000225544 001__ 225544
000225544 005__ 20190509132605.0
000225544 0247_ $$2doi$$a10.5075/epfl-thesis-7502
000225544 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis7502-5
000225544 02471 $$2nebis$$a10830758
000225544 037__ $$aTHESIS
000225544 041__ $$aeng
000225544 088__ $$a7502
000225544 245__ $$aBrain-controlled neuroprosthetic interventions to restore locomotion after contusion spinal cord injury in the rat
000225544 260__ $$aLausanne$$bEPFL$$c2017
000225544 269__ $$a2017
000225544 300__ $$a116
000225544 336__ $$aTheses
000225544 502__ $$aProf. Auke Ijspeert (président) ; Prof. Silvestro Micera, Prof. Grégoire Courtine (directeurs) ; Dr Ricardo Chavarriaga Lozano, Prof. Dejan Popovic, Prof. José Carlos Príncipe (rapporteurs)
000225544 520__ $$aSpinal cord injury (SCI), second only to stroke, is the leading cause of paralysis. Therapies based on electrical stimulation of the spinal cord and other locomotor areas of the Nervous System improve motor control in people with neurotrauma. Neuromodulation of the sensorimotor systems can indeed reactivate circuitries that are left dormant after SCI and turn them into an active locomotor state. These results have been found in animal models and translated to clinical fruition. Recent medical research has demonstrated that the involvement of volition and motor intent is a decisive factor for success of rehabilitation therapies that involve functional electrical stimulation of spinal cord and muscles. A key brain area that encodes information related to the conscious processing and execution of movement is the primary sensory-motor cortex. In this thesis I present two novel neuroprosthetic systems for neuromodulation based on cortical population activity in rats with SCI. We tested the hypotheses that neurons in the motor cortex could provide a reliable input for closed-loop neuroprosthetic systems designed to electrically stimulate different locomotor areas of the nervous system in a locomotor-phase-specific manner and thus enhance the locomotor output. During the experiments, we connected cortical correlates of intended movements with patterns of stimulation delivered either at the midbrain or at the sublesional spinal cord. Our brain-controlled functional stimulation reduced locomotor deficits caused by spinal cord injury and restored voluntary control of foot movement. These findings and the control policies we developed could be applied to clinical trials to improve the results of neurorehabilitation, for the benefit of people living with SCI.
000225544 6531_ $$aNeuroprosthesis
000225544 6531_ $$aSpinal cord injury
000225544 6531_ $$aBrain-Machine Interface
000225544 6531_ $$aNeuromodulation
000225544 6531_ $$aLocomotion
000225544 6531_ $$aRehabilitation
000225544 6531_ $$aNeuroplasticity
000225544 6531_ $$aCortex
000225544 6531_ $$aMesencephalic Locomotor Region
000225544 700__ $$0246242$$aBonizzato, Marco$$g221048
000225544 720_2 $$0246201$$aMicera, Silvestro$$edir.$$g218366
000225544 720_2 $$0245952$$aCourtine, Grégoire$$edir.$$g220184
000225544 8564_ $$s10217615$$uhttps://infoscience.epfl.ch/record/225544/files/EPFL_TH7502.pdf$$yn/a$$zn/a
000225544 909C0 $$0252419$$pTNE$$xU12522
000225544 909CO $$ooai:infoscience.tind.io:225544$$pthesis$$pthesis-bn2018$$pDOI$$pSTI$$qDOI2$$qGLOBAL_SET
000225544 917Z8 $$x108898
000225544 917Z8 $$x108898
000225544 918__ $$aSTI$$dEDEE
000225544 919__ $$aTNE
000225544 920__ $$a2017-2-21$$b2017
000225544 970__ $$a7502/THESES
000225544 973__ $$aEPFL$$sPUBLISHED
000225544 980__ $$aTHESIS