution of

−div(aε(x)∇uε)= f , in Ω, (7.1)

with some boundary conditions on Γ, and where the tensor aε ∈ (L∞(Ω))d×d is highly oscil-

latory, bounded, and uniformly elliptic (6.2) with constants 0< λ≤Λ<+∞. Let ω⊂Ω be a

region without scale separation and ω0 be the overlapping region. Assume that the boundaries

Γ1 = ∂ω1 \Γ and Γ2 = ∂ω2 \Γ are Lipschitz continuous boundaries; Figure 7.1 shows a possible

domain decomposition with Γ1 (red) and Γ2 (black) enhanced. The heterogeneous tensor

aε of problem (7.1) is decomposed into aε = aε
ω+ aε

2, where aε
2 = aε1ω2 and aε

ω = aε1ω are

tensors with and without scale separation, respectively. The tensor aε
2 H-converges towards a

homogenized tensor a0
2 [90].

Outline. In Section 7.1, we start by deriving the coupling strategy for a new cost function

that allows a reduction of the number of degrees of freedom. In Section 7.2, we state the

discrete coupling method used in the numerics, give the algorithm and recall the a priori error

estimates for the method. In Section 7.3 we give different meshing strategies and, finally, in

Section 7.4, we propose various numerical examples that compare the coupling derived in

Chapter 6 with the two novelties of this chapter; i.e,

- a cost function over the boundary Γ1∪Γ2 of the overlapping region;

- considering an interpolation between the fine and coarse meshes in the overlapping

region.

The numerical experiments show that the total number of degrees of freedom and the cost of

the method are reduced without affecting the efficiency of the method.
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Chapter 7. Improvement of meshing and coupling strategy

Γ2

Ω

Γ1

Γ

ω1

ω2

Figure 7.1 – Illustration of a domain decomposition with Γ1 (red) and Γ2 (black) enhanced,
and where ω is in blue (full) and ω0 in orange (hatched).

7.1 Optimization based coupling with minimization on Γ1∪Γ2

The optimization coupling method is based on the minimization of a cost involving the

solutions of two partial differential equations over ω1 and ω2. The heterogeneous control

method restricted to Dirichlet boundary controls is given by the following problem: find

uε
1 ∈H 1(ω1) and u0

2 ∈H 1(ω2), such that the cost functional

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(Γ1∪Γ2) (7.2)

is minimized under the following constraints, for i = 1,2,

−div(ai (x)∇ui )= f , in ωi ,

ui = θi , on Γi ,

ui = gD , on ∂ωi ∩ΓD ,

n · (ai (x)∇ui )= gN , on ∂ωi ∩ΓN ,

(7.3)

where the boundary conditions θi , called the virtual controls, are to be determined. We will

often use ui to denote ui (θi ) and we set a1 = aε1ω1 , u1 = uε
1, and u2 = u0

2. The strategy is to

solve a minimization problem in the space of admissible controls, and as Dirichlet controls

are considered, the space of admissible (Dirichlet) controls is

U D
i = {μi ∈H 1/2(Γi ) | ∃u ∈H 1(ωi ),u|Γi =μi , in the sense of the trace}.

For a discussion about admissible spaces and optimal controls, we refer to [85] and Sections

6.2 and 6.3. Again, we split the solutions uε
1 and u0

2 into

uε
1(θ1)=uε

1,0+ vε
1(θ1), u0

2(θ2)= u0
2,0+ v0

2(θ2),
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7.1. Optimization based coupling with minimization on Γ1∪Γ2

where (vε
1(θ1), v0

2(θ2)) are called the state variables and satisfy, for i = 1,2,

−div(ai (x)∇vi )= 0, in ωi ,

vi = θi , on Γi ,

vi = 0, on ∂ωi ∩ΓD ,

n · (ai (x)∇vi )= 0, on ∂ωi ∩ΓN ,

(7.4)

where v1 = vε
1, and v2 = v0

2. The functions ui ,0 are solutions of problem (7.3) with zero controls

on Γi , for i = 1,2. We define a Hilbert space for the solutions vi ,

H 1
D (ωi )= {wi ∈H 1(ωi ) |wi = 0 on ∂ωi ∪ΓD , in the sense of the trace}.

The solutions uε
1,0 and u0

2,0 exist and are unique, thanks to the Lax–Milgram lemma, and the

solutions vε
1 and v0

2 can be uniquely determined if the controls θ1 and θ2 are known. As uε
1,0

and u0
2,0 are independent of the virtual controls (θ1,θ2), they can be computed beforehand.

The well-posedness of the optimization problem is proved following Lions [85] and Section 6.9.

The key point consists in proving that the cost function induces a norm over U = (U D
1 ,U D

2 ).

One consider then the completion of U (still denoted by U ) with respect to the cost induced

norm, and the minimization problem admits a unique solution (θ1,θ2) ∈U satisfying the

Euler–Lagrange formulation; i.e.,

∫
Γ1∪Γ2

(vε
1(θ1)− v0

2(θ2))(vε
1(μ1)− v0

2(μ2))ds =−
∫
Γ1∪Γ2

(vε
1(μ1)− v0

2(μ2))(uε
1,0−u0

2,0)ds, (7.5)

for all (μ1,μ2) ∈U .

From the homogenization theory (H-convergence), we consider a family of problems (7.1)

indexed by ε. In what follows, we will often assume ε≤ ε0, where ε0 is a parameter used in the

strong Cauchy–Schwarz inequality, Lemma 6.3.3. We assume that θi ∈U D
i and hence ui (θi ) is

in H 1(ωi ), for i = 1,2.

We write the cost in terms of the state variables vε
1 and v0

2; i.e.,

J (θ1,θ2)= 1

2
‖vε

1(θ1)− v0
2(θ2)‖2

L2(Γ1∪Γ2)+‖(vε
1(θ1)− v0

2(θ2))(uε
1,0−u0

2,0)‖2
L2(Γ1∪Γ2)

+ 1

2
‖uε

1,0−u0
2,0‖2

L2(Γ1∪Γ2),

and set

π((θ1,θ2), (μ1,μ2))=
∫
Γ1∪Γ2

(vε
1(θ1)− v0

2(θ2))(vε
1(μ1)− v0

2(μ2))ds. (7.6)
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Chapter 7. Improvement of meshing and coupling strategy

The following Lemma proves that the form π is a scalar product over the space U .

Lemma 7.1.1. The bilinear form π given in (7.6) is a scalar product over U .

Proof. The symmetry and positivity are clear, and it remains to prove that the form is positive

definite; π(θ1,θ2)= 0 if and only if θ1 = 0 and θ2 = 0. We use the short-hand notation π(θ1,θ2)

to denote π((θ1,θ2), (θ1,θ2)).

Assuming that θ1 and θ2 are zero, the state variables vε
1 and v0

2 are solutions of boundary value

problems with zero data, thus vε
1 and v0

2 are zero over ω1 and ω2 respectively. This leads to

π(θ1,θ2)= 0.

Assume now that π(θ1,θ2)= 0. It holds that∫
Γ1∪Γ2

(vε
1(θ1)− v0

2(θ2))2ds =
∫
Γ1

(θ1− v0
2(θ2))2ds+

∫
Γ2

(vε
1(θ1)−θ2)2ds = 0,

and ∫
Γ1

(θ1− v0
2(θ2))2ds = 0,

∫
Γ2

(vε
1(θ1)−θ2)2ds = 0.

This implies that vε
1(θ1)|Γ1 = θ1 = v0

2(θ2)|Γ1 a.e., and v0
2(θ2)|Γ2 = θ2 = vε

1|Γ2 (θ1) a.e. As vε
1 and v0

2

are H 1 functions on ω1 and ω2 respectively, we obtain

‖θ1− v0
2(θ2)‖H 1/2(Γ1) = 0, and ‖vε

1(θ1)−θ2‖H 1/2(Γ2) = 0.

We now use H-convergence on the tensor aε
1, to obtain a homogenized tensor a0

1 in ω1. It

holds that vε
1 converges weakly in H 1 towards v0

1 the homogenized solution of

−div(a0
1(x)∇v0

1)= 0, in ω1,

v0
1 = θ1, on Γ1,

v0
1 = 0, on ∂ω1∩ΓD ,

n · (a0
1(x)∇v0

1)= 0, on ∂ω1∩ΓN .

Using the compact embedding of L2 in H 1, the solution vε
1 converges strongly, up to a subse-

quence, towards v0
1 in L2, and it holds that

‖v0
1 − v0

2‖L2(Γ1∪Γ2) = lim
ε→0

‖vε
1− v0

2‖L2(Γ1∪Γ2) = 0,

hence v0
1 |Γ2 = θ2 = v0

2 |Γ2 . Consequently it holds

‖v0
1 − v0

2‖H 1/2(Γ1∪Γ2) = 0
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Using the strong Cauchy–Schwarz lemma, Lemma 6.3.3, we obtain

‖v0
1 − v0

2‖2
H 1(ω0) ≥ ‖v0

1 − v0
2‖2

L2(ω0)

≥ (1−Cs)(‖v0
1‖2

L2(ω0)+‖v0
2‖2

L2(ω0)),

where Cs < 1 is the strong Cauchy-Schwarz constant. The tensor a0
2 and a0

1 are equal in the

overlapping region ω0, due to the locality of H-convergence, the difference v0
1 − v0

2 satisfies

−div(a0
2∇(v0

1 − v0
2))= 0, in ω0,

and one can bound the H 1 norm over ω0 by the H 1/2 norm over its boundary Γ1∪Γ2; i.e.,

‖v0
1 − v0

2‖H 1(ω0) ≤C‖v0
1 − v0

2‖H 1/2(Γ1∪Γ2) = 0.

Collecting the results lead to v0
1 = 0 and v0

2 = 0 a.e. in ω0. Further from the Caccioppoli

inequality, Lemma 6.3.2, it holds v0
1 = 0 a.e. in ω1 and v0

2 = 0 a.e. in ω2. We can conclude that

θi = 0 a.e. in Γi , i = 1,2, by using the trace inequality; i.e.,

‖θi‖H 1/2(Γi ) ≤C‖v0
i ‖H 1(ωi ) = 0.

The norm induced from the scalar product π is given by

‖(μ1,μ2)‖L∗(U ) :=
(∫

Γ1∪Γ2

(vε
1(μ1)− v0

2(μ2))2ds

)1/2

, ∀(μ1,μ2) ∈U . (7.7)

7.1.1 A priori error analysis

Let uε be the solution of the heterogeneous problem (7.1), and let us derive a priori error

bounds between uε and the solution of the coupling

ū =
⎧⎨
⎩uε

1(θ1), in ω+,

ur ec
2 (θ2), in Ω\ω+,

(7.8)

where ur ec
2 is the reconstructed homogenized solution u0

2 with periodic correctors, and ω+ is

a subdomain of Ω such that ω⊂ω+ ⊂ω1. The term ur ec
2 is given by

ur ec
2 (x)=u0

2(x)+ε
d∑

j=1
χ j (x, x/ε)

∂u0
2(x)

∂x j
, x ∈Ω\ω+,

where u0
2 =u0

2(θ2).
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Chapter 7. Improvement of meshing and coupling strategy

For ε fixed, we define u0 as the solution of

−div(a0
2(x)∇u0)= f , in ω2,

u0 = γ2(uε), on Γ2,

u0 = gD , on ∂ω2∩ΓD ,

n · (a0
2(x)∇u0)= gN , on ∂ω2∩ΓN ,

(7.9)

where γ2 : H 1(ω2)→H 1/2(Γ2) denotes the trace operator on Γ2. Similarly, we define the trace

operator γ1 on Γ1. Assuming that the tensor aε
2 is periodic in the fast variable, i.e., aε

2(x) =
a2(x, x/ε)= a2(x, y) is Y -periodic in y , where Y = (0,1)d , explicit equations are available to

compute the homogenized tensor a0
2

a0
2(x)= 1

|Y |
∫

Y
a2(x, y)

(
I +∇χ)dy,

where ∇χ = (∇χ1, . . . ,∇χd ) and I is the d ×d identity matrix. The functions χ j ∈ W 1
per (Y )

are called the first order correctors and, for j = 1, . . . ,d , χ j is the unique solution of the cell

problem ∫
Y

a2(x, y)∇χ j ·∇zdy =−
∫

Y
a2(x, y)e j∇zdy, ∀z ∈W 1

per (Y ),

with periodic boundary conditions, and where (ei )d
i=1 denotes the canonical basis of Rd .

Assuming sufficient regularity on u0 and on χ j , it can be proved that

‖uε−u0‖L2(ω2) ≤Cε, (7.10)

where the constant is independent of ε. For proofs, we refer to [30, 80, 89].

Estimates for the fine solution

Let us define an operator P : U →H 1(ω1)×H 1(Ω\ω1) such that

P (μ1,μ2) "→
⎧⎨
⎩uε

1(μ1), in ω1,

u0
2(μ2), in Ω\ω1.

It can be split into P =Q+U0, where Q : U →H 1(ω1)×H 1(Ω\ω1) is defined by

Q(μ1,μ2) "→
⎧⎨
⎩vε

1(μ1), in ω1,

v0
2(μ2), in Ω\ω1,

where the state variables vε
1 and v0

2 are solutions of (7.4) for i = 1,2 respectively, and where U0

is given by

U0 =
⎧⎨
⎩uε

1,0, in ω1,

u0
2,0, in Ω\ω1.
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In the a priori error analysis conducted, in Section 6.5, with a cost functional over ω0, it has

been shown in that the operator Q is bounded in the operator norm, i.e.,

‖Q‖ := sup
(μ1,μ2)∈U

‖Q(μ1,μ2)‖L2(Ω)

‖(μ1,μ2)‖L∗(U )
≤C .

Here we assume that Q is bounded for the norm in U induced by the scalar product (7.7) for

the cost function of (7.2).

Theorem 7.1.2. Let uε be the solution of (7.1) and ū be given by (7.8). Assume that u0 and χ j

are smooth enough for (7.10) to hold, and that ‖Q‖ ≤C . Then we have

‖uε− ū‖H 1(ω+) ≤Cε,

where the constant C depends on the constant of the Caccioppoli inequality, the bound ‖Q‖,

and the trace constants associated to the trace operators γ1 and γ2 on Γ1 and Γ2, respectively.

The proof of Theorem 7.1.2 follows closely the proof for minimization problem with the cost

functional over ω0 given in Chapter 6.

Proof of Theorem 7.1.2. The difference uε−ū is aε
1-harmonic in ω1, thus Caccioppoli inequality,

Lemma 5.1.1, can be applied,

‖uε− ū‖H 1(ω+) ≤C
1

τ
‖uε− ū‖L2(ω1)

=C
1

τ
‖P (γ1(uε),γ2(uε))−P (θ1,θ2)‖L2(ω1) (7.11)

≤ C

τ
‖Q‖‖(γ1(uε),γ2(uε))− (θ1,θ2)‖L∗(U ).

We next need to bound ‖(γ1(uε),γ2(uε))− (θ1,θ2)‖L∗(U ).

Lemma 7.1.3. Let uε and u0 solve (7.1) and (7.9) respectively, and let (θ1,θ2) ∈U be the optimal

virtual controls. Then

‖(γ1(uε),γ2(uε)
)− (θ1,θ2)‖L∗(U ) ≤ ‖uε−u0‖L2(Γ1∪Γ2).

Proof. From the definition, it holds

‖(γ1(uε),γ2(uε)
)− (θ1,θ2)‖L∗(U ) =

sup
(μ1,μ2)∈U

|π((γ1(uε),γ2(uε)), (μ1,μ2)
)−π

(
(θ1,θ2), (μ1,μ2)

)|
‖(μ1,μ2)‖L∗(U )

.

We look at the numerator. As the pair (θ1,θ2) minimizes the cost function J , the Euler–Lagrange
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formulation (7.5) holds and

π
(
(γ1(uε),γ2(uε)), (μ1,μ2)

)−π((θ1,θ2), (μ1,μ2))=
=
∫
Γ1∪Γ2

(vε
1(γ1(uε))− v0

2(γ2(uε)))(vε
1(μ1)− v0

2(μ2))ds

+
∫
Γ1∪Γ2

(vε
1(μ1)− v0

2(μ2))(uε
1,0−u0

2,0)ds

=
∫
Γ1∪Γ2

((vε
1(γ1(uε))+uε

1,0)− (v0
2(γ2(uε))+u0

2,0))(vε
1(μ1)− v0

2(μ2))ds

=
∫
Γ1∪Γ2

(uε−u0)
(
vε

1(μ1)− v0
2(μ2)

)
ds ≤ ‖uε−u0‖L2(Γ1∪Γ2)‖(μ1,μ2)‖L∗(U ).

The result follows.

We obtain

‖uε− ū‖H 1(ω+) ≤
C

τ
‖Q‖‖uε−u0‖L2(Γ1∪Γ2).

The next Lemma gives an upper bound to the norm in Lemma 7.1.3.

Lemma 7.1.4. Let uε and u0 be the solutions of (7.1) and (7.9) respectively. Assume that u0

and χ j have enough regularity for (7.10) to hold. Then

‖uε−u0‖L2(Γ1∪Γ2) ≤Cε,

where the constant C is independent of ε.

Proof. It holds

‖uε−u0‖L2(Γ1∪Γ2) ≤ ‖uε−u0‖L2(Γ1)+‖uε−u0‖L2(Γ2).

Using the continuity of the traces, the first term can be bounded by

‖uε−u0‖L2(Γ1) ≤C‖uε−u0‖L2(ω2) ≤Cε,

whereas the second term is zero because u0|Γ2 = γ2(uε)=uε|Γ2 . This prove the result.

The proof of Theorem 7.1.2 follows from (7.11), Lemmas 7.1.3, and 7.1.4.

Estimates for the coarse scale solution

The a priori error estimates to the coarse scale solver follows from Section 6.5 using Lemma

7.1.4. We skip the details, and state the result.
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Theorem 7.1.5. Let uε be the solution of (7.1) and ur ec
2 (θ2) be given by (6.25). Let a2(x, y) ∈

C (ω2;L∞per (Y )) and χ j ∈Wper(Y ), j = 1, . . . ,d. If in addition, uε ∈H 2(Ω), u0
2(θ2) ∈H 2(ω2), and

χ j ∈W 1,∞(Y ), j = 1, . . . ,d, it holds

‖uε−ur ec
2 (θ2)‖H 1(Ω\ω+) ≤Cε1/2,

where the constant C is independent of ε, but depends on τ, τ+, and the ellipticity constants of

aε
2.

7.2 Fully discrete coupling method

In this section, we describe the fully discrete overlapping coupling method, and perform an a

priori error analysis for the minimization problem with the cost function (7.2). The discrete

optimization based method couples a fine scale solver over ω1 (FEM) with a coarse scale solver

over ω2 (FE-HMM or DG-FE-HMM). The fine scale solver over ω1 requires a partition of size h̃

sufficiently small to resolve the multiscale nature of the tensor. In contrast, the coarse scale

solver on ω2 takes full advantage of the scale separation and allows for a mesh size larger than

the fine scale.

As the finite elements of the fine and coarse meshes in ω0 are different, an interpolation

between the two meshes should be considered. One can also chose to use the same finite

elements in the overlap, leading to a discontinuity at Γ1 in the mesh over ω2. In that latter

situation, the discontinuous Galerkin FE-HMM [5] should be used instead of the FE-HMM.

In what follows, we consider for simplicity the problem (7.1) with homogeneous Dirichlet

boundary conditions, i.e., we set gD = 0 and ΓN = �. Further, we assume that the strong

Cauchy–Schwarz lemma, Lemma 6.3.3, and its discrete version, Lemma 6.8.4, hold.

7.2.1 Numerical method for the fine scale problem.

Let Th̃ be a partition of ω1, in simplicial or quadrilateral elements, with mesh size h̃ � ε where

h̃ =maxK∈Th̃
hK , and hK is the diameter of the element K . In addition, we suppose that the

family of partitions {Th̃} is admissible (T1) and shape-regular (T2). For each partition Th̃ of

the family {Th̃}, we define a FE space in ω1

V p
D (ω1,Th̃)= {w ∈H 1

D (ω1) |w|K ∈Rp (K ), ∀K ∈Th̃}.

Further, V p
0 (ω1,Th̃) denotes the space of functions in V p

D (ω1,Th̃) that vanish on ∂ω1.

Let u1,h̃ be the numerical approximation of uε
1 satisfying problem (7.3) for i = 1. We can split

u1,h̃ into u1,h̃ = u1,0,h̃ + v1,h̃ , where v1,h̃ ∈V p
D (ω1,Th̃) is obtained by the optimization method
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and u1,0,h̃ ∈V p
0 (ω1,Th̃) satisfies

B1(u1,0,h̃ , w1,h̃)=
∫
ω1

a1∇u1,0,h̃ ·∇w1,h̃dx = F1(w1,h̃), ∀w1,h̃ ∈V p
0 (ω1,Th̃),

where F1 is given by

F1(w1,h̃)=
∫
ω1

f w1,h̃dx.

Thanks to the Poincaré inequality, the coercivity and boundedness of the bilinear form B1 can

be proved; the existence and uniqueness of u1,0,h̃ follows.

7.2.2 Numerical method for the coarse scale problem.

Let {TH } be a family of admissible (T1) and shape-regular (T2) partitions of ω2, with mesh size

H =maxK∈TH hK . For each partition TH of the family {TH }, we define a FE space over ω2

V p
D (ω2,TH )= {v ∈H 1

D (ω2) |w|K ∈Rp (K ), ∀K ∈TH },

and use V p
0 (ω2,TH ) to denote the set of functions of V p

D (ω2,TH ) that vanish over ∂ω2.

We consider a macroscopic quadrature formula is given by the pair {x j ,K ,ω j ,K } of quadrature

nodes x j ,K and weights ω j ,K , for j = 1, . . . , J . The sampling domain of size δ around each

quadrature point is denoted by Kδ j = x j ,K +δ[−1/2,1/2]d . We assume that the quadrature

formula verifies the necessary assumptions to guarantee that the standard error estimates for

a FEM hold, see Section 2.1.

The numerically homogenized tensor a0,h
2 (x j ,K ) is obtained using numerical solutions of

micro problems defined in Kδ j . In each sampling domain, we consider a partition Th in

simplicial or quadrilateral elements K with mesh size h =maxK∈Th hK satisfying h ≤ ε. The

micro FE space is

V q (Kδ j ,Th)= {w h ∈W (Kδ j ) |wh
|K ∈Rq (K ), ∀K ∈Th},

where the space W (Kδ j ) depends on the boundary conditions (2.21) or (2.22). The discrete

micro problems read: find ψi ,h
Kδ j

∈V q (Kδ j ,Th), i = 1, . . . ,d , the solution of

∫
Kδ j

aε
2(x)∇ψi ,h

Kδ j
·∇zhdx =−

∫
Kδ j

aε
2(x)ei∇zhdx, ∀zh ∈ S1(Kδ j ,Th).

The numerical homogenized solution u2,H is split into u2,H = u2,0,H + v2,H , where v2,H ∈
V p

D (ω2,TH ) is given by the coupling and u2,0,H ∈V p
0 (ω2,TH ) is the solution off

B2,H (u2,0,H , w2,H )= F2(w2,H ), ∀w2,H ∈V p
0 (ω2,TH ),
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where B2,H (·, ·) : V p
D (ω2,TH )×V p

D (ω2,TH )→R is given by

B2,H (v2,H , w2,H )= ∑
K∈TH

J∑
j=1

ω j ,K a0,h
2 (x j ,K )∇v2,H (x j ,K ) ·∇w2,H (x j ,K ),

and F2 : V p
D (ω2,TH )→R given by

F2(w2,H )=
∫
ω2

f w2,H dx.

7.2.3 Numerical Algorithm

In here, we state the discrete coupling and state the main convergence results. The well-

posedness and the proofs of the error estimates follow from Section 6.10 and Section 7.1.

The solution (u1,h̃ ,u2,H ) ∈V p
D (ω1,Th̃)×V p

D (ω2,TH ) satisfies

min
μ1,h̃ ,μ2,H

1

2
‖u1,h̃(μ1,h̃)−u2,H (μ2,H )‖2

L2(Γ1∪Γ2) subject to

⎧⎨
⎩B1(u1,h̃ , w1,h̃) = F1(w1,h̃),

B2,H (u2,H , w2,H )= F2(w2,H ),

for all w1,h̃ ∈V p
0 (ω1,Th̃) and w2,H ∈V p

0 (ω2,TH ). We introduce discrete Lagrange multipliers

for each of the constraint, and obtain a discrete optimality system:

find (v1,h̃ ,λ1,h̃ , v2,H ,λ2,H ) ∈V p
D (ω1,Th̃)×V p

0 (ω1,Th̃)×V p
D (ω2,TH )×V p

0 (ω2,TH ) satisfying

∫
Γ1∪Γ2

(v1,h̃ − v2,H )w1,h̃ds−B1(w1,h̃ ,λ1,h̃)=−
∫
Γ1∪Γ2

(u1,0,h̃ −u2,0,H )w1,h̃ds, (7.12)

B1(v1,h̃ ,ξ1,h̃)= F1(ξ1,h̃)−B1(u1,0,h̃ ,ξ1,h̃), (7.13)∫
Γ1∪Γ2

(v2,H − v1,h̃)w2,H ds−B2,H (w2,H ,λ2,H )=
∫
Γ1∪Γ2

(u1,0,h̃ −u2,0,H )w2,H ds, (7.14)

B2,H (v2,H ,ξ2,H )= F2(ξ2,H )−B2,H (u2,0,H ,ξ2,H ), (7.15)

for all w1,h̃ ∈V p
D (ω1,Th̃), ξ1,h̃ ∈V p

0 (ω1,Th̃), w2,H ∈V p
D (ω2,TH ), and ξ2,H ∈V p

0 (ω2,TH ).

The optimality system (7.12) to (7.15) can be written in matrix form as

⎛
⎜⎝M −B�

B 0

⎞
⎟⎠U =G , (7.16)
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where the unknown vector U is given by U = (v1,h̃ , v2,H ,λ1,h̃ ,λ2,H )�, and

M({v1,h̃ , v2,H }, {w1,h̃ , w2,H })=

⎛
⎜⎝

∫
Γ1∪Γ2

v1,h̃ w1,h̃ds −∫Γ1∪Γ2
v2,H w1,h̃ds

−∫Γ1∪Γ2
v1,h̃ w2,H ds

∫
Γ1∪Γ2

v2,H w2,H ds

⎞
⎟⎠ ,

B({v1,h̃ , v2,H }, {λ1,h̃ ,λ2,H }) =

⎛
⎜⎝B1(v1,h̃ ,λ1,h̃) 0

0 B2,H (v2,H ,λ2,H )

⎞
⎟⎠ .

7.2.4 Fully discrete error estimates

The coupling solution, denoted by ūh̃H , is defined as

ūh̃H =
⎧⎨
⎩u1,h̃(θ1,h̃), in ω+,

ur ec
2,H (θ2,H ), in Ω\ω+,

(7.17)

where ur ec
2,H (θ2,H ) is a fine scale approximation obtained from the coarse scale solution of the

coupling, u2,H (θ2,H ), using a post-processing procedure in the following way. We assume that

aε
2 is Y -periodic in y and we restrict the FE spaces to piecewise FE spaces. Periodic coupling is

used with sampling domains Kε of size ε. The reconstructed solution ur ec
2,H (θ2,H ) is given by

ur ec
2,H (x)=u2,H (x)+

d∑
j=1

ψ
j ,h
Kε

(x)
∂u2,H

∂x j
(x), x ∈K ,

where ψ
j ,h
Kε

are the micro solutions of (6.32) in the sampling domain Kε. As the numerical

solutions might be discontinuous in ω2, we consider a broken H 1 semi-norm,

‖v‖2
H̄ 1(Ω)

:= ∑
K∈Th (ω+)

‖∇v‖2
L2(K )+

∑
K∈TH (Ω\ω+)

‖∇v‖2
L2(K ).

We next state our main convergence result for the optimization based numerical solution. Let

uH ∈V 1
0 (ω2,TH ) be the FE-HMM approximation of the homogenized solution u0.

Theorem 7.2.1 (A priori error analysis in ω+). Let ε0 be given by the strong Cauchy–Schwarz

lemma, Lemma 6.3.3, and consider ε ≤ ε0. Let uε and u0 be the exact solutions of problems

(7.1) and (7.9), respectively, and ūh̃H be the numerical solution of the coupling (7.17). Further,

let uH ∈V 1
0 (ω2,TH ) be the FE-HMM approximation of u0. Assume uε ∈ H s+1(Ω), with s ≤ 1,

u0 ∈H 2(ω2), and assume that (7.10) holds, then

‖uε− ūh̃H‖H̄ 1(ω+) ≤C1h̃s |uε|H s+1(ω1)+
C2

τ−τ+
(
h̃s+1|uε|H s+1(ω1)+ε+eH M M ,L2

)
,

where the constants are independent of ε, H, h̃, and h, and where eH M M ,L2 = ‖u0−uH‖L2(ω2) is

derived in Section 2.5.
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Proof. Follows the proof of Theorem 6.7.4 using a continuous macro FEM (FE-HMM) instead

of a discontinuous Galerkin FEM (DG-FE-HMM).

Theorem 7.2.2 (Error estimates in Ω \ω+). Let uε be the exact solution of problem (7.1) and

ūh̃H be the numerical solution of the coupling (7.17). Let aε
2(x)= a2(x, x/ε), where a2(x, y) is

Y -periodic in y and satisfies a2(x, y) ∈ C (ω2;L∞per (Y )). Let ψ j
Kε

(x) ∈W 1
per(Kε), j = 1, . . . ,d. If

in addition, uε ∈ H 2(Ω), u0
2(θ2) ∈ H 2(ω2), uε

1 ∈ H s+1(ω1), with s ≤ 1, and ψ
j
Kε

(x) ∈W 1,∞(Kε),

j = 1, . . . ,d. It holds,

‖ur ec
2 (θ2)−ur ec

2,H (θH
2 )‖H̄ 1(Ω\ω+) ≤C1ε

1/2+C2

(
h

ε

)
+C3H |u0

2|H 2(ω2)

+ C4

τ+
(
h̃s+1|uε

1|H s+1(ω1)+ε+H 2|u0
2|H 2(ω2)

)
.

where the constants are independent of H , h̃,h, and ε.

Proof. Follows the lines of Theorem 6.7.5, where DG-FE-HMM is replaced by FE-HMM.

7.3 Partitions used in the numerical coupling method

The computational cost of the optimization based method relies on the total number of

degrees of freedom in the discretization of the computational domain. The macro to micro

coupling of the FE-HMM (or DG-FE-HMM) leads to a good approximation of the effective

solution u0 where the fine scales are needed only in small subdomains located around macro

quadrature points. The advantage is that it allows for a macro partition of Ω with a mesh size

much larger than the fine scales.

In the optimization based coupling method, the fine and coarse scale solutions uε
1 and u0

2,

satisfying problems (6.4), are defined on the overlapping region ω0. Let Th̃ and TH be a fine

and coarse partitions of ω1 and ω2 respectively, and consider two FE spaces V p (ω1,Th̃) and

V p (ω2,TH ). The coupling then requires

in ω1: a partition Th̃ with h̃ ≤ ε;

inω2: a partition TH with H � ε, a quadrature formula {x j ,K ,ω j ,K } and in each sampling

domain Kδ j , a partition Th with h ≤ ε.

In the overlap ω0, we can either consider the same finite elements or use an interpolation

between the meshes Th̃ and TH ;

in ω0: consider the same finite element K in the partitions Th̃ and TH . In that situation,

discontinuous Galerkin FE-HMM is consider to avoid that either the fine partition Th̃

has elements K with hK ≥ ε, which would be too coarse, or the coarse partition TH has

elements with hK ≤ ε, which would be unnecessarily small — see Figures 7.2a and 7.2b

for illustrations;
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H

h̃

(a)

H

h̃

(b)

Figure 7.2 – (a) Conform and (b) non-conform discretizations of the computational domain Ω,
with ω (in dark blue), ω0 (in light blue), and Ω\ω1 (in light green).

in ω0: use an interpolation between Th̃ and TH .

In the numerical experiments, we are interested in the convergence rates between the hetero-

geneous solution uε and the numerical coupling solution u1,h̃ in the domain ω, i.e., where the

fine scales are not well separated. Then, the partition Th̃ in ω1 is uniformly refined, and, if the

FE in ω0 are identical in the two meshes TH and Th̃ , the number of DOF and the cost of the

method will increase. Considering an interpolation between the two meshes in ω0 implies

that the number of DOF of the FE-HMM in ω2 can be fixed which reduces the computational

cost of the coupling method.

7.4 Numerical experiments

In this section, we give three numerical experiments that can be seen as a complement of the

ones carried in Section 6.11 and in [16], where we focused on a minimization in L2(ω0), with

interior subdomains and matching grids in the overlap ω0. We compare the convergence rates

and computational costs of the minimization problem using the cost over ω0 or the cost over

Γ1∪Γ2, together with different partitions of the computational domain as explained in Section

7.3. We recall the two costs;

Case 1. Minimization in L2(ω0), with

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0). (case 1)

Case 2. Minimization in L2(Γ1∪Γ2), with

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(Γ1∪Γ2). (case 2)
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matching grids non-matching grids

min. in ω0 × ×© × ×
min. on Γ1∪Γ2 ×© ×

Exp. 1

Exp. 2

Exp. 3

Table 7.1 – Summary of the discrete coupling methods used in the experiments.

Outline. In the first experiment given in 7.4.1, we consider the minimization over L2(ω0) and

compare matching and non-matching meshes. The second experiment in 7.4.2 investigates

the coupling with the cost function of case 2 over Γ1∪Γ2, and comparisons with the cost

function of case 1 over ω0. In the last example given in 7.4.3, we combine non-matching

grids and a minimization over the boundary. We observe order of magnitude of saving in

computational cost when compared to the method proposed in [16]. Table 7.1 sums up the

outline of the section.

7.4.1 Comparison of matching and non-matching grids on the overlap

In here, we use the cost function of case 1; i.e.,

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0).

Using FEM and FE-HMM in ω1 and ω2 respectively, leads to two main restrictions; the mesh

size in ω1 should be smaller than the fine scale, whereas the mesh size in ω2 can be larger

than the fine scales, in order to take full advantage of the FE-HMM. Since both methods are

defined in ω0, we can chose to have the same FE in both meshes on the overlap, or one can

impose two different meshes. With the first choice, no interpolations must be considered

between Th̃ and TH over ω0, but TH is composed of FE with mesh size as small as the fine

scales. In that situation, DG-FE-HMM is chosen instead of FE-HMM due to the discontinuity

at the interface Γ1. The second choice requires interpolation between the meshes in ω0, but

TH is not restricted by the size of the fine mesh Th̃ . We show that both cases give similar

convergence rates, but the computational cost is significantly reduced in the second case.

Experiment 1. Let us consider a Dirichlet elliptic boundary value in Ω= [0,1]2,

−div(aε(x)∇uε)= f , in Ω,

u = 0, on Γ,
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with f ≡ 1 and aε is given by

aε
2(x1, x2)= 1

6

(
1.1+ sin(2π(x1/ε)(x2/ε))

1.1+ sin(2πx2/ε)
+ sin(4x2

1 x2
2)+2

)
I2,

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos(#8(i x2−x1/(i +1))$+#150i x1$+#150x2$) .

We use the notation aε
ω to emphasize that a fine scale solver should be used, although the fine

scale structure in the tensor are not represented by a small coefficient ε.

Let xc be the center of Ω, we consider ω1 = xc + [−1/4,1/4]I2 and ω = xc + [−1/8,1/8]I2.

Let H = 1/8, ε = 1/10, and a micro mesh size h = ε/L, so that the micro error is negligible.

We initialize the fine mesh to h̃ = 1/16. We use uniform simplicial meshes in ω1 and ω2,

and assume that Th̃ is obtained from TH using a uniform refinement in ω0. This allows

simplification in the interpolation between the two meshes in the overlap. We couple the FEM

over ω1 with the mesh Th̃(ω1) with the FE-HMM over ω2 with mesh TH (ω2), and compare

it with a coupling between FEM over Th̃(ω1) with DG-FE-HMM over a mesh composed of

coarse FE from TH (ω2 \ω0) with small FE from the fine mesh Th̃(ω0). The reference fine scale

solution is computed on a very fine mesh, and we compare the two numerical solutions with

the reference one. After three iterations, we plot the numerical approximations of the fine scale

solution uε
1 and coarse scale solution u0

2 (in transparent), for a coupling with minimization

of the cost function of case 1 with non-matching grid (Figure 7.3a) and with matching grids

(Figure 7.3b). A zoom of the coarse scale solutions in the overlapping region ω0 can be seen

in Figure 7.3c for the coupling with non-matching grids and in Figure 7.3d (for the sake of

readability, we plot the solutions after only one iteration) with matching grids, where the

coupling is performed with the cost function of case 1.

We refine either only in ω1 for the fine scale solver (non-matching grids) or in addition in

ω0 for the coarse scale solver (matching grids). We set δ= ε for the sampling domains, and

consider a micro mesh size h = ε/L, so that the micro error is negligible. Figure 7.4a shows

the H 1 norm in ω with non-matching grids (bullet) and with matching grids (diamond); we

see that the errors are similar. We also measured the times, using Matlab timer, to compute

the numerical solutions. We see in Figure 7.4b that using non-matching grids is faster as the

number of micro problems, that have to be computed with the coarse solver, is smaller and

fixed, whereas it increases when matching grids are used, causing a significant time overhead.

The rate of convergence in ω is influenced by H and ε, and when h̃ is refined, we expect a

saturation, depending on H and ε, in the convergence. Let ε = 1/20 and initialize the fine

mesh to h̃ = 1/64. We set H = 1/8,1/16, and 1/32, and refine h̃ in each iteration. In Figure

7.5, we plot the H 1 norm between the reference and numerical solutions w.r.t the mesh size

in ω. We see indeed that the error saturates at a threshold value that depends on H . For the

influence of ε in the convergence rates, we refer to experiment 6.11.2.
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(a) (b)

(c) (d)

Figure 7.3 – experiment 1: numerical solutions of the coupling with minimization of the cost
function of case 1 using non-matching grids (a) and matching grids (b), zoom in ω0 of the
coarse scale solution with the cost function of case 1 and non-matching grids (c) and with
matching grids (d).

Experiment 2.Consider now an elliptic problem with a highly heterogeneous tensor aε given

by

aε
2(x1, x2)= 1

6

(
1.1+ sin(2π(x1/ε))

1.1+ sin(2πx2/ε)
+ sin(4x2

1 x2
2)+2

)
I2,

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos(#8(i x2−x1/(i +1))$+#150i x1$+#150x2$) ,

where the tensor aε
2 is locally periodic in Y . We take the same settings as in Experiment 1, with

h/ε= 1/4, and compare the couplings, with minimization over ω0, with matching grids and
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min. over ω0
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with matching grids
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mesh size h̃ with H=1/8
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with non-matching grids
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(b)

Figure 7.4 – experiment 1: (a) error in ω between the reference solution and the numerical
solution of the coupling with minimization of the cost function of case 1 using non-matching
grids (bullet, blue) and matching grids (diamond, red), (b) CPU time with the cost function of
case 1 using non-matching grids (bullet, blue) and matching grids (diamond, red).

10−2.5 10−2

10−3

10−2

mesh size h̃

‖∇
·‖

L
2
(ω

)

non-matching grids with min. over ω0

H = 1/8

H = 1/16

H = 1/32

Figure 7.5 – experiment 1:(a) error in ω between the reference solution and the numerical
solution of the coupling using non-matching grids and cost function of case 1 for different
macro mesh size H = 1/8 (dashes, diamond), H = 1/16 (dash-dots, bullet), and H = 1/32 (full,
triangle).
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(a)

Figure 7.6 – Experiment 2: tensor aε for ε= 1/10.

non-matching grids. Further, we compare as well the coupling method with the classical global

to local method, where the numerical solution satisfies a heterogeneous elliptic problem over

ω1 with Dirichlet boundary condition on Γ1 given by a numerical homogenized solution. In

Figure 7.6, we plot the tensor aε for ε= 1/10. In Figure 7.7a, we can see the H 1 semi-norm over

ω for the coupling method with non-matching grids (blue) and matching grids (red) together

with the classical coupling (green). The CPU time is plotted in Figure 7.7b.

7.4.2 Minimization with interface controls

For this experiment, we compare the coupling done with the cost function of case 1 and of

case 2 on an elliptic problem with ω⊆Ω, i.e., when the boundaries of ω and Ω intersect.

Experiment 3. Let us consider a Dirichlet elliptic boundary value in Ω= [0,1]2,

−div(aε(x)∇uε)= f , in Ω,

u = 0, on Γ,

with f ≡ 1 and aε — plotted in Figure 7.8b — is given by

aε
2(x1, x2)= (cos(2πx1/ε)+2)I2,

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos(#8(i x2−x1/(i +1))$+#150i x1$+#150x2$) .

The tensor aε
2 in ω2 has scale separation, is Y -periodic in the fast variable, and the homoge-
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Figure 7.7 – Experiment 2: (a) error in ω between the reference solution and the numerical
solution of the coupling with minimization of the cost function of case 1 using non-matching
grids (bullet, blue) and matching grids (diamond, red), and together with the classical global
to local method (square, green), (b) CPU time with the cost function of case 1 using non-
matching grids (bullet, blue) and matching grids (diamond, red), and together with classical
global to local method (square, green).

nized tensor a0
2 can be explicitly derived as

a0
2(x)=

⎛
⎜⎝
(∫1

0
1

a(y1) dy1

)−1
0

0 2

⎞
⎟⎠ .

Let ω1 = [0,1/2]× y and ω= [0,1/4]× y , with y ∈ [0,1]. An illustration of a numerical solution

is given in Figure 7.9a. At first, we consider the cost of case 1,

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(ω0).

Let ε= 1/50, and h/ε= 1/L be small enough to neglect the micro error. We initialize the fine

mesh to h̃ = 1/128. For different macro mesh sizes H = 1/8,1/16,1/32 and 1/64, we refine

h̃ and monitor the convergence rates between the numerical solution of the coupling and

the reference solution. In Figure 7.8a, the H 1 norm is displayed for H = 1/8 (dots), H = 1/16

(dashes-dots), H = 1/32 (dashes) and H = 1/64 (full lines). One can see that the error saturate

at a value depending on the macro mesh size H .

Now, we compare the cost of case 1 over ω0 with the cost of case 2 over Γ1∪Γ2. We fix ε= 1/10,

H = 1/16, and h = ε/L small enough in order to neglect the micro error. We initialize the fine

mesh to h̃ = 1/32 and refine the mesh only in ω1. The numerical approximations of uε
1 and u0

2

are shown in Figure 7.9a, for the cost of case 1 over ω0, and in Figure 7.9b, for the cost of case 2
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Figure 7.8 – experiment 3: (a) errors in ω between the reference solution and the numerical
solution of the coupling using matching grids and the cost function of case 1 with different
macro mesh size H = 1/8 (star), H = 1/16 (diamond), H = 1/32 (bullet), and H = 1/64 (plus),
(b) tensor aε over Ω for ε= 1/10.
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over Γ1∪Γ2. The H 1 and L2 errors between uH and a reference solution in ω0, are shown in

Figures 7.9c and 7.9d, respectively. Computational times are compared as well in Figure 7.10,

for the cost over ω0 (diamond, blue) and the cost over Γ1∪Γ2 (bullet, red). As the number of

degrees of freedom of the saddle point problem (7.16) is reduced when minimizing over the

boundaries Γ1∪Γ2, we see that the coupling over ω0 is more costly than the coupling over

Γ1∪Γ2. Considering an interpolation between the two meshes in the interface ω0 gives similar

results as, due to the periodicity of aε
2, we need only to resolve one cell problem to compute

the homogenized tensor a0
2.

(a) (b)
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Figure 7.9 – experiment 3: numerical solutions using matching grids and the cost function
of case 1 (a) and of case 2 (b), (c) the H 1 semi-norm in ω between the reference solution
and the numerical solutions of the coupling using matching grids and the cost function of
case 1 (diamond, blue) and the cost function of case 2 (bullet, red), (d) L2 error between the
numerical and reference solutions in ω, using matching grids and the cost function of case 1
(diamond, blue) and the cost function of case 2 (bullet, red).

We next vary the size of the overlap ω0, and consider ω1 = [0,1/4+mH ]× y , for m = 1,4,8,
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Figure 7.10 – experiment 3: CPU time using matching grids with the cost function of case 1
(diamond, blue) and the cost function of case 2 (bullet, red).

where H = 1/32 is the coarse mesh size, and initialize h̃ = 1/64. We minimize over the overlap

ω0. We observe that both couplings are influenced by the size of τ= dist(Γ1∪Γ2) and this is

shown in the H 1 errors in Figure 7.11. The rates deteriorate when τ goes to zero.

7.4.3 Minimization with interface controls on non-matching grids

For the last experiment, we combine the two previous effects. The fastest coupling is obtained

by performing the minimization with of the cost of case 2 with interpolation of the two meshes

in the overlap, whereas the slowest coupling is obtained by the minimization with the cost

function of case 1 using identical meshes in the overlap.

Experiment 4. We consider a Dirichlet elliptic boundary value in Ω= [0,1]2,

−div(aε(x)∇uε)= f , in Ω,

u = 0, on Γ

with f ≡ 1 and aε is given by

aε
2(x1, x2)= 1

6

(
1.1+ sin(2π(x1/ε)(x2/ε))

1.1+ sin(2πx2/ε)
+ sin(4x2

1 x2
2)+2

)
I2,

aε
ω(x1, x2)= 3+ 1

7

4∑
j=0

j∑
i=0

2

j +1
cos(#8(i x2−x1/(i +1))$+#150i x1$+#150x2$) .

We set H = 1/16 and ε = 1/10. We initialize h̃ = 1/32. In Figure 7.12a, we see the H 1 error

for the two settings are similar whereas the computational cost using minimization over the
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Figure 7.11 – experiment 3: errors in ω between the reference solution and the numerical
solution of the coupling with matching grids and the cost function of case 1 (diamond) and
the cost function of case 2 (bullet) for τ= 9/32 (dots), τ= 10/32 (dash-dots), and τ= 1/2 (full).

overlap and non-matching grid in ω0 dramatically decrease (see Figure 7.12b).

7.5 Summary

In this chapter, we give numerical improvements to the optimization based coupling method

given in Chapter 6. The cost of the method is reduced by considering a minimization problem

with a cost functional over the boundary of the overlapping region; i.e.,

J (θ1,θ2)= 1

2
‖uε

1(θ1)−u0
2(θ2)‖2

L2(Γ1∪Γ2).

The well-posedness and a apriori error analysis are given and numerical examples are pro-

posed to compare the coupling methods with the different cost functionals and meshing

strategies. We show that the efficiency of the method is not affected by the two novelties and

that an important saving is made in the computational cost.
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Figure 7.12 – experiment 4: (a) errors between the numerical and reference solutions with the
cost function of case 1 and matching grids (diamond) and with the cost function of case 2 with
non-matching grids (bullet), (b) CPU time with the cost function of case 1 and matching grids
(diamond) and with the cost function of case 2 with non-matching grids (bullet).
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8 Conclusion and outlook of Part II

Conclusion

Multiscale methods have been developed during the past decades to resolve PDEs with several

scales. When the scales are well separated, one could use homogenization and averaging

techniques to obtain an effective solution of the multiscale problem (and a set of effective

equations) without resolving the fine scales everywhere in the computational domain. An

efficient numerical method is the FE-HMM, which combines the accuracy of a fine scale

method with the efficiency of a coarse scale method. However, the FE-HMM relies on the

existence of a characteristic length scale ε, i.e., when the small scales are well separated.

Other multiscale methods, for example the LOD or the MsFEM, do not need scale separability

but they have the disadvantage of being expensive, as the fine scales are resolved and used

everywhere in the computational domain.

Many problems fall in between scale separation and non scale separation, and using the

FE-HMM might give inaccurate results whereas other numerical methods, such as the FEM,

LOD, or MsFEM, might be too expensive. The idea is to couple a fine scale solver in regions

without scale separation, with a coarse scale solver in regions with scale separation.

In Chapter 5, we review two global to local methods which allow for a recovery of the fine scales

in regions of interest. The two methods are the L2 projection method and the goal-oriented

method. They couple a fine scale solver with a coarse scale solver, and give good H 1 accuracy

in the fine scale regions. However, such methods rely on the existence of a precomputed global

solution over the whole computational domain. Obtaining such an effective solution might

be computationally expensive, and the quality of the numerical solution will depend on the

quality of the effective precomputed solution. These limitations motivate the design of a new

numerical method for problems with and without scale separation.

In Chapter 6, we developed a new multiscale method for problems that fall in between scale

and non scale separation. The method is based on overlapping domain decompositions and is

formulated as a minimization problem under constraints. The constraints are a heterogeneous
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and homogenized state equation, and the minimization is done with respect to a cost function.

In Chapter 6, we use the L2 norm of the difference between the heterogeneous and homoge-

nized solutions in the overlapping regions. The discrete method couples the (DG-)FE-HMM in

region with scale separation with the FEM in region without scale separation. Reconstruction

can be used on the (DG-)FE-HMM solution to obtain H 1 convergence in the computational

domain, between the multiscale solution and the numerical coupling solution. We prove that

the method is well-posed and give a priori error estimates with explicit convergence rates in

terms of the fine and coarse mesh sizes. The analysis of the method relies on Caccioppoli

inequalities and on a strong version of the well known Cauchy–Schwarz inequality. Due to the

use of Caccioppoli inequalities, the coupling method depends on the width of the overlapping

region, and when the width is made smaller, we see that the convergence rates deteriorate.

As opposed to the global to local methods given in Chapter 5, the FE-HMM is not used in

region without separation of scales, and through numerical experiments, we compare the

goal-oriented method with our coupling method. In practice, we want to avoid computing the

numerical homogenized solution at each mesh refinement, as it is expensive to compute, thus

we fix the mesh size in Ω\ω1 — we recall that ω1 is the region where the fine scale solver is used

— and compute the numerical homogenized solution on a coarse initial mesh. This solution

(or its interpolation) is then used as boundary conditions in the goal-oriented method. We

refine only in ω1 and compare the two methods. In that situation, the goal-oriented method

reaches a threshold value depending on the accuracy of the precomputed solution, whereas

the optimization based method produces better convergence rates; it will eventually reach a

threshold value depending on the coarse mesh size.

In Chapter 7, we give numerical improvements to our coupling method. They consists in

reducing the number of DOF of the method and through various experiments, we show that

the efficiency of the method does not deteriorate when using the two following novelties.

First improvement. We consider the optimization based coupling with a minimization

over the boundary of the overlapping region instead of a minimization over the whole

overlapping region.

This reduces the number of degrees of freedom of the minimization problem. In the numerical

experiments, we compare the coupling method with the minimization over the boundary

of the overlapping region with the coupling method where the minimization is done in the

overlapping region. We see that the convergence rates are similar, but that the minimization

over the boundary is computationally faster than minimizing in the overlapping region.

Second improvement. In order to take advantage of the macro to micro coupling in the

FE-HMM, the number of DOF in the region with separation of scale should not be large.

On the one hand, the partition used in the FE-HMM should be coarse and have a small

number of DOF. On the other hand, the FEM requires a fine partition so that the small

scales are fully resolved. An interpolation between the two meshes can be done in the

overlapping regions.
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One can then contain the DOF of the FE-HMM to a low value, whereas the DOF of the fine

scale solver can be large in order to resolve the fine scales. This results in a large saving in

computational time. In the numerical experiments, we compare the convergence rates and

computational times of the coupling with and without matching grids in the overlapping

region. We see that the rates are similar, but that a significant saving can be observed with

non-matching grids.

Further, we combine the matching grids with the minimization in the overlapping region

with the non-matching grids with minimization over the boundary of the overlapping region.

Then again, the convergence rates are similar whereas the computational time dramatically

decreases.

Outlook

Several interesting extensions could be pursued following the work developed in this thesis.

At first, the computational cost of the coupling method can be further decreased. For example

one can use a reduced basis approach in the region where scale separation is present.

At second, the method can be adapted to more realistic multiscale situations. The method

presented in this thesis is derived for a domain decomposition with two overlapping subdo-

mains. It can however be adapted to a family of overlapping domains in order to approximate

for example multiple defects present in a medium. One can also consider time dependent

problems, and in such situations, an interesting question arises: should the coupling algorithm

be computed at each time iteration? If the answer is positive, then the computational cost of

the method is very large, and one should use strategies, e.g. using reduced basis, to reduce the

cost of the coupling algorithm.

Further, in many situations, the regions where a fine scale solver should be used are unknown.

This is for example the case when a crack propagates through a material. The regions of

interests can be found before performing the coupling method. By computing the H 1 error

between a relatively coarse FEM approximation and the reference fine scale solution, we

can select a set of coarse elements where the error is above a given tolerance. The regions

of interests and their sizes and shapes can be further determined by conducting the same

procedure on a finer partition in the selected coarse elements.

At last, the method can be generalized to multiscale problems of different nature. Indeed, in

this thesis, we focused on the coupling of two elliptic problems, however the optimization

based method is not restricted to this class of problems. Considering two different state

equations offers the possibility to model realistic situations.
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