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ABSTRACT

We propose to map the fast iterative shrinkage-thresholding algo-
rithm to a deep neural network (DNN), with a sparsity prior in a
concatenation of wavelet bases, in the context of compressive imag-
ing. We exploit the DNN architecture to learn the optimal weight
matrix of the corresponding reweighted ¢;-minimization problem.
We later use the learned weight matrix for the image reconstruc-
tion process, which is recast as a simple ¢;-minimization problem.
The approach, denoted as learned extended FISTA, shows promising
results in terms of image quality, compared to state-of-the-art algo-
rithms, and significantly reduces the reconstruction time required to
solve the reweighted ¢;-minimization problem.

Index Terms— Compressed sensing, deep learning, fast iterative
shrinkage-thresholding algorithm

1. INTRODUCTION

Compressed sensing (CS) extends the principle of Nyquist sampling
to non-bandlimited signals exploiting the idea that most signals
have concise representations, expressed in terms of sparsity, in well-
chosen models [1, 2]. Let us denote as € RY the signal under
scrutiny, measured with a linear operator A € RM>*¥ such that
y = Ax 4+ n, where n € RM is the observation noise. Let us
assume that & obeys a sparse representation in a basis ¥ € RV X,
i.e. that & = We with ||c||lo = K < N. For a sufficient number of
measurements M, CS demonstrates that one can perfectly recover
x from y, with high probability, by solving the following analysis
problem:

. 1
min ||V 2| + =||Az — yl|3, (1)
xRN 2

where W1 designates the adjoint of W and ||.||, denotes the £,-norm

calculated as ||| = {/3°N, |x;]2. It has been demonstrated that
Gaussian and Bernoulli random matrices are particularly suited to
the CS framework. In this specific case, sampling rates requirements
scale logarithmically with the size of the signal [3].

Candes et al. have later extended the CS framework to coher-
ent and redundant dictionaries W [4] and have shown that solving
a reweighted /;-minimization problem may improve the signal re-
construction [5]. Carrillo et al. [6] have used this framework for
compressive imaging by exploiting sparsity of images in multiple
mutually coherent wavelet bases. Their technique, coined as spar-
sity averaging for reweighted analysis (SARA) aims at solving the
following problem:

. 1
min |\WW'z|; + S[|Az — y]|3, )
xRN 2
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where W € RV*L [ = ¢N is a concatenation of ¢ bases v, and
W € RE*F is a block-diagonal matrix made of ¢ blocks of size N x
N with positive entries. Carrillo et al. [6] have shown that SARA
outperforms many state-of-the-art image reconstruction algorithms.

The tremendous success of deep learning (DL) approaches
for many image processing tasks has lead researchers to study
in what extent DL may perform signal and image reconstruc-
tion. Gregor and Lecun [7] have bridged the gap between DL
and CS by introducing the learned iterative shrinkage-thresholding
algorithm (LISTA), in which the classical iterative shrinkage-
thresholding algorithm (ISTA) is mapped onto a deep neural net-
work (DNN). By learning the optimal parameters of the algo-
rithm on a training set, LISTA outperforms classical ISTA and
fast ISTA (FISTA). Kamilov and Mansour [8] have recently ex-
tended the work of Gregor and Lecun by learning the non-linearity
of LISTA, based on a B-spline decomposition. Yang et al. [9] have
applied the same procedure to map the alternating direction method
of multipliers (ADMM) to a DNN and have shown promising results
in terms of reconstruction time and image quality for CS in magnetic
resonance imaging.

An alternative to the methods mentioned above consists in train-
ing classical DNN architectures, usually used to perform classifica-
tion, for image reconstruction. Based on the success of autoencoders
for non-linear image classification, Mousavi et al. [10] have applied
a 3-layers stacked denoising autoencoder for CS and have shown
that such a DNN architecture is competitive against state-of-the-art
techniques. Kulkarni et al. [11] have adapted a convolutional neural
network architecture to image reconstruction and have demonstrated
a significant increase of the image quality compared to classical tech-
niques.

In this work we propose an alternative to SARA proposed by
Carrillo et al. [6]. The underlying idea is that one way to accelerate
the algorithm may consist in learning the matrix W during a training
step, using a DNN, and later use it for the image reconstruction,
instead of alternating between an update step and an optimization
step. To this aim, we suggest to use FISTA, introduced by Beck and
Teboulle [12], to solve Problem (2). The choice of FISTA is guided
by our ability to map it to a DNN allowing us to use backpropagation
algorithms to learn the optimal weight matrix.

The remainder of the paper is organized as follows. The pro-
posed approach is described in Section 2 and compared against
SARA and other state-of-the-art algorithms in Section 3. Conclud-
ing remarks are given in Section 4.



2. THE PROPOSED APPROACH

2.1. Mapping the fast iterative shrinkage-thresholding algo-
rithm to a deep neural network

In order to achieve the mapping, we need to unfold FISTA, described
in Algorithm 1, in a similar manner to Gregor and LeCun [7].

Algorithm 1 FISTA used to solve Problem (2)

Require: AW,V y, L > Apax (ATA)
initialization: ¢ =1,tp =1, x_1 =20 =0

repeat
14, /14482
t; < — il
ti_q1—1
Q; — %, Bi+— 1+ a;

Ci < BiTi—1 — iTi—2
ww 1 AT L1
@+ proxji, (ei + LA (¥ —Aci); 1)
1 i+1
until stopping criterion
return x;

In Algorithm 1, prox\"?{‘ﬁz (.;7) accounts for the proximity op-

erator of the function g : = +— 7||WW'x||;. Such a proximity
operator can be rewritten as follows [13]:

wwt 2 \UJ k \U;
prox| 1, (&;7) = —soft [ —=x;7Wy |, 3)
i11n € ; Vi i
where W/, is a diagonal matrix which accounts for the k** block of
W. The operation soft(s; D) with a diagonal matrix D involves a
soft-thresholding of the entries s; with respect to D;;, as described
hereafter:

SOft(Si;TDii) = sign (81) (|81| — Dii)Jr .

We introduce the matrices S = (1 — A" A) and G = +A” and use
Equation (3) to unfold FISTA, resulting in Algorithm (2).

Algorithm 2 LEFISTA forward propagation

Require: G,S,W,V,y, L > Anas (ATA), T, q
initialization: 1 =1,tp =1, x_1 =20 =0

repeat
144 /14+4t2_
t; < fl
ti_1—1
Oéi(-ltl_ , Bi+— 14

Zi 51'5.}1:1,1 — o;Sxi_o + Gy
for k =1togdo
T; — T + w—\/’%soft (%Zi; %Wk)
end for
14 1+1
until: =T
return (mi)?:1 ) (zi)?zl ) (ai)?zl ) (61)3;1

Each iteration of Algorithm (2) can be mapped to a feed-forward
neural network, denoted as learned extended FISTA (LEFISTA),
which architecture is described on Figure 1. On Figure 1(a), one
may see the four first layers of LEFISTA, with a non-linearity
function f defined on Figure 1(b).

2.2. Learning the weight matrix

In order to learn the weight matrix, we consider a training set made
of P pairs (yp, m;);;l where 7 denotes the reference image and
yp the corresponding measurement vector. The objective of the
learning procedure consists in finding W which minimizes the ¢»-
loss function over the training set.

To achieve such a minimization, the backpropagation-through-
time (BPTT) algorithm is used, where the gradient of the loss func-
tion over each diagonal element of W is calculated using the chain
rule. Using the same notations as the one described in the paper of
Gregor and LeCun, i.e. by defining as dx the gradient of the loss
over x, as (0W},) the gradient of the loss over the diagonal elements
of each Wy, and as soft’ (s; D) the Jacobian of the soft-thresholding
operator with respect to its inputs (diagonal matrix), the backpropa-
gation can be derived as described in Algorithm 3.

Algorithm 3 LEFISTA Backpropagation algorithm
Require: (mi)?:1 5 (Zi)?:l 5 (ai)g‘zl 5 (ﬁl)ZTZI ) G7 Sa Wa w7 q

initialization: ¢ = T,dxry1 = @ — «*, (0Wg)]_, = 0,
T41

(5zi)i:1 =0

repeat

for k =1togdo
i
Shy %soft' (%zi; %Wk) Wl sx;
0z; + 0z; + Ohy,

T T
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va®i | Ja
end for
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141 —1
until i = 1

return (0Wpg)7_,

The learning procedure consists in alternating, over a fixed num-
ber of epochs, between estimating « for all the training samples with
a fixed W using Algorithm 2 and updating W for a fixed set of es-
timates using Algorithm 3. The update step consists in applying a
gradient descent: W, <— Wy — edWy, with € the learning rate and
(0Wp)f_, computed with the BPTT algorithm.

2.3. Image reconstruction

DNN-based approaches require to work on image patches, which
typical sizes range between 16 x 16 and 64 x 64 pixels, due to mem-
ory requirements during training. This conditions the image re-
construction process to be patch-based. In this work, we exploit
the block-compressed-sensing (BCS) framework, introduced by
Gan [14] which permits to use CS techniques in a block-based
manner.

The idea consists in training LEFISTA with a given measure-

ment matrix A € RM5*N5 op patches of size Ng X Np pixels.
Once the network is trained, we divide each image of the test set into
B non-overlapping patches of size Np X Np pixels. We compressed
each patch with the matrix A used in the training phase and we re-
construct each patch independently by applying Algorithm 2 with
W learned in the training phase. The whole image is obtained by
placing each reconstructed patch at its initial location in the canvas.

One remarkable property of such a technique is that it reduces
the resolution of Problem (2) to the resolution of Problem (1), much
faster to solve.
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Fig. 1. LEFISTA network architecture: (a) the 4-first layers of LEFISTA, with 8; =

composed of a soft-thresholding operator in multiple wavelet bases.

3. PERFORMANCE EVALUATION

3.1. Experimental settings

The proposed LEFISTA is tested with different number of layers, i.e.
30, 40 and 50. The patch size is set to 64 x 64 pixels and the measure-

ment matrix A € R™5 %N is chosen with Gaussian random entries,
with the measurement rate M /N% varying between 0.1 and 0.5. In
order to fit with the framework described by Carrillo ez al. [6], V is
composed of a concatenation of 8 wavelet bases with Daubechies 1
to Daubechies 8 as mother function. Two decomposition levels are
considered. LEFISTA is implemented' on TensorFlow and experi-
ments have been performed on a NVIDIA Titan X GPU card. It is
trained using mini-batch learning on 43 560 patches extracted from
1200 images of the ILSVRC 2014 ImageNet dataset. The chosen
optimization algorithm is Adam with a learning rate of 10~ and a
batch size of 32. The number of epochs is fixed to 20.

The quality of the reconstruction is evaluated on a test set com-
posed of 4 images, namely Barbara, Goldhill, Peppers and Lena.
The peak-signal-to-noise ratio (PSNR) and the structural-similarity
index (SSIM) are used as image quality metrics.

3.2. Comparison to SARA

LEFISTA is firstly compared to a tiled version of SARA, where
the algorithm is applied on the same non-overlapping patches. In
this case, the matrix A used for SARA reconstruction is the same
Gaussian random matrix as before, the reconstruction algorithm is
Douglas-Rachford with 200 iterations and 10 updates of the weight
matrix.

The results, expressed in terms of PSNR and SSIM, and dis-
played on Table 1, show that LEFISTA outperforms SARA in most
cases, especially at low measurement rates.

From Figure 2, which shows the test images reconstructed with
SARA and LEFISTA (50 layers) respectively, for a measurement
rate of 0.3, one can see that the visual quality is similar between
the two methods. One may notice that the images reconstructed
with LEFISTA are slightly more blurred than the ones reconstructed
with SARA, whereas the blocking artifacts are less important with
LEFISTA than with SARA. This can justify the difference observed
in terms of PSNR.

One remarkable aspect of LEFISTA is that, since it solves a ¢1-
minimization problem rather than a reweigthed one, it takes a few
seconds to reconstruct an image while SARA takes around one hour.

"https://github.com/dperdios/lefista
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(1 + o) and (b) the non-linearity f involved in LEFISTA,

Table 1. Comparison, in terms of PSNR and SSIM, of LEFISTA
with 30, 40 and 50 layers against a tiled version of SARA and state-
of-the-art block compressed sensing algorithms, for Barbara, Gold-
hill, Peppers and Lena images, for different measurement rates.

Measurement rate

Algorithm PSNR [dB] SSIM [-]
0.1 0.3 0.5 0.1 0.3 0.5
Barbara
Tiled SARA 16.15 2490 29.70 0.38 0.79 091
BCS-SPL-DWT 21.87 2431 27.06 040 0.61 0.75
BCS-SPL-DDWT 22.11 2474 27.84 040 0.62 0.76
MS-BCS-SPL-DWT  22.17 2486 2799 041 063 0.77
LEFISTA-LN30 2252 2538 2894 059 077 0.88
LEFISTA-LN40 22.65 2561 29.19 0.60 0.78 0.89
LEFISTA-LN50 2277 25773 2929 0.61 0.79 0.90
Goldhill
Tiled SARA 18.56 29.76 33.19 045 0.81 0.90
BCS-SPL-DWT 2457 3040 33.06 042 0.68 0.80
BCS-SPL-DDWT 25.18 3045 33.11 042 0.68 0.80
MS-BCS-SPL-DWT  26.74 30.57 33.19 044 0.68 0.80
LEFISTA-LN30 2641 3020 3335 0.64 0.80 0.89
LEFISTA-LN40 26.63 30.63 33.89 0.65 0.82 0.90
LEFISTA-LN50 26.77 3093 34.17 0.66 0.83 0.91
Peppers
Tiled SARA 18.71 3281 3535 044 0.84 0.90
BCS-SPL-DWT 27.73 3338 3592 045 0.65 0.76
BCS-SPL-DDWT 28.09 3352 3626 045 0.65 0.77
MS-BCS-SPL-DWT  28.22 33.63 3633 045 065 0.77
LEFISTA-LN30 2732 3253 3552 074 0.85 0.89
LEFISTA-LN40 27.93 3321 36.07 075 0.86 0.90
LEFISTA-LN50 2845 3372 3634 0.77 087 091
Lena
Tiled SARA 1793 33.04 36.84 051 0.89 0.94
BCS-SPL-DWT 26.63 3281 3621 044 0.68 0.80
BCS-SPL-DDWT 2749 3324 3667 045 0.69 0.81
MS-BCS-SPL-DWT  27.53 3346 36.86 046 0.70 0.81
LEFISTA-LN30 2741 3227 3590 075 0.87 0.92
LEFISTA-LN40 2776 3293 3648 0.77 0.89 0.93
LEFISTA-LN50 28.04 3334 3678 0.78 0.89 094
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Fig. 2. Test images (from left to right: Barbara, Goldhill, Peppers and Lena) reconstructed for a measurement rate Mp /N7 = 0.3 (first row)

with SARA and (second row) with LEFISTA (50 layers).

3.3. Comparison to state-of-the-art block compressed sensing
algorithms

We also compare the proposed approach to state-of-the-art BCS re-
construction methods, namely BCS with smooth projected Landwe-
ber with the dual tree wavelet transform (BCS-SPL-DDWT) and the
discrete wavelet transform (BCS-SPL-DWT) and multiscale BCS
with the smooth projected Landweber and the discrete wavelet trans-
form (MS-BCS-SPL-DWT) [15]. The code used for both methods is
provided by their authors.

The results, displayed on Table 1, show that LEFISTA out-
performs BCS reconstruction methods in terms of both PSNR and
SSIM. It can be noticed that the increase is more significant on the
SSIM. One possible explanation is that BCS-SPL-DWT, BCS-SPL-
DDWT and MS-BCS-SPL-DWT use a Wiener filter at each iteration
of the reconstruction algorithm to avoid blocking artifacts. This
results in an over-smoothing of the image which has a significant
impact on the SSIM.

One may notice that, as expected, LEFISTA may achieve better
image quality by increasing the number of layers.

4. CONCLUSION

In this work, we propose to map the fast iterative shrinkage-
thresholding algorithm to a deep neural network (DNN). We use
this architecture to learn the weight matrix of a weighted ¢;-
minimization problem, with a prior of sparsity in a concatenation
of wavelet bases. This learned matrix is later used in the problem,
which is recast as a classical #;-minimization problem, much faster
to solve than the reweighted ¢;-minimization problem. The pro-
posed approach leads to promising results in terms of image quality
and opens the way to more advanced models, where the DNN ar-
chitecture is not only used to learn the weight matrix but also to

learn the non-linearities and the different matrices involved in the
network.
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