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{225}γ habit planes in martensitic 
steels: from the PTMC to a 
continuous model
Annick P. Baur, Cyril Cayron & Roland E. Logé

Fine twinned microstructures with {225}γ habit planes are commonly observed in martensitic steels. 
The present study shows that an equibalanced combination of twin-related variants associated to 
the Kurdjumov-Sachs orientation relationship is equivalent to the Bowles and Mackenzie’s version of 
the PTMC for this specific {225}γ case. The distortion associated to the Kurdjumov-Sachs orientation 
relationship results from a continuous modeling of the FCC-BCC transformation. Thus, for the first time, 
an atomic path can be associated to the PTMC.

Martensitic transformation in steels has been widely studied for the last century and remains a major field of 
research. This solid-phase transformation exhibits some particular crystallographic features such as the presence 
of habit planes between austenite (γ) and martensite (α), established orientation relationships between the two 
phases and a specific shape change. Based on these characteristics, various models have been developed in order 
to describe and understand the transformation. In the mid 50’s, two independent groups, Bowles and Mackenzie1, 
and Weschler, Liebermann and Read2 developed a similar approach to explain the main features of the transfor-
mation. These two equivalent models gave rise to one of the most famous theory of phase transformation: the 
Phenomenlogical Theory of Martensitic Crystallography (PTMC).

Among all the observed habit planes of martensite, the {225}γ family is one of the most studied, because of the 
difficulties to be explained by the PTMC. The {225}γ habit planes are visible in different martensite morphologies, 
such as thin plate martensite and butterfly martensite. Martensite morphologies with {225}γ habit planes have a 
common characteristic: an internal inhomogeneous structure showing a high density of twins.

The first model that offers an explanation for {225}γ habit planes is due to Jaswon and Wheeler in ref. 3. They 
proposed a transformation mechanism where such a family of plane remains untilted during the transforma-
tion, but not fully invariant. Based on the same atomic correspondence between martensite and austenite, the 
Bowles and Mackenzie’s version of the PTMC is the first model that can account for the invariant {225}γ habit 
planes. They were however criticized because an additional dilatation parameter was needed in the model. Many 
experiments have been performed in order to observe and measure this dilatation. They all concluded that this 
parameter do not differ substantially from unity4–6. The Bowles and Mackenzie’s explanation for these habit planes 
was abandoned and almost forgotten.

Several other models have then been developed avoiding the use of the dilatation parameter7–10. The current 
one, called the double shear theory, was proposed independently by Acton and Bevis9 and Ross and Crocker10. In 
this theory, a second lattice invariant shear, crystallographically independent from the first one, is added to the 
original PTMC theory. However, as wisely observed by Dunne and Wayman11: “It appears that the refined and 
indeed elegant generalization of the original theory, wherein a single shear is replaced by two, leads to improved 
but not completely satisfactory prediction for the {225}γ case. It is further disappointing that the generalization, 
compared to the original theory, imparts a complexity which provides no selection rules for the initial choice of 
shear elements. The present theoretical situation is thus one of modus vivendi.”

Starting from a priori completely different hypothesis than those of PTMC, Cayron recently proposed a con-
tinuous model for the FCC-BCC transformation12. To derive the atomic path, he assumed that the atoms behave 
as hard spheres and the final orientation relationship is exactly Kurdjumov-Sachs. It turns out that he in fact 
rediscovered the Jaswon and Wheeler distortion and proposes a continuous atomic path for it.

By investigating the properties of the distortion, the present paper shows that an appropriate combination of 
twin-related variants of this model is exactly equivalent to the Bowles and Mackenzie modeling of the {225}γ. It 
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solves therefore, for this particular case, the question of the atomic path that could not be given by the PTMC. The 
crystallographic features of the {225}γ plate martensite, like the shape strain and the twinning system, are directly 
derived from the distortion using simple linear algebra concepts and are in total agreement with the Bowles and 
Mackenzie analysis. Furthermore, an answer is proposed to an old open question raised by Jaswon and Wheeler 
in the conclusion of their article, namely, “the reason for the choice of {225}γ habit in preference to an octahedral 
habit, since both have been shown to satisfy the condition of undergoing no directional change”3.

Results
Distortion associated with the Kurdjumov-Sachs orientation relationship.  Experimental 
observations show that the orientation relationship between austenite and martensite is often found to be the 
Kurdjumov-Sachs relationship13:

γ α γ α 

¯ ¯(111) (110) ; [110] [111] (1)

Considering atoms as hard spheres, the FCC-BCC martensitic transformation according to this particular 
orientation relationship can then be described by the total distortion matrix12:
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This matrix expressed according to the orientation relationship (1) is equivalent to the matrix DKS
0  calculated 

in equation 32 of reference ref. 12 that was associated to the following equivalent orientation relationship: 
γ α

¯ ¯(111) (110)  and [110]γ ‖​ [111]α. This matrix expresses the total distortion, from the initial to the final state. The 
continuous analytical expression associated to this distortion is given in reference ref. 12.

The FCC-BCC distortion D of equation (2) is not an invariant plane strain, but an invariant line strain, as only 
the 

γ[110]  direction is undistorted during the transformation. By computing the distortion matrix in the recipro-
cal lattice D* =​ D−T and extracting its eigenvectors, one can show that there are two planes which are not tilted by 
the distortion: (111)γ and = . . .γ γ(11 6 ) (0 35, 0 35, 0 86) . The (111)γ plane is explicitly imposed to be untilted by 
the Kurdjumov-Sachs orientation relationship (1). On the contrary, the second plane 

γ(11 6 )  is not explicitly 
described by the Kurdjumov-Sachs orientation relationship and is of interest as it is oriented at 0.5° from the 
well-known (225)γ habit plane.

Variants of the distortion associated with the Kurdjumov-Sachs orientation relationship.  Due 
to the orientation relationship and the crystalline symmetries, there exist 24 variants of Kurdjumov-Sachs. The 
distortion matrix αD i relative to each variant αi is thus found using the symmetry properties of the FCC-BCC 
transformation14,15. In the present paper, we arbitrarily consider that the distortion matrix D presented in equa-
tion (2) is the distortion matrix relative to the first variant = αD D 1. The absolute basis  γ0  for expressing the 
transformation matrix is therefore equal to the basis relative to the first variant  =γ γ

0 1 . By convention, if the 
basis in which the vectors and matrix are expressed is different from the absolute basis γ

0 . This basis appears 
explicitly in the notation as a right-down index. For example, a matrix M expressed in the αi crystal is written 

αM/ i
0

. When the basis is the absolute one γ
0 , the basis is not specified in the index.

The transformation matrix relative to all the 24 variants in the absolute basis γ
0  can be computed by using an 

appropriate change of basis:

= → → = = …α γ γ α γ γ γ α γ −
γ γg g iD D D[ ] [ ] ( ) 1, 2 24 (3)i i i i0 / 0 /

1i
i

i
i

i    

with = →γ γ γg [ ]i i0   a symmetry matrix of austenite.
For each variant αi, one arbitrarily chooses one γgi  in its coset γ γg Ki , where ∩=γ γ γ −K G DG D 1 and Gγ is 

the point group of the austenite15. It is worth mentioning that in the particular case of FCC-BCC transformation, 
there is no distinction between orientational and distortional variants.

Among these 24 variants, there are 12 different pairs of twin-related variants. The twin-related variants of 
each pair have the particularity of sharing the same {111}γ plane and the same 〈​110〉​γ direction. This feature is 
illustrated in Fig. 1 for each particular {111}γ plane. 3D representation of the crystallographic arrangements of the 
twin-related variants can be found in the supplementary material 3 of reference ref. 16.

In addition, it can be noted that the transformation matrix corresponding to each variant of these pairs leaves 
the same plane 

γ{11 6 }  untilted. Table 1 summarizes the crystallographic nature of the pairs, indicating which 
planes are untilted and which direction is undistorted during the transformation. This table can also be read to 
identify the proper orientation relationship for each variant, this orientation relationship being defined by the 
invariant direction and the untitled plane of type {111}γ.



www.nature.com/scientificreports/

3Scientific Reports | 7:40938 | DOI: 10.1038/srep40938

The twin-related variants of each pair can be expressed in the same semi-eigenbasis γp j
  for j =​ 1, ..., 12 defined 

by the common 〈​110〉​γ invariant line, the normal to the common 
γ{11 6 }  untilted plane and the cross product of 

these two vectors.
The terminology of semi-eigenbasis is used here in opposition to the classical eigenbasis. Indeed as the distor-

tion associated with the Kurdjumov-Sachs orientation relationship has only one invariant line, it is not diagonal-
izable, and thus cannot be expressed in an eigenbasis12. In the rest of the paper, the mathematical development 
will be performed explicitly only for the pair p1 of variants α1 and α3, but the same calculation is applicable 
to all pairs pj. The transformation matrices of the twin-related variants α1 and α3 expressed in their common 
semi-eigenbasis are then:
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Figure 1.  Common {111} planes and 〈110〉 directions of twin-related variants. 

Variants

α1 α2 α4 α5 α7 α10 α11 α13 α16 α18 α19 α21

α3 α8 α9 α6 α14 α15 α12 α23 α17 α22 α20 α24

Pairs p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Invariant direction [110] [011] [110] [101] [011] [011] [101] [101] [101] [011] [110] [110]

Untilted planes (111) 
(11 6 )

(111) 
( 6 11)

(111) 
(11 6 )

(111) 
(1 6 1)

(111) 
( 6 11)

(111) 
( 6 11)

(111) 
(1 6 1)

(111) 
(1 6 1)

(111) 
(1 6 1)

(111) 
( 6 11)

(111) 
(11 6 )

(111) 
(11 6 )

Table 1.   Crystallographic features of the FCC-BCC transformation of twin-related variants.
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If expressed in their appropriate semi-eigenbasis  γp j
, the distortion matrices of each of the twin-related vari-

ants of every pairs pj are equal to the ones presented in equation (4).

The Kurdjumov-Sachs invariant plane strain.  By inspection, it exists only one possibility to achieve an 
invariant plane strain (IPS) from a linear combination of these two matrices, and it is a mixture with 1:1 volume 
ratio of each of the twin-related variants,
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This matrix shows that a fine combination of alternating twin-related variants can produce a shape strain 
which is an IPS, having the 

γ{11 6 }  as invariant plane. The invariant plane of the average distortion DIPS is diso-
riented by 0.5° from the {225}γ. The magnitude of the shape shear is = ≈ .s 0 193

9
 and the dilatation normal to 

the habit plane is δ = − ≈ . = + .1 0 089 8 9%4
3

2
3

. It should be noted that for twin-related variants pairs, a 
linear combination satisfy the volume conservation: = =α αdet det detD D DIPS1 3 .

Interface between the twin-related variants.  To complete the crystallographic study of the {225}γ habit 
planes one needs to verify the geometrical compatibility of the transformation at the interface between the two 
twin-related variants. In other words, it is necessary that the interface plane between each twin-related variants is 
transformed in the same way by both variant. Mathematically, it consists in searching two non-collinear vectors 
v ∈​ {v1, v2} such that for each of them17,18. =α αD v D v1 3 . This condition is equivalent to calculating the Kernel of 
= −α αA D Dp1 1 3:

− = = ⇔ ∈α α KerD D v A v v A( ) 0 ( ) (6)p p1 3 1 1

The computation shows that two non-collinear vectors v I
p1 and v II

p1 belong to the Kernel. Together they define 
the interface plane between the two twin-related variants. The normal np1 to this interface plane is simply found 
by calculating a cross-product, = ×n v vp

I
p

II
p

1 1 1. Such Kernel can be computed for each pair pj of twin-related 
variants.

It is usual to express the interface between the two variants in their own basis α0 i . The distortion of the planes, 
expressed in the αi basis α0 i, is given by the correspondence matrix for each i =​ 1, 2, ... 24 in the reciprocal lattice 
α γ→ ⁎C( )i . The interface plane between the twin-related variant is then:

= = … = …α γ→
α

⁎ j in C n( ) 1, 2 12 1, 2 24 (7)
p p
/ i

j i j
0

The results of the predicted interface between two twin-related variants are reported in Table 2 for each pair pj 
of twins. Six different interfaces belonging to the {110}γ planes family have been found. According to equation (7), 
they correspond to {112}α.

Equivalence with Bowles & Mackenzie model.  In the Bowles and Mackenzie’s paper The crystallogra-
phy of martensite transformations III1, the shape deformation associated to their prediction is expressed in the 
basis γ

0  as follows,

= + ′mP I dp (8)

where = − −d [1, 1, 2]1
2 3

 and ′ =p (1, 1, 6 ) and = −m ( 3 2 )2
3

.
This transformation matrix can be expressed in its proper semi-eigenbasis in the same manner that has been 

used previously for the twin-related variant. It takes a form that is exactly the same as the Kurdjumov-Sachs invar-
iant plane strain DIPS produced by the composition of twin-related variants.

Variants

α1 α2 α4 α5 α7 α10 α11 α13 α16 α18 α19 α21

α3 α8 α9 α6 α14 α15 α12 α23 α17 α22 α20 α24

Pairs p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Interface plane
in  γ0 (110) (011) (110) (101) (011) (011) (101) (101) (101) (011) (110) (110)

in αi
0 (121) (121) (121) (121) (121) (121) (121) (121) (121) (121) (121) (121)

Table 2.   Crystallographic features of the interface between twin-related variants.
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Consequently, the Bowles and Mackenzie’s version of the PTMC allows the prediction of the same 
γ{11 6 }  

planes as the ones that are shown to stay invariant by an appropriate combination of twin-related variants.

Discussion
It has been shown that an heterogenous structure of infinitely small twin-related variants in equal proportion 
leaves a plane completely invariant. This plane is a 

γ{11 6 }  plane disoriented from the well-known {225}γ plane 
by only 0.5°. The macroscopic shape deformation resulting from such a combination of variants, each of these 
variants undergoing an invariant line strain, is exactly an invariant plane strain.

Figure 2 schematically represents a (225)γ thin plate of martensite according to the present results.
The thin plate martensite showing a high density of alternate twin-related variants α1 and α3 is represented 

surrounded by the austenitic matrix. The crystallographic orientations of the γ and α phases are defined thanks 
to the dashed lines representing particular planes. The trace of the (225)γ predicted habit plane is also shown. This 
plane corresponds to the 

α(743)  in the martensite phase. In the present study, all twelve habit planes predicted by 
the Kurdjumov-Sachs invariant plane strain DIPS are the {225}γ planes at 25° from the {111}γ planes involved in the 
Kurdjumov-Sachs relationship. This particular feature is in full agreement with the experimental studies of 
Shimizu, Oka and Wayman on Fe-Cr-C alloy19. Each pair pj of twin-related variants is then associated unequivo-
cally with one of theses twelve {225}γ habit planes. The proportion λ of each of the twin-related variants α1 and α3 
that is needed to produce the invariant plane strain is unique and the ratio is found to be 1:1. This result corre-
sponds to the value experimentally deduced by Kelly and Nutting20 when they studied the martensitic transfor-
mation in carbon steels. It is also the same proportion that is considered in the Bowles and Mackenzie’s model for 
this specific habit plane.

The present study also shows that the interface plane between two Kurdjumov-Sachs twin-related variants is 
unique, as there are exactly two non-collinar vectors in the Kernel computed in equation (6). The results suggest 
that the martensite twins are not created from mechanical twinning, but are due to a particular association of 
variants, these variants being twin-related. We conclude that a local variant selection occurs to accommodate the 
phase transformation on the habit plane. Away from the habit plane, however, the transformation might need 
additional mechanisms, like plasticity by dislocations gliding to accommodate the shape strain related to the 
transformation. Such additional mechanisms can be observed in {225}γ habit planes martensitic steels21.

The shape strain DIPS associated with an equibalanced combination of twin-related variants can be clearly 
identified in equation (5). This shape strain is exactly the same as the one predicted by the PTMC and computed 
in equation (9). The calculated shear is 0.19 and the dilatation normal to the habit plane is +​8.9%. The shear 
strain is in good agreement with the magnitude experimentally measured in ferrous martensite which varies 
between 0.1822 and 0.2223. However, the dilatation normal to the habit plane is overestimated. Indeed, the dila-
tation reported in the literature is about +​3%23. This discrepancy was expected because the atoms were assumed 
to be hard spheres of constant radius, whereas a slight decrease of the atomic size (few %) is observed during the 
transformation. This atomic size change is not captured by our model such that we overestimated the volume 
change associated to the FCC-BCC transformation, and hence the dilatation normal to the habit plane as well.

Figure 2.  Schematic representation of (225)γ thin plate of martensite. Cross-sectional view normal to 
γ α

¯[110] [111] .
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The hard-sphere assumption is done in both the Bowles and Mackenzie’s PTMC model for the {225}γ case and 
our model. Indeed, for this specific habit plane, the PTMC requires the dilatation parameter to be different from 
1, such that the 

γ[110]  and the [111]α atomic rows match. As commented by Bowles, this dilatation is exactly 
equivalent to an hard sphere modeling of the atoms (ref. 1, part III). In both models, the matching of the 

γ[110]  
and the [111]α, and the exact Kurdjumov-Sachs orientation relationship are required to let the (225)γ completely 
invariant. To compensate the natural decrease of the atom size and the consequent atomic mismatch along the 

γ α

¯[110] [111]  closed-pack direction, accommodation mechanisms by dislocations in the austenite need to be 
considered. Back in the 70’s, for example, Bowles envisaged multiple {111}γ slip systems to preserve an invariant 
habit plane24. More recently, Stanford and Dunne used similar arguments to explain the austenite/-martensite 
interface in Fe-Mn-Si alloys25. The Bowles and Mackenzie’s dilatation parameter was controversial and so is also 
the hard sphere modeling of the atoms. However, this approach has the advantage of allowing the description of 
the atomic trajectories. In this respect, using the hard-sphere model may allow more significant insights into the 
effective transformation mechanism than the consideration of artificial double shear systems, mentioned in the 
introduction.

It is remarkable that both the atomistic and the phenomenological modeling lead to the same results. In 
fact, even though these approaches are a priori based on opposite starting hypothesis, they share one common 
assumption: the atomic correspondence between the austenite and the martensite. The Bowles and Mackenzie 
model is historically based on the observation of the macroscopic shape strain associated with the transformation. 
An initial guess on the lattice invariant shear is required and the orientation relationship can then be derived. It 
only deals with the initial and the final states, but allows to cover a broad range of transformation, morphologies 
and habit planes. On the contrary, in the model proposed by Cayron, one assumes the final orientation relation-
ship and imposes a steric condition on the atomic trajectories, by the mean of the hard sphere assumption. A 
precise atomic path can thus be defined for the transformation. The shape strain and the twinning system are then 
directly derived from the model with simple calculations. The predicted twinning system corresponds exactly to 
the lattice invariant shear assumed in the PTMC and experimentally observed19, which confirms the equivalence 
of the two models in the {225}γ case.

In their original papers, Bowles and Mackenzie emphasize the phenomenological nature of their theory. As 
reformulated by Dunne24, they stressed that the theory provides “a framework that any proposed transformation 
mechanism must satisfy”. The distortion associated to Kurdjumov-Sachs orientation relationship is shown to fit 
perfectly in this framework, for this particular {225}γ case. Our model is thus a step toward a complete mechanis-
tic representation of the transformation. In this regard, it might be noted that the mathematical approach used in 
this paper has also been successfully applied for {557}γ habit planes in dislocated martensite26.

The present study explains the invariant nature of the {225}γ habit planes thanks to fundamental, but rather 
abstract, linear algebra concepts. So, in order to visualize the crystallography of {225}γ thin plates, some computer 
simulations have been performed at the atomic scale. These simulations consist in computing the two final 
twin-related BCC lattices within their parent austenitic matrix. The computation of the transformation is based 
on the matrices αD 1 and αD 3 from equation (3). Only the iron atoms are considered and illustrated in Fig. 3. 
Figure 3(a), analogous to the schematic Fig. 2, shows the accurate atomic positions. It illustrates clearly the 
Kurdjumov-Sachs orientation relationship, 

γ[110]  being parallel to [111]α direction, and (111)γ plane parallel to 

α(110) . All the crystallographic features presented schematically in Fig. 2 are also illustrated here. Figure 3(b) 
shows a tridimensional view of the simulated {225}γ plate. The proposed modeling of the {225}γ habit plane mar-
tensite is based on an atomic description of the FCC-BCC phase transformation12. A movie of the simulated 
{225}γ thin plate of martensite was computed. It is available in the supplementary material. Snapshots of this film 
are presented in Fig. 4.

As previously mentioned, the distortion associated with the Kurdjumov-Sachs orientation relationship leaves 
two families of plane untilted, {111}γ and 

γ{11 6 } . However, it is usually the second family of planes which is 

Figure 3.  Illustrations of the (225)γ thin plate: (a) projection along γ α

¯[110] [111]  and (b) 3D view. Green dots: 
iron atoms in austenite. Blue and red dots: iron atoms in martensitic twin-related variants α1 and α3.
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experimentally observed. As mentioned in the introduction and already questioned by Jaswon and Wheeler3, a 
major question is then to understand why. The present approach proposes a clear answer, illustrated in Fig. 5. In 
the distortion, each of the untilted planes is deformed within the plane, as the spacing between the atoms in this 
plane changes during the transformation12. The matrices computed in equation (4) show that for the (225)γ habit 
plane the atoms are displaced in opposite directions for each twin of a given pair of twin-related variants such that 
the average displacement on this plane is zero. This average cancellation is illustrated in Fig. 5(a) and (b). They 
show the atomic positions in a 

γ(11 6 )  habit plane for both variants α1 and α3. The 
γ(11 6 )  plane being irra-

tional, it cannot form a 2D crystallographic lattice. Therefore, in the simulations, this plane is defined by all the 
atomic positions u such that: ⋅ = ± tolu[11 6 ] 0 , where tol is a tolerance factor equal to 0.05. Black arrows are 
sketched on figure in order to better visualize the atomic displacements. The invariant 

γ[110]  direction, where the 
atoms positions in austenite and in martensite match is noted on the picture with a dashed horizontal line. To be 
compared with Fig. 5(a) and (b), Fig. 5(d) and (e) show the atomic positions after transformation for each of the 
twin-related variants α1 and α3 in the (111)γ plane. Figure 5(c) and (f) offer detailed views of the displacements 
for each variant in the (225)γ plane and in the (111)γ plane. Figure 5(c) illustrates the average cancellation of the 
displacements. On the contrary, as showed in Fig. 5(f), in the (111)γ plane, there is a displacement on the vertical 
axis that goes in the same direction for both variants. Indeed, the red and blue dots both shift in a direction 

γ[011]  
relatively to the initial FCC lattice in the same manner. Such a displacement cannot be cancelled by any combina-
tion of these two variants. This result can also be proved mathematically by applying an analogous approach for 
(111)γ as the one we used to show the invariant nature of (225)γ planes. We notice that all the volume change 
intrinsic to the FCC-BCC transformation occurs by the distortion of the (111)γ plane. Therefore {111}γ planes 
cannot be invariant during the transformation.

In conclusion, this study shows that a fine alternate structure of Kurdjumov-Sachs twin-related variants in 
equal proportion creates a macroscopic invariant plane strain having 

γ(11 6 )  as invariant plane, lying at 0.5° 
from the observed (225)γ plane. The shape strain resulting from this combination of twin-related variants consists 

Figure 4.  Snapshots of the (225)γ thin plate formation. Green dots: iron atoms in austenite. Blue and red dots: 
iron atoms in martensitic twin-related variants α1 and α3.

Figure 5.  Comparison between the atomic displacements in the 
γ(11 6 )  plane (a–c) and in the (111)γ plane 

(d–f). Green dots: iron atoms in austenite. Blue and red dots: iron atoms in martensitic twin-related variants α1 
and α3.
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in a shear of magnitude 0.19 parallel to the habit plane and a dilatation normal to the habit plane of +​8.9%. This 
shape strain corresponds exactly to the result of the Bowles and Mackenzie’s version of the PTMC. For this special 
(225)γ case, the two models are shown to be equivalent. We also demonstrated that because of the geometrical 
compatibility at the interface, Kurdjumov-Sachs twin-related variants share an interface plane of type {112}α, 
which corresponds to the twinning system that is assumed in the PTMC.

In this specific case, a continuous atomic displacement can be associated to the original Bowles and 
Mackenzie’s model, offering, for the first time, a mechanistic dimension to a theory which up to now was 
phenomenological.

Methods
Mathematical notations and conventions.  The mathematical notations and conventions used in the 
present paper are briefly presented here. The vectors are column vectors and are written in small bold letters. The 
matrices are written in bold capital letters. A vector v is transformed by a matrix M as follows:

′ =v Mv (10)

The coordinate-transformation matrix between two basis 1  and 2 is noted = →T [ ]1 2   and is defined 
such that its columns are the vectors of the basis 2  expressed in the basis 1:

=










=











=












a
b
c

d
e
f

g
h
i

a b c
(11)

/ / /1
2

1
2

1
2










One has,

     = → =


















→ = → −
a d g
b e h
c f i

T [ ] ; [ ] [ ]
(12)

1 2 2 1 1 2
1

The vector v and the matrix M expressed in 1 , noted v/ 1
 and M/ 1

 are, then, respectively expressed in 2  by:

   = → = −v v T v[ ] (13)/ 2 1 /
1

/2 1 1

     = → → = −M M T M T[ ] [ ] (14)
1

/ 2 1 / 1 2 /2 1 1

Semi-eigenbasis of twin-related variants.  The distortion matrices of variants α1 and α3 forming the first 
pair p1 are expressed in their common semi-eigenbasis, using the following coordinates-transformation matrix:



→ 


=














−

− −

















→ 

= 

→ 


γ γ γ γ γ γ −1

2

2 6
2

2
2

2 6
2

2
2

0 1 3 (15)

p p p0 0 0
1

1 1 1
     

The distortion matrices αD 1 and αD 3 of each twin-related variant α1 and α3 can then be expressed in the com-
mon semi-eigenbasis.

= 


→ 



→ 


α γ γ α γ γ
γD D (16)p p/ 0 0p1

1
1

1
1

   

= 


→ 



→ 


α γ γ α γ γ
γD D (17)p p/ 0 0p1

3
1

3
1

   

Computation of the correspondence matrix.  The matrix that transforms the coordinates of each crystal 
αi into the coordinates of the crystal γ is γ α→T i14:

= = …γ α γ γ α→ →g iT T 1, 2, 24 (18)i
i 1

where = →γ α γ α→T [ ]0 0
1 1  .  γ0  and α0 1 are formed by the usual crystallographic vectors of the Bravais lattice of 

the γ and α1 crystals, respectively.
The correspondence matrix α γ→C i  allows the computation of the image by the distortion αD i of any vector in 

the γ crystal expressed in the basis α0 i of the product crystal αi.
Indeed, the image of any vector γu/ 0

 by the distortion is given by:

′ = = …α
γ γ iu D u 1, 24 (19)/ /

i
0 0 
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To express the transformed vector ′ γu/ 0
 in the α

0
i  basis one needs the transformation matrix presented in 

equation (18):

′ = → ′

= ′

= = …

α γ

γ α

γ γ α γ γ

→ −

→ − −

α γ

γ

γg g g i

u u

T u

T D u

[ ]

( )

( ) [( ) ( ) ] 1, 24 (20)i i i

/ 0 0 /
1

/
1 1

/

i i

i

0 0

0

1
0

  





where γ γ −g gD( ) ( )i i
1 is the distortion matrix of variant αi expressed in the absolute basis  γ0 , as computed in 

equation (3).
Based on equation (20), the correspondence matrix is then:

= = = …α γ γ γ α γ γ γ α γ→ → − − → − −g g g g iC T D T D( ) ( ) ( ) ( ) ( ) 1, 2 24 (21)i i i i
1 1 1 1i 1 1

Considering the distortion associated with the Kurdjumov-Sachs orientation relationship presented in rela-
tion (1) and the present coordinate-transformation matrix, the correspondence matrix α γ→C 1  is:

=







−
−









α γ→C
1 0 1
0 1 0
0 0 1 (22)

1

And the correspondence matrix in the reciprocal lattice is then:

= = …α γ α γ→ → −⁎ iC C( ) ( ) 1, 2, 24 (23)Ti i
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