
Robust Online Time Series Prediction with
Recurrent Neural Networks

Tian Guo∗, Zhao Xu†, Xin Yao‡, Haifeng Chen §, Karl Aberer∗ and Koichi Funaya†
∗EPFL, Lausanne, Switzerland

{tian.guo, karl.aberer }@epfl.ch
†NEC Laboratories Europe, Heidelberg, Germany

{zhao.xu, koichi.funaya}@neclab.eu
‡The University of Birmingham, Birmingham, United Kingdom

x.yao@cs.bham.ac.uk
§NEC Laboratories America, Princeton, USA

haifeng@nec-labs.com

Abstract—Time series forecasting for streaming data plays an
important role in many real applications, ranging from IoT
systems, cyber-networks, to industrial systems and healthcare.
However the real data is often complicated with anomalies and
change points, which can lead the learned models deviating from
the underlying patterns of the time series, especially in the context
of online learning mode. In this paper we present an adaptive
gradient learning method for recurrent neural networks (RNN)
to forecast streaming time series in the presence of anomalies
and change points. We explore the local features of time series
to automatically weight the gradients of the loss of the newly
available observations with distributional properties of the data
in real time. We perform extensive experimental analysis on both
synthetic and real datasets to evaluate the performance of the
proposed method.

I. INTRODUCTION

Time series forecasting [4], [9], [32] is an important task

in machine learning with a variety of applications, such as

cyber-network traffic prediction, web user access estimation,

and pedestrian flow prediction. Forecasting a time series is

useful in e.g. reliability monitoring, predictive maintenance

and intrusion detection, and can effectively improve availabil-

ity, security, and the overall service experience. On the other

hand, with the rapid growth of various tracking and monitoring

technologies, time series data in many real-world systems

arrives in a streaming fashion. Online learning methods are

expected to extract the underlying patterns from the observed

time series for real-time learning and prediction.

Due to its practical importance and technical challenges,

some online forecasting methods have been investigated in

the literature, including linear methods [2], [25], ensemble

methods [31], kernel based methods [33], and Gaussian pro-

cesses [43]. Recurrent neural networks (RNNs), a class of deep

learning methods particularly designed to model sequential

data, currently receive increasing attention due to the capacity

on learning insightful representations of sequences [16], [23],

[37], and have been successfully applied to time series fore-

casting [7], [30], [42]. However in real-world applications, the

time series is usually contaminated by anomalies or outliers

that are abrupt observations deviating from the behaviour of

the majority. A typical example might be cyber-attacks, which

are often shown as anomalies in time series monitoring some

measurements of network traffic. In addition, the underlying

patterns of time series generally keep changing over time. For

example, a newly released online service or functionality of a

website can change the probabilistic distribution of time series

of user access traffic in terms of mean, variance, correlation

and period. With these challenges, the learning methods are

expected to capture the true pattern and trend of time series,

namely being robust against outliers, and enabling to quickly

fit new patterns with potential change points.

In this paper, we present an adaptive gradient learning

method for long short-term memory (LSTM) recurrent net-

works [15], [16], [19], to make the streaming time series

forecasting robust to outliers and change points. We model

time series with LSTM networks, and use a stochastic gradient

descent (SGD) based method to learn the model from the

streaming time series. As novel observations arrive, the model

parameters are updated in an online mode according to the

gradients of the loss of the newly available data. With the

standard SGD method, outlier observations will make the

updated model deviate from the normal patterns and produce

oscillated incorrect predictions until the adverse effect is

gradually corrected by the following normal observations. To

solve the problem, we explore the local features of time series

to weight the gradients of the learning method with distri-

butional properties of the local data. In particular, if a newly

available observation is a potential outlier behaving differently

from the regular patterns, the corresponding gradient will be

downweighted, so as to avoid leading the online model to

abruptly drift from the underlying normal patterns. Notice

that the newly observed unusual point can also be a change

point. Although it behaves differently from the majority like an

anomaly, it indicates emerging patterns of time series required

to learn quickly. In this case, the corresponding gradient will

be retained by a high weight and lead the model to fit the

new data in real time. Technically we introduce a weight

function based on distributional characteristics of the local data

to adapt the gradients of the online SGD to the complicated

2016 IEEE International Conference on Data Science and Advanced Analytics

978-1-5090-5206-6/16 $31.00 © 2016 IEEE

DOI 10.1109/DSAA.2016.92

816

streaming time series automatically. The weight function is

composed of two components: suspicion ratio and difference

value drift formulating the statistical properties of the local

data, which make the learning procedure robust to outliers

and change points. The experimental analysis on synthetic and

real datasets demonstrates the performance of the proposed

learning method for streaming time series forecasting in the

presence of anomalies and change points.

The rest of the paper is organized as follows. Section II

presents related work, while Section III defines the problem

to be solved and introduces the notations. In Section IV, we

present the proposed robust online learning method for RNN.

Section V demonstrates the performance of our method on

synthetic and real datasets. Finally, the paper is concluded in

Section VI.

II. RELATED WORK

A. Modeling Time Series in the Presence of Outliers and
Change Points

Many of the existing machine learning models for time

series analysis focus exclusively on either change point or

outlier detection. Our paper aims to provide a recurrent neural

network based approach to handle both change points and

outliers simultaneously for online learning of time series.

[1] introduced the Bayesian change point detection frame-

work and [35] extended it by using the Gaussian process as the

underlying predictive model. In [8] a Gaussian process based

nonparametric time series prediction model was proposed

specifically for periodic time series. [27] detected changes

by utilizing relatively density ratio estimation in a batch

mode, i.e., they require the entire time series to be present.

[44] employed an online discounting learning algorithm to

incrementally learn mixture and regression models. [22], [39]

put forward scalable anomaly/outlier detection frameworks

integrating various predictive models. [13] and [18] provided

detailed surveys on change and outlier detection.

Another line of research is to build robust models over noisy

and non-stationary time series. [14] proposed a new sequential

algorithm for making robust predictions based on Gaussian

Process in the presence of change points. [3] extended tradi-

tional autoregressive moving average (ARMA) models to the

case that less strict assumptions are on the noise term for the

purpose of online time-series modeling. [34] developed time-

dependent loss function to include the information about the

distribution change in time series directly in the SVM learning

process.

B. Recurrent Neural Networks for Time Series Analysis

Recurrent neural networks have recently shown promising

results in a variety of applications, especially when there exist

sequential dependencies in data [11], [28], [38]. [12] proposed

a robust learning algorithm for recurrent neural networks on

time series. This algorithm is based on filtering outliers from

the data first and then training the neural network on the

filtered data. Such a filtering-then-learning scheme focuses on

dealing with outliers and is not suitable for online training and

prediction.

Long short-term memory (LSTM) [19], [28], [41], a class of

recurrent neural networks with sophisticated recurrent hidden

and gated units, are particularly successful and popular due to

its ability to learn hidden long-term sequential dependencies

and to allow online training of sequence data of indefinite

duration. Some recent work [10], [24], [29] explored the per-

formance of LSTM in time series modeling. [24] used LSTMs

to recognize patterns in multivariate time series, especially

multi-label classification of diagnoses. [10], [29] evaluated the

ability of LSTMs to detect anomalies in ECG time series. In

this paper we present an LSTM online learning method for

time series forecasting in presence of both outliers and change

points.

III. PROBLEM FORMULATION

In this section, we discuss the properties and challenges

of time series containing outliers and change points, and

formulate the problem to be resolved.

Time series, a sequence of data points consisting of suc-

cessive measurements made over time, often arises when

monitoring dynamic processes in a variety of applications, e.g.,

Internet of Things, sensor networks, and mobile computing.

We denote a univariate time series by {x1, . . . , xT }, where

the subscript represents the time instant and each data point

xt is a real value. In this paper, we focus on univariate time

series. The proposed method can be naturally generalized to

multivariate time series as well.

Since many time series are generated from observations

and measurements of physical entities and events, the data

is inevitably anomaly-contaminated and non-stationary in the

sense that it contains both outliers and change points. An

outlier in time series is a data point, which is significantly

different from the behaviour of the majority of the time-

series. A change point indicates that the behaviour and hidden

data distribution of the time-series are significantly different

before and after this point. For instance, a time series might

undergo a sudden shift in its mean at a certain time. The major

difference between change points and outliers is that change

points correspond to more sustained, long-term changes in

time series compared to volatile and abrupt outliers. The

presence of outliers and change points can adversely affect

the time series analysis and complicate the learning process

[13], [18], [22], [39].

In many cases, time series are continuously observed, and

often need to be analyzed in real time. The online learning

methods are thus required, which learn and update models

incrementally as new data arrives, in order to better capture

the timely trend and the underlying patterns in the time series

[3], [13], [20].

In this paper we focus on online time series prediction in

the presence of both change points and outliers. The work

aims to incrementally learn the time series and provide robust

predictions in real time. Given the observed time series of

817

length t− 1, the predicted new data point x̂t at the next time

t can be computed as:

x̂t = g(xt−1, xt−2, . . . , x1; θ
∗
t−1) (1)

g(·) is a continuous function which captures the dynamic

patterns of the time series. In this paper g(·) is modeled

according to the recurrent neural network that can approximate

any function with sufficient hidden layers and nonlinear units

to arbitrary precision. θ∗t−1 denotes the parameters of the re-

current network learned with the t−1 sequential observations.

As the new data point xt arrives, we update the model by

minimizing the loss function, e.g., the squared error:

θ∗t = argmax
θt

(xt − g(xt−1, xt−2, . . . , x1; θt))
2 (2)

Recursivly, the new parameters θ∗t will be used to predict the

next data x̂t+1. The online learning process is to continuously

minimize the loss function over the newly available data.

We notice that, in the learning process, an outlier at time t
can lead the model to deviate from the normal patterns. Given

the current model θ∗t−1, the loss of the outlier will be high. For

reducing the loss (2), θ∗t will deviate from the normal ones to

best fit the outlier, and produces oscillated predictions untile

the adverse effect of the outlier is gradually corrected by the

following observations [12], [18], [44]. On the other hand,

since a change point often leads to a shift in data distribution

and makes the current model unfit to the new data, high loss

is also expected [14], [22]. In this case, the high loss will take

positive effect and lead the model to quickly fit to the new

patterns.

To meet these challenges, the online learning method is

supposed to react to outliers and change points differently. On

the first hand, the online learning model should be robust to

outliers by mitigating the model deviation caused by outliers.

On the other hand, it should be able to promptly adapt to the

new changed data by updating the model using the latest data,

so as to provide timely and precise predictions.

TABLE I: Notations

Symbols Meaning
xt the data point at time t of the time series
x̂t the predicted value of xt by the neural network
pt p-value of xt

α significance level
w the size of the sliding window for feature extraction
ht the output of a LSTM layer at time t
ot the output gate of a LSTM layer at time t
ct the memory unit of a LSTM layer at time t

f j
t the forget gate of a LSTM neuron j at time t

ijt the input gate of a LSTM neuron j at time t

Wt
the set of parameters of all layers in the

neural network at time t
βt gradient weight for updating the model at time t
dt difference value drift
st suspicious ratio

IV. WEIGHTED GRADIENT ONLINE LEARNING FOR LSTM

NEURAL NETWORKS

In this section, we present the proposed online learning

method for Long Short Term Memory (LSTM) neural net-

works, a widely used variant of Recurrent Neural Networks

(RNN). The method is capable of performing robust predic-

tions over time series in the presence of both outliers and

change points.

A. Online learning of time series

In the online process at each time instant, e.g. t, a de-

sirable model should be able to automatically retain useful

past information in {x1, . . . , xt−1}, discover dependences for

making prediction x̂t and then update itself using xt. Recurrent

neural networks (RNNs) are rising as a powerful tool to model

sequence data [16], [20]. They are suitable for dealing with

sequential problems due to the internal hidden states and short

term memory realized by recurrent feedback connections.

Among the variants of RNNs, it is well established that

the Long Short-Term Memory (LSTM) based networks work

well on sequence-based tasks with long-term dependencies

[19], [20] by using specialized gates and memory cells in the

neuron structure. The LSTM achieves state-of-the-art results

for problems spanning natural language processing, image

captioning, handwriting recognition, and genomic analysis

[20], [24], [26], [38].

We present the formal definition of a neuron of a LSTM

layer as follows [11], [19]. Each j-th neuron in the LSTM

layer maintains a memory cjt at time t. The output hj
t or the

activation of this neuron is then expressed as:

hj
t = ojt tanh(c

j
t) (3)

where ojt is an output gate that modulates the amount of

memory content exposure. The output gate is calculated by

ojt = σ(Woxt + Uoht−1 + Voct)
j (4)

where σ is a logistic sigmoid function. ht−1 and ct are respec-

tively the vectorization of hj
t−1 and cjt , i.e. ht−1 = {hj

t−1} and

ct = {cjt}. Vo is a diagonal matrix. Then, the memory cell cjt
is updated through partially forgetting the existing memory

and adding a new memory content c̃jt :

cjt = f j
t c

j
t−1 + ijt c̃

j
t (5)

where the new memory content at time t is expressed as:

c̃jt = tanh(Wcxt + Ucht−1)
j (6)

The extent to which the existing memory (i.e., at time t− 1)

is forgotten is modulated by a forget gate f j
t , and the degree

to which the new memory content (i.e., at time t) is added to

the memory cell is modulated by an input gate ijt . Then, such

gates are computed by

f j
t = σ(Wfxt + Ufht−1 + Vfct−1)

j (7)

ijt = σ(Wixt + Uiht−1 + Vict−1)
j (8)

Note that Vf and Vi are diagonal matrices.

818

Unlike the traditional recurrent neuron which overwrites its

content at each time instant [11], [28], a LSTM neuron is

able to decide whether to keep the existing memory via the

introduced gates. Intuitively, if it detects an important feature

from an input sequence at early stage, it easily carries this

information (the existence of the feature) over a long period,

thereby capturing the hidden long-term dependencies [19],

[28].

In our model for online learning of time series, a dense layer

is built to connect the LSTM layer so as to map the outputs

of LSTM neurons to the target prediction. Denote by Wd and

bd the weights and biases of the dense layer. The output of

the neural network is formulated as:

y = g(Wdht + bd) (9)

where g(·) is the activation function of the dense layer,

e.g., tanh, sigmoid, linear, etc. ht is the vector of

the outputs of LSTM neurons, i.e., ht = {hj
t}. On-

line learning of a neural network is to continuously up-

date the set of parameters in each layer, i.e., Wt =
〈Wo, Uo, Vo,Wc, Uc,Wf , Uf ,Wi, Ui,Wd, bd〉 at each time in-

stant to minimize a loss function. Then, the prediction at time

t of the time series by the LSTM neural network can be

expressed as:

x̂t = g(xt−1, . . . , x1;Wt−1) (10)

LSTM neural network employs gradient decent based iterative

approaches to update the network parameters at each time

instant [19], [28], [41]. The general update process can be

expressed as:

Wt = Wt−1 − η� Et(Wt−1) (11)

where Wt and Wt−1 represent the set of parameters W at

different time instants. η is the learning rate, Et(Wt−1) is the

loss function, i.e. squared-error function, and �Et(Wt−1) is

the gradient of the loss function at Wt−1. There are many

variants of gradient descent based methods for updating the

network [21], [36], [45],

Since online learning aims to continuously update the model

using new arrived data, the loss function is specified as the

squared-error of one training instance without accumulating

the errors [20], [41]:

Et(Wt−1) = e2t = (xt − x̂t)
2 (12)

Our proposed framework below could be extended to situ-

ations where data comes on mini-batches of data points as

well.

Then, the gradient is derived as:

�Et(Wt−1) = −2(xt − x̂t)� g(xt−1, . . . , x1;Wt−1) (13)

where the detailed derivation of �g(xt−1, . . . , x1;Wt−1) is

referred to [19], [41]. Such a gradient descent scheme to

incrementally update parameters enables the LSTM neural

network to naturally evolve with time series in the error-driven

way and to adapt to changing time series without explicit

detection of change points [13].

B. Effect of Outliers and Change Points on LSTM neural
networks

In this part, we first define two basic concepts. Based on

statistical time series modeling theory [4], [10], [12], [40], the

set of errors {et} can be fitted to a parametric distribution,

referred to as the error reference distribution and maintained

online by moving average style methods [5], [8], [40]. During

our experiments, we observe that it is reasonable to fit the er-

rors to a Gaussian distribution, though alternative distributions

can be chosen based on applications. The associated mean and

variance are respectively denoted by μt and vt.
Definition 4.1 (p-value): The p-value of data point xt,

denoted by pt, is defined as the probability of obtaining a
value less or equal to et under the error reference distribution
N (μt, vt), where et = xt − x̂t. Formally, pt = Φ(et−μt√

vt
),

where Φ(·) is the cumulative distribution function of the
standard normal distribution.
For the predictive model based time series analysis [8], [10],

[12], [18], p-value is a fundamental indicator for outliers or

changes. Then, we further define:

Definition 4.2 (Suspicious and Normal Points): In the online
learning process of LSTM neural network over time series,
if the p-value of a data point, e.g., xt, is lower than α or
higher than 1 − α (α ∈ (0, 1)), xt is a suspicious data
point indicating that it could be an outlier or a change point.
Otherwise, we call xt as a normal point. α is the confidence
level.

Straightforward solutions help little:
Given the neural network learnt over time series, outliers

could lead to dramatical large prediction errors. Consequently

using such outliers to update the neural network could drag

away the gradient from the previous direction and derail the

so-far trained neural network, thereby incurring unreliable

prediction [12].

For instance, we use an example experiment to illustrate the

effect of outliers on the LSTM neural network. We perform

the conventional online learning of LSTM neural network

[41] on a real time series from Yahoo S5 dataset1. We adopt

the interleaved test-then-train framework [13], which means

that at each time instant a prediction for the next data point

is performed using the current neural network and then the

network is updated when the next data point arrives. The

experiment is run at the learning rate (0.005), which achieves

the least prediction error (i.e., RMSE). For the details of the

experiment setup, refer to Section V.

We can observe in Figure 1(b) that outliers incur oscillated

prediction around them. One possible solution might be to skip

the neural network update [12] when a new coming data point

is considered as a suspicious point by Definition 4.2. However,

such an approach would not necessarily help for the reasons

below.

Recall that we focus on modeling time series with both

outliers and change points. Both an outlier and a change

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

819

����

���	

��	�
�����������
	���

����

Fig. 1: Effect of outliers on the LSTM neural network. (a) the

original time series (b) online prediction results. (best viewed

in colour)

point could lead to the identification of suspicious points. For

instance, Figure 2 shows the p-values at each time instant

during the learning process of LSTM neural network in the

experiment as Figure 1. It is observed that outliers, change

points and some regular points are flagged as suspicious points.

It is difficult to distinguish them from each other in such a

noisy and non-stationary environment [5], [13].

����������	
��

��
�����
��

����

����

Fig. 2: The observed time series (top) and p-values of data

points in the time series modeled by conventional online

learning of LSTM neural network (bottom) (best viewed in

colour). The vertical dotted line in the top figure indicates

the possible change point. Red points in the bottom figure

represent the time instants identified as suspicious points.

Meanwhile, when a real change point is misclassified as

an outlier and removed from the neural network update, the

data points immediately following the change point would then

likely be regarded as outliers as well, since they follow the new

distribution after the change point [5], [6]. Simply skipping

such data points results in important information being lost to

the LSTM updating. It could delay the learning towards the

new data distribution after the change point and significantly

degrade the performance of LSTM neural network afterwards.
Integrating change point detection into LSTM will hardly

help as well. Most of change point detection techniques are

the instances of the following framework: at time instant t
statistical tests [5], [6], [13], [27] are performed over two data

subsets, the intermediate past data points {xi}i=t−m1,...,t−1

and the intermediate future data points {xk}k=t+1,...,t+m2
to

measure the dissimilarity, so as to determine whether t is

a change point. Therefore, it requires to accumulate data to

locate a change point in the history. In this paper, we consider

the setting where the learning process of LSTM neural network

is supposed to response to individual data points online, so

as to adapt to data changes promptly and provide timely

prediction.

C. Weighted Gradient Online learning of LSTM for time series
In this part, we present a novel online learning algorithm

for LSTM neural network to be capable of making robust

prediction over time series in the presence of both outliers

and change points.

Overview: We propose the weighted gradient online learning

algorithm, referred to as WG-Learning. The key idea is to

leverage local features, which are extracted from a sliding win-

dow over time series, to dynamically weight the gradient, i.e.

Eq. (13), at each time instant for updating the current neural

network. Intuitively, if a suspicious point is highly possible

to be an outlier based on local features, the corresponding

gradient is down-weighted, so as to avoid deviating the so-far

trained LSTM neural network from the current underlying data

distribution. Otherwise, if it is believed to be a change point,

the associated gradient is retained by a high weight, such that

the LSTM model can quickly adapt to the new data.
A common characteristic of time series analysis is that

temporal continuity plays a key role [22], [34], [39], [40]. In

this sense, time forms the contextual variable with respect to

which all analysis is performed. Therefore, our WG-Learning

maintains a sliding window over the time series and associated

p-values for the data points in the sliding window.

Fig. 3: Work-flow of WG-Learning based LSTM neural net-

work in online learning of time series

As is shown in Figure 3 which outlines the work-flow of

our WG-Learning, if the data point at the current time instant

is a suspicious point based on Definition 4.2, two features

820

presented below are extracted from the sliding window and

took into account to weight the gradient used in updating the

LSTM neural network at this time instant. For instance, at

time t, the local features w.r.t. data point xt are discovered

in {xt−w, xt−w+1, . . . , xt−1} and {pt−w, pt−w+1, . . . , pt−1}.
w is the length of the sliding window (for the extension of

adaptive windows, please refer to Section IV-D).

Then, in WG-Learning formally the neural network is

updated by the following formula:

Wt = Wt−1 − η · {βt � E(Wt−1)} (14)

where βt is the time-varying gradient weight based on the

features extracted from data, which will be defined below.

Previous adaptive learning rate approaches [36], [45] fail to

take into account the data characteristics in updating parame-

ters of the neural network. Before presenting the details, we

first summarize the benefits of our approach for learning noisy

and non-stationary time series as follows:

• Reduced impact of outliers as a sudden increase of the

prediction error - our WG-Learning provides reliable and

smooth prediction robust to outliers as well as avoiding

volatile huge prediction errors.

• Adaptability to changing data - the dynamic gradient

weighting mechanism in WG-Learning enables to retain

useful information in updating the neural network for

converging to changed data.

• Reduction of the overall prediction errors.

Next, we will first present the features and then how to

leverage them to weight the gradient.

Suspicion Ratio.
The suspicion ratio is formulated based on the following

observation: outliers are rare events in time series [18], [40],

[44] and would lead to the limited appearance of suspicious

points in the sliding window; however, when change point

happens, the neural network needs to consume some data after

the change point for adapting to the new hidden distribution

and therefore may yield high proportion of suspicious points

in the beginning. Therefore, the ratio of suspicious points in

the sliding window can be a factor in weighting the gradient.

Now we give the formal definition. In the sliding window

w.r.t. time t, {xt−w, xt−w+1, . . . , xt−1}, the suspicion ratio is

defined as:

st =

t−w∑
i=t−1

I{pi>1−α or pi<α}

w
(15)

where I{·} is the indicator function.

Suspicion ratio is positively correlated with the gradient

weight. On the first hand, the less the suspicion ratio in

the sliding window, the more likely the suspicious point xt

is to be an outlier. Even if it is a change point in reality,

the subsequent data points after this change point are highly

possible to be suspicious points and thus lead to increased

gradient weight in updating the model. It will not significantly

delay the convergence of our neural network on changed data.

On the other hand, when the suspicion ratio is high, i.e.,

the suspicious points appear frequently in the sliding window,

further investigation is required. This is because it is possible

that some outliers just occur in the sliding window or such

suspicious points are due to a real change point. In such a

case, additional features should be considered for weighting

the gradient weight.

Difference Value Drift.
In this part, we introduce the second feature, difference value

drift. This novel feature helps to “amplify” the difference

between outliers and change points from the perspective of

the value domain of time series, thereby providing enhanced

information to adjust the gradient weight.

First, we extract the normal and suspicious points from

the sliding window at time t, i.e, {xt−w, . . . , xt−1} and

respectively denote them by a set Nt = {xk|k ∈ {t −
w, . . . , t − 1}, α ≤ pk ≤ 1 − α} and a set St = {xk|k ∈
{t − w, . . . , t − 1}, pk > 1 − α or pk < α}. |Nt| and |St|
represent the numbers of data points in the sets.

Then, we define the neighbours of a normal point in the

sliding window as:

Definition 4.3 (Neighbours of a Normal Point): The left and
right neighbours of a normal point xi are the most recent two
normal data points before and after xi in the sliding window:
fl(xi) = xmax{k:k<i,xk∈Nt} and fr(xi) = xmin{k:k>i,xk∈Nt}.

Now we are ready to introduce the proposed difference
value, which is novel in the sense that it is derived by a bi-

directional differencing process and has two forms respectively

specific for normal and suspicious points as follows:

• For a suspicious point (e.g., xk) in the sliding window,

the difference value is the average of absolute changes

between xt and its intermediate preceding and succeeding

data points, i.e. xk−1 and xk+1, no matter whether they

are normal points or not. (if any of the two points are out

of the sliding window, only one-side change is taken as

the difference value).

• For a normal points (e.g., xi) in the sliding window, the

difference value is evaluated as the average difference

between xi and its two neighbours, which are defined in

Definition 4.3, such that it captures the normal pattern

of time series without the effect of potential outliers and

change points.

The motivation behind the difference value is as follows.

Differencing is an important tool in time series analysis [40],

which helps to stabilize the mean of a time series by removing

changes in the level of a time series. On the first hand, outliers

are often abrupt and violate changes w.r.t. the intermediate

preceding and succeeding normal points, thereby yielding

high difference values [18], [34]. Even if outliers occur

consecutively, their difference values could present abnormal

fluctuating patterns compared with the normal data points.

On the other hand, for the suspicious points resulting from

a change point, they are under the new data distribution and

expected to adhere to the property of normal time series as

well, i.e., having reasonable magnitudes in difference values.

821

Based on above analysis, we give the formal definition of

the difference value drift. At time instant t, difference value
drift dt between suspicious and normal points in the sliding

window is defined as:

(xt − xt−1) +
∑

xk∈St

(|xk − xk−1|+ |xk − xk+1|)
∑

xi∈Nt

(|xi − fl(xi)|+ |xi − fr(xi)|)
|Nt|
|St|+ 1

(16)

This is a relative metric to evaluate the discrepancy between

the average difference values of normal and suspicious points

in the sliding window. The higher the value of the difference

value drift, the more probable the suspicious points are to be

outliers.

The proposed two features above are complementary by

providing different views to weight the gradient in updating

the neural network. Now we can define the gradient weight βt

in (14) integrating the suspicion ratio and the difference value

shift as:

βt = λ · e−dtI{dt≥γ} + (1− λ) · st (17)

where λ ∈ [0, 1] is the parameter to control the importance of

the two features in the weight. The term e−dtI{dt≥γ} models

the difference value drift in a bounded range [0, 1]. Parameter

γ represents the prior belief about the normal difference value

drift. e−dtI{dt≥γ} gives full weight, i.e., 1 when dt is below

γ. Otherwise, the more the value of dt, the more probable it

is that outliers occur and thus the decreasing weight is given

to the gradient, as dt increases.

As for online prediction, a particular feature of time series

modeling is that a target data point at a certain time instant

will become the predictor of future data points. For instance,

at time t, predictors (xt−1, xt−2, . . . , x1) are used to make

prediction on t and update the model together with xt. Then,

xt will be used to predict values on time t+1, . . . and so on.

The problem with such a procedure is that if xt is an outlier

and thus flagged as a suspicious point, the prediction based

on xt is biased, though the model is maintained properly in

WG-Learning.

Therefore, we propose to use the forecasting from the learnt

neural network to replace suspicious points for the subsequent

prediction based on the idea of sequence modeling with RNN

[17]. Formally, the prediction process is now expressed as:

x̂t = g(x̃t−1, x̃t−2, . . . , x̃1;Wt−1) (18)

where ∀k ∈ {1, . . . , t− 1},

x̃k =

{
x̂k as (10) xk is a suspicous point

xk otherwise

D. Discussion

Our proposed WG-Learning can be extended to perform

outlier and change point detection with ease. Since our WG-

Learning is able to provide robust prediction, we can integrate

additional sub-windows into the sliding window to model the

error distributions of normal behaviours in time series [5].

Then, the statistics extracted from sub-windows is leveraged

to perform various statistical test [5], [6], [13] to locate the

occurrences of change points. For the suspicious points not

identified as change points, they are reported as outliers.

As for the size of the sliding window, we can adapt time-

varying windowing techniques [6], [13] to our WG-Learning,

so as to dynamically adjust the window size sufficient for sum-

marizing the error distribution of the current neural network.

V. EXPERIMENTAL ANALYSIS

In this section, we conduct extensive experiments to demon-

strate the prediction performance of the proposed method WG-

Learning.

A. Experiment Setup

Datasets: we use both synthetic and real datasets for the

evaluation.

Synthetic: this synthetic dataset is produced based on a

time series generator [1]. It generates segments of time series

by randomly sampling the mean μi, variance vi, trend slop

ui and length li specific for each segment i from the prior,

μi ∈ [0, 100], vi ∈ [10, 30], ui ∈ [−0.5, 0.5] and length

li ∈ [500, 1000]. The data points in each segment are then the

samples from the Gaussian distribution with the corresponding

mean and variance plus the trend component. The number

of points in each segment is the sampled length. In this

way, we obtain time series with change points, which are the

boundaries between segments. Outliers are injected into each

segment based on a Bernoulli distribution specified by β and

thus li · β is the expected number of outliers in the segment

of time series. β is chosen as 0.01. The magnitude of outliers

is defined as the times of the variance of the segment. By

default, the magnitude is 10, which means that the value of

an outlier data point is sampled from a Gaussian distribution

with 10 times larger mean than the mean of the corresponding

segment.

YSyn: the synthetic time series is from Yahoo’s S5 dataset2.

The dataset consists of both real and synthetic time-series.

We use the time series in A4Benchmark containing synthetic

outliers and change-points. The synthetic time-series have

varying noise and trends with pre-specified seasonalities.

YReal: the real time series is from the A1Benchmark data

in Yahoo’s S5 dataset. The time series representing the metrics

of various Yahoo services contains both outliers and change

points.

Baselines: We compare the proposed method with three base-

lines.

RLSTM: this refers to the conventional real-time current

learning (RTRL) of LSTM neural networks [41]. It updates

the network directly using the newly available data without

considering the effect of outliers and change points.

SR-LSTM: it stands for the online learning of LSTM with

suspicious point removal based on the idea of [12]. Specif-

ically, once a suspicious point is detected, SR-LSTM skips

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

822

����������	

��

��
�����
��

�
���

�������	��
�
�
��	���
	�����

�����

�������	��
��
��	���
	�����

�������	��
��
��	���
	�����

�����

(a) Synthetic dataset

�������	��
�
�
��	���
	�����

�������	��

�������	��

(b) YSyn dataset

�������	��
��
��	���
	�����

(c) YReal dataset

Fig. 4: Online one-step ahead prediction (best viewed in colour). The figures in each column respectively visualize the observed

time series, and the predicted ones with the baselines and the WG-Learning. The proposed method provides a smooth prediction

resistant to outliers and change points.

the model update on this point. This method may circumvent

the adverse effect of outliers, but could lead to loss of useful

information for changing patterns.

ELSTM: this baseline is based on [8] to integrate both

outlier and change point detection into LSTM. It uses the

statistical control chart (e.g., EWMA) [5], [8] to monitor

the distribution of prediction errors. Based on the monitored

statistics, for a suspicious outlier, the model is updated by

using a recent normal point, while it is trained as usual when

the point is identified as a change point.

SR-LSTM and ELSTM have the confidence level parameter

in common with WG-Learning, and they are all set to 0.05 as

usual in typical statistical tests [5], [22]. Additionally, ELSTM

has a parameter, the moving average weight with the usual

recommendation range [0.1, 0.3] [5]. In the experiments below,

we set it to 0.2. The size of sliding window in WG-Learning

is set as 20. λ and γ are respectively set to 0.8 and 5

We use the same LSTM model for the baselines and the

proposed method in the experiments. In particular, the number

of layers is 3, and the number of nodes (neurons in LSTM

layer) is 400. The mean squared error is chosen as the loss

function. The L2 regularization with 0.0001 penalty is used.

823

Nesterov momentum is adopted as the optimizer. Our WG-

Learning and baselines are implemented based on Theano3.

Evaluation Metric: We evaluate the predictive performance

of WG-Learning and baselines in terms of root mean square

error (RMSE) excluding the outliers. Lower values of RMSE

are considered better. At each time instant, we perform one-

step ahead prediction using the online model and then update

the model when the new data point arrives.

B. Experiment Results

Table II shows the prediction results on each dataset. WG-

Learning outperforms the baselines in all datasets by tracking

the variation of time series and resisting to outliers. We ob-

serve that for the datasets with large outliers e.g., YReal, WG-

Learning significantly outperforms RLSTM. For the datasets

(Synthetic and YSyn) having medium outliers, WG-Learning

still achieves better results. SR-LSTM and ELSTM occa-

sionally get better than RLSTM depending on datasets. For

the very dynamic dataset, e.g., YSyn and YReal, SR-LSTM

has higher errors than RLSTM, this could be because the

aggressive update skipping mechanism of SR-LSTM leads to

missing useful information.

TABLE II: Prediction accuracy on synthetic and real datasets

(RMSE).

����������approach
dataset

Synthetic YSyn YReal

RLSTM 11.01 562.56 10104.24
SR-LSTM 10.03 669.63 13816.99
ELSTM 10.31 660.02 13789.21

WG-Learning 9.62 502.79 8928.92

Figure 4 visualizes the predictive performance of the online

model for the time period with complex outliers and change

points in each dataset. The top plots of Figure 4 visualize

the observed time series of the datasets Synthetic, YSyn

and YReal. The red points represent the outliers and the

vertical dotted lines indicate change points. YReal has no

explicit change points and thus no vertical line is shown in

the corresponding figure. The other plots of Figure 4 show

the predicted time series using the three baselines and WG-

Learning.

From Figure 4, we can observe that in dataset Synthetic,

our WG-Learning is able to catch the details of time series

as well as promptly adapting to the data after change points.

Meanwhile, WG-Learning can circumvent the adverse effect

of outliers by sticking to the underlying patterns of the time

series. It indicates that the weighted gradients of WG-Learning

are indeed effective. On the contrary, RLSTM suffers from the

outliers by presenting predictions having oscillations around

outliers as is shown in the second row of Figure 4. Compared

with WG-Learning, the prediction of SR-LSTM and ELSTM

resembles a sliding average and may loss details of the time

series, though they present robust prediction compared with

RLSTM. Meanwhile, SR-LSTM and ELSTM are lagged on

3http://deeplearning.net/software/theano/

change points. In ELSTM, a change point is detected when the

data points following it incur sufficient change in prediction

errors [5], [6], [13]. This means in the online learning, there is

a delay in change point detection, and thus ELSTM may miss

the update of changing data points. With similar tendency, our

WG-Learning provides consistent robustness and adaptiveness

on datasets YSyn and YReal.

In addition, we investigate the weighted gradients of WG-

Learning. We record the gradient weight at each data point

(i.e., βt in Eq. (14)) during the online learning process and

visualize them associated with the observed time series in

Figure 5. We can observe that: most of the gradient weights

are close to one at the regular points, and in turn the model can

be normally updated in an online fashion. However gradient

weights are much less than one at the detected outliers, which

avoid deviating the model from the underlying patterns of the

time series. On the other hand, gradient weights at the detected

change points are mostly retained close to one, such that WG-

Learning is able to adapt to the new patterns in real time.

VI. CONCLUSION

In this paper we propose an adaptive gradient learning

method for recurrent neural networks (RNN) in the con-

text of online learning problem. The WG-Learning aims to

incrementally learn the streaming time series and provide

robust predictions adapting to the changing patterns as well

as resisting to outliers. In the WG-Learning, we introduce the

weighted gradient to the online SGD for the RNN models,

based on the local features of time series. The method enables

to update the RNN models with downweighted gradients for

outliers while full gradients for change points. The predictive

performance of the WG-Learning in the extensive experiments

on both synthetic and real datasets verifies the superiority of

the WG-Learning over the baselines.

Acknowledgments This work was partly supported by

Nano-Tera.ch through the OpenSense2 project and the EU FP7

Project SMARTIE (contract no. 609062).

REFERENCES

[1] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.
arXiv preprint arXiv:0710.3742, 2007.

[2] O. Anava, E. Hazan, S. Mannor, and O. Shamir. Online learning for
time series prediction. In Proceedings of the Conference on Learning
Theory, pages 172–184, 2013.

[3] O. Anava, E. Hazan, and A. Zeevi. Online time series prediction with
missing data. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 2191–2199, 2015.

[4] T. W. Anderson. The Statistical Analysis of Time Series. John Wiley &
Sons, 2011.

[5] M. Basseville, I. V. Nikiforov, et al. Detection of abrupt changes: theory
and application, volume 104. Prentice Hall Englewood Cliffs, 1993.

[6] A. Bifet and R. Gavalda. Learning from time-changing data with
adaptive windowing. In SDM, volume 7, page 2007. SIAM, 2007.

[7] E. Busseti, I. Osband, and S. Wong. Deep learning for time series
modeling. Technical report, Stanford University, 2012.

[8] V. Chandola and R. R. Vatsavai. A gaussian process based online change
detection algorithm for monitoring periodic time series. In SDM, pages
95–106. SIAM, 2011.

[9] C. Chatfield. The Analysis of Time Series: An Introduction. CRC Press,
2013.

824

Fig. 5: Gradient weights of WG-Learning (best viewed in colour): the observed time series (top) and the corresponding weights

(bottom).

[10] S. Chauhan and L. Vig. Anomaly detection in ecg time signals via
deep long short-term memory networks. In Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference
on, pages 1–7. IEEE, 2015.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[12] J. T. Connor, R. D. Martin, and L. E. Atlas. Recurrent neural networks
and robust time series prediction. Neural Networks, IEEE Transactions
on, 5(2):240–254, 1994.

[13] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys (CSUR),
46(4):44, 2014.

[14] R. Garnett, M. A. Osborne, and S. J. Roberts. Sequential bayesian
prediction in the presence of changepoints. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 345–352.
ACM, 2009.

[15] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget:
Continual prediction with lstm. Neural Computation, 12(10):2451–2471,
2000.

[16] A. Graves. Supervised Sequence Labelling with Recurrent Neural
Networks. Studies in Computational Intelligence. Springer, 2012.

[17] A. Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[18] M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier detection for
temporal data. Synthesis Lectures on Data Mining and Knowledge
Discovery, 5(1):1–129, 2014.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[20] L. C. Jain, M. Seera, C. P. Lim, and P. Balasubramaniam. A review of
online learning in supervised neural networks. Neural Computing and
Applications, 25(3-4):491–509, 2014.

[21] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[22] N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable framework
for automated time-series anomaly detection. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1939–1947. ACM, 2015.

[23] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–
444, 2015.

[24] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell. Learning to diagnose
with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677,
2015.

[25] C. Liu, S. C. H. Hoi, P. Zhao, and J. Sun. Online arima algorithms for
time series prediction. In Proceedings of the 13th AAAI Conference on
Artificial Intelligence, 2016.

[26] J. Liu, K. Zhao, B. Kusy, J.-r. Wen, and R. Jurdak. Temporal embedding
in convolutional neural networks for robust learning of abstract snippets.
arXiv preprint arXiv:1502.05113, 2015.

[27] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point
detection in time-series data by relative density-ratio estimation. Neural
Networks, 43:72–83, 2013.

[28] Q. Lyu and J. Zhu. Revisit long short-term memory: An optimization
perspective. In Advances in neural information processing systems
workshop on deep Learning and representation Learning, 2014.

[29] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short term memory
networks for anomaly detection in time series. In European Symposium
on Artificial Neural Networks, volume 23.

[30] J. Martens and I. Sutskever. Learning recurrent neural networks with
hessian-free optimization. In Proceedings of the 28th International
Conference on Machine Learning, 2011.

[31] L. L. Minku and X. Yao. Ddd: A new ensemble approach for
dealing with concept drift. IEEE Transactions on Knowledge and Data
Engineering, 24(4):619–633, 2012.

[32] D. C. Montgomery, C. L. Jennings, and M. Kulahci. Introduction to
Time Series Analysis and Forecasting. John Wiley & Sons, 2011.

[33] C. Richard, J. C. M. Bermudez, and P. Honeine. Online prediction of
time series data with kernels. IEEE Transactions on Signal Processing,
57(3), 2008.

[34] G. Ristanoski, W. Liu, and J. Bailey. A time-dependent enhanced support
vector machine for time series regression. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 946–954. ACM, 2013.

[35] Y. Saatçi, R. D. Turner, and C. E. Rasmussen. Gaussian process change
point models. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 927–934, 2010.

[36] A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical
study of learning rates in deep neural networks for speech recognition.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 6724–6728. IEEE, 2013.

[37] I. Sutskever. Training Recurrent Neural Networks. PhD thesis, Univer-
sity of Toronto, 2013.

[38] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[39] O. Vallis, J. Hochenbaum, and A. Kejariwal. A novel technique for
long-term anomaly detection in the cloud. In 6th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 14), 2014.

[40] W. W.-S. Wei. Time series analysis. Addison-Wesley publ Reading,
1994.

[41] R. J. Williams and D. Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–
280, 1989.

[42] W. K. Wong, M. Xia, and W. C. Chu. Adaptive neural network model
for time-series forecasting. European Journal of Operational Research,
207(2):807–816, 2010.

[43] Y. Wu, J. M. H. Lobato, and Z. Ghahramani. Gaussian process volatility
model. In Advances in Neural Information Processing Systems 27, 2014.

[44] K. Yamanishi and J.-i. Takeuchi. A unifying framework for detecting
outliers and change points from non-stationary time series data. In
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 676–681. ACM, 2002.

[45] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

825

