000225825 001__ 225825
000225825 005__ 20180913064206.0
000225825 0247_ $$2doi$$a10.1016/j.electacta.2016.12.090
000225825 022__ $$a0013-4686
000225825 02470 $$2ISI$$a000392165800059
000225825 037__ $$aARTICLE
000225825 245__ $$aElectronic and structural characterization of barrier-type amorphous aluminium oxide
000225825 260__ $$aOxford$$bElsevier$$c2017
000225825 269__ $$a2017
000225825 300__ $$a14
000225825 336__ $$aJournal Articles
000225825 520__ $$aThe structural, electronic, and dielectric properties of barrier -type anodic Al oxides prepared with various thicknesses have been investigated. The planar and cross morphologies as well as the surface charge distribution were investigated as a function of the voltage applied during growth, i.e. the thickness. Three distinct anodizing potential domains can be clearly identified. A transition in ionic mobilities induces, at anodizing voltage higher than 100 V, the built-up of space charge region in the anodic films. A correlated increased oxide density with growing anodization potential is consistently pointed out by Volta Potential Difference and XPS/Auger measurements. The full dielectric response of the oxides, including both the lattice and electronic components, has been accessed by electrochemical impedance spectroscopy and Auger analysis. The lattice contribution of the dielectric constant is found to be strongly affected by the growth voltage, as a clear increase in the lattice component of the dielectric constant is observed, reaching values close to those of bulk crystalline Al2O3 structures. At variance, the electronic contribution is only slightly affected. The results have been compared to dielectric constants calculated for atomistic amorphous models within the framework of density functional theory. It is shown that amorphous Al2O3 models of higher density lead to dielectric constants that could explain the trend observed in theseries of barrier-type anodic oxides prepared in this work. (C) 2016 Elsevier Ltd. All rights reserved.
000225825 6531_ $$aAnodizing
000225825 6531_ $$abarrier aluminium oxide
000225825 6531_ $$asurface potential
000225825 6531_ $$aElectrochemical Impedance Spectroscopy
000225825 6531_ $$a(EIS)
000225825 6531_ $$acapacitance
000225825 6531_ $$aAuger parameter
000225825 6531_ $$adielectric constant
000225825 700__ $$aEvangelisti, Fabio$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aStiefel, Michael$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aGuseva, Olga$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aNia, Raheleh Partovi$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aHauert, Roland$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aHack, Erwin$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aJeurgens, Lars P. H.$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$0248704$$aAmbrosio, Francesco$$g253870
000225825 700__ $$0241891$$aPasquarello, Alfredo$$g109250
000225825 700__ $$aSchmutz, Patrik$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 700__ $$aCancellieri, Claudia$$uSwiss Fed Labs Mat Sci & Technol, EMPA, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
000225825 773__ $$j224$$q503-516$$tElectrochimica Acta
000225825 909C0 $$0252232$$pCSEA$$xU10186
000225825 909CO $$ooai:infoscience.tind.io:225825$$pSB$$particle
000225825 917Z8 $$x109250
000225825 937__ $$aEPFL-ARTICLE-225825
000225825 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000225825 980__ $$aARTICLE