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Abstract. A new multiscale coupling method is proposed for elliptic problems with highly
oscillatory coefficients with a continuum of scales in a subset of the computational domain and
scale separation in complementary regions of the computational domain. A discontinuous Galerkin
(DG) finite element heterogeneous multiscale method (FE-HMM) is used in the region with scale
separation, while a continuous standard finite element method is used in the region without scale
separation. The use of a DG-FE-HMM method allows for a flexible meshing of the different models
in the overlapping region. The unknown boundary conditions at the interfaces are obtained by
minimizing the error of the two models in the overlapping region. We prove the well-posedness of both
the continuous and discrete coupling problems and establish convergence of the multiscale method
towards the fine scale solution. Since in the region with scale separation we obtain an approximation
at a cost independent of the smallest scale in the problem, the computational cost of the multiscale
method is significantly smaller than a fine scale solver over the whole computational domain, while
the algorithm allows us to treat situations for which standard numerical homogenization methods
do not apply.
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1. Introduction. Partial differential equations (PDEs) with multiple scales are
used to model a wide range of physical systems with numerous applications, ranging
from material and natural sciences to problems in engineering or biology. When the
ratio of the smallest scale in the problem to the size of the computational domain
is very large, the numerical approximation of such problems with classical numerical
methods can become computationally prohibitive as the smallest scales in the problem
have to be resolved, leading to discretization with a very large number of degrees
of freedom. Numerous multiscale methods have been developed in the past decade.
Without attempting to be exhaustive, we recall two important approaches that we will
contrast later with the new multiscale method proposed and analyzed in this paper.
We will focus on linear elliptic problems, but note that some methods described below
have been proposed also for other types of PDEs.

We first mention methods based on coarse oscillatory basis functions that encode
the high variation of the data in the multiscale PDE. In this class of methods we
have, for example, the multiscale finite element method (see the references in, e.g.,
[22]) and the recently proposed local orthogonal decomposition (LOD) (see [32, 27]).
In principle these methods can be applied to problems with general coefficients (e.g.,
without structural assumption on the coefficients), and convergence has, indeed, been
proved for rough coefficients for the LOD in [32, 27]. While these methods are quite
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general, they also come with a high computational cost to precompute the coarse
basis functions, as the original fine scale problem has to be solved on localized coarse
elements whose union is a partition of the computational domain of interest.

The next class of multiscale methods that we mention are methods supplement-
ing macroscopic data (computed through microcomputations) for the solution of an
effective equation solved by a macroscopic solver. This approach, widely used by en-
gineers (see, e.g., the references in [23]), has been developed into a general framework
in the heterogeneous multiscale method (HMM) [20, 2]. When finite element meth-
ods (FEMs) are used (at the micro- and macroscales), these methods are called finite
element heterogeneous multiscale methods (FE-HMMs). The theoretical justification
of these methods is that of the homogenization theory: given a family of PDEs in-
dexed by a parameter ¢, the theory of H-convergence establishes the convergence of
a subsequence of solutions to an effective PDE under quite general assumptions (e.g.,
boundedness and ellipticity of the diffusion tensor of an elliptic problem and right-
hand side in the dual of the Hilbert space considered in the weak formulation). In a
numerical approach such as the FE-HMM, the microcomputations are usually done in
sampling domains of size much smaller than the mesh width used for the macroscopic
solver. Hence, to extract the effective data, a computational cost independent of the
small scales can be achieved when, indeed, the small scales can be localized, i.e., when
the problem features scale separation. Rigorous convergence analysis has been estab-
lished for locally periodic coefficients or random stationary coefficients [1, 21, 3, 2].

In this paper we are interested in problems in which the scales are separated
in a subset of the computational domain with possibly a continuum of scales in the
complementary domain. Our aim is to couple numerical homogenization methods
such as the FE-HMM in part of the computational domain with a fine scale solver.
Such problems arise in many situations, for example, heterogeneous composite mate-
rials whose effective properties can be well captured by assuming a (locally) periodic
microstructure that might not, however, be valid near defects. In our modeling the
smallest scale is still supposed to be discretized at the continuum level, but for some
applications an atomistic scale should be considered.

Algorithms that couple numerical homogenization methods with a fine scale solver
have appeared in the literature. We mention the goal-oriented method [36], in which
the unknown boundary conditions for the fine scale subregions are provided by a
precomputed homogenized solution. Recently in [9], the authors propose a local-global
solution based on the L? projection of the homogenized solution onto the solutions of
fine scale local problems.

In this paper we propose and analyze a new coupling strategy inspired by virtual
control methods pioneered in [26, 31, 24] (see also [19] for recent developments). Our
method also shares some similarities with the recent works on atomistic-to-continuum
coupling [37] and the coupling of local and nonlocal diffusion models [16]. The method
that we propose relies on a decomposition of the computational domain €2 into a region
without scale separation w where the homogenized model is not valid, an overlapping
region wy where both the fine scale and the homogenized models are valid, and a region
wo where the homogenized solution adequately describes the physical problem. Thus,
we decompose the domain into a family of overlapping domains and introduce virtual
(interface) controls as boundary conditions. The interface controls will act as unknown
traces or fluxes, and the problem is reformulated as a minimization problem with state
equations as constraints. The optimal boundary controls of two overlapping domains
are found by a heterogeneous optimization problem that is based on minimizing the
discrepancy between the two models on the overlapping region. It is shown that by
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using a Caccioppoli inequality, the minimization can be performed for an L? norm.
As in the region with scale separation an energy approximation towards the fine scale
problems can also be obtained through the use of a locally periodic corrector we
also obtain an H'-convergence rate towards the fine scale solution over the whole
computational domain. In order to allow flexibility in the mesh used in the coarse
and fine scale regions, we use the discontinuous Galerkin (DG) FE-HMM [4] for the
numerical homogenization. The method analyzed in this paper was first announced
in [5]. In this paper we give a more general framework for the method presented in
[5] and offer the first full analysis for both the continuous and the discrete coupling
algorithms.

We finally compare our method with the recently developed numerical homoge-
nization of periodic microstructure with a defect proposed in [11]. There, the highly
oscillatory coefficient is assumed to be the sum of a periodic function and a localized
perturbation. The goal is to compute an approximation of the fine scale solution
that relies on homogenization but uses a nonperiodic corrector on a domain that ac-
counts for the defect. We will further compare these two approaches, each of which
is interesting in its own right, in our numerical experiments.

The outline of this article is as follows. In section 2 we describe our optimization
based multiscale method and prove the well-posedness of the optimization problem.
A priori error estimates of the continuous version of the optimization algorithm are
proved in section 3, while the fully discrete optimization based method is described
in section 4. In section 5 we state and prove fully discrete error estimates between
the numerical solution of the multiscale optimization based method and the fine scale
solution. Numerical experiments that verify the theoretical convergence rates and
comparisons with other coupling strategies are provided in section 6.

Notation. In what follows, C' > 0 is used to denote a generic constant independent
of . We consider the usual Sobolev space H(Q) = {u € L*(Q) | D"u € L3(Q2),|r] <
1}, where r € N4, |r| = ri 4+ 474, and D" = 7' ... 9}*. The notation |-| stands for
the standard Euclidean norm in R?. Let Y denote the unit cube (0,1)%, and define
Wi (V) := {v e H.(Y) | [, vdy = 0}, where the set H} .(Y) is the closure of

per per per

Cx,.(Y) in the H' norm.

per

2. Optimization based method. Let 2 be a convex, polygonal domain in
R?, d =1,2,3, with a boundary I' = T'p, UT' 5, where Dirichlet conditions are imposed
on I'p and Neumann conditions on I'y. Further, assume that I'p NI'y = 0 and that
I'p has positive measure. Let f € L%(Q), gp € HY/?*(I'p), and gy € L*(I'y), and
consider the following second order elliptic problem:

—div (a*Vu®) = f in €,
(2.1) u"=gp onlp,
n-(a*Vu®) =gy on Ty,
where the a® € (L>(Q))4*? are highly oscillatory, bounded coefficients with scale

separation only in some subregions of €). Further, a° is uniformly elliptic; that is,
there exists 0 < a < 8 such that

(2.2) alé)? <af(x)E- €, |af(x)€] < BlE]  VEERY for ae. x €R.

Thanks to the Lax-Milgram lemma, problem (2.1) is well-posed.
Let w denote a subregion of {2 in which there is no scale separation. Hence we de-
note by wy := Q\w the domain where we will apply the classical homogenization. The
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Fic. 1. Illustration of two scenarios for the domain €2 and its subregions.

fine scale solver will be applied on a domain wy, slightly larger than w, w; DD w, and
the overlap is denoted by wg := w1 Nws. Figure 1 illustrates possible domain decom-
positions. Assume that the tensor a® is given by a®(x) = af (2)1,(z) + a5(x) 1y, (x),
where 1,, denotes the characteristic function associated to the subdomain w. Further,
assume that the tensor a§ has scale separation, e.g., as(z, /<), and is locally periodic
in the fast variable. Following the homogenization theory, a tensor a9 can be derived
from a§. On the contrary, in the tensor af,, the scales are not well separated, which
prevents the use of numerical homogenization methods. The heterogeneities can also
be present in the right-hand side f, and following homogenization theory, the smooth
part of f converges to a function f° when the size of the heterogeneities goes to zero;
see [15].

Let Iy = Ow; \ T and 'y = Ows \ T' be Lipschitz continuous boundaries. We
consider the following minimization problem: find u§ € H'(w;) and uJ € H'(ws)
such that %Hu‘i —uJ|lZ, (wo) 18 minimized under the following constraints for ¢ = 1, 2:

—div (a;Vu;) = f in w;,
U; = 6‘1 on l—‘i,

u; =gp ondw;NIp,

n; - (a;Vu;) =gy  on Ow; NTx,

(2.3)

where the boundary conditions #;, which we refer to as virtual controls, are to be
determined. Here and in what follows, we will sometimes use the short-hand notation

a1 =af =a 1, +a5l,,, ui=uj,

5 U= ug7

and u;(0;) to emphasize the dependency on ;. One could also consider Neumann
boundary controls instead of Dirichlet controls and follow the theory with some ad-
justments.

The strategy is to solve a minimization problem in a space of admissible controls,
where the cost function to minimize is

1
J(01,02) = 5”“?(91) — un(02) |12 () -

The existence and uniqueness of the solution will be proved following the method of
Lions [29].
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Following the virtual control method exposed in [24], we split the solutions into
two parts as
ui(61) = ui g +vi(61), un(ba) = ug, +v5(62),

where uf ; and u§ ; are independent of the controls and are defined as in (2.5). The
functions (v§,v9) are called the state variables and satisfy, for i = 1,2,

—div (a;Vv;) =0  in w;,
v = 01 on Fi,

v; =0 ondw;NIp,

n; - (a;Vv;) =0  on dw; Ny,

(2.4)

where v; = v§ and vy = 1.

The space of admissible Dirichlet controls on I';, i = 1,2, is defined by

D — (e HY*(;) | 3u € H (w;),u = p; on Ty, u =0 on dw; NT'p,
and n; - (a;Vu) =0 on dw; NTx }.

For simplicity, we set U := UL x UP. We define for i = 1,2

H%)( ):{UEHl( )|u=00n8wzﬂFD},
HDF( i) ={u € H" (w;) | u=0o0ndw;NTp and I';}.

Let yp : H'(Q) — H'Y?(I'p) denote a linear continuous map, called the trace map.
As gp isin HY/2(I'p), there exists R,,, € H'(f), called a lifting of the boundary data
gp, such that yp(R,,) = gp. Further, there exists a constant C(£2) depending on
such that

Ry llar @) < CEgnlla/zry)-

The function u; o € Hp, . (w;) satisfies, for all test functions w € Hp, , (wi),

(2.5)  Bi(uio,w) :z/ a;Vu;o - Vwdz

= / fwdx —/ a;VRg, - Vwdx —|—/ gnwds =: Fy(w).
Wi Wi Ow; 'y
The state solution v; € H}(w;) verifies, for i = 1,2,

Bi(v;,w) =0 VYwe€ Hll)L, (wi)-

Thanks to the Lax-Milgram lemma, the solutions uf, and ud o exist and are
unique. Moreover, if the virtual controls 6; and 6 are given, the solutions v§ and 3
can be uniquely determined. The solutions u§  and u§ ; can be computed before the
coupling, as they are independent of the virtual controls (01,062).

Homogenization method. As mentioned at the beginning of this section, the ho-
mogenization method can be used in wy to capture the effective behavior u9. With
additional information on the structure of the tensor a§, such as a5(z) = aqz(z,z/¢) =
az(z,y) is Y-periodic in y, where Y = (0,1)¢, the homogenized tensor a9 can be
explicitly computed as

1
@) = 1 /Y as(z,y) (I + V) dy,
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where Vx = (Vx!,...,Vx?) and I denotes the d x d identity matrix. Let (e;)%,
be the canonical basis of R?. The functions x/ € Wl (Y) are called the first order

) per
correctors, and, for j = 1,...,d, x? is the solution of the cell problem
(2.6) / ax(z, y)Vx? - Vody = —/ as(z,y)e;Vudy You € Wplcr(Y),

Y Y

with periodic boundary conditions.

This homogenized solution 49 will be a good approximation of u¢ in the L? norm
but will fail in the H! norm. However, we can correct the homogenized solution and
prove convergence in the H! norm in a subregion of wy. Let u® be the homogenized
solution corresponding to u in wo with, for all € I's, u%(z) = u®(z) in the sense of
the trace. Then, u® can be corrected using the periodic correctors x?, and we obtain
convergence to 1 in the H! norm on wo,

lu = (W° + ew(z, z/e)) | (ws) < Ce?,
where the corrector term w(x, z/¢) is given by

o(n2) =30 (D)2 ceen

This will be explained in detail during the analysis in section 3. For classical results
and proofs in homogenization, see, among others, [10, 28].
Nonoverlapping domain decomposition. The strategy relies on overlapping do-
main decomposition, but one could treat the problem using a domain decomposition
method without overlapping domains [38]. Let n stand for the outer normal derivative
at the interface I';. The problem will be as follows: find u§ € H(w), uJ € H'(w2)
satisfying
)=1f in w,
{=u on Iy,

n- (a5 Vu§) =n-(ayVuy) on Iy,
)=f

in wo,

with the boundary conditions on I'p and I'y inherited from problem (2.1).
The Euler—Lagrange variational formulation. The minimization problem reads as
follows: find (61, 62) € U such that

1
(2.7) J(01,602) = min  J(pi,pe) = min -

0 2
(#1,#2)61/{ (#1,#2)61/{ 2 Hui (/’l’l) - u2(/'l’2)HL2(UJ0)'

Using the splitting into v;(;) and u; o, the cost J can be written as
1 5 0 2 1 € 0 2
J(pa, p2) = 5””1 (1) = va(p2) 2w + 5”“170 — U 0llL2(we)
b i)~ o)) (ufp — ) do
wo

1 1
= 5”((#17/&)7 (1, p2)) = F(p, po) + 5”“?,0 — 9 0/F2(0)s
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where 7 : U x U — R is given by

(2.8) 7((61,62), (111, p2)) =/ (v5(61) — v3(62)) (V5 (1) — v3 () da

0
and F': U4 — R is given by
(2.9) Funa) == [ (05m) = o§(02)) (45,0 — 1) do
wo

for (01,602), (p1,p2) € U. Following [29], the existence and uniqueness of the optimal
controls hold when the form 7 is a scalar product on the space of admissible controls.
To prove the coercivity of the form 7, we need a strong version of the Cauchy—Schwarz
inequality. The proof is given in Appendix A.1l.

LEMMA A.3 (strong Cauchy-Schwarz). Let v € H}(wi) and v3 € HL(ws) be
solutions of (2.4) for i = 1,2, respectively. Then, there exist an €9 > 0 and a positive
constant Cs < 1 such that for all € < eq, it holds that

/ o5ode < Cullof 12w 10212 on).
wo

LEMMA 2.1. Let v§ and v§ be solutions of (2.4) for i = 1,2, respectively. The
following bounds hold:

C
05 llL2 () < ?||Uf||L2(w0),

C
V912 (@\wr) < ?||U8||L2(wo))

where T is the width of the overlap and C' is a constant depending on «, B, and the
Poincaré constant associated to wy and we, respectively.

Proof. We prove the lemma for the function v;. Let n be a cutoff function such
that n =1inw, n =0in Q \ wy, and |Vy| < 1/7. Further, we have supp(Vn) C wo.
Then nv§ € H{(w1), and using the Poincaré inequality, it holds that

[01llL2 @) < Imvillez ) < CollVoD) Iz w,)-

The proof follows from the Caccioppoli inequality lemma, Lemma A.2, as

19075 ) < gl
We obtain
Iofhar < Con 22 oo
The proof is similar for vJ. a

LEMMA 2.2. Let gy be given by the strong Cauchy—Schwarz lemma, Lemma A.3,
and assume that € < g9. Then, the form 7 defines an inner product on U.

Proof. The bilinearity, symmetry, and positivity are clear. We prove that the
form is definite, i.e., m((p1, p2), (1, p2)) = 0 if and only if (p1, u2) = (0,0).

On the one hand, if the virtual controls are zero traces or fluxes, the state functions
v§ and v9 must be zero everywhere, as they are solutions of boundary value problems
with zero right-hand side and boundary conditions. Thus 7((p1, p2), (11, u2)) = 0.
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On the other hand, using the strong Cauchy—Schwarz lemma, Lemma A.3,

0= 7((k1, p2), (11, p2)) = 105 (1) = 03 (p2) |72 )
= 0f (1) [1F2wg) + 102 (12) 12w —2/ vf (p1)v3 (p2)d
wo

> o5 ()1 + 10812 ) — 206105 (1)l 198 (12 200
> (1= C) (05 (1)l By + 108012 e ) -

As Cy < 1, it holds that [[v5(p1)llL2(we) = 108 (k2)[|L2(we) = 0, which implies that
v§ = v) = 0, a.e. in wy. By Lemma 2.1, we then have that |[vf(u1)|| 2y = 0 and
08 (p2) |2 (\wy) = 0, and thus v; = 0 a.e. in w; for @ = 1,2. Then we obtain, for
i=1,2,

lillmrz e,y < Cillvi(pa)llm w,) = 0,

where the constants depend on w;, and the trace operators v; : H/?(I';) — H'(w;).
Thus, p; = 0 on I';, and the form 7 is an inner product on U. a

We can then define a norm on U induced by the inner product w. For a pair
(Mlaﬂ?) € Z/{, we set

(2.10) 11, )@y = 1105 (1) = 03 (12) |12 () -

The space U might not be complete with respect to this norm, but we can construct a
completion of U and solve the minimization problem in the completed space. Let us
denote the completed control space by U. Using the Hahn-Banach theorem, the inner
product 7 and the functional F' can be continuously extended in a unique way on U,
and we denote these extensions by 7 and F. The form # is continuous, symmetric,
and coercive in . The existence and uniqueness of the optimal pair in U is given in
the next theorem.

~ THEOREM 2.3. The minimization problem (2.7) has a unique solution (61,62) €
U that satisfies the Euler—Lagrange equation

(2.11) #((61,62), (1, p12)) = Fpa, p2) V(o) €U,

where 7 and E are the continuous extensions of © and F given by (2.8) and (2.9).

Proof. The existence and uniqueness of (61, 62) € U follows from [29, Theorem I.
1.1], as the form 7 is symmetric, continuous, and coercive, and F' is continuous. O

The optimal pair (61,62) € U minimizes the cost function, but in general there
exist no functions u; € H'(w;) that satisfy (2.3). However, there exists an embedding
o : U — U such that (i) is dense in U. Further, we can identify &/ with o(i) and
conclude that (f1,62) is the limit of a sequence (61,602, )neny With u;(0;,) € H(w;)
satisfying (2.3). In what follows, for simplicity, we assume that the optimal pair is in
U, and hence u;(;) € H'(w;) for i = 1,2 (we then also have v;(0;) € H*(w;)).

Optimality system. The state solutions and the optimal controls (61, 62) € U are
obtained by solving an optimality system, derived from the minimization problem.
The boundary value problems on w; and ws act as constraints. Let \;, ¢ = 1,2,
be Lagrange multipliers associated to the constraints in w;, and consider the critical
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point of the Lagrangian functional

1 .
E(Ui, /\1,91,Ug,)\2,92) = 5””? - ug”%ﬂ(wo) + <f + div (a’ivui)v)\l>H*17H1
+ (f + div (aSVug), /\2>H*17H17

with u; € H}(w;) and \; € H?(w;), with A; = 0 on dw; NI'p and [';, and n;-(a; V;) =
0 on Ow; NT'y for ¢ = 1,2. Using the transposition method [30], we can write the
right-hand side of the Lagrangian in terms of the state, Lagrange multipliers, and
control variables. Computing the Gateaux derivatives for each of the unknowns leads
to the optimality system.

We note that the optimality system can also be derived by using the adjoint
problems of (2.3).

3. A priori error analysis of the continuous coupled problem. In this
section, we give an a priori error analysis of the optimization based method. The
analysis is separated into fine and coarse scale error estimates. The solution of the
minimization problem with constraints (2.3) gives us a fine scale solution in w; and a
coarse scale solution in wy. Looking at the error between the solution of the coupling
and the exact fine scale solution u® on either w; or wy obliges us to estimate terms on
the boundary I'; or I's, respectively. In order to avoid such additional error terms,
we introduce an intermediate domain w™ with w C w* C wy. Then given u§(6;) and
u9(2), the solutions of the optimization based coupling method, we define

_ u§(01) in wt
1 f=q 1 : ’
(3 ) u { ugec(92) in Q \ w+’
where u5® stands for a correction to the homogenized solution u$(63) given below.
The main convergence results are

Hus — QEHHl(w'*') < Ce,

[[uf — @ ||g1 (o) < CeM/2,
where the constants depend on the width of w™ and the ellipticity constants of a®.
For the analysis, we consider the classical locally periodic correctors x? solutions of

(2.6), but other postprocessing procedures could be used. The correction u5%¢(z) is
given by

d 0
rec ] j E 8U2(ZIJ) +
(32) up™ () = uy(w) + Ejzﬂ X (a:, 5) dz; zeN\w,

where uJ = uJ(6>). We sometimes use ud(f2) and u5®(6>) to emphasize the depen-

dency on #3. We will, however, avoid the heavy notation u3(f2)(x) and drop the
dependency on #; when writing such maps as functions of x.

A priori error estimates for the fine scale solver in w™. The coupled solution
restricted to the subregion w™ is given by the fine scale solution u$(#;); hence the
error becomes [[u® — 4% (|1 (+) = |u® — uf (01)]| 11 (wt)-

Let 7 denote the width of the overlap wyp, and recall that the heterogeneous tensor
a§ satisfies the ellipticity condition (2.2). Further, we denote by 77 the distance
between dw™ and w; it holds that 7+ < 7. Moreover, we suppose that there exists
€o > 0 such that the strong Cauchy—Schwarz lemma, Lemma A.3, holds for all ¢ < gg.
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Let v; : HY(w;) — HY?(T;), i = 1,2, be trace operators, and consider the solution
u® restricted to the domain wo,

—div (a5Vu®) = f in wo,
u® = y2(uf)  on I'g,

u® = gp on dwy, NT'p,

ng - (a5Vu®) = gy on Owy NT'y.

Further, for a fixed e < g9, we introduce u" € H'(wy), the homogenized solution of

—div (a§Vu®) = f in wo,

u® = y(uf)  on Ty,
(3.3) u =gp on dws NT'p,
ne - (a3Vul) = gn on dws NT'y.

We assume that strong convergence in the L? norm is available [28, sect. 1.4], i.e.,
(3.4) Ju® = 62 < Ce.

Remark 3.1. The error estimate (3.4) holds if as(-,y) € WL>(Y) and u° €
H?(wy). This can be seen by following the lines of the proof in [28]. Thanks to
the regularity of a§, we have x/ € W1>°(Y)). The regularity on the tensor can be
relaxed to as(-,y) € WHP(Y) for p > 2, and 7 € WPP(Y)NCH*(Y) for s =1 —d/p.
For the proof of (3.4), we refer the reader to [28, 33].

We follow the framework introduced in [37] and define an operator P : U —
HY(w1) x HY(Q\ wy) by

uio+vi(pn)  inwi,

3.5 Hz) = Plps pz) = '
(3.5) (11, pi2) (k1 p2) {ug)OJrvg(m) in Q\ wy,

where v; are solutions of (2.4) for i = 1,2. We note that for the traces (71 (u®), y2(u®))
of the exact solution uf, we obtain

u®  in wq,

P(yi(u®),72(u?)) = { 0

u?  in Q\ w.

The operator P can be split into P(u1, p2) = Uy + Q(u1, p2) for (1, pe) € U, where
we define

us§ in wy v§(p1)  inwp
3.6 Up=< -0 ’ and o) =14 & ’
(3.6) 0 {u%o in Q\ wy Q. 2) {vg(,ug) in Q\ wg.

THEOREM 3.2. Let u® be the solution of (2.1), and let u® be given by (3.1).
Suppose that u® and x? are regular enough so that (3.4) holds. Let e be given by the
strong Cauchy—Schwarz lemma, Lemma A.3, and assume that € < €. Then, we have

[ = ui (01) [ (w+) < Ce,

where the constant C' depends on 7, 71, o, B, and on the domains wi and ws.
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Proof. The difference u® — u$(61) € H}(w1) is a®-harmonic in wq, and the Cac-
cioppoli inequality theorem, Theorem A.1, can be applied; that is,

lu® = w3 (Ol @y < ———llu” = w3 (O1)ll2 ),

T —

where the constant C' depends on the ellipticity constants of the tensor a®. Let us
focus on the L? norm; recalling that u§(0;) = P(61,62), it holds that

[u® —ui(61) 2wy = [[u® — P(61,02) L2 ()
< u® = Py (u®), v2(u”))[lL2(w,) + [[P(71(u®), v2(u®)) — P(61,02)||L2(w)-

By the definitions of P and ¢, the first L? error is zero, and it remains to bound the
second L? error

[ = i (01) L2 (1) < [P (71 (u®),72(u®)) — P(61,02) |12 (wr)

= [Uo — Q(71(u®),72(u%)) — Uo + Q(01,02) |2 (wy)

< QU (). A2 () = (6162 - a0
where the norm || - |[r+q) is induced by the inner product 7 and defined in (2.10).
Using Lemmas 3.3 and 3.4 given below proves the result. d

LEMMA 3.3. Let u® and u® solve (2.1) and (3.3), respectively, and let (61,02) € U
be the optimal virtual controls. Then

[ (71 (u), y2(u®)) — (61, 02)]

Proof. By definition, we have

([ (72 (), 72(u)) = (01,02) ||~
- |7T((71(u5)a’72(us))a (M17#2)) - 77((91, 02), (p, Mz))|
= up

(1 2) €U [l (1, p2) |

L) < Nluf = w2 (o)

L*(U)

We look at the numerator. As the pair (61,602) minimizes the cost function J, the
Euler—Lagrange formulation (2.11) holds, and

7T(("r/l (ua)’ ’72(u€))7 (Mlaﬂ2)) - 7T((6‘1, 6‘2)7 (/1'17 M2))

(0 (1. (u%)) = 03 (32 (u)) (5 (1) — V3 (1)) dx

0

/ (05 (1) — 03(02)) (5. — S, o)l

£~

(i) +uio) = (v9(v2(u) +udp) ) (vi(u1) — v3(u2))de

0

[l
e~ T

(" —u®) (05 (1) — 03 (n2))da < [Ju® — w2 g [l (11, )|

0

I* (u) .

The result follows. a

To complete the a priori error analysis in the continuous case, we need to bound
the norm of the operator Q.
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LEMMA 3.4. Let ey be given by the strong Cauchy—Schwarz lemma, Lemma A.3,
and assume that € < 9. The operator Q, defined by (3.6), is bounded from L?(Q) to
L*(U):

el <,

where the constant C' depends on w1, we, T, and the strong Cauchy—Schwarz constant;
see Lemma A.3.

Proof. By definition, the norm of the operator @ is given by

b 1Q(p1, p2) |2
(upmyeu N (1s p2) |-

QI =

For (p1,p2) € U, we show the existence of a positive constant such that

1Q(k1, 1)1 () < Cll(p1, p2)]

For simplicity, we set v; = v;(u;), i = 1, 2. Using Lemma 2.1, we have

2
L*(u) .

1Q (ks 2) 120y = 10 1E2 (o) + 103117200\

C(wl;wg)
< T (05 ey + 1081y ) -

2
-
Next, using the strong Cauchy—Schwarz lemma, Lemma A.3, yields

1)ty = 195 = 081y = 05y + [y — 2 | oo
wo

> 0511w + 10812y = 2Csl105 2 103 12 )
> (1= ) (105 12y + 1032 ) -
Summarizing, this gives

C(OJ1; OJQ)

2 2
Q1 p2)[[f2(0) < m”(ul,m)ﬂm(w 0

A priori error estimates for the reconstructed coarse scale solver in Q\ wt. In
this section, we give an a priori error estimate in the coarse scale region Q \ wt. The
coupled solution restricted to the subregion Q \ w™ is given by u5%¢(6s).

LEMMA 3.5. Let u® and u$ be the solutions of problems (2.1) and (2.3), respec-
tively. Assuming that (3.4) holds, we obtain

[u® — u3(62)ll12(ws) < Ce.

Proof. We define an operator P : U — H'(w) x H'(wy) by

uf o+ vi(p) inw,
ug,O + Ug(,uz) in w2,

P(p1, p2) = {

and consider the decomposition P = Uy + @, following (3.6). It holds that u3(fy) =
P(91, 6‘2)|WQ, and

”’u’6 - U8(92)|‘L2(w2) < Hua‘ - P(’\Y/l (u€)772(u€))”L2(w2)
+ | P(y1(u®), v2(u®)) — P(61,02)[|L2(wr)-
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The term P(v1(u®),y2(u?)), restricted to we, is equal to uJ(y2(u¢)), which is defined
as the homogenized solution u” obtained in (3.3). Using (3.4), we have
[0 = u3(02) |12 (ws) < 1u® =t 2 + [P(1 (1), 72(u)) — P61, 62) 12 (wn)
< Ce + QI (v (u%), y2(u)) = (61, 02)lL- @) -

Following the proof of Lemma 3.4, we can show that ||Q] is bounded, and using
Lemma 3.3, we obtain

s — 3(02) (o) < Cre + Colu = w02y < C. 0

THEOREM 3.6. Let u® be the solution of (2.1), and let u5°¢(02) be given by (3.2).
Let as(z,y) € C(w2; LL,(Y)) and x/ € WL (Y), j =1,...,d. If, in addition, u® €

per per

H2(), u3(fs) € H*(w2), and x? € Who(Y), j =1,...,d, it holds that
lu® — w5 (62) |1 ety < C/2,

where the constant C is independent of €, but depends on T, T, and the ellipticity
constants of a5.

Proof. Recall that u° is the homogenized solution of (3.3); using the periodic
corrector y, we have a reconstructed solution u®"¢ given by

O,rcc( )_ 0( )_|_ zd: j( $)3u0($)
u z) =u’(x 8j:1x @, = Do,

Using the triangular inequality with u%"¢¢, we have

€

lu® = w5 (02) [l ety < M = u" @) + 0”7 = up®(02) 1 (0

The first norm is bounded by Ce!/2; this follows from [28]. The second norm can be
bounded by

0T —up®(0) [ (ert) < Ilu” — up(0a) 1 @10

32 (-2

Each of the terms can be bounded by Ce, using the Caccioppoli inequality on the
difference u® — u9(#2) and Lemma 3.5. a

[u

+e

Hl(Q\w‘*’)'

4. Fully discrete optimization based coupling method. In this section,
we derive a numerical method to solve the optimization based fine scale and coarse
scale problems. To fully resolve the fine scales in wi, we need a triangulation with
mesh size that resolves the fine scale, whereas the triangulation of £ \ w; can be
coarse and independent of the smallest scale, thanks to numerical homogenization
techniques. In order to allow for flexible meshing, we do not impose continuity of
the numerical homogenization method on I';. Here we choose to use a discontinuous
Galerkin method on ws and a continuous FEM on wj.

In what follows, we restrict the family of problems (2.1) to homogeneous Dirichlet
problems; i.e., we set gp = 0 and I'y = {0}. We denote by H},(w;) the set of functions
in H'(w;) that vanish on dw; NT'p for i = 1,2.

Further, we assume that the strong Cauchy—Schwarz lemma, Lemma A.3, and its
discrete version, Lemma A.7, hold.
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Numerical method for the fine scale problem. Let {T;}; be a family of partitions
over wy in simplicial or quadrilateral elements, with mesh size h < &, where h =
maxgeT; hi, and hi is the diameter of the element K. In addition, we suppose that
the family of partitions {7; }; is admissible and shape regular [14]:

(T1) Admissible. @1 = UgeT, K, and the intersection of two elements is empty, a
vertex, or a common face.
(T2) Shape regular. There exists o > 0 such that hx/px < o for all K € T; and
for all T; € {T;};, where px is the diameter of the largest circle contained
in the element K.
For simplicity, we consider, for each partition 7; € {7;};, a piecewise FE in wy, given
by
VA1 T;) = {w € Hh(w) | w), € R}K) VK € T},

where R! is the space of piecewise polynomials on K. Further, we denote by V' (w1, T5)
the functions in V3 (w1, 7;,) that vanish on dws.

Let u, j, be the numerical approximation of u§ satisfying (2.3) for i = 1. We can
decompose u, j, into u, j = u, o7 + v, j, where v, ; € Vj(w1,Tj) is obtained by the
optimization method and u, ; € V! (w1, 7j,) is the solution of

(4.1) B, (”170,#“’17}2) =5 (wu}) Vw, j, € Vo (w1, T3,),

where the right-hand side F} is given by

Fl(wlj):/ fwl);ldx.
w1

Thanks to the Poincaré inequality, the bilinear form B is coercive and bounded over
Vi (w1, T;); the existence and uniqueness of uy o j, follows. We note that a quadrature
formula should be considered for the bilinear form B; and for the right-hand side Fj.

Discontinuous Galerkin (DG) method for the coarse scale problem. Let {Ty}u
be a family of partitions over ws, with discontinuity in I'y and mesh size H =
max g7y, hi; further, we assume that the family of partitions {7x } g is shape regular
(T2). For each partition Ty € {Tu }, we denote by E the set of (d — 1)-dimensional
elements of Ty that form the boundary I'1—it will be edges (for d = 2) or faces (for
d = 3). Further, assume that the set E is composed of the smallest common interface
between two elements K and K_ of Ty, with intersection in I'y; that is, e is in F if
e=min Ky N K_ and e C I'y. As the solutions of problem (2.3) for ¢ = 2 are assumed
to be continuous in we \ T'1, we construct a piecewise FE space as

Vb (w2, T) = {v € Hh(wa \T1) N L*(w2) | v, € RY(K) VK € Tu},

and we denote by V! (w2, Tr) the set of functions of V3 (w2, Tr) that vanish over dws.
For v € V} (w2, Ti), we consider its average {-} and its jump [-] given by

(v +v-) and [v] =ving +v_n_,

N =

{v} =

where vy := v|g, denotes the trace of v from within Ky and ny stands for the unit
outward normal in K.

Quadrature formula. For piecewise FE spaces, a quadrature formula is given by
the pair (zx,|K]), where zk is the barycenter of K. The sampling domain of size ¢
around each point zx is denoted by Ks = x5 + d[—1/2,1/2]%
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The numerically homogenized tensor ay” (zx ) around the quadrature point zx is
obtained using numerical solutions of microproblems defined in the sampling domains
Ks; we note that a numerical approximation of f° can be obtained similarly. Let us
consider a partition 7, of Ks in simplicial or quadrilateral elements K of diameter
hk; the mesh size is h = maxgeT;, hi, and as the fine scales should be resolved in
K5, we impose h < . The piecewise micro-FE space is given by

SY(Ks, Th) = {v" € W(Ks) | vf', € RYK) VK € Th},

where W (K5) depends on the boundary conditions imposed on the microproblems;
W(Ks) = H}(Ks) for Dirichlet coupling, or W(Kj) = Wl (Kj5) for periodic cou-

0 per
pling. We introduce discrete microproblems: find 1%(}; € SYKs,Tn),i=1,...,d, the
solution of

(4.2) /K ag(x)V@/J;’(}; . Vw;-ldx =- /K as(z)e; - Vw?dx Vw;I € SY(Ks,Th).
s s

The numerically homogenized tensor at a quadrature point xx in a macroelement K
is computed by

1
(4.3) ay"(xx) = & . a5(x) (I + Vi) dz,

where Vil - = (Vzﬂ}g?, s Vw?(’?). Following [4], we define a DG macrobilinear form
BQ,H('v ) over VDl(WQa TH) X Vll) (wQa TH) by

Bo g (vo,m,wo 1) = Z |K a3 (k) Vo, (21c) - Vs, pr ()
KeTu

—I—Z pelve, 1] [we, m]ds
(44) ecE Y€

_Z/({agh(xK)sz,H(xx)}[[wz,Hﬂ

ecEY €

+ {ag’h($K)Vw2,H($K)}[[U2,Hﬂ) ds,

where the functions p. stand for weighting functions that penalize the jumps of vy g
and wy i over the element e in E. They are given by

(4.5) pe = khy ',
with k > 0, and h, is the size of the interface e.

The numerical homogenized solution us, g is split into ue g = u2,0, 7 +v2, 7, Where
vo, i € Vi (w2, Trr) is given by the coupling and us o g € Vi (wa, Tar) by solving

(4.6) By g (20,1, W, i) = Fa(wa,ir) Vwa i € Vi (w2, Tar)-

The right-hand side F5 is given by

Fy(wa i) = Z |K|f (2 w2, 1 (2K ).
KeTu
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Remark 4.1. Considering the nonhomogeneous Dirichlet boundary condition gp #
0 on I'p and the Neumann condition on I'y # {0} leads to some additional terms in
the right-hand sides F} and F5 of problems (4.1) and (4.6), respectively. In particular,
one should construct a lifting of the Dirichlet data as explained in section 2.

Remark 4.2. Higher order FE spaces can be considered, and we note that the
macro-FEM over w; and the micro-FEM over the sampling domains can be easily
generalized to higher order FEMs. For the DG-FE-HMM some work needs to be
done on the average of the fluxes, and we refer the reader to [4].

4.1. Numerical algorithm. In this section, we state the discrete coupling, give
the algorithm, and present the main convergence results. The well-posedness and the
proofs of the error estimates are given in the next sections.

The solution (uy j,,uz,1) € Vi (w1, Tf) x Vi (w2, Tr) satisfies

By (uy j,wy j) = Fi(wy f),

. 1
min =
9,0 (U2, 1, w2 1) = Fa(wa i)

, min 2|‘u1,ﬁ(ﬂl7ﬁ)_u2;H(u27H)”iz(wo) subject to {
1,hoHM2,

for all w, j, € Vi (w1, T;) and w i € Vi (wa, Tar). Introducing discrete Lagrange mul-
tipliers /\17;1 eVy (w1, 7T;) and Ao g € Vit (wa, Tr) for each of the constraints leads to
a discrete optimality system: find (v; ;,, A, 7, V2,1, Ao,r) € Vi (w1, T;) X Vg (w1, Tf) %
Vi (w2, Tar) % Vg (ws, Tar) satisfying /

(4.7) / (U1,71 - UZ,H)wLﬁdgC — B (wu}7 )‘1,}1) = _/ (uLO,ﬁ - u270,H) wlﬁdxv
wo wo
(4.8) Bl(“1,;}751,}1) =F (517}2) - Bl(“1,o7ﬁﬂ§17ﬁ)7
(4.9) / (vo, i — Ulﬁ)wgﬁdx — Bo n(wo i, Ao,mr) = / (ULO,B — ug,0, 1) W2, gdz,
wo wo
(4.10) Bo i (vo,1, &2, 1) = Fo(&2,1) — Bo,r(u2,0,8,62,H)

for all wy j, S Vl%(wl,ﬁ), 517}2 S Vol(wl,ﬁ), Wo,.H € Vl%(wQ,TH), 5271{ S Vbl(o.)Q,TH).
The optimality system (4.7)—(4.10) can be written in matrix form, for the un-
known vector U = (v, ;, 02,1, Ay, Aa,r) |5 @8

(4.11) (]\B{ _’gT) U=a.

The algorithm for the numerical coupling method is the following:
L. Find u, ; € V' (w1, T;) satisfying

(4.12) B (uLO,ﬁ’wLﬁ) =N (wl);l) Vw, j, € VO1 (w1, T;,)-
2. Find uz0,5 € Vg (w2, Tr) satisfying

(4.13) Bo (2,0 1w i) = Fa(we, i) Ywa g € Vg (w2, Tar).

3. Find v, ; € Vi (w1, T;;) and va g € VA (w2, Tar) by solving the saddle point
problem (4.11).
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We state the two main convergence results for the fully discrete coupling. The
optimization based method relies on the DG-FE-HMM; thus one should expect to
find the DG-FE-HMM error in the a priori estimates. The DG-FE-HMM is split into
a macro-, a micro-, and a modeling error:

egmm < epac t+enmrc +emon-

The macro- and microerrors correspond to FE errors due to the choice of macro-
and micro-FEM, respectively. The modeling error is due to the upscaling procedure
and will be influenced by the choice of boundary conditions for (4.2), the size of the
sampling domain ¢, and whether we consider collocation in the macro- and microbi-
linear forms of the slow variable x to the quadrature points in the tensor a5. Details
about the DG-FE-HMM error are given in section 5. Let (6, j, 02 1) be the discrete
couple of boundary conditions given by the minimization problem (2.7). We recall
the notation

u, j,(0, ;) denotes the fine scale numerical solution in wy,
ug i (02,1) denotes the coarse scale numerical solution in ws.
The coupling solution, denoted by iy, is defined as
(p. - N wt
_ uy;(0,;) inw',
(4.14) Uy = LT N
u27H(92,H) in Q\wT,

where u5%; (02 i) corresponds to the reconstructed coarse scale solution usg (62, )

and is defined by

d
rec g Uz i
) = e 0) 4 DD ), ek

j.h . : . .
where %" are the micro solutions of (4.2). As the reconstructed numerical solution
€
might be discontinuous across elements in ws, we consider a broken H' seminorm,

olg = > IVoltaug+ > Vol
KeTh(wt) KeTu(Q\wt)

We next state our main convergence result for the optimization based numerical
solution. We first have an error estimate in the fine scale region.

THEOREM 4.3 (a priori error analysisin w™). Let g9 be given by the strong Cauchy—
Schwarz lemma, Lemma A.3, and consider € < 9. Let u¢ and u® be the exact solu-
tions of problems (2.1) and (3.3), respectively, and let 1z, be the numerical solution
of the coupling (4.14). Assume u® € H*T1(Q), with s < 1, u® € H?(ws), and assume
that (3.4) holds; then

o s
—. (h +1|U5|H5+1(w1) +E+6HMM,L2) ,

[ =y (01 ) llmr vy < CLA US| e () +

where the constants are independent of €, H, iz, and h. The DG-FE-HMM error is
giwen in Lemmas 5.2, 5.3, and 5.5.

Next, we state error estimates in the coarse scale region for the optimization based
numerical solution with correctors.
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THEOREM 4.4 (error estimates in Q\ w¥). Let u® be the exact solution of prob-
lem (2.1) and uj, be the numerical solution of the coupling (4.14). Let a5(x) =
az(z,z/c), where az(w,y) is Y -periodic in y and satisfies az(w,y) € C(Wz2; Log,(Y)).
Let 1/)%}5 (z) € Wp(Ke), j=1,....d. If, in addition, u* € H*(Q), uy(62) € H*(wa),

u§ € H¥4 L (wy), with s <1, and w%s(x) e WL (K.), j=1,...,d. It holds that

h
[u5°(02) — us’s (02,1 |71 (o oty < C1e™/? + Co (_) + CsHluy| 2wy

€
Ci (3541, ¢ 2|, 0
+ puy (h |u1|H5+1(w1) +e+ H |U2|H2(w2)) )

where the constants are independent of H, i~z, h, and €.

Both theorems will be proved in section 5. We first discuss the well-posedness of
the numerical method.

4.2. Well-posedness. In this subsection, we prove the well-posedness of the
discrete coupling problem. The well-posedness of the DG optimization based cou-
pling method can be established using Brezzi’s theory [12] and the well-posedness
of problems (4.12) and (4.13). The Lax—Milgram lemma implies the existence and
uniqueness of u, ; € Vo (w1, Tj,).-

Due to the discontinuity in 7z, the space V! (wa, Trr) is not a subspace of Hg (w2);
however, it will lie in the piecewise Sobolev space

HX(Ty) = [[ H*(K)={veL'(w) |vyx € HXK) VK € Ti}.
KeTu

Suppose that the exact solution us o of problem (2.5) is in the space Hd (wa) N H?(w2).
We define the proper space for the analysis as V(wg) = Vi (w2, Ta) + Hg(w2) N
H?(ws) C H?(Tw); see discussions in [8, 18]. The space V(w2) is equipped with the
norm

1/2
(4.15) llvlll,, = (IIVUIIizM)ﬂL > h%{|U|S,K+|’U|z> :
KeTu
where
IVollPa,y = Y. Wk WBx= D 10772, and [0 = [lud?[V][F2 (-
KeTu Ir|=2 ecE

One can prove that (4.15) is a norm over V (w2), using the discrete Poincaré-Friedrichs
inequality [12],

(4.16) [0lE2(s) < CUVYIR(wy) + [0]2)-

Thanks to local inverse inequalities [14], restricting V (wa) to Vi (wa, Tr) reduces the
norm (4.15) to

1/2
0, = (19020 +02)
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PROPOSITION 4.5. There exists a value ko that depends only on (2.2), the shape

regularity of Tm, and the dimension d such that for all kK > ko, Kk being defined in
(4.5), the bilinear form Ba y (4.4) is stable in Vi (w2, T); i.e.,

By (v, o) > Chllvall®  Vou € Vi (w2, Th).
Furthermore, the bilinear form is bounded; i.e.,
By (v, wi) < Collva|llwell Yo, wa € Vg (w2, Ta)-

The constants C and Cs are independent of H, i~z, h, and .
Proof. For the proof, see [4, Lemmas 4.3, 4.4, and 5.18]. d

THEOREM 4.6. Let assumption (2.2) hold. Then there exists a unique solution
Uy o € Vi (w1, T;) of problem (4.12) which satisfies

1wy 0.mllH1 @) < CLllFilE-1(01)>

with a constant Cy independent of H, i~z, and .
Moreover, let ko be given by Proposition 4.5. Then, the problem (4.13) admits a
unique solution ug g € Vi (w2, Tr), and it holds that

lluz,0,mll < CollF2lla-1(ws),

where the constant Cy is independent of H, h, i~z, and €.

Proof. The existence and uniqueness of u, , 7 and ug g,z follows from the Lax-
Milgram lemma and Proposition 4.5. d

We introduce V(T';) as the set of functions p; € U' that are piecewise poly-
nomials on the elements over T';, ¢ = 1,2. Let us write system (4.7)—(4.10) in
terms of the discrete virtual controls 6, ; and 62 g: find (91),3,)\1_;1,92,H,/\27H) €

VHT1) x Vi (wi, T;) x VH(T2) x Vi (wa, Ta) satisfying

(417) 77((017}}7 GQ,H)v (lLLl)H’ :uQ,H)) - B((:ul,fw :uQ,H)v (Alﬁa /\Q,H)) = G(,uljp ,uQ,H)v
(4.18) B((0, j,,02,1), (& j, 2.1)) = 0

for all (p; . p2,m) € VHT)x VY(g) and (& 7 &2.m) € Vi (w1, T;) x Vi (we, T ). The
forms 7w, B, and G are defined by

m((0y 5s O2,1), (11 > H2,1)) = / (vy 501 5) — v2,m (02,m)) (vy 7, (1 1) — v, (p2,m))da,

wo
B((0, 1. 02,1), (& 72 &2,m)) = B1(0, 1, & 1) + Bo.u (02,1, $2,m),
/.

G0, 3, 02,1) =
(Note that in order to avoid overloading of notation, we reuse the notation 7 in the
discrete context, which should not be confused with (2.8).)
To prove the well-posedness of system (4.17)—(4.18), we need to show that the
following hold:
- The form 7 is continuous and coercive on V1(I'1) x V1(T'3) equipped with the
inner product 7.

(ul,O,fz - “2>07H)(U1,E(91,E) - UQ)H(HZH))dx.
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- The form B is continuous and satisfies an inf-sup condition.
The continuity of 7 can be easily obtained with the Cauchy—Schwarz inequality and
the discrete Poincaré inequality (4.16).
The coercivity of 7 can be proved similarly to the continuum case (cf. Lemma 2.2),
as is done in the next lemma.

LEMMA 4.7. Let €y be given by the strong Cauchy—Schwarz lemma, Lemma A.3,
and assume that ¢ < e9. Then, the form © defines an inner product on V1(I'1) x
VHT,).

Proof. We will use the discrete Cauchy—Schwarz lemma, Lemma A.7, with the
same ¢g and Cs, to prove that 7 is definite. Indeed, arguing as in Lemma 2.2, we
assume that (M,Ev p2, ) is such that

0= m((ty fy b2,10)s (1t oo b2,m)) = vy (g ) = V2,0 (2, ) 12 )
> (1= C) (o g )y + o2 G2, 1) [y )

As Cs < 1, it holds that |[vy j (kg p)lIL2(we) = llv2,m (12, 1)[[L2(we) = 0, Which implies
that vy j(1y ) = vo,m(p2,7) = 0 in wp and, in particular, py=0and poyp =0. 0O

Next, we prove the inf-sup condition for the bilinear form B.

LEMMA 4.8. The form B satisfies

B((Ml)}}a /1'27H)7 (51,71’ 52,H))

L*(U)

> C (il oy + 2,1l

sup
(By 7 oH2, 1) ||(N17E7M2,H)|

for all (&, j,,62,1) € Vit (w1, T;) x Vit (we, Tu). The constant C' is independent of «.
Proof. Let (&, ;,62.1) € Vg (w1, T;) X Vg (w2, Trr). By the definition of B, we have
B((py j,» i2,1), (&4 5o §2,1)) = Balpy . &4 ) + Bea (2,0, &2,1)-
Take (uy j, pi2,1r) such that v, (uy ) = & 7, € Vo' (w1, Tn) and v, m(p2,n) = &o.mr €
Vot (w2, Ter) - Then,

By (Ml)}}a 517}]) = /

w1

aiv”lﬁ(/‘lﬁ) -V§, jdr = / aiv&lfl -VE, dr > C||§17ﬁ||%{1(w1)-

w1

Similarly, by the coercivity of By g, it holds that

Bo b (po,m,&2,8) > C|||f2,H|||i2'
Thus,
2
B((p1y s i2,1)s (€ s €2.60)) = € (116 sy + N2l

where the constant is independent of H, h, iL, and . We can conclude since

Loy < v (g llez e + 1oz, (B2, m) L2 (w,)
< C (Ilog ) oy + o2, G2, )

= C (ll&y gl wn) + ezl ) - 0

(e s pi2,21)
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5. Fully discrete error estimates. In this section, we derive error estimates
for the fully discrete optimization based method. A postprocessing procedure is used
on the coarse solution ug fr(f2 i) to reach convergence to the exact solution u. The
norm considered is a broken H' seminorm, as we allow the corrected solution to be
discontinuous across elements of Q2 \ w. The fully discrete analysis is then conducted
for the error

W~ Tl = Y VO G Y IV~ )l e,
KeTh(wt) KeTu(Q\wt)

where the numerical solution of the coupling #j,, is given by (4.14). In the fully
discrete analysis of the DG-FE-HMM method, the error between the homogenized
solution and its approximation is decomposed into a macro-, a micro-, and a modeling
error [2]. These errors will contribute to the a priori estimates of our method.

Remark 5.1. In section 3, the error estimates depend on the bound of the operator
@ (3.6). This bound was obtained in Lemma 3.4 using Caccioppoli inequalities. In the
fully discrete case, we introduce a discrete operator Qf“H , which is a discrete version of
the operator ), and the estimates will depend on ||Q™||. For conforming FE spaces,
the norm of QE7H is bounded independently of the mesh sizes h, h, and H; this can
be seen by following along the lines of Lemma 3.4. For nonconforming meshes, we
will assume that [|Q™|| is bounded independently of A, h, and H. In what follows,
we will use the notation P, Uy, and @, previously used in the continuous analysis, to
denote the operators in the discrete analysis.

Preliminaries. We recall that u°, the solution of (3.3), denotes a homogenized
solution over we with boundary condition on I's given by the trace of the physical solu-
tion u® for a fixed . The DG-FE-HMM gives us an approximation u? € Vil (wa, Trr)
of the homogenized solution u®. We state here the main results needed to bound
[u® — wH|[12(,); for further details we refer the reader to [1, 2, 3] and the references
therein. We decompose the DG-FE-HMM error into the macro-, micro-, and modeling
errors

[|u® — UH||L2(WQ) <emac +emic +emon-

Macroerror. We define u9, € V{} (w2, Ti) as the FEM approximation of the ho-
mogenized problem (3.3), i.e.,

(51) B%H(U%,UH) = FQ(UH) Yoy € Vol(WQ,TH),

where the bilinear form is given by

BY y(um,vn) = Y |Kl|a3(zk)VurVoy + Y [ pelun][valds

KeTu ecE "€
(5.2) - Z ({a3Vun}va] + {a5Vog }Hun]) ds Vum, vy € Vo (w2, Tr).
ecE "€

The error can be formulated as
u® — ™ [| 2 () < Nu® — ]2 (ws) + lulr — ™ [lL2 ()
< HUO - u(I)LIHLQ(om) + |HU9{ - uH|Hw2’

where the first norm is the macroerror and the second norm stands for the modeling
and microerrors.
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To simplify the analysis, we make the following assumptions on the structure of
the tensor aj:
(H1) a§(z) = as(x,x/e) = az(x,y) is Y-periodic in y, and
as (-, )|k is constant within each K € Ty.

LEMMA 5.2 (macroerror). Let u® and u% be the solutions of problems (3.3) and
(5.1), respectively. Assume that (2.2) and (H1) hold and that u® € H?(ws). Then,

HUO - u?{HLQ(u&) < CH27

where the constant C is independent of H, h,h, and ¢, but depends on the stability
constant of the bilinear form Bj ;.

Proof. For the proof, see [8]. 0

Micro- and modeling errors. For the micro- and modeling errors, we follow [4,
sect. 5]. We assume the following regularity on Y, the nondiscretized microsolutions
of problem (4.2), in W (Kj5):

(H2) |[¥k, [m2(xs) < CeY/I|Ks| fori=1,...,d.
To discuss the micro- and modeling errors, we recall that a3 is the homogenized
tensor on the domain ws and that a%h is the numerical homogenized tensor given
by (4.3). Consider further the tensor a$ defined by (4.3) using the nondiscretized
microfunctions ¢}, solutions of (4.2) in W (Kj), instead of the discretized functions
1/)}{}; The error between the homogenized tensor aj and its numerical approximation

ag’h can be bounded by

0,h _ _ 0,h
sup [[ad(zx) — ay" (zx)||p < sup ||ad(xx) — a3 (zk)||F + sup a9 (zk) — ay” (xx )| F,
KeTy KeTy KeTy

where the first term on the right-hand side of the above inequality is denoted by enjop
(modeling error) and the second by epic (microerror).

LEMMA 5.3 (micro- and modeling errors). Let u% be the solution of (5.1), and
let ufl be the DG-FE-HMM approzimation of u®. Assume that (2.2) holds; then

0,h

ke = wll,, < € sup llaz(ex) = az™ ()l [l

where the constant C' is independent of H, h, h, and e. Further, assuming (H2), the
Frobenius norm is bounded by

h 2
sup ||a3(xK>—a87h<azK>|FSeMomc(—) ,
KeTy €

where the modeling error eprop s given in Lemma 5.5.
Proof. The proof follows from [4, sect. 5]. d

Remark 5.4. A higher order microerror (£)2¢ can be obtained for higher order

micro-FEMs, provided that there is higher order regularity of the microfunctions; i.e.,

|7,/);'(5|Hq+1(}(5) < Ce 9/|K;s| fori=1,...,d.

The modeling error eyjop will depend on the choice of boundary condition on the
microproblems.
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LEMMA 5.5 (modeling error). The modeling error is given by

0, SY (K5, Th) C Wy, (K5), d/e € N, and collocation,
eron = C16, Sl(K(;,'ﬁl) C WpleT(K(;), 5/8 eN,

Ca%, SY(Ks,Tn) C HY(Ks), 6/e ¢ N, and collocation,

Cs(6+%), SYKs Th) C HY(K;5), §/e ¢ N.

Proof. For the proof, see [1, 2]. O

5.1. A priori error estimates in the fine scale region. In this section, we
will prove Theorem 4.3.

Proof of Theorem 4.3. Let uj, € Vi (w1, T;) be the FE approximation of the phys-
ical solution u® over the mesh T, i.e., uj = uy o + vy ;(I"v1(u)), where I" is the
Lagrange interpolant on I';. Classical FE estimates hold:

1 = gl oty < OB |u| oy,

where the constant C' is independent of H, h, h,and €. Applying a triangular inequal-
ity, we obtain

IV (0 = )l oy < OB [0 o ony + IV (ug, = Tl oty

The numerical solution j, over w™ is equal to the numerical fine scale solution
U, 7 (6, ), and it holds that

By (uj, — “1,}}’”}}) =0 Wy, € Vol(wlaﬁ),

i.e., the difference uj —u, ; (0, ;) is a®*-harmonic in w, and thus the discrete Cacciop-
poli inequality lemma, Lemma A.5, can be applied. That is,

C
[V (uz, — uy 5(0; 1)Lz < =) luz, = uy 7, (07 )2 )

T

where the constant C' > 0 is independent of H,h,h, and e, but depends on the
ellipticity constants of the tensor a®. Consider an operator P : V1(I'1) x V1(I'y) —
Vi(wi, T;) x VA(Q\ w1, Tar) defined as

Uy o7 + 17 7) in wy,
Py gopom) =4 B0 LAYV .
( Lh ) {UQ)O7H + UQ)H(‘LLQ)H) in 2 \ wi.
As in the continuous case, we decompose the operator P as P = Up + Q. Over wy, it
holds that u, ;(6, ;) = P(0, j,02,1) and uj = P(I"y1(uf), I 3 (uf)). Then,
g, = uy 7, (0 )2 () = [ P(I" 1 (u®), ITya(u®)) — P(0) 7, 02,1)IL2 ()
<RI 1 (w®), " y2(u®)) = (8, j,, 02,1

As (0, j,,02,1) are the discrete optimal virtual controls, they satisfy

L* (u) .

/ (01701 1) = v2,m(02,10)) (vy (1 7)) — V2,0 (p2, ) dae

== [t ) = v e ), = w20 )
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for all (u, j,po,m) € VH(T1) x VI(T'2). Then,

(" 71 (), T2 (u)) = (8, s O2.10) i)

. ‘W((Ih’Yl(uE)’IH’)Q(uE))’(Ml)iﬂMZ,H))—71'((6‘17;1,6‘271{)7(Ml)ﬁ,uZH))‘
(1 jismr2,m) H(Ml,;;auz,H)HL*(u)

)

and following the proof of Lemma 3.3,
7T((Ih’)/l (us)’ IH’YZ(UE))a (ul)ﬁ’ ,uQ,H)) - 77((017}13 02,H)a (ul)ﬁ’ /LZ,H))
= / (uj, = u) (vy 5 (ny ) — v, 0 (o)) dae

<z, — L2 o) 1 (1t > p2,)|

L*U)»
where ufl = ug o g + vo g (I1y2(u®)). We obtain that

(2P (u®), T2 (u)) — (6, 7. b2,17)

and summarizing, we have

) < g, = w2 o).

IV (ug, = wy (01 ) L2y < Cllug, — u L2 )
Then, we decompose the error into
(53) g, — 2w < luj — ¥z (o) + 145 — 0 lln2wo) + 1u® — ™ [|L2(wo)

and provided that the solutions u° and u° are smooth enough, standard FE estimates
and (3.4) can be applied to bound the first two quantities in (5.3), i.e

Huﬁ — ’U’HHLQ(W()) < CiLS+l|u6|Hs+1(wl) + Ce + ||u0 — UH”L?(wO)-
We bound the error in wy by the error in ws:
14 = a2y < N1u” = u L2 < 0® = ufrllizqen) + lufr — u™ [z,

The two norms correspond to the DG-FE-HMM error in the L? norm and are given
by Lemmas 5.2, 5.3, and 5.5. a

5.2. A priori error estimates in the scale separated region. We prove an
a priori error bound between u® and @j,; in Q\ w™, where @j, is defined in (4.14).
For simplicity, we assume that § = ¢ and choose periodic coupling conditions between
the macro- and the microproblem. We recall that the reconstructed homogenized

solution u5°¢, and its numerical approximation u5°;, are given by

& ) = ) e 3 (o £) 2

3u2 H( )

(55) Uyt (7) = uzn (@ +Z¢ —on

where ud = u3(02) and us g = ug g (2 1) are the exact solution and the numerical

solution of the coupling in wsy, respectively, and wf,(}: are the microsolutions of (4.2).
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We sometimes use u5°(62) and uy’F . (02,1r) to emphasize the dependence on 2 and
02, H, respectively.

We introduce the discrete microproblems on K.: find u” such that u" — U2, H €
S (K., Tn) and

(5.6) / a5(x)Vol - Vatde =0 V2" e SYK., Th).
Ks

From assumption (H1), the tensor a§ is constant in each macroelement K € 7. This
simplifies the analysis, as the modeling error is zero. We introduce a semidiscrete
problem over ws: find 2 g € VA (wa, T ), the solution of

By (o, 1, wi) = Fo(wy)  Ywg € VY (we, Ta),

U2, H = GQ)H on 'y,

where the bilinear form By i on V' (wa, Tr) x V(wa, T) is given by

3 K]

Bon(vm,wi) = a5(x) Vo - Vuda + [onllwi]ds
KGZT K| GGZE/M
- / (@9 o] + Ta5VTfoa]) ds,

where v and w are solutions of (5.6) in the exact Sobolev space W (K,).
For a vector valued function 7, we define the average of the multiscale fluxes as

1 1 1
{n}t = B ( N+de + —— ndx) :
Ko

K] Jicr Ley

We can then define u5%; by

8u2 H( )

(5.7) W55y (v) = iz, (@ +Zwﬂ —— wek
J

where o g = U2, (02,1). We use uy°F (02, 1) to denote the dependence on 63 g.
We now give the proof of Theorem 4.4.
Proof of Theorem 4.4. We decompose the error into

rec T’GC(

Hus—u

1 (O2,1) 1 (vt < N —us(02) ] g1 (o\wt) Hug )—US?E(GQ,H)||H1(Q\M)-

From Theorem 3.6, it holds that [|u® — u5(02)[|g(o\w+) < C1e'/?2. We focus on
[us(02) — u5f (02, 1) a1 (o\w+) and follow [2, sect. 3.3.3]. Using the triangular in-
equality, we obtain
[ — w5 (02, 80) i oy < Cre™? + ub®(02) — uby (02, 8) i o)
< Cre/? 4 ||ub(62) — 55 (02, 1) |2 (0wt

+ a3 (02,1) — upf (02,

H (Q\wF)

Lemma 5.7 gives us
HUT’GC(92) _ QE?CH(GZ,H)|‘H1(Q\W+) < CBH|U3|H2(w2)

C
T 7-4 (hS+1|ul|Hs+1 (w1) +E+H |u2|H2(w2))
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Further, Lemma 5.9 provides us with

—Trec rec h
1a5°5 (02,1) — us's (02, 1) I g2 (\wt) < Co (;) :

Collecting the previous results gives
[[u5e(02) — ubfr (O2,1) | 1 (o) < C1E"? + Co ( ) + Cs Hlus| r2 (wy)
C
i 7-4 (hs+1|ul|Hs+1 (w1) +e+ H |u2|H2(w2)) .0

Remark 5.6. Theorem 4.4 can be adapted for the general tensor a§(z) without a
two-scale structure. In that case, the modeling error is present in the last term of the
erTor.

Recall that we assume periodic coupling with § = ¢ and that (H1) and (H2)
hold. Further, we assume Lipschitz continuity of the tensor in the first variable, i.e.,
ax(z,y) € WH(@a, L*(Y)).

LEMMA 5. 7 Let uy®(02) and u5°f (02,1) be given by (5.4) and (5.7). Assume that

ud € H*(wa), u§ € H* Y (w), with s < 1, and that the ezact solutions of the micro-
problem (4.2) verify (H2). Then

Hurec(gz) _ ﬂg?ﬁl(@z,H)Hﬁl(Q\wﬂ < 01H|ug|H2(w2)
C.
_|_ 2 (h5+1|u1|Hs+1 (w) T+ H? |u2|H2(w2))

where the constants are independent of H,h,h, and e.
Proof. Using the definitions of u3°“(62) and u5;(02,1), it holds that

5720 = 5 Ot ey = 3 IV (02) — 5500 e
KeTu(Q\wt)

< Y IV - ae)lia k)

KeTu(Q\wt)

ou Otis. i\ |I?
D SR ) 3k CUT R L T T
KeTu(Q\wt) "j=1 J L2(K)

Thanks to (H1), it holds that ex’(z,z/c) = 1/1}-(5 (x), and the second norm is bounded
by the first norm. We recall the bilinear form (5.2) for problem (2.3) with a quadrature
formula,

BS)H(’UH,’LUH Z |K|ad(x ) Vg - VwH—I—Z/,u@[[vH]][[wHﬂds

KeTu ecFE
- Z/ {a3(zx,z/e)v}[wa] + {ap(2x, v/e)w} [vn]) ds
eckE

and define do g (02,1) € VA (wa, Tr ), the solution of

B%H(QZ,H,U)H) = FQ(wH) V’LUH S VOI(LUQ,TH).
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By [2, Proposition 14], it holds that %2 g = 42 . By hypothesis, u9(62) and iz g (02 1)
have zero boundary conditions on dws N 0SY, and we can use [13, Lemmas 4.1 and 4.2]
to obtain

0 = . 0
02) — 0 q <C f 02) — w||g
[|uz(62) — @2, m( Q,H)||H1(Q\w+) > 1w€VE1)(w2,TH1)r71w:IH92 on Ty [|uz(62) w”Hl(wg)

Cs _
+ T—+HU8(92) — Uz, 1 (02,112 (ws)-
The first norm can be bounded by

inf up(02) — wllas (uy) < lun(02) — uz,m (17 02) |l () < CLH [u3] 112w

where ug g (1 H9,) is the FEM solution with an interpolation of f5 on I's. Following
the proof of Theorem 4.3, the second part is bounded by

[u9(02) — tio, (02, 11) |12 (wa) < u9(02) — 2, 11 (1™ 02) |12 ()
+ Juz, 1t (1" 02) — A2, 1 (02,1) |12 (ws)
< CLH2[uS| g2 () + 1QI" 01, T7602) — Q(6, . 02.11) 12 ()
< CLH? ) 72 (w) + Calluy 5 (1"61) — o, 11 (1763) |12 ().

where we have used that (9{3, 65 is the optimal couple of the discrete minimization
problem and that @ is bounded. Finally, using the triangular inequality, we have

H“1,;}(Iﬁ91) — @i, 1 (I"65) | L2 () < ||U17;1(Iﬁ91) — u7(01) |2 (wo)
+ [l (61) — u5(62) |12 (wo)
+ [[ug(62) — ﬂ2,H(IIL192)||L2(WO)
<C (ﬁs+1lu‘i|Hs+1(wl) +e+ H2|u8|H2(W2)) :

Summarizing,

l[ub*(02) — @5 (02,10) | 2 (oot y < CLH US| 112 (e
Cs

+ e (ﬁs+l|u§|H5+1(w1) +e+ H2|”8|H2(w2)) .

The result of the lemma follows. a

Remark 5.8. The proof of Lemma 5.7 can be generalized for functions with non-
homogeneous boundary conditions. This can be done by splitting the solutions into a
function depending on the controls and a function independent of the controls. The
proof follows the same lines.

LEMMA 5.9. Let uyf(02,1) and ubf(02,1) be defined by (5.7) and (5.5), respec-
tively. Then

—Trec rec h
055 00) — 5O )y < ().

Proof. The proof follows from [2, sect. 3.3.3]. d
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6. Numerical experiments. In this section we present various numerical ex-
periments to illustrate the convergence rates and the performance of our method. In
the first two examples, we compare our coupling method with the classical global-local
method [36], where the homogenized solution is considered as the boundary condition
on I'y. To facilitate the numerical comparison, we assume that the meshes 7; and Ty
have the same triangulation in the overlap wy. The implementations can be adapted
to the case where the meshes are not equal in wg, using interpolations between the
two meshes.

Computational costs of the methods. Here, we briefly comment on the compu-
tational cost of the optimization based method and of the global-local method [36].
Both methods use the FE-HMM (or DG-FE-HMM) and the FEM.

Let N denote the total degrees of freedom (DOF) of the initial triangulation over
Q, and let N,,;. denote the micro-DOF needed to obtain the homogenized conductivity
at the quadrature points of the macromesh. Further, let N, be the DOF of the fine
triangulation in wy, and let N\, , Nw, be the DOF of the coarse triangulation over
O\ wy and wy = Q\w, respectively.

For the classical global-local method, (DG-)FE-HMM provides us with a numer-
ical homogenized solution u, which is used as the boundary condition on I';, and
the total cost is O(N + Nyic) + O(N,,, ).

For the optimization based method, we start by computing the numerical solutions
uy 5 and ug o, i, using FEM and (DG-)FE-HMM, respectively. The cost is O(N,, )
for FEM and O(N,, - Npic) for (DG-)FE-HMM. Then, we solve a saddle point problem
with cost O(Ny, + N\, ). We note that the cost of the optimization based method
can be further reduced [6].

6.1. A domain with a crack. Consider an elliptic boundary value problem in
Q=[0,1)2
—div(a*Vu) =0 in Q,

with Dirichlet boundary condition v = ¢ on 052, where ¢ € [0,27] is the angle
measured counterclockwise from the axis {(z,0.5) : z > 0}. We add a free Neumann
boundary condition on the crack {z € Q : 1 > 0, z2 = 0.5}. The homogenization
model might not be accurate around the crack. A mesh refinement of the coarse model
around the crack may lead to coarse meshes with mesh size smaller than ¢; hence it
requires more work around the crack than the FEM with scale resolution. For the
treatment of the crack problem with the FE-HMM, we refer the reader to [7]. We
take a tensor a®—represented in Figure 2(a) for ¢ = 1/10—with separation of scale
and locally periodic in Y,

1/2
a®(x1,x2) = < = —5 T ! - 2) :
(1.1 4 cos (2m2)) (1.1 4 cos (2m22))

Let 2. = [1/2,1/2] be the center of 2, and let wy = x.+ %[—1, 1]? and T'y = dws.
The classical global-local numerical solution is the approximation of the following
problem:

—div (a°Vu) = f in w,

(6.1) u=u’ on I'y,

where u? is the homogenized solution. Recall that w C w;, where w = z, + % [—1,1]2.
We compute the numerical homogenized solution u over Q on the coarse initial mesh
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FiG. 2. Crack experiment: (a) tensor for € = 1/10, (b) H' seminorm in w for the optimiza-
tion based coupling (black) and the classical coupling (red) (color available online), (c) numerical
optimization based solution, and (d) reference solution.

and use the value of u!! as Dirichlet boundary condition on I'; to solve problem (6.1)
with a fine scale FEM.

We refine uniformly in wy, and as the mesh size in w should be small enough to
capture the microscopic scales of the problems, it would be prohibitive to compute
the numerical homogenized solution at each iteration. The coupling and the classical
global-local method are both performed on the same mesh, while the coarse mesh in
0\ wy is left unchanged. We then compare the numerical solution with a reference
solution obtained with an FEM on a very fine mesh. The reference solution is shown
in Figure 2(d) and the numerical optimization based coupling solution in Figure 2(c).
We plot the H! seminorm for the two methods in Figure 2(b). We see that the global-
local method reaches a threshold value, as expected due to the use of the numerical
homogenized function u as Dirichlet data on I';.

6.2. Singular source term. In this experiment, we consider an elliptic problem
with a singular source term given by random peaks. The tensor is assumed to have
scale separation and is given by

1 (1.1+sin(2n%L22
a’E(x) — ( ( g

1.1 +sin (27#6)) +ein(daiay) + 2) '
: €
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Fi1c. 3. Singular source term experiment: (a) tensor for e = 1/25, (b) right-hand side with 20
random peaks.
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0y 55 0.4
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F1G. 4. Singular source term experiment: (a) reference solution, (b) optimization based numer-
ical solution.

Depending on the location of the random peaks, the numerical homogenized right-
hand side f° can be wrong, leading to an inaccurate approximation of ©°. As in the
crack experiments, we compute a numerical approximation of u° on a coarse initial
mesh and then use it as boundary condition on I';. In Figure 3(a) we show the tensor
for ¢ = 1/25. Let z. = [1/2,1/2] be the center of Q; we set w = z. + 75[—1,1]? and
wy =z + 1[—1,1]% In Figure 3(b), we illustrate the random source term f with 20
peaks. Figures 4(a) and 4(b) illustrate the reference solution and the optimization
based solutions, with the fine scale solution in w and the coarse scale solution in Q\ w.
The H'! error between the numerical and reference solutions, for e = 1/10 and 100
random peaks, is shown in Figure 5 for the classical global-local method (in red) and
the coupling (in black) (color available online). While we observe a linear convergence
rate for the optimization based method, as predicted by Theorem 4.3, we see that the
classical coupling leads to saturation in the error decay. This is due to inaccurate
boundary conditions for the fine scale problems.

6.3. A domain with a defect. We consider a homogenization problem with a
local perturbation in the tensor, treated in [11]. The PDE is

—div (a°Vu®) = f in Q,
u® =0 on 09,
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F1G. 5. Singular source term experiment: H' seminorm inw for the optimization based coupling
(black) and the classical coupling (red) (color available online).

where the tensor is of the form a® = ag,,.(v) + b°(z), where ag.,.(v) = aper(z,7/€)
is (locally) periodic and b° € L2(2)? is a local perturbation of size . A numerical
homogenized solution u’ can be obtained with FE-HMM and produces a good ap-
proximation of «® in the L? norm. To obtain good approximation in the H' norm,
one needs to add correctors. However, the usual periodic cell problems are not valid,
as a® is not periodic. One could compute the periodic correctors corresponding to the
tensor a,, and use them to correct the homogenized solution. This will be a good
approximation at the large scale but will fail at the fine scale close to the defect. Fol-
lowing the approach in [11], a new corrector can be computed by adding a term to the
periodic correctors as follows. Let x/ € WL, (Y) be the classical periodic correctors

per
that satisfy the cell problems

[ i@ Yoty == [ a5 @ Tudy o€ Wi (1),

Then, the additional term will be the solution of a Dirichlet boundary value problem
in K,, = [—ne,nel?, where n is large enough so that the effects of the defect are
negligible at the boundary of K,,. The problem reads as follows: find xj € H}(K,),
the solution of

/ aa(x)in - Vodx = —/ b (z)(e; + VX!) - Vodz Yo € Hy(K,,).
One can extend x7 periodically to K, and obtain a corrector ¥/ (z) = x’(z) + xi.(z)
for all z € K,,. In this numerical example, we compute the FE-HMM solution and add
to it either the periodic correctors x or the modified correctors Y. We then compare
these two solutions with the optimization based solution presented in this paper. We

will take the same oscillatory data as given in [11, sect. 4.]. Let Q = [—1,1]?, and
define

a’;er(xhx2) =3+ cos (QWE) + sin (2Wﬁ) 7
€ €
x? 22
b°(x1,22) = 10exp (— (8—; + 6_§>) ’
f(z1,22) = sin(mzq) cos(mzs).

We use a uniform triangular mesh and compute a reference solution on a very fine
mesh. We compute the periodic correctors on 7, (Y) and extend them to [—ne, ne]?
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TABLE 1
Relative error in w1 and [—¢,]?, with e = 1/5 and € = 1/10, between the reference solution and
the periodic solution, the nonperiodic reconstructed solution, and the optimization based solution.

Method Rel. error in wy | Rel. error in [—¢,¢]?
periodic correctors 0.436 1.589
e=1/5 nonperiodic correctors 0.396 0.992
optimization based coupling 0.119 0.030
periodic correctors 0.281 1.076
e=1/10 nonperiodic correctors 0.260 0.720
optimization based coupling 0.039 0.006

where n is sufficiently large. The terms y;, are then computed on [—ne, ne]? with
Dirichlet boundary conditions, and adding them to x, we obtain the nonperiodic
correctors Y. In each macroelement K we define a mesh 7y, (K), obtained by uniform
refinement of K until the mesh size h,.. is smaller than or equal to h. The two
reconstructed solutions read as

d

g,rec i X a’U,H x

i) = u ) + Y e (a, 2) 2
i=1 v

d
~g,rec ~ x auH x
) = o) + Y e (i 2) 2L
i=1 v

where both correctors are defined on [—ne, ne]? with mesh size h and interpolated to
Thy (K). In the coupling method, the fine scale region w; will be centered around the
defect; as its size is €, we set w = [~1/4,1/4]? and w; = [~1/2,1/2]%. The mesh size
in wy is equal to hpee, and the mesh size in the coarse region Q \ wy is H. We recall
that the fine scale reference solution is given by

_ uyj, in wg,
UFLH: T"EC 1 Q
us i Q\wy,

where we have chosen wy = [—3/8,3/8]2. We compute the error between the reference
solution and the numerical solutions u3;", 4%, and 4, in wy and in [—¢, )% We
first take ¢ = 1/5, H = 1/16, and a micro-DOF of Npicro = 3%

We look at the relative error between the reference solution and the reconstructed

solution u3;"“ (resp., a3 ) for the periodic correctors (resp., nonperiodic),

IV (= uf"™ 2w

IVue]|L2 )

As expected (see, e.g., [11]), the errors with the two reconstructed solutions are similar
in the far field, and one should look at the error around the defects to see the advantage
of the correctors x. In Table 1, we see the relative errors for the three methods
for e = 1/5 and € = 1/10. In Figure 6, we display the error in w; between the
reference solution and the numerical fine scale solutions obtained with the periodic
correctors 6(a), nonperiodic correctors 6(b), and the optimization based method 6(c).
While the errors between the periodic and nonperiodic methods are similar in w1,
the difference is more important in [—¢,¢]?, near the defect. There is, however, a
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F1a. 6. Error in wy between the reference solution and the numerical fine scale solution obtained
with periodic correctors (a), with nonperiodic correctors (b), and by the coupling (c).

significant improvement when the optimization based coupling method is used. This
is to be expected, as a fine scale solver is used in w; and is coupled with a coarse scale
solver. The strength of the method is that it produces a good H' approximation of
the fine scale solution on €2, but allows for a large mesh size H in Q\ w;. We note that
in [11], the same macro- and micro-DOF were used, with macromesh size of 1/1000,
leading to a smaller discretization error and a larger difference between the periodic
correctors and the nonperiodic correctors. Setting H to such a small value is not
necessary in our experiments, as we only need a fine mesh in w; and want to take full
advantage of the homogenization techniques in the region with scale separation.

Appendix A. Inequalities.

A.1. Continuous inequalities. Let us start by recalling the Caccioppoli in-
equality [25]. Let w C wy be subdomains of Q with 7 = dist(dw, dw;) and set I' = 9.
For a tensor a, we define the set of a-harmonic functions by H(w;), which consists of
functions u € L?(w1) N HL (w1) such that

By (u,v) = / aVu-Vode =0 Vv e C°(wr),

where H] _ is defined by
H (w1) := {u € H'(O) | for any open set O with O C w;}.

If the domains have shared boundaries, i.e., dw; NT' # ), we construct the space of
a-harmonic functions by Ho(wi), which consists of functions v € H(w;) with zero
boundary condition on dw; NT. We recall that T’y = dw;y \ T.

THEOREM A.1 (Caccioppoli inequality [25]). Let u € H(w1); then

1/2
IVulleaw) < - llullezen),

where a and 8 are the coercivity constants of the tensor a given by (2.2) and T is the
width of the domain wy.

We note that an elliptic problem with a nonnull right-hand side can also be
considered, and we refer the reader to [25] for details. Next we generalize the above
result in order to have only the overlapping domain in the right-hand side.
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LEMMA A.2. Let wg =wy \@. Let u € H(wi); then

1/2
V(L2 (w) < m”“”m(wo),

where a and B are given by (2.2) and 7 is the width of the domain wy.

Proof. Let n € Ci(w1) be a cutoff function with n = 1 in @, n = 0 in dwy,
and |Vn| < 1/7. Further, n = 0 on I'y, and supp(Vn) C wp. Then, it holds that
n*u € H}(w1) and

/ aVu - V(n*u)dz = 0.

Then,

0= / aVu - V(n?u)dx = 2/ aVu - Vnnudx + / aVu - Vun*dz.

1 1

Using the ellipticity of a and the definition of 7, it holds that
aHVuH%z(w) < /aV(nu) - V(nu)dz
w1

and

LlaV(nu)-V(nu)dx: /M aV(nu)-V(nu)dx_/ aVu - V(n*u)de

w1

= /aV(nu)-V(nu)dx—2/aVu-Vnnudx—/aVu-Vunde

wi wi

z/ aVn - Vnu?da

z/ aVn - Vnu?dz
s
2

2 _ ﬁ 2
" u“dxr = ﬁHuHL%wO)' 0

In the next lemma, we prove a strong version of the Cauchy—Schwarz inequality.
We recall the problems for the state variables: find v; € H3,(w;), the solution of

—div (a;Vv;) =0 in w;,
v, =0; onljy,

v; =0 on dw; NT'p,

n; - (a;Vu;) =0 on dw; NIy,

(A1)

— € —_ 40
where a; = af and a2 = a,.

LEMMA A.3 (strong Cauchy-Schwarz). Let v € H}(wi) and v3 € HL(ws) be
solutions of (A.1) for i = 1,2. Then, there exist an €9 > 0 and a positive constant
Cs < 1 such that for all € < gg, it holds that

[ vetde < Culloflaan 18
wo
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Proof. We reason by contradiction. Suppose there exists a sequence of {ey,}n>1
that tends to zero such that

[ oo > Cullof Iz ey Y2 1,
wo

for any sequence {Cy},>1 that tends to 1, with C,, < 1. Without loss of generality,
we can normalize the vectors v and ve and obtain

lvT L2 (we) = 1, ||v§||L2(w0) =1, and (Uf",vg)Lz(wO) = / vf"vgdx — 1.
wo

As the sequence of tensors {a]" },>1 € (L>(w1))?*? is bounded and uniformly elliptic,
by the H-convergence, there exist a subsequence of {e,, },,>1 still denoted by {en}n>1
and a tensor a € (L°°(wy))?*? bounded and uniformly elliptic such that {aj"},>1
H-converges to af. By definition of the H-convergence, the solution vj" of (A.1)—for
the subsequence {e,, }—is such that

(i) vi® = o) in H'(w;) and

(i) ai"Voui» — afVe? in L2(w),
where v{ is the unique solution of

—div (afV) =0 in wy,
v(f =0 on I'y,

) =0 on dwi NT'p,

n1 - (afVo?) =0 on dw; NT'y.

As H'(w) is compactly embedded in L?(wy), strong convergence in L? of vi" to v,
for a subsequence of {€,}n>1, is achieved, i.e.,

o5t = v) in L% (wy).
By the continuity of the norm, we have that

nli_}I{.lo(UT",vg)Lz(wO) = (’U?,’Ug)Lz(wO), ||'U?||L2(w0) <1, and (U?,Uz)Lz(wo) =1.
As
1= (00, v2)12(wp) < 09112 w0y 1v2llL2(w0) < 1,

we must have that [|[v?]|12(wy)llv2]lL2(we) = 1 and hence [[v9]|12(wy) = 1. The previous
inequalities become equalities, i.e.,

1= (00, 02)12(w0) = 07|12 (wo) 102 ]|12 (o) -

An equality in Cauchy—Schwarz is possible if and only if v{ and vy are linearly de-
pendent, that is, there exists a constant ¢ > 0 such that v{ = cvy a.e. in wg. As the
norms of v{ and vy are equal to 1, we can easily conclude that ¢ = +1 and that v
==vy a.e. in wp. Finally, as (v7,v2)12(w,) = 1, it holds that v = v,.

Both v{ and vy are solutions of a homogenized equation and are equal on the
overlap, so we can combine them into a homogenized solution on the entire domain
Q. Further, the tensors a3 and af are equal in wp. Indeed, let us continuously extend
the tensors a§ and a§ to the domain Q. The tensor a§ H-converges to the tensor af,
and the tensor a§ H-converges to a9 in Q. It holds that a§ = a5 in wp, and using the
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locality of H-convergence [34, 15], we can conclude that aJ = af in wo. Thus they are

equal in the overlap.
Let us split wy into two disjoint sets wj and wi such that w CC wUwd CC wUwy.
As the solutions v(f and vy are equal in wy, we can construct a smooth function v over
Q as
fz) frewUw}
o(a) = {1 0
vo(z) if 7 € wo \ wg.
The function o is in H}(£2), has zero Neumann boundary condition on I'y, and
satisfies
/ a’Vo-Vwdr =0 VYw e HH(Q),
Q

where the tensor a° is given by
0 a  inwUw},
0 1
aj inws\ wg.
The solution © must be zero everywhere in 2, i.e., ¥ = 0, which is a contradiction
with ||’17HL2(U)0) =1. O

A.2. Discrete inequalities. Let w C w; C Q, with 7 = dist(0wq, dw), and
consider a partition 7 of € in simplicial or quadrilateral elements K, with diameter
hyk and where the mesh size h is given by h = maxgeT, hx. Further, we assume
that h is smaller than 7 and that 7y, is admissible (T1) and shape regular (T2). The
inequalities are given for general FE spaces of degree p > 1.

We give a discrete Caccioppoli inequality for functions v" € VP?(wy,Ty,) that are
solutions of

(A.2) Bi(v", wh) = / aVol - Vulder =0 Vo' € VP (w1, Th).

Let us denote by I; the Lagrange interpolant and state a superapproximation
useful in the proof of the discrete Caccioppoli inequality.

LEMMA A.4. Letn € Ct(wy) with |Vn| < Cr~Y. Then for each v" € VP(wy,Tr)
and K € Ty, with hx < 7, it holds that

hK hK
I = B0 sy < € (1T 00 e + 25 1o o )

Proof. For the proof, see [17, Theorem 2.1]. 0

We recall that local inverse inequalities are valid for functions v € VP(wy, Tp);
that is,

(A.3) Vo™ |2 () < ChH 0" |2 (s,

where the constant C' is independent of hg.

LeEMMA A.5 (discrete Caccioppoli inequality for interior domains [35]). Let v €
VP(w1,Tn) satisfy (A.2) for all wh € VI (w1, Ty); it holds that

1
VO |2 < O;thﬂv(wl),

where the constant C' is independent of h.
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Proof. Let n € C¢(w1) be a cutoff function with |Vn| < Cr~!. We have that n
satisfies n =0in Q\wi, n =1 in w, and |Vy| < 1/7 for points in wy. By the uniform
ellipticity of the tensor a, it holds that

OZHVUhH%Q(w) g/ aVol - Vuln?de.
w1
Using n?v" as a test function in (A.2) and expanding the integral, we obtain

/ aVo - V(n?uh)de = / aVo' - Voln?ds + 2/ anVo" - Viuldz
w1 w1 w1
and thus

/ aVol - Volnide = / aVol - V(n*")dz — 2/ (na'/?voh) - (v*a/?Vn)dz
w1 w1

w1

S/ aVuh dx—|—2/ (na'/?voh) - (v*a/?Vn)dz
w1

w1

1
< B (", P + ¢ | aVot - VolPde + Z / av"Vn - Vipohdz
w1

w1

B
< Bi(w", n?o") + ¢ | aVol - VolnPda + C—QthH%z(wl).

w1

The last step is to bound the quantity Bj(v",n?v"). Let us consider Ij(n*v") €
VP(w1, Tp); it holds that

By (v", I(n*")) =0,

and then

Bi(v", n?0") = By (v", n?uh — / aVohV (n?uh — I(n*o"))dz

< BIVO" |2 IV (00" = I(0P0™)) L2 )

<B Y IV a0 IV 0" = TP o) [z k)
KeTy

Using the local inverse inequality (A.3) and Lemma A.4, we obtain

1 hi hx
Bi(v", n*") < CB Z E”Uh”H(K) (T”V(UU}L”L?(K) + ?th|L2(K))

KeTy

=8> v K)—HV(WU Mz + 2||vh||L2(K)
KeTy,

<8 3 S (£+1) IR + AT 0" e

KeTy

op
S5 T2 << + 1) thHL2 (w1) +B<anvhHL2 (w1) + BCHU}LVTI||L2(“’1

C (1
< 5(§ (Z +14 C) [0 1220y + CIthllizwl))'
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Recalling that

990" R = [

w1

1
Vol - Volnide < E/ aVol - Volntde,

w1

and collecting the previous bounds, it holds that

B (2
/W“V”’L'VvhnzdeCﬁ ¢ L) Il
+<(§+1>/ aVol - Volnide.
This gives, for ( #1/(8/a+ 1),
p h h, 2 B (2 b2
- _ <coB (2 2
(1 C<a+1>>/w1aVv Vv Uda:_C'T2 <+1+§ [|v"|F (1)

and finally

C 2

Assume now that dw N T # (). A discrete Caccioppoli inequality can be proved.

LEMMA A.6 (discrete Caccioppoli inequality for domains with shared bound-
aries). Let v" € VP(w1,Th) satisfy (A.2) for all wh € VI(wi,Tn). Further assume
that v = 0 on dw; NT. Then it holds that

1
IV L2y < O;thﬂv(wl),

where the constant C' is independent of h.

Proof. Now we consider a cutoff function 7 such that n = 1inw, n =0 in Q\ wy,
and 7 = 0 on dw; N . We can then follow the proof of Lemma A.5, as

Bi (v, n?o") = / aVol - V(n?uh)dz = 0. O

w1

We now show that the strong Cauchy—Schwarz inequality lemma, Lemma A.3,
is still valid for discrete functions. For simplicity in the notation, we omit the e
dependency in v;.

LEMMA A.7. Let € < gy and Cy < 1 be given by the strong Cauchy-Schwarz
lemma, Lemma A.3, and let vy, € VE(w1,T;) and vo g € VB (w2, Ta) be numerical
solutions of (4.11). There exist ho > 0 and Hy > 0 such that

/ Ul)ﬁvg)dev < CS||’U]_7}~L||L2(WQ)HU2,HHL2(W()) Vh < iLo,H < Hy.
wo

Proof. Let {iln,Hn}n21 be a sequence of mesh sizes converging to zero. We
have strong convergence in L2, for a subsequence of {an,Hn}nzl still denoted by
{Bn, H,}n>1, of the numerical solutions vy G and v g, to the exact solutions v; and
V9, Tespectively. Thus

lim vy ;, U2,H,dTr = v1vodx
n—00 o ym wo
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and
Jim oy le2o) = lvillezo)s
lim (lvz, 1, [lL2we) = llv2llL2wo)-

We recall that the strong Cauchy—Schwarz inequality is valid for v; and vo; there exist
an g and a constant Cs < 1 such that for all € < g, it holds that

/ vivedr < CSHUI||L2(w0)||U2||L2(wg)-
wo
Then, using the strong Cauchy—Schwarz inequality for v; and ve, it holds that

lim vy j, V2,H,dx :/ v1vodx
n—00 o
wo wo

< Cs|v1]ln2wo) 1021112 (wo)

= lim_ Cilloy i, e 02,50, 120

Then, there exist an g9 > 0 and a constant Cs < 1 such that for all € < g, there exist
ho > 0 and Hy > 0 such that

/ UL;LUQ)HdQJ < OS||U1)E||L2(Wo)||U2,H||L2(w0) vh < fNLO, H < H,. O
wo
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