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Abstract
An active distribution network (ADN) is an electrical-power distribution network that imple-

ments a real-time monitoring and control of the electrical resources and the grid. Effective

monitoring and control in an ADN is realised by deploying a large number of sensing and

actuating intelligent electronic devices (IEDs) and a reliable two-way communication infras-

tructure that facilitates the transfer of measurement data, as well as control and protection

signals. The reliance of ADN operations on a large number of electronic devices and on

pervasive communication networks poses an unprecedented challenge in protecting the sys-

tem against cyber-attacks emanating from outsiders and insiders. Identifying these different

challenges and commissioning appropriate security solutions to counter them is of utmost

importance for the realization of the full potential of a smart grid that seamlessly integrates

distributed generation, such as renewable energy sources, at the distribution level.

As a first step towards achieving this goal, we perform a thorough threat analysis of a typical

ADN automation system. We identify all potential threats against field devices, the communi-

cation infrastructure and servers at control centers. We also propose a check-list of security

solutions and best practices that guarantee a distribution network’s resilient operation in the

presence of malicious attackers, natural disasters, and other unintended failures that could

potentially lead to islanding.

For the next step, we focus on investigating the security aspects of Multi-Protocol Label

Switching - Transport Profile (MPLS-TP), a technology that is mainly used for long-distance

communication between control centers and between control centers and substations. Our

findings show that an MPLS-TP implementation in Cisco IOS has serious security vulnera-

bilities in two of its protocols, bidirectional forwarding detection (BFD) and protection state

coordination (PSC). These two protocols control protection-switching features in MPLS-TP.

In our test-bed, we demonstrate that an attacker who has physical access to the network can

exploit the vulnerabilities in the protocols in order to inject forged BFD or PSC messages that

will lead to disruption of application data communication.

Third, we consider source-authentication problem for multicast communication of syn-

chrophasor data in grid monitoring systems (GMS). Given resource constrained multicast

sources, ensuring source authentication without violating the stringent real-time requirement

of GMS is a challenging problem. In our effort to identify a suitable multicast authentica-

tion schemes, we set out by making an extensive review of existing authentication schemes

and identifying a set of schemes that satisfy some desirable properties for GMS. The identi-

fied schemes are ECDSA, TV-HORS and Incomplete- key-set. The comparison metrics are
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Abstract

computation, communication and key management overheads. The relatively low message

sending rate of PMUs in GMS results in some idle CPU time. This fact enables us to implement

an ECDSA variant that uses pre-computed tokens to sign messages. This tweak in ECDSA’s

implementation significantly improves the computation overhead of ECDSA, making it the

preferred scheme for GMS. This finding is contrary to the generally accepted view that public

key cryptography is inapplicable for real-time applications.

Finally, we study a planning problem that arises when a utility wants to roll out a software

patch that requires rebooting to all PMUs in a grid while maintaining full system observability.

We assume a PMU placement with enough redundancy to enable a utility to apply the patch

to a subset of PMUs at a time and maintain system observability with the remaining ones. The

problem we address is how to find a partitioning of the set of the deployed PMUs into as few

subsets as possible such that all the PMUs in one subset can be patched in one round while

all the PMUs in the other subsets provide full observability of the system. We show that the

problem is NP-complete in the general case. We have provided a binary integer linear pro-

gramming formulation of the problem. We have also proved that finding an optimal solution

to the problem is equivalent to maximizing a submodular set function and have proposed an

efficient heuristic algorithm that finds an approximate solution by using a greedy approach.

Furthermore, we have identified a special case of the problem where the grid has a radial

structure and have provided a polynomial-time algorithm that finds an optimal patching plan

that requires only two rounds to patch the PMUs.

Key words: Active distribution network, phasor measurement unit, smart grid, cybersecurity,

multicast authentication, key management, real-time application, performance evaluation,

patching plan, MPLS-TP.
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Résumé
Un réseau de distribution actif (active distribution network (ADN)) est un réseau de distribu-

tion d’énergie électrique qui implémente en temps réel un suivi et un contrôle des ressources

électriques et du réseau. Le suivi et le contrôle efficace d’un ADN sont réalisés grâce au dé-

ploiement d’un grand nombre de senseurs, de dispositifs électroniques intelligents (intelligent

electronic devices (IEDs)) et d’une infrastructure de communication à double sens fiable faci-

litant les transferts de mesures de données ainsi que le contrôle et la protection des signaux.

Une bonne performance des opérations de l’ADN sur un grand nombre de dispositifs électro-

niques et sur des réseaux de communication complexes pose un challenge sans précédent

pour la protection du système contre des cyber-attaques venant de l’extérieur comme de

l’intérieur. Identifier ces différentes attaques et apporter des solutions de sécurité appropriées

pour contrer ces attaques est d’une grande importance afin de réaliser pleinement le potentiel

des réseaux smart grid, qui sont en plein développement à cause de la pénétration des énergies

renouvelables.

Dans une première étape, nous avons analysé les menaces d’un système automatisé typique

d’un ADN. Nous avons identifié toutes les menaces potentielles sur les appareils de terrain,

les infrastructures de communication ainsi que les serveurs des centres de contrôle. Nous

proposons aussi une liste de vérification des solutions de sécurité et des meilleurs pratiques

permettant de garantir les opérations du réseau de distribution résilientes en présences

d’attaques malicieuses, de catastrophes naturelles et autres défaillances inattendues qui

pourraient potentiellement causer le fonctionnement en mode îloté.

L’étape suivante consiste à analyser les différents aspects de sécurité du Multi-Protocol La-

bel Switching - Transport Profile (MPLS-TP), une technologie très souvent utilisée pour la

communication à longue distance entre centres de contrôle et sous-stations. Nous montrons

que l’implementation de MPLS-TP par Cisco IOS présentent de sérieuses failles de sécurité

dans deux de ces protocoles, bidirectional forwarding detection (BFD) et protection state co-

ordination (PSC). Ces deux protocoles contrôlent le basculement sur des chemins de secours.

Nous démontrons expérimentalement qu’un attaquant qui a un accès physique au réseau

peut exploiter cette vulnérabilité du protocole pour injecter des messages BFD et PSC forgés,

ce qui pourrait conduire à une perte de communication totale entre certains sites, malgré la

redondance du réseau.

Troisièmement, nous nous penchons sur le problème d’authentification de source pour la

communication multicast des synchrophaseurs de données dans un système de surveillance.

Assurer l’authentification de source sans déroger aux exigences strictes du temps réel connais-
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Résumé

sant les ressources soumises aux contraintes des sources multicast est un challenge. Dans nos

efforts pour identifier un schéma d’authentification multicast convenable, nous commençons

par analyser les schémas d’authentification existants et identifions un groupe de schémas

satisfaisant certaines propriétés désirables. Les schémas identifiés sont ECDSA, TV-HORS et

Incomplete- key-set. La métrique de comparaison est la complexité dec calcul, de communi-

cation et de gestion des clés. Le taux d’envoi de messages relativement bas des PMUs induit

des temps d’inactivité du CPU. Nous avons exploité cette observation pour implémenter

une variante de ECDSA qui utilise des jetons pré-calculés pour signer les messages. Cette

astuce dans l’implémentation d’ECDSA améliore de façon significative le calcul d’ECDSA et

en fait le système de choix. Ce résultat va à l’encontre de l’opinion généralement admise sur

la cryptographie à clé publique et son impossibilité à être utilisée dans des applications en

temps réel.

Finalement, nous avons étudié un problème de planification de mise à jour, qui se présente

quand on veut déployer un correctif logiciel demandant le redémarrage de toutes les PMUs

dans un réseau tout en conservant l’observabilité du réseau dans son intégralité pendant le

déploiement. Nous supposons qu’il existe une redondance suffisante dans la couverture par

PMUs pour qu’on puisse appliquer le correctif à un sous-ensemble de PMUs et maintenir

l’observation du système grâce aux PMUs restantes. Le problème que nous avons résolu

est comment trouver un partitionnement du groupe des PMUs déployées en sous-groupes

possibles de façon à ce que les PMUs d’un sous-groupe puissent être mises à jour tandis que

les PMUs des autres sous-groupes permettent une observation globale du système. Nous

montrons que ce problème est NP-complet dans le cas général. Nous montrons aussi qu’il y a

un algorithme polynomial qui trouve un plan de mise à jour de logiciel avec seulement deux

étapes quand le réseau est un arbre.

Mots clefs : Réseau de distribution actif, synchrophaseur, réseau intelligent, cyber-sécurité,

authentification multicast, gestion des clés, application en temps réel, évaluation de perfor-

mance, plan de mise à jour, MPLS-TP.
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1 Introduction

1.1 Motivation

Modern life is so intimately dependent on electric energy that a major power grid blackout

would amounts to billions in economic loss and a massive disruption of critical infrastructures

that provide health, transport, communication and other crucial public services. Therefore, it

is important to ensure the reliable and stable operation of the electric grid. For this reason,

nations are investing heavily to revamp their ageing electric-power infrastructure and trans-

form it into a smart grid. One such example is the American Recovery and Reinvestment Act

(ARRA) [1] that was in enacted in 2009 to invest $4.5 billion, matched by private funding of $8

billion, to modernize the US power grid infrastructure.

Smart grid is a generic term encompassing many aspects of the modernization of the electric-

power system. The most accommodating definition of smart grid is that it is a blending of

tradition electric-power infrastructure with information and communication technology (ICT)

infrastructures to realise reliable and efficient electric energy management and use. The ICT

infrastructure facilitates the implementation of real-time monitoring and control (automation)

systems for the power grid. The automation system enables the power grid to seamlessly

integrate distributed intermittent renewable energy sources, such as solar photovoltaic and

wind. A power grid automation system requires a large number of sensing devices that

continuously measure the state of key components of the grid and actuating devices that

receive control commands in response to perceived disturbances that might push the grid

outside of its normal operating conditions [2]. Moreover, it requires a high-speed and reliable

two-way communication infrastructure to facilitate a real-time transfer of the measurement

and control data.

In spite of the tremendous benefits the ICT infrastructure brings to smart grids by enabling the

real-time assessment of system conditions and taking corrective measures when necessary,

it is also a source of grave concern. The large number of sensing and actuating field devices,

IT systems at control centers, as well as all the devices in the communication network, are

potential sources of vulnerabilities; thus increasing the grid’s susceptibility to cyber attacks.
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1.1.1 Challenges in Securing Smart Grid Automation Systems

Like any large and complex IT network, the smart grid automation system provides a vast

attack surface that can be exploited by an attacker. Below, we provide some of the main

reasons why securing a smart grid automation systems is challenging.

• Legacy systems: As much as a smart grid introduces new hardware and software com-

ponents, it also leverages existing assets that include heterogenous legacy automation

devices. However, many of these legacy devices were not designed with cyber-security

features and run proprietary software that no longer has maintenance support. There-

fore, no matter how secure the new components are, the legacy devices can serve as open

gateways for an attacker to gain access to more components of the grid’s automation

system.

• Rogue devices: The complex smart grid automation system deploys diverse types of

hardware that come from different international vendors. This affords a unique oppor-

tunity for an attacker to compromise the supply chain and then to pre-install malicious

code or hardware into a device prior to shipment to a target location and later use it as a

backdoor [3, 4].

• Physical exposure: Unlike traditional IT systems where devices have some level of physi-

cal protection, smart grid field devices are deployed in remote physically exposed loca-

tions. Besides, the communication network spans over a large unprotected geographic

area. Hence, an attack has unhampered access to physically tamper the cyber-enabled

devices or networks. Successfully tampering one such device enables an attacker to

exploit the trust relationship this device has with its communicating partners (including

those in the control center) and to launch further attacks and to compromise more

devices in the automation system.

• Life span of devices: Devices in a smart grid are expected to last for more than a decade.

However, some devices come with built-in cryptographic systems that might not be

secure for this long. Security solutions for such devices should be designed such that

they are proactively updatable to adapt to long-term evolutions in security threats [5].

Furthermore, preparing a catalogue of all software and hardware in these devices is

important. Keeping track of all software patches and replacing or disabling obsolete

hardware components during their long lifetime can be error prone.

• Resource constraints: Many smart grid applications have stringent latency constraints

on the data they receive from sensing field devices that have limited computational

power. Finding an appropriate authentication (and encryption) scheme that secures

data from the sensors, without compromising on the security level and still not violating

the latency requirement, is a challenge.

• Human factor: This refers to all those human aspects and conditions that an attacker

could take advantage of to successfully achieve its malicious objectives. The human
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factor is arguably the weakest link in the security of a smart grid. No matter how

strong the deployed security solutions are, employees tend to become lax and find

work-arounds to security measures put in place. Unless employees receive continuous

security training and awareness-raising actions, an attacker can use social-engineering

techniques to steal an employee’s authentication credentials in order to use them to

gain access to the grid’s automation system [6]. Another aspect of the human factor is

an insider attack; attacks from a malicious insider who has intimate knowledge of the

deployed defence mechanisms and has privileged access to the network are difficult to

detect [3, 5].

1.1.2 Known Cyber Attacks on Smart Grid Automation Systems

The frequency of cyber attacks involving smart grid automation systems has been growing

recently. Below, we describe only a few of the recently reported attacks.

Aurora Vulnerability: This vulnerability affects systems that control rotating machinery such

as turbines and diesel generators. The vulnerability was demonstrated in a controlled environ-

ment by researchers at the Idaho National Laboratory in 2007. The researchers showed that an

intentional out-of-synch closing of an open circuit breaker induces a high electrical torque

that puts stress on the mechanical components of rotating equipment in generators [7]. To

exploit the vulnerability, an attacker needs to have an in-depth knowledge of the target power

system and gain either physical or electronic access to a protective relay that initiates a circuit

breaker to open/close [8].

Stuxnet: Stuxnet is a computer worm that targets the Siemens SIMATIC WinCC SCADA system.

The worm exploits several zero-day vulnerabilities in Windows OS and is believed to have

been spread via USB drives. In 2010, Stuxnet was able to take over the PLCs controlling the

centrifuges at Iran’s nuclear facilities and disrupt the centrifuges speed. It has been shown

that, with some modifications, Stuxnet could be tailored as a platform for attacking smart grid

SCADA systems [9].

Slammer: Slammer is a malware that targeted the Davis-Besse nuclear power plant in Ohio

in 2003 and took off its safety monitoring system for nearly five hours. The breach did not

pose a safety hazard because the plant was under maintenance and not in operation at the

time. The malware entered the Davis-Besse plant by first infecting an unsecured network of

one of Davis-Besse contractors and then by following a T1 line connecting that network to

Davis-Besse’s corporate network. It was later found that this T1 line was just one of the many

connections that bypassed the plant’s firewall [10].

BlackEnergy: Blackenergy is a Malware that targets the human-machine interface (“HMI”)

software of industrial control systems. It is believed that the first ever hacker-caused power-

outage in Ukraine on December 23, 2015 was caused by BlackEnergy. The Ukraine attack lasted

for several hours and affected up to 225,000 customers in three different distribution networks.

The adversary is believed to have gained access using spear-phishing by sending an e-mail

with a BlackEnergy Malware attachment to a specific individual within the organization. The

Malware was then used to steal a legitimate user’s virtual private network (VPN) credentials.
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The adversary used the credentials to gain remote access to distribution network’s SCADA

network and to control the human-machine interface (HMI). Once they gained access to the

network, they installed custom firmware on serial-to-Ethernet devices at substations to take

them off-line, they used KillDisk to delete the master boot records of hacked systems systems

and they waged a denial-of-service attack on the power companies’ telephone systems [7, 11].

Havex: Havex is a malware that uses Remote Access Trojan (RAT) to infiltrate and modify legit-

imate software in ICS and SCADA systems. It has targeted a number of European companies

that develop industrial applications and appliances. The Malware is distributed through three

possible means: (1) using spam e-mail, (2) using a watering-hole attack that compromises an

intermediary target (the ICS vendor site) in order to gain access to the actual targets and (3) by

using trojanized installers planted on compromised vendor sites [12].

Cyberspies: The US smart grid had been penetrated by espionage agents who are suspected

of having inserted rogue code (BlackEnergy) in software that controls electrical turbines [13].

1.2 Dissertation Outline

Through the involvement in the Nano-Tera program (http://www.nano-tera.ch), we were

tasked to design and implement a secure communication infrastructure for the smart grid

pilot on the EPFL campus (http://smartgrid.epfl.ch). In Chapter 3, we present the thorough

threat analysis we carried out and the comprehensive security framework we propose for a

typical active distribution network. We also describe the network architecture and security

solutions we have deployed for the EPFL smart grid network.

Because of MPLS-TP’s support for bounded delay and guarantee for high degree of network

availability, it is identified as one of the suitable technologies for long-distance communication

in smart grid. As part of the LCA2 laboratory’s collaborative work with ABB, we cover MPLS

Transport Profile (MPLS-TP) security in Chapter 4. In this work, we specifically focus on the

security of two Operations, Administration, and Maintenance (OAM) protocols that facilitate

protection switching. Through our literature review, we find there is lack of a unified approach

that addresses security issues for these protocols. Our testbed based study of MPLS-TP’s

implementation in Cisco IOS confirms that there is no support for source authentication for

BFD and PSC messages. As a result, we demonstrate spoofing attacks on these protocols and

show the disruptive effect of such attacks on MPLS-TP’s proper operation.

IP Multicast is the preferred communication paradigm for phasor data in grid monitoring

systems (GMS) because of its efficiency for one-to-many communication and because it

minimizes setting changes in already deployed PMUs and PDCs when new receivers are added.

In spite of multicast benefits, designing a multicast source authentication scheme for time-

critical systems such as GMS is a challenging problem especially when the devices are resource

constrained. In Chapter 5, we deal with identifying an appropriate source authentication

for multicast communication of phasor measurement data in GMS. We present a detailed

literature review of existing multicast authentication schemes and perform an experimental
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comparison among a selected set of schemes on the EPFL-campus smart grid network. We

show that making some changes in the implementation of ECDSA by exploiting the sending

rate of PMUs significantly improves ECDSA performance compared to the other schemes,

which is contrary to the popular belief that public key cryptography is not applicable for

real-time applications.

In Chapter 6 we address the software patch planning problem. The problem arises when a

utility wants to roll out a software patch to all PMUs deployed in a smart grid by patching only

a subset of PMUs at a time while maintaining full grid observability using the PMUs that are

not being patched. We use set theoretic formulation to model the problem as an instance of

a sensor patching problem and prove that it is NP-complete. For the special case where the

active configuration of a power grid is a tree, we show there is a polynomial-time algorithm that

finds an optimal software patching plan. We also present results from a heuristic algorithm we

propose for the general case.

Finally, Chapter 7 concludes by providing a summary of our findings.

1.3 Contributions

A list of the main contributions of this thesis are provided below.

• We perform a thorough cyber-threat analysis of a smart grid network. We consider

threats that come from malicious outsiders and insiders. In our analysis we consider all

possible assets that can be exploited by an attacker.

• We propose a check-list of security solutions and best practices for an ADN to counter

the identified threats. The solutions entail mechanisms to prevent an attacker from

exploiting emergency situations that cause an islanded communication zone to install

a rogue devices that could be used as a backdoor later on. We have also built a secure

communication infrastructure for the EPFL-campus smart grid pilot using our proposed

security solutions for ADN as guidelines.

• We built a testbed to evaluate the security of MPLS-TP’s OAM protocols. We demonstrate

that MPLS-TP implementation in Cisco IOS lacks support for source authentication for

BFD and PSC messages. We exploit this vulnerability to launch spoofing attacks against

both protocols and we demonstrate the devastating consequences of such attacks.

• Through a qualitative comparison of existing multicast authentication schemes, we

identified a set of schemes that satisfy some of the critical requirements for grid monitor-

ing systems (GMS). We implement the identified schemes and experimentally compare

their performance at the EPFL-campus smart-grid pilot.

• We have shown that implementing ECDSA in such a way that it uses pre-generated

tokens for signature generation significantly improves its performance making it the

5



Chapter 1. Introduction

scheme of choice for GMS.

• We model a software patch planning problem for PMUs in a smart grid as an instance

of a sensor patching problem and prove that it is NP-complete. We also formulate the

problem as a binary integer linear programming (BILP) problem and used an ILP solver

to find (sub)optimal solutions for small network sizes. Moreover, we have proved that

finding an optimal solution to the problem is equivalent to maximizing a submodular

set function and proposed a heuristic algorithm to find an approximate solution to the

problem and compare the approximate results with those obtained from the ILP solver.

• For the special case when the grid is a tree, we have provided a polynomial-time algo-

rithm that computes an optimal software patching plan that patches all the PMUs in

only two rounds.
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2 State of the Art

The increasing number of cyber attacks on critical infrastructures has enabled cybersecurity

for smart grid automation systems to take centerstage. The awareness of the vulnerabilities

of the grid and the dangers that cyber attacks pose on such a critical infrastructure have led

governments, standard bodies and the research community to develop standards, guidelines

and tools that are necessary for a cyber-secure smart grid.

In the United States, the Federal Energy Regulatory Commission (FERC) is given the authority

to approve mandatory cybersecurity standards for the bulk power system (transmission).

FERC, in turn, has designated the North American Electric Reliability Corporation (NERC)

as the organization responsible for the development of reliability standards. Among NERC’s

approved reliability standards are the Critical Infrastructure Protection (CIP) standards. The

NERC CIP standards address critical cyber-asset identification and their physical security, cy-

bersecurity, and management and control of the electronic security perimeters. The standards

also prescribe the recovery plans that must be put in place for the identified critical assets.

These standards are mandatory only for utilities in the United States and Canada. Utilities that

violate these mandatory standards can be fined up to $1 million per day by FERC [14, 15].

The Energy Independence and Security Act (EISA) of 2007 [16] directed the National Institute

of Standards and Technology (NIST) to coordinate the development of a framework including

protocols and model standards that are necessary for a safe and secure smart grid. Under this

obligation, NIST published “NISTIR 7628: Guidelines for Cyber Security in the Smart Grid” [17].

The guidelines propose methods for assessing risks in the smart grid, and then identifies

and applies appropriate security requirements for mitigating these risks. The guidelines

are presented as a non-mandatory framework for utilities to use in developing effective

cybersecurity strategies.

The International Electrotechnical Commission (IEC) TC57/WG15 developed the IEC 62351

[18] series of security standards for the high- and low-voltage power-system communication

protocols defined by IEC TC 57, specifically the IEC 60870-5 series, the IEC 60870-6 series,

the IEC 61850 series, the IEC 61970 series, and the IEC 61968 series [19]. The primary focus
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of this standardization is to provide end-to-end security. The IEC 62351-6 standard, for

example, specifies security measures for protecting communications between intelligent

electronic devices (IEDs) in substations. The standard specifically suggests RSA be used

to authenticate IEC 61850 Generic Object Oriented Substation Event (GOOSE) / Sampled

Measured Values (SMV) messages that have a 4ms response time. The performance evaluation

done for this standard [19] showed that both software and hardware solutions could not

satisfy the performance requirements of the applications. Therefore, the working group is

currently looking at new approaches that will likely use symmetric-key based schemes. The

ISA 99 working group, in collaboration with IEC TC65/WG10, is working on the IEC 62443

series of cybersecurity standards for industrial automation control systems (IACS). The IEC

62443-2-4 series deals with security requirements for vendors of IACS, which includes smart

grid devices [20].

Other standards and technical reports include IEEE 1686 [21] on substation intelligent elec-

tronic devices (IEDs) cybersecurity capabilities; NIST Special Publication 800-82 [22], Guide

to Industrial Control Systems (ICS) Security; IEEE PC37.240 [23], standard for cybersecurity

requirements for substation automation, protection, and control systems; IEEE P1711 [24],

trial-use standard for a cryptographic protocol for cybersecurity of substation serial links; IEC

TR 62210 [25], Power system control and associated communications - Data and communica-

tion security; NIST Special Publication 1108R2 [26], NIST Framework and Roadmap for Smart

Grid Interoperability Standards. In addition to the above standards, almost all countries have

their own smart grid security-related standards, guidelines and regulatory documents.

Although the different security standards and guidelines are crucial in providing a general

blueprint that can serve as a starting point, they are not comprehensive enough to provide

a complete solution to all potential security threats. For example, they deal only with what

are considered critical assets in the grid and fall short of providing an exhaustive list of all

assets that need to be protected [7]. Unlike enterprise IT systems that provide more protection

to the important components (central servers) than the client nodes, a power automation

system needs to provide equal importance to protecting both critical and non-critical assets.

Otherwise, an attacker can exploit the unprotected non-critical assets to gain access to the

critical ones. Therefore, in addition to following the standards and guidelines they deem fit

for their needs, utilities also need to apply tailor-made security solutions pertinent to their

specific environment.

In addition to government agencies and standard bodies, the academic research community

has also made significant contributions towards smart grid security. The authors in [3] and [5]

treat a smart grid as a cyber-physical system where cyber attacks can cause disruptions that

transcend the cyber infrastructure and affect the physical power infrastructure. The Aurora

vulnerability, demonstrated by researches at the Idaho National Lab [27], was significant in

showing the true cyber-physical nature of a smart grid, i.e., malicious instructions, issued to a

protection relay in order to open and close a circuit breaker such that it creates an out-of-phase

synchronization of the generator to the grid, cause physical damage to the rotating parts of
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the generator.

The pioneering work by Liu et al. in [28] on false-data injection attacks on state estimation

shows that an adversary with the knowledge of the power-system model can corrupt a selected

set of measurements to introduce arbitrary errors into certain state variables while bypassing

existing bad-data detection techniques. This research served as a precursor for several research

works that are related to data-injection attacks [29–33].

Bhatti and Humphreys in [34] describe how they coerced a 65-meter yacht off its course, by a

kilometer, using their GPS spoofing device. The attack was conducted such that the signals

from the spoofing device gradually overrode those from the satellites and fed the receiver

false coordinates. [35]. Gong and Li in [35] describe a similar spoofing attack against PMUs in

grid monitoring systems (GMS) that use GPS signals for time synchronization. There is also

a volume of work that deals with anti-spoofing of GPS signals. The three main mechanisms

for protecting against GPS spoofing are cryptography (GPS signal source authentication),

signal-distortion detection, and direction-of-arrival sensing. There is not yet any single good

solution that can effectively protect GPS receivers from this attack.

The few attacks we describe above demonstrate the importance of source authentication for

control messages, measurement data and GPS signals. However, there is no one-size-fits-

all authentication scheme that can be used in all cases. For example, the communication

paradigm used (unicast vs multicast) dictates the kind of authentication schemes that can be

used. Moreover, an application’s latency requirement, the scale of the network and a device’s

computing power put additional constraints on our choice of schemes.

In this thesis, we give particular emphasis to identifying appropriate source authentication

solutions for smart grid applications in active power-distribution networks — in Chapter 4

for unicast communication and in Chapter 5 for multicast communication. Note that source

authentication is only a small part of a comprehensive defence-in-depth-based security

framework that utilities needs to deploy to secure their distribution network. In Chapter 3, we

propose different security solutions and best practices for such networks and we implement

them in the EPFL-campus smart grid pilot.
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3 Cyber-secure Communication Archi-
tecture for Active Power Distribution
Networks
3.1 Introduction

Conventional power distribution networks are passive and are characterised by unidirectional

power flows with a minimum level of centralised monitoring and control strategies. However,

the large-scale penetration of embedded distributed energy resources and the introduction of

energy storage at the distribution premises is paving way for the emergence of active distri-

bution networks (ADNs). An active distribution network is a distribution network with local

energy generation, storage capabilities and bidirectional power flow; it requires more sophisti-

cated active monitoring and control strategies. An active distribution network is divided into

a subset of loosely-coupled autonomous regional controllers that can perform monitoring

and control actions for their geographical subnetwork [36]. Under normal circumstances,

each subnetwork is connected to the main power grid and each autonomous controller is

able to cooperate with peer controllers when necessary. Inter-domain communication among

autonomous controllers is necessary for detecting unexpected power system failures and

other anomalous conditions in adjacent regions or in the main grid.

In most extreme cases, when a controller detects a widespread disturbance or power failure,

the active distribution subnetwork within the controller’s domain can automatically isolate

itself from the grid and continue to operate as an island. The power demand within the island

is then supplied by the local energy generation and storage until the island back-synchronises

with the grid when the faults are resolved [37]. During this islanding process, power flow

control and voltage and frequency regulations are carried out by the autonomous island

controller (IC) in coordination with sensing and actuating devices deployed within the island.

Figure 3.1 illustrates the cyber-physical nature of a typical active distribution network where

the sensing and control cyber infrastructure is superimposed on the physical power system

infrastructure to facilitate the sophisticated automation operations (monitoring, control and

protection) of the distribution network. A sophisticated automation system at the distribution

level requires deployment of a large number of electronic data-acquisition and actuating

field devices, which are nonexistent today [2]. Moreover, a high-speed and reliable two-way
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Figure 3.1 – An active distribution network where the sensing and control cyber infrastructure
is superimposed on the physical power system infrastructure (adopted from [38]). Different
possible islanding configurations are shown such that an island can be a superset of islands
depending on where the fault occurs.

communication infrastructure is required to facilitate a real-time transfer of sensor data and

control signals.

The increasing reliance of distribution network operations on pervasive electronic automation

devices and on communication networks poses an unprecedented challenge in protecting

the system against cyber incidents. Cyber incidents can be intentional or unintentional.

Unintentional cyber incidents can occur due to natural disasters, system failures or human

errors, whereas intentional cyber incidents occur due to deliberate attacks from outsiders or

insiders.

An attacker has a wide range of options to compromise a distribution automation. For exam-

ple, many of the electronic automation (sensing and actuating) devices are field-deployed

in remote locations where there is little protection against intruders. Moreover, the com-
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munication infrastructure for an active distribution network spans a large geographic area.

Hence some of the communication cables are likely to pass through physically insecure loca-

tions, thus providing an attacker physical access to the network. Furthermore, grid operators

are increasingly adopting IP-based communication standards and commercial off-the-shelf

hardware and software in their networks for interoperability and for cost reduction reasons.

Such standards and products are well studied by attackers and are known to be vulnerable to

network attacks such as IP spoofing and denial of service (DoS) attacks.

Given such a range of vulnerability points, a malicious attacker can launch sophisticated

attacks to cause maximum damage on the distribution network. An attacker can, for example,

launch a coordinated cyber-physical attack by first physically destroying a critical component

of the grid (e.g., one of the distributed generators) and simultaneously (or with very little

time difference) attack the communication infrastructure that transfers information about the

status of the critical component. This way, the operator will not know about the state of the

damaged component and thus will not take any corrective actions. With no corrective actions

taken, such an attack can have a cascading effect, causing a blackout. Although not due to a

malicious attack, the North-East American blackout of 2003 was caused mainly because of

lack of system-state awareness by an operator.

Although both insiders and outsiders can attack a distribution automation system, insider

attacks are more dangerous than outsider attacks mainly because an insider has better access

privileges and has better information about internal-procedures and potential weak spots

in the automation system [5]. In general, protecting a system against insider attacks is very

difficult. However, implementing automated security tools and techniques to detect and

identify suspicious activities from insiders can minimise the level of damage.

The main contribution of this chapter is to thoroughly assess insider and outsider security

threats against a power distribution automation system and propose a check-list of security

solutions and best practices to counter such threats. The proposed solution guarantees secure

operations even when a sub-domain of the distribution network operates in an islanded mode

by preventing outsider attackers and malicious insiders from installing a rogue field device by

exploiting the emergency situation.

The rest of the chapter is structured as follows. In the following section we identify possible

cyber-security threats in a typical active distribution network. In Section 3.4 we discuss security

solutions and best practices that should be implemented to counter the identified security

threats. In Section 3.5 we detail a secure device installation mechanism that guarantees only

authorised field engineers can install field devices from accredited device manufacturers.

We also devise an extension to the scheme that can be used to securely install field devices

during an emergency situation when communication with a user authentication facility is not

available from the installation location.
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3.2 Related Work

Smart Grid security has recently received a lot of attention both from the research community

and standardisation bodies. The NISTIR 7628 [17], “Guidelines for Cyber Security in the

Smart Grid” standard provides a comprehensive set of guidelines for designing cyber-security

mechanisms or systems for the smart grid. The standard proposes methods for assessing

risks in the smart grid, and then identifies and applies appropriate security requirements

to mitigate these risks. NIST has also released a draft on Cyber Security Framework for

critical infrastructure [39], which was available for review in 2013. This draft follows a risk-

based approach to secure critical infrastructures, as opposed to the process-based approach

proposed by Langner in [40]. The latter approach stresses that maximising security capability is

a prerequisite for security assurance of a critical infrastructure. The IEC 62351 standard series

[18], developed by WG15 of IEC TC57, defines security mechanisms to protect communication

protocols for substation systems, in particular, IEC 60870 and IEC 61850. The primary focus of

this standardisation is to provide end-to-end security. The Critical Infrastructure Protection

(CIP) set of standards [14] developed by the North American Electric Reliability Corporation

(NERC) aims at introducing compliance requirements to enforce baseline cyber-security

efforts throughout the bulk power system (transmission).

A large number of publications have also addressed smart grid security as a research problem.

Research works in [3, 5, 41, 42] define smart grid as a cyber-physical system (CPS) and identify

unique security challenges and issues encountered in such systems that are not prevalent

in traditional IT security. They also discuss security solutions to address these unique chal-

lenges. [43] proposes a layered security framework for protecting power grid automation

systems against cyberattacks. The security framework satisfies the desired performance in

terms of modularity, scalability, extendibility, and manageability and protects the smart grid

against attacks from either Internet or internal network via integrating security agents, security

switches and security managements. Metke et al. in [44] propose a security solution for smart

grid utilising PKI along with trusted computing. The paper suggests automation tools be

used to ease management of the different PKI components such as registration authorities

(RA), certificate authorities (CA). A comprehensive survey of smart grid security requirements

and possible vulnerabilities and potential cyberattacks is provided in [45] and [46]. They also

discuss existing security solutions to counter cyberattacks on the smart grid.

In spite of the rich set of publications and standardisation on smart grid security, no work has,

to our best of knowledge, addressed security challenges associated with an ADN’s islanded

operation in the presence of a malicious insider. In addition to proposing state of the art

security solutions to the well known security issues in an ADN automation system, we also

propose a scheme that prevents outsider attackers and malicious insiders from installing a

rogue field device by exploiting the emergency situation during islanding.
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3.3 Threat Analysis

An appropriate security architecture for an active distribution network can be determined only

after a thorough threat analysis of the network architecture, information flow and security of

each of the infrastructure’s components. Cyberattacks can happen anywhere in a distribution

automation system including at field devices (sensing and actuating devices), communication

infrastructure (routers, switches etc) and at the control and monitoring centre.

Although different techniques can be used to launch cyberattacks on any of these components,

the ultimate goal of an attacker is either to initiate erroneous control actions or to prevent

or delay required control actions, thereby disrupting the proper operations of the physical

power system. Erroneous control actions can happen either due to compromised sensor data

fed to the control centre or due to a malicious injection or modification of the control signal.

Likewise, an inability to send timely control signals can happen either due to absence of timely

sensor data or due to control signals being maliciously dropped or delayed in the network. In

the following, we discuss different possible attack vectors that can be exploited by an attacker

to realise the stated goals.

3.3.1 Unauthorized Access

Although most field devices are usually located in a relatively secure location, physical access

by an adversary cannot be completely ruled out. Even if devices are physically inaccessible,

an adversary can still manage to gain access to a device through the network unless there is a

secure perimeter that prevents unauthorised access to the communication infrastructure.

An adversary who gains local or remote access to a field device can reconfigure it such that it

behaves in an undesirable way. An adversary can, for example, configure a metering device,

such as a PMU, to stream incorrect phasor data so that the controller will have incorrect

situational awareness about the system. Moreover, an adversary can misconfigure an actuating

device to perform inaccurate actions in response to commands from a controller.

3.3.2 Man-in-the-Middle Attacks

An adversary who intrudes in the communication channel of a distribution network can launch

a man-in-the-middle attack by selectively dropping or modifying sensor data (control signals)

sent from a field device (controller), thus compromising the availability and/or integrity

of message exchanges. A replay attack is another form of the man-in-the-middle attack:

an attacker sniffing the communication channel can copy measurement data or control

commands and forward them later on. Replay attacks can have catastrophic consequences

especially when applied to control signals.

Note that man-in-the-middle attacks on measurement data are effective mainly if the attack

is persistent. This is because the system is a dynamic system, i.e., measurement data are

15



Chapter 3. Cyber-secure Communication Architecture for Active Power Distribution
Networks

continuously refreshed by a new set of measurements. Thus the effect of a single man-in-the-

middle attack is negligible, especially for synchrophasor measurements that are refreshed

several times per second. On the contrary, a single attack on control signals can be catastrophic.

For example, a control signal that turns off a switchgear that protects a high-voltage circuit

can throw an entire city into a blackout.

3.3.3 Rogue Device Installation

A metering field device, such as a PMU, comprises sensors that sample analogue signals from

the power system and a computing component that converts the sampled analogue signals to

digital data. An attacker who has physical access to a metering device can tamper with the

analogue signals (voltage and/or current waveforms) and provides these wrong signals to the

computing part of the field device. Similar attacks also apply to actuators. An attacker can

replace an actuator with a rogue one that incorrectly acknowledges it has performed a certain

control action, whereas in reality it has not.

Implementing cryptographic solutions that ensure device authentication before any mean-

ingful communication starts can prevent an attacker from installing a field device. However,

attacks that involve physical tampering of only the analogue component of field devices are

difficult to prevent. The best that can be done to prevent such attacks is to harden the physical

protection of the devices. Bad-data detection techniques at the control centre can be em-

ployed to filter out bad measurements from rogue sensors. However, it has been shown that

existing bad-data detection (BDD) techniques do not always detect all bad measurements.

Liu et al. [28] have shown that an intelligent adversary with knowledge of the power system

model can corrupt a carefully selected set of sensor data to introduce arbitrary errors in the

estimates of certain state variables without triggering an alarm from the BDD. A wrong state

estimator output can, for example, falsely indicate a significant voltage drop (surge) in a bus,

triggering the utility to inject more (less) reactive power to the bus, which may in turn have a

catastrophic effect on the stable operation of the grid [47].

3.3.4 Denial of Service (DoS) Attacks

An attacker who manages to gain access to the communication infrastructure, either remotely

or locally, can launch a denial-of-service (DoS) attack by flooding a critical link with bogus

traffic or by saturating the computing resources of a critical network device such as a router or

metering field device. Such an attack causes real-time measurement data from field devices

to be delayed or at worst dropped. As a result, a DNO will not have a complete view of the

distribution network’s status, leading to incorrect decision making. Likewise, the attack can

also delay or drop critical control signals from a controller.
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3.3.5 Malicious Software Patching

Smart grid devices, such as PMUs, run software and firmware that need to be updated in

order to patch bugs, to fix security vulnerabilities or to add new features for better usability

or performance. Unless necessary authentication and integrity checks are performed dur-

ing update, an attacker can use deceptive methods to install a malicious code (a malware)

that masquerades as a legitimate software update. What is worse, a malicious insider (field

engineer) can deliberately install compromised software update to field devices.

A malicious code (malware) can be used by an attacker to perform any kind of malicious

activities. For example, it can be implemented as a “logic bomb" such that it runs in parallel

to the legitimate code and sets off a malicious function when a specified condition is met.

Stuxnet [48] is one such example of a sophisticated logic bomb believed to be designed to

attack Iran’s nuclear facilities by specifically targeting Programmable Logic Controllers (PLCs)

made by Siemens.

3.4 Security Solutions

The cyber threats discussed in the previous section are by no means exhaustive, but they

serve to illustrate risks to help us develop a secure distribution network. The first step towards

securing a distribution network is to separate the automation network from the enterprise

network of a DNO and to maintain a secure perimeter around the automation network. A

security perimeter is achieved by using a security gateway (a perimeter firewall) that pro-

vides a protective barrier from incoming (outgoing) traffic to (from) the automation network.

Moreover, internal firewalls should also be used to provide more specific protection to certain

parts of the automation network. All firewalls should be deployed with tightly configured

rule bases such that the default policy is to “deny everything”, and then open up only what is

needed (maintain a white list). Figure 3.2 depicts a logical positioning of firewalls in a typical

distribution automation network.

Maintaining a secure perimeter and deploying firewalls is not sufficient to secure a distribu-

tion automation network for two reasons. First, security perimeters can fail, either due to

misconfiguration or due to inherent weaknesses in the defence mechanism of the firewall.

Second, a distribution network spans a large geographic area. Hence, it is impractical to define

the perimeter as an attacker has a large attack space to physically connect to the distribution

network and launch the attack from within the network.

Therefore, it is desirable to design a security framework that prevents attacks that emanate

both from within the distribution network and from external networks. To address the security

threats discussed in the previous section, we propose a set of security solutions and best

practices discussed below.
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Figure 3.2 – Logical positioning of firewalls in a distribution automation network.

3.4.1 Centralized User Authentication

Access to all devices and services should be limited only to authorised personnel. Each person

authorised to access a device or a service has to have a separate user account and a secure

password. All user accounts are centrally managed in a central authentication, authorisation,

and accounting (AAA) server. All standard security policies such as role-based access control,

putting a limit on the number of unsuccessful access attempts, specifying password strength

rules, etc should be enforced.

Creating and managing user accounts in a central server reduces the burden of creating and

managing several accounts in each device for every authorised employee. A user’s account can

also be blocked from a single location when necessary. An employee’s account can be blocked

when he is no longer responsible for the tasks he was initially assigned to, when he leaves his

job or when he is suspected as malicious based on a postmortem analysis of activity logs.

3.4.2 End-to-End Secure Delivery of Messages

Guaranteeing end-to-end security for message exchanges is essential for preventing man-

in-the-middle attacks and for detecting messages from rogue devices. End-to-end security

encompasses guaranteeing the confidentiality, integrity, source authenticity and freshness of

measurements, control signals and other important message exchanges at all layers. Although

confidentiality is not a critical requirement for measurement and control messages, a distribu-

tion network operator (DNO) may want to protect its sensor data’s confidentiality in case such
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data contains information sensitive to the market that could be exploited by competitors.

Time-stamping, which is already part of existing SCADA communication protocols, is used

to guarantee message freshness. For protocols that do not support time-stamping, sequence

numbers can be used as an alternative. A systematic use of IPsec, (D)TLS or other standard

protocols can guarantee message source authenticity, integrity and confidentiality.

3.4.3 Scalable Key Management

Secure end-to-end communication depends on the existence of a secret key shared between

communicating parties. Manual provisioning of such keys and updating them when necessary

in a smart grid network, where there is a large number of communicating devices, can be

unsafe and cumbersome. Therefore, it is crucial to design a secure and scalable key man-

agement scheme to generate, distribute and update the shared cryptographic keys. NISTIR

7628 [17], the foundation document for the architecture of the US Smart Grid, mentions key

management as one of the most important research areas in smart grid security.

There is a general consensus in the smart grid research community that Public Key Infras-

tructure (PKI) is a viable solution as a key management scheme [44, 49]. For distribution

automation systems, a DNO should support its own PKI architecture and be responsible for its

devices’ certificate management. Each communicating device in the distribution network is

issued a digital certificate during installation by the DNO’s certificate authority (CA). The exact

procedure of how a DNO’s certificate authority issues a certificate to a device is described in

Section 3.5.

Once devices are issued digital certificates, they authenticate each other’s identities using

standard protocols such as Transport Layer Security (TLS). Following the authentication phase,

the communicating parties use a key agreement protocol such as Diffie-Hellman to derive a

session key that is used to secure messages exchanged during the TLS session.

A device requires the public key of the DNO’s certificate authority (trust anchor) to verify

the other party’s certificate. Therefore, devices have to store the root CA’s public key in a

secure location where an adversary cannot delete or modify it. Protecting such sensitive

information using file system permissions can be bypassed. An alternative and more efficient

solution to protecting sensitive information such as cryptographic keys is to use tamper-proof,

special-purpose hardware tokens such as the Trusted Platform Module (TPM).

3.4.4 Secure Software Patching

Attacks that exploit software patches in order to inject malicious code (malware) can be

thwarted by requiring a device to validate the authenticity and integrity of any software prior

to installation. A DNO has to have its own approval body that approves and signs software

patches from device manufacturers or third party developers. Whenever a device in the DNO’s
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network installs a software patch, it has to first verify that the patch is signed by a DNO’s

approval body.

3.4.5 Tamper-resistant Credential Protection

Most field devices are deployed in remote geographic locations exposed to unauthorised

physical access. Therefore, it is important to provide protection against unauthorised modifi-

cation and disclosure of sensitive information, such as digital certificates and cryptographic

keys, in these devices. An efficient solution to provide the required level of protection for

keying materials within field devices is to use a FIPS140-validated tamper-resistant, special-

purpose cryptographic module, such as Trusted Platform Module (TPM). A TPM is a secure

crypto-processor that offers functionalities for secure generation and storage of cryptographic

keys [50]. In addition to serving as tamper-proof storage to sensitive data like cryptographic

keys and digital certificates, [44] discusses additional security benefits of using TPM for smart

grid devices. Some of the benefits include secure software upgrade, high assurance booting,

dynamic attestation of running software and device attestation.

3.4.6 Event Logging and Intrusion Detection

Even after the above security solutions are put in place, there can still be security incidents.

Incidents could happen because an attacker installs a malware by exploiting zero-day vul-

nerabilities, which are inevitable in software. Incidents could also happen because of a field

engineer’s negligence to follow a DNO’s security policy that prohibit the usage of removable

media, such as USB, without a proper check for malware prior to use. Besides, disgruntled

insiders can abuse their privileges to perform malicious operations.

To minimise the risks that result from such incidents, a DNO should implement automated

intrusion-detection techniques to monitor events that occur in the network and to analyse

them for signs of suspicious activities that violate the DNO’s security policies and acceptable

practices.

One type of intrusion detection is log-based intrusion detection system (LIDS) [51]. LIDS

uses log data from network devices to detect suspicious activities in a device. This intrusion

detection requires each device in the network to implement a secure logging mechanism

that maintains a record of system events and user activities in the device. Log data must

record noteworthy events such as user activity, program execution status, device configuration

change, etc. Each log entry for an event must also contain detailed information about the

event including identity of the user, time of the event, type of the event, etc.

LIDS should be implemented both at a device level and at a network level. For the network-

level detection, devices send duplicates of their log entries to a centralised logging server. A

postmortem analysis of the log files (at individual devices and at a central logging server) is

used to reconstruct events and detect intrusions. The intrusion detection system can, for
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example, identify insiders engaged in suspicious activities and flag them as malicious.

Another type of intrusion detection is called network-based intrusion detection system (NIDS)

[51]. NIDS monitors traffic directed towards critical components of the network to detect

suspicious traffic patterns such as denial of service (DoS) attacks. The best location for a

NIDS is to deploy it in the same location where a firewall is deployed. In general, distribution

automation network traffic is more or less predictable and follows regular traffic patterns,

compared to network traffic in enterprise systems. Therefore, a network-based intrusion

detection for such systems can be very effective in detecting intrusions.

Note that intrusion detection should be combined with automated intrusion prevention

systems (IPS) that send an alarm when intrusions are detected and are capable of taking

automated prevention measures, such as resetting the connection and blocking traffic from

offending IP address where such actions do not have catastrophic consequences on the grid’s

operations. Moreover, the operator must have proper incident response and disaster recovery

procedures in place to be able to rapidly recover from any emergency (including a cyberattack)

and to mitigate damage caused by such incidents.

3.5 Secure Bootstrapping of a Field Device

This section focuses on secure initialization and certification of a newly installed field device

before it starts any meaningful communication. This initial stage of securely bootstrapping

a field device is a precursor for the effective implementation of the end-to-end security and

secure software patching solutions described in Section 3.4.

A secure device-installation scheme should guarantee that the device comes from one of the

trusted manufacturers and that the installation is carried out by an authorised field engineer.

In other words, the scheme should prevent a malicious outsider or an insider (field engineer),

who is suspected as malicious after postmortem log data analysis, from installing a rogue field

device. The installation scheme described below assumes that each field device comes with a

certificate pre-provisioned by an accredited manufacturer’s certificate authority. Furthermore,

we assume that the DNO’s controllers, certificate authority and Device Registry (described

below) know the public keys of all accredited manufacturers whose devices are installed in the

DNO’s network.

Our installation scheme puts full trust on an authorised field engineer to initialise a field

device by securely loading the public key of the DNO’s certificate authority and configuring

some parameters such as disabling unnecessary ports and changing insecure default settings.

An alternative to this would be for a DNO to have a safe central location where all field devices

are received and securely initialised with the DNO’s certificates and a field engineer is merely

responsible for plugging the device into the network and setting some parameters. We choose

the first option because we assume that a DNO might not always have pre-initialised devices

that are readily available for use during emergency conditions. Thus we want to make it
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possible for a field engineer to be able to take uninitialised field devices (for example, borrow

them from a neighbouring DNO or buy them from the closest vendor available) and securely

install these devices to the network whenever required.

3.5.1 Device Installation During Normal Operations

In this subsection we describe the set of procedures required to securely install a field device

in a distribution network when communication is possible from the installation location to

the DNO’s network management centre. The network management centre comprises among

other components the AAA server, the DNO’s certificate authority and the Device Registry, as

depicted in Figure 3.3.

Operations Center 
1. AAA 
2. Certificate Authority (CA) 
3. Logging server 
4. Config. Server 
5. Device Registry  

Network Management 

1. PDC 
2. App’n Server 
3. Archive 

IED 

LAN /WAN 
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IC IC

WAN 
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IED 

LAN /WAN 

PMU 

Island  Controller (IC)  

Figure 3.3 – An active distribution network’s communication infrastructure and a network
management module that facilitates secure communication.

A successful secure installation of a field device entails execution of the following three steps

before the device participates in any communicating session.

• A field engineer is authenticated by the central AAA server and obtains an authorisation

token for installing the device into the network.

• An authorised field engineer registers the device as a member of the distribution network
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in a central database called Device Registry. This database contains a list of all devices

in the network and a metadata of each device.

• The device is issued a certificate by the DNO’s certificate authority. A certificate is

issued only after the CA verifies that the device has a valid certificate from an accredited

manufacturer and that the device is registered at the Device Registry by an authorised

field engineer.

User authorisation for installing a device can be accomplished by utilising any token/ticket-

based standard authentication protocols such as Security Assertion Markup Language (SAML)

or Kerberos. In this case we will use SAML to describe how the installation proceeds.

To install a device, an engineer performs the required initial configurations on the device and

plugs it into the network. He then authenticates himself to the AAA server and is issued a

SAML assertion (SAML security token) by the server. A SAML security token is an XML file that

specifies whom it is issued to, what privileges the token holder has (registering a device as

a member of the network). The token also contains information about its lifetime (validity

period) and a digital signature signed by the token issuer (AAA server) in order to guarantee its

integrity.

Once an engineer receives the security token, he initiates the device registration process. The

registration proceeds only if the Device Registry verifies that the device comes from a trusted

manufacturer and the engineer has the privilege of registering it. The Device Registry verifies

the authenticity of the device by using the certificate issued by its manufacturer. The certificate

is also used to initiate a secure session with the server. The engineer then sends the device’s

metadata along with the SAML security token to the Device Registry over the secure channel.

After a successful verification of the token’s validity, the Device Registry assigns a unique ID

to the device and creates a new entry for the device’s metadata in its database. Note that

a successful verification of the token guarantees the Device Registry that the engineer is

trusted by the AAA server. The Device Registry then confirms a successful completion of the

registration by sending back the unique ID to the device.

Upon receiving the unique device ID, the device again authenticates itself to the DNO’s

certificate authority (CA) and initiates a secure session by using the certificate issued by its

manufacturer. A certificate request is then sent to the CA over the secure channel. The CA

checks if there is an entry in the Device Registry database corresponding to the device ID that

is received as part of the certificate request. If such an entry exists, the CA is convinced that

the authenticated device requesting for a certificate is registered by a trusted field engineer.

Therefore, the CA signs a new certificate and sends it back to the requesting device.

Now that the device has a certificate issued by the DNO’s CA, it can authenticate itself to any

communicating partner in the distribution network and initiate secure communication with

them using standard protocols such as TLS or IPsec.
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3.5.2 Device Installation During Emergency Conditions

When an island controller (IC) detects a widespread disturbance or power failure in the grid,

the active distribution subnetwork within the controller’s domain can automatically isolate

itself from the grid and continue to operate as an island for an extended duration of time.

It is possible that portions of the grid’s communication infrastructure beyond the island’s

perimeter could be rendered unreachable as a result of the disturbance that caused the

islanding. A subnetwork of a distribution communication infrastructure can also be isolated

(islanded) due to a communication breakdown, irrespective of a power system failure. During

such emergency situations, a DNO might want to replace some failed field devices within

the communication-islanded region. However, if the DNO’s network management centre is

unreachable from the island, the device installation procedure described above cannot be

applied.

Therefore, it is important to design a secure device installation scheme to prevent an attacker

from exploiting the emergency situation in order to install a rogue device in the island. In the

following we discuss an out-of-band challenge-response-based user-authentication scheme to

securely install a device within an island. The scheme utilises the island controller (IC) to serve

as a proxy for the security operations required during device installation. For this we assume

each island controller knows the public key of the AAA server and the public key of the CA’s

of all accredited manufacturers whose devices are installed in the network. Furthermore, we

assume that each IC is sufficiently secure to be delegated as a subordinate certificate authority

for issuing temporary certificates to devices installed within the island during the emergency

situation.

With these assumptions, the installation of a device in an islanded network proceeds as follows.

The engineer first configures the device and plugs it into the network. Then the device uses

the manufacturer issued certificate to authenticate itself and to setup a secure session with

the island controller (IC). The device’s metadata is then sent to the IC over the secure channel.

Before locally registering the device’s metadata, the IC replies with a random challenge (nonce)

to prove that an authorised engineer is registering the device.

Assuming there exists an out-of-band means of communication (for example, a mobile net-

work) from the island to the network management centre, the engineer authenticates himself

to the AAA server using his mobile phone and requests the server for an authorisation token

by forwarding the random challenge. Depending on which privileges the engineer has, he

receives a signature of the random challenge signed by the AAA server. This signature is

sent to the controller as a proof that the engineer is trusted by the AAA server to register a

device. The controller then verifies the signature and accepts the device as part of the network

by registering its metadata until communication with the network management centre is

restored.

If, for some reason, the engineer in the island has lost his password or is unable to login to

the AAA server, he can still install the device with the help of any other engineer who is in
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2. Certificate Authority (CA) 
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Figure 3.4 – Islanding - where a portion of an active distribution’s communication network is
cut off from the rest of the main grid’s communication network. A DNO securely installs new
devices in the island in the presence of malicious outsiders or suspected insiders who would
like to utilize the emergency situation to install rogue devices.

a location where he can communicate both to the network management centre and to the

island. The only purpose of the engineer in the island is to forward the random challenge to the

second engineer and receive the signature from him to use it in order to finish the registration
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of the device (Figure 3.4). This way, the engineer in the island serves as a delegate to the

authenticated engineer for registering the device. Note that the delegation is accomplished

without revealing the authenticated user’s password to the delegated engineer.

After the device is successfully registered, the island controller issues it with a new certificate.

The device uses this certificate to authenticate and to securely communicate with other devices

in the island. Other devices can verify the authenticity of the certificate by building a chain of

trust starting from the device’s certificate up to the root CA (trust anchor) of the DNO. Note

that the signing key of the island controller is certified by the root CA and the public key of the

root CA is preloaded to every device during installation.

The above description considers a single island controller per island. However, an island can

be a superset of multiple islands with each member island having its own island controller. In

such a situation, the different island controllers need to run a decision protocol among them

to select a “master" controller which will be responsible for the tasks described above.

3.5.3 Back Synchronization of an Islanded communication zone

When the fault that caused islanded communication zone is cleared, the islanded zone syn-

chronises back to the main communication infrastructure. The devices that are installed

during an islanded communication are not recognised by the central Device Registry and do

not yet have a certificate issued by the root certificate authority. The devices can still continue

to communicate using the certificate issued to them by the island controller. However, build-

ing a chain of trust to verify such certificates can be complicated during another islanding

incident. For example, assume a "master“ controller issued a certificate to a device during a

previous islanding. Furthermore, assume the device is now in another island that does not

contain the previous “master" controller. If the device wants to securely communicate with

another partner within the current island, the communicating partner will not be able to build

the chain of trust for the device’s certificate. To ease this complexity, we propose that each

device be re-certified by the root CA, once the connection with the network management

centre is restored. The re-certification can be automated as follows. First the IC forwards the

temporarily stored metadata of these devices to the Device Registry over a secure channel. The

Device Registry creates a new entry for each of these devices in its database. Following this,

each such device auto-requests the CA for a certificate. The CA, upon successful verification

of the existence of an entry for requesting the device in the Device Registry’s database, issues a

new certificate to it.

3.5.4 Securing Legacy Devices

The distribution automation network will contain not only new advanced field devices but also

legacy devices, which do not have enough computational power or memory space to perform

security functionalities. Communication with such legacy devices should be secured by
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installing a modern security device, also known as bump-in-the-wire (BITW) device, adjacent

to them [43]. The BITW device is issued a digital certificate from the CA on behalf of the

legacy device. All security operations on data sent from and received by the legacy device

are performed in the BITW device. Note that data transfer between the legacy device and the

BITW is not protected.

3.6 The EPFL-Campus Smart Grid Pilot

The threat analysis and the security solutions presented in the previous sections served us as

guidelines while building a secure communication infrastructure for the smart grid pilot on

the EPFL campus. The smart grid pilot is deployed to monitor and control the medium-voltage

electrical grid of the EPFL campus. The grid is a typical example of an active distribution

network (ADN) in that it incorporates distributed power-generation (photo-voltaic systems

and fuel cells) and energy storage and has a variable demand load.

3.6.1 Security Architecture

As shown in Figure 3.5 The monitoring and control system deploys a total of seven phasor

measurement units (PMUs) to measure the state of the grid at different medium-voltage

transformers within the campus. The PMUs use timing signals from the Global Positioning

System Satellite (GPS) for synchronization. All the PMUs stream the time-synchronized phasor

measurements to the Phasor Data Concentrator (PDC) every 20ms. The PDC correlates phasor

data from all the PMUs with equal time stamps and feeds these correlated data to a state

estimator (SE), which is deployed within the same machine as the PDC. The SE uses the

correlated measurement data to compute the estimated state of the grid in real time.

3.6.2 Communication Architecture

For security and for robustness reasons, the communication network for the smart grid

pilot is built on a dedicated infrastructure. We have re-used existing twisted pair cables,

originally installed for telephony. Since the twisted pairs are too long to support Ethernet-

based communication, instead we use single-pair high-speed digital subscriber line (SHDSL)

technology. Therefore, a PMU is connected to ZyXEL SHDSL line terminal (modem) using

a short Ethernet cable and the SHDSL modem forwards the data over the long twisted pair

cable to a digital subscriber line access multiplexer (DSLAM) router at a central location. The

DSLAM serves as a concentration point for all traffic from all the PMUs and forwards it to the

PDC over an optical cable.

We put different security mechanisms into place to ensure that the ICT infrastructure of the

EPFL smart grid pilot is resilient to insider and outsider cyber-attacks. By deploying these

security mechanisms, we aim to achieve the following three main security goals:
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Figure 3.5 – A security architecture of the EPFL-campus smart grid pilot.
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• Secure perimeter

• Secure end-to-end delivery of message

• Centralized access control

Secure perimeter: The first security measure we took towards ensuring a secure perimeter is

that we build a dedicated communication network that is physically separate from the EPFL-

campus public network and from the Internet. There is no direct communication between

a device in the smart grid and another one from an external network. A proxy server in the

Demilitarized Zone (DMZ) serves as an intermediary node to terminate and forward any valid

communication between a device in the ADN and another one in the outside world.

The proxy server also functions as a software repository. It fetches software patches from the

legitimate sources on the Internet and makes them available to the devices in the ADN. This

guarantees that devices in the ADN don’t connect to the Internet directly whenever there is a

software patch available for them.

The external firewall (Cisco RV325) and the internal firewall (Juniper SRX100) serve as a two-

stage protective barrier. They block all IP addresses and port numbers except those that are

explicitly allowed by the system administrator. The external firewall filters traffic between the

devices in the DMZ and those on the external network and the Internet firewall filters traffic

between devices in the ADN and the DMZ.

Secure end-to-end delivery of messages: We use our own certificate authority (CA) to issue

certificates to all devices in the ADN. The devices use their certificates for mutual authentica-

tion and to set up a secure communication channel to exchange confidential information (e.g.

symmetric session keys).

We implement message source authentication to guarantee end-to-end security for the phasor

data communication. As will be discussed, in detail, in 5.4.1, PMUs use multicast to communi-

cate their phasor data with the different receivers within the ADN, namely the PDC and the

proxy server in the DMZ. We will discuss in 5.1 why multicast communication paradigm is

preferred. To guarantee end-to-end security (message origin authenticity) for the multicast

data, we implement ECDSA that uses pre-generated tokens for signature generation.

End-to-end security is also guaranteed for unicast communication between devices in the

ADN and those devices in the EPFL-campus network (refer to Figure 3.5). The proxy server

being one of the multicast receivers, it forwards the received multicast data from the PMUs to

the SCADA server as well as to the Data Historian over two separate secure DTLS channels.

Moreover, the SE sends its output to the proxy server over a secure DTLS channel. The proxy

server, in turn, uses another DTLS channel to forward this data to a web server outside of the

ADN domain. The web server displays a live stream of the SE output to the public.

Centralized access control: Access to all devices within the ADN (PMUs, DSLAM router, Fire-
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walls (Cisco and Juniper routers), SHDSL modems, and servers) is limited to only authorized

personnel. The separate user accounts per personnel that are used to access these devices

(except the SHDSL modems) are managed in a central openLDAP server that is setup on the

same machine where the CA is setup. The certificate authority (CA) issues a certificate to

the openLDAP server. This certificate is used by client nodes to verify the authenticity of the

LDAP server. The certificate is also used to create a TLS session with the client during user

authentication so that the user password is sent over a secure channel.

The DSLAM router and the Firewalls already support LDAP-based user authentication. Thus,

we only needed to configure them with the appropriate LDAP server address. More work

was need to enable LDAP-based authentication for the PMUs. The PMUs run an NI Linux

Real-Time OS, which is a variant of the Angstrom distribution. This OS did not have some of

the required client side packages required for LDAP-based authentication. Specifically, the

client packages NSS_LDAP and PAM_LDAP where missing from the NI repository. Therefore,

we had to cross-compile these packages from the source code and install them in the PMUs.

Only then could we configure the PMU to support LDAP-based authentication. The SHDSL

modems had no built-in support for LDAP-based authentication. Besides, it was not possible

to access the firmware to be able to install cross-compiled modules required for LDAP-based

authentication. Therefore, our only means to login to these modems is using the local user

account.

The default password of the local accounts in all the devices are changed to strong passwords

and these passwords are known to only designated network administrators. The accounts are

used only when authentication via the LDAP is not possible.

3.6.3 Lessons Learnt

The most important lesson we learnt from our experience in securing the EPFL smart grid

communication network is that it is very difficult to cover all security aspects even for such a

small network. We learn that completely separating the operational network from the Internet

all the time can be difficult. For example, there was a time when our local software repository

was not fully deployed during the evolution of the ADN network. During this time, we had to

bypass the DMZ and directly connect the PMUs to the Internet to patch some software bugs

(e.g., the Heartbleed bug). Events like this, even if they are done for a very short time, are the

exact events that a persistent attacker can exploit to gain access to the ADN network. However,

it is not uncommon for network administrators to take temporary lax measures to fix critical

issues if such issues could not be fixed when the tight security measures are in place.

We have also gained some insight into how challenging it is to have a heterogeneous set of

devices. The fact that we needed to cross-compile some packages for the PMUs and that

the SHDSL modems don’t support LDAP-based authentication demonstrates how difficult it

can be for major utilities that deploy a large number of heterogenous devices from different

vendors.
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The bottomline is that it is impossible to cover all possible security loopholes. It is inevitable

that a motivated attacker will find a means to breach an ADN’s network either due to over-

looked vulnerabilities or as a result of a personnel’s violation of security measures put in place.

Therefore, a utility also needs to put proactive incidence response mechanisms to minimize

risks associated with successful cyberattacks. Moreover, a utility needs to do a continuous

revision of its security policies and adherence to them in order to account for unforeseen

vulnerabilities and to strengthen weaker security links.

3.7 Conclusion

A smart grid’s communication infrastructure is key to enabling a utility to collect and analyse

data about current operating conditions of the grid and issue control signals as required.

However, the critical nature of power grid makes its communication infrastructure a suitable

target for cyberattacks. Therefore, implementing a comprehensive cybersecurity solution is

necessary. We analysed different cybersecurity threats in a typical active distribution network

and proposed security solutions and best practices to counter such threats. Our solution

entails secure bootstrapping of field devices such that only an authorised personnel is able to

install such devices and no malicious insider or outsider is able to install rogue field devices.

We have also used our proposed solutions as a guideline to build a proof-of-concept secure

communication architecture for EPFL-campus smart grid network.

31





4 Security Vulnerabilities of the Cisco
IOS Implementation of the MPLS
Transport Profile
4.1 Introduction

The MPLS Transport Profile (MPLS-TP) is an extension of MPLS standards that is compat-

ible with already deployed IP/MPLS. In addition to adopting the quality of service (QoS)

mechanisms like bounded delay defined within MPLS, MPLS-TP defines path-based, in-band

Operations, Administration, and Maintenance (OAM) protection mechanisms. MPLS-TP

OAM ensures high degree of network availability by providing tools needed to monitor and

manage the network and to facilitate protection switching [52]. Two OAM protocols defined by

MPLS-TP OAM are bidirectional forwarding detection (BFD) and protection state coordination

(PSC). While BFD is responsible for detecting Label Switched Path (LSP) data plane failures,

PSC handles protection switching.

MPLS-TP is identified as a promising Packet Switched Network technology for smart grid

networks [53, 54]. MPLS-TP is suitable for long-distance communication between substations

and control centers or between control centers. Since MPLS-TP can operate on non-IP Layer 2

Ethernet networks, it is suitable to transport smart grid data, like the time-critical IEC 61850

Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Values (SMV)

messages from substations to control centers.

Securing the communication infrastructure in smart grid networks is challenging. One of the

reasons why it is challenging is because the communication network spans a large physically

unprotected geographic area. This makes the network prone to man-in-the-middle attacks by

leveraging physical sabotage and tampering of unprotected devices such as routers. As stated

above MPLS-TP in the context of smart grid is used for long distance communication. Hence

an MPLS-TP network is also prone to similar attacks.

Our literature review of different MPLS-TP related standards and RFCs reveals that cybersecu-

rity is not given due attention. We find that the different RFCs [55–59] that marginally address

security issues provide fragmented and incomplete pieces of information which makes it

difficult to draw exactly which solutions to use and where. RFC 5085 [59] for example proposes
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that IPsec be used to secure the MPLS-TP data plane. However, as stated above, there are some

smart grid applications that are not IP based. Hence IPsec is not applicable for such systems.

This confusion in the security solutions for MPLS-TP led us to believe that many vendors may

not provide proper security for their MPLS-TP implementation. In this chapter we present our

results on the security analysis of MPLS-TP implementation in Cisco IOS. We decide to study

this specific implementation because Cisco is a leading network equipment manufacturer

and is heavily investing in smart grid.

From our experimental analysis we found that spoofing attacks are possible against the OAM

(BFD and PSC) protocols with devastating effects. While performing the attacks, we assume

an attacker gains physical access to an MPLS-TP network cables. In a smart grid network that

employs MPLS-TP, the fiber-to-Ethernet converters or optical terminators are usually located

at remote substations which are usually unmanned. Besides, pole mounted optical repeaters

along transmission lines are common. Therefore, an attacker can easily gain physical access

to such facilities to perform his cyber attack.

Besides the easy access to the physical network, the kind of equipment an attacker needs to

launch the spoofing attacks are quite cheap. For cases where there are only optical cables in

the network, NetFPGA-10G card [60] with SFP+ modules can be used to connect an attacker’s

device to the network. For those networks that have optical terminators or fiber-to-Ethernet

convertors that interface routers to optical cables, an attacker needs only an Ethernet switch

and a laptop. In our study, we consider networks with fiber-to-Ethernet convertors. However,

our attacks equally apply to the case where there are only optical fibers in networks.

We studied a total of three spoofing attacks. Two of the attacks apply to the BFD protocol and

one applies to PSC. One of the attacks on BFD requires physical access to the network at two

locations. The second attack on BFD and the attack on PSC both require physical access at

only one location. The spoofing attack on BFD that requires physical access at one location

falsely convinces label-edge routers (LERs) that there is no protection LSP to switch to when a

fault occurs in a working LSP. The second attack that requires access at two locations hides the

presence of a link failure and stops the LER from taking a corrective measure by switching to a

protection LSP. The spoofing attack on PSC disables both the working as well as the protection

LSPs using forged PSC packets that emulate network operator issued commands to lock out

the LSPs. The forged packets are inserted only from one location. This shows that the attack is

worse than a physical sabotage that cuts a wire. This is because while cutting a wire affects

only the LSP that makes use of the link, our spoofing attack locks out both the working and

the protection LSPs. In a way, this is contrary to the increased availability objective smart

grids intend to achieve, i.e., by introducing a communicating infrastructure, the power grid

becomes more vulnerable to more devastating attacks than a physical sabotage.

The rest of the chapter is organized as follows: Section 4.2 briefly discusses MPLS-TP features

and the OAM protocols. In Section 4.3 the testbed used to perform the spoofing attacks is

introduced. Section 4.4 describes how the attacks are carried out and what the consequences
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of the attacks are. In Section 4.5 we discuss countermeasures that can be applied to thwart the

described attacks. Section 4.6 concludes the chapter.

4.2 MPLS-TP Protocol Overview

In the context of MPLS, a label-switched path (LSP) is a unidirectional point-to-point con-

nection between two routers. The routers at the end of the connection are called label-edge

routers (LERs) and the intermediate nodes that are capable of label switching are called label-

switching routers (LSRs). In contrast, LSPs in MPLS-TP are bidirectional. They are comprised

of two unidirectional MPLS LSPs, one in each direction. The unidirectional LSPs are congru-

ent and traverse the same path in both directions and are managed as a single entity. This

MPLS-TP feature is called co-routed bidirectional.

MPLS-TP sets the LSPs either using a static control plane via a network management system

(NMS) or a dynamic control plane, which is optional [61]. Network operators, usually prefer

the static control plane because it does not involve interactions with protocols such as OSPF-

TEE, RSVP-TE, BGP etc; hence it is considered more secure than the dynamic control plane.

For our experiment, we use static control plane to set up the LSPs.

One of the most important enhancement of MPLS-TP over MPLS is the use of OAM-triggered

network recovery [62]. Network recovery is the ability of a network to recover traffic delivery

following failure or degradation, of network resources. Although MPLS-TP supports different

recovery types [57], we consider only protection switching. Protection switching enables fast

repair from a fault condition. It can also be triggered by operator-issued commands. It is a fully

allocated survivability mechanism, meaning that the route and resources of the protection

(backup) LSP are reserved for a selected working LSP [56]. Protection switching is facilitated

by BFD and PSC protocols. BFD fast detects failures (within 12ms in Cisco’s implementation)

and PSC coordinates the switching from a working LSP to a protection LSP. The overall time

required to detect a failure and switch to a protection LSP is less than 50ms.

4.2.1 Bidirectional Forwarding Detection (BFD)

BFD [63] is an OAM protocol that provides fast fault detection in an LSP. A separate BFD session

is created between the LERs for each of the two bidirectional (the working and protection)

LSPs. Once a BFD session is established, an LER sends BFD control packets every 3.33ms as

per the RFC6372 [57] recommendation. The Cisco implementation we study uses a 4ms inter

BFD control packet interval. BFD control packets are switched in-band in the same LSP with

the data packets. If an LER observes that three BFD packets in a row are missing, it declares the

BFD session is down. It informs the remote LER about the down state of the unidirectional LSP

by sending a “Session Down" control packet via the outgoing unidirectional LSP. On receiving

the “Session Down" packet, the remote LER is expected to trigger protection switching.
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Figure 4.1 – Format of a BFD Control Packet.

Figure 4.1 describes a BFD control packet format. Out of the many fields shown in the figure,

we manipulate only two of them to launch the attacks described in Section 4.4.2. One is

the five-bit diagnostics (Diag) field that is used to report failure conditions to a remote LER.

Out of the 32 possible values, we consider only two of them - 0 for when there is no fault to

report and 1 for “Control Detection Timer Expired". The “Control Detection Time Expired" is

used when an LER misses three BFD control packets in a row. The second field we use is the

two-bit state (Sta) field. The Sta field describes the state of the BFD session. Sta is set to zero

(“Administrative Down" ) when a network operator issues a “Down" command and Sta is set

to one if the session is “Down" for nonadministrative reason. Sta is set to two (“Init") when an

LER brings a BFD session up and the remote LER has not replied yet and Sta is set to three

(“Up") when the session is up and running.

4.2.2 Protection State Coordination (PSC)

A PSC is an in-band, data-plane-driven signalling protocol that coordinates protection switch-

ing. Since MPLS-TP LSPs are bidirectional, PSC ensures that both ends of LSP are switched to

the protection LSP (even when the fault is unidirectional). PSC is a single-phased coordination

protocol in that the initiating LER performs the protection switchover to the protection LSP

and informs the remote LER to do the same. On receiving the message, the remote LER

completes the switchover [56].

The PSC control logic maintains information about the current state of the two LSPs on each

LER. The state that is maintained contains information about what the current states of the

LSPs are, what caused the current state and whether the current state is related to a remote or

local condition. There are a total of six possible states supported by the control logic. The PSC

control logic in an LER calculates the next state, determines what actions need to be taken

(location actions at the LER or messages to be sent to the remote LER), based on the highest

priority request received from three potential request sources. One input comes from a local

request logic. The local request logic itself receives requests from the OAM (e.g. BFD triggered),
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Figure 4.2 – Format of a PSC Control Packet.

network operator commands, local control plane (if present) and local timers. It then selects

the request with the highest priority and passes it on to the PSC control logic. The second

input for the PSC control logic comes from request messages received from the remote LER.

These messages indicate the status of the LSPs from the viewpoint of the remote LER. The

third input comes from the current state of the PSC Control logic.

Out of all the requests, the network-operator commands have the highest priority [56]. There

are three possible commands in this category - “Clear", “Lockout of Protection" and “Forced

Switch". We make use of these requests in the spoofing attack on the PSC messages described

in Section 4.4.3. The attack manipulates the 4-bit request (Request) field in an PSC control

packet and the 8-bit fault path (FPath) field (see Figure 4.2). The Request field reflects the

current state at the LER that is sending the PSC packet, i.e., it is an expression of the source

LER’s wish for what the next state should be and the FPath field indicates which LSP (working

or protection) is identified to be in a fault condition or affected by an administrative command.

A Request field set to 14 (“Lockout of Protection") indicates an operator has issued command

to prevent protection switching.

4.3 Testbed Description

Figure 4.3 describes the network topology we use while evaluating MPLS-TP’s security. There

are a total of eight routers and each router runs Cisco Cloud Service router 1000V (CSR1000V)

IOS, that implements MPLS-TP [64]. Two physical machines, each with eight-core processors

and 16GB RAM are used to host the eight routers as virtual machines (four virtual routers per

physical machine). A virtual router is assigned one core processor and 3GB of RAM. We make

use of the 60-day evaluation license that Cisco provides to all features of the CSR 1000V image

at a throughput of 50Mbps.

The testbed is setup as a one-to-one (1:1) protection switching. We statically configure a

working and a protection LSP between routers R1 and R8. RSVP is used to reserve network

resources. The path R1-R2-R3-R4-R8 forms the working LSP and R5-R6-R7-R8 forms the

protection LSP. The virtual links between the virtual routers and the physical links between

the physical machines are full duplex and have a 1Gbps capacity. Following MPLS-TP’s

recommendation, we use co-routed bidirectional LSPs. We assigned 25Mbps of bandwidth for

each link in both directions. BFD sessions with a 4ms message interval and a 12ms detection

interval are configured for both the working and protection LSPs [65].
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4.4 Attacks on the MPLS-TP Protocol

In this section, we discuss three spoofing attacks that a malicious attacker uses to temporarily

or permanently disrupt MPLS-TP’s normal operations. Two of the attacks target BFD messages

and one targets PSC messages.

4.4.1 Attackers Capabilities

The attacker is assumed to be capable having physical access to the MPLS network at most at

two locations and is able to insert his own Ethernet switch between a router and an Ethernet-

to-Optical convert. We also assume the attacker has a laptop configured with a spoofed IP

address and has enough processing power to continuously inject forged packets.

4.4.2 Spoofing Attacks on BFD

Scenario I - Removing Protection from a Target LSP

The goal of this attack is to first force the label edge routers to switch to the protection LSP

and then make them continue to believe that they have no longer a backup LSP to switch to

incase a fault occurs in the current LSP.

To demonstrate the attack, we need access to the network at only one location in the working

LSP. We insert our Ethernet switch at location a in Figure 4.4 and connected our laptop to the

switch.

After this setup, we proceed with a reconnaissance stage to learn about the MAC addresses of

R2 and R3, the TTL value of in the BFD packets, and the BFD session number of the target

working LSP between R1 and R8. We use packet sniffing to gather these pieces of information

LER LSR LSR LSR 

LSR LSR LSR LER 

LLERLER LERE LSRSR LSRLLLSLSLSL LSRSR LSRLLLSLSLSL LSRLSRR LSRSS

LSR LSRLSR LSRLSR LER 

R1 R2 R3 R4 

R5 R6 R7 R8 

Working LSP 

Protection LSP 

Figure 4.3 – An eight router MPLS-TP testbed in a 1:1 Protection setup.
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Figure 4.4 – Spoofing Attack on BFD: Removing protection from a target LSP.

from BFD control packets.

After the reconnaissance stage, we use the Scapy [66] tool to create forged BFD control packets

in our laptop using the information we gathered. The forged BFD control packets created

by setting the Diagnostic (Diag) field to “Control Detection Time Expired" and the Sta to

“Down". These packets are then injected to the network through the switch. Figure 4.5 shows a

Wireshark capture of a forged BFD packet.

Figure 4.5 – A Wireshark capture of a spoofed BFD packet to remove protection from a target
LSP.

We inserted packet sniffers at locations c and d of Figure 4.4 to observe the effect of the forged

BFD packets. Few seconds after R8 receives and processes the forged packets, we observe

three PSC packets with a “Signal Fail (SF)" message at location d coming via the protection

LSP towards R1. These three packets were sent by R8 as a trigger for protection switching

because it interprets the forged BFD packets as valid packets from R1 informing it about the
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failure (“Down") state of the working LSP from R1 to R8. In addition to the PSC packets, we

also observe BFD control packets at location c coming via the working LSP with the Sta field

set to “Down" (this observation confirms what was discussed in Section 4.2.1). After receiving

the PSC and BFD packets from R8, we observe R1 finalizes the packet switching by sending 3

PSC packets with a “Signal Fail (SF)" message towards R8 via the protection switching. At this

stage, the original protection LSP becomes the current working LSP.

To make the attack persistent, we kept injecting the forged packets on the original working

path towards R8. These packets convince R8 that the older working LSP is still down and

cannot be relied up on as a backup LSP. This effectively removes protection from the current

working LSP. Therefore, in case there is failure or quality degradation in the working LSP, the

LERs don’t have any backup LSP to switch to.

The reason why we were able to make the attack persistent is because R8 did not have a means

to detect the abnormal rate of BFD packets it received, the normal rate being 1 BFD packet per

4ms. Moreover, even though R8 was receiving a mix of “Up" and “Down" BFD messages, it

only reacted to the “Down" messages and did not raise any alarm.

Scenario II - Disabling LSP Fault Detection

The goal of this attack is to hide the presence of a link failure along the working LSP by letting

the level edge routers receive all expected BFD messages for the LSP. In a way, this is the

opposite of the attack we discussed in Section 4.4.2.

As shown in Figure 4.6, the attack requires physical access to insert a malicious Ethernet

switches at two locations along the working LSP path; one at location b and another at location

d.
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Figure 4.6 – Spoofing Attack BFD: LERs fail to detect a link failure along a working LSP.

After inserting the switches, connecting the laptops to the network cia the switches and doing

the necessary reconnaissance work, we create forged BFD packets with the Sta field set to
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“Up" and simultaneously inject these packets to the network. The forged BFD packets injected

by laptop a are destined to R8 and appear to have come from R1, and those injected by laptop

c are destined to R1 and appear to have come from R8.

The next step of the attack is to physically sabotage one of the links in the working LSP path.

In our experiment, we broke the one between R3 and R4. Under normal conditions, this

link failure would have stopped delivery of BFD messages for the working LSP to the LERs

and would have triggered protection switching. By continuously injecting the forged BFD

messages at the two locations, we fooled the two LERs to think that there is no link failure in

the LSP. The side effect of this attack is that any application data that was being routed through

the working LSP will be dropped at the broken link (technically, at the routers to which the

broken link is incident). We verified this by sending ping packets from R1 to R8 and sniffing

for traffic in the working LSP using laptop c. We were able to capture the ping requests but we

could not see any ping replies coming from R8. Besides, we also look at R1 for any replies that

may have come through the protection LSP and there were none.

4.4.3 Spoofing Attack on PSC Messages

The goal of the attack is to cause a complete shut down of both the working and the protection

LSP. As shown in Figure 4.7, an attacker needs to physically access the network at only one

location. This attack is easier than the attacks on BFD messages because it takes only two

forged PSC packets to get the desired result.

Figure 4.7 – Network setup for spoofing attacks on PSC control messages.
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Figure 4.8 – A wireshark capture of a spoofed PSC shutdown command to a working LSP.

To carry out the attack, we the insert an Ethernet switch at location a in Figure 4.7 and connect

our laptop to the network via the switch. We sniffed the traffic and learnt about the MPLS label

and the MAC address of R6 and R7. We use this information to build two forged PSC packets

that emulate a “shutdown" command from an operator.

To accomplish this, we forged two PSC packets one for the working LSP and the other for the

protection LSP by manipulating the Request and the Fault Path fields. To disable the working

LSP, the Request field was set to “Forced switch (12)" and the Fault Path field to “Working (1)"

(Figure 4.8). For the protection LSP, the Request field is set to “Lockout of protection (14)" and

the Fault Path field to “Protection (0)" (Figure 4.9). The two forged packets are then sent to R8

through R7.

By looking at incoming and outgoing packets through the two interfaces of R8 (location c),

we see that the router sent 3 PSC packets towards R1 with "Forced switch" in the Request

field and “Working" in the Fault Path field. These three packets were sent out to lock out the

working LSP and trigger protection switching. This is because on receiving the forged PSC

packets targeting the working LSP, it assumed it was issued by a network operator at R1 to force

protection switching. We also observed other three PSC packets from R8 to R1 with "Lockout

of protection (14)" in the Request field and “Protection" in the Fault Path field. These three

packets were sent by R8 to inform R1 that it was locking out the protection LSP in response to

the forged PCS packets that targeted the protection LSP. This is because the forged packets was

understood by R8 as network operator commands issued at R1 to lockout the protection LSP.

The final result was both the working and LSPs locked out and a protection switching triggered

but could not materialize. Hence, there was a complete shutdown of both LSPs. Since the

lockdown of the LSPs was assumed to be caused by network operator issued commands,

another network operator command needs to be explicitly issued to bring the two LSPs up to

work.
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Figure 4.9 – A wireshark capture of a spoofed PSC shutdown command to a protection LSP.

4.5 Discussion and Countermeasures

All the three attacks we demonstrated in Section 4.4 were caused by forged BFD and PSC

messages injected by a malicious device that managed to masquerade as an authentic source

of the messages. None of the attacks would be possible if the message receivers (the label-edge

routers) had a means to verify the authenticity of the messages. Therefore, the attacks could

be avoided by implementing a proper message authentication mechanism that enables a

receiver to verify the identity of the message source and that the message was not tampered

with while in transit.

RFC5880 [63] proposes an optional authentication field BFD control packets that can be used

to carry the necessary information to allow the receiving LER to determine the validity of the

received packet. However, the RFC does not suggest any specific authentication scheme to use

nor does it say anything on how the keys required for the authentication are to be exchanged.

Our experiment reveals that the Cisco IOS MPLS-TP does not provide any form of message

authentication.

In our literature review, we could not find any RFC or standard that discusses authentication

support for PSC packets. One possible solution is to propose a built-in security that uses

one of the optional TLV fields as an authentication field, similar to the one proposed for BFD

control packets in RFC5880.

The other means to provide authentication to BFD and PSC messages is to add an authen-

tication layer that is not built-in to the packet format. One such solution is to use IPsec.

RFC5085 [59] suggest that IPsec be used to protect packets in MPLS/GMPLS networks using

MPLS-in-IP encapsulation. IPSec provides end-to-end security (including authentication)

for IP packets. IPsec can be configured either in Tunnel mode or in Transport mode. In the

tunnel mode, which is the default mode, the entire IP packet is protected (encrypted and

authenticated) by IPsec. Therefore, if IP is supported in the an MPLS-TP core networks, IPsec

can be used to secure BFD and PSC packets. Other standard solutions such as D(TLS) can also

provide the required security. However, there are several cases in the smart grid context where

an MPLS-TP core network does not necessarily support IP. For example, MPLS-TP networks
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that transport the IEC 61850 Generic Object Oriented Substation Event (GOOSE) and Sampled

Measured Values (SMV) messages in substation automation systems don’t usually use IP [67].

For cases where MPLS-TP does not support IP, a hop-by-hop security (e.g., MACsec) is an

alternative solution. MACsec requires every pair of neighbouring nodes in an LSP has a shared

secret key to be used for message authentication at the MAC layer. MACsec is not supported

in today’s Cisco routers. One key issue with MACsec is that it is suffers from a single point

of failure, i.e., if an attacker manages to compromise one of the MACsec session between

any two neighbouring routers along an LSP, he will be able to launch the attacks discussed in

the previous section. Therefore, it is important that routers save the cryptograph materials

for MACsec in a secure location. Using a tamper resistant hardware module such as Trusted

Platform Module (TPM) is one solution. Besides, proper access control mechanisms to prevent

unauthorized access to sensitive data with in the device should be put into place. Note that in

addition to preventing spoofing attacks, MACsec also prevents DoS attacks by making sure

that spoofed packets are detected at the end of the link where the packets are injected to the

network. Therefore, among the different available options, we believe MACsec is the preferred

solution to secure BFD and PSC packets in MPLS-TP networks.

4.6 Conclusion

MPLS-TP is envisioned to be a promising Packet Switched Network technology for smart grid

networks. Our literature review of the different standards and RFC related to MPLS-TP showed

that security is only marginally addressed for MPLS-TP’s OAM protocols. Our experimental

study of MPLS-TP implementation in Cisco IOS confirms that more needs to be done to

secure MPLS-TP’s OAM protocols. Our findings show that lack of support for message origin

authentication in BFD and PSC protocols leads to an attacker being able to remove protection

support, hide the presence of link failure and to completely shutdown both working and

protection LSPs. All these attacks are of grave concern for a smart grid network that uses

MPLS-TP to transport critical data used grid monitoring, protection and control. Therefore,

it is important the RFC’s be more directive in suggesting built-in authentication and other

security solutions for MPLS-TP protocols. In the case when built-in security is not possible,

other standard security solutions that provide end-to-end security like (D)TLS or those that

provide a hop-by-hop security, like MACsec, should be used.
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5 Experimental Comparison of Multi-
cast Authentication for Grid Monitor-
ing Systems
5.1 Introduction

The smart grid, a superimposition of cyber infrastructure on a physical power system in-

frastructure, is envisioned to provide a reliable and efficient power supply with a smooth

integration of renewables. Smart grid is a generic term that comprises different systems.

Advanced metering systems, demand response management systems, substation automation

systems, and wide area monitoring systems (WAMS) are a few of several systems that define a

smart grid.

The cyber infrastructure in a smart grid facilitates two-way communication of sensing (me-

tering) data and control signals among field devices and control centres. The field devices

and the communication infrastructure usually span a large unprotected geographic area. One

challenge for such a system is protecting against cyber attacks; in particular, guaranteeing

message source authenticity to data consumers is difficult. Different systems in a smart grid

use different communication paradigms, have different real-time requirements and the de-

vices they use have different levels of resource constraints. Hence, there is no a one-size-fits-all

security solution that works for all systems.

In this paper, we focus on identifying the best source authentication scheme for phasor data

communication in wide area monitoring systems (WAMS). WAMS use high-resolution phasor

data from several phasor measurement units (PMUs) to provide real-time information about

a power grid’s state and can be used to trigger corrective actions to maintain reliability. The

North American Synchrophasor Initiative (NASPI) was founded to facilitate the deployment

and use of synchrophasor technology for grid reliability and efficiency [68]. Although a few

years ago there were only a few hundred PMUs deployed across the North American power

grid and elsewhere, their adoption has exponentially increased due to their perceived benefits

and their reduced cost [14]. PMUs provide absolute time-synchronized data at a high data rate

compared to supervisory control and data acquisition (SCADA) systems, typically from 30 to

60 samples/second. This enables power grid operators to have real-time situational awareness

of their grid, which in turn enables them to implement fast response to unstable conditions
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observed in the grid. Depending on the nature of the different control applications that use

WAMS [14], the overall delay budget for synchrophasor data ranges from 4 to 20 ms [69]. Most

of this budget is consumed by the communication and computation excluding security related

operations. Therefore, the additional delay due to security is preferred to be in the order of

sub-milliseconds.

IP multicast is envisioned to be a preferred communication paradigm for PMU to Phasor Data

Concentrator (PDC) streaming [70, 71] because it is efficient for one-to-many communication

in that it relieves a PMU from sending several copies of the same packet destined to multiple

PDCs. Besides, since a multicast group address is used as a destination, new receivers can be

added to an already operational WAMS seamlessly without any setting changes to other PMUs

or other PDCs in the group. Multiple receivers are used for different reasons. A common reason

is to support redundant PDCs for reliability. Another common reason is to have the SCADA

system and archive servers receive the PMU data for supervision, fault detection and post

mortem analysis. In some cases, a utility shares synchrophasor data with other neighboring

organizations so that all utilities have a common understanding of the state of the entire grid,

which allows them to better respond to detected conditions across the grid.

In spite of its benefits, multicast also comes with its own security challenges. More specifically,

designing a multicast source authentication scheme for time-critical systems such as WAMS is

a challenging problem [72, 73]. As a result, this problem is extensively studied by the research

community [74]. Guaranteeing source authentication (thereby message integrity) is crucial for

WAMS because any tampering of the synchrophasor data while in transit or injection of bogus

data by an attacker leads to wrong real-time situational awareness of the grid; which in turn

can lead to issuing wrong corrective measures with catastrophic consequences.

A trivial approach to providing multicast source authentication is to use a shared key (group

key) scheme that uses message authentication codes (MACs). Several studies have proposed

this as fast authentication mechanism for different smart grid applications [75, 76]. Although

such a scheme is computationally fast and provides group authentication, it does not give any

protection against an untrusted receiver since such a receiver can impersonate the source

using the shared key. Group authentication can be considered sufficient for homogenous

substation automation systems as we can assume that if one of the receivers in such a system

is compromised, other receivers are also likely to be compromised. In this paper we consider

WAMS, which are heterogeneous systems compared to substation automation systems. In

WAMS, receivers are not necessarily colocated and may not have the same level of security.

Therefore, group key based authentication is not viable in our framework because an attacker

needs to compromise only one receiver or source to compromise the whole network.

An efficient multicast authentication requires a source of asymmetry in the authentication

information. In other words, receivers should be able to verify the authentication information,

but should not be able to generate valid authentication information [73,74]. Different schemes

use different sources of asymmetry. Some schemes use as a source of asymmetry the difference
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in the number of symmetric keys that sources and receivers know [77]; others use time [78]

and yet others use the computational intractability of the cryptographic primitives used to

generate the keys (e.g., one-wayness of a function, collusion resistance of hash functions,

factoring difficulty, discrete log problem) [79–81].

In this paper, we evaluate the different multicast authentication schemes that use asymmetry

in the authentication information and identify the best candidate for WAMS. The set of

metrics we use to evaluate the performance of these schemes are computation overhead,

communication overhead and key management (key generation, distribution and storage)

overhead. From the literature review, the short-list we identify for further evaluation are

two variants of elliptic curve digital signature algorithm (ECDSA) [80], “time valid hash to

obtain random subsets” (TV-HORS) [79] and three variants of Incomplete-key-set [77]. An

experimental comparison of the short-list is then made in an operational wide area monitoring

system that deploys the National Instruments CompactRIO 9068 based PMUs and phasor data

concentrators (PDCs) to monitor a medium-voltage distribution network on the EPFL campus

[82]. To the best of our knowledge, we are the first to perform an experimental comparison of

different authentication schemes using actual PMUs deployed on an operational WAMS.

From our experiment, we find that even though the Incomplete-key-set variants use only

symmetric key operations, their high computation and communication overheads make them

impractical for WAMS based real-time applications. The ECDSA with no pre-computed tokens

has low communication and key management overheads; however it has high computation

overhead due to a slow key generation at resource-constrained PMUs. Therefore, for all

practical purposes it requires hardware support in PMUs. The ECDSA variant which uses pre-

computed tokens for fast signature generation has small computation and communication

overheads which make it an ideal candidate for WAMS. TV-HORS also has low computation

and communication overheads, but it has a large key management overhead as it requires

frequent distribution of a large public key that needs to be reliably delivered to each receiver

within a specified time window.

The rest of the paper is organized as follows. In Section 5.2 we present the state of the art.

In Section 5.3, we provide an in-depth discussion of the short-listed schemes. We describe

the wide area monitoring system for the EPFL active distribution network which we use as

our testbed for the experimental comparison of the schemes in Section 5.4. We present the

experimental results and comparison of the schemes in Section 6.6. Finally, in Section 6.7 we

conclude the paper.

5.2 Authentication Mechanisms for IP Multicast

In this section, we cover the state of the art for multicast authentication. We also identify

which source authentication schemes are more feasible for phasor data communication in

wide area monitoring systems (WAMS).
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5.2.1 Asymmetric cryptography based schemes

Authentication schemes in this category include all schemes that are based on digital sig-

natures, such as RSA and ECDSA [83]. Sources use their private keys to sign messages and

receivers use the source’s public key to verify received message source authenticity. These

schemes are scalable in that they require a single small-size public/private key pair for every

multicast source. However, directly applying these schemes for most real-time (e.g., smart grid)

applications is a challenge because of their expensive computation overhead. The IEC stan-

dardization body in its IEC 62351- 6 [18] standard suggests that RSA be used to authenticate

IEC 61850 Generic Object Oriented Substation Event (GOOSE) / Sampled Measured Values

(SMV) messages that have a 4ms response time. However, resource constrained intelligent

electronic devices (IEDs) in substations are generally incapable of computing and verifying

a digital signature using the RSA algorithm within the required response time. Yavuz in [84]

proposed a fast RSA based scheme by exploiting an existing structure in command and control

messages. Such a scheme, though efficient, is not applicable for WAMS because the structure

assumed in [84] is not present in PMU measurements. Hohlbaum et al. [19] show that, with

today’s IED’s hardware, the software implementation of digital signatures would not meet the

real-time requirements of GOOSE/SMV messages. They also show the FPGA implementation

of RSA signature with a key length of 1024 bits is not feasible for systems that have less than

4ms response time requirement. However, an RSA implementation on hardwares like ASIC

platforms and specialized crypto-chips are shown to be feasible solutions.

The cost of specialized hardware are expected to be affordable in the future that we can imag-

ine digital signature solutions be preferred solutions in future smart grid devices. Therefore,

we consider digital signature based solutions as one of the candidates for multicast authentica-

tion. More specifically, we choose ECDSA as the preferred candidate among digital signature

schemes to be included in the short-list, as it has a shorter public/private key length and

signature size compared to RSA for a similar security level.

5.2.2 One-time signature (OTS) schemes

One-time signature were first proposed by Lamport [85] and by Rabin [86]. Subsequent works

on OTS [79, 87–89] improved the signature length and computation overhead required for

signing and verification. Law et al. in [90] provide a simulation-validated mathematical analy-

sis of the different OTS schemes and identify TV- HORS [79] as the favourable authentication

scheme for real-time applications in terms of providing a balanced computation and com-

munication efficiencies relative to security level. In a different context from WAMS, Lu et. al

in [91] compare by simulation TV-HORS with RSA when applied for multicast authentication

in substation automation systems. Their results show that TV-HORS performs better than RSA,

in terms of computation cost. From our literature review and from works that did theoretical

and simulated comparison of OTS systems, TV-HORS is shown to be the preferred scheme

among OTS schemes. Therefore, TV-HORS is included in our short-list of candidate schemes
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for further evaluation.

5.2.3 Message authentication code (MAC) based schemes

MAC based schemes use a shared symmetric key between a sender and a receiver to generate

a cryptographically secure authentication tag for a given message The simplest scheme in this

category uses a group key shared among the multicast source and all the receivers. For example,

a multicast extension to IPsec (RFC 5374) uses group keys to provide message authenticity

and confidentiality. Secure distribution of the key to the multicast group members is handled

by the group domain of interpretation protocol (GDOI, RFC 6407). The IEC 61850-90-5 [75]

standard specifies the multicast extension of IPsec to secure synchrophasor data. Zhang and

Gunter [76] also propose using IPsec for securing multicast data in substation automation

and show the stringent latency constraints (less than 4ms) can be satisfied with their solution.

The problem with all group key based solutions is they do not provide protection against a

malicious receiver, i.e., any receiver that has the shared key can impersonate a legitimate

source.

Another variant of the symmetric key based solution uses a secret-information asymmetry to

cope with the impersonation problem stated above. Canetti et al. [77] propose such a scalable

scheme suitable for systems with a large number of multicast receivers. In this scheme, the

source knows a set of secret keys to authenticate a multicast message and each receiver knows

only a subset of these keys that enable it only to verify the authenticity of received messages

without being able to generate valid authentication information for messages [74]. The source

attaches MACs computed using all its keys to the messages and each receiver uses its subset

of keys to verify the authenticity of the received message. We refer to this scheme as the

Incomplete-key-set scheme [91].

As the Incomplete-key-set scheme uses only fast MAC computations and does not require

buffering before authentication, we include this scheme in the short-list of candidate schemes

for further evaluation. In Section 5.3.3, we provide a more detailed description of the scheme.

5.2.4 Delayed key disclosure schemes

Like the schemes in 5.2.3, schemes in this category use a keyed-hash message authentication

code (HMAC) for source and message authentication. The main difference between the two

categories is the source of asymmetry, i.e. delayed key disclosure based schemes use time as a

source of asymmetry. The source computes the HMAC of a message by using a symmetric key

that only it knows. The receiver buffers the message until it receives the authentication key

from the source. The source then discloses the key in its subsequent messages. Timed efficient

stream loss-tolerant authentication (TESLA) [78] and its variants [92, 93] are examples of this

scheme. To minimize the effect of packet losses, TESLA employs a chain of authentication

keys linked to each other by a pseudo random function. Each key in the key chain is the image
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of the next key under the pseudo random function.

Delayed key disclosure schemes have low computation overhead (only one MAC function)

and low communication overhead. The drawback with these schemes is they need to buffer

messages, which makes them inapplicable for real-time smart grid applications like WAMS.

Thus, we do not include schemes from this category in our short-list.

5.2.5 Signature amortization schemes

Signature amortization refers to using a single signature for authenticating a group of multicast

packets, thereby spreading (amortizing) the signature verification cost across this group of

packets [94]. A receiver has to assemble all the packets in the group before verifying their

collective signature. As the introduced delay due to buffering makes them inapplicable for

real-time applications, we do not consider schemes in this category for further evaluations.

Table 5.1 provides a summary of the different authentication schemes with respect to some

desirable properties for WAMS. We have selected these desirable properties that are applicable

for WAMS from those identified in [73] and [84]. A perfect scheme would be one that performs

well in all the identified properties. As can be seen from the table none of the schemes satisfy

that requirement. The subset of schemes we have chosen for further evaluation are those that

satisfy the first three properties.

Table 5.1 – Summary of different multicast authentication schemes with respect to different desirable properties for WAMS.

PKC OTS MAC based Delayed disclo-
sure

Amortized

RSA ECDSA TV-
HORS

Group
key

IKS TESLA RSA based

Immediate authentication (no
buffering)

Yes Yes Yes Yes Yes No No

Provides asymmetry Yes Yes Yes No Yes Yes Yes
Robust to data packet loss Yes Yes Yes Yes Yes Partial Partial
Scalable for large systems Yes Yes Moderate Yes No Yes Yes
Free from time-bounded security Yes Yes No Yes Yes No Yes
Low computation overhead No No Yes Yes No Yes No
Low communication overhead Yes Yes Yes Yes No Yes Yes
Low key storage at source Yes Yes No Yes No Moderate Yes
Low key storage at receiver Yes Yes No Yes No Yes Yes

IKS: Independent-key-set; PKC: Public key cryptography

5.3 Candidate multicast authentication schemes for wide area mon-

itoring systems

In this section, we give a description of the three multicast authentication schemes that we

identified in Section 5.2 as candidates for wide area monitoring systems.
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5.3.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

The elliptic curve digital signature algorithm (ECDSA) is a public-key authentication scheme

whose security is based on the computational intractability of the Elliptic Curve Discrete

Logarithm Problem (ECDLP) [80]. ECDSA provides the same level of security as other digital

signatures, such as RSA, but with a smaller key size. Smaller keys enable ECDSA to have a

faster computation time. For this reason, ECDSA is the digital signature scheme of choice for

new applications: for example, Bitcoin relies on ECDSA for its security.

Below, we provide a brief description of the steps required to set up an ECDSA based multicast

authentication system. More specifically we describe the domain parameter setup, key pair

generation, signature generation and signature verification.

Domain parameters setup

The public/private key pairs used by ECDSA are generated with respect to a particular set of

domain parameters (p, a,b,G ,n), where p is the prime modulus, a and b are coefficients of

the elliptic curve, G is a group generator of prime order n. For better security, the elliptic curve

should be chosen from a small set of elliptic curves referenced as NIST Recommended Elliptic

Curves in FIPS publication 186 [83].

Key pair generation

Once the domain parameters are chosen, public/private key pair is generated as follows:

(a) Private key is a random integer d ∈ [1,n −1].

(b) Public key Q = dG is a point on the elliptic curve.

Signature generation

Given a hash function h and a sender’s key pair (d ,Q), a message m is signed as follows:

(a) Select random k ∈ [1,n −1].

(b) Compute (x1, y1) = kG .

(c) r = x1 mod n. If r = 0, go back to step a.

(d) Compute s = k−1(h(m)+ r d) mod n.

If s = 0, go back to step a.

(e) The signature for message m is the pair (s,r ).
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Signature verification

Give a sender’s public key Q, the authenticity of a received message m is verified as follows:

(a) Compute (x2, y2) = s−1(h(m)G + rQ).

(b) Verification succeeds if x2 ≡ r mod n and r ,s ∈ [1,n −1].

An interesting feature of ECDSA is that signature generation is faster than signature verifica-

tion. This is a desirable feature for applications like WAMS because message sources (PMUs)

are more resource constrained than message receivers (PDCs). Even with such asymmetry,

signature generation is still expensive. A typical approach to achieve fast signature generation

is to pre-compute r and k’s modular inverse k−1 before the message is known [95]. By pre-

computing ℵ of these tokens offline, we later use them to sign ℵ messages as they appear at a

minimum cost. In this paper, we evaluate the performance of ECDSA signature generation

with and without pre-computed tokens.

5.3.2 Time Valid Hash to Obtain Random Subsets (TV-HORS)

TV-HORS [79] is an extension of hash to obtain random subsets (HORS) [88] authentication

scheme. TV-HORS inherits HORS’s advantages of fast message signing and verification. TV-

HORS achieves small signature size and faster computational efficiency by signing only part of

the hash of the message and by using a time-bounded signatures to prevent signature forgery.

The signature period (a.k.a., epoch) is the maximum possible duration a signature can be

exposed before it is verified. This duration has to be short enough so that an attacker cannot

get a partial-hash collision of the signed message within that time duration.

One drawback of TV-HORS is the need for a periodic exchange of a large public key. TV-HORS

uses two approaches to decrease the public key refresh rate: (1) It reuses its private key to sign

multiple messages within a given epoch, i.e., it functions as a multiple-time instead of a one-

time signature scheme. (2) It uses multiple key pairs linked together by using one-way hash

chains, as show in Figure 5.1, to authenticate a large number of streaming packets without

needing to redistribute a new public key at the end of every epoch.

Though the “multiple timed-ness” feature improves the public key refresh rate, it also has

security ramifications. It exposes more elements in the private key with every signed message.

Thus, it provides an attacker with more opportunities to forge a message using the released

private key elements.

The security level L for TV-HORS is expressed as a function of three parameters: the maximum

number of messages that can be signed by a private key within an epoch v , the number of

elements in a private key N and the number of elements in a signature t . As shown in [79],

L = t log2(N /v t). The security level L is a security parameter such that an adversary has to

compute 2L hash computations on average to obtain a valid signature for a new message.
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Figure 5.1 – TV-HORS key pairs linked using one-way hash chains. At epoch j , the light chain s( j ,_) and the salt k j form the
active private key. This private key can sign upto v message within that epoch. A session has a total of P epochs. A key chain is
refreshed at the end of epoch P .

Hence the TV-HORS parameters N , t , v should be chosen such that the above formula satisfies

a required security level L.

5.3.3 Incomplete-key-set

The basic idea behind the Incomplete-key-set scheme is the sender appends to each multicast

message multiple MACs computed by using different symmetric keys. The asymmetry between

senders and receivers is provided by the fact that the source knows more secret keys than each

receiver.

Below we present three variants of this scheme that apply for two different scenarios.

Incomplete-key-set for a small number of receivers per group

In WAMS where the number of receivers is small (in the order of tens), implementing a variant

that we refer to as perfectly-secure Incomplete-key-set is sufficient. For a multicast group of

R receivers and any number of sources, this scheme uses a total of R primary secret keys

κ= {k1, ...,kR } from which R secondary secret keys κs = { f (s,k1), ..., f (s,kR )} are generated and

assigned to each source s, where f (.) is a pseudo-random function. Each receiver r is assigned

a distinct primary key kr from the set κ. The source authenticates a message m by computing

R MACs using its R secondary secrets and concatenates all the MACs with the message. Each

receiver r computes the secondary key of s that corresponds to its primary key kr and verifies

the authenticity of the message by verifying the MAC that was computed using this secondary

key. However, it is not a scalable solution since the communication overhead (size of the
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MACs) grows linearly with the number of receivers.

Incomplete-key-set for a large number of receivers per group

In a system where there are a large number of multicast receivers, Canetti et al. [77] proposed

a scheme that we will refer to as the basic Incomplete-key-set scheme. This addresses the

scalability issue associated with the variant introduced above. This scheme uses a set of l < R

primary keys κ= {k1, ...,kl } from which a set of l secondary keys κs = { f (s,k1), ..., f (s,kl )} are

assigned to each multicast source s. Each receiver r is assigned a set κr of primary keys such

that κr ⊂ κ. When sender s wants to multicast message m, it computes l MACs using the

secondary keys in κs and sends the message m, along with the l MACs. On receiving a message

from sender s, receiver r computes the secondary keys of s with the primary keys in κr . It then

verifies all the MACs that were computed using these secondary keys. If any of these MACs is

incorrect, then r rejects the message.

The basic Incomplete-key-set scheme is susceptible to collusion attacks. A group of fraudulent

receivers can collude among each other such that for each receiver j in the fraudulent group,⋃
κ j can completely cover the key subset κu of a given receiver u with a certain probability.

Key Server 

κ={k1, k1,�, kl}  

End-to-end authentication 
PMUs 

Multicast sources) 
PDCs 

((Multicast receivers) 

κ
r ⊂κ  
κ

r ⊂κ  

Secure channel 

Sec
ure

 ch
an

ne
l 

κ s =
 {f(

k i,s
) | 

k i∈
κ} 

Figure 5.2 – Key distribution for the Incomplete-key-set authentication scheme.

Let a multicast group have a maximum number of w corrupt users and let q be the probability

that κu for any receiver u is completely covered by the subsets held by the coalition members.

The authors in [77] show that the number of primary keys l is given by l = e(w +1)ln(1/q).

Each receiver r obtains a subset κr of primary keys such that |κr | = e.ln(1/q).

Depending on the values of the system parameter w and q , the number of keys l can be large
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thus the communication overhead can be large. The authors in [77] propose a communication-

efficient variant of the basic scheme that uses MACs with a single bit as output so that the

authentication information is reduced to only l bits. For such a setting, the number of MAC

computations are four times that of the basic scheme, i.e., the total number of primary keys l

and |κr | are four times that of the basic scheme.

5.4 System setup and evaluation methodology

In this section, we describe the active power distribution network that we used as a testbed to

perform our experiment to compare the three multicast authentication schemes introduced

in the previous section. We also introduce the performance metrics we use to evaluate the

schemes.

5.4.1 EPFL-Campus Smart Grid Monitoring System

We carry out the experimental comparison of the authentication schemes on the smart grid

infrastructure deployed at EPFL to monitor the power distribution network of the campus.
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Figure 5.3 – The EPFL smart grid infrastracture with 7 PMUs as multicast sources and 3 PDCs as multicast receivers.

Figure 5.3 depicts the map of the EPFL campus smart grid infrastructure. The smart grid

infrastructure deploys PMUs at different locations on the campus. The PMUs measure syn-

chrophasor data at the different locations at a rate of 50 samples/second, encapsulate the data

according to the IEEE C37.118.2-2011 standard [96] and multicast it over UDP to aggregation

points called phasor data concentrators (PDCs). Each synchrophasor measurement from a

PMU is 74 bytes long. A PDC time-aligns the measurements from the different PMUs and feeds
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the time-aligned synchrophasor data to a real-time state estimator that is co-located with

each PDC. The output of the real-time state estimator enables us to determine the most likely

state of the grid. Our monitoring infrastructure of the smart grid pilot on the EPFL campus

has a total of 7 PMUs and 3 PDCs in total. A more complete description of the smart grid

infrastructure can be found in [82].

With no security (authentication or encryption) deployed, the overall latency between the

time the synchrophasor data is sent from the PMU to the time the state estimator output

is computed has a mean value of 17 ms. This relatively low latency in computing the state

of the grid enables us to have a real-time grid monitoring system, which in turn enables

us to implement real-time corrective measures when the state estimator output indicates a

deviation from the grid’s stable state. Any tampering of the synchrophasor data by an attacker,

while in transit from the PMUs to the PDCs, leads to a wrong state estimator output; which in

turn can lead to issuing wrong corrective measures with catastrophic consequences - thus the

need for message authentication.

5.4.2 Comparison Metrics

The set of metrics we use to compare the performance of the multicast authentication schemes

are computation overhead per message, communication overhead per message and key man-

agement overhead. Computation overhead refers to the processing time required to generate

an authentication code (signature) at the sender and to verify the authenticity of the message

at the receiver. Some of the schemes we evaluate have asymmetric computation overhead

for authentication and verification. An authentication scheme is considered efficient for a

real-time application if the sum of the authentication and the verification time is small. Com-

munication overhead as a metric refers to the length of the authentication data that a scheme

generates per message. This metric is important especially in systems where the network

bandwidth is a constraint. The third metric, key management overhead, is the cost associated

with the generation, distribution and storage of the key material. The key generation overhead

is the CPU time required by a PMU to generate the keys. The distribution overhead is the

bandwidth required to distribute the key material to the communicating partners. The storage

overhead is the amount of memory required to store the key materials.

An ideal authentication scheme for WAMS is one that has low overhead in all the metrics.

However, finding a scheme that satisfies all such requirements is difficult. WAMS are real-time

applications. Thus, a small computation overhead is considered a critical requirement. In

contrast, utilities are likely to have dedicated state-of-the-art communication infrastructure

for their sychrophasor data communication. Therefore, low communication overhead can be

considered a soft requirement. The key management overhead, however, is a combination of

both computation and communication overheads. Thus, a low key management overhead is

also a critical requirement.

It is important to mention here that the three schemes are immune to packet losses if the
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packets contain application data (not key materials). For these reasons, we don’t make any

comparison among the schemes based on resistance to loss of packets containing application

data. In contrast, packet losses during key distribution may affect the performance of a scheme

and is discussed in Section 5.5.2.

5.5 Performance evaluation and comparisons

5.5.1 Implementation and Parameter Settings

The multicast sources at the EPFL smart grid pilot are National Instrument’s CompactRIO

9068 based PMUs with a 667 MHz dual-core ARM Cortex-A9 processor, 512 MB DDR3 memory

and 1 GB nonvolatile storage running NI Linux Real-Time OS. Likewise, each receiver is a PC

with an Intel 2.8 GHz Core i 7 processor and a 4GB RAM running Ubuntu 12.04 with Linux 3.2.

The source and receiver are implemented in C and use OpenSSL [97] open source tool kit to

implement the authentication schemes. We use SHA-256 whenever we need a hash output for

any of the schemes.

Threat model

The attacker is assumed to have an indepth knowledge of the the power system model so

that he can launch an attack similar to the one proposed by Liu et al in [28] by corrupting

measurement data from a selected set of PMUs to stealthily introduce arbitrary errors in the

state estimator’s output of certain state variables without triggering an alarm from a bad data

detection algorithm. The first ever cyber-attack on three Ukrainian regional electric power dis-

tribution companies that caused a widespread power-outage in Ukraine on December 23, 2015

demonstrates the practical feasibility of mounting such an attack successfully [98]. Moreover,

we assume that an attacker has continuous remote or physical access to the communication

network of the WAMS from which he can intercept and capture measurement data from the

selected PMUs. We also assume the attacker has access to a cloud computing resource that is

equivalent to the computing capacity of a few thousand PCs. The attacker uses the computing

resources to recover the secret (private) keys used to authenticate the synchrophasor messages

in real time and uses them to authenticate forged messages and send them to the receivers

as if they were sent from the legitimate PMUs whose keys are compromised. Since the PMUs

refresh their keys periodically, the attacker can use a compromised key only until it is refreshed.

Hence, the attacker needs to continuously follow the key refresh by the PMUs and re-do the

key retrieval from captured messages after every refresh.

Security level and key refresh rate

The different authentication schemes have different parameters whose values affect the

schemes’ performance and security level. In order to make a fair comparison of the schemes,
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we set their parameters so that they all have equivalent security levels. According to [99],

an ECDSA in a subgroup of m-bit size has an equivalent security level with a symmetric key

based scheme of m/2 bits key-length. The security level of a symmetric key-based scheme is

equal to the key length. As stated in Section 5.3.2, the security level for TV-HORS is defined by

L=t log2(N /v t ).

Message authentication in WAMS is a short-term issue, i.e., it is enough to guarantee that the

signing key is hard to break between the signing time and the signature delivering time [100].

Therefore, in our implementation, we use short-term keys by putting a bound on the life time

of these keys.

As shown in [79], it takes 16x103 workstations to break TV-HORS with L=54 in 6 days. Eberle et

al. in [101] show it takes 3.01x107 machines equipped with ECC-processor to work together

for about 24 hours to break an 112-bit ECC key (L=56) and 1.02x1015 machines to break a

160-bit ECC key (L=80). In our experiment we considered two security levels: an intermediate

security level L=56 and a stronger, future proof security level L=80. Based on the above data,

we believe that a security level of L=56 is strong enough in the presence of an attacker with

a computing capacity stated above if the keys are refreshed with in a few tens of seconds or

even minutes. We have considered L=80, to see how the schemes compare when an attacker is

likely to have more powerful computing capability in the future as cloud computing resources

become more affordable.

For the intermediate security level, we generate the ECDSA key pairs from the elliptic curve

domain secp112r2 - a SECG curve over a 112-bit prime field. ECDSA keys generated from this

curve have a security level L=56. For the Incomplete-key-set variants, we use a symmetric

key-length of 56-bits. We set the TV-HORS parameters (N =1024, t=13, v=4), which give us

L=56. For the stronger security level L=80, we use the 160-bit elliptic curve secp160r2 for

ECDSA, a symmetric key-length of 80-bits for the Incomplete-key-set and the parameters

(N =1024, t=16, v=2) for TV-HORS. From the contour lines in Figure 5.4, we see that there are a

range of values for v and t for a fixed value N to achieve a required security level L. A contour

line in the v − t plane show all the possible (v, t ) pairs (only integer pairs) that give a value on

the L axis that has the same color as the contour line. We took two representative set of values

for t and v (one for L=56 and another for L = 80) to conduct our experiment.

For all the schemes, we use a session duration Ts=20 sec. The message sending rate of the

PMUs in our WAMS is λ=50msgs/sec, where each message is 74 bytes long synchrophasor data.

Therefore, the PMUs stream 1000 messages during one session. We assume the key material

for the entire session for all the schemes are pre-generated. For TV-HORS, the key-chain length

(number of epochs P ) is given by P=Ts ∗λ/v . Therefore, for the case where L=56, the number

of epochs P=250 and for the case L=80, P=500. Note that a larger P value means a larger key

generation and storage overhead. It also means the average verification time increases at the

PDC.

The public keys for ECDSA and for TV-HORS and the symmetric keys for the Incomplete-
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Figure 5.4 – TV-HORS security level (L) as a function of v and t for a fixed N =1024.

key-set that are used during session i are pre-generated and distributed during session i −1.

Similarly, for the ECDSA with pre-computed tokens, all the tokens required for the entire

session i are locally pre-computed by each PMU during session i −1. The public keys for

TV-HORS and ECDSA are multicast to all receivers in an authenticated manner. For the

Incomplete-key-set the keys are distributed from the key server to PMUs and PDC using a

secure unicast channel. In our implementation, the public keys are distributed only once.

However, to guarantee a reliable delivery of the keys, we suggest implementing the progressive

public key distribution (PPKD) scheme proposed in [100]. Note that the relative difference in

the key management overhead between ECDSA and TV-HORS remains the same even when

the reliable key distribution scheme is implemented.

Following the proposals in [79], we use 48-bit light-chain elements and 80-bit salt-chain

elements for TV-HORS. These parameters along with the t value affect the signature length.

For the perfectly-secure Incomplete-key-set we assume a total number of receivers equal to

50. For the basic and the communication-efficient variants of the Incomplete-key-set, we set

the system parameters w = 10 and q = 10−4.
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5.5.2 Performance results and comparison

In Tables 5.2 and 5.3, we present experimental results for the performance of the candidate au-

thentication schemes. The results show how the performance of the schemes vary depending

on the values of corresponding parameters for each scheme. Below, we analyse the results

for the schemes and draw conclusions on which scheme provides a better security versus

performance tradeoff for WAMS.

Table 5.2 – Key management overhead of different multicast authentication schemes.

Key management overhead per session (20 sec)
Scheme key generation time key distribution overhead Key storage overhead key storage overhead

at PMU (ms) at PMU (bytes) at PMU (bytes) at PDC per PMU (bytes)
L=56 L=80 L=56 L=80 L=56 L=80 L=56 L=80

ECDSA without precomputed
tokens

3.367 5.335 29 41 14 20 29 41

ECDSA with precomputed to-
kens

3’340.367 5’447.335 29 41 28’014 40’020 29 41

TV-HORS 523.439 1’047.332 6’154 6’154 1’538’500 3’077’000 6’154 6’154
Basic Incomplete-key-set 0 0 1’932 2’760 1’932 2’760 175 250
Comm. efficient Incomplete-
key-set

0 0 7’728 11’040 7’728 11’040 700 1’000

Perfectly-secure Incomplete-
key-set

0 0 350 500 350 500 7 10

Table 5.3 – Performance comparison of multicast authentication schemes using per message computation and communication
overheads.

Computation overhead per synchrophasor message Communication overhead (bytes)
Scheme Auth. time (ms) Verif. time (ms) Total (ms) per synchrophasor message

L=56 L=80 L=56 L=80 L=56 L=80 L=56 L=80

ECDSA without precomputed
tokens

3.431 5.563 0.223 0.327 3.654 5.890 34 48

ECDSA with precomputed to-
kens

0.104 0.111 0.223 0.331 0.327 0.442 34 48

TV-HORS 0.014 0.014 0.110 0.217 0.124 0.231 88 106
Basic Incomplete-key-set 4.559 4.589 0.068 0.069 4.627 4.658 1’932 2’760
Comm. efficient Incomplete-
key-set

18.151 18.361 0.172 0.181 18.323 18.542 138 138

Perfectly-secure Incomplete-
key-set

0.848 0.853 0.018 0.019 0.866 0.872 350 500

Incomplete-key-set variants

Even though these schemes use only MAC computations, the large number of such computa-

tions introduces large computation and communication overheads per message that they are

inapplicable for WAMS. Besides, the Incomplete-key-set requires a key server, which is a single

point of failure, whereas EDSA and TV-HORS don’t use one. Furthermore, key update for the

Incomplete-key-set involves setting up a unicast encrypted channel between the key server

and each of the sources and receivers, while EDSA and TV-HORS require only an authenticated

multicast delivery of public keys. Therefore, given the large number of sources (and receivers)
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in WAMS, the Incomplete-key-set schemes is inefficient from the key server’s point of view.

ECDSA variants

The ECDSA without pre-computed tokens scheme performs best in all metrics except in the

computation overhead per message. The computation overhead for both security levels is high,

which makes it unsuited for WAMS applications that have strict real-time requirement. Adding

a cryptographic accelerator hardware to PMUs is one way to speed up signature generation.

Implementing ECDSA with pre-computed tokens significantly improves the computation

overhead per message. The pre-computation of the tokens also introduces a non-negligible

key-generation overhead (we consider token-generation part of the key generation overhead).

However, the tokens for session i are generated during session i -1. Hence a token-generation

times in Table 5.2 for both security levels during a 20 second long session is within the com-

putational capability of the kind of PMUs deployed in our smart grid. Besides, there is no

significant change in the signing overhead between L=56 and L=80. The small increase in the

overall computation overhead can be mitigated by deploying more powerful PDCs or by imple-

menting an optimized ECDSA verification (which we have not implemented). Therefore, the

sub-millisecond computation overheads and low communication overheads of ECDSA with

pre-computed tokens for both security levels make it an ideal scheme for WAMS applications

with real-time requirements for the foreseeable future. This finding is contrary to the generally

accepted view that public key cryptography is inapplicable for real-time applications.

TV-HORS

TV-HORS has the lowest computation overhead and relatively low communication overhead

per message. The only drawback of TV-HORS is that it requires frequently refreshing the

public/private key pair and sending a large public key message to all receivers. WAMS are

normally characterized by a large number of PMUs. Unless a proper randomization of key

distribution is implemented, a large public key (≈ 6kbytes) per PMU can cause periodic burst

synchronization of packets that can have significant effect on the network bandwidth that

could lead to synchrophasor packet loses. The burst of packets from each PMU can also have

a non-negligible computation overhead on the receivers if the number of PMUs is in the order

of hundreds or thousands. This effect is magnified if the public key has to be sent multiple

times to guarantee reliable delivery.

Lu et al. in [91] identify two potential threats in TV-HORS when applied to substation au-

tomation systems (SAS) - delay compression attack and key depletion attack. The sending rate

in WAMS is much slower than that of SAS - typically 50 msgs/sec; whereas a typical rate for

SMV messages in SAS is 4800 msgs/sec. In our implementation a signing-key update occurs

at the end of every epoch. An epoch duration of 80 ms for L=56 or 40ms for L=80 is long

enough for any synchrophasor message to be verified within this time period. In fact, the
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overall end-to-end delay for phasor messages in our smart grid is less than 4 ms. Therefore,

the delay compression attack is not an issue for WAMS. Moreover, TV-HORS replenishes its

key-chain at the end of the last epoch. The time required to generate the whole key-chain

for P=500 is only 1.047 sec (Table 5.2). Given the relatively lower message sending rate of

PMUs, pre-generating the key-chain during the 20 sec duration of session i −1 for session

i is within the computational capacity of the PMUs we used in our experiment. Hence, the

key depletion attack (key generation speed being slower than the key consumption speed)

can also be ignored as an issue in WAMS. Finally, the comparison between RSA and TV-HORS

in [91] is unfair since the chosen security levels for the two schemes are not the same.

From the above observations, we can conclude ECDSA with pre-computed tokens is the

preferred scheme for WAMS applications. In spite of TV-HORS’ desirable low computation

overhead, it has inherent drawbacks due its hard-deadline requirement to deliver a large

public key to receivers within a short duration. Each private key in a TV-HORS key chain

has a time window during which it can be used to sign messages. These messages must be

verified by the receiver during this assigned time window or else the message is discarded

by the receiver. The private key cannot be used to sign messages sent after its time window

expires. By the end of the P th epoch, the last private key in the key-chain will be used to

sign the v th message of that epoch. Beyond that epoch, the multicast source has to use a

new key-chain to sign new messages. However, if the public key for this new key chain is not

successfully communicated to the PDCs, they will not be able to verify the messages signed

using the private keys from the new key-chain. In our experiment, TV-HORS has only 20 sec

to reliably deliver a large public key that is required for the next 20 sec session. As explained

above, this 20 sec duration is a hard-deadline since the old key-chain cannot be used to sign

more than the number of messages transmitted in 20 sec.

In contrast, ECDSA has a time window of 20 sec to deliver a relatively small public key for the

next session. Besides, the 20 sec session duration for ECDSA is a conservative value. Hence,

ECDSA could continue to use its old public/private key pair until the next public key is reliably

delivered even beyond the 20 sec time window. The only means to extend the life time of the

private/public key-chain for TV-HORS to increase P , which in turn introduces key generation,

storage and verification overheads.

The two security levels we consider in our experiment are relatively high if we assume an

attacker with low computational capabilities. Therefore, utilities who want to protect their

WAMS against such an attacker may be willing to consider security levels less than 56. From

the results in Table 5.3 we see that when the security level is decreased, the improvement in

ECDSA’s signing and verification times are much more than the other two schemes’. Hence,

for lower security levels, ECDSA with pre-computed tokens is still the preferred scheme for

such systems since it will still have lower overheads in all the other metrics.
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5.5.3 Support for addition and revocation

All the three schemes support dynamic addition (revocation) of senders and receivers to

(from) a multicast group. In all the three schemes, we assume there is a multicast group

controller similar to the one described in [76] that is responsible for granting and revoking

group membership to PMUs and PDCs and for announcing the addition and revocation of

members to the already existing members.

In all schemes addition/revocation of a receiver (PDC) does not cause any change in any

of the existing group members. However, addition/revocation of a new source (PMU) to a

group introduces some changes to existing PDCs. The group controller has to inform all PDCs

(receivers) about the identity of the new PMU. Once informed about the new member, the

PDCs will be able to receive the key material (public key for ECDSA and TV-HORS) from the

new PMU that they can use to verify messages they will subsequently receive from it. For the

Independent-key-set, the key server has to send the secondary key set κs to the new PMU s.

Performance wise, addition of a new PMU increases the aggregate verification time at the PDC.

This increase per every additional PMU is proportional to the verification time in Table 5.3.

Revocation of a PMU involves a controller informing all PDCs about the identity of the revoked

PMU and each PDC removing the identity (thus the corresponding authentication key) of the

revoked PMU from their list of authentic sources. Performance wise, revocation of a PMU

decreases the aggregate verification times at the PDCs. Again, the decrease in the aggregate

value per every revoked PMU is proportional to the verification time in Table 5.3.

5.5.4 Impact of the scale of WAMS

The aggregate verification time as well as the key storage requirement at the PDC is pro-

portional to the total number of PMUs in a multicast group. Therefore, the aggregate time

that a PDC spends processing (verifying the authenticity, decapsulating and aggregating)

synchrophasor messages can be large if the number of PMUs in a group is very large. The

IEEE C37.244 Guide for Phasor Data Concentrator Requirements for Power System Protection,

Control, and Monitoring [102] specifies a PDC uses a “wait timer" to wait for all messages

to arrive from all PMUs before generating the aggregate data and passing it on to the state

estimator. The value of the “wait timer" is user defined. Messages from all PMUs should be

verified and aggregated before the timer expires. Therefore, a utility needs to determine the

computational capacity of the PDC they deploy such that the aggregate processing time for all

PMUs is within this limit. Our results in Table 5.3 for the verification time can be used to find

the total number of PMUs that a PDC can support. Gomez-Exposito et al. in [103] propose a

hierarchical multilevel state estimation framework to avoid using a single powerful central

PDC that deals with aggregating synchrophasor data from a large number of PMUs. In such a

paradigm, PDCs at the lowest level deal with only a small set of PMUs that are geographically

closer to it and the PDCs at higher levels correlate pre-filtered data from PDCs in lower levels

and possibly from other PMUs that are close to them. This way, multicast groups will have a
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manageable number of PMUs. The PDCs in the lower levels will be multicast sources in the

multicast group for which the higher level PDCs are receivers. Hence, PDCs in the lowest level

and in the intermediate levels can be both a receiver in one multicast group and a source in

another multicast group.

5.6 Conclusion

In this paper, we have evaluated the performance of available multicast authentication

schemes for WAMS. Contrary to the generally accepted notion that public key cryptogra-

phy is impractical for real-time applications due to its high computation cost, we have shown

that an ECDSA implementation that utilizes short-term keys and pre-computed tokens for

signature generation provides the required performance for WAMS based real-time applica-

tions. TV-HORS is also widely treated as the scheme of choice for real-time applications in

smart grid. Our findings show that even though TV-HORS has very low computation overhead

even compared to ECDSA with pre-computed tokens, its potential drawbacks due to its hard-

deadline requirement to reliably distribute a large public key makes it less preferable than

ECDSA.
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6 Optimal Software Patching Plan for
PMUs

6.1 Introduction

The information and communications technology (ICT) infrastructure in a smart grid network

consists of a large number of heterogeneous field devices and servers running a variety of

software systems. Utilities deploy state of the art cybersecurity solutions to fend off attacks

against the ICT infrastructure. However, no matter how strong the deployed security solutions

are, the fact remains that there is no fool proof solution that provides absolute security against

all possible attack vectors. There will always be unknown vulnerabilities in the software or

hardware that an attacker will discover and exploit through time to compromise one or more

of the devices.

Therefore, in addition to deploying state-of-the-art security solutions and taking reactive

measures like incident response whenever there is a cyber attack, it is important for utilities to

take pro-active measures, such as putting a software patch management in place. Deploying an

efficient patch management process for industrial control systems (ICSs) has been addressed

in [104–106]. A software patch management system guarantees that patches are applied to

all devices running the vulnerable software. It is important that software patches that fix

vulnerabilities are rolled out uniformly to all devices as soon as they are available. That is

because if a patch is not applied on time and the vulnerability is of public knowledge to an

attacker, the attacker will compromise one of the devices by exploiting the vulnerability. Once

an attacker gets access to one such device, he can maintain access to the device by privilege

escalation even after the patch is applied later on. By maintaining access to the device, the

attacker can exploit the trust relationship the device has with other communicating partners

in order to launch further attacks and compromise more devices in the network.

In light of the need to roll out software patches fast to all devices, we study the problem

of software patching for phasor measurement units (PMUs) in smart grids. PMUs measure

time-synchronized, high-resolution phasor data from several locations of the grid and stream

this data to a central location called phasor data concentrators (PDC). The PDC time-aligns

the measurements from the different PMUs and feeds the time-aligned synchrophasor data to
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a real-time state estimator.

Since a PMU placed in a particular bus measures the bus’s voltage phasors as well as the

current phasors of all the branches incident to the bus, Kirchhoff’s laws make it possible for

the PMU to indirectly measure the voltage phasors of all incident buses. Therefore, the total

number of PMUs required for full system observability is less than the total number of buses

in the network. Finding an optimal PMU placement that minimizes the number of PMUs

that provide full system observability is a widely studied problem. Research done to address

this problem can be broadly categorized into two groups [107]: (1) deterministic approaches

that formulate the problem as an ILP problem satisfying some constraints [107–112] (2) meta-

heuristic algorithms [113–117].

While deciding on an optimal placement of PMUs to a grid, a utility normally adds a contin-

gency constraint that ensures that the placement provides full observability even when any

one of the PMUs fails or is offline for maintenance purposes. Adding more PMUs than the

minimum number required for observability also increases measurement redundancy, which

improves a state estimator’s accuracy as well as its ability to detect bad data [118]. A PMU

placement that provides enough measurement redundancy also enables a utility to roll out

a software patch to all PMUs by patching a subset of the PMUs at a time while maintaining

system observability at all times. In a large-scale power system that deploys a large number

of PMUs, applying the patch to one or only a few PMUs at a time is infeasible. The main

challenge we address in this chapter is, therefore, a patching plan that minimizes the number

of rounds required to patch all the PMUs without losing full observability of the grid during

the entire time. Stated otherwise, our goal is to find a partitioning of the set of the deployed

PMUs into as few subsets as possible such that all the PMUs in one subset can be patched at a

time while all the PMUs in the other subsets provide full observability of the system.

The main contributions of this chapter are:

• We formulate the PMU patching problem as a sensor patching problem and show that

the problem of finding an optimal sensor patching plan is NP-complete.

• For the case when a power grid has a radial structure (is a tree), we show the minimum

number of rounds required to patch all deployed PMUs is equal to two. We also provide

a polynomial-time algorithm that finds the optimal patching plan.

• For mesh grids (non-radial structured grids), we formulate the sensor patching plan

problem as a binary integer linear programming (BILP) problem and used a branch-and-

bound based ILP solver to compute a patching plan for different bus systems. For grids

that are too large to be solved by the ILP-solver, we propose a greedy heuristic algorithm

to compute an approximate solution. Moreover, we have proved that finding an optimal

solution to the problem is equivalent to maximizing a submodular set function.

•

66



6.2. PMU Patching Problem

Although we study the problem as a planning problem for offline time of PMUs caused by

software patching, it can be generalized to any scheduled maintenance work that affects all

PMUs and requires a PMU to go offline for some time.

The rest of this chapter is organized as follows. In Section 6.2 we state assumptions, introduce

the system model and define the PMU patching problem. In Section 6.3, we formally define

the PMU patching problem as an instance of a sensor patching problem using set theoretic

approach. We also show it is NP-complete. The BILP formulation of the problem using the

asymmetric representatives method is also introduced in this section. In Section 6.4 we

introduce a polynomial-time algorithm that finds an optimal two round patching plan on a

tree and prove its correctness. Section 6.5 discusses the heuristic algorithm for the general

case networks. Results from the heuristic approach and the ILP solver are presented and

compared in Section 6.6. Section 6.7 provides concluding remarks and future directions.

6.2 PMU Patching Problem

In this section, we briefly describe our assumptions on state estimation and system observ-

ability. We also introduce the system model and define the PMU patching problem.

6.2.1 State Estimation and Assumptions

The static estimation of a power system state is defined as determining the phase-to-ground

voltage phasors at all the system buses through analysis of measurements collected from

different locations of the grid [119]. The state estimator uses the set of measurements along

with the power system model as an input to compute the most likely state of the grid at a given

time. The set of measurements may come from conventional P-Q measurement devices that

measure real and reactive nodal power injection and real and reactive line power flows or from

phasor measurement units (PMUs) that directly measure nodal voltage magnitudes and phase

angles and branch current magnitudes and phase angles.

The measurement model for system estimators is defined by [120]

z = h(x)+v (6.1)

where z = (z1, z2, ..., zm)T is an m-dimensional measurement vector; x = (x1, x2, ..., xn)T is

an n-dimensional state vector (phase-to-ground voltage phasors at all the system buses);

v = (v1, v1, ..., vm)T is an m-dimensional random measurement error vector. The measurement

errors are assumed to be independent, zero-mean Gaussian variables with known covariance

matrix W. W is a diagonal matrix with values σ2
i , where σi is the standard deviation of the

error associated with measurement i . h(x) = (h1(x),h2(x), ...,hm(x))T is a vector of power flow

functions relating error free measurements to the state variables.

Although state estimation using AC power flow model is more accurate, it can be computation-
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ally expensive and may not always converge to a solution. Therefore, power system engineers

use DC power flow model which is a simplification, and linearization of an AC power flow

model. In the DC power flow model, the measurement model is represented by the following

linear regression model [28],

z = Hx+v (6.2)

where H is an mxn matrix that reflects the configuration of the system.

Given the imperfect set of measurements z, the purpose of a state estimator is to determine

an optimal estimate x̂ of the system state that best fits the measurement model.

In this Chapter, we consider only measurements from PMUs. We assume that a PMU placed

in a bus has enough number of channels to measure the bus’ voltage phasor as well as the

phasor currents of all lines incident to the bus.

6.2.2 Observability Rules

System observability depends on the connectivity among the buses as well as the location

where measurement devices are placed. A power system is fully observable if all its buses are

observable. A bus is said to be observable if the bus’ state (voltage phasors) can be estimated

from the set of available measurements. As stated above, we focus on system observability

using measurements from PMUs. A bus is observable if a PMU is placed at the bus or if any of

its neighboring buses have a PMU placed at them [107, 109, 121]. This condition implies that

the system is fully observable if and only if the matrix H introduced in Equation 6.2 has full

rank. There are other observability rules that exploit the presence of zero-injection buses that

we don’t consider in this chapter and leave for future work.

6.2.3 System Model and Problem Definition

We model a power system as an undirected graph on the set of vertices B = {1,2, ...,n} that

represent the buses. We define the set P = {1,2, ...,m} as the set of PMUs deployed in the power

system and β : P → B the mapping such that β( j ) = b when PMU j is placed at bus b. From

hereon, we use PMU bus to refer to a bus where a PMU is placed at.

During the time a utility rolls out a software patch, a PMU in a grid is in one of the following

three states:

• State (1): unpatched and streaming phasor measurement,

• State (2): being patched and offline,

• State (3): patched and streaming phasor measurement.
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We assume that a state estimator receives and processes measurements from PMUs that are

in state (1) as well as those in state (3) to compute the system state during the patching time

window. Further, we assume that no PMU goes offline due to failure during the time a software

patch is being rolled out.

A PMU patching problem is stated as finding a partitioning of deployed PMUs into as few

disjoint groups as possible such that all the PMUs in one group can be transformed from State

(1) through State (2) to State (3) in one round while the PMUs in all the other subsets provide

full system observability during that round. Once such a partition of the PMU set is found, the

patch is applied to all PMUs in as many rounds as there are subsets in the partition.

Note that a feasible patching plan exists if and only if every bus is observed by at least two

PMUs. Indeed, if each bus is observed by at least two PMUs, there exists a patching plan

that patches one PMU at a time and all the buses that are observed by this PMU will still

be observed during that round by the remaining PMU(s). Such a patching plan requires as

many rounds as there are deployed PMUs. Conversely, if we have full observability during

all patching rounds, it means each bus has at least one PMU that is not being patched at any

given round. Since this PMU has to be patched in one of the rounds, the bus must have at

least one other PMU which makes it observable during that round. Hence the bus is observed

by at least two PMUs (See Figure 6.1 for an example).

1 2 3 

5 6 4 

8 9 7 

2 

5 4 

8 9 7 

1 3 

6 

Non-PMU bus PMU bus 

(a) (b) 

Figure 6.1 – A feasible patching plan exists if and only if every bus is observed by at least two
PMUs. (a) no feasible patching plan (b) A feaisble patching plan exists.

6.3 The Sensor Patching Problem (SPP)

In this section we give a set theoretic formulation of our problem, which we call the sensor

patching problem (SPP). Further, we prove that it is NP-complete and give an ILP formulation.
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6.3.1 Set Theoretic Formulation and NP-completeness Proof of SPP

Let B = {1,2,3, ...,n} is a finite set of sites to be observed and P = {1,2,3, ...,m} is a finite set of

sensors that observe the sites. Further, let Γ : B → 2P be a mapping such that Γ(b) is the set of

sensors in P that observe site b ∈ B . In our PMU patching problem, Γ(b) is the set of PMUs

placed in bus b, if there is one, and in any of the buses that are adjacent to b.

Definition 1. Given a non-empty finite set P , a k-tuple {c1,c2,c3, ...,ck } partitions P if:

• ci 	= 
,∀i ∈ {1,2, ..,k}.

• ∪k
i=1ci = P .

• ci ∩c j =
, for 1 ≤ i < j ≤ k.

A feasible sensor patching plan is a partition {c1,c2,c3, ...,ck } of the set P such that the following

observability condition is satisfied:

|Γ(b) \ ci | ≥ 1,∀b ∈ B , and i = 1,2, ...,k (6.3)

Each subset ci in the family of subsets that partition P defines the set of sensors that are

patched at round i . A given sensor placement P has a feasible patching plan if and only if

|Γ(b)| ≥ 2,∀b ∈ B , i.e., each site is observed by at least two sensors.

The sensor patching problem (SPP) is finding a sensor patching plan that minimizes k. Below,

we show that the decision problem version of the SPP is NP-complete.

SPP Decision problem:

• Instance: Finite sets B and P , a mapping Γ : B → 2P and an integer k ≥ 2.

• Question: Is there a partitioning of the set P into at most k disjoint subsets {c1,c2,c3, ...,ck }

such that the observability condition in Eq. 6.3 is satisfied?

Theorem 1. The decision version of SPP is NP-complete.

Proof. The first step of the proof is to show that SPP is in NP. Given a nondeterministically

selected partition of P into k disjoint subsets, we can determine if the partition satisfies the

observability condition in Eq. 6.3 in polynomial time. Hence SPP is in NP.

The second step of our proof is to select a known NP-complete problem and construct a

polynomial-time transformation that maps any instance of the NP-complete problem to an

SPP problem. For our proof, we choose the hypergraph coloring problem (HCP), which is

NP-complete.
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A hypergraph is denoted by H = (V ,E), where V is a finite set of vertices and E is a set of

hyperedges whose elements are subsets e ⊆ V such that ∪e∈E = V . Given a hypergraph

H = (V ,E ) and an integer k ≥ 2, a k-coloring of a hypergraph H is an allocation of colors to the

vertices such that:

• A vertex has just one color.

• We use k colors to color all the vertices.

• No hyperedge with a cardinality more than one has all its vertices of the same color, i.e.,

no such hyperedge is monochromatic.

Any feasible coloring of a hypergraph using k colors induces a partition of the set of vertices V

in k color classes: {c1,c2,c3, ...,ck } such that for e ∈ E , |e| ≥ 2 then e 	⊂ ci ,∀i ∈ {1,2,3, ...,k} [122].

HCP Decision problem:

• Instance: Hypergraph H = (V ,E), an integer k ≥ 2.

• Question: Is there a partitioning of the set of vertices V into at most k classes {c1,c2,c3, ...,ck }

such that ∀e ∈ E , |e| ≥ 2, e 	⊂ ci ,∀i ∈ {1,2,3, ...,k}?

Having introduced HCP, let’s now look at how to transform an instance of an HCP to an

instance of SPP in polynomial time. Given an instance HC P (V ′,E ′,k) where |e ′| ≥ 2,∀e ′ ∈ E ′,
we construct an instance SPP (P ′,B ′,Γ,k), where P ′ ← V ′, B ′ ← E ′, k ← k, Γ ← I dE such

that Γ : e ′ → e ′,∀e ′ ∈ E ′. This transformation from HCP to SPP is a polynomial-time (trivial)

transformation.

Assume we have an oracle that solves any given SPP decision problem. The oracle outputs

“yes" to the instance SPP (P ′,B ′,Γ,k) if and only if there exists a partition of P ′ to k subsets

{c1,c2,c3, ...,ck } such that (Γ(b′) \ ci ) 	= 
,∀b′ ∈ B ′,∀i ∈ {1,2,3, ...,k}. Because of the mapping

stated above, this is also the same as saying the oracle outputs “yes" if and only if e ′ 	⊂ ci ,∀e ′ ∈
E ′,∀i ∈ {1,2,3, ...,k}, which is the same as the “yes" output if there is a solution to the HCP

decision problem. Therefore, if we can transform HCP to SPP and solve it, it means SPP is at

least as hard as HCP. Hence, SPP is NP-complete.

By showing that the SPP is as hard as HCP, it also follows that even if we were told the set of

sensors in a given instance of SPP could be patched in only two rounds, there is no efficient

algorithm that can find any reasonable approximation for the number of rounds.
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6.3.2 BILP Formulation of SPP

Now that we have shown SPP is NP-complete, we formulate it as a binary integer linear

programming (BILP) minimization problem and use a BILP solver to find optimal solutions

for small size networks and sub-optimal solutions for large network sizes.

To formulate SPP as a BILP problem, we use the representatives method introduced in [123].

As stated above, our goal is to find the minimum number of subsets {c1,c2, ...,ck } that partition

set P such that for any b ∈ B the sensors in Γ(b) cannot all be assigned to the same subset.

The representatives formulation, as its name indicates, chooses one element from each of

the partitioning subsets as a representative element to the subset (to all the elements in the

subset). Therefore, each element in P can be in one of two states: either it represents the

subset it is an element of or there exists another element that represents its subset. To describe

this, we use an m ×m matrix r of binary variables where m = |P | is the number of sensors and

the variables are defined by:

ri , j =
{

1 if element i represents element j ,

0, otherwise
(6.4)

Variable ri , j can be 1 only if elements i and j are in the same subset. By definition the

representative elements are the elements i with ri ,i = 1. If ri ,i = 1, the row ri ,_ is an indicator

vector of one of the subsets that partition the set P .

A BILP formulation of SPP is given as follows:

min
m∑

i=1
ri ,i (6.5)

s.t.
m∑

i=1
ri , j = 1, ∀ j ∈ {1,2, . . . ,m} (6.6)

∑
j∈Γ(b)

ri , j < |Γ(b)|ri ,i ,

∀b ∈ B , ∀i ∈ {1,2, . . . ,m} (6.7)

ri , j ∈ {0,1},∀i , j ∈ {1,2, . . . ,m} (6.8)

Claim 1. A solution to the BILP problem 6.5 - 6.8 is an optimal solution to the SPP.

Proof. Constraint (6.6) guarantees each sensor has only one representative. Since each subset

has only one representative sensor, this constraint is equivalent to saying each sensor is

assigned to only one subset. This means two things: first, it means no two subsets can have a

common element; second, the union of the subsets is P . Therefore, the subsets are feasible
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partitions of set P . Constraint (6.7) makes sure that the sensors in the set Γ(b) cannot all

choose the same representative sensor i and requires that ri ,i = 1 if sensor i is chosen as

representative to one of the sensors in Γ(b). This constraint guarantees that every bus has

at least two of the sensors that observe it assigned to different subsets, i.e., the observability

condition is satisfied. Constraint (6.8) states the variables are binary.

All the constraints represent the constraints for an SPP. Since the objective function (6.5)

minimizes the number of representative sensors, which is the same as minimizing the number

of subsets that partition P , the solution to the BILP problem is an optimal solution to the

optimization version of SPP.

In Section 6.6, we solve the above BILP problem using the LP solver package lpsolve [124] for

different bus systems.

6.4 The Case of Radial Structured Networks

In section 6.3, we have seen that the general case PMU placement is NP-complete. Therefore,

the problem is in general solved using a heuristic approach. However, there is an important

case (when the grid has a radial structure) where the problem can be optimally solved in

polynomial time. The special case is of interest to us because the active configuration of many

power distribution networks has a radial (tree) structure.

Theorem 2.

1. Given a system model as stated in Section 6.2 where the graph is a tree and a PMU

placement P that has a feasible patching plan (∀b ∈ B , |Γ(b)| ≥ 2), the minimum number

of rounds required to patch all PMUs is equal to 2.

2. An optimal patching plan is given by Algorithm 1; its complexity is O(|B |2).

In the description of the algorithm, we phrase the problem as a two-coloring problem and say

that two PMUs have the same color if they are allocated to the same round. We say c0 [resp.

c1] is the set of PMUs that are assigned to the first [resp. second] round i.e., colored in, say, red

[resp. blue].
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Algorithm 1 Find a 2-round patching plan on a tree

Inputs: P,B ,Γ,β

Output: c0,c1

Steps

1. Select one bus ρ ∈ B and call it the root of the tree.

2. For each j ∈ P , color j according to its distance from the root d(β( j ),ρ) and build the

color classes c0 and c1 as follows:

∀i ∈ {0,1},ci =∪{ j : i = d(β( j ),ρ) mod 2} (6.9)

3. While ∃b ∈ B that violates the condition:

∀i ∈ {0,1}, |Γ(b) \ ci | ≥ 1 (6.10)

(a) Select b with the maximum d(b,ρ) (breaking ties arbitrarily).

(b) Select a PMU bus u that is a child of b and let Tu denote the sub-tree rooted at u.

(c) Update the color assignment of the PMUs by flipping the color of each PMU

placed in a bus in Tu .

4. End while

Figure 6.2 shows how the algorithm progresses on a 13-bus power system that deploys 10

PMUs.

To prove that Algorithm 1 is correct, we need to verify two properties:

• The algorithm is well-defined, i.e., at Step 3b, vertex b ∈ B always has a child that is a

PMU bus.

• The algorithm terminates.

Lemma 1. At the beginning of each iteration, the selected vertex b that violates the condition

in Eq. (6.10) is not a PMU bus (and hence one of its children is a PMU bus). Moreover, after

the iteration, the updated coloring causes vertex b to satisfy the condition and no vertex that

satisfies the condition by the previous coloring violates the condition as a result of the updated

coloring.

Proof. We claim that initially all the vertices that violate the condition in Eq. (6.10) are not

PMU buses. This is true by the design of the initial coloring. By definition, all PMUs in Γ(b)

except the PMU placed in b (if there is one) are assigned the same color, which is different
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Non-PMU bus PMU bus 

Initial 2-coloring Final 2-coloring 

Figure 6.2 – A polynomial-time algorithm to find two disjoint subsets of a set of 10 deployed
PMUs in a 13-bus system such that one subset of PMUs can provide full observability while
the other subset of PMUs is being patched.

from the color of the PMU in b, in the initial coloring. Therefore, |Γ(b)| ≥ 2 implies that b

cannot be a PMU bus if it violates the condition.

Now consider an iteration where the coloring is changed. Let b be the selected violating vertex.

As we will show that our algorithm does not introduce any new violating vertex and in our

initial coloring we have shown b is not a PMU bus, |Γ(b)| ≥ 2 implies that at least one child

of b must be a PMU bus. So Step 3b is well defined. Let u ∈ B be the selected child of b that

is a PMU bus. Recall that Tu denotes the subtree rooted at u. Now, as b was selected to be

the violating vertex farthest from the root, no vertex in Tu violates the condition by the initial

coloring. Moreover, any vertex in Tu is observed by a PMU placed in Tu because b is not a

PMU bus. Hence, flipping the colors of the PMUs placed in Tu does not introduce any new

vertices that violate the condition. In other words, no newly violating vertices are introduced

by our operation.

Now let us show that b is no longer violating the condition at the end of the iteration. Let c0,c1

and c ′0,c ′1 denote the coloring before and after the iteration, respectively. We have |Γ(b)| ≥ 2

and since the condition was violated initially, we have for some i ∈ {0,1}

|Γ(b) \ ci | = 0 and |Γ(b) \ ci⊕1| ≥ 2 (6.11)

Here ⊕ denotes addition modular 2. So after flipping the color of PMU bus u, we have

|Γ(b) \ c ′i | = 1 and |Γ(b) \ c ′i⊕1| ≥ 1 (6.12)
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and hence b satisfies the condition.

In the initial coloring, the maximum possible number of violating vertices is |B |. Since each

iteration in our algorithm fixes only one violating vertex, all violating vertices are fixed in a

maximum of |B | iterations. Each iteration runs in linear time because the maximum possible

number of vertices in any subtree Tu is |B |. Hence the complexity of the algorithm to obtain

an optimal coloring is O(|B |2). The final coloring partitions the set of PMUs into two disjoint

color classes. Consequently, all the PMUs can be patched in only two rounds by patching

PMUs in one color class in the first round and those in the other color class in the second

round.

6.5 Approximation Algorithm for Mesh Grid Structure

It is common to model NP-complete problems as ILP problems and use ILP solvers to find

optimal or suboptimal solutions for relative small size of input. However, ILP solvers tend to

be too slow to find even a suboptimal solution as the input size grows. The alternative is to use

heuristic algorithms that find approximate solutions much faster than ILP solvers. For this

reason, we propose a heuristic algorithm that finds an approximate solution to the SPP, which

we have already shown to be NP-complete.

6.5.1 A Greedy Approximation Algorithm

Before going to the details of the heuristic algorithm, let’s first define observability set o j as

the set of buses that are observed by PMU j . Given the set of buses in the grid B and the set of

PMUs P , o j is defined as follows:

o j = {b : b ∈ B , j ∈ Γ(b)} (6.13)

The collection O = {o j : j ∈ P } is a set of all the observability sets of the deployed PMUs.

The heuristic algorithm we propose follows a greedy approach that maximizes the set of PMUs

that are patched at each round while still maintaining full system observability. Given a set of

unpatched PMUs P , finding the maximum number of PMUs to patch is equivalent to finding

the minimum number of PMUs that provide full system observability, which is exactly the

same as solving the minimum set cover (MSC) problem over a universe B and a collection of

subsets O . The set of PMUs to patch is, therefore, the set that contains the PMUs that are not

in the MSC solution. Once these PMUs are patched, they will resume streaming for the rest of

the time. Therefore, the observability condition for the set of buses that are in the observability

sets of these PMUs will always be satisfied for the remaining patch rounds. Hence, before we

select the next set of PMUs to patch, we perform the following preprocessing:

• Remove all the observability sets of all the already patched PMUs from O .
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• Remove all the buses in the observability sets of the already patched PMUs from the

universe B .

• Remove all the buses in the observability sets of the already patched PMUs from the

observability set of the yet unpatched PMUs.

After the pre-processing, we proceed with the same greedy approach (solving the MSC prob-

lem) for the updated universe B and the updated collection O . We repeat this process until

B =
 (until all buses are observed by the already patched PMUs). At this stage, if there are

still any PMUs that are not yet patched (O 	= 
), we patch all such PMUs at once in the final

round. Algorithm 2 shows the pseudocode for our heuristic algorithm. The algorithm outputs

a collection C = {c1,c2, ...,ck }, where ci ⊂ P is the set of PMUs patched in round i and k is the

total number of rounds required to patch all the PMUs.

Since the MSC problem is itself NP-complete, we use the most commonly used greedy heuristic

to solve it. The greedy heuristic for MSC chooses the subset that maximizes the number of

new elements in the universe B that are not yet covered by the already selected subsets.

6.5.2 Formulation as Submodular Maximization

Here we show that the SPP can be formulated as the maximization of a submodular set

function. It is known that a greedy heuristic guarantees a reasonably good approximation to

the optimal solution for problems that are submodular and the SPP is in that category. This

may be used as a justification to why the greedy algorithm proposed above can be expected to

perform well.

Given the set of PMU’s P and m = |P |, let’s define the collection Ψ as:

Ψ= {ψ : ψ⊆ P,∪ j∈(P\ψ)o j = B} (6.14)

In other words, an element in Ψ is a set of PMUs that can be taken offline and full system

observability can still be maintained. From this, it follows that if μ ∈Ψ and μ′ ⊂μ, then μ′ ∈Ψ.

Consider a non-negative submodular set function f : 2Ψ → R+ on Ψ that assigns a non-

negative number to every subset of the set Ψ.

Claim 2. A collection C ⊂Ψ that maximizes the following set function,

f (C ) =Q · |∪c∈C c|− |C |, where Q > m is a constant. (6.15)

is an optimal solution to the SPP.

Proof. Let C ∗ = {c1,c2, ...,ck∗} be an optimal solution to the SPP. Passing C∗ as an input to f ,
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Algorithm 2 Partiton P into minimum patchable subsets using a greedy heuristic

1: Input: O ,B
2: Output: C := {c1,c2, ...,ck }
3: r ound = 1
4: while B 	= 
 do
5: σ := FindMSC(O ,B)
6: cr ound := { j : o j ∉σ}
7: C :=C ∪ {cr ound }
8: O :=O \ {o j : j ∈ cr ound }
9: B := B \ {∪o j : j ∈ cr ound }

10: for ou ∈O do
11: ou := ou \ {∪o j : j ∈ cr ound }
12: end for
13: round++
14: end while
15: if O 	= 
 then
16: cr ound := { j : o j ∈O }
17: C :=C ∪ {cr ound }
18: end if

19: procedure FINDMSC(O ,B)
20: B ′ :=

21: σ :=

22: while B ′ 	= B do
23: M axCount := 0
24: i d x = 0
25: for all o j ∈O do
26: if |o j \ B ′| > M axCount then
27: M axCount := |o j \ B ′|
28: i d x := j
29: end if
30: end for
31: B ′ := B ′ ∪oi d x

32: σ :=σ∪ {oi d x }
33: end while
34: Return σ

35: end procedure
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we get.

f (C ∗) =Q · |∪c∈C ∗ c|− |C ∗| =−k∗ +Q ·m (6.16)

We want to show that f (C ) <−k∗ +Q ·m for any input C = {c1,c2, ...,ck }, where k > k∗.

Given a collection C = {c1,c2, ...,ck } for some k ≥ 1,

f (C ) =−k +Q · |∪c∈C c| (6.17)

Let m′ = |∪c∈C c|

f (C ) =−k +Q ·m′ ≤ −k +Q · (m −1)

f (C ) ≤−k +Q · (m −1) (6.18)

Since Q > m and k∗ < k ≤ m, it is easy to show that

−k +Q · (m −1) <−k∗ +Q ·m (6.19)

Therefore,

f (C ) ≤−k +Q · (m −1) <−k∗ +Q ·m

f (C ) <−k∗ +Q ·m, ∀C where |C | > k∗ (6.20)

This means,

max
C ∈Ψ

f (C ) =−k∗ +Q ·m (6.21)

which is the same as the optimal solution for SPP.

Claim 3. The set function f in Eq. 6.15 is submodular.

Proof. Function f is submodular if for all subsets Y ⊂ X ⊂Ψ and all μ ∈Ψ\ X ,

f (Y ∪ {μ})− f (Y ) ≥ f (X ∪ {μ})− f (X ) (6.22)

We want to see if this holds true for f given in Eq. 6.15,

Q · (|∪y∈Y y ∪μ|− |Y ∪ {μ}|−Q · (|∪y∈Y y |)+|Y | ?≥
Q · (|∪x∈X x ∪μ|− |X ∪ {μ}|−Q · (|∪x∈X |)−|X | (6.23)
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Using the substitutes Y=∪y∈Y y and X=∪x∈X x, we get

Q · |Y∪μ|− |Y |−1−Q · |Y|+ |Y | ?≥
Q · |X∪μ|− |X |−1−Q · |X|+ |X | (6.24)

|Y∪μ|− |Y| ?≥ |X∪μ|− |X| (6.25)

|Y∪μ|+ |X| ?≥ |X∪μ|+ |Y| (6.26)

|(Y∪μ)∪X|+ |(Y∪μ)∩X| ?≥ |X∪μ|+ |Y| (6.27)

|μ∪X|+ |Y∪ (μ∩X)| ?≥ |X∪μ|+ |Y| (6.28)

|Y∪ (μ∩X)| ?≥ |Y| (6.29)

If μ∩X=
, the right hand side of Eq. 6.29 is the same as the left hand side. Otherwise, the

right hand side is strictly greater than the left hand side. Hence, f is submodular.

6.6 Simulation Results and Comparisons

We compare the performance of our heuristic algorithm to results obtained from an ILP solver

for different feeder bus systems. In order to make the comparison, we first find an optimal

PMU placement that has a feasible patching plan by solving the following BILP minimization

problem:

min
n∑

j=1
p j (6.30)

n∑
j=1

ai , j .p j ≥ 2 (6.31)

p j ∈ {0,1}, j ∈ {1,2, . . . ,n} (6.32)

where

ai , j =
{

1 if bus i = j or i is incident to j

0, otherwise
(6.33)

The set {pi : i ∈ B} is a set of binary variables such that pi = 1 if a PMU is placed in bus i and

pi = 0 otherwise. Solving the above BILP problem returns a placement with the fewest number

of PMUs such that each bus is observed by at least two PMUs. That means it is guaranteed

that such a placement has a feasible patching plan.

We use the open source ILP solver lpsover [124] to solve the above BILP as well as the BILP
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Table 6.1 – Performance comparison of ILP solver and a greedy algorithm for PMUs’ patching
plan.

Bus sys-
tem

PMU Placement Patching Plan from ILP Solver Greedy Patching Plan

#PMUs PMU buses Patchable groups #R Exec.
time
(sec.)

Patchable groups #R Exec.
time
(sec.)

14-Bus 9 [1, 2, 4, 6, 7, 8, 9, 11, 13] [1, 4, 7, 11, 13] [2, 6, 8, 9] 2 0.014 [2, 8, 11, 13] [1, 6, 7, 9] [4] 3 0.004
30-Bus 21 [1, 2, 3, 5, 6, 8, 9, 10, 11,

12, 13, 15, 16, 18, 19, 21,
24, 25, 26, 27, 29]

[1, 2, 6, 9, 13, 15, 16, 19,
21, 25, 29] [3, 5, 8, 10, 11,
12, 18, 24, 26, 27]

2 0.127 [3, 5, 8, 11, 13, 16, 19, 21,
24, 26, 29] [1, 2, 6, 9, 10,
15, 18, 25, 27] [12]

3 0.005

39-Bus 28 [2, 3, 6, 8, 9, 10, 11, 13, 14,
16, 17, 19, 20, 22, 23, 25,
26, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39]

[2, 6, 9, 11, 14, 17, 19, 20,
22, 23, 25, 29, 32] [3, 8,
10, 13, 16, 26, 30, 31, 33,
34, 35, 36, 37, 38, 39]

2 0.399 [8, 11, 14, 17, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39]
[3, 6, 9, 10, 13, 19, 20, 22,
23, 25, 29] [2, 16, 26]

3 0.012

57-Bus 33 [1, 2, 4, 6, 9, 11, 12, 15, 19,
20, 22, 24, 25, 26, 28, 29,
30, 32, 33, 34, 36, 37, 38,
39, 41, 44, 46, 47, 50, 51,
53, 54, 56]

[1, 6, 19, 22, 32, 36, 39, 41,
44, 51] [4, 9, 11, 15, 20, 24,
25, 28, 34, 37, 47, 50, 53,
56] [2, 12, 26, 29, 30, 33,
38, 46, 54]

3 340 [2, 6, 12, 19, 22, 28, 30, 33,
34, 39, 41, 44, 47, 51, 54]
[1, 4, 9, 11, 20, 25, 26, 32,
37, 46, 50, 53, 56] [15, 24,
29, 36, 38]

3 0.016

118-
Bus†

68 [1, 2, 5, 6, 9, 10, 11, 12, 15,
17, 19, 21, 22, 24, 25, 26,
27, 28, 29, 32, 34, 35, 37,
40, 41, 44, 45, 46, 49, 50,
51, 52, 54, 56, 59, 62, 64,
65, 66, 68, 70, 71, 73, 75,
76, 77, 78, 80, 83, 85, 86,
87, 89, 90, 92, 94, 96, 100,
101, 105, 106, 108, 110,
111, 112, 114, 116, 117]

[2, 5, 10, 12, 22, 24, 27, 28,
32, 34, 37, 41, 45, 49, 52,
56, 62, 64, 73, 75, 77, 80,
85, 87, 90, 94, 101, 105,
110, 116] [1, 6, 9, 11, 17,
21, 25, 29, 35, 40, 44, 46,
50, 51, 54, 59, 65, 66, 68,
70, 71, 76, 78, 83, 86, 89,
92, 96, 100, 106, 108, 111,
112, 114, 117] [15, 19, 26]

3 500 [2, 6, 10, 15, 19, 22, 26,
29, 35, 41, 44, 46, 54, 56,
65, 66, 73, 76, 78, 83, 87,
90, 96, 101, 106, 108, 111,
112, 114, 116, 117] [1, 9,
11, 12, 21, 27, 28, 32, 34,
40, 45, 50, 52, 62, 64, 71,
75, 77, 80, 86, 89, 94, 105,
110] [5, 17, 25, 37, 49, 51,
59, 68, 70, 85, 92, 100]
[24]

4 0.125

189-
Bus†

160 [1, 4, 5, 6, 7, 8, 9, 10, 12,
13, 14, 15, 16, 17, 18, 19,
20, 21, 24, 26, 27, 28, 29,
31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44,
45, 47, 48, 49, 50, 51, 52,
53, 54, 55, 58, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 76, 77,
78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91,
94, 95, 96, 97, 98, 99, 100,
101, 102, 104, 105, 106,
107, 108, 110, 111, 112,
113, 114, 115, 117, 118,
120, 121, 122, 123, 124,
126, 127, 128, 129, 130,
131, 134, 135, 136, 137,
138, 139, 141, 142, 143,
144, 145, 147, 150, 151,
152, 153, 154, 155, 156,
157, 159, 160, 162, 163,
164, 165, 167, 168, 169,
170, 171, 172, 173, 174,
175, 176, 178, 179, 180,
181, 182, 183, 184, 185,
186, 187, 188, 189]

[1, 9, 13, 14, 15, 17, 24, 26,
31, 39, 40, 42, 45, 49, 60,
62, 66, 69, 71, 72, 78, 81,
82, 84, 88, 91, 94, 98, 100,
101, 104, 106, 108, 110,
114, 115, 117, 120, 126,
127, 130, 134, 138, 141,
144, 145, 147, 156, 159,
162, 168, 169, 174, 175,
176, 178, 179, 180, 181,
184, 186, 187] [5, 8, 10,
12, 16, 18, 19, 20, 21, 27,
28, 29, 32, 33, 34, 36, 37,
38, 41, 44, 47, 48, 50, 51,
52, 53, 54, 58, 61, 63, 64,
67, 68, 70, 73, 76, 77, 79,
83, 85, 86, 89, 96, 97, 102,
105, 111, 112, 113, 122,
123, 128, 129, 131, 136,
137, 139, 142, 143, 150,
151, 154, 155, 157, 160,
164, 165, 167, 172, 173,
182, 183, 185, 189] [4, 6,
7, 35, 43, 55, 65, 74, 80,
87, 90, 95, 99, 107, 118,
121, 124, 135, 152, 153,
163, 170, 171, 188]

3 500 [4, 6, 8, 9, 10, 13, 14, 16,
18, 19, 20, 21, 27, 28, 29,
32, 33, 34, 36, 37, 38, 42,
43, 45, 47, 48, 50, 51, 52,
53, 54, 55, 58, 61, 63, 65,
67, 68, 70, 74, 77, 79, 80,
81, 83, 85, 87, 89, 91, 95,
96, 98, 99, 100, 101, 102,
106, 107, 108, 111, 112,
114, 115, 117, 121, 122,
124, 128, 129, 131, 135,
136, 138, 142, 144, 145,
147, 150, 151, 154, 157,
160, 164, 165, 168, 169,
171, 172, 174, 175, 176,
178, 179, 180, 181, 182,
183, 186, 187, 189] [5, 7,
12, 15, 17, 31, 35, 39, 40,
41, 44, 49, 60, 62, 64, 66,
69, 73, 76, 78, 82, 84, 86,
88, 90, 94, 97, 104, 105,
113, 118, 120, 126, 127,
130, 134, 139, 141, 152,
153, 156, 159, 162, 163,
170, 173, 184, 185, 188]
[1, 24, 26, 71, 72, 110,
123, 137, 143, 155, 167]

3 0.438

4941-
Bus‡

3468 No enough space to dis-
play

ILP solver did not con-
verge

NA NA No enough space to dis-
play

4 7716

#R:= number of rounds
†The ILP results for 118-bus and for 189-bus systems are sub-optimal. The simulation was stopped after 500 seconds.
‡The ILP solver does not have enough memory space to solve the 4941-bus system.
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formulation for the SPP introduced in Section 6.3.2. We use a laptop with an Intel 2.8 GHz

Core i 7 processor and 8GB RAM running Ubuntu 12.04 with Linux 3.2 for the simulations.

Our results in Table 6.1 show the optimal PMU placement and the number of rounds obtained

both from the ILP solver and from the heuristic algorithm for different bus systems. The

4941-bus system represents the power transmission grid covering much of the western states

in the United States as presented in [125]. The system has 4941 buses and 6594 branches. The

data set for the bus system was obtained from [126]. The 189-bus system 1 represents Iceland’s

transmission network. It has 189 buses and 206 branches. All the other bus systems used in

the simulation are the standard IEEE bus systems 2.

The simulation results show that the ILP performs better than the greedy algorithm in terms

of finding fewer (optimal) number of rounds for small size networks. However, the execution

time for the ILP solver quickly increases as the network size increases. The execution times for

the 118-bus and the 189-bus systems are too large that we had to stop the executions after 500

seconds forcing it to return sub-optimal solutions. Similarly, the memory requirement for the

4941-bus system is too large that the ILP solver could not solve it even sub-optimally using the

machine we used for the simulation. Although the greedy approach does not find the optimal

patching plan even for the small size networks, it finds a sub-optimal solution much faster. It

is also solves the 4941-bus system and finds a total number of rounds equal to only 4 within

7991 seconds. One can only imagine how slow an ILP solver can be to solve this problem even

if the machine had enough memory size.

It is important to remember that a patching plan obtained using either of the methods can

be re-used only if the network setting remains static. If there is change either in the PMU

placement or in the connectivity among the buses, a utility needs to re-compute the patching

plan for the new setting.

6.7 Conclusion

We have studied the PMU patching problem that arises when a utility wants to maintain

system observability while applying software patches to PMUs. We have used set theoretic

formulation to model the problem as an instance of sensor patching problem, which we have

shown to be NP-complete. We have proved that finding an optimal solution to the problem

is equivalent to maximizing a submodular set function and proposed a heuristic algorithm

that finds a sub-optimal solution. We have also formulated the problem as a BILP problem

and solved it using an ILP solver. A comparison of the performance of the ILP solver and the

greedy heuristic is also presented. Moreover, we have shown an interesting case, when the

power grid has a radial structure, for which we have devised a polynomial-time algorithm that

finds an optimal patching plan that requires only two rounds.

1http://www.maths.ed.ac.uk/optenergy/NetworkData/
2http://www2.ee.washington.edu/research/pstca/
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6.7. Conclusion

While studying the PMU patching problem, we have made simplifying assumptions in that

we did not consider observability rules that exploit the presence of zero-injection buses as

well as conventional P-Q measurements. As future works, we plan to study the effect of

these observability rules on the PMU patching problem. We also plan to consider PMUs with

limited channel capacity that measure only the nodal voltage and current phasors. Taking

this assumption on a PMU’s capacity is also interesting for the well-studied PMU placement

problem.
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7 Conclusions

In this thesis we studied cybersecurity issues and counter measures in active power distribu-

tion networks. The presence of long-lived heterogenous devices with diversified computing

power, support for applications with different latency requirements and a complex unpro-

tected information and communication infrastructure demands for fine-grained security

solutions that are tailored to the needs of specific applications in the grid.

We started by performing a threat analysis of a typical active distribution network. We cover

threats that could emanate from malicious insiders and outsiders. We then proposed cyberse-

curity solutions and best practices to counter the threats. Our solutions provide protection

against malicious agents who might try to exploit an emergency situation that creates an

islanded communication zone to install rogue devices. We also build a secure communication

network for the EPFL-campus smart grid pilot using the proposed solutions as guidelines.

Furthermore, we studied the security aspects of two OAM protocols for MPLS-TP, a technology

that is envisioned to be used for long-distance inter-domain communication in smart grid.

We focus on BFD and PSC protocols, two protocols that are responsible for monitoring the

state of the network and for facilitating protection switching when a fault occurs. Following a

literature review that shows lack of a unified security guidelines for these protocols, we built

a testbed to study if one of the major network device manufacturers provides appropriate

security solutions for these protocols. Our findings revealed there is no support for source

authentication in both protocols. This allowed us to carry out several spoofing attacks with

severe consequences on the network’s availability.

In order to identify a suitable multicast source authentication scheme for grid monitoring

systems, we studied existing schemes and experimentally compared a selected set of schemes

on the EPFL-campus smart grid pilot. Our findings show that an ECDSA implementation that

uses pre-generated tokens for signature generation performs better than other candidates.

This contradicts the widely held belief that asymmetric cryptography is too computationally

expensive to be applicable for real time applications. Two factors played a role in reaching

at this conclusion: (1) the not-so-high message sending rate of a PMU provides enough CPU
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time that can be used to pre-generate tokens, (2) a key length that guarantees an intermediate

security level is sufficient because authentication for real-time applications is a short-term

issue.

The final part of the thesis dealt with a software patch planning problem for PMUs in a smart

grid. Given a software patch that requires rebooting, we wanted to find a partitioning of the

set of the deployed PMUs into as few subsets as possible such that all the PMUs in one subset

can be patched at a time while all the PMUs in the other subsets provide full observability

of the grid. We have modelled the problem as an instance of a sensor patching problem

and have proved it to be NP-complete. Further, we have formulated the problem as a binary

integer linear programming (BILP) problem and used an ILP solver to find a patching plan

for relatively small-size networks. Moreover, we have proved that finding an optimal solution

to the problem is equivalent to maximizing a submodular set function and we obtained an

approximate solution using a heuristic algorithm based on a greedy approach. The results

show that whereas the ILP solver does not converge for large-size networks, our heuristic

algorithm finds a plan takes only small number of rounds even for very large networks (e.g.,

only 4 rounds for a 4941 bus system that deploys 3468 PMUs). For a special case of the

problem where the grid is a tree, we have provided a polynomial-time algorithm that finds an

optimal plan that patches all the PMUs in only two rounds. One way to extend this work is

to consider different sets of constraints on the observability rules and to take measurements

from non-PMU devices into consideration.
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