
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Ph. Thiran, président du jury
Prof. H. Bourlard, Dr R. Collobert, directeurs de thèse

Dr C. Schmid, rapporteuse
Prof. R. Fergus, rapporteur
Dr M. Salzmann, rapporteur

Large-Scale Image Segmentation with Convolutional
Networks

THÈSE NO 7571 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 17 FÉVRIER 2017

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2017

PAR

Pedro Henrique OLIVEIRA PINHEIRO

“It irritated him that the “dog” of 3:14 in the

afternoon, seen in profile, should be indicated by

the same noun as the dog of 3:15, seen frontally...”

“My memory, sir, is like a garbage heap”

— from Funes the Memorious, Jorge Luis Borges

To my parents.. . .

Abstract
Object recognition is one of the most important problems in computer vision. However, visual recogni-

tion poses many challenges when tried to be reproduced by artificial systems. A main challenge is the

problem of variability: objects can appear across huge variations in pose, appearance, illumination

and occlusion, and a visual system need to be robust to all these changes. In the present thesis, we are

interested in pixel-level recognition problems, i.e., problems in which the objective is to partition a

given image into multiple regions (overlapping or not) that are considered meaningful according to

some criterion.

Our interests are in algorithms that require the least amount of feature engineering and are easy to

scale. Deep learning methods fit very well with this objective: these models alleviate the need of

engineered features by discriminatively training a system from raw data (pixels). More precisely, we

propose different convolutional neural network (CNN) based algorithms to deal with three important

segmentation problems: semantic segmentation, object proposal generation and object detection with

segments.

The objective of semantic segmentation is to generate a categorical label to each pixel present in a

scene. We first study the problem of fully supervised semantic segmentation. We propose a recurrent

CNN that is able to consider a large input context (while limiting its capacity), which is essential to

model long range pixel label dependencies. This approach achieves state-of-the-art performance

without relying on any post-processing smoothing step. However, having densely labeled images to

train a model can be expensive and require a lot of human labor. We also propose a CNN-based model

that is able to infer object semantic segmentation by leveraging only the object category information

from images. This is achieved by casting the problem into a multiple instance learning framework. This

approach beats previous state of the art in weakly supervised semantic segmentation by a large margin.

Object proposal algorithms generate a set of regions (segments) that are likely to contain objects,

independent of their semantic category. Contrary to most approaches (which rely on low-level vision

cues), we propose a CNN-based discriminative approach that is able to learn segmentation proposals

from raw pixels. This approach is proven to be quite effective in this setting, achieving substantially

higher recall using fewer proposals than other methods. The state of the art is pushed further with the

introduction of a new top-down network augmentation. The resulting bottom-up/top-down network

combines low-level rich spatial information with high-level object semantic information to improve

segmentation, while remaining fast at test time.

Finally, we show that the proposals generated by our approach, when coupled with a standard state-of-

the-art object detection pipeline, achieve considerably better performance than previous proposals

methods.

Key words: object recognition, artificial neural networks, deep learning, semantic segmentation, object

proposals, object detection, image segmentation.

i

Résumé
La reconnaissance d’objets est l’un des problèmes les plus importants de la vision par ordinateur.

Cependant, la reconnaissance visuelle pose de nombreux défis lorsqu’on essaie de la reproduire par des

systèmes artificiels. Un défi important est le problème de la variabilité : les objets peuvent apparaître

à travers d’énormes variations de pose, d’apparence, d’illumination et d’occlusion, et un système

visuel doit être robuste à tous ces changements. Dans la présente thèse, nous nous intéressons à des

problèmes de reconnaissance au niveau des pixels, c’est-à-dire des problèmes dans lesquels l’objectif

est de partitionner une image donnée en plusieurs régions (chevauchantes ou non) considérées comme

significatives selon un certain critère.

Nos intérêts sont dans des algorithmes qui nécessitent le moins d’ingénierie de fonctionnalité et

sont faciles à mettre en échelle. Les méthodes d’apprentissage profond s’accordent très bien avec cet

objectif : ces modèles allègent le besoin de fonctionnalités techniques en formant discriminativement

un système à partir de données brutes (pixels). Plus précisément, nous proposons différents algorithmes

basés sur le réseau neuronal convolutif (CNN) pour traiter trois problèmes de segmentation importants :

la segmentation sémantique, la génération de propositions d’objets et la détection d’objets avec des

segments.

L’objectif de la segmentation sémantique est de générer un label catégorique pour chaque pixel présent

dans une scène. Nous étudions d’abord le problème de la segmentation sémantique entièrement

supervisée. Nous proposons un CNN récurrent capable de considérer un contexte d’entrée important

(tout en limitant sa capacité), ce qui est essentiel pour modéliser les dépendances d’étiquettes de pixel

à longue portée. Cette approche permet d’obtenir des performances de pointe sans compter sur une

étape de lissage après-traitement. Cependant, avoir des images fortement marquées pour entrainer

un modèle peut être coûteux. Nous proposons également un modèle basé sur CNN qui est capable

d’inférer la segmentation sémantique d’objets en utilisant uniquement les informations de catégorie

d’objet à partir d’images. Ceci est réalisé en jetant le problème dans le cadre d’apprentissage à instance

multiple. Cette approche dépasse largement l’état de l’art dans le cadre de segmentation sémantique

faiblement supervisée.

Les algorithmes de proposition d’objet génèrent un ensemble de régions (segments) susceptibles de

contenir des objets, indépendamment de leur catégorie sémantique. Contrairement à la plupart des

approches (qui s’appuient sur des indices de vision de bas niveau), nous proposons une approche

discriminative basée sur CNN capable d’apprendre des propositions de segmentation à partir de pixels

bruts. Cette approche s’est révélée très efficace dans ce contexte, ce qui a permis d’obtenir un rappel

beaucoup plus important en utilisant moins de propositions que d’autres méthodes. L’état de l’art est

poussé plus loin avec l’introduction d’une nouvelle augmentation de réseau de haut en bas. Le réseau

ascendant / descendant résultant combine des informations spatiales riches de faible niveau avec

des informations sémantiques d’objet de haut niveau pour améliorer la segmentation tout en restant

rapide en inference.

Enfin, nous montrons que les propositions générées par notre approche, associées à un pipeline de

iii

détection d’objets de pointe, atteignent des performances nettement meilleures que les méthodes de

propositions précédentes.

Mots clefs : reconnaissance d’objet, réseaux de neurone artificielle, apprentissage profond,

segmentation sémantique, proposition d’objets, détection d’objet, segmentation d’image.

iv

Acknowledgements
First of all, I would like to thanks my two mentors throughout my PhD: Ronan Collobert

and Piotr Dollár. I specially thank Ronan for introducing me to the research world (by first

offering me an internship then the doctoral studies) and all the teaching in machine (and

deep) learning. I specially thank Piotr for the invaluable help and support and all the computer

vision insights I learned. I also would like to thank Prof. Hervé Bourlard for making Idiap

such a nice place to work and providing support when needed, Nadine and Sylvie for always

being very helpful in any bureaucratic need. I am also very grateful for NCCR-IM2, Idiap and

Facebook for financial support.

I am also very grateful for my thesis committee for their time and dedication: Jean-Philippe

Thiran, Mathieu Salzmann, Cordelia Schmid and Rob Fergus. Thank you very much for the

insightful comments and discussion.

A special thanks goes to my friends of the AML group at Idiap: Dimitri, Rémi and Joel. Thank

you so much for all the neural net tricks, coffee breaks, geeky discussions and help in improving

my French skills. I would also like to give a special thank to Özgün, for being around during

the thesis, providing good laughs, help and support whenever needed.

Finally, I would like to thank my family for all the love and inspiration throughout so many

years. Thank you for supporting my decision of moving to Europe to pursue my dream when I

was so young and naive. Without you, I would never have been here now.

Lausanne, 20 January 2017 Pedro O. Pinheiro

v

Contents
Abstract (English/Français) i

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Overview . 1

1.2 Objectives . 3

1.3 Thesis Contributions . 4

1.4 Thesis Outline . 6

2 Background 9

2.1 Large-Scale Segmentation . 9

2.1.1 Semantic Segmentation . 9

2.1.2 Object Proposals . 12

2.1.3 Object Detection . 15

2.2 Representation Learning with Deep Learning . 17

2.2.1 Multilayer Perceptron . 17

2.2.2 Convolutional Neural Networks . 18

2.2.3 Learning . 20

2.3 Summary . 24

3 Learning to Segment a Scene with Recurrent Convolutional Networks 25

3.1 Related Work . 26

3.2 Method Description . 27

3.2.1 Convolutional Neural Networks for Scene Labeling 27

3.2.2 Long Range Label Dependencies . 29

3.2.3 Recurrent Network Approach . 30

3.2.4 Scene Inference . 31

3.3 Experimental Results . 32

vii

Contents

3.3.1 Plain Network . 33

3.3.2 Recurrent Architectures . 34

3.3.3 Inference Time and Performance . 35

3.4 Summary . 36

4 Learning to Segment with Image-Level Label 39

4.1 Related Work . 40

4.2 From Image-level to Pixel-level labeling . 42

4.2.1 Multiple Instance Learning . 43

4.2.2 Inference . 45

4.3 Experiments . 47

4.3.1 Datasets . 47

4.3.2 Experimental Setup . 47

4.3.3 Experimental Results . 49

4.4 Summary . 50

5 Learning to Generate Object Segments 53

5.1 Related Work . 54

5.2 DeepMask Proposals . 55

5.2.1 Network Architecture . 56

5.2.2 Joint Learning . 58

5.2.3 Full Scene Inference . 58

5.2.4 Implementation Details . 59

5.3 Architecture Optimization . 60

5.3.1 Trunk Architecture . 60

5.3.2 Head Architecture . 62

5.4 Experimental Results . 62

5.4.1 Architecture Variants . 64

5.4.2 Comparison with State of the Art . 65

5.5 Summary . 66

6 Learning to Refine Object Segments 69

6.1 Related Work . 71

6.2 Learning Mask Refinement . 72

6.2.1 Refinement Overview . 73

6.2.2 Refinement Details . 74

6.2.3 Training and Inference . 75

6.3 Experimental Results . 76

6.3.1 SharpMask Analysis . 77

6.3.2 Comparison with State of the Art . 78

6.4 Summary . 79

viii

Contents

7 Application of Proposals: Learning to Detect Objects 83

7.1 Overview of Fast R-CNN . 83

7.2 The MultiPath Network . 85

7.3 Experimental Results . 86

7.4 Summary . 88

8 Conclusion 91

8.1 Overview . 91

8.2 Perspectives for Future Work . 92

Bibliography 105

Curriculum Vitae 107

ix

List of Figures
1.1 Object recognition subproblems. 2

1.2 Feature/representation learning comparison. 3

2.1 Semantic segmentation illustration. 10

2.2 Qualitative example of segment object proposals. 13

2.3 Qualitative example of segment intersection over union metric. 14

2.4 Classical Approaches for object proposal generation. 15

2.5 Modern object detection approaches: RCNN and Fast RCNN. 16

2.6 Simple CNN block architecture. 19

3.1 A simple convolutional network. 28

3.2 Recurrent convolutional neural network architecture with different recurrent

steps. 31

3.3 Example of interleaving for efficient scene inference in a simple convolutional

network. 32

3.4 Qualitative results on Stanford dataset. 36

3.5 Qualitative results on SIFT Flow dataset. 37

4.1 A schematic illustration of our approach to weakly supervised semantic segmen-

tation. 40

4.2 Outline of the proposed architecture for weakly supervised semantic segmentation. 42

4.3 Inference Pipeline for the weakly supervised segmentation method. 45

4.4 Qualitative results of our weakly supervised semantic segmentation method. . 51

5.1 (Top) DeepMask model architecture and (bottom) example of training triplets. 56

5.2 Output of segmentation masks and object scores applied densely to an image. 59

5.3 DeepMask architecture variants . 62

5.4 DeepMask proposals with highest IoU to the ground truth on selected images

from COCO. 63

5.5 Extra qualitative DeepMask proposals results from COCO images. 68

6.1 Architectures for object instance segmentation. 70

6.2 Qualitative comparison of DeepMask versus SharpMask segmentations. 73

6.3 Refactored refinement module . 76

xi

List of Figures

6.4 Performance for different SharpMask architectures 77

6.5 Average recall plots for different number of proposals, different object sizes and

different number of proposals. 80

6.6 Qualitative examples of SharpMask proposals . 81

7.1 Fast Regions with Convolutional Neural Networks (R-CNN) architecture. 84

7.2 MultiPath Network architecture. 85

7.3 Selected detection results on COCO. 86

7.4 Fast R-CNN detection performance versus number and type of proposals. . . . 87

7.5 Extra selected detection results on COCO. 89

xii

List of Tables
3.1 Comparison between different methods for full scene labeling. 26

3.2 Long range pixel label dependencies integration in CNN-based scene labeling

methods. 30

3.3 Pixel and averaged per class results on Stanford dataset 34

3.4 Pixel and averaged per class results on SIFT Flow dataset 35

3.5 Inference time and performance in per-pixel accuracy rCNN3 with different

label resolution . 36

4.1 Architecture of the segmenter network used in our experiments. 48

4.2 Averaged per-class accuracy of weakly supervised methods and our approach

for different PASCAL VOC datasets. 48

4.3 Per class average precision and mean average precision (mAP) on PASCAL VOC

2012 segmentation challenge test set. 50

4.4 Effect of image-level and smoothing priors on segmentation results on PASCAL

VOC 2012 validation set. 50

5.1 Model performance (upper bound on AR) for varying input size W, number of

pooling layers P, stride density S, depth D, and features channels F. 64

5.2 Different DeepMask architecture variants. 65

5.3 Quantitative results on the COCO dataset for both bounding box and segmenta-

tion proposals. 66

5.4 Quantitative results on PASCAL VOC 2007 test. 66

6.1 Results on the COCO validation set on box and segmentation proposals. 78

7.1 Performance of Fast R-CNN using different set of proposals and the same classifier. 87

7.2 Winners of the 2015 COCO object detection challenge. 88

xiii

List of Abbreviations

ANN Artificial Neural Network.

AP Average Precision.

AR Average Recall.

AUC Area Under Curve.

BPTT Backpropagation Through Time.

CNN Convolutional Neural Network.

CRF Conditional Random Fields.

DPM Deformable Part Model.

GMIM Generalized Multi-Image Model.

HOG Histogram of Oriented Gradients.

ILP Image-Level Prior.

IoU Intersection over Union.

LSE Log-Sum-Exp.

MCG Multiscale Combinatorial Grouping.

xv

List of Abbreviations

MIL Multiple Instance Learning.

MIM Multi-Image Model.

MLP Multilayer Perceptron.

MPN MultiPath Network.

MRF Markov Random Fields.

PGC Probabilistic Graphlet Cut.

R-CNN Regions with Convolutional Neural Networks.

ReLU Rectified Linear Unit.

ResNet Residual Network.

RNN Recurrent Neural Network.

RoI Region of Interest.

RPN Region Proposal Networks.

SDS Simultaneous Detection and Segmentation.

SGD Stochastic Gradient Descent.

SIFT Scale-Invariant Feature Transformation.

SP Smoothing Prior.

SURF Speeded-Up Robust Features.

xvi

List of Abbreviations

SVM Support Vector Machine.

xvii

1 Introduction

1.1 Overview

Computer vision is the science of endowing computing machines with visual perception, that

is, the ability to see. Palmer (1999) defines visual perception as being the process of acquiring

knowledge about environmental objects and events by extracting information from the light

they emit or reflect (through any optical device such as an eye or a camera). By this definition,

vision can be interpreted as the ability to model the perceivable world and achieve high-level

understanding of it. Understanding in this context means transforming visual information

into descriptions of the world.

A central problem in computer vision is that of object recognition. Humans possess a remark-

able ability to parse an image (or many images) simply by looking at them. In a blink of an

eye, we are able to fully analyze an image and separate all the components present on it.

Furthermore, humans can easily generalize from observing a set of objects to recognizing

objects that have never been seen before. Nevertheless, it has been proved particularly difficult

to build computing machines that can do this task effortlessly.

The main computational difficulty in visual recognition is the problem of variability (Riesenhu-

ber and Poggio, 2000). A vision system is required to generalize objects across huge variations

in pose, appearance, viewpoint, illumination and occlusion. In its general form, visual recog-

nition is a very difficult computational problem, which is likely to be significantly involved in

eventually making intelligent machines.

Modern object recognition can be roughly divided in four different subproblems, according to

its level of complexity (see Figure 1.1):

(a) Image classification deals with giving a label to all the objects present in a scene, indepen-

dent of its location.

(b) Object detection with boxes is interested in not only generating a label for each class but

also define its location with a bounding box surrounding each object present in an image.

1

Chapter 1. Introduction

Figure 1.1 – The four subproblems of object recognition: (a) image classification, (b) object
detection with boxes, (c) semantic segmentation and (d) object detection with segments. See
text for detail. Image taken from (Lin et al., 2014).

(c) Semantic segmentation consists of giving a label to a possible semantic category to each

pixel present in an image.

(d) Object detection with segments consists of localizing all objects on a scene in a pixelwise

manner, that is, generate a segmentation mask to every object.

Note the difference between the third and the fourth subproblem. The objective of the former

is to give a label to every pixel in an image, independent of which instance the object belongs

to. The latter has to, at the same time, label all the pixels that belong to objects and assign each

pixel to a given object instance. Subproblem (d), object detection with segments, is arguably

the most challenging problem in object recognition and can be seen as a generalization of all

previous subproblems.

In the early days of computer vision (1970s and 1980s), researchers believed that vision could

be broken up into three different stages (Malik et al., 2016): (i) low level vision, related to

processes such as edge detection, (ii) mid level vision, leading to representations of surfaces

and (iii) high level features, corresponding to object recognition (Marr, 1982). In the 1990s,

however, this idea slightly disappeared (with the exception of approaches based on multiple

view geometry) to give place to feature-based learning approaches.

Feature-based learning approaches basically consist of extracting strong descriptive features

(usually with a strong domain-specific knowledge) from images and to train a simple classifier

to discriminate between different categories (Figure 1.2, top). Features used in vision problems

evolved from edges and corners in the 1970s and 1980s to the use of linear filters such as

Gaussian derivatives, Gabor and Haar wavelets in the 1990s (Malik et al., 2016). An important

development in feature-based learning was the development of histogram-based features

such as Scale-Invariant Feature Transformation (SIFT) (Lowe, 2004), Histogram of Oriented

Gradients (HOG) (Dalal and Triggs, 2005) and Speeded-Up Robust Features (SURF) (Bay et al.,

2008).

During the 1990s, another machine learning-based paradigm for vision problems also emerged:

that of feature representation learning. In this framework, instead of using hand-crafted dis-

criminative features from pixel values in an image, this class of algorithms allow a machine to

directly discover the features (representations) needed for recognition (Figure 1.2, bottom).

2

1.2. Objectives

Figure 1.2 – Schematic representation of feature-based and representation learning for the
problem of semantic segmentation. The former first extract engineered domain-specific
features and train a simple classifier while the latter jointly learn an hierarchy of features and
the classifier at the same time.

An important class of representation learning methods are the ones called deep learning (Le-

Cun et al., 2015). This approach consists of a multiple level of representation, obtained by

composing simple non linear modules that each transform the representation at one level

into a representation at a higher, more abstract level. Deep learning methods trade simple ma-

chine learning models trained with task-specific features for generic (possibly more complex)

machine learning algorithms trained with simple (raw pixels), hierarchical features.

Albeit its success in computer vision in 1990s (e.g. (LeCun et al., 1990, 1998)), deep learning

methods, and in particular Convolutional Neural Networks (CNNs), were not considered as

important as feature-based learning in object recognition. In the last few years, however,

this scenario drastically changed, mainly due to increasing amounts of available data, more

powerful computing machines and some new algorithmic developments. After Krizhevsky

et al. (2012) achieved impressive results in the challenging ImageNet (Deng et al., 2009)

classification problem, deep learning approaches became the de facto paradigm for learning

based methods in computer vision.

1.2 Objectives

Object recognition is a diverse and complex problem which underlie many different mecha-

nisms. The focus of this thesis is to develop different algorithms to tackle large-scale segmen-

tation problems (i.e. subproblems (c) and (d) on Figure 1.1), that is, problems that deal with

pixel-level information. In the context of the “three Rs of computer vision” proposed by Malik

et al. (2016), the work of this thesis encompasses “recognition” and “re-organization”.

The main objective of this thesis is to produce algorithms for different image segmentation

problems that can scale nicely with data and require the least amount of feature engineering

to achieve its goal. Deep learning methods fit particularly well with this motivation and have

proven to be very efficient in different domains, such as natural language processing (Collobert

et al., 2011), speech recognition (Hinton et al., 2012) and computer vision (He et al., 2016;

Krizhevsky et al., 2012). In particular, CNN (LeCun et al., 1998), a specialized neural network

3

Chapter 1. Introduction

architecture, performs extremely well on image-based applications.

Throughout this thesis, we develop different algorithms to tackle three different large-scale

segmentation problems:

• Semantic Segmentation. Semantic segmentation (subproblem (c) of Figure 1.1), also

known as scene labeling, is the task of labeling each pixel of an image with the category

it belongs to. This is a challenging task as it consists of solving both segmentation and

multi-label recognition at once. Another challenge is the large-scale nature of the task:

simply labeling one thousand 320× 240 images with a computer algorithm already

corresponds to producing over 76 million pixel labels. Paradoxically, in a database of

1000 images, most object classes occur only few times. In addition, the per-class pixel

distribution is often quite unbalanced: some objects like ‘sky’ tend to cover much more

pixels than other objects like ‘moon’. To add a level of difficulty, hand-labeling images

are very costly (as it requires segmenting objects at pixel level).

• Segment Object Proposal Generation. Object proposal algorithms aim to find diverse

regions in an image which are likely to contain objects (independent of its category). As

in semantic segmentation, these algorithms output a set of masks from an image. Unlike

semantic segmentation, instead of generating one label for each pixel of an image, the

interest of object proposal is to generate a set of regions that are likely to fully contain

objects. An ideal proposal method should possess three key characteristics: (i) high

recall (i.e. proposed regions should contain the maximum number of possible objects),

(ii) high recall should be achieved with a minimum number of regions as possible and

(iii) the proposal regions should match the object as accurately as possible. Object

proposals have many applications in computer vision, e.g., object detection, weakly

supervised learning, class-agnostic detection.

• Object Detection with Segments. This problem aims at finding regions in an image

that fully delineates an object as well as giving a label to each region. Object proposals

play a key role in modern object detection problems. State-of-the-art object detection

methods consist of two-phases: (i) a rich set of object proposals is generated and (ii)

a powerful classifier (usually a CNN) is applied to each proposal. Using this pipeline,

strong segment object proposal can be coupled with a classifier to deal with object

detection with boxes (subproblem (b)) and with segments (subproblem (d)).

1.3 Thesis Contributions

This thesis contains different contributions for pixel-level object recognition tasks, namely

semantic segmentation, segment object proposals generation and object detection with

segments. The thesis contributions are the following:

• Fully Supervised Semantic Segmentation. The goal of the semantic segmentation is

4

1.3. Thesis Contributions

to assign a class label to each pixel in an image. To ensure a good visual coherence

and a high class accuracy, it is essential for a model to capture long range (pixel) label

dependencies in images. In a feedforward architecture, this can be achieved simply by

considering a sufficiently large input context patch, around each pixel to be labeled.

The proposed approach consists of a recurrent convolutional neural network which

considers a large input context while limiting the capacity of the model. Contrary to

most standard approaches, our method does not rely on any segmentation technique

nor any task-specific features. The system is trained in an end-to-end manner over

raw pixels, and models complex spatial dependencies with low inference cost. As the

context size increases with the built-in recurrence, the model identifies and corrects its

own errors. Our approach yields good results in different scene labeling datasets.

This work has been first presented at the Deep Learning NIPS Workshop (Pinheiro and

Collobert, 2013), before being published at ICML (Pinheiro and Collobert, 2014).

• Weakly Supervised Semantic Segmentation. Training large scale semantic segmenta-

tion model requires a large amount of pixelwise labeled data, and this require a lot of

human labor. On the other hand, simply having the information of the presence (or

not) of a given object category requires much less effort. It is useful to develop a model

that can infer object segmentation by leveraging only object class information. This

problem can be viewed as a kind of weakly supervised segmentation task, and naturally

fits the multiple instance learning framework: every training image is known to have

(or not) at least one pixel corresponding to the image class label, and the segmentation

task can be rewritten as inferring the pixels belonging to the class of the object (given

one image, and its object class). We propose a CNN-based model, which is constrained

during training to put more weight on pixels which are important for classifying the

image. At test time, the model has learned to discriminate the right pixels well enough,

such that it performs very well on an existing segmentation benchmark, by adding only

few smoothing priors. This algorithm achieves state-of-the-art results in the weakly

supervised object segmentation task.

This work has been published at CVPR (Pinheiro and Collobert, 2015).

• Generating Segment Object Proposal. Another contribution of this thesis, is the devel-

opment of a new algorithm to generate object proposals, i.e. a set of regions in an image

that are likely to contain an object. We introduce an approach to learn object propos-

als based on a discriminative CNN. Such model is trained jointly with two objectives:

given an image patch, the first part of the system outputs a class-agnostic segmentation

mask, while the second part of the system outputs the likelihood of the patch being

centered on a full object. At test time, the model is efficiently applied on the whole test

image and generates a set of segmentation masks, each of them being assigned with a

corresponding object likelihood score. Compared to previous approaches, our model

obtains substantially higher object recall using fewer proposals. The proposed model

is also able to generalize to unseen categories it has not seen during training. Unlike

all previous approaches for generating object masks, this model does not rely on edges,

5

Chapter 1. Introduction

superpixels, or any other form of low-level segmentation.

This work has been published at NIPS (Pinheiro et al., 2015) as a “spotlight” paper.

• Refining Object Segments. Object segmentation requires both object-level information

and low-level pixel data. This presents a challenge for feedforward networks: lower

layers in convolutional networks capture rich spatial information, while upper layers

encode object-level knowledge but are invariant to factors such as pose and appearance.

Therefore, we propose to augment feedforward networks for object segmentation with

a novel top-down refinement approach. The resulting bottom-up/top-down architec-

ture is capable of efficiently generating high-fidelity object masks. Similarly to skip

connections, this approach leverages features at all layers of the network. Unlike skip

connections, our approach does not attempt to output independent predictions at each

layer. Instead, the algorithm first output a coarse “mask encoding” in a feedforward

pass, then refines this mask encoding in a top-down pass using features at successively

lower layers. This approach is simple, fast, and effective. We demonstrate the efficiency

of this approach in segment object proposal generation.

This work has been published at ECCV (Pinheiro et al., 2016) as a “spotlight” paper.

• Object Detection. Among many applications in computer vision, object proposal al-

gorithms were found to be particularly important in object detection. Recent object

detection systems rely on two critical steps: (i) a set of object proposals is predicted

as efficiently as possible, and (ii) this set of candidate proposals is then passed to an

object classifier. Such approaches have been shown they can be fast, while achieving

the state of the art in detection performance. We show that the proposals generated by

our approach, when coupled in standard state-of-the-art detection pipeline, achieve

considerably better performance than previous proposal methods.

Part of this work has been published at BMVC (Zagoruyko et al., 2016).

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2: Background. In this chapter, we introduce the large-scale image segmenta-

tion problems in the context of this thesis and present other approaches to deal with

these problems. Then, we introduce the basics of convolution neural networks, a model

vastly used throughout the thesis.

• Chapter 3: Learning to Segment a Scene with Recurrent Convolutional Networks.

This chapter introduces a recurrent convolutional neural network model to deal with

the problem of scene labeling. This architecture allows us to consider a large input

context (while limiting its capacity), which is essential for a model to capture long range

(pixel) label dependencies. The proposed model is evaluated in two standard semantic

segmentation datasets.

6

1.4. Thesis Outline

• Chapter 4: Learning to Segment with Image-Level Labeling. In this chapter, an algo-

rithm that is able to infer object segmentation by leveraging only object class informa-

tion is proposed. The problem can be seen as a kind of weakly supervised segmentation

task. The model is constrained during training to put more weight on pixels which are

important for classifying the image. At test time, the model has learned to discriminate

the right pixels and achieves good results in semantic segmentation benchmarks, by

adding only a few smoothing priors.

• Chapter 5: Learning to Generate Object Proposals. In this chapter, we present a way

to learn object proposals based on discriminative convolutional neural network. The

model is trained to generate a class-agnostic segmentation mask and a score of how likely

an input is to fully contains an object. At test time, the algorithm is efficiently applied

on an image and generate a set of segmentation masks, each of them assigned with a

likelihood score. Compared to previous approaches, our model obtains substantially

higher object recall using fewer proposals.

• Chapter 6: Learning to Refine Object Segments. This chapter proposes a network

augmentation to feedforward convolutional networks with a top-down refinement

approach. This augmentation leverages features at all layers of the network to improve

object segmentation. The improvement of this algorithm is demonstrated on the task of

object proposal generation, although it could be applied in other pixel-level labeling

task. The proposed model achieves a new state of the art performance in segment object

proposal algorithm.

• Chapter 7: Application of Proposals: Learning to Detect Objects. In this chapter, we

study an important application of object proposals: object detection. We show that the

state of the art proposals generated with the method of the previous chapter can achieve

important results on the challenging task of object detection with segments.

• Chapter 8: Conclusion. The last chapter concludes the work developed in this thesis

and propose further directions for research in object segmentation problems.

7

2 Background

This thesis mainly focuses on deep learning methods for large-scale image segmentation. In

this chapter, we provide a background on the segmentation problems treated in this thesis

(Section 2.1). Then, we give a brief overview of visual representation learning with deep

networks, and in particular convolutional neural networks, this thesis’ method of choice to

deal with such problems (Section 2.2).

2.1 Large-Scale Segmentation

The objective of image segmentation is to partition a given image into multiple regions

(overlapping or not) that are considered meaningful according to some objective criterion or

homogeneity in some feature space. This definition relies on selecting an objective function

and, depending on this criterion, the purpose of segmentation may change.

A common criterion would be to segment images into different objects. However, the definition

of objects is itself ambiguous. For example, an object may refer to a thing (e.g. an airplane,

a horse, a person, etc.) or to a stuff (objects of amorfous spatial extent, e.g. sky, road, grass,

etc.) (Forsyth et al., 1996).

The absence of a universal criterion has led to different definitions of segmentation in com-

puter vision. In the following, we briefly describe three different segmentation problems

studied in this thesis: semantic segmentation, object proposals generation and object detec-

tion with segments.

2.1.1 Semantic Segmentation

In semantic segmentation, also known as scene labeling (we use both terms indistinguishably),

we are interested in labeling every pixel in an image (Figure 2.1). Each pixel should receive a

semantic label (e.g. ‘sky’, ‘car’, ‘person’) based on its surrounding information (context). The

two most common approaches for this problem are the grammar-based methods, dated since

9

Chapter 2. Background

Figure 2.1 – Semantic Segmentation illustration. The picture (left) is segmented into object
regions (right) represented here by different colors. Image from PASCAL-Context dataset (Mot-
taghi et al., 2014).

the origins of computer vision and graphical models-based methods, which rely on Markov

Random Fields (MRF) (Li, 2009) or Conditional Random Fields (CRF) (Lafferty et al., 2001).

Grammar-based methods

The first approach to semantic segmentation was grammar-based methods. This line of

work, known as syntactic pattern recognition, was an active area of research in the 1970s and

1980s (ichi Ohta et al., 1978; Hanson and Riseman, 1978; Fu and Albus, 1982; Ohta, 1985).

Segmenting, in this scenario, consisted of breaking the image into regions and relate these

regions to each other using formal grammar. Generating robust label predictions proven to be

extremely difficult without powerful techniques such as image feature descriptors or statistical

machine learning techniques. For this reason, this line of work almost stopped in the mid

1980s.

In the early 2000s, with the computer vision field more mature and with the help of tools

like powerful image descriptors and statistical machine learning, some researchers started

looking at grammar-based semantic segmentation once again (Zhu and Mumford, 2006;

Zhao and chun Zhu, 2011; Socher et al., 2011). Much of the grammar-based segmentation

involves learning and then enforcing the grammatical relationships, which can be difficult if

the grammatical structure is unknown or the categories are not evenly sampled.

Graphical Models-based methods

In the 2000s, another framework emerged for semantic segmentation based on graphical

models (mainly MRF and CRF). Most systems, followed approximately the same recipe (Tighe,

2013):

1. Extract a set of features for each pixel (or set of pixels, known as superpixels). These

10

2.1. Large-Scale Segmentation

features can be basic image statistics or powerful hand-crafted features (e.g. SIFT, HOG,

SURF).

2. Train a local model to produce compatibility between the set of features and the ground-

truth class annotation (local classifier).

3. Use the trained classifier output as the unary term of an MRF or CRF.

4. Define a binary term (smoothing prior to assume consistency of the labelling) of the

MRF/CRF (usually a graph defined over the pixels/superpixels) and train the parameters

of the random field (global classifier).

5. Perform inference on the random field.

Following this pipeline, He et al. (2004) expand the classifier to include both local and global

image classification. Shotton et al. (2009) propose a parsing system that uses random forest

classifiers to represent local spatial layout of texture and uses a CRF as a smoothing prior. Gould

et al. (2009) introduced the idea of using two different label types (semantic and geometric) to

improve labeling performance (by ensuring consistency of both labels on the same region).

Context can also be used to improve semantic segmentation. Contextual relationships be-

tween different categories (e.g. ‘car’ is usually supported by ‘road’, but not ‘sky’) are usu-

ally learned from the labeled dataset. The contextual relationships can be learned by sim-

ple co-occurence statistics (Rabinovich et al., 2007; Tighe and Lazebnik, 2010) or multiple

forms of context, such as co-occurrences, location and appearance (Galleguillos et al., 2008,

2010). Lazebnik and Raginsky (2009) learn contextual smoothing directly from the images.

These relationships are then incorporated into a CRF as a penalty term.

Some authors also considered nonparametric, data-driven approaches for open-universe

dataset. Instead of learning a classifier for the unary terms, these approaches try to retrieve the

most similar images from the training set and transfer the information to a test image. Liu et al.

(2011) propose a nonparametric label transferring based on estimating ‘SIFT Flow’ between

images. Tighe and Lazebnik (2010) transfer labels over different superpixels of the test image

and all training images using several engineered features. More recently, Najafi et al. (2016)

propose to sample labeled superpixels according to an image similarity score and formulate

label transfer as an efficient filtering procedure. This approach achieves state-of-the-art results

for nonparametric approaches.

Graphical models are powerful methods for modeling global spatial consistency in images.

However, they possess certain limitations: (i) they require engineered, domain-specific fea-

tures, (ii) inference is in general slow, as they rely on a huge label space search (and in practice

only approximate inference is computationally possible), (iii) they fail to address parsing

problems with more than few dozen classes, rare classes being challenging to model without

overfitting.

11

Chapter 2. Background

Evaluation Metrics

In the computer vision literature, there are three important accuracy metrics to evaluate the

performance on semantic segmentation: per-pixel accuracy, per-class accuracy and average

precision.

Per-pixel accuracy is defined simply by the ratio of correctly classified pixels and the total

number of pixels in the test set:

accpxl =
N p

N
, (2.1)

where N p is the number of correctly classified pixels and N is the total number of pixels.

However, in many densely labeled semantic segmentation datasets, the per-category pixel

distribution is very unbalanced: some categories like ‘sky’ tend to cover many more pixels

than other objects, like ‘moon’. This fact poses an extra difficulty to semantic segmentation

problem. As an alternative evaluation metric, it is also common to evaluate the performance

of a model by computing the per-class accuracy, defined as follows:

accclass =
1

C

∑
c∈C

N p
c

Nc
, (2.2)

where C is the total number of categories in the dataset, N p
c is the total number of correctly

classified pixels of class c ∈ {1, . . . ,C } and Nc is the total number of pixels of class c.

In case of sparsely labeled semantic segmentation datasets, such as Pascal VOC (Everingham

et al., 2010), the most common metric is the Average Precision (AP). The average precision for

a class is assessed using the intersection over union metric, defined as the number of correctly

labeled pixels of that class, divided by the number of pixels labeled with that class in either the

ground truth labeling or the inferred labeling. That is, for a given category c:

APc = true positives

true positives+ false positives+ false negatives
. (2.3)

It is also common in the literature to assess the mean average precision (mAP) over all cate-

gories present in the dataset:

mAP = 1

C

∑
c∈C

APc . (2.4)

2.1.2 Object Proposals

The objective of object proposals algorithms is to extract meaningful regions of an image

that are likely to fully contain an object, independent of its category (see Figure 2.2). This

12

2.1. Large-Scale Segmentation

Figure 2.2 – Qualitative illustration of segment object proposal generation. Given an image,
the method needs to output regions that are likely to contain a class-agnostic object.

set of regions can be used in many different computer vision tasks such as object detection,

segmentation, weakly supervised setting, or any object-based image parsing task.

Most object proposal approaches leverage low-level grouping and saliency cues. These models

vary in terms of the type of proposal generated (bounding boxes or segmentation masks) and

if the proposals are ranked or not. These methods usually fall in three categories: objectness

scoring, seed segmentation and superpixel merging (See Figure 2.4).

Objectness Scoring

In this family of algorithms, the proposals are extracted by measuring the objectness score

of bounding boxes. In Alexe et al. (2012) and Rahtu et al. (2011), boxes are scored based on

multiple visual cues, such as saliency, color contrast and edge density. Once the boxes are

scored, the algorithm outputs the ones with the highest scores. Zitnick and Dollár (2014)

assume that the density of edges (obtained via structured decision forests (Dollár and Zitnick,

2013; Dollár and Zitnick, 2015)) fully enclosed in a box is a good indicator of the presence of

an object. Kuo et al. (2015) propose Deepbox, a method based on CNN that learns to rerank

proposals generated by (Zitnick and Dollár, 2014).

Seed Segmentation

Seed segmentation proposal methods start with a set of seed regions and generate sepa-

rate foreground-background segmentation for each seed. Carreira and Sminchisescu (2012)

(CPMC) compute graph cuts with several different seeds and unaries directly on pixels. The

segments are then ranked using a large pool of features. (Humayun et al., 2014) improves

over CPMC by re-using computation across multiple graph-cuts problems and using fast edge

detectors.

In (Krähenbühl and Koltun, 2014), the seeds are placed with a classifier trained to discover

objects. The authors then generate a foreground/background mask for each seed with a

geodesic distance transform and proposals are computed by identifying critical level sets in

each foreground. In (Krähenbühl and Koltun, 2015), the same authors trained an ensemble of

13

Chapter 2. Background

figure-ground segmentation models operated on simple image features.

Superpixel Merging

Superpixel merging proposals generate a set of over-segmentation from superpixels and

merge them according to certain heuristics. Selective Search (Uijlings et al., 2013) relies on

multiple hand-crafted features and similarity functions for merging superpixels. Multiscale

Combinatorial Grouping (MCG) (Arbeláez et al., 2014; Pont-Tuset et al., 2015), introduces a

fast algorithm for computing multi-scale hierarchical segmentation. Segments are merged

based on edge strength and the proposals are ranked according to cues such as size, shape,

location and edge strength.

Evaluation Metrics

A good object proposal algorithm needs to have a good coverage of the objects of interest in a

test image. A common practice to evaluate the quality of proposals is, therefore, based on the

recall of the ground truth annotations, in a class-agnostic manner.

Recall is usually measured in terms of segment Intersection over Union (IoU) for each ground

truth annotation. IoU is the intersection of a candidate proposal M and ground truth annota-

tion G divided by the area of their union, that is:

IoU = ar ea(M ∩G)

ar ea(M ∪G)
. (2.5)

This metric can also be applied in the bounding box detection scheme, simply by considering

the regions M and G as being a rectangle box of the dimensions of the bounding boxes.

IoU can vary from 0 (no intersection at all) to 1 (perfect matching). Figure 2.3, from Krähenbühl

and Koltun (2014), illustrates what segment IoU means. The first proposal is able to localize

the object correctly, but predicts the shape very poorly (IoU of 0.55). As we move to the right,

the IoU improves up to IoU 0.91, approaching human accuracy.

Figure 2.3 – Three segment proposals (in red) overlapping a given object (leftmost image). The
segment IoUs are: 0.55, 0.70, 0.91. A coefficient of 0.9 demands very tight fit. Figure taken
from (Krähenbühl and Koltun, 2014).

A common metric for evaluating proposals is, for a fixed number of proposals (e.g. 100), the

14

2.1. Large-Scale Segmentation

Figure 2.4 – Classical approaches for object proposal generation: (a) object scoring (figure
from Alexe et al. (2012)), (b) seed generation (figure from Krähenbühl and Koltun (2014)) and
(c) superpixel merging (figure from Uijlings et al. (2013)). See text for details.

fraction of ground truth annotations covered as the IoU threshold is varied. A complementary

metric is, for a fixed IoU threshold, to measure the proposal recall as the number of proposals

considered varies. Hosang et al. (2016) propose an efficient metric, Average Recall (AR), that

measures the IoU between 0.5 and 1 for a fixed number of proposals. AR has been shown to

correlate extremely well with detector performance (recall at a single IoU threshold is far less

predictive (Hosang et al., 2016)).

2.1.3 Object Detection

The objective of object detection is to find all instances of different objects (assuming a

definition of object) on a given image. The instances can be either in the form of bounding box

comprising the object instance or a segmentation mask delineating the object. Until recently,

the dominant paradigm in object detection was the sliding window framework: a classifier is

applied at every object location and scale. A detector, in this case, can be seen as a classifier

which takes as input an image, a location and a scale and determines whether or not there is

an instance of the target category at the given position and scale.

Viola and Jones (2004) propose a cascading algorithm for face detection based on the AdaBoost

classifier and Haar-based features. Dalal and Triggs (2005) propose a similar approach, in

which they use a single filter on HOG features to represent an object category. A Support

Vector Machine (SVM) classifier is trained on the top of these features to determine if an object

is present or not in a bounding box at a given location and scale. At test time, the classifier is

applied densely in each location and scale. This approach was first validated on pedestrian

detection and then extended to multi-categorical object detection problem.

Felzenszwalb et al. (2010) propose a Deformable Part Model (DPM) for object detection,

which extends this approach by integrating part-based models (Fischler and Elschlager, 1973;

Felzenszwalb and Huttenlocher, 2000) into (Dalal and Triggs, 2005) system. In part-based

models, objects are described as a collection of parts arranged in a deformable configuration.

Each object part is then considered as a latent variable in a classification problem. The

authors use a generalization of SVM which considers the object parts as a latent variable

15

Chapter 2. Background

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

Figure 2.5 – Modern object detectors are based on two steps: a set of proposals are extracted
from an image, and a classifier is applied to each proposal. In (a) RCNN apply a CNN classifier
to each proposal extracted from the image. In (b) Fast RCNN extract the proposals in the final
CNN feature map. Figures are taken from Girshick et al. (2014); Girshick (2015).

in the optimization problem. Training is done discriminatively using an iterative algorithm

that alternates between estimating latent variables for positive examples and solving an large

convex optimization problem.

Until 2013, DPMs models have dominated the state of the art in object detection. In 2014,

however, this trend changed: Girshick et al. (2014) propose a two-phase approach for object

detection, R-CNN. In this model, first, a rich set of object proposals is generated using a

fast (but possibly imprecise) algorithm. Second, a convolutional neural network classifier is

applied on each of the proposals. This approach provides a notable gain in object detection

accuracy compared to classic sliding window approaches. See Figure 2.5a for a schematic

representation of the method. The next year, Girshick (2015) proposes a variant of RCNN,

dubbed Fast R-CNN, in which the proposals are extracted on the final spatial feature map

of the classifier, speeding up the inference by a non-trivial amount (Figure 2.5b). In both

methods, the authors use the Selective Search (Uijlings et al., 2013) algorithm to extract a set

of proposals.

Currently, most state-of-the-art object detectors rely on object proposals as a first prepro-

cessing step (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016; He et al.,

2016). Moreover, Hosang et al. (2016) empirically show that the quality of proposals used in

this pipeline can substantially affect the performance of the detection system.

Evaluation Metrics

The most popular way to evaluate the quality of detection is through a precision/recall

curve (Everingham et al., 2010; Lin et al., 2014) for each category. The quantitative mea-

sure in this case is Average Precision (AP) (see the next paragraph). It is important to note that

average precision is defined differently for detection and for semantic segmentation.

A detection is considered true or false positive based on the IoU (as described above), for a

fixed threshold θ. Note that this works for both bounding box and segmentation outputs. For

each category and for a fixed IoU threshold, AP is computed as follows (Everingham et al.,

2010):

16

2.2. Representation Learning with Deep Learning

1. Compute a version of the measured precision/recall curve with precision monotonically

decreasing, by setting the precision for recall r to the maximum precision obtained for

any recall r
′ ≥ r .

2. Compute the AP as the area under this curve by numerical integration.

The AP metric is commonly measured in two different ways: (i) the PASCAL VOC (Everingham

et al., 2010) metric, which considers a fixed threshold θ = 0.5 and (ii) the COCO (Lin et al.,

2014) metric, which considers an average over different θ between 0.5 and 1. The latter metric

takes into account more accurate localization, and thus can be seen as a more realistic metric

for detection. In both cases, the AP is also usually averaged among all categories to give a final

numerical value.

2.2 Representation Learning with Deep Learning

In this section, we present an overview of visual feature representation learning with deep

learning methods. Contrary to standard approaches for vision problems based on hand-

crafted features, deep learning methods aim at learning the features required to the task at

hand.

This section starts with a basic description of the most common Artificial Neural Network

(ANN) model, the Multilayer Perceptron (MLP). We then introduce the Convolutional Neural

Network (CNNs) models, a specialized ANN architecture particularly useful for computer

vision problems. Then, we briefly describe how learning is achieved in such models.

2.2.1 Multilayer Perceptron

The first deep learning model was the multi-layer perceptron. These models were initially

inspired by neuronal systems (Mcculloch and Pitts, 1943) (although today not much more than

the name has relations to biological systems). MLPs are a type of machine learning models

which apply a sequence of non-linear transformations to the input data.

Mathematically, a MLP with L layers can be described with the following equations (we use a

similar notation as Farabet (2014)):

y = f (x,θ) = hL

hl =σl (Wl hl−1 +bl), ∀l ∈ {1,2, . . . ,L}

h0 = x ,

(2.6)

where θ = {Wl,bl },∀l ∈ {1, . . . ,L} is the set of trainable parameters (consisting of bias parame-

ters bl and weight parameters Wl) for each layer l , x ∈Rdi n is the input vector (e.g. a vectorized

image), y ∈Rdout is the output of the network (this output can be interpreted in different ways

depending of the task of interest) and σl is the point-wise non-linear activation function at

17

Chapter 2. Background

layer l .

Common non-linear activation functions for hidden units (σl , l ∈ {1, . . . ,L−1}) are the hyper-

bolic tangent

Tanh(x) = e2x−1

e2x+1 , (2.7)

and the Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) . (2.8)

Note the importance of the activation function: without them, the whole system would be

a stack of linear operations (matrix multiplications) and could be equivalently written as a

single matrix. The choice of activation function is a completely empirical question. If the

network is very deep (i.e. possesses many layers), ReLU activations are popular as they reduce

the likelihood of the gradient to vanish (Krizhevsky et al., 2012).

The output activation function (σL) depends on the problem at hand. For example, if we are

interested in a regression problem, the output activation can be a simple linear or log-linear

function. If we are interested in a classification problem, the output activation is designed so

that the network models the likelihood of the data.

2.2.2 Convolutional Neural Networks

Consider, for example, an image with dimensions 3×200×200 (3 color channels, 200 pixels of

height and 200 pixels of width). A single fully-connected neuron on the first layer of a MLP

would require 3∗200∗200 = 120000 parameters. Moreover, to learn the complexity of the

world, such a network would require multiple layers, each of them with multiple neurons. The

number of parameters in such a model would quickly increase to an unbearable number and

lead to overfitting and computational issues.

Convolutional Neural Networks (CNNs) (LeCun et al., 1990, 1998) are a natural extension of

MLPs for processing data that has a known, grid-like topology (e.g. images). CNNs use the

spatial correlation of the signal to constrain the architecture in a more sensible way. Their

architecture, somewhat inspired by the biological visual system (Hubel and Wiesel, 1962;

Fukushima, 1980; LeCun et al., 1998), possesses two key properties that make them extremely

useful for image applications: spatially shared weights and spatial pooling. These kind of

networks learn features that are shift-invariant, i.e., filters that are useful across the entire

image (due to the fact that image statistics are stationary). The pooling layers are responsible

for reducing the sensitivity of the output to slight input shift and distortions.

A typical convolutional network is composed of multiple stages, as shown in Figure 2.6. The

output of each stage is made of a set of 2D arrays called feature maps. Each feature map is the

outcome of one convolutional (and an optional pooling) filter applied over the full image. A

18

2.2. Representation Learning with Deep Learning

Figure 2.6 – Architecture of a typical convolutional network for object recognition. We rep-
resent one simple block (consisting of convolutional, non-linearity and pooling layer) and a
final linear multi-class classifier.

point-wise non-linear activation function always follows a convolution layer.

In its more general form, a convolutional network can be written as:

Y = f (X,θ) = HL

Hl = pooll (σl (Wl Hl−1 +bl)), ∀l ∈ {1, . . . ,L}

H0 = X ,

(2.9)

with θ = {Wl ,bl },∀l ∈ {1, . . . ,L} is the set of trainable parameters, as in MLP, X ∈Rc×h×w is the

input image (with c color channels, height of h pixels and width of w pixels), Y ∈Rn×h
′×w

′
is an

array (with dimension h
′ ×w

′
) of output vectors of dimension n (each vector is an non-linear

encoding of a sub-window of the input), σl is a point-wise non-linearity at layer l and pooll is

a (optional) pooling function at layer l .

The main difference between MLPs and CNNs lies in the parameter matrices Wl : in MLPs,

the matrices can take any general form, while in CNNs these matrices are constraints to

be Toeplitz matrices (Gray, 2005). That is, the matrices have several entries constrained to

be equal to each other (moreover, these matrices are very sparse since the kernel is usually

much smaller than the input image). Therefore, each hidden unit array Hl can be expressed

as a discrete-time convolution between kernels from Wl and the previous hidden unit Hl−1

(transformed through a point-wise non-linearity and possibly pooled). More specifically,

Hl p = pooll (σl (bl p + ∑
q∈parents(p)

wl q ∗Hl−1,q)) , (2.10)

where Hl p is the pth component of the l th feature map Hl .

In general, the output of a CNN is usually coupled with a MLP classifier. As before, this output

is connected to a final activation function that depends on the problem considered.

From the mathematical description above, a basic convolutional neural network can thus be

seen as a stack of three distinct components (see Figure 2.6):

19

Chapter 2. Background

Convolutional Layer. The input of every layer is a 3D array with ci 2D feature maps of size

hi ×wi . Each component is denoted by xi j k and each feature map denoted as xi . The output

is also a 3D array, y , corresponding to co feature maps of dimension ho ×wo . A trainable filter

wi j (and bias parameter b j) is a trainable kernel of size k1 ×k2 and connect input feature map

xi with output feature map y j . The convolutional module computes:

y j = b j +
∑

i
wi j ∗xi , (2.11)

where ∗ is the 2D discrete-time convolutional operator. Each filter wi j learns a particular

feature at every location on the input (hence, forcing spatial invariance). This convolution can

have stride larger than 1. In recent convolutional layer implementation, it became popular to

pad the input layer so that the output of a convolution layer possesses same dimension as the

input.

Activation Layer. Similar to the MLP case, the point-wise non-linearity is applied to each

location (i j k) of the feature maps.

Pooling Layer. This layer is responsible to reduce the spatial dimension of each feature map

of its input. This property is important in image models for three reasons: (i) it makes the

model robust to small variations in the location of features in previous layers, (ii) it increases

the receptive field of the network and (iii) it controls the capacity of the model. A pooling

operation can be applied (optionally) after each activation layer. Throughout this thesis,

we always consider max pooling layers, which consist of reporting the maximum output

within a rectangular neighborhood. Other popular pooling functions include the average of a

rectangular neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average

based on the distance from the central pixel. It is common practice to choose the stride of the

pooling layer to be equal to its kernel size (e.g. a 2×2 pooling layer takes the maximum value

at each 2×2 window and strided by 2, therefore, reducing the spatial dimension of the feature

maps by a factor 2).

2.2.3 Learning

In this section, we briefly explain how parameter estimation (learning) is carried in the context

of neural networks (the same principle is applied to MLP, CNN or any other architecture type).

The different segmentation problems addressed in this thesis are all defined as discriminative

tasks. Therefore, we will only consider learning for discriminative tasks, in which the network

is designed to model conditional probabilities.

Loss Function

Once a model is defined, its structure can be abstracted and the network can be seen as a

function approximator. In classification problems, neural networks are modeled in a way such

20

2.2. Representation Learning with Deep Learning

that its output can be seen as a conditional distribution of the target y , given the input x and

the parameters θ. This probability can be modeled by transforming the output of the network

fc (x,θ) (for each class c ∈ {1, . . . ,C }) with a softmax function (Bridle, 1990):

p(yi |xi ,θ) =
C∏

c=1

⎛
⎜⎜⎝ e fc (xi ,θ)∑

j
e f j (xi ,θ)

⎞
⎟⎟⎠
�c (yi)

, (2.12)

where �a(x) is the indicator function

�a(x) =
⎧⎨
⎩ 1, if x = a

0, otherwise.
(2.13)

In the special case where C = 2, the softmax function is reduced to logistic regression. There-

fore, softmax can be seen as a multiclass generalization of the logistic regression.

In the following, we consider a dataset D = {X,Y} = {xi , yi }, i ∈ {1, . . . , N }, where xi is an input

image and yi is its associated target (label). We consider a multi-categorical problem in which

each label yi belongs to one of C categories, yi ∈ {1, . . . ,C }. The parameters of the model

are found simply by maximizing the likelihood over the training data D with respect to the

parameters θ:

θ∗ = argmax
θ

p(Y|X,θ)

= argmax
θ

p(y1, y2, . . . , y N |x1,x2, ...,xN ,θ)

i.i.d.= argmax
θ

N∏
i=1

p(yi |xi ,θ) ,

(2.14)

where the last line assumes that the training set is sampled from an unknown independent,

identically distributed (i.i.d.) distribution. Equivalently, this optimization problem can be seen

as minimizing the negative log-likelihood of the training data (since the logarithm function is

monotonic):

θ∗ = argmin
θ

−∑
i

∑
c
�c (yi)

[
fc (xi ,θ)− log

(∑
j

e f j (xi ,θ)
)]

. (2.15)

Note that this minimization problem is equivalent to minimizing the cross-entropy of the real

target distribution and the distribution generated by the neural network. In classification

problems, it is common to consider one-hot encoding on the target distribution. In this case,

the minimization problem can be rewritten as:

θ∗ = argmin
θ

−∑
i

[
fc∗

i
(xi ,θ)− log

(∑
j

e f j (xi ,θ)
)]

, (2.16)

21

Chapter 2. Background

where c∗i is the one-hot label encoding of training example i . This problem does not have a

closed solution and we apply an iterative approach to find a minimum. That is, the parameters

θ of the network are estimated by minimizing the following loss function (also know as cost

function, objective function or criterion):

L(θ,X,Y) =−∑
i

[
fc∗

i
(xi ,θ)− log

(∑
j

e f j (xi ,θ)
)]

. (2.17)

Optimization

The most common optimization method used in machine learning is the gradient descent

method, which, with a randomly initialized set of parameters θ1, is defined as:

θt+1 ←− θt −η∇θL(θ,X,Y) . (2.18)

This method is also know as batch gradient descent method. In large-scale machine learning

problems (e.g., the segmentation problems addressed in this thesis), this method can become

inefficient in practice as it requires a full pass on the data at each iteration. Moreover, batch

gradient descent can be redundant if the dataset contains similar examples.

A common way to address this issue is to consider a stochastic approximation of the gradient,

commonly referred to as Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951; Bottou,

1991). In this case, a random training sample {xi , yi } is used to estimate the gradient and the

parameters are updated as:

θt+1 ←− θt −η∇θL(θ,xi , yi) . (2.19)

More often, we optimize the loss function using a midterm between stochastic and batch

method called mini-batch gradient descent. This approach, which uses a subset of n < |D|
training samples to perform each parameter update is defined as:

θt+1 ←− θt −η∇θL(θ,x(i ,...,i+n), y (i ,...,i+n)) . (2.20)

There are many different variants of this learning rule used to reduce the noise in stochastic

directions, for example the Momentum method (Rumelhart et al., 1986), averaged stochastic

gradient descent (Polyak and Juditsky, 1992), Adagrad (Duchi et al., 2011), Rmsprop (Tieleman

and Hinton, 2012) and Adam (Kingma and Ba, 2014). Another important class of algorithms

are the second-order methods, which use second derivative information of the loss function to

improve the optimization. However, these methods are infeasible to compute in the large-scale

problems addressed in this thesis.

The gradients of the loss function with respect to the trainable parameters θ used in the

gradient descent methods introduced above are computed using the backpropagation algo-

rithm (Bryson et al., 1963; Werbos, 1974; Rumelhart et al., 1986).

22

2.2. Representation Learning with Deep Learning

Due to the non-linear nature of neural networks, this problem is non-convex and the optimiza-

tion methods applied in practice find local minima instead of a global minimum. In practice,

this has been show to not pose a big problem in deep nets (Dauphin et al., 2014; Choromanska

et al., 2015).

Regularization

Neural networks contain a large number of free parameters that need to be learned. These

models can describe a huge range of phenomena, but require a lot of data to avoid overfitting,

that is, when the model is able to achieve good performance on training data but performs

poorly on the test data.

A very simple way to reduce overfitting in neural networks is to increase the training data to

improve its generalization (assuming the capacity remains constant). However high-quality

labeled data can be expensive to acquire. Fortunately, other techniques exist in the literature

that can reduce overfitting, assuming a fixed network and a fixed training data size. These

methods are called regularization techniques. In this section, we describe the most commonly

applied regularization techniques found in the literature.

The simplest regularization technique is called early stopping. It consists, as the name implies,

to stop the training once the validation error (computed in a hold-off set of training data not

used during training) achieves a minimum error.

Weight decay is another very common regularization technique. It is used to penalize large

weights using certain constraints on their values. These techniques are usually implemented

by adding extra terms to the network cost function. In L2 regularization, an extra term is

added to the cost function that penalizes the square magnitude of all parameters. That is,

for every weight wi in the network, we add a term 1
2λw 2

i to the loss function, where λ is the

regularization strength. L2 regularization has the intuitive interpretation of heavily penalizing

peaky weight vectors and preferring diffuse weight vectors. Another common weight decay

regularization is the L1 regularization, which poses sparse constraints on the weight. Similarly

to L2, L1 regularization includes an extra term to the cost function, λ|wi |. Neurons with L1

regularization end up using only a sparse subset of their most important inputs and become

nearly invariant to the “noisy” inputs.

An extremely effective regularization technique for neural networks is Dropout (Srivastava

et al., 2014). During training, Dropout is implemented by only keeping a neuron active with a

certain probability p (a hyperparameter), or setting it to zero otherwise. It can be interpreted

as sampling a neural network within the full neural network, and only updating the parameters

of the sampled network based on the input data. At test time, we would ideally like to find a

sample average of all possible 2n dropped-out networks. Unfortunately this is unfeasible for

large values of n. However, we can find an approximation by using the full network with each

node’s output weighted by a factor of p, so the expected value of the output of any node is the

23

Chapter 2. Background

same as in the training stages.

Batch normalization (Ioffe and Szegedy, 2015) is another popular regularization technique for

deep convolutional neural networks. This method partially alleviates the problem of internal

covariate shift in deep networks, that is, the fact that training deep networks is difficult because

the distribution of each layer’s input changes during training, as the parameters of the previous

layers change. During SGD training, each activation of the mini-batch is centered to zero-

mean and unit variance. The mean and variance are measured over the whole mini-batch,

independently for each activation. Batch normalization allows us to use much higher learning

rates and be less careful about initialization.

2.3 Summary

In this chapter we briefly introduced the different aspects of the image segmentation problems

that will be treated in this thesis. We then presented a basic introduction to the deep learning

methods most commonly used to work with vision problems.

24

3 Learning to Segment a Scene with
Recurrent Convolutional Networks

In this chapter, we address the problem of fully supervised semantic segmentation (or scene

labeling). That is, given a densely labeled dataset (in which all pixels are labeled), the objective

is to predict the class label of each pixel in a scene.

Semantic segmentation is most commonly addressed with some kind of local classifier con-

strained in its predictions with a graphical model (e.g. Conditional Random Fields (CRF),

Markov Random Fields (MRF)), in which global decisions are made. These approaches usually

consist of segmenting the image into superpixels or segment regions to assure a visible consis-

tency of the labeling and also to take into account similarities between neighbor segments,

giving a high level understanding of the overall structure of the image. Each segment contains

a series of input features describing it and contextual features describing spatial relation

between the label of neighbor segments. These models are then trained to maximize the

likelihood of correct classification given the features (Verbeek and Triggs, 2008; Gould et al.,

2009; Munoz et al., 2010; Liu et al., 2011; Kumar and Koller, 2010; Socher et al., 2011; Lempitsky

et al., 2011; Tighe and Lazebnik, 2010). The main limitation of scene labeling approaches

based on graphical models is the computational cost at test time, which limits the model to

simple contextual features.

In this chapter, we consider a neural network approach which can take into account long range

label dependencies in the scenes while controlling the capacity of the network. We achieve

state-of-the-art accuracy while keeping the computational cost low at test time, thanks to the

complete feedforward design. Our method relies on a recurrent architecture for convolutional

neural networks: a sequential series of networks sharing the same set of parameters. Each

instance takes as input both an RGB image and the classification predictions of the previous

instance of the network. The network automatically learns to smooth its own predicted labels.

As a result, the overall network performance is increased as the number of instances increases.

Compared to graphical model approaches relying on image segmentation, our method has

several advantages: (i) it does not require any engineered features, since deep learning archi-

tectures train (hopefully) adequate discriminative filters in an end-to-end manner, (ii) the

25

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

Method Task-specific features

Gould et al. (2009) 17-dimensional color and texture features, 9 grid locations around the pixel
and the image row, region segmentation.

Munoz et al. (2010) Gist, pyramid histogram of oriented gradients, color Histogram CIELab, rela-
tive relocation, hierarchical region representation.

Kumar and Koller (2010) Color, texture, shape, percentage pixels above horizontal, region-based seg-
mentation.

Socher et al. (2011) Same as Gould et al. (2009).

Lempitsky et al. (2011) Histogram of visual SIFT, histogram of RGB, histogram of locations, contour
shape descriptor.

Tighe and Lazebnik (2010) Global, shape, location, texture/SIFT, color, appearance, MRF.

Farabet et al. (2013) Laplacian pyramid, superpixels/CRF/tree segmentation, data augmentation.

Our Recurrent CNN Raw pixels.

Table 3.1 – Comparison between different methods for full scene labeling. The advantage of
our proposed method is the simplicity of inference, not relying on any task-specific feature
extraction nor segmentation method.

prediction phase does not rely on any label space searching, since it requires only the forward

evaluation of a function.

This chapter is organized as follows. Section 3.1 briefly presents related works. Section 3.2

describes the proposed strategy. Section 3.3 presents the results of our experiments in two

standard datasets: the Stanford Background Dataset (8 classes) and the SIFT Flow Dataset (33

classes), and compares the performance with other methods. Finally, Section 3.4 provides a

discussion followed by a conclusion.

3.1 Related Work

Recurrent Neural Networks (RNNs) date back from the late 1980s. Already in (Jordan, 1986),

the network was fed (in a time series framework) with the input of the current time step, plus

the output of the previous one. Several variants have been later introduced, such as in (Elman,

1990). RNNs have been successfully applied to a wide variety of tasks, including in natural

language processing (Stoianov et al., 1997; Cho et al.), speech processing (Robinson, 1994;

Graves et al., 2013) and image processing (Graves and Schmidhuber, 2008). Our approach can

be viewed as a particular instance of Jordan’s recurrent network adapted to image processing

(we use a convolutional neural network). Providing feedback from the output into the input

allows the network to model label dependencies, and correct its own previous predictions.

In a preliminary work, Grangier et al. (2009) proposed an innovative approach to scene

labeling without the use of any graphical model. The authors proposed a solution based on

deep convolutional networks relying on a supervised greedy learning strategy. These network

architectures when fed with raw pixels are able to capture texture, shape and contextual

26

3.2. Method Description

information.

Socher et al. (2011) also considered the use of deep learning techniques to deal with scene

labeling, where off-the-shelf features of segments are recursively merged to assign a semantic

category label. In contrast, our approach uses the recurrent architecture to parse the scene

with a smoother class annotation.

In (Socher et al., 2012), the authors proposed an approach which combines convolutional and

recursive networks for classifying RGB-D images. The approach first extracts features using

a convolutional network which is then fed to a standard recurrent net. In that respect, our

approach is more end-to-end.

More recently, Farabet et al. (2013) investigated the use of convolutional networks to extract

features from a multiscale pyramid of images. This solution yields satisfactory results for the

categorization of the pixels, but poor visual coherence. In order to improve visual coherence,

three different over-segmentation approaches were proposed: (i) the scene is segmented in

superpixels and a single class is assigned to each of the superpixels, (ii) a conditional random

field is defined over a set of superpixels to model joint probabilities between them and correct

aberrant pixel classification (such as ‘road’ pixel surrounded by ‘sky’), and (iii) the selection of

a subset of tree nodes that maximize the average “purity" of the class distribution, hence maxi-

mizing the overall likelihood that each segment will contain a single object. In contrast, our

approach is simpler and completely feedforward, as it does not require any image segmenta-

tion technique, nor the handling of a multiscale pyramid of input images. Similarly to (Farabet

et al., 2013), Schulz and Behnke (2012) proposed a multiscale convolutional architecture. In

their approach, the authors smooth out the predicted labels with pairwise class filters.

Compared to existing approaches, our method does not rely on any task-specific feature

(see Table 3.1). Furthermore, our scene labeling system is able to extract relevant contextual

information from raw pixels.

On the years following the work presented in this chapter, CNN had become extremely popular

for semantic segmentation, and many different works flourished (Chen et al., 2015; Long et al.,

2015; Sharma et al., 2015; Noh et al., 2015; Caesar et al.; Zheng et al., 2015). These models,

which in general use very deep networks and are pretrained on ImageNet (Deng et al., 2009),

pushed even further the state of the art in fully supervised semantic segmentation.

3.2 Method Description

3.2.1 Convolutional Neural Networks for Scene Labeling

A typical convolutional network is composed of multiple stages, as shown in Figure 3.1. The

output of each stage is made of a set of 2D arrays called feature maps. Each feature map is the

outcome of one convolutional layer (followed by a non-linear activation function) or pooling

27

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

5
c
o
n
v

4
×

4

p
o
o
l
2
×

2

2
c
o
n
v

2
×

2

Figure 3.1 – A simple convolutional network. Given an image patch providing a context around
a pixel to classify (here blue), a series of convolutions and pooling operations (filters slid
through input planes) are applied (here, five 4×4 convolutions, followed by one 2×2 pooling,
followed by two 2×2 convolutions. Each 1×1 output plane is interpreted as a score for a given
class.

filter applied over the full image.

In the context of scene labeling, given an image Ik we are interested in finding the label of each

pixel at location (i , j) in the image. More precisely, the network is fed with a squared context

patch Ii , j ,k surrounding the pixel at location (i , j) in the kth image. It can be shown (see

Figure 3.1) that the output plane size szl of the l th convolution or pooling layer is computed

as:

szl =
szl−1 −kWl

dWl
+1, (3.1)

where sz0 is the input patch size, kWl is the size of the convolution (or pooling) kernels in

the l th layer, and dWl is the pixel step size used to slide the convolution (or pooling) kernels

over the input planes.1 Given a network architecture and an input image, one can compute

the output image size by successively applying (3.1) on each layer of the network. During the

training phase, the size of the input patch Ii , j ,k is chosen carefully such that the output layer

produces 1×1 planes, which are then interpreted as scores for each class of interest.

The output of a network f with L stages and trainable parameters θ = {Wl ,bl } ,∀l ∈ {1, . . . ,L},

for a given input patch Ii , j ,k can be formally written as:

f (Ii , j ,k ;θ) = WLHL−1 +bL , (3.2)

with the output of the l th hidden layer computed as:

Hl = pool(tanh(Wl Hl−1 +bl)) , (3.3)

for l = {1, . . . ,L} and denoting H0 = Ii , j ,k . bl is the bias vector of layer l and Wl is the Toeplitz

matrix of connection between layer l −1 and layer l . The pool(·) function is the max-pooling

1Most people use dW = 1 for convolutional layers, and dW = kW for pooling layers.

28

3.2. Method Description

operator. In this chapter, we use the point-wise hyperbolic tangent as the activation function.

The network is trained by transforming the scores fc (Ii , j ,k ;θ) (for each class of interest c ∈
{1, . . . ,C }) into conditional probabilities, by applying a softmax function (Bridle, 1990):

p(c|Ii , j ,k ;θ) = e fc (Ii , j ,k ;θ)∑
d∈{1,...,C }

e fd (Ii , j ,k ;θ)
, (3.4)

and maximizing the likelihood of the training data. More specifically, the parameters θ of

the network f (·) are learned in an end-to-end supervised way, by minimizing the negative

log-likelihood over the training set:

L f (θ) =− ∑
I(i , j ,k)

ln p(li , j ,k |Ii , j ,k ;θ) , (3.5)

where li , j ,k is the correct pixel label class at position (i , j) in image Ik . The minimization is

achieved with the Stochastic Gradient Descent (SGD) algorithm with a fixed learning rate η:

θ←− θ−η
∂L f

∂θ
. (3.6)

3.2.2 Long Range Label Dependencies

Scene labeling methods leverage long range label dependencies in some way. The most

common approach is to add some kind of graphical model (e.g. CRF) over local decisions,

such that a certain global coherence is maintained. In the case of convolutional networks, an

obvious way to efficiently capture long range dependencies would be to consider large input

patches when labeling a pixel. However, this approach might face generalization issues, as

considering larger context often implies considering larger models (i.e. higher capacity).

In Table 3.2, we review possible ways to control the capacity of a convolutional neural network

by assuming a large input context. The easiest way is probably to increase the filter sizes in

pooling layers, reducing the overall number of parameters in the network. However, perform-

ing large poolings decreases the network label output resolution (e.g., if one performs a 1/8

pooling, the label output plane size will be about 1/8th of the input image size). As shown later

in Section 3.2.4, this problem could be overcome at the cost of a slow inference process.

Yet another approach would be the use of a multiscale convolutional network (Farabet et al.,

2013). Large contexts are integrated into local decisions while making the model still man-

ageable in terms of parameters/dimensionality. Label coherence can then be increased by

leveraging, for instance, superpixels.

Another way to consider a large input context size while controlling the capacity of the model

is to make the network recurrent. In this case, the architecture might be very deep (with many

convolution layers), but parameters between several layers at various depths are shared. We

29

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

Capacity control Speed

graphical model – slow

multiscale scale down input image fast

large input patches
increase pooling

recurrent architecture

slow

fast

Table 3.2 – Long range pixel label dependencies integration in CNN-based scene labeling
models. Methods to control capacity and speed of each architecture is reported.

will now detail our recurrent network approach.

3.2.3 Recurrent Network Approach

The recurrent architecture (see Figure 3.2) consists of the composition of P instances of the

“plain” convolutional network f (·) introduced in Section 3.2.1. Each instance has identical

(shared) trainable parameters θ. For clarity, we drop the θ notation in subsequent paragraphs.

The pth instance of the network (1 ≤ p ≤ P) is fed with an input “image” Fp of N +3 feature

maps:

Fp = [f (Fp−1), I p
i , j ,k] ,

F1 = [0, Ii , j ,k] ,
(3.7)

which are the output label planes of the previous instance, and the scaled2 version of the raw

RGB squared patch surrounding the pixel at location (i , j) of the training image k. Note that

the first network instance takes 0 label maps as previous label predictions.

As shown in Figure 3.2, the size of the input patch Ii , j ,k needed to label one pixel increases

with the number of compositions of f . However, the capacity of the system remains constant,

since the parameters of each network instance are shared.

The system is trained by maximizing the likelihood

L(f)+L(f ◦ f)+ . . .+L(f ◦P f) , (3.8)

where L(f) is a shorthand for the likelihood introduced in (3.5) in the case of the plain CNN,

and ◦p denotes the composition operation performed p times. This way, we ensure that each

network instance is trained to output the correct label at location (i , j). In that respect, the

system is able to learn to correct its own mistakes (made by earlier instances). It can also learn

label dependencies, as an instance receives as input the label predictions made by the previous

instance around location (i , j) (see Figure 3.2). Note that maximizing (3.8) is equivalent to

2I
p
i , j ,k is Ii , j ,k scaled to the size of f (F p−1).

30

3.2. Method Description

f

f

f

f ◦ f

f ◦ f

f ◦ f ◦ f

Figure 3.2 – Representation of the model considering one (f), two (f ◦ f) and three (f ◦ f ◦ f)
instances of the network. In all three cases, the architecture produces labels (1×1 output
planes corresponding to the pixel at the center of the input patch. Each network instance is
fed with the previous label predictions, as well as a RGB patch surrounding the pixel of interest.
For space constraints, we do not show the label maps of the first instances, as they are zero
maps. Adding network instances increases the context patch size seen by the architecture
(both RGB pixels and previous predicted labels).

randomly alternating (with equal weight) the maximization of each likelihood L(f ◦p f) (for

1 ≤ p ≤ P). We chose this approach for simplicity of implementation.

The learning procedure is the same as for a standard CNN (stochastic gradient descent),

where gradients are computed with the Backpropagation Through Time (BPTT) algorithm –

the network is first unfolded as shown in Figure 3.2 and then the standard backpropagation

algorithm is applied.

3.2.4 Scene Inference

Given a test image Ik , for each pixel at location (i , j) the network predicts a label as:

l̂i , j ,k = argmax
c∈{1,...,C }

p(c|Ii , j ,k ; θ) , (3.9)

considering the context patch Ii , j ,k . Note that this implies padding the input image when

inferring label of pixels close to the image border. In practice, simply extracting patches Ii , j ,k

and then feeding them through the network for all pixels of a test image is computationally

very inefficient. Instead, it is better to feed the full test image (also properly padded) to the

31

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0
0
0
0
0

0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0 0 0 0 0
0
0
0
0
0

0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

7 9
17 19

6 8 10
16 18 20

2 4
12 14
22 241 3 5

11 13 15
21 23 25

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(0,0)

(1,0)

(0,1)

(1,1
)

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

merge

Figure 3.3 – Example of interleaving for efficient scene inference. Convolutional neural net-
works output downscaled label planes (compared to the input image) due to pooling layers.
To alleviate this problem, one can feed several shifted version of the input image (here repre-
sented by pixels 1, . . . ,25) in the X and Y axis. In this example the network is assumed to have a
single 2×2 pooling layer. Downscaled predicted label planes (here in red) are then merged to
get back the full resolution label plane in an efficient manner. Note that pixels represented by
0 are adequate padding.

convolutional network: applying one convolution to a large image is much faster than applying

the same convolution many times to small patches. When fed with the full input image, the

network will output a plane of label scores. However, following (3.1), the plane size is smaller

than the input image size: this is mainly due to pooling layers, but also due to border effects

when applying the convolution. For example, if the network includes two 2×2 pooling layers,

only 1 every 4 pixels of the input image will be labeled. Most convolutional network users

(e.g. (Farabet et al., 2013)) upscale the label plane to the input image size.

In fact, it is possible to compute efficiently the label plane with a fine resolution by interleaving,

that is, feeding to the network several versions of the input image, shifted on the X and Y axis.

Figure 3.3 shows an example for a network which would have only one 2×2 pooling layer, and

one output plane: low resolution label planes (coming out of the network for the input image

shifted by (0,0), (0,1), (1,0) and (1,1) pixels) are “merged” to form the high resolution label

plane. Merging is a simple copy operation which matches a pixel in a low resolution label

plane with the location of the corresponding original pixel to label in the (high resolution)

input plane. The number of forwards is proportional to the number of pooling layers. However,

this would be still much faster than forwarding patches at each location of the test image.

We will see in Section 3.3.3 that having a finer label resolution can increase the classification

performance.

3.3 Experimental Results

We tested our proposed method on two different fully-labeled datasets: the Stanford Back-

ground Dataset (Gould et al., 2009) and the SIFT Flow Dataset (Liu et al., 2011). The Stanford

32

3.3. Experimental Results

dataset has 715 images from rural and urban scenes composed of 8 classes. The scenes have ap-

proximately 320×240 pixels. As in (Gould et al., 2009), we performed a 5-fold cross-validation

with the dataset randomly split into 572 training images and 143 test images in each fold. The

SIFT Flow is a larger dataset composed of 2688 images of 256×256 pixels and 33 semantic

labels.

Each image of the training set was properly padded and normalized such that they have

zero mean and unit variance. All networks were trained by sampling patches surrounding

a randomly chosen pixel from a randomly chosen image from the training set. Contrary to

(Farabet et al., 2013) (i) we did not consider addition of any distortion on the images3, (ii) we

did not use contrastive normalization and (iii) we did not sample training patches according

to balanced class frequencies.

We considered two different accuracy measures to compare the performance of the our

method with other approaches (see Section 2.1.1). The first one is the accuracy per pixel of test

images. This measure is simply the ratio of correctly classified pixels of all images in the test set.

However, in scene labeling (especially in datasets with large number of classes), classes which

are much more frequent than others (e.g. the class ‘sky’ is much more frequent than class

‘moon’) have more impact on this measure. We also consider the averaged per class accuracy

on the test set (all classes have the same weight in this measure). Note that as mentioned

above, we did not train with balanced class frequencies, which would have optimized this

second measure.

We consider three CNNs architectures. A “plain CNN1” was designed to take large input

patches. CNN2 and CNN3 architectures were designed such that their recurrent versions

(with respectively two or three compositions) would still lead to a reasonable input patch size.

We denote rCNNi for the recurrent version of the regular convolutional network CNNi . For

rCNN3, we show results considering both half resolution and full-resolution inference (see

Section 3.2.4), in which we are able to achieve better results (at the cost of a higher computing

time). Table 3.3 compares the performance of our architectures with related works on the

Stanford Background dataset and Table 3.4 compares the performance on the SIFT Flow

dataset. Note that the inference time in the second dataset does not change, since we exclude

the need of any segmentation method. In the following, we provide additional technical details

for each architecture used.

3.3.1 Plain Network

CNN1 was trained with 133×133 input patches. The network was composed of a 6×6 con-

volution with nhu1 output planes, followed by an 8×8 pooling layer, a tanh(·) non-linearity,

another 3×3 convolutional layer with nhu2 output planes, a 2×2 pooling layer, a tanh(·)
non-linearity, and a final 7×7 convolution to produce label scores. The hidden units were

chosen to be nhu1 = 25 and nhu2 = 50 for the Stanford dataset, and nhu1 = 50 and nhu2 = 50

3Which is known to improve the generalization accuracy by few extra percents.

33

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

Pixel
Accuracy (%)

Class
Accuracy (%)

Computing
Time (s)

Gould et al. (2009) 76.4 – 10 to 600

Tighe and Lazebnik (2010) 77.5 – 10 to 300

Munoz et al. (2010) 76.9 66.2 12

Kumar and Koller (2010) 79.4 – < 600

Socher et al. (2011) 78.1 – ?

Lempitsky et al. (2011) 81.9 72.4 > 60

Farabet et al. (2013)� 78.8 72.4 0.6

Farabet et al. (2013)† 81.4 76.0 60.5

Plain CNN1 79.4 69.5 15

CNN2 (◦1) 67.9 58.0 0.2

rCNN2 (◦2) 79.5 69.5 2.6

CNN3 (◦1) 15.3 14.7 0.06

rCNN3 (◦2) 76.2 67.2 1.1

rCNN3 1/2 resolution (◦3) 79.8 69.3 2.15

rCNN3 1/1 resolution (◦3) 80.2 69.9 10.7
� Multiscale CNN + superpixels

† Multiscale CNN + CRF

Table 3.3 – Pixel and averaged per class accuracy and computing time of other methods and
our proposed approaches on the Stanford Background dataset. For recurrent networks, ◦n

indicates the number of compositions.

for the SIFT Flow dataset.

3.3.2 Recurrent Architectures

We consider two different recurrent convolutional network architectures.

The first architecture, rCNN2, is composed of two consecutive instances of the convolutional

network CNN2 with shared parameters (system in the center of Figure 3.2). CNN2 is composed

of an 8× 8 convolution with 25 output planes, followed by a 2× 2 pooling layer, a tanh(·)
non-linearity, another 8×8 convolutional layer with 50 output planes, a 2×2 pooling layer,

a tanh(·) non-linearity, and a final 1×1 convolution to produce N label scores. As described

in Section 3.2.3, rCNN2 is trained by maximizing the likelihood given in (3.8). As shown in

Figure 3.2, the input context patch size depends directly on the number of network instances

in the recurrent architecture. In the case of rCNN2, the input patch size is 25× 25 when

considering one instance (f) and 121×121 when considering two network instances (f ◦ f).

The second recurrent convolutional neural network rCNN3 is composed of a maximum of

three instances of the convolutional network CNN3 with shared parameters. Each instance of

34

3.3. Experimental Results

Pixel
Accuracy (%)

Class
Accuracy (%)

Liu et al. (2011) 76.67 –

Tighe and Lazebnik (2010) 77.0 30.1

Farabet et al. (2013) 78.5 29.6

Plain CNN1 76.5 30.0

CNN2 (◦1) 51.8 17.4

rCNN2 (◦2) 76.2 29.2

rCNN3 (◦2) 65.5 20.8

rCNN3 (◦3) 77.7 29.8

Table 3.4 – Pixel and averaged per class accuracy of other methods and our proposed ap-
proaches on the SIFT Flow dataset. For recurrent networks, ◦n indicates the number of
compositions.

CNN3 is composed of a 8×8 convolution with 25 output planes, followed by a 2×2 pooling layer,

a tanh(·) non-linearity, another 8×8 convolution with 50 planes and a final 1×1 convolution

which outputs the N label planes. Following 3.8, we aim at maximizing

L(f)+L(f ◦ f)+L(f ◦ f ◦ f) . (3.10)

This appeared too slow to train on a single computer in the case of rCNN3. Instead, we

initialized the system by first starting training with two network instances (maximizingL(f ◦ f)).

We then switched to the training of the full cost function (3.10). The input patch size is 23×23,

67×67 and 155×155 when considering one, two or three instances of the network (f , f ◦ f

and f ◦ f ◦ f), respectively. In all cases, the learning rate in (3.6) was equal to 10−4. All hyper-

parameters were tuned with a 10% held-out validation data.

Figure 3.4 and Figure 3.5 illustrate inference of the recurrent network rCNN2 with one and two

instances for images form Stanford and SIFT Flow dataset, respectively. It can be seen that the

network learns by itself how to correct its own label prediction.

3.3.3 Inference Time and Performance

In Table 3.5, we analyze the trade off between inference time and test accuracy by running

several experiments with different output resolutions for recurrent network rCNN3 (see Sec-

tion 3.2.4 and Figure 3.3). Labeling about 1/4th of the pixels seems to be enough to lead to

near state-of-the-art performance, while keeping a very fast inference time.

35

Chapter 3. Learning to Segment a Scene with Recurrent Convolutional Networks

Figure 3.4 – Qualitative results on Stanford dataset. The test image is shown on the first column.
The two next columns illustrates the output of rCNN2 with one and two instances, respectively.
Most mistakes of first instance are corrected on the second one.

Output
Resolution

Computing Time
Per Image

Pixel
Accuracy

1/8 0.20s 78.4%

1/4 0.70s 79.3%

1/2 2.15s 79.8%

1/1 10.68s 80.2%

Table 3.5 – Inference time and performance in per-pixel accuracy for the recurrent convolu-
tional network rCNN3 with different label resolution on the Stanford dataset. Our algorithms
were run on a 4-core Intel i7.

3.4 Summary

In this chapter, we presented a novel approach for full scene labeling based on supervised

deep learning strategies which model in a rather simple way non-local class dependencies in a

scene from raw pixels. We demonstrated that the problem of scene labeling can be effectively

achieved without the need of any expensive graphical model or segmentation technique to

36

3.4. Summary

Figure 3.5 – Qualitative results on SIFT Flow dataset. The test image is shown on the first
column. The two next columns illustrates the output of rCNN2 with one and two instances,
respectively. Most mistakes of first instance are corrected on the second one.

ensure labeling. The scene labeling is inferred simply by forward evaluation of a function

applied to a RGB image. In terms of accuracy, our system achieves state-of-the-art results on

both Stanford Background and SIFT Flow datasets, while keeping a fast inference time.

37

4 Learning to Segment with Image-
Level Label

Segmenting objects is extremely challenging. Each object in the world generates an infinite

number of images with variations in position, pose, lightning, texture, geometrical form and

background. Natural image segmentation systems have to cope with these variations, while

being limited in the amount of available training data. Increasing computing power, and

recent releases of reasonably large segmentation datasets such as PASCAL VOC (Everingham

et al., 2010) and MS COCO (Lin et al., 2014) have nevertheless made the segmentation task a

reality.

Convolutional neural networks (LeCun et al., 1990, 1998) achieve state-of-the-art results on

large object recognition tasks (Krizhevsky et al., 2012; Szegedy et al., 2015; Farabet et al.,

2013). A big advantage of CNNs is that they learn sufficiently general features, and therefore

they can excel in transfer learning: e.g. CNN models trained on the ImageNet classification

dataset (Deng et al., 2009) could be exploited for different vision tasks (Girshick et al., 2014;

Oquab et al., 2014; Hariharan et al., 2014). Their main disadvantage, however, is the need of a

large number of fully-labeled dataset for training. Given that classification labels are much

more abundant than segmentation labels, it is natural to find a bridge between classification

and segmentation, which would transfer efficiently learned features from one task to the other

one.

In the previous chapter, we developed a method to learn how to give a label to every pixel

in a scene in a fully supervised way. In this chapter, the proposed CNN-based model is not

trained with segmentation labels, nor bounding box annotations. Instead, we only consider a

single object class label for a given image, and the model is constrained to put more weight

on important pixels for classification. This approach can be seen as an instance of Multiple

Instance Learning (MIL) (Maron and Lozano-Pérez, 1998). In this context, every image is

known to have (or not) – through the image class label – one or several pixels matching the

class label. However, the positions of these pixels are unknown, and have to be inferred. This

learning paradigm is called weakly supervised learning.

Because of computing power limitations, we built our model over the Overfeat feature extractor,

39

Chapter 4. Learning to Segment with Image-Level Label

Figure 4.1 – A schematic illustration of our method. (Left): (1) The model is trained using
weakly annotated data (only image-level class information) from ImageNet. (2) The CNN
generates feature planes. (3) These planes pass through an aggregation layer to constrain
the model to put more weight on the right pixels. (4) The system is trained by classifying the
correct image-level label. (Right): During test time, the aggregation layer is removed and the
CNN densely classifies every pixel of the image (considering only few segmentation priors).

developed by Sermanet et al. (2014). This feature extractor correspond to the first layers of a

CNN, well-trained over ImageNet. Features are fed into few extra convolutional layers, which

forms our “segmentation network”.

Training is achieved by maximizing the classification likelihood over the classification training

set (we consider a subset of ImageNet), by adding an extra layer to our network, which

constrains the model to put more weight on pixels which are important for the classification

decision. At test time, the constraining layer is removed, and the label of each image pixel is

efficiently inferred. Figure 4.1 shows a general illustration of our approach.

4.1 Related Work

Weakly supervised semantic segmentation Labeling data for segmentation task is difficult

if compared to labeling data for classification. For this reason, several weakly supervised

semantic segmentation systems have been proposed in the past few years. For instance, Vezh-

nevets and Buhmann (2010) proposed an approach based on Semantic Texton Forest (Shotton

et al., 2008), derived in the context of MIL. However, the method fails to model relationship be-

tween superpixels. In order to model these relationships, Vezhnevets et al. (2011) introduced a

graphical model – named Multi-Image Model (MIM) – to connect superpixels from all training

images, based on their appearance similarity. The unary potentials of the MIM are initialized

with the output of Vezhnevets and Buhmann (2010).

In (Vezhnevets et al., 2012), the authors define a parametric family of structured models, where

each model carries visual cues in a different way. A maximum expected agreement model

selection principle evaluates the quality of a model from a family. An algorithm based on

Gaussian processes is proposed to efficiently search the best model for different visual cues.

40

4.1. Related Work

Zhang et al. (2014) proposed an algorithm that learns the distribution of spatially structural

superpixel sets from image-level labels. This is achieved by first extracting graphlets (small

graphs consisting of superpixels and encapsulating their spatial structure) from a given image.

Labels from the training images are transfered into graphlets throughout a proposed manifold

embedding algorithm. A Gaussian mixture model is then used to learn the distribution of the

post-embedding graphlets, i.e. vectors output from the graphlet embedding. The inference is

done by leveraging the learned GMM prior to measure the structure homogeneity of a test

image.

In contrast with previous approaches for weakly supervised segmentation, we avoid designing

task-specific features for segmentation. Instead, a CNN learns the features: the model is

trained through a cost function which casts the problem of segmentation into the problem

of finding pixel-level labels from image-level labels. As we will see in Section 4.3, learning

the right features for segmentation leads to better performance compared to existing weakly

supervised segmentation systems. Another difference from our approach is that we train our

model in a different dataset (ImageNet) from the one we validate the results (PASCAL VOC).

Transfer Learning and CNNs In the last few years, convolutional networks have been widely

used in the context of object recognition. A notable system is the one from (Krizhevsky et al.,

2012), which performs very well on ImageNet. Oquab et al. (2014) built upon Krizhevsky’s

approach and showed that a model trained for classification on the ImageNet dataset can

be used for classification in a different dataset (namely PASCAL VOC) by taking into account

the bounding box information. Oquab et al. (2015) adapt an ImageNet-trained CNN to the

PASCAL VOC classification task. The network is fine-tuned on PASCAL VOC, by modifying

the cost function to include a final max-pooling layer. Similar to our aggregation layer, the

max-pooling outputs a single image-level score for each of the classes. In contrast, (1) we do

not limit ourselves to the PASCAL VOC classification problem, but tackle the more challenging

problem of segmentation and (2) our model is not fine-tuned on PASCAL VOC.

In the same spirit, Girshick et al. (2014) showed that a model trained for classification on

ImageNet can be adapted for object detection on PASCAL VOC. The authors proposed to

combine bottom-up techniques for generating detection region candidates with pre-trained

CNNs. The authors achieved state-of-the-art performance in object detection. Based upon

this work, Hariharan et al. (2014) derived a model that detects all instances of a category in

an image and, for each instance, marks the pixels that belong to it. Their model, entitled

Simultaneous Detection and Segmentation (SDS), uses category-specific, top-down figure-

ground predictions to refine bottom-up detection candidates.

As for these existing state-of-the-art approaches, our system leverages features learned over

the ImageNet classification dataset. However, our approach differs from theirs in some

important aspects. Compared to (Girshick et al., 2014; Oquab et al., 2014), we consider the

more challenging problem of object segmentation and do not use any information other than

41

Chapter 4. Learning to Segment with Image-Level Label

Figure 4.2 – Outline of the proposed architecture. The full RGB image is forwarded through
the network (composed of Overfeat and four extra convolutional features), generating output
planes of dimension (C +1)×ho ×wo . These output planes can be seen as pixel-level labels of
a sub-sampled version of the input image. The output then passes through a aggrerg layer to
aggregate pixel-level labels into image-level ones. The error is backpropagated through layers
C10-C7.

the image-level annotation. Oquab et al. (2015) consider a weakly supervised scenario, but

only deal with the classification problem. Compared to (Hariharan et al., 2014), we consider

only the image-level annotation to infer the pixel-level one. In that respect, we do not use any

segmentation information (our model is not refined over the segmentation data either), nor

bounding box annotation during the training period. One could argue that a classification

dataset like ImageNet has somewhat already cropped properly objects. While this might be

true for certain objects, it is not the case for many images, and in any case the bounding box

remains quite loose.

After the publication of this work in 2015, many different weakly supervised semantic seg-

mentation methods appeared on the literature. For example Pathak et al. (2015) considers

to use each image-level tag as a constraint in the loss function of the CNN. Papandreou et al.

(2015) also proposes a CNN-based approach that constraint the loss using an expectation-

maximization algorithm. Saleh et al. (2016) propose to extract a foreground/background mask

by directly exploiting the unit activations of some of the hidden layers in the network. Tok-

makov et al. (2016) propose to leverage segmentation information from weakly annotated

videos, using motion segment as soft constraints. Kolesnikov and Lampert (2016) achieve

surprising results using a three step pipeline model: first, they use a pre-trained CNN to find

weak localization cues, second they expand objects based on the information of which object

are present in an image, then they constraint these segmentation using a CRF.

4.2 From Image-level to Pixel-level labeling

As we pointed out, CNNs are very flexible models which can be applied on various image

processing tasks, as they alleviate the need for task-specific features. CNNs learn a hierarchy

of filters, which extract higher level of representations as one goes “deeper” in the hierar-

chy (Zeiler and Fergus, 2014). The type of features they learn is also sufficiently general that

CNNs make transfer learning (to another task) quite easy. The main drawback of these models,

however, is that a large amount of data is necessary during training.

42

4.2. From Image-level to Pixel-level labeling

Since the number of image-level object labels is much bigger than pixel-level segmentation

labels, it is thus natural to leverage image classification datasets for performing segmentation.

In the following, we consider a problem of segmentation with a set of classes C = {1, . . . ,C }. We

assume the classification dataset contains at least the same classes. Extra classes available

at classification time, but which are not in the segmentation dataset are mapped to a “back-

ground” class. This background class is essential to limit the number of false positive during

segmentation.

Our architecture is a CNN, which is trained over a subset of ImageNet, to produce pixel-level

labels from image-level labels. As shown in Figure 4.2, our CNN is quite standard, with 10

levels of convolutions and (optional) pooling. It takes as input a 400×400 RGB patch I , and

outputs C +1 planes (one per class, plus the background class) corresponding to the score

of the 12-times downsampled image pixels labels. During training, an extra layer, described

in Section 4.2.1, aggregates pixel-level labels into an image-level label. For computational

reasons, we “froze” the first layers of our CNN, to the ones of some already well-trained (over

ImageNet classification data) CNN model.

We pick Overfeat (Sermanet et al., 2014), trained to perform object classification on the

ILSVRC13 challenge (a subset of ImageNet). The Overfeat model generates feature maps of

dimensions 1024×hi ×wi , where hi and wi are functions of the size of the RGB input image,

the convolution kernel sizes, convolution strides and max-pooling sizes. Keeping only the

first 6 convolution layers and 2 pooling layers of Overfeat, our RGB 400×400 image patch I is

transformed into a 1024×29×29 feature representation.

We add four extra convolutional layers (we denote H6 for feature planes coming out from

OverFeat. Each of them (but the last one Y) is followed by a pointwise rectification non-linearity

(ReLU):

Hp = max(0,Wp Hp−1 +bp) , p ∈ {7,8,9} ,

Y = W10H9 +b10 .
(4.1)

The parameters of the pth layer are denoted with (Wp ,bp). On this step, we do not use any

max-pooling. A dropout regularization strategy (Srivastava et al., 2014) is applied on all layers.

The network outputs C +1 feature planes of dimensions ho ×w o , one for each class considered

on training, plus background.

4.2.1 Multiple Instance Learning

The network produces one score sk
i , j = Y k

i , j for each pixel location (i , j) from the subsampled

image I , and for each class k ∈ C. Given that at training time we have only access to image

classification labels, we need a way to aggregate these pixel-level scores into a single image-

level classification score sk = ag g r egi , j (sk
i , j), that will then be maximized for the right class

label k�. Assuming an aggregation procedure ag g r eg (·) is chosen, we interpret image-level

43

Chapter 4. Learning to Segment with Image-Level Label

class scores as class conditional probabilities by applying a softmax function (Bridle, 1990):

p(k|I ,θ) = esk∑
c∈C

esc , (4.2)

where θ = {Wp ,bp }∀p represents all the trainable parameters of our architecture. We then

maximize the log-likelihood (with respect to θ), over all the training dataset pairs (I ,k�):

L(θ) = ∑
(k�,I)

[
sk� − log

∑
c∈C

esc

]
. (4.3)

Training is achieved with stochastic gradient, backpropagating through the softmax, the

aggregation procedure, and up to the first non-frozen layers of our network.

Aggregation

The aggregation should drive the network towards correct pixel-level assignments, such that it

could perform decently on segmentation tasks. An obvious aggregation would be to take the

sum over all pixel positions:

sk =∑
i , j

sk
i , j ∀k ∈ C. (4.4)

This would however assign the same weight on all pixels of the image during the training

procedure, even to the ones which do not belong to the class label assigned to the image. Note

that this aggregation method is equivalent to applying a traditional fully-connected classifica-

tion CNN with a mini-batch. Indeed, each value in the ho ×w o output plane corresponds to

the output of the CNN fed with a sub-patch centered around the correspond pixel in the input

plane. At the other end, one could apply a max pooling aggregation:

sk = max
i , j

sk
i , j ∀k ∈ C. (4.5)

This would encourage the model to increase the score of the pixel which is considered as

the most important for image-level classification. In our experience, this type of approach

does not train very well. Note that at the beginning of training all pixels might have the same

(wrong) score, but only one (selected by the max) will have its score increased at each step of

the training procedure. It is thus not surprising it takes an enormous amount of time to the

model to converge.

We chose instead a smooth version and convex approximation of the max function, called

Log-Sum-Exp (LSE) (Boyd and Vandenberghe, 2004):

sk = 1

r
log

[
1

ho wo

∑
i , j

exp(r sk
i , j)

]
. (4.6)

44

4.2. From Image-level to Pixel-level labeling

The hyper-parameter r controls how smooth one wants the approximation to be: high r values

imply having an effect similar to the max, very low values will have an effect similar to the

score averaging. The advantage of this aggregation is that pixels having similar scores will have

a similar weight in the training procedure, r controlling this notion of “similarity”.

pi,j(k)

ŷ
′
i,j(k) = pi,j(k|I)× p(k|I)

Figure 4.3 – Inference Pipeline. The test image is forwarded through the segmentation network
to generate a (C +1)×h×w output, one plane for each class. The image-level prior is extracted
from these planes and the class of each pixel is selected by taking the maximum probability for
each pixel. A smoothing prior is also considered to generate a smoother segmentation output.

4.2.2 Inference

At test time, we feed the padded and normalized RGB test image I (of dimension 3×h ×w) to

our network, where the aggregation layer has been removed. We thus obtain C +1 planes of

pixel-level scores sk
i , j (1 ≤ i ≤ ho , 1 ≤ j ≤ w o). For convenience, we transform these scores into

conditional probabilities pi , j (k|I) using a softmax over each location (i , j).

Due to the pooling layers in the CNN, the output planes labels correspond to a sub-sampled

version of the input test image. As shown in previous chapter, one can efficiently retrieve the

label of all pixels of the image using a CNN model, by simply shifting the input image in both

spatial directions, and forwarding it again through the network.

Adding Segmentation Priors

Given we do not fine-tune our model on segmentation data, we observed our approach

is subject to false positive. To circumvent this issue, we consider simple post-processing

techniques, namely Image-Level Prior (ILP) and three different Smoothing Prior (SP), with

increasing amount of information. Figure 4.3 summarizes the pipeline of our approach during

inference time.

Image-Level Prior The model makes inference using local context based on the patch sur-

rounding a pixel. In order to improve the overall per-pixel accuracy, we add the global context

information of the scene into play. We propose the use of an ILP (Shotton et al., 2008; Vezhn-

evets and Buhmann, 2010) based on the output feature planes. This prior, which is extracted

from the trained network, is important to reduce the number of false positives generated by

the model. As at training time, the probability p(k|I) of each class k ∈ C to be present in the

scene can be computed by applying the softmax in the LSE score of each label plane. This

45

Chapter 4. Learning to Segment with Image-Level Label

probability is used as the image-level prior to encourage the likely categories and discourage

the unlikely ones.

The ILP is integrated into the system by multiplying each conditional probability pi , j (k|I) by

its class ILP, that is:

ŷ ′
i , j (k) = pi , j (k|I)×p(k|I) , (4.7)

for each location (i , j) and class k ∈ C.

Smoothing Prior Predicting the class of each pixel independently from its neighbors yields

noisy predictions. In general, objects have smooth boundaries and well defined shapes, differ-

ent from the background which tends to be amorphous regions. At test time we considered

three different approaches (of increasing prior knowledge) to impose local regions with strong

boundaries to be assigned to the same label:

(i) SP-sppxl smooths the output using standard superpixels. We followed the method

proposed by (Felzenszwalb and Huttenlocher, 2004), which largely over-segments a

given image into a set of disjoint components. Prediction smoothing is achieved by

simply picking the label that appears the most in each superpixel.

(ii) SP-bb leverages bounding box proposals to improve the smoothing. We picked the

BING algorithm (Cheng et al., 2014) to generate a set of 104 (possibly overlapping)

bounding box proposals given an image, each bounding box having a score. These

scores are normalized to fit the [0,1] interval. Each pixel (i , j) in the image is assigned a

score (of belonging to an object) by summing the score of all bounding box proposals

that contains the pixel. The score at each pixel is then converted into a probability

p((i , j) ∈ Obj) by normalizing the sum by the number of boxes containing the pixel.

Label smoothing for each pixel (i , j) is then achieved with:

ŷi , j =
⎧⎨
⎩

k, if max
k∈C

ŷ ′
i , j (k)×p((i , j) ∈ Obj) > δk

0, otherwise
, (4.8)

where δk (0 ≤ δk < 1) is a per-class confidence threshold and ŷi , j = 0 means that the

background class is assigned to the pixel.

(iii) SP-seg is a smoothing prior which has been trained with class-independent segmenta-

tion labels. We consider the Multiscale Combinatorial Grouping (MCG) algorithm (Ar-

beláez et al., 2014), which generates a series of overlapping object candidates with a

corresponding score. Pixel label smoothing is then achieved in the same way as in

SP-bb.

The smoothing prior improves our algorithm in two ways: (i) it forces pixels with low proba-

46

4.3. Experiments

bility of being part of an object to be labeled as background and (ii) it guarantees local label

consistency. While the former reduces the number of false positives, the latter increases the

number of true positives. We will see in Section 4.3 that (as it can be expected) more complex

smoothing priors improve performance accuracy.

4.3 Experiments

Given that our model uses only weak supervision labels (class labels), and is never trained

with segmentation data, we compare our approach with current state-of-the-art weakly su-

pervised segmentation systems. We also compare it against state-of-the-art fully supervised

segmentation systems, to demonstrate that weakly supervised segmentation is a promising

and viable solution.

4.3.1 Datasets

We considered the PASCAL VOC dataset (Everingham et al., 2010) as a benchmark for segmen-

tation. This dataset includes 20 different classes, and represents a particular challenge as an

object segmentation task. The objects from these classes can appear in many different poses,

possibly highly occluded, and also possess a very large intra-class variation. The dataset was

only used for testing purposes, not for training.

We created a large classification training set from the ImageNet dataset containing images

of each of the twenty classes and also an extra class labeled as background – set of images

in which none of the classes appear. We consider all the sub-classes located below each of

the twenty classes in the full ImageNet tree, for a total of around 700,000 samples. For the

background, we chose a subset of ImageNet consisting of a total of around 60,000 images not

containing any of the twenty classes1. To increase the size of the training set, jitter (horizontal

flip, rotation, scaling, brightness and contrast modification) was randomly added to each

occurrence of an image during the training procedure. Each image was then normalized for

each RGB channel. No other preprocessing was done during training.

4.3.2 Experimental Setup

Each training sample consists of a central patch of size 400×400 randomly extracted from a

deformed image in the training set. If the image dimensions are smaller than 400×400, it is

rescaled such that its smaller dimension is of size 400.

The first layers of our network are extracted (and “frozen”) from the public available Overfeat2

model. In all our experiments, we use the slow Overfeat model, as described in (Sermanet

160K background images might look surprisingly not large, but we found not easy to pick images where none of
the 20 PASCAL VOC classes were not present.

2http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

47

Chapter 4. Learning to Segment with Image-Level Label

Conv. Layer 1 2 3 4

channels 1024 768 512 21

Filter Size 3×3 3×3 3×3 3×3

Input Size 29×29 27×27 25×25 23×23

Table 4.1 – Architecture of the segmenter network used in our experiments.

Model VOC2008 VOC2009 VOC2010

MIM 8.11% 38.27% 28.43%

GMIM 9.24% 39.16% 29.71%

PGC 30.12% 43.37% 32.14%

aggreg-max 44.31% 45.46% 45.88%

aggreg-sum 47.54% 50.01% 50.11%

aggreg-LSE 56.25% 57.01% 56.12%

Table 4.2 – Averaged per-class accuracy of weakly supervised models and ours for different
PASCAL VOC datasets. We consider three different aggregation layers.

et al., 2014). With the 400×400 RGB input image, the Overfeat feature extractor outputs 1024

feature maps of dimension 29×29. As detailed in Section 4.2, these feature maps are then fed

into 4 additional convolutional layers followed by ReLU non-linearity. A dropout procedure

with a rate of 0.5 is applied on each layer. The whole network has a total of around 20 million

parameters. Table 4.1 details the architecture used in our experiments.

The final convolution layer outputs a 21 feature maps of dimension 21×21. These feature

maps are passed through the aggregation layer (in the case of LSE, we consider r = 5), which

outputs 21 scores, one for each class (plus background). These scores are then transformed

into posterior probabilities through a softmax layer.

Design architecture and hyper-parameters were chosen considering the validation data of

the PASCAL VOC 2012 segmentation dataset. We considered a learning rate λ= 0.001 which

decreases by a factor of 0.8 for every 5 million examples seen by the model. We trained our

model using stochastic gradient descent with a batch size of 16 examples, momentum 0.9 and

weight decay of 0.00005.

The optimal class confidence thresholds δk for smoothing priors (see Section 4.2.2) were

chosen through a grid search. The AP changes in function of the confidence threshold for

each class. The different values for the threshold is due to the variability of each class in the

training data and how their statistics approach the PASCAL VOC images statistics.

Our network takes about a week to train on a Nvidia GeForce Titan GPU with 6GB of memory.

48

4.3. Experiments

4.3.3 Experimental Results

Compared to weakly supervised models

We compare the proposed algorithm with three state-of-the-art approaches in weakly super-

vised segmentation scenario: (i) Multi-Image Model (MIM) (Vezhnevets et al., 2011), (ii) a

variant, Generalized Multi-Image Model (GMIM) (Vezhnevets et al., 2012) and (iii) the most re-

cent Probabilistic Graphlet Cut (PGC) (Zhang et al., 2014, 2013). Note that there are variations

in the experimental setup on the experiments. The compared models use PASCAL VOC for

weak supervision while we use ImageNet. Also, (iii) considers additional labels on the data. In

our training framework, the PASCAL VOC dataset was used only for selecting the thresholds

on the class priors. Our system learns features that are independent of the PASCAL VOC data

distribution and would a priori yields similar results in other datasets.

Table 4.2 reports the results of the three compared models and our approach. In our exper-

iments, we consider the ILP and the SP-sppxl smoothing prior, which does not take into

account any segmentation or bounding box information. We consider the three aggrega-

tion layers described in Section 4.2.1. This result empirically demonstrates our choice of the

Log-Sum-Exp layer.

The results for the compared models reported on this table are from (Zhang et al., 2014). We

use the same metric and evaluate on the same datasets (PASCAL VOC 2008, 2009 and 2010)

as the authors. The metric used, average per-class accuracy, is defined by the ratio of correct

classified pixels of each class. We show that our model achieves significantly better results

than the previous state-of-the-art weakly supervised algorithms, with an increase from 30% to

90% in average per-class accuracy.

Compared to fully supervised models

In table 4.3, we compare the performance of our model against the best performers in PASCAL

VOC 2012 segmentation competition3: Second Order Pooling (O2P) (Carreira et al., 2012), Di-

vMBest (Yadollahpour et al., 2013) and Simultaneous Detection and Segmentation (SDS) (Har-

iharan et al., 2014). Average precision metric4, as defined by the PASCAL VOC competition,

is reported. We show results using the image-level prior and all three smoothing priors (as

described in 4.2.2). The performance of our model increases as we consider more complex

priors.

We reach near state-of-the-art performance for several classes (even with the simplest smooth-

ing prior SP-sppxl, which is object and segmentation agnostic) while some other classes

perform worse. This is not really surprising, given that the statistics of the images for some

3These were the leading methods on PASCAL VOC official evaluation server at the time this work was done. The
fully supervised state of the art has now been vastly improved with CNN-based methods (e.g. (Long et al., 2015;
Chen et al., 2015))

4AP = Tr uePosi t i ve
Tr uePosi t i ve+F al sePosi t i ve+F al seNeg ati ve

49

Chapter 4. Learning to Segment with Image-Level Label

b
gn

d

ae
ro

b
ik

e

b
ir

d

b
o

at

b
o

tt
le

b
u

s

ca
r

ca
t

ch
ai

r

co
w

ta
b

le

d
o

g

h
o

rs
e

m
b

ik
e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
ai

n

tv m
A

P

Fully Sup.

O2P 86.1 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 47.8

DivMBest 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

SDS 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

Weak. Sup.

Ours-sppxl 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

Ours-bb 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0

Ours-seg 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

Table 4.3 – Per class average precision and mean average precision (mAP) on PASCAL VOC
2012 segmentation challenge test set. We consider different smoothing priors in our model.

classes (e.g. ‘dog’, ‘cat’, ‘cow’) are closer in the two different datasets than for some other classes

(e.g. ‘bird’, ‘person’). The results on the specific PASCAL VOC challenge could be improved by

“cheating” and considering training images that are more similar to those represented on the

test data (e.g. instead of choosing all bird images from ImageNet, we could have chosen the

bird breeds that are similar to the ones presented on PASCAL VOC).

b
gn

d

ae
ro

b
ik

e

b
ir

d

b
o

at

b
o

tt
le

b
u

s

ca
r

ca
t

ch
ai

r

co
w

ta
b

le

d
o

g

h
o

rs
e

m
b

ik
e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
ai

n

tv m
A

P

base 37.0 10.4 12.4 10.8 5.3 5.7 25.2 21.1 25.15 4.8 21.5 8.6 29.1 25.1 23.6 25.5 12.0 28.4 8.9 22.0 11.6 17.8

base+ILP 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6

base+ILP+SP-sppxl 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

base+ILP+SP-bb 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8

base+ILP+SP-seg 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

Table 4.4 – Effect of image-level and smoothing priors on segmentation results. Per class
average precision on PASCAL VOC 2012 validation set. We consider the inference with no
priors (base), with image-level prior (base+ILP) and different smoothing priors (base+ILP+SP-
sppxl, base+ILP+SP-bb, base+ILP+SP-seg).

Effect of Priors

Table 4.4 shows the average precision of each class on the PASCAL VOC 2012 validation set

considering the inference assuming no prior was used (base), only the image-level prior

(base+ILP) and the image-level together with different smoothing priors (base+ILP+SP-sppxl,

base+ILP+SP-bb, base+ILP+SP-seg). Figure 4.4 illustrates inference in PASCAL VOC images

assuming different steps of inference. Priors have a huge importance to reduce false positives,

and smooth predictions.

4.4 Summary

In this chapter, we proposed a way to segment objects with weakly supervision only. Our model

is built on the top of a CNN pre-trained on ImageNet which is constrained during training to

put more weight on pixels which are important for classifying images. Our algorithm is able to

distinguish, at a pixel level, the differences between distinct classes, assuming only few simple

50

4.4. Summary

Figure 4.4 – Qualitative results. For each test image (left), we show the output assuming the
image-level prior (center) and image-level and SP-seg smoothing prior (right).

prior knowledge about segmentation. This is an interesting result as one might circumvent the

necessity of using the very costly segmentation datasets and use only image-level annotations.

Our approach outperforms previously proposed models for weakly supervised segmentation,

with an increase form 30% to 90% in average per-class accuracy, on PASCAL VOC dataset. We

also achieve competitive performance (at least for several classes) compared to state-of-the-art

fully supervised segmentation systems.

51

5 Learning to Generate Object Seg-
ments

Object detection is one of the most foundational tasks in computer vision. Until recently,

the dominant paradigm in object detection was the sliding window framework: a classifier is

applied at every object location and scale (Dalal and Triggs, 2005; Felzenszwalb et al., 2010;

Viola and Jones, 2004). More recently, Girshick et al. (2014) proposed a two-phase approach.

First, a rich set of object proposals (i.e., a set of image regions which are likely to contain an

object) is generated using a fast (but possibly imprecise) algorithm. Second, a convolutional

neural network classifier is applied on each of the proposals. This approach provides a notable

gain in object detection accuracy compared to classic sliding window approaches. Since

then, most state-of-the-art object detectors for the PASCAL VOC (Everingham et al., 2010)

ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) datasets rely on object proposals as a

first preprocessing step (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016;

He et al., 2016).

In this chapter, we present an object proposal algorithm based on CNN (LeCun et al., 1998)

that satisfies these constraints better than existing approaches. CNNs are an important class of

algorithms which have been shown to be state of the art in many large scale object recognition

tasks. They can be seen as a hierarchy of trainable filters, interleaved with non-linearities

and pooling. Moreover, these models learn sufficiently general image features, which can be

transferred to many different tasks (Girshick et al., 2014; Hariharan et al., 2015; Chen et al.,

2015; Oquab et al., 2015).

Given an input image patch, our algorithm generates a class-agnostic mask and an associated

score which estimates the likelihood of the patch fully containing a centered object (without

any notion of an object category). The core of our model is a CNN which jointly predicts

the mask and the object score. A large part of the network is shared between those two

tasks: only the last few network layers are specialized for separately outputting a mask and

score prediction. The model is trained by optimizing a cost function that targets both tasks

simultaneously. We train on COCO and evaluate the model on two object detection datasets,

PASCAL VOC and COCO.

53

Chapter 5. Learning to Generate Object Segments

By leveraging powerful CNN feature representations trained on ImageNet and adapted on the

large amount of segmented training data available in COCO, we are able to beat the state of the

art in object proposals generation under multiple scenarios. Our most notable achievement is

that our approach beats other methods by a large margin while considering a smaller number

of proposals. Moreover, we demonstrate the generalization capabilities of our model by testing

it on object categories not seen during training. Finally, unlike all previous approaches for

generating segmentation proposals, we do not rely on edges, superpixels, or any other form of

low-level segmentation. This approach is the first to learn to generate segmentation proposals

directly from raw image data.

5.1 Related Work

In recent years, CNNs have been widely used in the context of object recognition. Notable

systems are AlexNet (Krizhevsky et al., 2012) and more recently GoogLeNet (Szegedy et al.,

2015), VGG (Simonyan and Zisserman, 2015) and ResNet (He et al., 2016), which perform ex-

ceptionally well on ImageNet. In the setting of object detection, Girshick et al. (2014) proposed

R-CNN, a CNN-based model that beats by a large margin models relying on hand-designed

features. Their approach can be divided into two steps: selection of a set of salient object

proposals (Uijlings et al., 2013), followed by a CNN classifier (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2015). Currently, most state-of-the-art object detection approaches (Szegedy

et al., 2014; He et al., 2014; Girshick, 2015; Ren et al., 2015) rely on this pipeline. Although they

are slightly different in the classification step, they all share the first step, which consists of

choosing a rich set of object proposals.

Most object proposal approaches leverage low-level grouping and saliency cues. These ap-

proaches usually fall into three categories: (1) objectness scoring (Alexe et al., 2012; Zitnick and

Dollár, 2014), in which proposals are extracted by measuring the objectness score of bounding

boxes, (2) seed segmentation (Humayun et al., 2014; Krähenbühl and Koltun, 2014, 2015),

where models start with multiple seed regions and generate separate foreground-background

segmentation for each seed, and (3) superpixel merging (Uijlings et al., 2013; Pont-Tuset et al.,

2015), where multiple over-segmentations are merged according to various heuristics. These

models vary in terms of the type of proposal generated (bounding boxes or segmentation

masks) and if the proposals are ranked or not. For a more complete survey of object proposal

methods, we recommend the recent survey from (Hosang et al., 2016).

Although our model shares high level similarities with these approaches (we generate a set

of ranked segmentation proposals), these results are achieved quite differently. All previous

approaches for generating segmentation masks, including (Krähenbühl and Koltun, 2015)

which has a learning component, rely on low-level segmentations such as superpixels or

edges. Instead, we propose a data-driven discriminative approach based on a deep-network

architecture to obtain our segmentation proposals.

Most closely related to our approach, Multibox (Erhan et al., 2014; Szegedy et al., 2014) pro-

54

5.2. DeepMask Proposals

posed to train a CNN model to generate bounding box object proposals. Their approach,

similarly to ours, generates a set of ranked class-agnostic proposals. However, our model

generates segmentation proposals instead of the less informative bounding box proposals.

Moreover, the model architectures, training scheme, etc., are quite different between our ap-

proach and (Szegedy et al., 2014). Deepbox (Kuo et al., 2015) proposed a CNN model that learns

to rerank proposals generated by EdgeBox (Zitnick and Dollár, 2014), a bottom-up method for

bounding box proposals. This system shares some similarities to our scoring network. Our

model, however, is able to generate the proposals and rank them in one shot from the test

image, directly from the pixel space. Concurrently with the work in this chapter, (Ren et al.,

2015) proposed “region proposal networks” for generating box proposals that shares similar-

ities with our work. We emphasize, however, that unlike all these approaches our method

generates segmentation masks instead of bounding boxes. Finally, Hayder et al. (2016) present

an approach to co-generate object proposals in multiple images. They use a deep structure

network that jointly predicts the objectness scores and the bounding box locations of multiple

object candidates. Contrary to our work, this method relies in a previously generated set of

object proposals (e.g., EdgeBox) and generates box proposals only.

5.2 DeepMask Proposals

Our object proposal method predicts a segmentation mask given an input patch, and assigns

a score corresponding to how likely the patch is to contain an object.

Both mask and score predictions are achieved with a single convolutional network. CNNs

are flexible models which can be applied to various computer vision tasks and they alleviate

the need for manually designed features. Their flexible nature allows us to design a model in

which the two tasks (mask and score predictions) can share most of the layers of the network.

Only the last layers are task-specific (see Figure 5.1). During training, the two tasks are learned

jointly. Compared to a model which would have two distinct networks for the two tasks, this

architecture choice reduces the capacity of the model and increases the speed of full scene

inference at test time.

Each sample k in the training set is a triplet containing (1) the RGB input patch xk , (2) the

binary mask corresponding to the input patch mk (with mi j
k ∈ {±1}, where (i , j) corresponds

to a pixel location on the input patch) and (3) a label yk ∈ {±1} which specifies whether the

patch contains an object. Specifically, a patch xk is given label yk = 1 if it satisfies the following

constraints:

(i) the patch contains an object roughly centered in the input patch,

(ii) the object is fully contained in the patch and in a given scale range.

Otherwise, yk =−1, even if an object is partially present. The positional and scale tolerance

used in our experiments are given shortly. Assuming yk = 1, the ground truth mask mk has

55

Chapter 5. Learning to Generate Object Segments

Figure 5.1 – (Top) Model architecture: the network is split into two branches after the shared
feature extraction layers. The top branch predicts a segmentation mask for the the object
located at the center while the bottom branch predicts an object score for the input patch.
(Bottom) Examples of training triplets: input patch x, mask m and label y . Green patches
contain objects that satisfy the specified constraints and therefore are assigned the label
y = 1. Note that masks for negative examples (shown in red) are not used and are shown for
illustrative purposes only.

positive values only for the pixels that are part of the single object located in the center of the

patch. If yk =−1 the mask is not used. Figure 5.1, bottom, shows examples of training triplets.

Figure 5.1, top, illustrates an overall view of our model, which we call DeepMask. The top

branch is responsible for predicting an object segmentation mask and the bottom branch

predicts the likelihood that an object is present and satisfies the above two constraints.

We next describe in detail each part of the basic architecture (the first version of DeepMask,

introduced in (Pinheiro et al., 2015)), the training procedure, and the fast inference procedure.

In Section 5.3, we describe some efficient variants of this basic architecture that improve speed

without decreasing the performance (introduced in (Pinheiro et al., 2016)).

5.2.1 Network Architecture

In this section we describe the three components of the basic DeepMask architecture: the

common shared trunk, the segmentation branch and the scoring branch.

Common Trunk

The parameters for the layers shared between the mask prediction and the object score pre-

diction are initialized with a network that was pre-trained to perform classification on the

ImageNet dataset (Deng et al., 2009). This model is then fine-tuned for generating object

proposals during training. For the basic architecture, we choose the VGG-A (Simonyan and

56

5.2. DeepMask Proposals

Zisserman, 2015) which consists of eight 3×3 convolutional layers (followed by ReLU nonlin-

earities) with 0-padding and five 2×2 max-pooling layers and has shown good performance.

As we are interested in inferring segmentation masks, the spatial information provided in the

convolutional feature maps is important. We therefore remove all the final fully connected

layers of the VGG-A model. Additionally we also discard the last max-pooling layer. The

output of the shared layers has a downsampling factor of 16 due to the remaining four 2×2

max-pooling layers; given an input image of dimension 3×h ×w , the output is a feature map

of dimensions 512× h
16 × w

16 .

Segmentation Head

The branch of the network dedicated to segmentation is composed of a single 1×1 convolution

layer (and ReLU non-linearity) followed by a classification layer. The classification layer

consists of h×w pixel classifiers, each responsible for indicating whether a given pixel belongs

to the object in the center of the patch. Note that each pixel classifier in the output plane must

be able to utilize information contained in the entire feature map, and thus have a complete

view of the object. This is critical because unlike in semantic segmentation, our network

must output a mask for a single object even when multiple objects are present (e.g., see the

elephants in Figure 5.1).

For the classification layer one could use either locally or fully connected pixel classifiers. Both

options have drawbacks: in the former each classifier has only a partial view of the object while

in the latter the classifiers have a massive number of redundant parameters. Instead, we opt

to decompose the classification layer into two linear layers with no non-linearity in between.

This can be viewed as a “low-rank” variant of using fully connected linear classifiers. Such

an approach massively reduces the number of network parameters while allowing each pixel

classifier to leverage information from the entire feature map. Its effectiveness is shown in the

experiments. Finally, to further reduce model capacity, we set the output of the classification

layer to be ho ×w o with ho < h and wo < w and upsample the output to h ×w to match the

input dimensions.

Scoring Head

The second branch of the network is dedicated to predicting if an image patch satisfies

constraints (i) and (ii): that is, if an object is centered in the patch and at the appropriate scale.

In its basic form, the scoring head is composed of a 2×2 max-pooling layer, followed by two

fully connected (plus ReLU non-linearity) layers. The final output is a single “objectness” score

indicating the presence of an object in the center of the input patch (and at the appropriate

scale).

57

Chapter 5. Learning to Generate Object Segments

5.2.2 Joint Learning

Given an input patch xk ∈ I, the model is trained to jointly infer a pixel-wise segmentation

mask and an object score. The loss function is a sum of binary logistic regression losses, one

for each location of the segmentation network and one for the object score, over all training

triplets (xk ,mk , yk):

L(θ) =∑
k

(
1+yk

2w o ho

∑
i j

log(1+e−mi j
k f i j

seg m (xk))+λ log(1+e−yk fscor e (xk))

)
. (5.1)

Here θ is the set of parameters, f i j
seg m(xk) is the prediction of the segmentation network at

location (i , j), and fscor e (xk) is the predicted object score. We alternate between backpropa-

gating through the segmentation branch and scoring branch (and set λ= 1
32). For the scoring

branch, the data is sampled such that the model is trained with an equal number of positive

and negative samples.

Note that the factor multiplying the first term of (5.1) implies that we only backpropagate the

error over the segmentation branch if yk = 1. An alternative would be to train the segmentation

branch using negatives as well (setting mi j
k = 0 for all pixels if yk =−1). However, we found

that training with positives only was critical for generalizing beyond the object categories seen

during training and for achieving high object recall. This way, during inference the network

attempts to generate a segmentation mask at every patch, even if no known object is present.

5.2.3 Full Scene Inference

During full image inference, we apply the model densely at multiple locations and scales. This

is necessary so that for each object in the image we test at least one patch that fully contains

the object (roughly centered and at the appropriate scale), satisfying the two assumptions

made during training. This procedure gives a segmentation mask and object score at each

image location. Figure 5.2 illustrates the segmentation output when the model is applied

densely to an image at a single scale.

The full image inference procedure is efficient since all computations can be computed

convolutionally. The CNN features can be computed densely in a fraction of a second given

a typical input image. For the segmentation branch, the last fully connected layer can be

computed via convolutions applied to the CNN features. The scores are likewise computed by

convolutions on the CNN features followed by two 1×1 convolutional layers.

Finally, note that the scoring branch of the network has a downsampling factor 2× larger than

the segmentation branch due to the additional max-pooling layer. Given an input test image of

size ht ×w t , the segmentation and object network generate outputs of dimension ht

16 × w t

16 and
ht

32 × w t

32 , respectively. In order to achieve a one-to-one mapping between the mask prediction

and object score, we apply the interleaving trick right before the last max-pooling layer for the

scoring branch to double its output resolution (we use exactly the implementation described

58

5.2. DeepMask Proposals

Figure 5.2 – Output of segmentation masks and object scores generated by the proposed model
on a given test image, with a 16 pixels stride (at a single scale). The model outputs high quality
mask and and high objectness score on object locations.

in (Sermanet et al., 2014)).

5.2.4 Implementation Details

During training, an input patch xk is considered to contain a “canonical” positive example if

an object is precisely centered in the patch and has maximal dimension equal to exactly 128

pixels. However, having some tolerance in the position of an object within a patch is critical as

during full image inference most objects will be observed slightly offset from their canonical

position. Therefore, during training, we randomly jitter each “canonical” positive example

to increase the robustness of our model. Specifically, we consider translation shift (of ±16

pixels), scale deformation (of 2±1/4), and also horizontal flip. In all cases we apply the same

transformation to both the image patch xk and the ground truth mask mk and assign the

example a positive label yk = 1. Negative examples (yk = −1) are any patches at least ±32

pixels or 2±1 in scale from any canonical positive example.

During full image inference we apply the model densely at multiple locations (with a stride of

16 pixels) and scales (scales 2−2 to 21 with a step of 21/2). This ensures that there is at least one

tested image patch that fully contains each object in the image (within the tolerances used

during training).

In the first implementation, the model is fed with RGB input patches of dimension 3×224×

59

Chapter 5. Learning to Generate Object Segments

224. Since we removed the fifth pooling layer, the common branch outputs a feature map

of dimensions 512× 14× 14. The score branch of our network is composed of 2× 2 max

pooling followed by two fully connected layers (with 512 and 1024 hidden units, respectively).

Both of these layers are followed by ReLU non-linearity and a dropout (Srivastava et al.,

2014) procedure with a rate of 0.5. A final linear layer then generates the object score (see

Section 5.4.1 for more efficient implementation).

The segmentation branch begins with a single 1×1 convolutional layer with 512 units. This

feature map is then fully connected to a low dimensional output of size 512, which is further

fully connected to each pixel classifier to generate an output of dimension 56×56. As discussed,

there is no non-linearity between these two layers. In total, this implementation of the model

contains around 75M parameters.

A final bilinear upsampling layer is added to transform the 56×56 output prediction to the

full 224×224 resolution of the ground-truth (directly predicting the full resolution output

would have been much slower). We opted for a non-trainable layer as we observed that a

trainable one simply learned to bilinearly upsample. Alternatively, we tried downsampling

the ground-truth instead of upsampling the network output; however, we found that doing so

slightly reduced accuracy.

Design architecture and hyper-parameters were chosen using a subset of the COCO validation

data (Lin et al., 2014) (non-overlapping with the data we used for evaluation). We considered a

learning rate of .001. We trained our model using stochastic gradient descent with a batch size

of 32 examples, momentum of .9, and weight decay of .00005. Aside from the pre-trained VGG

features, weights are initialized randomly from a uniform distribution. Our model takes around

5 days to train on a Nvidia Tesla K40m. To binarize predicted masks we simply threshold the

continuous output (using a threshold of .1 for PASCAL and .2 for COCO).

5.3 Architecture Optimization

The DeepMask architecture described above achieves state of the art in object proposal over

different datasets. We now describe a series of architecture optimization that further improves

its performance in terms of accuracy and inference speed. In the next two subsections we

carefully examine the design of the network “trunk” and “head”.

5.3.1 Trunk Architecture

We begin by identifying model bottlenecks. The architecture defined in the previous section

spends 40% of its time for feature extraction, 40% for mask prediction, and 20% for score

prediction. Given the time of feature extraction, increasing model depth or breadth can incur

a non-trivial computational cost. Simply upgrading the 11-layer VGG-A model (Simonyan and

Zisserman, 2015) to the 16-layer VGG-D model can double run time. Recently, He et al. (2016)

60

5.3. Architecture Optimization

introduced Residual Networks (ResNet) and showed excellent results. In these architecture

variants, we use the 50-layer ResNet model pre-trained on ImageNet, which achieves the

accuracy of VGG-D but with the inference time of VGG-A.

We explore models with varying input size W, number of pooling layers P, stride density S,

model depth D, and final number of feature channels F. These factors are intertwined but we

can achieve significant insight by a targeted study.

Input size W Given a minimum object size O, the input image needs to be upsampled by

W/O to detect small objects. Hence, reducing W improves speed of both mask prediction

and inference for small objects. However, a smaller W reduces the input resolution which in

turn lowers the accuracy of mask prediction. Moreover, reducing W decreases stride density S

which further harms accuracy.

Pooling layers P Assuming 2×2 pooling, the final kernel width is W/2P. During inference,

this necessitates convolving with a large W/2P kernel in order to aggregate information (e.g.,

14×14 for DeepMask). However, while more pooling P results in faster computation, it also

results in loss of feature resolution.

Stride density S We define the stride density to be S=W/stride (where typically stride is 2P).

The smaller the stride, the denser the overlap with ground truth locations. We found that the

stride density is key for mask prediction. Doubling the stride while keeping W constant greatly

reduces performance as the model must be more spatially invariant relative to a fixed object

size.

Depth D For typical networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015;

Szegedy et al., 2015; He et al., 2016), spatial resolution decreases with increasing D while the

number of feature channels F increases. In the context of instance segmentation, reducing

spatial resolution hurts performance. One possible direction is to start with lower layers that

have less pooling and increase the depth of the model without reducing spatial resolution or

increasing F. This would require training networks from scratch which we leave to future work.

Feature channels F The high dimensional features at the top layer introduce a bottleneck

for feature aggregation. An efficient approach is to first apply dimensionality reduction before

feature aggregation. We adopt 1×1 convolution to reduce F and show that we can achieve

large speedups in this manner.

In Section 5.4.1 and Table 5.1 we examine various choices for W, P, S, D, and F.

61

Chapter 5. Learning to Generate Object Segments

Figure 5.3 – Network head architecture. (a) The original DeepMask head. (b-d) Various head
options with increasing simplicity and speed. The heads share identical pathways for mask
prediction but have progressively simplified score branches.

5.3.2 Head Architecture

We also examine the “head” of the DeepMask model, focusing on score prediction. Our goal is

to simplify the head and further improve inference speed.

In the base DeepMask architecture described in the previous section, the mask and scoring

heads branch after the final 512×14×14 feature map (see Figure 5.1 and Figure 5.3a). Both

mask and score prediction require a large convolution, and in addition, the score branch

requires an extra pooling step and hence interleaving to match the stride of the mask network

during inference. Overall, this leads to a slow inference procedure.

We propose a sequence of simplified network structures that have identical mask branches

but that share progressively more computation. A series of model heads A-C is detailed in

Figure 5.3. Head A removes the need for interleaving in DeepMask by removing max pooling

and replacing the 512×7×7 convolutions by 128×10×10 convolutions; overall this network

is much faster. Head B simplifies this by having the 128×10×10 features shared by both the

mask and score branch. Finally, model C further reduces computation by having the score

prediction utilize the same low rank 512×1×1 features used for the mask.

In Section 5.4.1 we evaluate these variants in terms of performance and speed.

5.4 Experimental Results

In this section, we evaluate the performance of our approach on the PASCAL VOC 2007 test

set (Everingham et al., 2010) and on the first 5000 images of the COCO 2014 validation set (Lin

et al., 2014). Our model is trained on the COCO training set which contains about 80,000

images and a total of nearly 500,000 segmented objects. Although our model is trained to

generate segmentation proposals, it can also be used to provide box proposals by taking the

bounding boxes enclosing the segmentation masks. Figure 5.4 and Figure 5.5 show examples

of generated proposals with highest IoU to the ground truth on COCO.

62

5.4. Experimental Results

Figure 5.4 – DeepMask proposals with highest IoU to the ground truth on selected images
from COCO. Missed objects (no matching proposals with IoU > 0.5) are marked with a red
outline.

The accuracy is measured using the common IoU metric. IoU is the intersection of a candidate

proposal and ground-truth annotation divided by the area of their union. This metric can be

applied to both segmentation and box proposals. Following Hosang et al. (2016), we evaluate

the performance of the proposal methods considering the AR between IoU 0.5 and 1.0 for

a fixed number of proposals (see Section 2.1.2 for further details). AR has been shown to

correlate extremely well with detector performance (recall at a single IoU threshold is far less

predictive (Hosang et al., 2016)).

The results are measured in terms of AR at 10, 100, and 1000 proposals and averaged across all

counts (Area Under Curve (AUC)). As the COCO dataset contains objects in a wide range of

scales, it is also common practice to divide objects into roughly equally sized sets according to

object pixel area a: small (a < 322), medium (322 ≤ a ≤ 962), and large (a > 962) objects, and

report accuracy at each scale.

63

Chapter 5. Learning to Generate Object Segments

W P D S kernel F AR ARS ARM ARL time

DeepMaskBase 224 4 8 14 512x14x14 512 36.6 18.2 48.7 50.6 1.32s

W160-P4-D8-VGG 160 4 8 10 1024x10x10 512 35.5 15.1 47.5 53.2 .58s

W160-P4-D39 160 4 39 10 1024x10x10 512 37.0 15.9 50.5 53.9 .58s

W160-P4-D39-F128 160 4 39 10 1024x10x10 128 36.9 15.6 49.9 54.8 .45s

W112-P4-D39 112 4 39 7 1024x7x7 512 30.8 11.2 42.3 47.8 .31s

W112-P3-D21 112 3 21 14 512x14x14 512 36.7 16.7 49.1 53.1 .75s

W112-P3-D21-F128 112 3 21 14 512x14x14 128 36.1 16.3 48.4 52.2 .33s

Table 5.1 – Model performance (upper bound on AR) for varying input size W, number of
pooling layers P, stride density S, depth D, and features channels F. See Section 5.3.1 and
Section 5.4.1 for details. Timing is for multiscale inference excluding the time for score
prediction.

5.4.1 Architecture Variants

We begin by reporting the performance of different variations of DeepMask architecture

presented in previous sections. For our initial results, we measure AR for densely computed

masks (∼104 proposals per image). This allows us to factor out the effect of objectness score

prediction and focus exclusively on evaluating mask quality. In our experiments, AR across all

proposals is highly correlated, hence this upper bound on AR is predictive of performance at

more realistic settings (e.g. at AR100).

Trunk Architecture We begin by investigating the effect of the network trunk parameters

described in Section 5.3.1 with the goal of optimizing both speed and accuracy. Performance

of a number of representative models is shown in Table 5.1. First, replacing the 224×224

DeepMask VGG-A model with a 160×160 version is much faster (over two times). Surprisingly,

accuracy loss for this model, W160-P4-D8-VGG, is only minor, partially due to an improved

learning schedule. Upgrading to a Residual Network (ResNet) trunk, W160-P4-D39, restores

accuracy and keeps speed identical. We found that reducing the feature dimension to 128

(-F128) shows almost no loss, but improves speed. Finally, as input size is a bottleneck, we

also tested a number of W112 models. Nevertheless, overall, W160-P4-D39-F128 gave the best

tradeoff between speed and accuracy.

Head Architecture In Table 5.2 we evaluate the performance of the various network heads

in Figure 5.3 (using standard AR, not upper-bound AR as in Table 5.1). Head A is already

substantially faster than base DeepMask. All heads achieve similar accuracy with a decreasing

inference time as the score branch shares progressively more computation with the mask.

Interestingly, head C is able to predict both the score and mask from a single compact 512

dimensional vector. We chose this variant due to its simplicity and speed.

Based on these experiments, we combine the W160-P4-D39-F128 trunk with the C head. On

64

5.4. Experimental Results

AR10 AR100 AR1K AUCS AUCM AUCL AUC mask score total

DeepMaskBase 12.6 24.5 33.1 2.3 26.6 33.6 18.3 1.32s .27s 1.59s

head A 14.0 25.8 33.4 2.2 27.3 36.6 19.3 .45s .06s .51s

head B 14.0 25.4 33.0 2.0 27.0 36.9 19.1 .45s .05s .50s

head C 14.4 25.8 33.1 2.2 27.3 37.4 19.4 .45s .01s .46s

Table 5.2 – All model variants of the head have similar performance. Head C is a win in terms
of both simplicity and speed. See Figure 5.3 for head definitions.

the following experiments, we refer to this model as DeepMask, while the base DeepMask

architecture (as defined in Section 5.2) is referred to as DeepMaskBase. DeepMask is over 3×
faster than DeepMaskBase (average of .46s versus 1.59s per image on COCO val set). Moreover,

model parameter count is reduced from ∼75M to ∼17M.

5.4.2 Comparison with State of the Art

Methods We compare to the current top publicly-available proposal methods including:

EdgeBoxes (Zitnick and Dollár, 2014), SelectiveSearch (Uijlings et al., 2013), Geodesic (Krähen-

bühl and Koltun, 2014), Rigor (Humayun et al., 2014), MCG (Pont-Tuset et al., 2015) and Region

Proposal Networks (RPN) (Ren et al., 2015). Among these results, only the most recent, RPN, is

based on CNNs (we obtain improved RPN proposals from the authors of (Bell et al., 2016)).

These methods achieve top results on object detection (when coupled with R-CNNs (Girshick

et al., 2014)) and also obtain the best AR (Hosang et al., 2016).

Results Tables 5.3 and 5.4 compare the performance of our approach, DeepMask, to existing

proposal methods on COCO (using both boxes and segmentations) and PASCAL (using boxes),

respectively. The tables show the AR at selected proposal counts and averaged across all counts

(AUC). Under all scenarios DeepMask (and its variants) achieves substantially better AR for

all numbers of proposals considered. Notably, DeepMask achieves an order of magnitude

reduction in the number of proposals necessary to reach a given AR under most scenarios. For

example, with 100 segmentation proposals DeepMask achieves an AR of 25.8 on COCO while

competing methods require nearly 1000 segmentation proposals to achieve similar AR.

Generalization To see if our approach can generalize to unseen classes, we train two ad-

ditional versions of our model, DeepMask20 and DeepMask20∗. DeepMask20 is trained

only with objects belonging to one of the 20 PASCAL categories (subset of the full 80 COCO

categories). DeepMask20∗ is similar, except we use the scoring network from the original

DeepMask. Results for the two models when evaluated on all 80 COCO categories (as in all

other experiments) are shown in Table 5.3. Compared to DeepMask, DeepMask20 exhibits a

drop in AR (but still outperforms all previous methods). DeepMask20∗, however, matches the

performance of DeepMask. This surprising result demonstrates that the drop in accuracy is

65

Chapter 5. Learning to Generate Object Segments

Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes (Zitnick and Dollár, 2014) 07.4 17.8 33.8 13.9 – – – – – – –
Geodesic (Krähenbühl and Koltun, 2014) 04.0 18.0 35.9 12.6 02.3 12.3 25.3 01.3 08.6 20.5 08.5
Rigor (Humayun et al., 2014) – 13.3 33.7 10.1 – 09.4 25.3 02.2 06.0 17.8 07.4
SelectiveSearch (Uijlings et al., 2013) 05.2 16.3 35.7 12.6 02.5 09.5 23.0 00.6 05.5 21.4 07.4
MCG (Pont-Tuset et al., 2015) 10.1 24.6 39.8 18.0 07.7 18.6 29.9 03.1 12.9 32.4 13.7
RPN (Ren et al., 2015; Bell et al., 2016) 12.8 29.2 42.6 21.4 – – – – – – –
DeepMaskBase 15.3 31.3 44.6 23.3 12.6 24.5 33.1 02.3 26.6 33.6 18.3
DeepMask20 17.0 31.8 44.9 24.4 12.4 22.6 31.4 01.9 23.3 35.3 17.4
DeepMask20∗ 18.5 34.1 45.0 25.6 14.0 24.5 31.4 01.9 26.4 35.7 18.6
DeepMask 18.7 34.9 46.5 26.2 14.4 25.8 33.1 02.2 27.3 37.4 19.4

Table 5.3 – Results on the COCO dataset for both bounding box and segmentation proposals.
We report AR at different number of proposals (10, 100 and 1000) and also AUC (AR averaged
across all proposal counts). For segmentation proposals we report overall AUC and also AUC
at different scales (small/medium/large objects indicated by superscripts S/M/L). See text for
details.

PASCAL VOC07 AR10 AR100 AR1K AUC

EdgeBoxes (Zitnick and Dollár, 2014) 20.3 40.7 60.1 30.9
Geodesic (Krähenbühl and Koltun, 2014) 12.1 36.4 59.6 23.0
Rigor (Humayun et al., 2014) 16.4 32.1 58.9 23.9
SelectiveSearch (Uijlings et al., 2013) 08.5 34.7 61.8 24.1
MCG (Pont-Tuset et al., 2015) 23.2 46.2 63.4 34.4
DeepMask 41.2 62.6 71.9 48.8

Table 5.4 – Quantitative results on PASCAL VOC 2007 test.

due to the discriminatively trained scoring branch (DeepMask20 is inadvertently trained to

assign low scores to the other 60 categories). The segmentation branch generalizes extremely

well even when trained on a reduced set of categories.

Speed Inference takes an average of .46s per image in the COCO dataset (.34s on the smaller

PASCAL images). Our method is much faster than other state of the art segmentation pro-

posal methods: Geodesic (Krähenbühl and Koltun, 2015) runs at ∼1s per PASCAL image and

MCG (Pont-Tuset et al., 2015) takes ∼30s. Inference time can further be dropped by ∼30% by

parallelizing all scales in a single batch (eliminating GPU overhead). We do, however, require

use of a GPU for efficient inference.

5.5 Summary

In this chapter, we proposed a new way to generate segmentation object proposals directly

from image pixels. Our model consists of a discriminative convolutional neural network that is

66

5.5. Summary

capable to, at same time, generate a class-agnostic segmentation mask and an object score for

a given input patch. At test time, the model is applied densely over the entire image at multiple

scales and generates a set of ranked segmentation proposals. We show that learning features

for object proposal generation is not only feasible but effective. Our approach surpasses

the previous state of the art by a large margin (an increase of ∼40%-50% in AUC) in box and

segmentation proposal generations, and in both PASCAL and COCO datasets. Moreover, our

method performs faster than previous methods (although we require GPU for a fast inference).

67

Chapter 5. Learning to Generate Object Segments

Figure 5.5 – Additional DeepMask proposals with highest IoU to the ground truth on selected
images from COCO. Missed objects (no matching proposals with IoU > 0.5) are marked with a
red outline.

68

6 Learning to Refine Object Segments

As object detection (Felzenszwalb et al., 2010; Sermanet et al., 2013; Szegedy et al., 2014; He

et al., 2014; Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016) has rapidly

progressed, there has been a renewed interest in object instance segmentation (Lin et al.,

2014). As the name implies, the goal is to both detect and segment each individual object in

an image. The task is related to both object detection with bounding boxes (Lin et al., 2014;

Everingham et al., 2010; Deng et al., 2009) and semantic segmentation (Shotton et al., 2008;

Everingham et al., 2010; Farabet et al., 2013; Pinheiro and Collobert, 2014; Eigen and Fergus,

2015; Zheng et al., 2015; Chen et al., 2015; Schwing and Urtasun, 2015; Noh et al., 2015). It

involves challenges from both domains, requiring accurate pixel-level object segmentation

coupled with identification of each individual object instance.

A number of recent papers have explored the use of CNNs (LeCun et al., 1998) for object

instance segmentation (Hariharan et al., 2014; Dai et al., 2016; Hariharan et al., 2015). Standard

feedforward CNNs (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al.,

2015; He et al., 2016) interleave convolutional layers (with pointwise nonlinearities) and

pooling layers. Pooling controls model capacity and increases receptive field size, resulting in

a coarse, highly-semantic feature representation. While effective and necessary for extracting

object-level information, this general architecture results in low resolution features that are

invariant to pixel-level variations. This is beneficial for classification and identifying object

instances but poses challenge for pixel-labeling tasks. Hence, CNNs that utilize only upper

network layers for object instance segmentation (Hariharan et al., 2014; Dai et al., 2016), as

in Figure 6.1a, can effectively generate coarse object masks but have difficulty generating

pixel-accurate segmentations.

For pixel-labeling tasks such as semantic segmentation and edge detection, “skip” connec-

tions (Sermanet et al., 2013; Long et al., 2015; Hariharan et al., 2015; Xie and Tu, 2015), as

shown in Figure 6.1b, are popular. In practice, common skip architectures are equivalent to

making independent predictions from each network layer and upsampling and averaging

the results (see Fig. 2 in (Hariharan et al., 2015), Fig. 3 in (Long et al., 2015), and Fig. 3 in (Xie

and Tu, 2015)). This is effective for semantic segmentation as local receptive fields in early

69

Chapter 6. Learning to Refine Object Segments

Figure 6.1 – Architectures for object instance segmentation. (a) Feedforward nets, such as
DeepMask (Pinheiro et al., 2015), predict masks using only upper-layer CNN features, resulting
in coarse pixel masks. (b) Common “skip” architectures are equivalent to making independent
predictions from each layer and averaging the results (Long et al., 2015; Hariharan et al., 2015;
Xie and Tu, 2015), such an approach is not well suited for object instance segmentation. (c,d)
In this work we propose to augment feedforward nets with a novel top-down refinement
approach. The resulting bottom-up/top-down architecture is capable of efficiently generating
high-fidelity object masks.

layers can provide sufficient data for pixel labeling. For object segmentation, however, it

is necessary to differentiate between object instances, for which local receptive fields are

insufficient (e.g. local patches of sheep fur can be labeled as such but without object-level

information it can be difficult to determine if they belong to the same animal).

In this chapter, we propose a novel CNN which efficiently merges the spatially rich information

from low-level features with the high-level object knowledge encoded in upper network layers.

Rather than generating independent outputs from multiple network layers, our approach first

generates a coarse mask encoding in a feedforward manner, which is simply a semantically

meaningful feature map with multiple channels, then refines it by successively integrating

information from earlier layers. Specifically, we introduce a refinement module and stack

successive such modules together into a top-down refinement process. See Figures 6.1c and

6.1d. Each refinement module is responsible for “inverting” the effect of pooling by taking a

mask encoding generated in the top-down pass, along with the matching features from the

bottom-up pass, and merging the information in both to generate a new mask encoding with

double spatial resolution. The process continues until full resolution is restored and the final

output encodes the object mask. The refinement module is efficient and fully backpropable.

We apply our approach in the context of object proposal generation (although it could be

70

6.1. Related Work

applied to other pixel-labeling tasks). As shown in Chapter 5, training a discriminative CNN

can largely improve the performance of object proposals if compared to classic approaches

that utilize low-level grouping and saliency clues (Hosang et al., 2016). However, DeepMask

was designed to use a standard feedforward CNN which, as mentioned above, poses problems

to pixel-labeling tasks.

In this chapter we utilize the DeepMask architecture (described in the previous chapter) as

our starting point for object instance segmentation due to its simplicity and effectiveness.

We augment the basic DeepMask architecture with our refinement module (see Figure 6.1)

and refer to the resulting approach as SharpMask to emphasize its ability to produce sharper,

higher-fidelity object segmentation masks.

SharpMask improves the segmentation mask quality relative to DeepMask. For object proposal

generation, this improvement boosts average recall of on the COCO dataset (Lin et al., 2014)

by 10-20%, establishing the new state of the art on this task.

This chapter is organized as follows: Section 6.1 presents related work, Section 6.2 introduces

our novel top-down refinement network and Section 6.3 validates our approach experimentally

on the context object proposal generation.

6.1 Related Work

Following their success in image classification (Krizhevsky et al., 2012; Simonyan and Zisser-

man, 2015; Szegedy et al., 2015; He et al., 2016), CNNs have been adopted with great effect

to pixel-labeling tasks such as depth estimation (Eigen and Fergus, 2015), optical flow (Doso-

vitskiy et al., 2015), and semantic segmentation (Farabet et al., 2013). Below we describe

architectural innovations for such tasks, and discuss how they relate to our approach. Aside

from skip connections (Sermanet et al., 2013; Hariharan et al., 2015; Long et al., 2015; Xie

and Tu, 2015), these techniques can be roughly classified as multiscale architectures, de-

convolutional networks, and graphical model networks. We discuss each in turn next. We

emphasize, however, that most of these approaches are not applicable to our domain due to

severe computational constraints: we must refine hundreds of proposals per image implying

the marginal time per proposal must be minimal.

Multiscale architectures (Farabet et al., 2013; Eigen and Fergus, 2015) compute features

over multiple rescaled versions of an image. Features can be computed independently at each

scale (Farabet et al., 2013), or the output from one scale can be used as additional input to

the next finer scale (Eigen and Fergus, 2015). Our approach relies on a similar intuition but

does not require recomputing features at each image scale. This allows us to apply refinement

efficiently to hundreds of locations per image as necessary for object proposal generation.

71

Chapter 6. Learning to Refine Object Segments

Deconvolutional networks (Zeiler and Fergus, 2014) proposed to invert the pooling process

in a CNN to generate progressively higher resolution input images by storing the “switch”

variables from the pooling operation. Deconvolutional networks have recently been applied

successfully to semantic segmentation (Noh et al., 2015). Deconvolutional layers share simi-

larities with our refinement module, however, “switches” are communicated instead of the

feature values, which limits the information that can be transferred. Finally, Dosovitskiy et al.

(2015) proposed to progressively increase the resolution of an optical flow map. This can be

seen as a special case of our refinement approach where: (1) the “features” for refinement are

set to be the flow field itself, (2) no feature transform is applied to the bottom-up features, and

(3) the approach is applied monolithically to the entire image. Restricting our method in any

of these ways would cause it to fail in our setting as discussed in Section 6.3.

Graphical model networks a number of recent papers have proposed integrating graphical

models into CNNs by demonstrating they can be formulated as recurrent nets (Zheng et al.,

2015; Chen et al., 2015; Schwing and Urtasun, 2015). Good results were demonstrated on

semantic segmentation. While too slow to apply to multiple proposals per image, these

approaches likewise attempt to sharpen a coarse segmentation mask.

6.2 Learning Mask Refinement

We apply our proposed bottom-up/top-down refinement architecture to object instance seg-

mentation. Specifically, we focus on object proposal generation, which forms the cornerstone

of modern object detection (Girshick et al., 2014). We note that although we test the proposed

refinement architecture on the task of object segmentation, it could potentially be applied to

other pixel-labeling tasks.

As seen in the previous chapter, object proposal algorithms aim to find diverse regions in an

image which are likely to contain objects. Both proposal recall and quality correlate strongly

with detector performance (Hosang et al., 2016). We adopt the DeepMask network as the

starting point for proposal generation. DeepMask is trained to jointly generate a class-agnostic

object mask and an associated “objectness” score for each input image patch. At inference time,

the model is run convolutionally to generate a dense set of scored segmentation proposals.

We refer readers to Chapter 5 for full details.

A simplified diagram of the segmentation branch of DeepMask is illustrated in Figure 6.1a.

The network is trained to infer the mask for the object located in the center of the input patch.

It contains a series of convolutional layers interleaved with pooling stages that reduce the

spatial dimensions of the feature maps, followed by a fully connected layer to generate the

object mask. Hence, each pixel prediction is based on a complete view of the object, however,

its input feature resolution is low due to the multiple pooling stages.

As a result, DeepMask generates masks that are accurate on the object level but only coarsely

72

6.2. Learning Mask Refinement

Figure 6.2 – Qualitative comparison of DeepMask versus SharpMask segmentations. Propos-
als with highest IoU to the ground truth are shown for each method. Both DeepMask and
SharpMask generate object masks that capture the general shape of the objects. However,
SharpMask improves the masks near object boundaries.

align with object boundaries, see Figure 6.2a. In order to obtain higher-quality masks, we

augment the basic DeepMask architecture with a refinement approach. We refer to the

resulting method as SharpMask to emphasize its ability to produce sharper, pixel-accurate

object masks, see Figure 6.2b. We begin with a high-level overview of our approach followed

by further details.

6.2.1 Refinement Overview

Our goal is to efficiently merge the spatially rich information from low-level features with the

high-level semantic information encoded in upper network layers. This approach is guided by

three principles:

(i) object-level information is often necessary to segment an object,

(ii) given object-level information, segmentation should proceed in a top-down fashion,

73

Chapter 6. Learning to Refine Object Segments

successively integrating information from earlier layers,

(iii) the approach should invert the loss of resolution from pooling (with the final output

matching the resolution of the input).

To satisfy these principles, we augment standard feedforward networks with a top-down

refinement process. An overview of our approach is shown in Figure 6.1c. We introduce a

“refinement module” R that is responsible for inverting the effect of pooling and doubling the

resolution of the input mask encoding. Each module Ri takes as input a mask encoding M i

generated in the top-down pass, along with matching features F i generated in the bottom-up

pass, and learns to merge the information to generate a new upsampled object encoding M i+1.

In other words: M i+1 = Ri (M i ,F i), see Figure 6.1d. Multiple such modules are stacked (one

module per pooling layer). The final output of our network is a pixel labeling of the same

resolution as the input image. Full details are presented next.

6.2.2 Refinement Details

The feedforward pathway of our network outputs a “mask encoding” M 1, or simply, a low-

resolution but semantically meaningful feature map with k1
m channels. M 1 serves as the input

to the top-down refinement module, which is responsible for progressively increasing the

mask encoding’s resolution. Note that using k1
m > 1 allows the mask encoding to capture more

information than a simple segmentation mask, which proves to be key for obtaining good

accuracy.

Each refinement module Ri aggregates information from a coarse mask encoding M i and

features F i from the corresponding layer of the bottom-up computation (we always use the

last convolutional layer prior to pooling). By construction, M i and F i have the same spatial

dimensions; the goal of Ri is to generate a new mask encoding M i+1 with double spatial

resolution based on inputs M i and F i . We denote this via M i+1 = Ri (M i ,F i). This process is

applied iteratively n times (where n is the number of pooling stages) until the feature map

has the same dimensions as the input image patch. Each module Ri has separate parameters,

allowing the network to learn stage-specific refinements.

The refinement module aims to enhance the mask encoding M i using features F i . As M i

and F i have the same spatial dimensions, one option is to first simply concatenate M i and

F i . However, directly concatenating F i with M i poses two challenges. Let ki
m and ki

f be the

number of channels in M i and F i respectively. Typically, ki
f can be quite large in modern

CNNs, so using F i directly would be computationally expensive. Second, typically ki
f � ki

m ,

so directly concatenating the features maps risks drowning out the signal in M i .

Instead, we opt to first reduce the number of channels ki
f (but preserving the spatial dimen-

sions) of these features through a 3×3 convolutional module (plus ReLU), generating “skip”

features Si , with ki
s � ki

f channels. This substantially reduces computational requirements,

74

6.2. Learning Mask Refinement

moreover, it allows the network to transform F i into a form Si more suitable for use in refine-

ment. An important but subtle point is that during full image inference, as with the features

F i , skip features are shared by overlapping image patches, making them highly efficient to

compute. In contrast, the remaining computations of Ri are patch dependent as they depend

on the local mask M i and hence cannot be shared across locations.

The refinement module concatenates the mask encoding M i with the skip features Si resulting

in a feature map with ki
m +ki

s channels, and applies another 3×3 convolution (plus ReLU)

to the result. Finally, the output is upsampled using bilinear upsampling by a factor of 2,

resulting in a new mask encoding M i+1 with ki+1
m channels (ki+1

m is determined by the number

of 3×3 kernels used for the convolution). As with the convolution for generating the skip

features, this transformation is used to simultaneously learn a nonlinear mask encoding from

the concatenated features and to control the capacity of the model. See Figure 6.1d for a

complete overview of the refinement module R. Further optimizations to R are possible, for

details see Figure 6.3.

Note that the refinement module uses only convolution, ReLU, bilinear upsampling, and

concatenation, hence it is fully backpropable and highly efficient. In Section 6.3.1, we analyze

different architecture choices for the refinement module in terms of performance and speed.

As a general design principle, we aim to keep ki
s and ki

m large enough to capture rich infor-

mation but small enough to keep computation low. In particular, we can start with a fairly

large number of channels but as spatial resolution is increased the number of channels should

decrease. This reverses the typical design of feedforward networks where spatial resolution

decreases while the number of channels increases with increasing depth.

6.2.3 Training and Inference

We train SharpMask with an identical data definition and loss function as the original Deep-

Mask model. Each training sample is a triplet containing an input patch, a label specifying

if the input patch contains a centered object at the correct scale, and for positive samples a

binary object mask. The network trunk parameters are initialized with a network that was

pre-trained on ImageNet (Deng et al., 2009). All the other layers are initialized randomly from

a uniform distribution.

Training proceeds in two stages: first, the model is trained to jointly infer a coarse pixel-

wise segmentation mask and an object score, second, the feedforward path is “frozen” and

the refinement modules trained. The first training stage is identical to the one described

in Chapter 5. Once learning of the first stage converges, the final mask prediction layer of

the feedforward network is removed and replaced with a linear layer that generates a mask

encoding M 1 in place of the actual mask output. We then add the refinement modules to the

network and train using standard stochastic gradient descent, backpropagating the error only

on the horizontal and vertical convolution layers on each of the n refinement modules.

75

Chapter 6. Learning to Refine Object Segments

Figure 6.3 – (a) Original refinement model. (b) Refactored but equivalent model that leads to a
more efficient implementation. The models are equivalent as concatenating along depth and
convolving along the spatial dimensions can be rewritten as two separate spatial convolutions
followed by addition. The green “conv” boxes denote the corresponding convolutions (note
also the placement of the ReLUs). The refactored model is more efficient as skip features (both
Si and Si∗) are shared by overlapping refinement windows (while M i and M i∗ are not). Finally,
observe that setting ki

m = 1, ∀i , and removing the top-down convolution would transform our
refactored model into a standard “skip” architecture (however, using ki

m = 1 is not effective in
our setting).

This two-stage training procedure was selected for three reasons. First, we found it led to

faster convergence. Second, at inference time, a single network trained in this manner can be

used to generate either a coarse mask using the forward path only or a sharp mask using our

bottom-up/top-down approach. Third, we found the gains of fine-tuning through the entire

network to be minimal once the forward branch had converged.

During full-image inference, most computation for neighboring windows is shared through

the use of convolution, including for skip layers Si . However, as discussed, the refinement

modules receive a unique input M 1 at each spatial location, hence, computation proceeds

independently at each location for this stage. Rather than refining every proposal, we simply

refine only the most promising locations. Specifically, we select the top N scoring proposal

windows and apply the refinement in a batch mode to these top N locations.

6.3 Experimental Results

We train our model on the training set of the COCO dataset (Lin et al., 2014), which contains

80k training images and 500k instance annotations. For most of our experiments, results are

76

6.3. Experimental Results

(a) schedule a (b) schedule b

Figure 6.4 – Performance and inference time for multiple SharpMask variants with two different
schedules, a and b. See text for detail.

reported on the first 5k COCO validation images. Mask accuracy is measured by Intersection

over Union (IoU) which is the ratio of the intersection of the predicted mask and ground truth

annotation to their union. A common method for summarizing object proposal accuracy is

using the Average Recall (AR) between IoU 0.5 and .95 for a fixed number of proposals. Hosang

et al. (2016) show that AR correlates well with object detector performance.

Our results are measured in terms of AR at 10, 100, and 1000 proposals and averaged across

all counts (AUC) (as described Section 2.1.2). As the COCO dataset contains objects in a wide

range of scales, it is also common practice to divide objects into roughly equally sized sets

according to object pixel area a: small (a < 322), medium (322 ≤ a ≤ 962), and large (a > 962)

objects, and report accuracy at each scale.

We use a different subset of the COCO validation set to decide architecture choices and hyper-

parameter selection. We use a learning rate of 1e-3 for training the refinement stage, which

takes about 2 days to train on an Nvidia Tesla K40m GPU. To mitigate the mismatch of per-

patch training with convolutional inference, we found that training deeper model such as

ResNet requires adding extra image content (32 pixels) surrounding the training patches and

using reflective-padding instead of 0-padding at every convolutional layer. Finally, similar to

DeepMask, we binarize our continuous mask prediction using a threshold of 0.2.

6.3.1 SharpMask Analysis

We begin by analyzing different parameter settings for the top-down refinement network. As

described in Section 6.2, each of the four refinement modules Ri in SharpMask is controlled

by two parameters ki
m and ki

s , which denote the size of the mask encoding M i and skip

encoding Si , respectively. These parameters control network capacity and effect inference

speed. We experiment with two different schedules for these parameters: (a) ki
m = ki

s = k and

(b) ki
m = ki

s = k
2i−1 for each i ≤ 4.

Figure 6.4 shows performance for the two schedules for different k both in terms of AUC and

77

Chapter 6. Learning to Refine Object Segments

Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes (Zitnick and Dollár, 2014) 7.4 17.8 33.8 13.9 - - - - - - -
Geodesic (Krähenbühl and Koltun, 2014) 4.0 18.0 35.9 12.6 2.3 12.3 25.3 1.3 8.6 20.5 8.5
Rigor (Humayun et al., 2014) - 13.3 33.7 10.1 - 9.4 25.3 2.2 6.0 17.8 7.4
SelectiveSearch (Uijlings et al., 2013) 5.2 16.3 35.7 12.6 2.5 9.5 23.0 0.6 5.5 21.4 7.4
MCG (Pont-Tuset et al., 2015) 10.1 24.6 39.8 18.0 7.7 18.6 29.9 3.1 12.9 32.4 13.7
RPN (Bell et al., 2016; Ren et al., 2015) 12.8 29.2 42.6 21.4 - - - - - - -
DeepMaskBase 15.3 31.3 44.6 23.3 12.6 24.5 33.1 2.3 26.6 33.6 18.3
DeepMask 18.7 34.9 46.5 26.2 14.4 25.8 33.1 2.2 27.3 37.4 19.4
DeepMaskZoom 18.3 36.3 50.3 27.2 14.5 27.4 36.6 6.5 27.0 34.3 20.5
SharpMask 19.7 36.4 48.2 27.4 15.6 27.6 35.5 2.5 29.1 40.4 20.9
SharpMaskZoom 20.1 39.4 52.8 29.1 16.1 30.3 39.2 6.9 29.7 38.4 22.4
SharpMaskZoom2 19.2 39.9 55.0 29.2 15.4 30.7 40.8 10.6 27.3 36.0 22.5

Table 6.1 – Results on the COCO validation set on box and segmentation proposals. AR at
different proposals counts is reported and also AUC (AR averaged across all proposal counts).
For segmentation proposals, we also report AUC at multiple scales. SharpMask has largest for
segmentation proposals and large objects.

inference time (measured when refining the top 500 proposals per image, at which point object

detection performance saturates, see Figure 7.4). We consistently observe higher performance

as we increase the capacity, with no sign of overfitting. Parameter schedule b, in particular

with k = 32, has the best trade-off between performance and speed, so we chose this as our

final model.

We note that we were unable to obtain good results with schedule a for k ≤ 2, indicating the

importance of using sufficiently large k. Also, we observed that a single 3×3 convolution

encounters learning difficulties when (ki
s � ki

f). Therefore, in all experiments we used a

sequence of two 3×3 convolutions (followed by ReLUs) to generate Si from F i , reducing F i to

64 channels first followed by a further reduction to ki
s channels.

Finally, we performed two additional ablation studies. First, we removed all downward con-

volutional layers, set ki
m = ki

s = 1, and averaged the output of all layers. Second, we kept the

vertical convolutions but removed all horizontal convolutions. These two variants are related

to “skip” and “deconvolutional” networks, respectively. Neither setup showed meaningful

improvement over the baseline feedforward network. In short, we found that both horizontal

and vertical connections were necessary for this task.

6.3.2 Comparison with State of the Art

We train SharpMask using DeepMask as the feedforward network. As the two networks have

an identical score branch, we can disentangle the performance improvements achieved by

our top-down refinement approach. We observe a considerable boost in performance on AR

due to the top-down refinement. We note that improvement for segmentation predictions is

bigger than box predictions, which is not surprising, as sharpening masks might not change

78

6.4. Summary

the tight box around the objects in many examples. Inference for SharpMask is .76s per image.

Moreover, the refinement modules require fewer than 3M additional parameters.

Table 6.1 compares the performance of our model, SharpMask, to other existing methods

on the COCO dataset and, in particular, to DeepMask. We compare results both on box and

segmentation proposals (for box proposals we extract tight bounding boxes surrounding our

segmentation masks). Figure 6.5 (a-b) compares the performance of SharpMask to existing

proposal methods COCO (using both boxes and segmentations). Shown is the AR of each

method as a function of the number of generated proposals. SharpMask achieves the state of

the art in all metrics for both speed and accuracy by a large margin.

The COCO dataset contains objects in a wide range of scales. Figure 6.5 (c-e) shows perfor-

mance at each scale (according to equally divided set of objects by its area a); all models

perform poorly on small objects. To improve accuracy of DeepMask and SharpMask to small

objects, we apply it at additional one or two smaller scales (DeepMaskZoom and Sharp-

MaskZoom) and achieves a large boost in AR for small objects (at a cost of increased inference

time).

Figure 6.5 (f-h) shows the recall each model achieves as the IoU varies, shown for different

number of proposals per image. SharpMask achieves a higher recall in every scenario.

In Figure 6.2, we show direct comparison between SharpMask and DeepMask and we can see

SharpMask generates higher-fidelity masks that more accurately delineate object boundaries.

In Figure 6.6, we show more qualitative results.

6.4 Summary

In this chapter, we introduce a novel architecture for object instance segmentation, based on

an augmentation of feedforward networks with top-down refinement modules. This network

is able to merge the high-level semantic information with the low-level spatial information of

the network. We show that this refinement improves the quality of object segmentations and,

when applied in segmentation object proposal generation, it achieves a new state of the art in

terms of performance. Building on the top of DeepMask for generating object proposals, we

show accuracy improvements of 10-20% in average recall for various setups. Moreover, the

proposed refinement approach is general and could be applied to other pixel-labeling tasks.

79

Chapter 6. Learning to Refine Object Segments

10 0 10 1 10 2 10 3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic
EdgeBoxes
RPN

(a) Bounding box proposals

10 0 10 1 10 2 10 3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(b) Segmentation proposals

10 0 10 1 10 2 10 3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(c) Small objects (a < 322)

10 0 10 1 10 2 10 3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(d) Medium objects

10 0 10 1 10 2 10 3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(e) Large objects (a > 962)

0.5 0.6 0.7 0.8 0.9 1
IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(f) Recall @10 proposals

0.5 0.6 0.7 0.8 0.9 1
IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(g) Recall @100 proposals

0.5 0.6 0.7 0.8 0.9 1
IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(h) Recall @1000 proposals

Figure 6.5 – (a-b) Average recall versus number of box and segment proposals on COCO. (c-e)
AR versus number of proposals for different object scales on segment proposals. (f-h) Recall
versus IoU threshold for different number of segment proposals.

80

6.4. Summary

Figure 6.6 – SharpMask proposals with highest IoU to the ground truth on selected COCO
images. Missed objects (no matching proposals with IoU > 0.5) are marked in red. The last
row shows a number of failure cases.

81

7 Application of Proposals: Learning to
Detect Objects

In the two previous chapters, we presented a novel set of discriminative trainable algorithms

to generate state-of-the-art (both in terms of performance and inference time) segmentation

proposals. It was also argued that one of the most important applications of object proposals

is in object detection (object recognition subproblems (b) and (d)): the current state-of-the-art

pipeline consists of applying a CNN classifier on the set of generated proposals (He et al., 2014;

Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016).

In this final chapter, we show how the proposal algorithm presented on last chapter can

achieve state-of-the-art performance on object detection with boxes and segments, utilizing

the Fast R-CNN framework (Girshick, 2015) and the MultiPath Network (MPN) (Zagoruyko

et al., 2016) as the classifier.

We start by giving a brief overview of the Fast R-CNN pipeline for object detection (Section 7.1).

Then, we quickly describe the main components of MPN, the classifier of choice for our

experiments (Section 7.2). Finally, in Section 7.3, we show how SharpMask proposals, when

coupled with the MPN classifier, can achieve state-of-the-art results in object detection with

both bounding boxes and segments on the challenging COCO (Lin et al., 2014) dataset.

7.1 Overview of Fast R-CNN

Fast R-CNN (Girshick, 2015) is a convolutional neural network that takes an image and a set

of proposals as input and outputs, for each proposal, softmax probabilities and per-class

bounding box regression offsets.

First the image is processed through multiple convolutional and pooling layers to produce

a final feature map. Then, for each object proposal, a Region of Interest (RoI) pooling layer

extracts a fixed-length feature vector from the feature map. Each feature vector passes through

a sequence of fully connected layers and branches into two different outputs: one that pro-

duces the softmax probabilities over all K classes on the training set (plus the background) and

another that outputs 4 real-valued numbers for each of the K object classes (see Figure 7.1).

83

Chapter 7. Application of Proposals: Learning to Detect Objects

Figure 7.1 – Fast R-CNN architecture. The network has as input an image and a set of region of
interests (RoI), stemmed from the proposals. Each proposals is pooled into a fixed-size feature
map, and mapped into a vector by fully connected layers. The network has two outputs: one
for the probability of the class present on the RoI and per-class bounding-box regression
offsets. Image taken from (Girshick, 2015).

Fast R-CNN is trained to optimize two sibling output layers (for each RoI). The first outputs

a discrete probability distribution per RoI, p = (p0, ..., pK), over K + 1 categories (which is

computed with a softmax). The second layer outputs bounding-box regression offsets, t k =
(t k

x , t k
y , t k

w , t k
h), for each K category. t k is parametrized such that it specifies a scale-invariant

translation and log-scale height/width shift relative to an object proposal.

Each RoI is labeled with a ground-truth class u and a ground truth bounding box regression

target v . Training is achieved by jointly minimizing the classification and the box regression

losses:

L(p,u, t u , v) =Lcls(p,u)+λ (u > 0)Lloc(t u , v) . (7.1)

The first term in the loss,Lcls =− log pu , is the log loss of true class u. The second task loss,Lloc,

is defined over a tuple of true bounding box regression targets for class u, v = (vx , vy , vw , vh),

and the predicted tuple t u = (t u
x , t u

y , t u
w , t u

h), again for class u. By convention, the background

class is labeled u = 0, so the localization loss only applies to object categories different of

background (i.e. u > 0). For bounding box regression, the loss is:

Lloc(t u , v) = ∑
i∈{x,y,w,h}

L(t u
i − vi) , (7.2)

in which

L(x) =
⎧⎨
⎩ 0.5x2, if |x| < 1

|x|−0.5, otherwise,
(7.3)

is a robust L1 loss.

For each image during training, a set of N RoIs are sampled from the image. As in the original

implementation of Fast R-CNN, 25% of the RoIs are taken from the set of object proposals that

have an intersection over union (IoU) overlap with ground truth bounding box of at least 0.5.

84

7.2. The MultiPath Network

VGG16 Trunk

BBox Regression
conv1

conv2

conv3

conv4

conv5
Classifier

& Regression
Features
(4096x4)

Foveal Region 1
VGG16 Classifier

fc6fc5

ROI (1x)

Foveal Region 2

ROI (1.5x)
VGG16 Classifier

fc6fc5

Foveal Region 3

ROI (2x)
VGG16 Classifier

fc6fc5

Fovel Region 4

ROI (4x)
VGG16 Classifier

fc6fc5

Class
Scores

(81)

Classifier @ IoU 0.50

Classifier @ IoU 0.55

Classifier @ IoU 0.60

Classifier @ IoU 0.65

Classifier @ IoU 0.70

Classifier @ IoU 0.75
Bbox

Regression
(324)Input image

+

Figure 7.2 – MultiPath Network architecture contains three key modifications over standard
CNN classifiers: skip connections, foveal regions, and and an integral loss function. Together
these modifications allow information to flow along multiple paths through the network,
enabling the classifier to operate at multiple scales, utilize context effectively, and perform
more precise object localization. Image taken from (Zagoruyko et al., 2016).

These are the RoIs corresponding to object classes (i.e. u > 0). The remaining RoIs are taken

from proposals which have a maximum IoU with the ground truth in the interval [0.1,0.5)

(following (Girshick et al., 2014)). These are the background examples (i.e. u = 0).

Fast R-CNN is trained with stochastic gradient descent by backpropagating the error through

the fully connected layers, the RoI layer and the convolutional layers. In the experiments in

this chapter, we use the exact same hyper-parameters as in (Girshick, 2015).

7.2 The MultiPath Network

The MultiPath network (Zagoruyko et al., 2016) is a CNN-based image classifier based on the

VGG-D network (Simonyan and Zisserman, 2015). VGG-D is a standard deep CNN containing

a series of small filters interleaved by pooling layers. MPN extends VGG-D in three ways: foveal

structure, skip connections and integral loss function.

Context plays an important role in object classification (Torralba, 2003). To incorporate more

context in the model and improve its performance, MPN adds four region crops with different

“foveal” views (see Figure 7.2). RoI pooling is used to generate feature maps of same spatial

dimension given differently-sized foveal regions.

Effective localization of small objects requires higher-resolution features from earlier lay-

ers (Bell et al., 2016; Hariharan et al., 2015). To improve performance of small objects, MPN

concatenates the RoI-pooled normalized features from different convolutions layers, and

provides these as input to each foveal classifier (see Figure 7.2).

85

Chapter 7. Application of Proposals: Learning to Detect Objects

Figure 7.3 – Selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.

In the original Fast R-CNN loss (Equation 7.1), the classification loss Lcls does not prefer object

proposals with high IoU: all proposals with IoU greater than .5 are treated equally. Ideally,

proposals with higher overlap to the ground truth should be scored more highly. MPN thus,

utilizes a modified Lcls to explicitly measure integral loss over all IoU thresholds.

For more detail about the MPN architecture, we refer the reader to (Zagoruyko et al., 2016).

7.3 Experimental Results

In the following experiments, we coupled SharpMask proposal with a CNN classifier and use

the Fast R-CNN pipeline to detect objects (Zagoruyko et al., 2016). Figure 7.3 and Figure 7.5

show selected detection results from this system.

The experiments are done in the COCO (Lin et al., 2014) object detection dataset, which was

recently introduced to push object detection to more challenging settings. COCO introduces

a number of new challenges compared to previous object detection datasets (Everingham

et al., 2010; Deng et al., 2009): (i) objects appears in a broad range of scales, including a high

percentage of small objects, (ii) objects are less iconic, often in non-standard configurations

and occlusion and (iii) the evaluation metric encourages more accurate object localization.

In the experiments in this section, we report both the average precision (AP) averaged over

multiple IoUs, COCO official evaluation metric, and the average precision at IoU threshold of

.5 (AP50), PASCAL VOC (Everingham et al., 2010) official metric.

Effectiveness of SharpMask Proposals

We first compare the the performance of Fast R-CNN with MPN using two different types

of proposals: Selective Search (SelSearch) (Uijlings et al., 2013), the most common proposal

algorithm for object detection (and the proposal of choice on the original implementation of

Fast R-CNN Girshick (2015)) and SharpMask.

86

7.3. Experimental Results

Figure 7.4 – AP50 and AP versus number and type of proposals. Accuracy saturates using 400
SharpMask proposals per image and using ∼50 SharpMask proposals matches 2000 Selective
Search proposals.

Figure 7.4 shows the comparison of bounding box detection results for SharpMask and

SelSearch for AP50 and AP and for varying number of proposals. The SharpMask bound-

ing box proposals are taken by extracting the smaller box fully containing each proposal.

SharpMask achieves 28 AP, which is 5 AP higher than SelSearch. Not only accuracy is substan-

tially higher using SharpMask, but fewer proposals are necessary to achieve top performance.

SharpMask results saturates with ∼400 SharpMask proposals per image and using only 50

SharpMask proposals matches accuracy with 2000 Selective Search proposals.

Next, we compare the result of the model with two important published baseline: Fast R-

CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015) (and considering the same classifier,

VGG-D, in all of them). Table 7.1 shows results of these baselines without bells and whis-

tles, trained on the train set only. SharpMask achieves top results with the VGG classifier,

outperforming both RPN (Ren et al., 2015) and SelSearch (Uijlings et al., 2013).

AP AP50

SelSearch + VGG (Girshick, 2015) 19.3 39.3

RPN + VGG (Ren et al., 2015) 21.9 42.7

SharpMask + VGG 25.2 43.4

Table 7.1 – COCO bounding box results of various baselines without bells and whistles, trained
on the train set only, and reported on test-dev set (results for (Girshick, 2015; Ren et al., 2015)
obtained from original papers). We denote methods using “proposal+classifier” notation for
clarity. SharpMask achieves top results, outperforming both RPN and SelSearch proposals.

Comparison with other methods

Finally, Table 7.2 shows results from the 2015 COCO detection challenges1. The performance is

reported with model ensembling and the MPN classifier. The ensemble model achieve 33.5 AP

for boxes and 25.1 AP for segments, and achieved second place in the challenges. Note that for

the challenges, both SharpMask and MPN used the VGG trunk (ResNets were concurrent work,

1http://mscoco.org/dataset/#detections-leaderboard

87

Chapter 7. Application of Proposals: Learning to Detect Objects

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

ResNet++ (He et al., 2016) 28.2 51.5 27.9 9.3 30.6 45.2 25.7 37.4 38.2 16.8 43.9 57.6
SharpMask+MPN (Zagoruyko et al., 2016) 25.1 45.8 24.8 7.4 29.2 39.1 24.1 36.8 38.7 17.3 46.9 53.9

ResNet++ (He et al., 2016) 37.3 58.9 39.9 18.3 41.9 52.4 32.1 47.7 49.1 27.3 55.6 67.9
SharpMask+MPN (Zagoruyko et al., 2016) 33.5 52.6 36.6 13.9 37.8 47.7 30.2 46.2 48.5 24.1 56.1 66.4
ION (Bell et al., 2016) 31.0 53.3 31.8 12.3 33.2 44.7 27.9 43.1 45.7 23.8 50.4 62.8
CMU_A2 (Shrivastava et al., 2016) 25.7 46.0 26.1 5.90 28.7 41.7 24.8 35.5 36.5 10.5 43.0 58.2

Table 7.2 – Top: Winners of the 2015 COCO segmentation challenge. Bottom: Winners of the
2015 COCO bounding box challenge.

and won the competitions). We have not re-run our model with ensembling and additional

bells and whistles after integrating ResNets into SharpMask.

7.4 Summary

In this chapter, we study how SharpMask performs in an important application of object pro-

posals: object detection. We consider the Fast R-CNN framework, which consists of generating

a set of proposals and classifying them with a classifier. We show that by simply changing the

set of generated proposals to SharpMask, an object detection system can improve the perfor-

mance in terms of AP by a big margin (around 5 points). Moreover, a much smaller number of

SharpMask proposals per image is required to bypass the performance using Selective Search

(the most common set of proposals used in detection): using only 50 SharpMask proposals,

we are able to match the accuracy of Selective Search with 2000 proposals.

88

7.4. Summary

Figure 7.5 – Extra selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.

89

8 Conclusion

8.1 Overview

In this thesis, we studied different large-scale image segmentation problems. The lack of a

universal criterion for segmentation led to different definitions of segmentation in the context

of computer vision. Therefore, we addressed three different important segmentation problems:

semantic segmentation (Chapters 3 and 4), object proposals generation (Chapters 5 and 6)

and object detection with segments (Chapters 7).

We advocate the use of algorithms that learn from raw data (e.g. pixels) and are easy to scale.

Deep learning methods, and in particular CNNs, fit well with this objective. Throughout this

thesis, we proposed different CNN-based algorithms to deal with the three segmentation

problems mentioned above.

In Chapter 3, we studied the problem of fully supervised semantic segmentation. We proposed

a recurrent convolutional neural network that allows us to consider a larger input context

(while limiting its capacity). The proposed approach is able to model non local class de-

pendencies in a scene directly from raw pixels in a rather simple way. This is essential for a

model to capture long range (pixel) label dependencies. Our approach achieves competitive

results (in two standard semantic segmentation datasets, Stanford Background and SIFT Flow

dataset) without the need of any expensive graphical model or segmentation technique to

ensure labeling.

Large-scale fully supervised semantic segmentation dataset, however, require a lot of human

labor to be annotated. In Chapter 4, we proposed a model that is able to infer object segmen-

tation by leveraging only object class information. The proposed model, based on a CNN

architecture, is designed in a way it is constrained to put more weight on pixels which are

important for classifying the image with its image-level label. We also proposed a number

of different smoothing priors that are able to boost the performance further and achieve

competitive results to fully supervised methods. The model is trained on a large corpus of

image-level annotated images extracted from ImageNet. We are able to surpass previous

91

Chapter 8. Conclusion

state-of-the-art models for weakly supervised semantic segmentation by a large margin on the

challenging PASCAL VOC dataset (an increase form 30% to 90% in average per-class accuracy).

In Chapter 5, we studied the problem of object proposal generation. Most of the previous

approaches rely on low level vision cues to generate object proposals. We proposed, instead,

a CNN-based model that is able to discriminatively learn a set of segmentation proposals

directly from pixels. Our method shows that learning features for object proposal generation

is not only feasible but effective and efficient. This approach surpasses the previous state of

the art, on both PASCAL VOC and COCO datasets, by a large margin on both performance (an

increase of ∼40%-50% in AUC) for box and segmentation proposals and for both PASCAL VOC

and COCO datasets. Moreover, our method performs faster than previous methods (although

we require GPU for a fast inference).

In Chapter 6, a new architecture for object instance segmentation was introduced. We pro-

posed an augmentation of feedforward network with top-down refinement modules. The

top-down augmentation uses the object-level information of the higher layers of the network

with spatial information from the lower level features. Our new architecture is able to increase

the quality of object instance segmentation masks by iteratively refining a mask encoding

using lower level features of the bottom-up path. We used the new proposed architecture in

the same object proposal problem studied in the previous chapter. We showed qualitatively

and quantitatively that the top-down refinement augmentation improves the quality of the

masks (an accuracy improvements of 10-20% in average recall for various setups). Although

we applied the proposed architecture to the problem of proposal, this approach is suitable to

other object instance segmentation problems.

Finally, in Chapter 7, we studied how the proposal algorithm described in previous chapter

performs in an important application: object detection. We considered the Fast R-CNN

framework, which consists of generating a set of proposals and classifying them with a classifier.

We showed that by simply changing the set of generated proposals to SharpMask, an object

detection system can improve the performance in terms of AP by a big margin (around 5

points). Moreover, a much smaller number of SharpMask proposals per image is required to

bypass the performance when using Selective Search (the most common set of proposals used

in detection).

8.2 Perspectives for Future Work

Full pipeline for object detection Current state-of-the-art detection systems are based on

two steps: proposal generation and classification of these proposals. DeepMask/SharpMask

models could be extended to deal with object detection directly and circumvent this two-step

system. The simplest extension (although possibly not the optimal) would be to instead

of detecting the presence or not of an object, detect directly one of the classes present in

the training set. Some work would be necessary, however, to deal with the amount of false

positives that would possibly be generated by such system.

92

8.2. Perspectives for Future Work

Less supervision Deep learning methods are changing the landscape of computer vision.

These methods, although quite powerful, require a large amount of data to be able to learn

the necessary representation. At the same time, a huge amount of unlabeled/weakly-labeled

data is being generated everyday. New learning algorithms are required to make use of so

much data. Recently, many authors start to learn visual features in convolutional networks

using only the structure of images and videos (Doersch et al., 2015; Wang and Gupta, 2015;

Pathak et al., 2016; Isola et al., 2015), although there still exists much space to be explored. The

temporal coherence in videos is also a strong signal that could be exploited in vision learning

algorithms. For example, we could consider the flow of moving objects in videos as a weak

supervision for class agnostic object masks.

Hierarchical semantic constraints Object segmentation can also be improved by leveraging

high level semantic constraints. One approach would be to infer and integrate global scene

aspects (such as ‘outdoor’ or ‘indoor’) into a deep learning system (such constraints would

avoid predictions of labels in unlikely situations). Another direction would be to infer and

leverage hierarchy of semantic labels, e.g., if the model could learn constraints such that a

bike is made of two ‘wheels’ and one ‘seat’ (which is more complex than only knowing that a

‘wheel’ is nearby a ‘seat’, as current systems infer), this would constrain its predictions in a

much better way. (Gould et al., 2009; Socher et al., 2011) proposed systems which go along

these lines. However, the fact they considered only datasets with few categories must have

limited the kind of semantic they could reach.

Language Language is a very special form of regularity in the world. Babies have shown

to use language to improve their perception of the world (Smith and Gasser, 2005). Another

research direction to improve segmentation would be to constrain the hierarchy of semantic

labels with additional semantic knowledge coming form language processing. These semantics

could be exploited from knowledge bases such as WordNet1, e.g., relations such as ‘door has

part lock’ could consolidate relations extracted from labeled images. Other types of relations

such as ‘auto has instance SUV’ might also help when two labels in the database have some

kind of meaning overlap. Semantic knowledge could also be exploited from large unlabeled

corpora: class labels which co-occurs often in a same paragraph have possibly higher chances

to occur in the same scene. Leveraging natural language information could also help in

zero-shot or one-shot detection.

1http://wordnet.princeton.edu

93

Bibliography

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the objectness of image

windows. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012.

Pablo Arbeláez, Jordi Pont-Tuset, Jonathan Barron, Ferran Marques, and Jitendra Malik. Multi-

scale combinatorial grouping. In Computer Vision and Pattern Recognition (CVPR), 2014.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features

(surf). Computer Vision and Image Understanding, 2008.

Sean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross B. Girshick. Inside-outside net: Detecting

objects in context with skip pooling and recurrent neural networks. 2016.

Léon Bottou. Stochastic gradient learning in neural networks. In In Proceedings of Neuro-

Nîmes., 1991.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,

2004.

John S. Bridle. Probabilistic Interpretation of Feedforward Classification Network Outputs,

with Relationships to Statistical Pattern Recognition. 1990.

Arthur E. Bryson, W. F. Denham, and S. E. Dreyfus. Optimal programming problems with

inequality constraints I: necessary conditions for extremal solutions. Journal of the American

Institute of Aeronautics and Astronautics (AIAA), 1963.

Holger Caesar, Jasper R. R. Uijlings, and Vittorio Ferrari. Region-based semantic segmentation

with end-to-end training. In Proceedings European Conference on Computer Vision (ECCV).

Joao Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Semantic segmentation

with second-order pooling. In European Conference on Computer Vision (ECCV), 2012.

João Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmentation using con-

strained parametric min-cuts. Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 2012.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.

Semantic image segmentation with deep convolutional nets and fully connected crfs. Inter-

national Conference on Learning Representations (ICLR), 2015.

95

Bibliography

Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr. BING: Binarized normed

gradients for objectness estimation at 300fps. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2014.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio.

Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, and Yann LeCun. The

loss surfaces of multilayer networks. In International Conference on Artificial Intelligence

and Statistics, (AISTATS), 2015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning

Research (JMLR), 2011.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task

network cascades. In Computer Vision and Pattern Recognition (CVPR), 2016.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and

Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in Neural Information Processing Systems (NIPS),

2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning

by context prediction. In International Conference on Computer Vision, (ICCV), 2015.

Piotr Dollár and Lawrence Zitnick. Structured forests for fast edge detection. In International

Conference on Computer Vision, (ICCV), 2013.

Piotr Dollár and Lawrence Zitnick. Fast edge detection using structured forests. Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 2015.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philipp Hausser, Caner Hazirbas, Vladimir Golkov,

Patrick v.d. Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with

convolutional networks. In International Conference on Computer Vision, (ICCV), 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research (JMLR), 2011.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a

common multi-scale convolutional architecture. In International Conference on Computer

Vision, (ICCV), 2015.

96

Bibliography

Jeffrey L. Elman. Finding structure in time. In Cognitive Sciences, 1990.

Dumitru Erhan, Christian Szegedy, Alex Toshev, and Dragomir Anguelov. Scalable object

detection using deep neural networks. In Computer Vision and Pattern Recognition (CVPR),

2014.

Marc Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, and Andrew Zisserman. The

PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision

(IJCV), 2010.

Clement Farabet. Towards Real-Time Image Undersding with Convolutional Networks. PhD

thesis, Université Paris-Est, 2014.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierarchical

features for scene labeling. Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 2013.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient matching of pictorial structures.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2000.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation.

International Journal of Computer Vision (IJCV), 2004.

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object detec-

tion with discriminatively trained part-based models. Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 2010.

Martin A. Fischler and Robert A. Elschlager. The representation and matching of pictorial

structures. IEEE Transactions on Computers, 1973.

David A. Forsyth, Jitendra Malik, Margaret M. Fleck, Hayit Greenspan, Thomas Leung, Serge

Belongie, Chad Carson, and Christoph Bregler. Finding pictures of objects in large collec-

tions of images. Technical report, EECS Department, University of California, Berkeley,

1996.

King-Sun Fu and John E. Albus. Syntatic Pattern Recognition and Applications. Prentice-Hall

Englewood Cliffs, 1982.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980.

Carolina Galleguillos, Andrew Rabinovich, and Serge Belongie. Object categorization using

co-occurrence, location and appearance. In Computer Vision and Pattern Recognition

(CVPR), 2008.

Carolina Galleguillos, Brian McFee, Serge Belongie, and Gert Lanckriet. Multi-class object

localization by combining local contextual interactions. In Computer Vision and Pattern

Recognition (CVPR), 2010.

97

Bibliography

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Computer Vision and Pattern

Recognition (CVPR), 2014.

Ross B. Girshick. Fast R-CNN. In International Conference on Computer Vision (ICCV), 2015.

Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into geometric and

semantically consistent regions. In International Conference on Computer Vision, (ICCV),

2009.

David Grangier, Leon Bottou, and Ronan Collobert. Deep convolutional networks for scene

parsing. In International Conference on Machine Learning (ICML) Deep Learning Workshop,

2009.

Alex Graves and Jurgen Schmidhuber. Offline handwriting recognition with multidimensional

recurrent neural networks. In Advances in Neural Information Processing Systems (NIPS),

2008.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition with deep

recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2013.

Robert M. Gray. Toeplitz and circulant matrices: A review. Communications and Information

Theory, 2005.

Allen R. Hanson and Edward M. Riseman. VISIONS: A computer system for interpreting scenes.

In Computer Vision Systems. 1978.

Barath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous detection

and segmentation. In European Conference on Computer Vision (ECCV), 2014.

Barath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hypercolumns for object

segmentation and fine-grained localization. In Computer Vision and Pattern Recognition

(CVPR), 2015.

Zeeshan Hayder, Xuming He, and Mathieu Salzmann. Learning to co-generate object proposals

with a deep structured network. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In European Conference on Computer Vision

(ECCV), 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Computer Vision and Pattern Recognition (CVPR), 2016.

98

Bibliography

Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán. Multiscale conditional random

fields for image labeling. In Conference on Computer Vision and Pattern Recognition (CVPR),

2004.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury.

Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing

Magazine, 2012.

Jan Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. What makes for effective

detection proposals? Transactions on Pattern Analysis and Machine Intelligence (PAMI),

2016.

David Hubel and Torsten Wiesel. Receptive fields, binocular interaction, and functional

architecture in the cat’s visual cortex. Journal of Physiology, 1962.

Ahmad Humayun, Fuxin Li, and James M. Rehg. RIGOR: Reusing Inference in Graph Cuts for

generating Object Regions. In Computer Vision and Pattern Recognition (CVPR), 2014.

Yu ichi Ohta, Takeo Kanade, and Toshiyuki Sakai. An analysis system for scenes containing

objects with substructures. In International Joint Conference on Pattern Recognitions, 1978.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International Conference on Machine Learning

(ICML) Deep Learning Workshop, 2015.

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Learning visual groups

from co-occurrences in space and time. CoRR, 2015.

Michael I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine.

In Conference of the Cognitive Science Society, 1986.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations (ICLR), 2014.

Alexander Kolesnikov and Christoph H. Lampert. Seed, expand and constrain: Three principles

for weakly-supervised image segmentation. In European Conference on Computer Vision

(ECCV), 2016.

Philipp Krähenbühl and Vladen Koltun. Learning to propose objects. In Computer Vision and

Pattern Recognition (CVPR), 2015.

Philipp Krähenbühl and Vladlen Koltun. Geodesic object proposals. In European Conference

on Computer Vision (ECCV), 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems

(NIPS), 2012.

99

Bibliography

Pawan Kumar and Daphne Koller. Efficiently selecting regions for scene understanding. In

Computer Vision and Pattern Recognition (CVPR), 2010.

Weicheng Kuo, Bharath Hariharan, and Jitendra Malik. Deepbox: Learning objectness with

convolutional networks. In International Conference on Computer Vision (ICCV), 2015.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In International Conference

on Machine Learning (ICML), 2001.

Svetlana Lazebnik and Maxim Raginsky. An empirical bayes approach to contextual region

classification. In Computer Vision and Pattern Recognition (CVPR), 2009.

Yann LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Henderson.

Handwritten digit recognition with a back-propagation network. In Advances in Neural

Information Processing Systems (NIPS), 1990.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Pierre Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. A pylon model for semantic

segmentation. In Advances in Neural Information Processing Systems (NIPS), 2011.

Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer Publishing Company,

Incorporated, 2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr

Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In European

Conference on Computer Vision (ECCV), 2014.

Ce Liu, Jenny Yuen, and Antonio Torralba. Nonparametric scene parsing via label transfer.

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2011.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic

segmentation. In Computer Vision and Pattern Recognition (CVPR), 2015.

David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision (IJCV), 2004.

Jitendra Malik, Pablo Arbeláez, João Carreira, Katerina Fragkiadaki, Ross Girshick, Georgia

Gkioxari, Saurabh Gupta, Bharath Hariharan, Abhishek Kar, and Shubham Tulsiani. The

three r’s of computer vision. Pattern Recognition Letters, 2016.

Oded Maron and Tomas Lozano-Pérez. A framework for multiple instance learning. In

Advances in Neural Information Processing Systems (NIPS), 1998.

100

Bibliography

David Marr. Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. Henry Holt and Co., Inc., 1982.

Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 1943.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,

Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic

segmentation in the wild. In Conference on Computer Vision and Pattern Recognition (CVPR),

2014.

Daniel Munoz, Andrew Bagnell, and Martial Hebert. Stacked hierarchical labeling. In Proceed-

ings European Conference on Computer Vision (ECCV), 2010.

Mohammad Najafi, Sarah Taghavi Namin, Mathieu Salzmann, and Lars Petersson. Sample

and filter: Nonparametric scene parsing via efficient filtering. 2016.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for

semantic segmentation. In International Conference on Computer Vision (ICCV), 2015.

Yuichi Ohta. Knowledge-based Interpretation of Outdoor Natural Color Scenes. Pitman Pub-

lishing, Inc., 1985.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level

image representations using convolutional neural networks. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2014.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localization for free? -

weakly-supervised learning with convolutional neural networks. In Computer Vision and

Pattern Recognition, CVPR, 2015.

Stephen E. Palmer. Vision science : photons to phenomenology. MIT Press, 1999.

George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, and Alan L. Yuille. Weakly-and semi-

supervised learning of a deep convolutional network for semantic image segmentation. In

International Conference on Computer Vision, (ICCV), 2015.

Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell. Constrained convolutional neural

networks for weakly supervised segmentation. In International Conference on Computer

Vision, (ICCV), 2015.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context

encoders: Feature learning by inpainting. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

Pedro O. Pinheiro and Ronan Collobert. Recurrent convolutional neural networks for scene

parsing. In Advances in Neural Information Processing Systems (NIPS), Deep Learning

Workshop, 2013.

101

Bibliography

Pedro O. Pinheiro and Ronan Collobert. Recurrent convolutional neural networks for scene

labeling. In International Conference on Machine Learning (ICML), 2014.

Pedro O. Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with con-

volutional networks. In Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollár. Learning to segment object candidates.

In Advances in Neural Information Processing Systems (NIPS), 2015.

Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to refine object

segments. In European Conference on Computer Vision (ECCV), 2016.

Boris T. Polyak and Anatoli Juditsky. Acceleration of stochastic approximation by averaging.

SIAM J. Control Optimization, 1992.

Jordi Pont-Tuset, Pablo Arbeláez, Jonathan Barron, Ferran Marques, and Jitendra Malik. Mul-

tiscale combinatorial grouping for image segmentation and object proposal generation.

2015.

Andrew Rabinovich, Adrea Vedaldi, Carolina Galleguillos, Eric Wiewiora, and Serge Belongie.

Objects in context. In International Conference on Computer Vision (ICCV), 2007.

Esa Rahtu, Juho Kannala, and Matthew B. Blaschko. Learning a category independent object

detection cascade. In International Conference on Computer Vision, (ICCV), 2011.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-

time object detection with region proposal networks. In Advances in Neural Information

Processing Systems (NIPS), 2015.

Maximilian Riesenhuber and Tomaso Poggio. Models of object recognition. Nature Neuro-

science, 2000.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, 1951.

Tony Robinson. An application of recurrent nets to phone probability estimation. Transactions

on Neural Networks, 1994.

David Rumelhart, Geoffrey Hinton, and Ricahrd J. Williams. Learning internal representations

by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, 1986.

Fatemehsadat Saleh, Mohammad Sadegh Ali Akbarian, Mathieu Salzmann, Lars Petersson,

Stephen Gould, and Jose M. Alvarez. Built-in foreground/background prior for weakly-

supervised semantic segmentation. In European Conference on Computer Vision (ECCV),

2016.

102

Bibliography

Hannes Schulz and Sven Behnke. Learning object-class segmentation with convolutional

neural networks. In European Symposium on Artificial Neural Networks (ESANN), 2012.

Alexander G Schwing and Raquel Urtasun. Fully connected deep structured networks.

arXiv:1503.02351, 2015.

Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedestrian detection

with unsupervised multi-stage feature learning. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2013.

Pierre Sermanet, David Eigen, X. Zhang, M. Mathieu, Rob Fergus, and Yann LeCun. Over-

feat: Integrated recognition, localization and detection using convolutional networks. In

International Conference on Learning Representations (ICLR), 2014.

Abhishek Sharma, Oncel Tuzel, and David W. Jacobs. Deep hierarchical parsing for semantic

segmentation. In Computer Vision and Pattern Recognition (CVPR), 2015.

Jamie Shotton, M. Johnson, and Roberto Cipolla. Semantic texton forests for image categoriza-

tion and segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR),

2008.

Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost for image

understanding: Multi-class object recognition and segmentation by jointly modeling texture,

layout, and context. International Journal of Computer Vision (IJCV), 2009.

Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based object

detectors with online hard example mining. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. 2015.

Linda B. Smith and Michael Gasser. The development of embodied cognition: Six lessons from

babies. Artificial Life, 2005.

Ricahrd Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and Andrew Y. Ng.

Convolutional-recursive deep learning for 3d object classification. In Advances in Neural

Information Processing Systems (NIPS). 2012.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Manning. Parsing

natural scenes and natural language with recursive neural networks. In International

Conference on Machine Learning (ICML), 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research (JMLR), 2014.

103

Bibliography

Ivelin Stoianov, John Nerbonne, and Huub Bouma. Modelling the phonotactic structure of

natural language words with simple recurrent networks. In Computational Linguistics in

the Netherlands, 1997.

Christian Szegedy, Scott Reed, Dumitru Erhan, and Dragomir Anguelov. Scalable, high-quality

object detection. In arXiv:1412.1441, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dimitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-

tions. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5. rmsprop: Divide the gradient by a running

average of its recent magnitude, 2012.

Joseph Tighe and Svetlana Lazebnik. Superparsing: Scalable nonparametric image parsing

with superpixels. In European Conference on Computer Vision (ECCV), 2010.

Joseph P. Tighe. Towards Open-Universe Image Parsing with Broad Coverage. PhD thesis,

University of North Carolina at Chapel Hill, 2013.

Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Weakly-supervised semantic segmen-

tation using motion cues. In European Conference on Computer Vision (ECCV), 2016.

Antonio Torralba. Contextual priming for object detection. International Journal of Computer

Vision (IJCV), 2003.

Jasper Uijlings, Koen van de Sande, Theo Gevers, and Arnold W.M. Smeulders. Selective search

for object recognition. International Journal of Computer Vision (IJCV), 2013.

Jakob Verbeek and Bill Triggs. Scene segmentation with crfs learned from partially labeled

images. In Advances in Neural Information Processing Systems (NIPS), 2008.

Alexander Vezhnevets and Joachim M. Buhmann. Towards weakly supervised semantic seg-

mentation by means of multiple instance and multitask learning. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2010.

Alexander Vezhnevets, Vittorio Ferrari, and Joachim Buhmann. Weakly supervised semantic

segmentation with a multi-image model. In International Conference on Computer Vision

(ICCV), 2011.

Alexander Vezhnevets, Vittorio Ferrari, and Joachim M. Buhmann. Weakly supervised struc-

tured output learning for semantic segmentation. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

Paul Viola and Michael J. Jones. Robust real-time face detection. International Journal of

Computer Vision (IJCV), 2004.

104

Bibliography

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using

videos. In International Conference on Computer Vision, (ICCV), 2015.

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. PhD thesis, Harvard University, 1974.

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In International Conference

on Computer Vision, (ICCV), 2015.

Payman Yadollahpour, Dhruv Batra, and Gregory Shakhnarovich. Discriminative re-ranking of

diverse segmentations. In Conference on Computer Vision and Pattern Recognition (CVPR),

2013.

Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro O. Pinheiro, Sam Gross, Soumith Chin-

tala, and Piotr Dollár. A multipath network for object detection. British Machine Vision

Conference (BMVC), 2016.

Matthew Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In

European Conference on Computer Vision (ECCV), 2014.

Luming Zhang, Mingli Song, Zicheng Liu, Xiao Liu, Jiajun Bu, and Chun Chen. Probabilistic

graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation. In

Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Luming Zhang, Yue Gao, Yingjie Xia, Ke Lu, Jialie Shen, and Rongrong Ji. Representative

discovery of structure cues for weakly-supervised image segmentation. Transactions on

Multimedia, 2014.

Yibiao Zhao and Song chun Zhu. Image parsing with stochastic scene grammar. In Advances

in Neural Information Processing Systems (NIPS), 2011.

S. Zheng, S. Jayasumana, B. Romera-Paredes, B. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Con-

ditional random fields as recurrent neural nets. In International Conference on Computer

Vision, (ICCV), 2015.

Song-Chun Zhu and David Mumford. A stochastic grammar of images. Foundations and

Trends in Computer Graphics and Vision, 2006.

Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In

European Conference on Computer Vision (ECCV), 2014.

105

Pedro Oliveira Pinheiro
http://pedro.opinheiro.com

Rue du Centre, 66 - St-Sulpice, 1025 - Suisse
e-mail: pedro@opinheiro.com – Tel: +41 (0)79 579 43 84

EDUCATION École Polytechnique Fédérale de Lausanne since 2013
EPFL, Lausanne, Switzerland
PhD Candidate in Machine Learning and Computer Vision.

Institut National des Sciences Appliquées 2007 - 2012
INSA, Lyon, France
Master of Engineering, Electrical Engineering.
Final year’s major in Image and Signal Processing.

EXPERIENCE Idiap Research Institute, Switzerland since February 2013
Applied Machine Learning Group
Research Assistant

Facebook, Inc, California, USA August 2015 - July 2016
Facebook AI Research
Remote Part-time Research Collaborator

Facebook, Inc, California, USA February 2015 - July 2015
Facebook AI Research
Research Internship in Machine Learning

Idiap Research Institute, Switzerland October 2012 - January 2013
Applied Machine Learning Group
Research Internship in Machine Learning

PUBLICATIONS • P.O. Pinheiro, T.-Y. Lin, R. Collobert, P. Dollár, Learning to Refine Object Seg-
ments. ECCV, 2016 (spotlight).

• S. Zagoruyko, A. Lerer, T-Y Lin, P. O. Pinheiro, S. Gross, S. Chintala, P. Dollár,
A MultiPath Network for Object Detection. BMVC, 2016.

• P.O. Pinheiro, R. Collobert, P. Dollár, Learning to Segment Object Candidates.
NIPS, 2015 (spotlight).

• R. Lebret, P.O. Pinheiro, R. Collobert, Phrase-Based Image Captioning. ICML,
2015.

• P.O. Pinheiro, R. Collobert, From Image-level to Pixel-level Labeling with Con-
volutional Networks. CVPR, 2015.

• R. Lebret, P. O. Pinheiro, R. Collobert, Simple image description generator via
a linear phrase-based approach. ICLR Workshop, 2015.

• P.O. Pinheiro, R. Collobert, Recurrent Convolutional Neural Networks for Scene
Labeling. ICML, 2014.

• P.O. Pinheiro, R. Collobert, Recurrent Convolutional Networks for Scene Parsing.
NIPS Workshop on Deep Learning, 2013.

• L. A. Madureira, D. Q Madureira, P. O. Pinheiro, A multiscale numerical method
for the heterogeneous cable equation. Neurocomputing, 2012.

REVIEWER CVPR, ICCV, ECCV

SKILLS Languages: Portuguese Native, English Fluent, French Fluent, Spanish Proficient
Languages (CS): Lua/LuaJIT, Torch, C/C++, UNIX Bash/Shell, Matlab, Python.

107

