000225792 001__ 225792
000225792 005__ 20180913064206.0
000225792 0247_ $$2doi$$a10.1016/j.jnt.2016.10.003
000225792 022__ $$a0022-314X
000225792 02470 $$2ISI$$a000392167400029
000225792 037__ $$aARTICLE
000225792 245__ $$aDistinct distances on regular varieties over finite fields
000225792 260__ $$aSan Diego$$bElsevier$$c2017
000225792 269__ $$a2017
000225792 300__ $$a12
000225792 336__ $$aJournal Articles
000225792 520__ $$aIn this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset in a regular variety satisfies vertical bar epsilon vertical bar >> q(d-1/2 + 1/k-1), then Delta(k,F)(epsilon) := {F(x(1) + ... + x(k)} : x(i) is an element of epsilon, 1 <= i <= k} superset of F-q\{0}, for some certain families of polynomials F(x) is an element of F-q[x(1), ..., x(d)]. (C) 2016 Elsevier Inc. All rights reserved.
000225792 6531_ $$aFinite fields
000225792 6531_ $$aDistinct distances
000225792 6531_ $$aVariety
000225792 6531_ $$aDiagonal polynomials
000225792 700__ $$aDo, Duy Hieu
000225792 700__ $$0247815$$aPham, Van Thang$$g233636
000225792 773__ $$j173$$q602-613$$tJournal Of Number Theory
000225792 909C0 $$0252234$$pDCG$$xU11887
000225792 909CO $$ooai:infoscience.tind.io:225792$$pSB$$particle
000225792 917Z8 $$x183120
000225792 937__ $$aEPFL-ARTICLE-225792
000225792 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000225792 980__ $$aARTICLE