

LEARNING THE WEIGHT MATRIX FOR SPARSITY

AVERAGING IN COMPRESSIVE IMAGING

Dimitris Perdios*, Adrien Besson*, Philippe Rossinelli*, and Jean-Philippe Thiran*[†] *Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland [†]Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Switzerland

FÉDÉRALE DE LAUSANNE

Introduction and objectives

Context

• Recover high-quality image $x \in \mathbb{R}^N$ from undersampled measurements $y \in \mathbb{R}^M$, measured with linear operator $A \in \mathbb{R}^{M \times N}$

y = Ax + n

- ► Assume **x** is sparse in a dictionary $\Psi \in \mathbb{R}^{N \times L}$ $(L > N) \Rightarrow$ CS **Goal: High-quality recovery with few iterations** Strategy: Sparsity Averaging for Reweighted Analysis (SARA) [1] $\min_{\mathbf{x} \in \mathbb{R}^{N}} ||W\Psi^{\dagger}\mathbf{x}||_{1} + \frac{1}{2}||A\mathbf{x} - \mathbf{y}||_{2}^{2}$
- Ψ ∈ ℝ^{N×L}, L = qN is a concatenation of q bases Ψ_q and W ∈ ℝ^{L×L}
 W ∈ ℝ^{L×L} is block-diagonal made of q blocks (N × N) with positive entries
 Drawback: Reweighted-ℓ₁ algorithms take "forever" due to multiple updates of the weights

Experimental settings

- Ψ : concatenation of 8 wavelet bases (db 1 to db 8), decomposition level: 2
- A: Gaussian random matrix, with the measurement rate M_B/N_B^2
- Quality evaluated in terms of PSNR and SSIM
- Comparison to a tiled version of SARA and BCS algorithms

Performance evaluation

Proposition: Learn weight matrix W using DNN so that no update required

Proposed approach

Unfolding strategy [2]: each iteration of FISTA [3] mapped to a DNN
 Learned Extended FISTA, coined LEFISTA
 Require: G = ¹/_LA^T, S = (I - ¹/_LA^TA), W, Ψ, 𝔥, L ≥ λ_{max} (A^TA), T, q initialization: i = 1, t₀ = 1, 𝑥₋₁ = 𝑥₀ = 0

repeat

$$t_{i} \leftarrow \frac{1 + \sqrt{1 + 4t_{i-1}^{2}}}{2}, \ \alpha_{i} \leftarrow \frac{t_{i-1} - 1}{t_{i}}, \quad \beta_{i} \leftarrow 1 + \alpha_{i}$$

$$z_{i} \leftarrow \beta_{i} S x_{i-1} - \alpha_{i} S x_{i-2} + G y$$
for $k = 1$ to q do
$$x_{i} \leftarrow x_{i} + \frac{\Psi_{k}}{\sqrt{q}} \text{soft} \left(\frac{\Psi_{k}^{\dagger}}{\sqrt{q}} z_{i}; \frac{1}{L} W_{k}\right)$$
end for

$$i \leftarrow i + 1$$

until
$$i = T$$

return $(x_i)_{i=1}^T, (z_i)_{i=1}^T, (\alpha_i)_{i=1}^T, (\beta_i)_{i=1}^T$

Figure Test images reconstructed for a measurement rate $M_B/N_B^2 = 0.3$ (first row) with tiled SARA and (second row) with LEFISTA (50 layers)

Table Comparison of LEFISTA (50 layers	s) against tiled SARA and BCS algorithms
--	--

		Measurement rate					
Algorithm	m PSNR [d			SSIM [–]		-]	
	0.1	0.3	0.5	0.1	0.3	0.5	
Barbara							
Tiled SARA	16.15	24.90	29.70	0.38	0.79	0.91	
BCS-SPL-DWT	21.87	24.31	27.06	0.40	0.61	0.75	

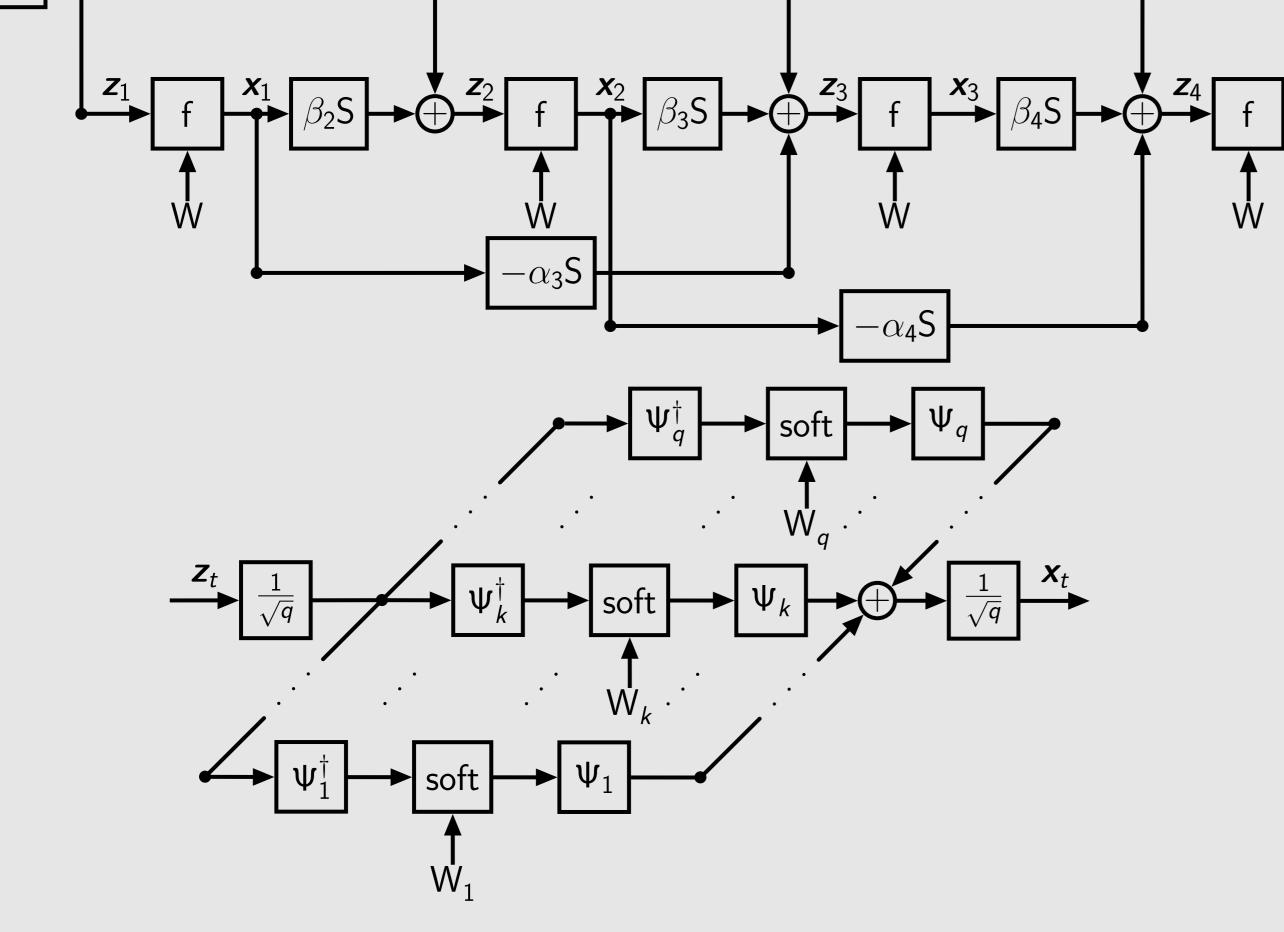


Figure LEFISTA network architecture: (top) 4-first layers (bottom) non-linearity f

Learning and image reconstruction processes

Learning the weight matrix

► Training set made of P pairs $(\mathbf{y}_p, \mathbf{x}_p^*)_{p=1}^P$, \mathbf{x}_p^* the ref., \mathbf{y}_p the measurements

		•••••	
73 29.29	0.61	0.79	0.90
86 27.99	0.41	0.63	0.77
74 27.84	0.40	0.62	0.76
	86 27.99	86 27.99 0.41	 74 27.84 0.40 0.62 86 27.99 0.41 0.63 73 29.29 0.61 0.79

Goldhill

Tiled SARA	18.56	29.76	33.19	0.45	0.81	0.90
BCS-SPL-DWT	24.57	30.40	33.06	0.42	0.68	0.80
BCS-SPL-DDWT	25.18	30.45	33.11	0.42	0.68	0.80
MS-BCS-SPL-DWT	26.74	30.57	33.19	0.44	0.68	0.80
LEFISTA-LN50	26.77	30.93	34.17	0.66	0.83	0.91

Peppers

LEFISTA-LN50	28.45	33.72	36.34	0.77	0.87	0.91
MS-BCS-SPL-DWT	28.22	33.63	36.33	0.45	0.65	0.77
BCS-SPL-DDWT	28.09	33.52	36.26	0.45	0.65	0.77
BCS-SPL-DWT	27.73	33.38	35.92	0.45	0.65	0.76
Tiled SARA	18.71	32.81	35.35	0.44	0.84	0.90

Conclusion and perspectives

- ► FISTA with a sparsity prior in a concatenation of wavelet bases Ψ mapped to a DNN → LEFISTA
- Used to learn the weight matrix W of a weighted ℓ_1 -minimization problem
- Once trained, much faster than reweighted l₁ with promising results
 Future work:
- ► Objective: find W which minimizes the ℓ_2 -loss function → BPTT Image reconstruction
- GPU RAM limitations → patches → block-compressed sensing (BCS)
 A ∈ ℝ^{M_B×N²_B} on patches of size N_B × N_B pixels (64 × 64)
- ► Image split into *B* non-overlapping patches, compressed with A
- ► Apply LEFISTA forward to reconstruct image with W learned in training phase

Network training

- TensorFlow implementation: https://github.com/dperdios/lefista
- ► Trained on NVIDIA Titan X GPU card
- ► Different layer number *T* tested (30, 40, 50), best is 50 (LEFISTA-LN50)
- Mini-batch learning: 43560 patches from 1200 images ILSVRC 2014 ImageNet
- Optimizer: Adam, learning rate: 10^{-5} , batch size: 32, epoch number: 20

- ► Learn non-linearities (e.g. prox., compression)
- Address blocking artifacts

References

- 1] R. E. Carrillo, J. D. McEwen, D. Van De Ville, J.-P. Thiran, and Y. Wiaux, "Sparsity Averaging for Compressive Imaging", IEEE Signal Process. Lett., vol. 20, no. 6, pp. 591–594, 2013.
- K. Gregor and Y. LeCun, "Learning Fast Approximations of Sparse Coding", in 27th Int. Conf. Mach. Learn. ICML 2010, 2010, pp. 399–406.
- [3] A. Beck and M. Teboulle, "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems", SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202, 2009.

Acknowledgments

This work was supported in part by the UltrasoundToGo RTD project (no. 20NA21_145911), evaluated by the Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation financing