
Robust Software Development for University-Built
Satellites

Anton B. Ivanov
Space Engineering Center, EPFL

PPH 334, Station 13
1015 Lausanne, Switzerland

+41 21 693 6978
anton.ivanov@epfl.ch

Simon Bliudze
EPFL IINFCOM LCA2

INJ 340, Station 14
1015 Lausanne, Switzerland

+41 21 693 1397
simon.bliudze@epfl.ch

Abstract— Satellites and other complex systems now become
more and more software dependent. Even nano satellites
have complexity that can be compared to scientific instruments
launched to Mars. COTS components and subsystems may now
be purchased to support payload development. On the contrary,
the software has to be adapted to the the new payload and,
consequently, hardware architecture selected for the satellite.
There is not a rigorous and robust way to design software for
CubeSats or small satellites yet. In this paper, we will briefly
review some existing systems and present our approach, which
based on Behaviour-Interaction-Priority (BIP) framework. We
will describe our experience in implementing fight software
simulation and testing in the Swiss CubETH CubeSat project.
We will conclude with lessons learned and future utilization of
BIP for hardware testing and simulation.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. MOTIVATION . 1
3. THE BIP FRAMEWORK . 3
4. APPROACH . 5
5. IMPLEMENTATION . 6
6. DISCUSSION . 6
7. SUMMARY . 7
8. FUTURE WORK . 8
ACKNOWLEDGMENTS . 8
REFERENCES . 8
BIOGRAPHY . 9

1. INTRODUCTION
Flight software is rewritten for each satellite project, despite
the existing heritage, due to changed requirements, new
payload or updated hardware components. There is not yet
a rigorous and robust way to design software and adapt for
changes for small satellites yet or CubeSats in a university
setting. There are design practices and considerable expe-
rience that exist in all major space organisations such as
NASA and ESA, however, they are not available to student
teams. To our knowledge, considerable number flight soft-
ware programs for university satellites is written in C or C++
code. Recent efforts at Vertmont Tech [1] are using industry
standard Ada Code. SysML 2 can be used to describe the
system as a whole [2] and then check some properties such as
energy consumption. SysML can be a valid tool for system
engineering as a whole, but it is not rigorous enough to al-

978-1-5090-1613-6/17/$31.00 c©2017 IEEE
2SysML is an extension of the Unified Modeling Language (UML) using
UML’s profile mechanism

low automatic software behaviour verification and validation.
Another approach [3] is to utilise TuLiP (Temporal Logic
Planning Toolbox) with the JPL SCA (Statechart Autocoder)
to enable the automatic synthesis of low-level implementation
code directly from formal specifications.

Here we present our approach using the Behaviour-
Interaction-Priority (BIP) framework [4], a component-based
language which can be used to build correct-by-construction
applications. It has been developed by the Verimag laboratory
in Grenoble university and is currently used in the EPFL
by the Rigorous System Design laboratory (RISD). BIP can
be used to formally model complex systems and provides
a toolset for their verification and validation and for code
generation. The framework is young; therefore there are not
many practical designs with it yet.

Modular nature of the BIP approach allows iterative design
for satellites in development and adaptation to hardware
changes. In order to accomplish modularity, common pat-
terns in components and structures have to be developed. The
verification of the correctness in the BIP model is made by
using a set of common rules in the assembly of atoms and
compounds.

We have used the BIP approach in the our CubeSat project
(CubETH) to design logic for the operation of a satellite and
compiled into machine code, which was executed on the on-
board computer. Software running Control and Data Manage-
ment system compiled for Cortex-A3 processor design. This
work has proven technical feasibility and exposed a number
of problems with the approach. Our next goal is to develop
a visual environment to provide graphical user interface to
simplify generation of the BIP code.

In this work we will present main principles of the BIP
framework, our implementation, and challenges for imple-
mentation on a CubeSat platform.

2. MOTIVATION
CubETH CubeSat project

CubETH is a cooperative Swiss CubeSat mission [5] to
demonstrate new technologies in the area of Global Nav-
igation Satellite System (GNSS)-based navigation and the
usage of COTS components. The satellite will carry five
GNSS patch antennas, each connected to two independent
u-blox multi-GNSS receivers. These very small, commer-
cially available low-cost receivers are able to track single-
frequency code and phase data of all the major GNSS, i.e.
GPS, GLONASS, QZSS, Beidou (and ready for Galileo).
Four main science objectives have been defined for the Cu-

1

bETH mission: (1) precise orbit determination using low-
cost GNSS receivers, (2) attitude determination based on very
short baselines, (3) comparison of the performance in space
between GPS and GLONASS (and possibly other GNSS) as
an important step for further developments of space-borne
GNSS receivers, (4) additional experimental measurements
(e.g. for air density estimation during re-entry). The satellite
will carry 3 retro-reflectors to enable satellite laser ranging
for performance validation of the precise orbit determination.
Novel CubeSat technologies [6], [7] will also be tested. We
will take into account lessons learned from the SwissCube
mission, which has been in operation since 2009. A new
modular design for the structure as well as connectors will
be flown. We also intend to demonstrate the use of a
miniaturized low-power command and data handling system,
which shall control the satellite.

The components that were most critical for the successful
operation of the Control and Data Management Subsystem
(CDMS) are the microcontroller and the memories, which
are both COTS (Commercial Off-The-Shelf) components.
Consequently, components that have already been flown in
CubeSats or other spacecraft have been selected. The CDMS
will use a microcontroller from the Giant Gecko family by
Energy Micro, a Cortex-M3 running at 48 MHz and with a
very low power consumption (limited at 36.5 mW). The inter-
board communication protocol is I2C. The CDMS (simplified
diagram is shown on Figure 1) acts as master and requests
flight data from the other subsystems. At this stage of the
development [15], relevant data to gather is typically house-
keeping parameters, as board current consumption, temper-
ature, status flags, or battery voltage. Such data acquisition
and I2C communication were implemented on all present
subsystems.

CDMS board

NOR Flash

MRAM

EFM32GG880

Sensors

ADCS

I2C_sens, 0…*

SPI

EBI

CS_1

CS_0

EPS PAYLOAD COM

I2C_sat

Figure 1. Simplified block-diagram of the CubETH flight
software structure, which is centered on the Control and

Data Management System

One key property of the BIP framework is the capability
to automatically generate C++ code, which can be further
compiled on a microprocessor platform. For the CubETH
project we were able to create a full model of the spacecraft
and create toolchain to compile code for running on Cortex-
M3 architecture.

Flight software quality attributes

In the international standards for architecture description and
software engineering a number of quality attributes is spec-
ified as expression of “ilities” - qualities such as reliability,
portability, modularity and others. Software designed with

Figure 2. Structural and Thermal model of the CubETH
satellite. This is a 1 unit CubeSat measuring 10x10x10 cm.
On the top panel are 4 GNSS antennae for the experiment.

Internal electronics are organized in layers.

these qualities in mind is more robust to faults in hardware.
At the European level, these attributes are described in a set
of European Cooperation for Space (ECSS) standards, such
as [8]. At NASA, in addition to standard design practices
a recent effort [9] has been underway to specify a large
table of quality attributes for mission flight software. In this
work, we would like to concentrate primarily on robustness,
safety, modularity and portability qualities for flight software
architectures for nano and mico satellites and scientific in-
struments. These two broad categories are the main target
customers of the work described in this proposal.

It is clear that the topic of “correct-by-construction” 3 soft-
ware development is now very actively studied by many
groups around the world to address increased complexity
of modern systems. Our approach is to the use the formal
validation framework to create and verify the system logic,
followed by porting C++ code directly onto the microproces-
sor. This approach will ensure the following “ilities” of the
overall system (following [9]):

Reliability—The developer will have to focus first on the logic
of the overall system. Before starting on hardware drivers,
it will be possible to model behaviour of the overall system
using established design patterns. The system will also be
validated to be compliant with a number of design rules.
Thus, the system will not be 100% proof, but it will allow
eliminating a number of errors or ambiguities that are usually
recovered late in the project development cycle.

Modularity—The system will allow verifying individual com-
ponents separately, before integration of the whole system.
For example, temperature sensors can be integrated as “hard-
ware in the loop” to verify logic of operations without con-
necting them to the rest of the system.

3”correct-by-construction” implies that all required functionality will be
delivered and the correct behavior will exhibited by the compiled code. In
other words, many errors in the software can be caught at the compiling time.

2

Portability—The overall system will have a hardware inter-
face in the form of C or C++ low-level functions, which are
implemented to reflect capabilities of selected components.
In the case of component replacement we need only to replace
the corresponding driver, while keeping overall logic of the
system in place. This would be a major improvement on
the current state-of-practice, where a change of components
also requires modifications of the logic. Such changes are
extremely costly, once the logic is implemented already in
C++ code and require a lot of reverse engineering work.

3. THE BIP FRAMEWORK
Our approach relies on the BIP framework [11] for
component-based design of correct-by-construction applica-
tions. BIP provides a simple, but powerful mechanism for
the coordination of concurrent components by superposing
three layers: Behaviour, Interaction, and Priority. First,
component behaviour is described by Labelled Transition
Systems (LTS) having transitions labelled with ports and
extended with data stored in local variables. Ports form the
interface of a component and are used to define its interac-
tions with other components. They can also export part of
the local variables, allowing access to the component’s data.
Second, interaction models, i.e. sets of interactions, define
the component coordination. Interactions are sets of ports
that define allowed synchronisations between components.
An interaction model is defined in a structured manner by
using connectors [12]. Third, priorities are used to impose
scheduling constraints and to resolve conflicts when multiple
interactions are enabled simultaneously. Interaction and Pri-
ority layers are collectively called Glue.

The strict separation between behaviour—i.e. stateful
components—and coordination—i.e. stateless connectors
and priorities—allows the design of modular systems that are
easy to understand, test and maintain.

The BIP language has been implemented as a coordination
language for C++ [11] and Java [13]. The core of the
framework provides automatic, semantics-preserving C++
code generation through a tool structured into:

- a front-end, for parsing a program in the BIP language (a
BIP-specific extension of C++) and building the correspond-
ing BIP model (a language-independent model in the Eclipse
Modelling Framework);
- a set of filters for model transformations;
- and the back-end for the generation of code suitable for
compiling onto the target platform.

The tool is modular: both the front- and the back-end can
be independently replaced to provide parsing and generating
code in other languages than BIP (for input) and C++ (for
output). Execution of the BIP model is driven by the BIP En-
gine, which implements the BIP operational semantics. It is
provided as a precompiled library, linked with the generated
C++ code of the model.

The BIP framework provides several verification tools:
DFinder [14] for compositional deadlock-freedom analysis,
Kratos (developed in collaboration with FBK4) [4] for state-
reachability checking and BIP-to-NuSMV tool [4], which
transforms BIP models into the input format of the nuXmv
model checker, for the verification of temporal logic proper-
ties.

4Fondazione Bruno Kessler: http://www.fbk.eu/.

Timer Light

[true]

t := 0
init

G

m := 10

[true]
switch

[t ≥ n]

t := 0
switch

m := 5

[true]
switch

m := 3

[true]
switch

m := 3

[true]
init

YR

[true]

t := t+ 1
timer

timer switchswitch

switch x

Figure 3. Traffic light in BIP

Main features of BIP

Below we further discuss the main features of the BIP frame-
work.5 It is important to clearly distinguish the BIP features
from those of conventional programming languages, such as
C++ or Java. First of all, being a framework, BIP differs
from object-oriented programming, inasmuch as it relies on
the inversion of control principle: components notify the BIP
engine about possible transitions, then relinquish control and
wait for the engine to tell them which transition to execute.
It is possible, but not necessary, to associate calls to external
functions to component transitions. The state of a BIP com-
ponent cannot be directly modified by any other component.
The ports of BIP components represent neither input/output
data, nor methods to be invoked. Instead, a port denotes the
event that occurs when the component executes a transition
whereof this port is the label. Thus, a connector enforces
synchronisation of such events. The BIP engine decides
which components are to execute which transitions, based
on the full information about the connectors and priorities
in the system. Robustness of the approach is achieved via
separation of concerns of software components and intrinsic
capability of the framework to isolate error states.

Atoms— BIP systems are assembled from atomic compo-
nents (atoms), corresponding to concurrent processes, such
as control algorithms, monitors, bus and memory drivers etc.
Atoms have disjoint state spaces. An atom is defined by
the corresponding sets of ports, states, transitions, data vari-
ables and update functions associated to transitions. Simple
functions—as in the example below—can be specified di-
rectly, whereas more complex ones can be defined as external
C/C++ code.

Figure 3 shows a simple traffic light controller system mod-
eled in BIP. It is composed of two atomic components Timer
and Light, modelling, respectively, a timer and the light
switching behaviour. The Timer atom has one state with
two self-loop transitions. The incoming arrow, labeled init,
denotes the initialisation event. It is guarded by the constant
predicate true and has an associated update function t := 0,
which initialises the data variable t, used to keep track of the
time spent since the last change of color. The Light atom
determines the color of the traffic light and the duration that
the light must stay in one of the three states, corresponding to
the three colors.

5A complete BIP tutorial is provided in [15].

3

Connectors—The system in Figure 3 has two connectors: a
singleton connector with one port timer and no data transfer
and a binary connector, synchronising the ports switch of the
two components. The first, singleton connector is necessary,
since, in BIP, only ports that belong to at least one connec-
tor can fire. The second connector synchronises the ports
Timer.switch and Light.switch; it has an exported port,
also called switch, and an associated variable x used for the
data transfer.

Connectors define sets of interactions based on the synchroni-
sation attributes of the connected ports, which may be either
trigger or synchron (Figure 4a). If all connected ports are
synchrons, then synchronisation is by rendezvous, i.e. the
defined interaction may be executed only if all the connected
components allow the transitions of those ports (Figure 4b).
If a connector has at least one trigger, the synchronisation is
by broadcast6, i.e. the allowed interactions are all non-empty
subsets of the connected ports comprising at least one of the
trigger ports (Figure 4b). More complex connectors can be
built hierarchically (Figure 4c).

In general, a connector description consists of three parts:

1. A control part specifying a set of ports to be synchronised—
at most one per atomic component—and, optionally, a single
exported port. The latter can be used as a usual port in higher
level connectors.

2. A dataflow part specifying the computation associated with
the interaction. The computation can affect variables associ-
ated with the ports. It consists of an upstream computation
followed by a downstream computation.

3. A Boolean guard determining the enabledness of an interac-
tion depending on the values of the provided data: the inter-
action is only enabled if the data provided by the components
satisfies the guard.

The guard of the Timer.switch− Light.switch connector
in Figure 3 is the constant predicate true, the upward and
downward dataflows are defined, respectively, by the assign-
ments x := Timer.m and Light.n := x. Thus, upon each
synchronisation, Light informs Timer about the amount
of time to spend in the next state, by transferring the value
of Timer.m into Light.n. In hierarchical connectors, the
separation of the dataflow into upward- and downward parts
allows the data provided by the upward flow to be modified
in the higher levels of the connector hierarchy before being
transferred downwards.

Priority—Notice that, when t ≥ n, both transitions, timer
and switch, of the Timer atom are enabled. Since all other
guards in the system are constant predicates true, this means
that both connectors can fire. Imposing the priority timer <
switch resolves this choice, so that switching is performed
whenever possible. In general, it is not necessary to impose
priorities in all conflict situations: according to the BIP
semantics, one of the enabled maximal priority interactions
is chosen non-deterministically [12].

Compounds—Finally, compound components are composed
of sets of sub-components (atoms and/or compounds), con-
nectors and priorities. A compound can export ports defined
in connectors in order to interact with other components in a
larger compound.

6Although we use the term “broadcast” by analogy with message passing—
trigger ports initialise interactions, whereas synchrons join if they are
enabled—, connectors synchronise ports—no messages passing is involved.

Property Enforcement—Architectures

A posteriori verification, e.g. model checking, is well-known
to be limited by the combinatorial state-space explosion
problem. In particular, among the verification tools discussed
in the previous section, only DFinder is known to scale
well to very large models. This is due to the fact that this
tool performs compositional over-approximation of the set
of reachable states of the model, instead of computing it
precisely.

By-construction property enforcement is an alternative ap-
proach that allows designer to circumvent this limitation. It
consists in applying design patterns—that we call architec-
tures—to restrict the behaviour of a set of components so that
the composed behaviour meets a given property. Depending
on the expressiveness of the glue operators, it may be neces-
sary to use additional coordinating components to satisfy the
property.

Architectures depict design principles, paradigms that can
be understood by all, allow thinking on a higher level and
avoiding low-level mistakes. They are a means for ensuring
global properties characterising the coordination between
components—correctness for free. Using architectures is key
to ensuring trustworthiness and optimisation in networks, OS,
middleware, HW devices etc.

System developers extensively use libraries of reference ar-
chitectures ensuring both functional and non-functional prop-
erties, for example fault-tolerant architectures, architectures
for resource management and Quality of Service control,
time-triggered architectures, security architectures and adap-
tive architectures. The proposed definition is general and can
be applied not only to hardware or software architectures but
also to protocols, distributed algorithms, schedulers, etc.

Given a semantic domain—i.e. a class of component
behaviors—C, an architecture is a partial operator A : Cn →
C, imposing a characteristic property Φ. It is defined by a
glue operator (a combination of interactions and priorities) gl
and a finite set of coordinating componentsD ⊂ C, such that:

• A transforms a set of components C1, . . . , Cn into a compos-
ite component A[C1, . . . , Cn] = gl(C1, . . . , Cn,D);

• A[C1, . . . , Cn] meets the characteristic property Φ.

An architecture is a solution to a coordination problem spec-
ified by Φ, using a particular set of interactions specified by
gl. It is a partial operator, since the interactions of gl should
match actions of the composed components.

Figure 5 shows a simple BIP model for mutual exclusion
between two tasks. It has two components modeling the
tasks and one coordinator component C. The four binary
connectors synchronise each of the actions b1, b2 (resp. f1,
f2) of the tasks with the action t, for “take”, (resp. r, for
“release”) of the coordinator.

An architecture can be viewed as a BIP model, where some of
the atomic components are considered as coordinators, while
the rest are parameters. When an architecture is applied to a
set of components, these components are used as operands to
replace the parameters of the architecture. Clearly, operand
components must refine the corresponding parameter ones—
in that sense, parameter components can be considered as

4

(b) Flat Connectors

a b c

a b c

a b c

{abc}

{a, ab,
ac, abc}

{a, b, ab,
ac, bc, abc}

Rendezvous

Broadcast

(a) Port use

synchron

trigger

(c) Hierarchical Connectors

b ca
Rendezvous

{abc}

b ca
Atomic broadcast

{a, abc}

b ca
Causality chain

{a, ab, abc}

Figure 4. Flat and hierarchical BIP connectors

b1 f1 t r

C

taken

free

t r

b2 f2
work

sleep

b2 f2

work

sleep

b1 f1

Figure 5. Mutual exclusion model in BIP

b1 f1 t r

C

taken

free

t r

b2 f2

Figure 6. Mutual exclusion architecture

types.7 Thus, Figure 6 shows an architecture that enforces
the mutual exclusion property on any two components with
interfaces {b1, f1} and {b2, f2}, satisfying the following
property:

Once a component has executed the f transition, it
will not enter the critical section as long as it does not
execute the b transition.

For the operand components in Figure 5, the critical section
is the state work.

Composition of architectures is based on an associative, com-
mutative and idempotent architecture composition operator
‘⊕’ [16]. If two architecturesA1 andA2 enforce respectively
safety properties Φ1 and Φ2, the composed architectureA1⊕
A2 enforces the property Φ1 ∧ Φ2, that is both properties are
preserved by architecture composition.

Since architectures restrict the behavior of components they
are applied to, preservation of deadlock-freedom cannot, in

7The precise definition of the refinement relation is beyond the scope of this
paper.

general, be guaranteed by construction. Instead, deadlock-
freedom has to be verified a posteriori using dedicated tools,
such as DFinder. The role of model checking is reduced
to demonstrating the correctness of architectures w.r.t. their
characteristic properties. This can usually be achieved by
using relatively small models combined with inductive rea-
soning techniques to formally prove that, if a given architec-
ture correctly enforces its characteristic property on a certain
number of operand components, it will also correctly impose
this property on any number of components.

4. APPROACH
Our goal is to provide a framework for rigorous design and
implementation of control software for space missions. Such
framework must have the following key properties.

Concurrency—Control software and, in particular, that re-
quired for space missions is inherently concurrent, since
space systems comprise large numbers of elements, such as
sensors, scientific instruments and other sub-systems that op-
erate in real time, sharing resources, such as communication
buses and memories.

Modularity—Software driving the operation of these elements
must be designed in a modular fashion, with the structure
of the software closely mimicking that of the system. On
one hand, this allows separate validation of each software
component and, on the other hand, greatly improves recon-
figurability of the system.

Separation of concerns— In order to ensure robustness of
the software system, designers must have the capability to
identify all error states and ensure that corresponding cor-
rective actions are properly defined. To this end, the above
modularity requirement is strengthened by further requiring
that the state information be clearly exhibited in the software
model.

Expressiveness—The design framework should be sufficiently
expressive to allow the development of complete software
systems without the need for complex manual integration.
The state space of such systems grows exponentially with the
number of components.

Visual editing—In order to further reduce cognitive complex-
ity and allow designers to have a global understanding of
the software system on the levels of abstraction appropriate
for each design task, the design framework must provide a
visual representation and editing front-end allowing designer
to browse the model of the software in an intuitive way and

5

structuring the model information that is presented at any
given time.

Correctness guarantees—It is fundamental for the design of
mission-critical software to have the possibility of establish-
ing the correctness of the software model with respect to
the mission requirements and, in particular, the satisfaction
of safety properties and deadlock-freedom. To this end,
the design framework must provide either verification tools
capable of analysing the designed models, or synthesis tools
automatically deriving component behaviour from high-level
specifications, or—more pragmatically—a combination of
both.

Formal operational semantics— Guarantees of correctness
can only be provided if the modelling formalism underlying
the design framework has a formally defined operational
semantics. In the absence of such operational semantics,
formal reasoning about the system is not possible and the
only options for software validation available at design time
are testing and simulation. At CERN the use of formal verifi-
cation techniques has allowed finding bugs even in relatively
simple, well-tested components [10].

Automatic code generation—Lastly, to ensure that the proper-
ties demonstrated to hold on the model of the software system
remain valid in the final implementation, it is highly desirable
that the executable code be automatically generated from the
model by a semantics-preserving transformation (to ensure
forward and backward translation).

5. IMPLEMENTATION
The full design workflow (i.e. requirements analysis, logic
design, BIP code development, compilation to microproces-
sor and testing) was completed [17], thereby demonstrating
the feasibility of the BIP concept application to nanosatellties.
An example of the Payload Housekeeping element is shown
in Figure 7.

The full model had 56 atoms and did not fit into the available
memory on the satellite Engineering Model. Therefore,
the full tool chain was implemented for a reduced software
model, containing 19 atoms and 60 connectors. It should be
noted that the reduction of the model was greatly simplified
by the strong modularity provided by the BIP framework. At
the moment, the feasibility study has implemented a small
part of the overall system. Full system will be implemented
in the future on a system with more available memory.

The model represented the interaction of the CDMS (Control
and Data Management Subsystem) with the Payload and
the Attitude Determination and Control (ADCS) subsystems.
Model time step on the microprocessor was 6 ms, which
satisfied the requirement for 0.5 Hz processing step on the
satellite bus. The main challenges were 1) the need to perform
static allocation of memory, 2) the large RAM footprint of
the generated code and 3) the necessity of compiling the BIP
engine and the generated code with a custom ARM compiler.
The memory footprint of the generated code is shown in
Figure 8. The amount of RAM (128MB) on the Cortex-A3
processor is the main constraint, limiting the number of atoms
and connectors (and hence the complexity of the model)
that can be used simultaneously. Only static allocation is
available, therefore it is impossible to reallocate data to main
memory. This restriction is easily lifted on more powerful
platforms. Selected architecture was used due to its low

power consumption and, more generally, the restrictive power
regime on a 1U CubeSat. Complex projects with university
CubeSats are now moving fast towards 3U and 6U platforms.
We expect that future platforms will be more powerful and
therefore can accommodate full model implementation.

Several strategies were considered in [18] for the validation
of the model, with mixed success. Application of verification
tools proved too complex on the complete satellite model
with full detail for the following two reasons. First, the
available prototype verification tools only support a reduced
BIP syntax. In particular, compound components are not sup-
ported and the external C/C++ code, which is not analysed as
part of the verification process, has to be removed manually.
The second, intrinsic reason of the verification complexity
is the large size of the state-space that must be analysed,
which calls for non-trivial abstractions and for compositional
approaches that are not available in the current state of the
art, for general verification. (As discussed below, verification
of specific properties, such as deadlock freedom, can be
performed compositionally.) Further analysis in [17], [18]
has suggested that by-construction validity could be achieved
by applying specific model development rules for the design
of the BIP model of the software.

We have analysed the model developed by [17] to identify
recurring design patterns. These patterns were formalised
as BIP architectures (see Section 3) and used in [19] to
design a new BIP model for CubETH on-board software from
scratch. More specifically, starting with a small set of atoms,
which realise the simple key functionality of the software, we
have systematically applied the above architectures to enforce
safety properties associated to the requirements formulated
for the on-board software. Since the safety properties im-
posed by architectures are preserved by architecture com-
position [16], all properties that we have associated to the
CubETH requirements are satisfied by construction by this
latter model.

Architectures enforce properties by restricting the joint be-
haviour of the operand components (Section 3). There-
fore, combined application of architectures can generate
deadlocks. We have used the DFinder tool [14] to ver-
ify deadlock-freedom of the case study model. DFinder
applies compositional verification on BIP models by over-
approximating the set of reachable states and checking sym-
bolically that the intersection of the obtained set and the set
of deadlock states is empty. This approach allows DFinder
to analyse very large models. The tool is sound, but in-
complete: due to the above mentioned over-approximation
it can produce false positives, i.e. potential deadlock states
that are unreachable in the concrete system. However, our
case study model was shown to be deadlock-free without any
potential deadlocks. Thus, no additional reachability analysis
was needed.

6. DISCUSSION
The main drawback of the work in [17] resides in the fact that
the model was initially drawn by hand using LucidCharts8,
rendering impossible the translation of diagrams into any
other language. Hence, BIP code reproducing the logic in
the diagrams had to be written manually, with the inherent
risk of introducing errors and reduced maintainability of
the code. However, the nature of BIP is graphical, due to
the component-based philosophy adopted by the framework,

8https://www.lucidchart.com/

6

Figure 7. The BIP model of the payload housekeeping readout block
The ports comprising external interfaces of the compound component are located on the boundaries of the block. Transitions
are executed on external signals (e.g. read HK, enable, disable, send TM etc. Active states are highlighted in green,
whereas enabled ports and connectors are highlighted in orange. The block is shown in its WAIT mode.

the use of Labelled Transition Systems and connectors to
define, respectively, component behaviour and synchronisa-
tions. Therefore, we have made the following two attempts to
address this problem.

The first attempt [20] consisted in re-encoding this model in
SysML, using activity diagrams. This attempt failed due to
the absence of versatile support for synchronization modeling
in SysML. We have subsequently attempted to develop a
visual editor based on the Sirius9 plugin for Eclipse, directly
using the BIP ECORE meta-model [21].

Eclipse Sirius is an open-source software project of the
Eclipse Foundation. This technology allows creating custom
graphical modeling workbenches by leveraging the Eclipse
Modeling technologies. Sirius is mainly used to design com-
plex systems (industrial systems or IT applications). The first
use case was Capella10, a Systems Engineering workbench
contributed to the Eclipse Working Group PolarSys in 2014
by Thales.

A prototype modeler for specifying BIP systems using the
Eclipse Sirius tool was developed, providing a set of diagrams

9http://www.eclipse.org/sirius/
10http://www.polarsys.org/capella/

with all constituent elements of BIP models, such as com-
pounds, atoms, ports and connectors. The modeler generates
an XMI file in the format accepted by the BIP code generator,
thus allowing graphical design of a working BIP system.

However, the visual interface of the modeler was unsatisfac-
tory, significantly departing from the graphical conventions
commonly adopted in BIP. This is due to the structural
incompatibility of the current Ecore meta-model used in the
BIP framework with user-friendly visual rendering. Thus,
we conclude that a new visual editor design is necessary,
which would be based on a dedicated meta-model with a bi-
directional transformation into the BIP meta-model.

7. SUMMARY
In this work, we have demonstrated the feasibility of the BIP
approach for the development of flight software. Restrictions
of the Cortex-M3 processor have forced us to reduce the
model in order to fit it into the memory available on the
CubeSat. However, the demonstration of the reduced model
on the CubeSat board was a success.

We found it extremely useful to have a capability to verify the
design logic before compiling to hardware. Although we did

7

Program Memory (1 MB)

536

24

309

155

Engine Baseline Model
Software application Free

RAM (128kB)

13

59 65

Static Heap Stack Free

Figure 8. Memory footprint of the reduced BIP model
The model was compiled for the Energy Micro EFM32
processor (a Cortex-M3 running at 48 MHz). The top
chart shows the partition of the total allocated memory:
note that there is still 536 kB available. The bottom
chart is for allocation in the RAM, which is the source
of the main limitation on the size of the BIP model.

not succeed in formally verifying the complete model, due to
a combination of intrinsic (model complexity) and extrinsic
(tool limitations) factors, the structure of the satellite software
makes this model readily amenable for decomposition into a
number of parts, each of which can be verified individually.
Furthermore, the application of the BIP architecture-based
design approach has allowed us to design a similar model,
where all the safety properties are enforced by construction.
This approach only requires the model to be verified for
deadlock freedom, which we managed to achieve using the
DFinder tool from the BIP toolset. (It should be noted, how-
ever, that any properties that are not enforced by construction
would still have to be verified separately.)

8. FUTURE WORK
This work has shown that, for relatively small missions,
such as CubSats, BIP can be used to design complete on-
board software. In the context of larger missions, where
design of software components is often delegated to sub-
contractors, a key difficulty consists in the integration of such
components. The On-Board Software Reference Architecture
(OSRA) [22] standardization initiative aims at addressing
this difficulty by defining a common component model. In
this context, the most straightforward application of the BIP
framework is the development and automatic code generation
for OSRA components. To achieve this goal, the BIP code
generation must be adapted in such a manner as to provide
the interfaces defined by the OSRA. Furthermore, availability
of BIP models—developed in the framework of the ESA
“Catalogue of Software and System Properties” project—
for the OSRA constituent elements, allows the use of the
BIP framework for co-simulation and co-validation of several
heterogeneous components, whereof parts can be designed
in BIP, while others—using alternative languages and mod-
elling frameworks, such as C++ or Mathlab/Simulink.

We have identified a number of developments necessary to
facilitate OBSW design using the BIP approach. A project
is currently under way to prepare a graphical user interface,
necessary to avoid manual transfer of diagrams to code. It
is also necessary to study the power consumption overhead
when using the precompiled model.

Finally, an important part of the future work is to design a set
of design patterns and validation rules to improve quality of
the software architecture.

ACKNOWLEDGMENTS
The authors would like to thank the Master and PhD students
who have contributed to this project. We are also grateful to
the École polytechnque fédérale de Lausanne for supporting
it.

REFERENCES
[1] C. Brandon and P. Chapin, Reliable Software Technolo-

gies Ada-Europe 2013, ser. Lecture Notes in Computer
Science, H. B. Keller, E. Plödereder, P. Dencker, and
H. Klenk, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, vol. 7896.

[2] S. C. Spangelo, J. Cutler, L. Anderson, E. Fosse,
L. Cheng, R. Yntema, M. Bajaj, C. Delp, B. Cole,
G. Soremekum, and D. Kaslow, “Model based systems
engineering (MBSE) applied to Radio Aurora Explorer
(RAX) CubeSat mission operational scenarios,” in 2013
IEEE Aerospace Conference. IEEE, mar 2013, pp. 1–
18.

[3] S. Dathathri, S. C. Livingston, R. M. Murray, and L. J.
Reder, “Interfacing TuLiP with the JPL Statechart Au-
tocoder : Initial progress toward synthesis of flight soft-
ware from formal specifications,” in IEEE AeroSpace,
2016.

[4] S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri,
W. Saab, and W. Qiang, “Formal verification of infinite-
state BIP models,” in Proceedings of the 13th Interna-
tional Symposium on Automated Technology for Veri-
fication and Analysis, ser. Lecture Notes in Computer

8

Science, B. Finkbeiner, G. Pu, and L. Zhang, Eds., vol.
9364. Springer, 2015, pp. 326–343.

[5] A. B. Ivanov, L. Masson, S. Rossi, F. Belloni,
N. Mullin, R. Wiesendanger, M. Rothacher, C. Hollen-
stein, B. Mannel, D. Willi, M. Fisler, P. Fleischman,
H. Mathis, M. Klaper, M. Joss, and E. Styger, “Cu-
bETH: Nano-satellite mission for orbit and attitude de-
termination using low-cost GNSS receivers,” in 66th In-
ternational Astronautical Congress. Jerusalem, Israel:
International Astronautical Federation, IAF, 2015.

[6] S. Rossi, A. Ivanov, G. Soudan, V. Gass, C. Hollenstein,
and M. Rothacher, “CubETH magnetotorquers: Design
and tests for a cubesat mission,” Advances in the
Astronautical Sciences, vol. 153, pp. 1513–1530, 2015.
[Online]. Available: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-84968735754&partnerID=40&
md5=bb518e947c8ab4ddbeac99ac1a755895

[7] S. Rossi, A. Ivanov, G. Burri, V. Gass,
C. Hollenstein, and M. Rothacher, “CubETH sensor
characterization: Sensor analysis required for a
cubesat mission,” Advances in the Astronautical
Sciences, vol. 153, pp. 1493–1512, 2015. [Online].
Available: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84968718629&partnerID=40&md5=
aac75ea756db639e4bc94d5fbd24c473

[8] ECSS, “ECSS-E-ST-40C: Software,” ESA Require-
ments and Standards Division, Noordwijk, Netherlands,
Tech. Rep., 2009.

[9] J. Wilmot, L. Fesq, and D. Dvorak, “Quality Attributes
for Mission Flight Software : A Reference for Archi-
tects,” in IEEE AeroSpace, Big Sky, MT, 2016, pp. 1–7.

[10] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela,
J.-C. Tournier, S. Bliudze, J. O. Blech, and V. M.
González Suárez, “Applying model checking to
industrial-sized PLC programs,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 6, pp. 1400–1410,
2015.

[11] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber,
T.-H. Nguyen, and J. Sifakis, “Rigorous component-
based system design using the BIP framework,” Soft-
ware, IEEE, vol. 28, no. 3, pp. 41–48, 2011.

[12] S. Bliudze and J. Sifakis, “The algebra of connectors—
structuring interaction in BIP,” IEEE Transactions on
Computers, vol. 57, no. 10, pp. 1315–1330, 2008.

[13] S. Bliudze, A. Mavridou, R. Szymanek, and A. Zolo-
tukhina, “Coordination of software components with
BIP: Application to OSGi,” in Proceedings of the 6th
International Workshop on Modeling in Software Engi-
neering, ser. MiSE 2014. New York, NY, USA: ACM,
2014, pp. 25–30.

[14] S. Bensalem, A. Griesmayer, A. Legay, T.-H. Nguyen,
J. Sifakis, and R. Yan, “D-Finder 2: towards efficient
correctness of incremental design,” in Proceedings of
the 3rd international conference on NASA Formal meth-
ods, ser. NFM’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 453–458.

[15] “BIP tutorial,” http://www-verimag.imag.fr/TOOLS/
DCS/bip/doc/latest/html/language.html.

[16] P. Attie, E. Baranov, S. Bliudze, M. Jaber, and J. Sifakis,
“A general framework for architecture composability,”
Formal Aspects of Computing, vol. 18, no. 2, pp. 207–
231, Apr. 2016.

[17] M. Pagnamenta, “Rigorous software design for nano-

and micro-satellites using BIP framework,” Master’s
thesis, Space Center, EPFL, Sep. 2014.

[18] A. Sikiaridis, “Definition and Implementation of Valida-
tion Strategies for a Nanosatellite Flight Control Soft-
ware Model,” eSpace, EPFL, Lausanne, Switzerland,
Tech. Rep., 2016.

[19] A. Mavridou, E. Stachtiari, S. Bliudze, A. Ivanov,
P. Katsaros, and J. Sifakis, “Architecture-based design:
A satellite on-board software case study,” in Proceed-
ings of the 13th International Conference on Formal
Aspects of Component Software, O. Kuchnarenko and
R. Khosravi, Eds., 2016, to appear.

[20] J.-N. Pittet, “CubETH: Onboard software design with
SysML,” eSpace, EPFL, Lausanne, Switzerland, Tech.
Rep., 2015.

[21] V. Ilievski, “Implemtation of visual interface for BIP
programming in Eclipse Sirius environment,” RISD,
Lausanne, Tech. Rep., 2016.

[22] A. Jung, M. Panunzio, and J.-L. Terraillon, “SAVOIR-
FAIRE — On-board software reference architecture,”
SAVOIR Advisory Group, Tech. Rep. TEC-SWE/09-
289/AJ, Jun. 2010.

BIOGRAPHY[

Dr Anton B. Ivanov is a scien-
tist with the EPFL Space Center (eS-
pace) in Lausanne Switzerland. He is
the project manager for the CubETH
CubeSat project, study leader for the
CHEOPS satellite and is responsible for
the Minor in Space Technologies. After
receiving his PhD in Planetary Science
from Caltech in 2000, Dr Ivanov joined
the Jet Propulsion Laboratory to con-

tribute to Mars Global Surveyor, Mars Odyssey, Mars Ex-
press and Mars Science Laboratory projects. In 2007, Dr
Ivanov joined Swiss Space Center to lead development of the
Concurrent Design Facility.

Dr Simon Bliudze holds an MSc in
Mathematics from the St. Petersburg
State University (Russia, 1998), an MSc
in Computer Science from Université
Paris 6 (France, 2001) and a PhD in
Computer Science from École Polytech-
nique (France, 2006). He has spent two
years at Verimag (Grenoble, France) as
a post-doc with Joseph Sifakis working
on formal semantics for the BIP compo-

nent framework. After three years as a research engineer
at CEA Saclay, France, he has joined the Rigorous System
Design Laboratory (RiSD) at EPFL. Since 2014, Dr Bliudze
is working on the aplication of BIP to the design of On-Board
Software in collaboration with the EPFL Space Center and
in the Catalogue of System and Software Properties (CSSP)
project funded by hte European Space Agency.

9

