
Don’t cry over spilled records: Memory elasticity of data-parallel
applications and its application to cluster scheduling

Calin Iorgulescu*, Florin Dinu*, Aunn Raza‡, Wajih Ul Hassan†, and Willy Zwaenepoel*

*EPFL †UIUC ‡NUST Pakistan

Abstract
Understanding the performance of data-parallel work-
loads when resource-constrained has significant practical
importance but unfortunately has received only limited
attention. This paper identifies, quantifies and demon-
strates memory elasticity, an intrinsic property of data-
parallel tasks. Memory elasticity allows tasks to run with
significantly less memory that they would ideally want
while only paying a moderate performance penalty. For
example, we find that given as little as 10% of ideal mem-
ory, PageRank and NutchIndexing Hadoop reducers be-
come only 1.2x/1.75x and 1.08x slower. We show that
memory elasticity is prevalent in the Hadoop, Spark, Tez
and Flink frameworks. We also show that memory elas-
ticity is predictable in nature by building simple models
for Hadoop and extending them to Tez and Spark.

To demonstrate the potential benefits of leveraging
memory elasticity, this paper further explores its appli-
cation to cluster scheduling. In this setting, we observe
that the resource vs. time trade-off enabled by memory
elasticity becomes a task queuing time vs task runtime
trade-off. Tasks may complete faster when scheduled
with less memory because their waiting time is reduced.
We show that a scheduler can turn this task-level trade-
off into improved job completion time and cluster-wide
memory utilization. We have integrated memory elastic-
ity into Apache YARN. We show gains of up to 60% in
average job completion time on a 50-node Hadoop clus-
ter. Extensive simulations show similar improvements
over a large number of scenarios.

1 Introduction
The recent proliferation of data-parallel workloads [27,
10, 24] has made efficient resource management [22,
26, 7] a top priority in today’s computing clusters. A
popular approach is to better estimate workload resource
needs to avoid resource wastage due to user-driven over-
estimations [26, 12, 21]. Another is to over-commit

server resources to cope with the variability of work-
load resource usage [26, 7, 11]. Unfortunately, only
a few efforts [12] have touched on the malleability
of data-parallel workloads when resource-constrained.
The study of malleability is complementary to solutions
for over-estimations and variability. While the latter
two attempt to accurately track the actual workload re-
source usage, the former is about allocating to appli-
cations fewer server resources than they would ideally
need. A thorough understanding of the trade-offs in-
volved in resource malleability is useful in many contexts
ranging from improving cluster-wide resource efficiency
and cluster provisioning to reservation sizing in public
clouds, disaster recovery, failure recovery and cluster
scheduling.

The main contribution of this paper is identifying,
quantifying and demonstrating memory elasticity, an in-
trinsic property of data-parallel workloads. We define
memory elasticity as the property of a data-parallel task
to execute with only a moderate performance penalty
when memory-constrained. Memory elasticity pertains
to tasks involved in data shuffling operations. Data shuf-
fling is ubiquitous [6, 20, 28]. It is required, in all
data-parallel frameworks, to implement even the sim-
plest data-parallel applications. Thus, most tasks are in-
volved in shuffling and show memory elasticity: map-
pers and reducers in MapReduce, joins and by-key trans-
formations (reduce, sort, group) in Spark, and mappers,
intermediate and final reducers in Tez.

Despite significant differences in the designs of popu-
lar data-parallel frameworks, shuffling operations share
across these frameworks a common, tried-and-tested
foundation in the use of merge-sort algorithms that may
also use secondary storage [3]. The memory allocated to
a task involved in shuffling has a part for shuffling and
a part for execution. The best task runtime is obtained
when the shuffle memory is sized such that all shuffle
data fits in it. This allows the shuffle to perform an effi-
cient in-memory-only merge-sort. If the shuffle memory

1

is insufficient, an external merge-sort algorithm is used.
The key insight behind memory elasticity is that

under-sizing shuffle memory can lead to considerable
reductions in task memory allocations at the expense
of only moderate increases in task runtime. Two fac-
tors contribute to the sizeable memory reductions. First,
shuffle memory is usually a very large portion of the task
memory allocation (70% by default in Hadoop). Sec-
ond, external merge-sort algorithms can run with very
little memory because they can compensate by using sec-
ondary storage. A couple of factors also explain why
the task runtime increases only moderately when shuffle
memory is under-sized. First, a data-parallel task couples
shuffling with CPU-intensive processing thus making far
less relevant the performance gap between external and
in-memory merge-sort. Second, disk accesses are effi-
cient as the disk is accessed sequentially. Third, the per-
formance of external merge-sort algorithms remains sta-
ble despite significant reductions in shuffle memory (a
k-way merge is logarithmic in k).

Thus, memory elasticity presents an interesting re-
source vs. time trade-off. This paper quantifies this
trade-off and its implications using extensive experimen-
tal studies. We find that memory elasticity is prevalent
across the Hadoop, Spark, Tez and Flink frameworks
and across several popular workloads. In all cases, the
performance penalty of memory elasticity was moder-
ate despite sizeable reductions in task memory alloca-
tions. Let M be the task memory allocation that mini-
mizes task runtime by ensuring that all shuffle data fits
in shuffle memory. Given as little as 10% of M, PageR-
ank and NutchIndexing Hadoop reducers become only
1.22x/1.75x and 1.08x slower. For Hadoop mappers the
largest encountered penalty is only 1.5x. For Spark, Tez
and Flink the penalties were similar to Hadoop. Further-
more, we show the predictable nature of memory elas-
ticity which is key to leveraging it in practice. We build
simple models for Hadoop that can accurately describe
the resource vs. time trade-off. With only small changes
the same models apply to Spark and Tez.

To demonstrate the potential benefits of leveraging
memory elasticity, this paper further explores its appli-
cation to cluster scheduling. Current clusters host con-
currently a multitude of jobs each running a multitude
of tasks. In this setting, we observe that the resource
vs. time trade-off of memory elasticity becomes a task
queueing time vs task runtime trade-off. A task normally
has to wait until enough memory becomes available for it
but if it is willing to execute using less memory it might
have to wait much less or not at all. Since the completion
time of a task is the sum of waiting time plus runtime,
a significant decrease in waiting time may outweigh an
increase in runtime due to elasticity and overall lead to
faster task completion times. We show that a sched-

uler can turn this task-level trade-off into improved job
completion time and improved cluster-wide memory uti-
lization by better packing tasks on nodes with respect to
memory. Scheduling using memory elasticity is an NP-
hard problem because it contains as a special case NP-
hard variants of the RCPSP problem [8], a well-known
problem in operations research. We propose a simple
heuristic and show it can yield important benefits: the
tasks in a job can leverage memory elasticity only if that
does not lead to a degradation in job completion time.

We have integrated the concepts of memory elastic-
ity into Apache YARN. On a 50-node Hadoop cluster,
leveraging memory elasticity results in up to 60% im-
provement in average job completion time compared to
stock YARN. Extensive simulations show similar im-
provements over a large number of scenarios.

2 Memory elasticity in real workloads
This section presents an extensive study of memory elas-
ticity. We make a few key points. First, memory elas-
ticity is generally applicable to several frameworks and
workloads. Our measurements have an emphasis on
Hadoop but also show that elasticity applies to Apache
Spark, Tez and Flink. Second, memory elasticity costs
little. The performance degradation due to using elas-
ticity was moderate in all experiments. Third, elasticity
has a predictable nature and thus can be readily modeled.
We provide a model for Hadoop and with only simple
changes apply it to Tez and a Spark Terasort job. We also
detail the causes and implications of memory elasticity.

We use the term spilling to disk to refer to the usage of
secondary storage by the external merge-sort algorithms.
We call a task under-sized if its memory allocation is in-
sufficient to avoid spilling to disk during shuffling. We
call a task well-sized otherwise. We call ideal memory
the minimum memory allocation that makes a task well-
sized and ideal runtime the task runtime when allocated
ideal memory. We use the term penalty to refer to the
performance penalty due to memory elasticity for under-
sized tasks.

2.1 Measurement methodology

For Hadoop we profiled 18 jobs across 10 different ap-
plications, most belonging to the popular HiBench big-
data benchmarking suite [4]. The jobs range from graph
processing (Connected Components, PageRank) to web-
indexing (Nutch), machine learning (Bayesian Classi-
fication, Item-Based Recommender), database queries
(TPC-DS) and simple jobs (WordCount, TeraSort). For
Spark we profiled TeraSort and WordCount, for Tez we
profiled WordCount and SortMerge Join and for Flink
we profiled WordCount. We used Hadoop 2.6.3, Spark
2.0.0, Tez 0.7.0 and Flink 1.0.2. However, the same

2

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Heap allocated as fraction of optimal

Pagerank job 1 mapper - without combiner
Pagerank job 2 mapper - without combiner

Connected Components job 1 mapper - without combiner
WordCount mapper - with combiner
WordCount mapper - without combiner

(a) Elasticity for Hadoop mappers

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Heap allocated as fraction of optimal

Pagerank job1 - 5 GB reducer input
Pagerank job2 - 10 GB reducer input

TPC-DS Query7 job1 - 13 GB reducer input
TPC-DS Query40 job1 - 5 GB reducer input

Connected Components job1 - 11 GB reducer input
Terasort - 10 GB reducer input

Mahout Item Based Recommender job1 - 12 GB reducer input
Mahout Item Based Recommender job2 - 18 GB reducer input

WordCount - 6 GB reducer input
NutchIndexing - 10 GB reducer input

(b) Elasticity for Hadoop reducers

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

R
e
a
l
re

d
u
c
e
r

ru
n
ti
m

e
 n

o
rm

a
l.
 t
o
 m

o
d
e
le

d
 r

u
n
ti
m

e

Heap allocated as fraction of optimal

PageRank job1
PageRank job2

TCP-DS Query7 job1
TCP-DS Query40 job1
Connected. Comp job1

Terasort
Mahout Item Based Recommender job1
Mahout Item Based Recommender job2

WordCount
NutchIndexing
Spark Terasort

Tez SortMergeJoin
Tez WordCount

(c) Accuracy of modeling reducer behavior

Figure 1: Memory elasticity profiles for Hadoop mappers (a) and reducers (b). Accuracy of our model (c).

behavior appears in Spark versions prior to 2.0.0 and
Hadoop versions at least as old as 2.4.1 (June 2014).

For accurate profiling we made sure that the profiled
task is not collocated with any other task. To measure
the worst case penalties for under-sized tasks we ensure
that disk I/O operations for spills actually go to the drive
and not to the OS buffer cache. For this, we ran each task
in a separate Linux cgroups container. We minimize the
amount of buffer cache available to a task by setting the
cgroups limits as close to the JVM heap size as possible.
As an alternative we also modified Hadoop to perform
disk spills using direct I/O thus bypassing completely the
OS buffer cache. The two solutions gave consistently
similar results.

2.2 Memory elasticity for Hadoop mappers

Elasticity for mappers occur on their output side. The
key-value pairs output by map function calls are written
to an in-memory buffer. If the mapper is well-sized then
the buffer never fills up. In this case, when the map-
per finishes processing its input, the buffer contents are
written to disk into one sorted and partitioned file (one
partition per reducer). If the mapper is under-sized, the
buffer fills up while the mapper is still executing map
function calls. The buffer contents are spilled to disk
and the buffer is reused. For under-sized mappers, at the
end there is an extra merge phase that merges together
all existing spills. If combiners are defined then they are
applied before spills.
The impact of elasticity on mapper runtime Fig. 1a
shows the mapping between normalized mapper run-
time (y-axis) and allocated heap size (x-axis) for several
Hadoop mappers. We call this mapping the memory elas-
ticity profile. The penalties are moderate. For example,
an under-sized WordCount mapper is about 1.35x slower
than when well-sized. If the same mapper uses a com-
biner, then the penalty is further reduced (1.15x) because
less data is written to disk. The maximum encountered
penalty across all mappers is 1.5x.

Why penalties are not larger As explained in the
introduction, three factors limit the penalties. First, the
mapper couples shuffling with CPU-intensive work done
by map function calls. Second, disk accesses are efficient
as the disk is accessed sequentially. Third, the perfor-
mance of external merge-sort algorithms remains stable
despite significant reductions in shuffle memory.
The shape of the memory elasticity profile The
elasticity profile of a mapper resembles a step function.
The reason is that under-sized mappers perform an extra
merge phase which takes a similar amount of time for
many different under-sized allocations.
Modeling memory elasticity for mappers A step
function is thus a simple and good approximation for
modeling memory elasticity for Hadoop mappers. To
build this model two training runs are needed, one with
an under-sized mapper and one with a well-sized map-
per. The runtime of the under-sized mapper can then be
used to approximate the mapper runtime for any other
under-sized memory allocations.

2.3 Memory elasticity for Hadoop reducers

Elasticity for reducers appears on their input side. Re-
ducers need to read all map outputs before starting the
first call to the reduce function. Map outputs are first
buffered in memory. For a well-sized reducer this buffer
never fills up and it is never spilled. These in-memory
map outputs are then merged directly into the reduce
functions. For an under-sized reducer the buffer fills up
while map outputs are being copied. In this case, the
buffer is spilled and reused. The reduce function for an
under-sized reducer is fed a merge of this mixture of in-
memory and on-disk data.
The impact of elasticity on reducer runtime Fig. 1b
shows the memory elasticity profiles for several Hadoop
reducers. In addition to the jobs in Fig. 1b we also
profiled the vector creation part of HiBench’s Bayesian
Classification. Because this application has many jobs
we could not obtain the full elasticity profile for each in-

3

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Heap allocated as fraction of optimal

Spark Terasort - 5GB reducer input
Spark WordCount - 4GB reducer input

Tez WordCount - 17GB reducer input
Tez SortMergeJoin - 22GB reducer input

Flink WordCount - 2GB reducer input

(a) Elasticity for Spark, Tez and Flink reducers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o

rm
a

liz
e

d
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

Memory as fraction of optimal

Paging to SSD, GC included
Paging to SSD, GC subtracted
Paging to HDD, GC included
Paging to HDD, GC subtracted

Spilling to HDD, GC included but insignificant

(b) Spilling vs paging

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 3 4 5 6 7 8

A
v
g

 r
e

d
u
c
e

r
s
lo

w
d

o
w

n
 c

o
n

c
.

v
s
 s

e
q
u

e
n

t.

Number of reducers in job

PageRank job 1 HDD
PageRank job 2 HDD

Conn. Comp job 1 HDD
Recommender job1 HDD
Recommender job2 HDD

WordCount HDD
WordCount SSD

(c) Impact of contention on Hadoop reducers

Figure 2: Memory elasticity for Spark, Tez and Flink jobs (a). Spilling vs paging (b). Impact of disk contention on
Hadoop reducers (c).

dividual job. Instead, we inferred the maximum penalty
for each job using the model described at the end of this
subsection. For the 8 distinct jobs we encountered, the
maximum penalties are: 1.8x, 1.67x, 2.65x, 1.42x, 3.32x,
1.37x, 1.75x and 1.42x.

Two main insights arise from the results in Fig. 1b.
Most importantly, under-sized reducers incur only mod-
erate penalties. Given as little as 10% of ideal mem-
ory, 7 of the 10 reducers are between 1.1x and 1.85x
slower than ideal. Second, the penalties are compara-
ble for a wide range of under-sized memory allocations.
For the WordCount reducer, for 83%, 41% and 10% of
ideal memory the penalties are: 1.84x, 1.83x and 1.82x.
Why the penalty varies among reducers We found
that the penalty correlates with the complexity of the re-
duce function. More complex reducers are more CPU-
intensive and thus are influenced less by reading inputs
from disk. A TeraSort reducer is very simple and shows
one of the highest penalties. On the other extreme, the
NutchIndexing reducer is complex and shows almost no
penalty. To further analyze how reducer complexity in-
fluences the penalty we added to the WordCount reduce
function a number of floating point operations (FPops)
between two randomly generated numbers. Adding 10,
50 and 100 FPops per reduce function call decreased the
maximum penalty from 2x to 1.87x, 1.65x and 1.46x.

We also found that the penalty correlates with the
number of values corresponding to each key processed
by a reducer. A large number of values per key leads
to increased penalties because the read-ahead performed
by the OS becomes insufficient to bring all keys in mem-
ory and thus some reduce calls will read on-disk data.
The Mahout recommender uses on average 1500 keys
per value for job1 and 15000 keys per value of job2. This
explains their larger penalty.
Why penalties are not larger The explanations for
reducers are the same as the ones provided for mappers.
Modeling Hadoop reducer behavior An accurate

model for a reducer can be obtained from two training
runs, one with an under-sized reducer and one with a
well-sized reducer. Given these two training runs, the
model can infer the penalty for all other under-sized
memory allocations for that reducer. While the training
runs are specific to an application, the model we describe
is generally applicable to any Hadoop reducer.

Our model is based on three insights. First, the penalty
incurred by spilling to disk is extra penalty on top of the
ideal runtime. Second, the penalty is proportional to the
amount of spilled data. Third, the disk rate for reading
and writing spills remains constant for one reducer re-
gardless of its memory allocation. Thus, our model is
centered around the equation:

T (notId) = T + spilledBytes(notId)/diskRate
T (notId) denotes the reducer runtime for an under-

sized reducer allocated notId memory. T is the runtime
when that reducer is well-sized. spilledBytes(notId) is
the amount of data spilled when being allocated notId
memory. Finally, diskRate is the average rate at which
the under-sized reducer uses the disk when reading and
writing spills.

The two training runs provide T (notId) and T . Next,
spilledBytes(notId) can be computed numerically from
the reducer input size, the value of notId and a few
Hadoop configuration parameters. Thus, diskRate can
be obtained from the equation. Once T and diskRate are
known, any other T (notId′) can be obtained numerically
by computing the corresponding spilledBytes(notId′)
value and plugging it into the equation.

Fig. 1c shows the accuracy of our model for the
Hadoop reducers profiled in Fig. 1b. The value of notId
chosen for the under-sized training run was 52% of opti-
mal. Any other under-sized amount would have sufficed.
The accuracy of the model is within 5% for most cases.
The shape of the memory elasticity profile We now
explain the sawtooth-like shape of the memory elasticity
profiles from Fig. 1b. The key insight is that the penalty
is proportional to the amount of spilled data.

4

The peaks of the sawtooth are caused by a reducer
spilling nearly all its input data to disk. This behav-
ior appears for several under-sized allocations. For ex-
ample, assume a reducer with a 2GB shuffle buffer and
2.01GB of input data. When the buffer is filled, all 2GB
are spilled to disk. With a 500MB shuffle buffer, the re-
ducer with 2.01GB input would spill 500MB four times,
again for a total of 2GB spilled data.

There are several cases in which decreasing the mem-
ory allocation also decreases the penalty (e.g., Word-
Count with 52% vs 83% of ideal memory). This is
caused by a decrease in the amount of spilled data. Given
a 2GB shuffle buffer and a 2.01GB input size, a reducer
spills 2GB to disk but given a 1.5GB shuffle buffer it
spills only 1.5GB to disk and keeps 510MB in memory.

One may argue that the static threshold used by
Hadoop for spilling is inefficient and that Hadoop should
strive to spill as little as possible. In this argument, the re-
ducer with 2.01GB input and a 2GB shuffle buffer would
spill 10MB only. Such a proposal actually strengthens
the case for memory elasticity as the penalties decrease
(due to less spilled data) and can be modeled similarly.

2.4 Elasticity for Spark, Tez and Flink

Fig. 2a shows that memory elasticity also applies to
Spark. For Spark we profiled a task performing a sort-
ByKey operation (TeraSort) and one performing a re-
duceByKey operation (WordCount). Internally, Spark
treats the two cases differently. A buffer is used to store
input data for sortByKey and a hashmap for reduce-
ByKey. Both data structures are spilled to disk when a
threshold is reached. Despite the differences both tasks
show elasticity.

Fig. 2a shows that the elasticity profile for Spark re-
sembles that of Hadoop reducers. Given the similari-
ties we were able to extend our Hadoop reducer model
to Spark sortByKey tasks (TeraSort). The difference be-
tween the Hadoop and Spark TeraSort model is that for
Spark we also learn an expansion factor from the under-
sized training run. This is because Spark de-serializes
data added when adding it to the shuffle buffers. Fig. 1c
shows that the accuracy of the Spark model is well within
10%, matching that of Hadoop’s model.

Fig. 2a also shows the memory elasticity profiles for
two Tez reducers. The elasticity profile for Tez is similar
to those for Spark and Hadoop. We extended our Hadoop
reducer model to Tez reducers by accounting for the fact
that in Tez, map outputs stored on the same node as the
reducer are not added to shuffle memory but are instead
read directly from disk. Fig. 1c shows that the accuracy
of our Tez model is equally good.

Finally, Fig. 2a also shows one Flink reducer. Flink
stands out with its low penalty between 70% and 99%

of optimal memory which suggests a different model is
needed. We plan to purse this as part of our future work.

2.5 Spilling vs paging

Why do frameworks implement spilling mechanisms
and do not rely on tried-and-tested OS paging mecha-
nisms for under-sized tasks? To answer, we provisioned
Hadoop with enough memory to avoid spilling but con-
figured cgroups such that part of the memory is avail-
able by paging to a swapfile. Fig. 2b shows the results
for the Hadoop Wordcount reducer. Paging wins when
a task gets allocated close to ideal memory (0.7 or more
on the x-axis) because it only writes to disk the mini-
mum necessary while Hadoop spills more than neces-
sary. However, spilling beats paging for smaller mem-
ory allocations because the task’s access pattern does
not match the LRU order used by paging. Fig. 2b also
shows that paging greatly increases garbage collection
(GC) times because the GC touches memory pages in
a paging-oblivious manner. We also see that the SSD
significantly outperforms the HDD due to more efficient
page-sized (4k) reads and writes. Using 2MB transpar-
ent huge pages (THP) did not improve results for either
the SSD or HDD since THP is meant to alleviate TLB
bottlenecks not improve IO throughput.

2.6 Memory elasticity and disk contention

Since memory elasticity leverages secondary storage, it
is interesting to understand the impact of disk contention
when several under-sized tasks are collocated.

The impact of disk contention depends on how well
provisioned the local storage is on nodes relative to com-
pute. The ratio of cores to disks can give a sense of how
many under-sized tasks can compete, in the worst case,
for the same disk (a task usually requires at least one
core). In current data centers the ratio is low. In [23], the
authors mention ratios between 4:3 and 1:3 for a Face-
book 2010 cluster. Public provider offerings also have
low core to disk ratios. The list of high-end Nutanix
hardware platforms [2] shows plenty of offerings with a
ratio of less than 2.5:1 and as low as 0.66:1. Nutanix has
more than two thousand small and medium size clusters
at various enterprises [9].

Nevertheless, not all clusters are equally well provi-
sioned. Thus, we analyzed the degree to which mem-
ory elasticity can produce disk contention by varying the
number of under-sized Hadoop reducers that spill con-
currently to the same disk. We start between 2 and 8
under-sized reducers each within 1 second of the previ-
ous. This is akin to analyzing disk contention on nodes
with a core to disk ratio ranging from 2:1 to 8:1. We fo-
cused on reducers because they spill more data than the
mappers (GBs is common).

5

We measured the slowdown in average reducer run-
time when all reducers run concurrently compared to the
case where they run sequentially. Fig. 2c shows the re-
sults. Several reducers (PageRank job1, Recommender
job1,2) show minimal slowdown (at most 15% degra-
dation for 8 concurrently under-sized reducers). In the
other extreme, running 8 under-sized WordCount reduc-
ers concurrently leads to a 70% degradation when an
HDD is used but that is reduced to just 15% when mov-
ing the spills to SSD. In conclusion, disk contention is a
manageable potential side effect but should nevertheless
be taken into consideration when leveraging elasticity.

2.7 Final considerations

Does elasticity cause increased GC? For Hadoop
and Tez reducers, GC times remain constant when tasks
are under-sized. For Hadoop mappers, GC times slowly
increase as the memory allocation decreases but they re-
main small in all cases. Overall, Hadoop does a good
job of mitigating GC overheads by keeping data serial-
ized as much as possible. For Spark, GC times increase
sub-linearly with an increase in task runtime. Interest-
ingly, GC times are a larger portion of task runtime for
well-sized tasks because spill episodes limit the amount
of data that needs to be analyzed for GC.
Feasibility of modeling Our models for Hadoop, Tez
and Spark are based on two training runs, one under-
sized and one well-sized. Related work shows that a
large fraction of jobs in current data centers are recurring,
have predictable resource requirements and compute on
similar data [14, 20, 5]. Thus, instead of training runs,
one can use prior runs of recurring jobs. Alternatively, if
no prior runs are available, the two training runs can be
performed efficiently on a sample of the job’s input data.
Sensitivity to configuration changes We repeated
our experiments on two different hardware platforms
(Dual Intel Xeon E5-2630v3 + 40Gb NIC, Dual Opteron
6212 + 10GB NIC), two OSes (RHEL 7, Ubuntu 14.04),
three different disk configurations (HDD, SDD, 2*HDD
in RAID 0), three IO schedulers (CFS, deadline, noop)
and three JVMs (HotSpot 1.7, 1.8, OpenJDK 1.7). The
changes did not impact the memory elasticity profiles or
the accuracy of our model.

3 Applying elasticity to cluster scheduling.
Case study: Apache YARN

In this section, we explore the benefits that memory elas-
ticity can provide in cluster scheduling by integrating
memory elasticity into Apache YARN [25]. We chose
YARN because it is very popular and provides a com-
mon resource management layer for all popular frame-
works tested in §2. Moreover, several recent research ef-
forts from large Internet companies were validated with

implementations on top of YARN [11, 21, 17, 18]. In ad-
dition, we also discuss how the elasticity principles can
be adopted to the Mesos [19] resource manager.

Scheduling using memory elasticity is an NP-hard
problem because it contains as a special case NP-hard
variants of the RCPSP problem [8], a well-known prob-
lem in operations research. Nevertheless, we show that
the benefits of memory elasticity can be unveiled even
using a simple approach.

3.1 Overview

YARN distributes cluster resources to the jobs submitted
for execution. A typical job may contain multiple tasks
with specific resource requests. In YARN, each task is
assigned to a single node, and multiple tasks may run
concurrently on each node, depending on resource avail-
ability. The scheduler has a global view of resources and
queues incoming jobs according to cluster policy (e.g.,
fair sharing with respect to resource usage).
Notation We use the term regular to refer to the mem-
ory allocation and runtime of well-sized tasks and the
term elastic for under-sized tasks. We further refer to
our elasticity-aware implementation as YARN-ME.
Benefits As previously discussed, memory elasticity
trades-off task execution time for task memory alloca-
tion. When applied to cluster scheduling it becomes a
trade-off between task queuing time and task completion
time. A task normally has to wait until enough memory
becomes available for it but executing it with less mem-
ory may reduce or eliminate its waiting time. Since the
completion time of a task is the sum of waiting time plus
runtime, a significant decrease in waiting time may out-
weigh an increase in runtime due to elasticity and overall
lead to faster task completion times. YARN-ME turns
this task level trade-off into improved job completion
time and improved cluster-wide memory utilization.

Fig. 3 illustrates how memory elasticity benefits
scheduling using a simple example of a 3-task job sched-
uled on a single, highly utilized node. Fig. 3a presents a
timeline of task execution for vanilla YARN. Tasks 2 and
3 incur queuing times much larger than their execution
times. In Fig. 3b, using memory elasticity, the scheduler
launches all tasks soon after job submission, resulting in
the job completing in less than 30% of its original time,
despite its tasks now taking twice as long to execute.

3.2 System design

Two main additions are needed to leverage memory elas-
ticity in YARN.
Metadata regarding task memory elasticity Reason-
ing about memory elasticity at the scheduler level re-
quires additional knowledge about the submitted tasks.
The scheduler needs to know the regular execution time

6

(a) All tasks regularly allocated. (b) All tasks elastically allocated.

Figure 3: Example of improvement in job completion time for a simple 3-task job and one highly utilized node.

of a task (ideal duration), and the minimal amount of
memory for a regular allocation (ideal memory). It also
needs to understand the performance penalty when re-
ceiving less than its ideal memory amount. The metadata
are obtained using the profiling and modeling techniques
described in §2.7.
The timeline generator YARN-ME uses a timeline gen-
erator to provide an estimate of a job’s evolution (the
completion times of its tasks and of the whole job). In
doing this, it accounts for the expected memory avail-
ability in the cluster. The generator simply iterates over
all the nodes, adding up the task duration estimates of
the executing and queued tasks. In effect, the genera-
tor builds simple timelines for each node, which it then
merges to obtain information about each job’s timeline.
The generator runs periodically, every heartbeat interval,
since during such a period all healthy nodes report their
status changes. It also runs when a new job arrives or an
existing one is prematurely canceled.

3.3 Scheduler decision process

Main heuristic YARN-ME aims to reduce job comple-
tion time by leveraging memory elasticity. As such, an
elastic task cannot be allowed to become a straggler for
its respective job. Therefore, an elastic allocation is
made for a task that cannot be scheduled regularly iff
its expected completion time does not exceed the current
estimated completion time of its job.
Disk contention awareness As shown in §2.6 schedul-
ing too many elastic tasks concurrently on a node may
lead to disk contention. YARN-ME incorporates disk
contention awareness. As shown in §2.6, obtaining the
task metadata involves computing the amount of disk
bandwidth required by an elastic task. YARN-ME uses
this information as well as a disk bandwidth budget re-
served per node for the use of elastic tasks. YARN-
ME conservatively prohibits new elastic tasks from be-
ing scheduled on nodes where the elasticity disk budget
would be exceeded.
Node reservations In YARN, if a node has insufficient
resources to satisfy the job at the head of the queue, no
allocation is performed, and that job reserves the node.
As long as the reserving job still has pending tasks, no
other job would be able to schedule tasks on the reserved
node. This helps mitigate resource starvation by ensuring
that jobs with large memory requirements also get the

Algorithm 1 YARN-ME decision process pseudocode.
1: while JOB QUEUE is not empty do
2: J← next job in JOB QUEUE

3: for all node N in NODES do
4: T← next task of (N’s reserved job or J)
5: if T regularly fits on N then
6: allocate T on N, regular
7: else if T elastically fits on N then
8: get TIMELINE GENERATOR info for J
9: if T elastically finishes before J then

10: allocate T on N, elastic
11: else
12: do not schedule anything new on N
13: reserve N for J, if not already reserved
14: if T was allocated then
15: unreserve N if reserved
16: resort the JOB QUEUE

17: J← next job in JOB QUEUE

chance to schedule. To account for this, we adjusted the
timeline generator to take reservations into account when
building its estimates. Additionally, YARN-ME allows
tasks of other jobs to be allocated on a reserved node, but
only if this does not hinder tasks of the reserved job.
Additional constraints Schedulers may set additional
constraints for their jobs, such as running on a data-local
node only, or forcing certain tasks to start only after oth-
ers have completed. Our design is orthogonal to such
constrains, requiring only the tweaking of the timeline
generator to function.

Algorithm 1 presents the decision process of YARN-
ME. Lines 8-11 apply the main heuristic underlying
YARN-ME. Line 7 includes the check for disk con-
tention. Additionally, lines 7 and 10 always consider the
minimum amount of memory that yields the lowest pos-
sible execution time, leveraging the behavior of elasticity
described in §2.

4 Discussion: Mesos

Other schedulers beyond YARN can also be extended to
use memory elasticity. We next review the main differ-
ences between Mesos [19] and YARN and argue that they
do not preclude leveraging memory elasticity in Mesos.
Queuing policy Mesos uses Dominant Resource Fair-
ness (DRF) [15], a multi-resource policy, to ensure fair-
ness. Thus, the job queue may be sorted differently com-
pared to YARN’s policies. This does not restrict memory

7

elasticity as it only dictates which job to serve next.
Decision process Mesos decouples scheduling decisions
from node heartbeats. Thus, a job may be offered re-
sources from several nodes at the same time. This does
not restrict memory elasticity since the job needs to con-
sider each node from the offer separately (a task can only
run on one node), so memory elasticity can be applied for
every node in the offer.
Global vs local decisions Mesos gives jobs the ability
to accept or reject resource offers while YARN decides
itself what each job receives. Thus, in Mesos, jobs can
decide individually whether to use elasticity or not. If
a decision based on global cluster information (like in
YARN) is desired, jobs can express constraints (local-
ity, machine configuration) with Mesos filters that can be
evaluated by Mesos before making resource offers.

5 Cluster experiments
We next showcase the benefits of memory elasticity by
comparing YARN-ME to YARN.

5.1 Methodology

Setup We use a 51-node cluster (50 workers and 1
master), limiting the scheduler to 14 cores per node (out
of 16 cores we reserve 2 for the YARN NodeManager
and for the OS) and 10GB of RAM. The exact amount of
RAM chosen is not important (we could have chosen any
other value), what is important is the ratio of ideal task
memory requirements to node memory. Each node has
one 2 TB SATA HDD. YARN-ME was implemented on
top of Apache YARN 2.6.3 [25]. Disk spills use Direct
I/O so that the OS buffer cache does not mask perfor-
mance penalties due to elasticity.

We ran WordCount, PageRank and Mahout Item Rec-
ommender Hadoop applications. We chose them be-
cause they represent small, medium and large penalties
encountered for reducers in §2 (mapper penalties span a
much smaller range than reducers and are lower). We
configured the jobs as described in Table 1. We executed
each type of application separately (homogeneous work-
load) and all applications simultaneously (heterogeneous
workload). For the homogeneous workloads, we varied
the number of concurrent runs for each type of applica-
tion. The start of each run is offset by the inter-arrival
(IA) time mentioned. The IA time is chosen propor-
tionally to application duration such that map and reduce
phases from different jobs can overlap.

For each application we first perform one training run
using ideal memory to obtain the ideal task runtime. We
multiply this by the penalties measured in §2 to obtain
task runtimes for various under-sized allocations.
Metrics We compare average job runtime, trace
makespan and average duration of map and reduce

phases. By job runtime we mean the time between job
submission and the end of the last task in the job. Simi-
larly, a map or reduce phase represents the time elapsed
between the first request to launch such a task and the fin-
ish time of the last task in the phase. Each experiment is
run for 3 iterations, and we report the average, minimum
and maximum values.

5.2 Experiments

Benefits for memory utilization Fig. 4a shows the
benefits of using memory elasticity on both cluster uti-
lization and makespan, for an execution of 5 Pagerank
runs. YARN-ME successfully makes use of idle mem-
ory, bringing total memory utilization from 77% to 95%,
on average, and achieving a 39% reduction in makespan.
We also observe, by comparing the results in Figs. 4a
and 4c that the gain in job runtime is proportionally much
higher than that of memory reclaimed. Fig. 4b shows
how YARN-ME assigns the memory slack to tasks.
Benefits for homogeneous workloads We next show
that YARN-ME can provide benefits for the jobs in Ta-
ble 1. Figs. 4c, 5a and 5b show the improvement of
YARN-ME compared to YARN vs. the number of runs.
YARN-ME’s benefits hold for all jobs.

We find that the Recommender, which has the high-
est penalties we have observed for reducers, achieves up
to 48% improvement. We also find that mappers always
benefit noticeably from elasticity, a direct consequence
of their modest penalties. Pagerank’s lower-penalty re-
ducers yield an improvement of 30% even for a single
concurrent run, peaking at 39% with 5 runs. Wordcount
achieves a peak improvement of 41%, despite reducer
gains being lower, due to higher penalties. The reduc-
tion in average job runtime steadily increases across runs.
For 3 concurrent Wordcount runs, the number of reduc-
ers leads only one out of the 3 jobs to be improved, but
the map phase still reaches improvements of 46%.
Benefits for heterogeneous workloads YARN-ME
achieves considerable gains even under a heterogeneous
workload composed of all the jobs from Table 1. We start
5 jobs at the same time (1 Pagerank, 1 Recommender and
3 Wordcount) and then submit a new job every 5 min.,
until we reach a total of 14 jobs (3 Pagerank, 3 Recom-
mender and 8 Wordcount). Each job is configured ac-
cording to Table 1. Fig. 5c shows overall improvement
and breakdown by job type. YARN-ME improves av-
erage job runtime by 60% compared to YARN. The map
phase duration is reduced by 67% on average overall, and
by up to 72% for all Recommender jobs.

6 Simulation experiments
We use simulations to evaluate YARN-ME’s benefits and
its robustness to mis-estimations on a much wider set of

8

Application #
jobs

Input
GB

#
maps

#
reduces

Penalties Memory GB Inter-arrival
(IA) time1st job 2nd job 1st job 2nd job

map reduce map reduce map reduce map reduce
Pagerank 2 550 1381 / 1925 275 1.3 1.22 1.25 1.75 1.7 3.7 1.5 6.8 120s

WordCount 1 540 2130 75 1.35 1.9 - - 1.7 5.4 - - 30s
Recommender 2 250 505 / 505 100 1.3 2.6 1.3 3.3 2.4 2.8 2.4 3.8 120s

Table 1: Characteristics of the evaluated applications.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

 2
00

00

T
o

ta
l
C

lu
s
te

r
U

s
e

d
 M

e
m

o
ry

 (
G

B
)

Time (s)

YARN
YARN-ME

(a) Cluster memory utilization – 5 runs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000 12000

T
o

ta
l
e

la
s
ti
c
 t

a
s
k
s
 r

u
n

n
in

g

Time (s)

MAP
REDUCE

(b) elastic tasks – 5 runs

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(c) Improvement over YARN

Figure 4: YARN-ME vs YARN for running Pagerank on 50 nodes. Fig. 4a shows the timeline of cluster memory
utilization. Fig. 4b shows the timeline of tasks scheduled elastically. Fig. 4c reports improvement w.r.t. average job
runtime (JRT), average job phase time (map, reduce), and makespan.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(a) WordCount

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Concurrent runs

JRT
MAP

REDUCE
MAKESPAN

(b) Recommender

 0

 10

 20

 30

 40

 50

 60

 70

 80

Overall Pagerank Recommender Worcount

Y
A

R
N

-M
E

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
Y

A
R

N
 (

%
)

Trace job type

JRT
MAP

REDUCE
MAKESPAN

(c) Mixed job trace – 14 jobs

Figure 5: Further experiments on 50 nodes. Improvement of YARN-ME over YARN w.r.t. average job runtime (JRT),
average job phase runtime (map, reduce), and makespan. We report average, min. and max. over 3 iterations. Fig. 5c
reports results for a mixed trace of jobs: 3x Pagerank, 3x Recommender, 8x Wordcount.

workload configurations than we can run in the real clus-
ter.

6.1 Simulation Methodology

Simulator We built DSS (Discrete Scheduler Simu-
lator) a discrete-time simulator for YARN and we made
the code publicly available 1. In DSS, simulated tasks
do not perform computation or I/O. The tasks are sim-
ulated using task start and task finish events. We sim-
ulate a cluster with 16 cores and 10GB of RAM per
node. Memory is assigned to tasks with a granular-
ity of 100MB. Jobs are ordered according to YARN’s
FairScheduling [1] policy. Each task uses 1 core. The
minimum amount of memory allocatable to a task is set
to 10% of its ideal requirement. We use a 100-node clus-
ter to perform a parameter sweep but also show results

1https://github.com/epfl-labos/DSS

for up to 3000 nodes.

Simulation traces A trace contains for each job:
the job submission time, the number of tasks, the ideal
amount of memory for a task and task duration at the
ideal amount of memory. Each job has one parallel
phase. Job arrivals are uniformly random between 0 and
1000s. The other parameters are varied according to ei-
ther a uniform or an exponential random distribution. We
use 100-job traces but also show results for up to 3000
jobs.

Modeling elasticity Since the simulated jobs have
only one single phase we only use the reducer penalty
model from §2. We show results for 1.5x and 3x penal-
ties, to cover the range of penalties measured in §2.

Metrics We use average job runtime to compare the
different approaches.

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

YARN-ME normalized to YARN wrt. average job runtime

1.5x penalty, unif, 50th
1.5x penalty, unif, max
3x penalty, unif, 50th
3x penalty, unif, max

1.5x penalty, exp, 50th
1.5x penalty, exp, max
3x penalty, exp, 50th
3x penalty, exp, max

(a) YARN-ME vs YARN (avg job runtime)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

Y
A

R
N

-M
E

 n
o
rm

.
to

 Y
A

R
N

 w
rt

.
a
v
e
ra

g
e
 j
o
b
 r

u
n
ti
m

e

Trace size (Nr jobs and nr of nodes)

1.5x penalty, unif, 50th
1.5x penalty, unif, max
3x penalty, unif, 50th
3x penalty, unif, max

(b) Impact of scaling trace size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F

YARN-ME normalized to Meganode wrt. average job runtime

1.5x penalty - unif
3x penalty - unif

1.5x penalty - exp
3x penalty - exp

(c) YARN-ME vs Meganode (avg job runtime)

Figure 6: CDFs of average job runtime in YARN-MEs vs YARN (a) and vs the idealized Meganode (c). YARN’s
benefits hold for traces of varying size (b).

6.2 Simulation experiments

YARN-ME vs YARN We perform a parameter
sweep on 3 trace parameters: memory per task, tasks per
job and task duration. The table below shows the dif-
ferent parameter ranges. We keep the min constant and
vary the max within an interval to perform the sweep.
This gives us a range for each parameter, which is then
varied independently of the others. We draw the values
from a uniform or exponential random distribution. We
perform 100 runs for each combination of 3 ranges (one
for each parameter) and show the median and the maxi-
mum (worst-case) results for normalizing YARN-ME to
YARN in Fig. 6a. We use 100-job traces on 100 nodes.

dist
tasks / job mem / task task duration

min max (GB) (s)
min max min max

unif 1 [200,400] 1 [2,10] 1 [200,500]
exp 1 [20,220] 1 [2,10] 50 [100,500]

The uniform distribution yields bigger benefits be-
cause it leads to more memory fragmentation in YARN.
As expected, YARN-ME’s improvements are larger if
penalties are lower. The case in which YARN-ME does
not improve on YARN are either cases where the clus-
ter utilization is very low or when most tasks have very
small memory requirements. In such cases, memory
elasticity is less beneficial. Nevertheless, for 3x penalty
and uniform distribution, 40% of the configurations have
a ratio of YARN-ME to YARN of at most 0.7.

Fig. 6b shows the behavior of one uniform trace in a
weak scaling experiment. We scale the trace and cluster
size simultaneously from 100 to 3000. The benefits of
YARN-ME hold despite the scaling.
The need for elasticity (YARN-ME vs Meganode)
We next show that YARN-ME yields improvements
beyond the reach of current elasticity-agnostic sched-
ulers. We compare against an idealized scenario
(called Meganode) which serves as an upper-bound for
elasticity-agnostic solutions that improve average job
runtime. The Meganode pools all cluster resources into

JRT of YARN-ME normalized to YARN

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

C
D

F

a) Duration

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

b) Ideal memory

 0

 20

 40

 60

 80

 100

 0.7 0.85 1 1.15 1.3

c) Penalty

[-0.50:0.0)
[-0.15:0.0)

0.0
(0.0:0.15]
(0.0:0.50]

Figure 7: Sensitivity to mis-estimations. 3x penalty.

one large node with a memory and core capacity equal
to the aggregate cluster-wide core and memory capacity
available for YARN-ME. Thus, the Meganode does away
with machine-level memory fragmentation. Meganode
uses a shortest remaining job first (SRJF) scheduling pol-
icy because that is known to improve average job run-
time. However, in using SRJF, the Meganode loses all
fairness properties whereas YARN-ME obeys the exist-
ing fairness policy.

Fig. 6c compares the averge job runtime for Megan-
ode and YARN-ME on 20.000, 100-job traces on 100
nodes. While it is expected that Meganode wins in many
cases, YARN-ME beats Meganode for 40%-60% of the
cases for the uniform trace and for 20% of the exponen-
tial trace for 1.5x penalty. YARN-ME gains because it
turns even small amounts of memory fragmentation into
an opportunity by scheduling elastic tasks.

Sensitivity to mis-estimations Further, we show that
YARN-ME is robust to mis-estimations. We generate
20,000 traces with each of the trace parameters (mem-
ory per task, tasks per job, and task duration) follow-
ing an exponential random distribution, within bounds of
[0.1,10] GBs, [1,100] tasks, and [50,500] seconds. We
simulate mis-estimations by altering the duration, ideal

10

memory, and performance penalty of tasks for both reg-
ular and elastic allocations. This forces the scheduler
to make decisions based on imperfect information. We
change each parameter fractionally by a uniformly ran-
dom factor in the intervals of (0,0.15], and (0,0.5] (0.15
represents a 15% higher value). The former interval rep-
resents the worst-case deviation of our model in Fig. 1c,
while the latter is an extreme example chosen to stress
YARN-ME. We present both positive and negative mis-
estimations. Fig. 7 presents the ratio between average job
completion time with YARN-ME and YARN, for an elas-
ticity penalty of 3x – one of the highest penalties mea-
sured in §2.
Sensitivity to task duration mis-estimation YARN-
ME is robust to task duration mis-estimation, which can
occur due to system induced stragglers or data locality.
The timeline generator of the simulator bases its infor-
mation on task durations from the trace. We alter each
actual task runtime by a different factor.

For [−0.15,0.5], YARN-ME achieves gains similar to
the scenario without mis-estimations on all traces. Even
for the very large [−0.5,0) mis-estimations, the gains are
still comparable, with only ∼35% of the traces report-
ing at most 10% lower gains. This is due to tasks being
shorter than the timeline generator expects, resulting in
a small number of elastic tasks exceeding the estimated
job completion time.
Sensitivity to model mis-estimations Finally,
YARN-ME is also robust to model mis-estimations,
which may occur during profiling. We change task mem-
ory (Fig. 7b) and penalty (Fig. 7c) with a different value
for each job.

YARN-ME improves by up to 45% in the case of pos-
itive mis-estimation of ideal memory (Fig. 7b). In this
case, all tasks (in both YARN and YARN-ME) spill data
to disk and become penalized tasks. However, penalties
in YARN-ME are lower because YARN-ME can choose
the under-sized allocation that minimizes penalty while
YARN lacks this capability. Negative mis-estimation of
ideal memory has negligible impact.

In the case of penalty mis-estimation (Fig. 7c), only
the (0,0.5] runs exhibit gains reduced by at most 4%.
This is due to the scheduler being more conservative
since it perceives elastic tasks as taking longer to exe-
cute.

7 Related Work

Current schedulers do not leverage memory elasticity.
Next, we review the mechanisms from current schedulers
that are most related in spirit to memory elasticity.

Tetris [16] improves resource utilization (including
memory) by better packing tasks on nodes. It adapts
heuristics for the multi-dimensional bin packing problem

to the context of cluster scheduling. However it estimates
a task’s peak memory requirements and only schedules
the task on a node that has enough memory available to
cover the peak.

Heracles [22] aggressively but safely collocates best-
effort tasks alongside a latency critical service. It does
this by dynamically managing multiple hardware and
software mechanisms including memory. However, Her-
acles only considers RAM bandwidth and not capacity.

Apollo [7] is a distributed scheduler that provides
an opportunistic scheduling mode in which low prior-
ity tasks can be scheduled using left-over memory un-
used by normal priority tasks. Normal priority tasks are
scheduled only if their resource demands are strictly met.
Apollo has no principled way of reasoning about the per-
formance implications of opportunistic allocations nor
does it provide a decision mechanism about when such
allocations are useful. Borg [26] provides similar capa-
bilities with a centralized design.

Quasar [12] leverages machine-learning classification
techniques to reason about application performance with
respect to scale-up allocations. A greedy algorithm
places tasks starting with nodes that give the best per-
formance satisfying application SLOs and improving re-
source utilization. Quasar does not identify or discuss
memory elasticity.

ITask [13] is a new type of data-parallel task that can
be interrupted upon memory pressure and have its mem-
ory reclaimed. The task can then be resumed when the
pressure goes away. ITask is a system-level mechanism
that uses preemption to mitigate unmanageable memory
pressure before it can hurt system performance. Memory
elasticity can work in tandem with ITask, since elastic
tasks will need less time to spill, and thus can be pre-
empted and resumed faster than regular tasks.

8 Conclusion
The main contribution of this paper is identifying, quan-
tifying and demonstrating memory elasticity, an intrin-
sic property of data-parallel workloads. Memory elas-
ticity allows tasks to run with significantly less memory
than ideal while incurring only a moderate performance
penalty. We show that memory elasticity is prevalent
in the Hadoop, Spark, Tez and Flink frameworks. We
also show its predictable nature by building simple mod-
els for Hadoop and extending them to Tez and Spark.
Applied to cluster scheduling, memory elasticity helps
reduce task completion time by decreasing task waiting
time for memory. We show that this can be transformed
into improvements in job completion time and cluster-
wide memory utilization. We integrated memory elastic-
ity into Apache YARN and showed up to 60% improve-
ment in average job completion time on a 50-node cluster
running Hadoop workloads.

11

References
[1] Hadoop MapReduce Next Gen-

eration - Fair Scheduler.
http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html.

[2] Hardware Platform Specifications.
http://www.nutanix.com/products/hardware-
platforms/.

[3] Improving Sort Performance in
Apache Spark: Its a Double.
http://blog.cloudera.com/blog/2015/01/improving-
sort-performance-in-apache-spark-its-a-double/.

[4] The Bigdata Micro Benchmark Suite.
https://github.com/intel-hadoop/HiBench.

[5] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,
I. Stoica, and J. Zhou. Re-optimizing data-parallel
computing. In Proc. NSDI 2012.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Shufflewatcher: Shuffle-aware
scheduling in multi-tenant mapreduce clusters. In
Proc. USENIX ATC 2014.

[7] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
coordinated scheduling for cloud-scale computing.
In Proc. OSDI 2014.

[8] P. Brucker, A. Drexi, R. Moerhing, K. Neu-
mann, and E. Pesch. Resource-constrained project
scheduling: Notation, classification, models, and
methods. In European Journal of Operational Re-
search, Volume 112, Issue 1, 1 January 1999, Pages
341.

[9] I. Cano, S. Aiyar, and A. Krishnamurthy. Char-
acterizing private clouds: A large-scale empirical
analysis of enterprise clusters. In Proc. SoCC 2016.

[10] Y. Chen, S. Alspaugh, and R. Katz. Interactive an-
alytical processing in big data systems: A cross-
industry study of mapreduce workloads. In Proc.
VLDB 2012.

[11] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan,
R. Ramakrishnan, and S. Rao. Reservation-based
scheduling: If you’re late don’t blame us! In Proc.
SoCC 2014.

[12] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In Proc. ASPLOS 2014.

[13] L. Fang, K. Nguyen, G. Xu, B. Demsky, and
S. Lu. Interruptible tasks: Treating memory pres-
sure as interrupts for highly scalable data-parallel
programs. In Proc. SOSP 2015.

[14] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin,
and R. Fonseca. Jockey: Guaranteed job latency in
data parallel clusters. In Proc. EuroSys 2012.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, S. Shenker, and I. Stoica. Dominant resource
fairness: Fair allocation of multiple resource types.
In Proc. NSDI 2011.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In Proc. SIGCOMM 2014.

[17] R. Grandl, M. Chowdhury, A. Akella, and G. Anan-
thanarayanan. Altruistic scheduling in multi-
resource clusters. In Proc. OSDI 2016.

[18] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. Graphene: Packing and dependency-
aware scheduling for data-parallel clusters. In Proc.
OSDI 2016.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In Proc. NSDI 2011.

[20] V. Jalaparti, P. Bodik, I. Menache, S. Rao,
K. Makarychev, and M. Caesar. Network-aware
scheduling for data-parallel jobs: Plan when you
can. In Proc. SIGCOMM 2015.

[21] S. A. Jyothi, C. Curino, I. Menache, S. M.
Narayanamurthy, A. Tumanov, J. Yaniv, R. Mav-
lyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao. Morpheus: Towards automated slos for en-
terprise clusters. In Proc. OSDI 2016.

[22] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proc. ISCA 2015.

[23] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in
data analytics framework. In Proc. NSDI 2015.

[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz,
and M. A. Kozuch. Heterogeneity and dynamicity
of clouds at scale: Google trace analysis. In Proc.
SoCC 2012.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,

12

J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache hadoop yarn: Yet another re-
source negotiator. In Proc. SOCC 2013.

[26] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proc. Eu-
roSys 2015.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proc. NSDI 2012.

[28] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin,
J. Y. Li, W. Lin, J. Zhou, and L. Zhou. Optimizing
data shuffling in data-parallel computation by un-
derstanding user-defined functions. In Proc. NSDI
2012.

13

	Introduction
	Memory elasticity in real workloads
	Measurement methodology
	Memory elasticity for Hadoop mappers
	Memory elasticity for Hadoop reducers
	Elasticity for Spark, Tez and Flink
	Spilling vs paging
	Memory elasticity and disk contention
	Final considerations

	Applying elasticity to cluster scheduling. Case study: Apache YARN
	Overview
	System design
	Scheduler decision process

	Discussion: Mesos
	Cluster experiments
	Methodology
	Experiments

	Simulation experiments
	Simulation Methodology
	Simulation experiments

	Related Work
	Conclusion

