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Abstract
Despite recent technological improvements of immersive technologies, Virtual Reality suffers

from severe intrinsic limitations, in particular the immateriality of the visible 3D environment.

Typically, any simulation and manipulation in a cluttered environment would ideally require

providing feedback of collisions to every body parts (arms, legs, trunk, etc.) and not only to

the hands as has been originally explored with haptic feedback. This thesis addresses these

limitations by relying on a cross modal perception and cognitive approach instead of haptic

or force feedback. We base our design on scientific knowledge of bodily self-consciousness

and embodiment. It is known that the instantaneous experience of embodiment emerges

from the coherent multisensory integration of bodily signals taking place in the brain, and

that altering this mechanism can temporarily change how one perceives properties of their

own body. This mechanism is at stake during a VR simulation, and this thesis explores the

new venues of interaction design based on these fundamental scientific findings about the

embodied self. In particular, we explore the use of third person perspective (3PP) instead

of permanently offering the traditional first person perspective (1PP), and we manipulate

the user-avatar motor mapping to achieve a broader range of interactions while maintaining

embodiment. We are guided by two principles, to explore the extent to which we can enhance

VR interaction through the manipulation of bodily aspects, and to identify the extent to which

a given manipulation affects the embodiment of a virtual body.

Our results provide new evidence supporting strong embodiment of a virtual body even when

viewed from 3PP, and in particular that voluntarily alternating point of view between 1PP and

3PP is not detrimental to the experience of ownership over the virtual body. Moreover, detailed

analysis of movement quality show highly similar reaching behavior in both perspective

conditions, and only obvious advantages or disadvantages of each perspective depending

on the situation (e.g. occlusion of target by the body in 3PP, limited field of view in 1PP).

We also show that subjects are insensitive to visuo-proprioceptive movement distortions

when the nature of the distortion was not made explicit, and that subjects are biased toward

self-attributing distorted movements that make the task easier.

Key words: virtual reality, embodiment, sense of agency, body ownership, first and third person

perspectives, human-computer interaction, visuomotor contingencies, virtual body.
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Résumé
Malgré les récents progrès des technologies d’immersion, la réalité virtuelle souffre de limita-

tions intrinsèques liées à l’immatérialité de l’espace visuel en 3D. Typiquement, la simulation

et l’interaction dans un espace virtuel encombré devrait idéalement fournir un retour tactile

pour les collisions des objets avec toutes les parties du corps, et pas seulement sur les mains

comme généralement exploré avec des interfaces haptiques. Cette thèse vise à réduire ces li-

mitations en adoptant une approche cognitive et perceptive, au lieu de développer un système

de retour de force ou tactile. La recherche en sciences cognitives sur la conscience de soi et de

son corps a montré que l’expérience subjective d’incarner un corps est issue de la cohérence

des signaux corporels multimodaux qui sont intégrés dans le cerveau pour construire la repré-

sentation de soi, et que l’altération de ce mécanisme peut modifier la perception du corps.

C’est ce même mécanisme qui est en jeu lors d’une simulation en réalité virtuelle, et nous

proposons d’appliquer ces connaissances au design d’interaction en environnement virtuel.

En particulier, nous explorons l’utilisation de la perspective à la troisième personne (3PP)

en complément de la traditionnelle vue en première personne (1PP), et nous manipulons

la concordance motrice entre l’utilisateur et son avatar pour étendre les possibilités d’inter-

action tout en maintenant l’incarnation dans le corps virtuel. Nous somme guidés par deux

principes ; améliorer l’interaction en RV en exploitant la manipulation de conscience de soi, et

identifier l’influence de ces manipulations sur la perception d’incarner un avatar.

Nos résultats apportent des éléments nouveaux soutenant l’idée qu’un fort sentiment d’incar-

ner un corps virtuel est possible même s’il est vue en troisième personne, et ce en particulier

quand l’utilisateur peut volontairement contrôler le passage de 1ere à 3eme personne. L’ana-

lyse détaillée des mouvements d’interaction montre un comportement similaire dans les

deux conditions de perspective, avec uniquement des qualités et inconvénients spécifiques

à chacune (p.ex. occlusion de la cible par le corps en 3PP, champ de vision réduit en 1PP).

Nous montrons aussi que les sujets sont insensibles aux distorsions visuo-proprioceptives

du mouvement quand la nature de celle-ci n’est pas évidente, et que les sujets considèrent

facilement que le mouvement déformé est le leur si la distorsion rend la tâche plus facile.

Mots clefs : Réalite virtuelle, incarnation d’un corps, sens de l’agentivité, perspectives à la

première et la troisième personne, interaction homme-machine, contingences visuo-motrices,

corps virtuel.
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1 Introduction

We spontaneously experience our body as a consistent and seemingly immutable representa-

tion of ourselves in space. We do not expect our body to change in shape or size, yet it does. We

all undergo considerable body reshaping while growing from infancy into adulthood, but to

the extent we can record, our body representation felt solid at any point of this transformation.

The instantaneous experience of embodiment emerges from the coherent multisensorial

integration taking place in the brain, which has been referred to as bodily self-consciousness

(the pre-reflective sensation of being the subject of an experience) [Legrand, 2006, Blanke, 2012,

Blanke et al., 2015]. Experimental protocols have shown that this body representation is much

more malleable than commonly assumed. For instance, conflicting sensorial stimulation can

temporarily change how one perceives properties of their own body (i.e. an altered bodily

self-consciousness). Notably, it can lead to the illusion of owning a fake – either material

or virtual – limb [Botvinick and Cohen, 1998], body [Slater et al., 2010b], and even another

individuals’ body [Petkova and Ehrsson, 2008].

In the rubber hand illusion [Botvinick and Cohen, 1998], the synchronous stroking of a (visible)

rubber hand and the (occluded) real hand provides visuo-tactile congruence to the subject,

while causing a visuo-proprioceptive conflict. That is, relative to the seen rubber hand, the

subject feels the touch in a congruent body region and time, but the global location of the

hand does not match. Eventually, the subject feels ownership over the fake limb, which

is accompanied by the feeling that the real hand is now located closer to the rubber hand.

The same happens if visuo-motor or visuo-proprioceptive congruence (active or passive

movement of the hand) is used in lieu of the visuo-tactile stimulation.

Virtual reality (VR) is especially competent in producing these bodily illusions. For instance,

compared to physical reality, the development of a VR application supporting the control of

a virtual limb or a virtual body, which yields visual, motor and proprioceptive congruence,

is relatively straightforward and much more malleable. By using current motion capture

equipment and animation algorithms, it is possible to give full control of a virtual (non)

humanoid body to a subject, effectively augmenting the means through which one can deceive

1



Chapter 1. Introduction

the multisensorial mechanisms that give rise to the embodied self.

Nonetheless, there is a longstanding interest of VR for what composes the so called feeling

of "presence", which is commonly defined as the feeling of "non mediation" [Lombard and

Ditton, 1997] and of "being there", in the virtual world. To that extent, the sense of embodying

a virtual body addresses a complementary subject, that of a self-body relation, while presence

approaches the mental state of being located in the VE, i.e. the self-environment or body-

environment relation [Kilteni et al., 2012a]. Evidence suggests that these are closely related,

and that having and controlling a virtual body in a VR simulation is among the main factors

driving the experience of presence [Slater et al., 2010a].

As a matter of fact, early conceptualization of presence have emphasized the role of the

body. In the "Cyborg’s Dilemma", [Biocca, 1997] approaches the concept of "self-presence",

defined as the effect of the virtual environment on the perception of one’s body, physiological

states, emotional states, perceived traits and identity, i.e. the notion of a bodily self that can

be modeled after a synthetic experience. Indeed, recent evidence shows that a congruent

multisensory experience in VR can alter how one perceives her/his body shape [Kilteni et al.,

2012b, Normand et al., 2011].

Adding to this discussion, this thesis explores how sensory and sensorimotor discrepancies

affect the embodied self in VR, and how this knowledge could be applied to the design of

embodied VR interaction.

1.1 Research problem and approach

What is at the core of an effective VR experience is the idea that people forget about the

technological mediation and experience their visit as "being there" in a tangible world. Simu-

lations are usually performed with a first person perspective view into the 3D space, which is

supposed to be "natural" as the user perceives and moves in the virtual world as in reality.

But VR suffers from severe limitations, in particular the immateriality of the visible 3D envi-

ronment. For example, haptic displays may be competent at providing touch and/or force

feedback to probes and even hands (such as in surgical applications), but are still unable

to provide realistic full-body haptic feedback as tactile and bodily sensations are far wider

in terms of skin surface. However, typical simulation and manipulation in a cluttered en-

vironment requires providing feedback of collisions to every body parts (arms, legs, trunk,

etc.) and not only to the hands. This corresponds to a large family of applications, including

virtual prototyping and training in complex environments (plane assembly, industrial system

maintenance, aftermath intervention) which are still impaired by this problem.

In this thesis we seek to address these limitations by relying on a crossmodal perception

approach. Instead of extending the research in the direction of haptic and force feedback, we

propose to fork towards a complementary direction by exploring a complete change of viewing

2



1.2. Scope of the Thesis

perspective. First, we favor a third person perspective (3PP) viewpoint instead of permanently

offering the traditional first person perspective (1PP) of VR interactions. Second we act on

the user-avatar mapping to achieve a broader range of interactions, effectively modifying the

motor mapping of reaching tasks, which can be used to guide the user interaction with the

virtual environment (e.g. prevent interpenetration of virtual body with virtual scene from

happening). Our hypothesis is that such alternative approach can provide useful feedback on

body posture and interaction with the virtual world during embodied immersive interactions,

especially when involved in potentially complex virtual environments.

1.2 Scope of the Thesis

Figure 1.1 – The scope of this thesis is on how current knowledge on the sense of embodiment
and VR interaction paradigms can impact each other.

We focus on how current knowledge on the sense of embodiment and VR interaction paradigms

can impact each other (Figure 1.1). Specifically, we explore the new venues of interaction

design based on fundamental scientific findings about the embodied self. In contrast, we do

not create new VR technology nor do we explore embodiment at a neuronal/brain structure

level. Moreover, although we confront our results with current ideas on embodiment and

motor control, we do not put forward new theories on these topics.

We believe that the knowledge on how the brain represents the body is not only impactful

to the fundamental research on cognitive neuroscience and to the field of neuroprosthetics,

but it also has the potential to immediately impact the design of the fast growing market

of VR applications. We argue that understanding the limits of embodiment and how it can

be manipulated can lead to new venues for effective virtual reality interaction. Therefore,

while most of current research uses VR to expand knowledge on the mechanisms of bodily

self-consciousness, we also seek to bring this knowledge to the practical grounds of VR inter-

action. We are guided by two principles, to explore the extent with which we can enhance VR

interaction through the manipulation of bodily aspects, and to identify the extent with which

a given manipulation affects the embodiment of a virtual body.
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1.3 Contributions

In this thesis we study the sense of embodiment and VR interaction when the "natural"

mapping of oneself to a surrogate body is disrupted. In the interaction design side we explore

visual feedback to convey structural information, and deviate movement to artificially control

the virtual body relation with the environment. In the embodiment side we try to ensure

that our interaction design decisions are compatible with the illusion of an altered bodily

self-consciousness.

In particular, we provide new evidence supporting the embodiment of a virtual body controlled

from 3PP. We hypothesize that this may be specifically related to the dynamics of sensorimotor

contingencies relating the full real and virtual bodies, and to actively interacting with the

virtual environment. The latter argument is based on the account of agency and embodiment

proposed by [Synofzik et al., 2008b], in which the authors suggest that the conscious perception

of ownership and agency is influenced by intentions. Moreover, our studies are the only ones

to explore the role of full body control to the sense of embodiment of a virtual body seen from

a 3PP. We also argue in favor of the possibility of dynamically alternating the point of view

between 1PP and 3PP during the simulation. This approach intends to sum up the strengths

of 1PP and 3PP in a single user interface.

In a second part of our research we investigate how one perceives self-generated movements

when their visual feedback is altered using embodied VR, that is, when the virtual body does

not perform the exact same movement as the person controlling it. Based on experiments,

we propose distortion limits that are likely to be accepted by the subject as congruent to their

actions. We also place our experiments in the context of current theories leveraging the role of

movement monitoring, intentions, and retrospective inference to agency and self-attribution.

1.4 Organization

The remaining of this thesis is organized in 5 chapters:

Chapter 2 presents fundamental concepts that lay the base for this thesis. There we introduce:

concepts of VR; how VR explores human perception for its own sake; current definitions of

the self, of the sense of embodiment, and how it migth be affected by multisensory integra-

tion; we close by discussing motor awareness, motor control, and detailing motor aspects of

embodiment.

In Chapter 3 we examine how the manipulation of visual feedback could be used in order

to improve subjects awareness of a controlled virtual body posture and its relation with the

virtual environment. In particular, we evaluate the use of non-planar projections as a means to

increase the field of view, and how 3PP could be combined with 1PP to add up their advantages.

Chapter 4 explores how perspective (1PP/3PP) and visuo-motor congruency influence the
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sense of embodiment over a virtual body. We present two experiments on the subject. One of

the experiments also include a perspective option that combines 1PP and 3PP, as proposed in

Chapter 3. Additionally, we also expose performance differences and similarities between 1PP

and 3PP.

In Chapter 5 we present the results of two experiments on self-attribution of hand movements

with spatiotemporal distortions. In the experiments we manipulate the distance to the target

by making it physically closer or farther, while the visual (apparent) distance is kept constant.

The goal is to quantify people acceptance and subjective interpretation of these manipulations.

Finally, in chapter 6 we summarize and discuss the potential impact of this thesis. We finish

by exposing ideas and intentions for the future of this research.
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2 Background and Literature Review

In this Chapter we present concepts and theories on the subjects of virtual reality, self-

consciousness and embodiment, and motor control. Our subject of research is multidis-

ciplinar, and these topics provide the fundamentals for the understanding and the contextual-

ization of this thesis.

2.1 Virtual Reality and Human Perception

The premise of virtual reality (VR) is to deliver a synthetic world that can be experienced as if

it were real. Ideally, VR should mediate all input and output channels of a person to a point

where she can no longer detect a discrepancy between the expected and rendered outcome

to her actions. This i/o feedback loop is expected to register and interpret the user’s actions

and provide appropriate sensorial replacement (Figure 2.1), e.g. every time the user moves the

head, a computer has to measure this motion and generate a new picture, coherent with the

new viewpoint.

In this thesis we make extensive use of VR techniques to perform experiments on bodily

perception. The development of VR is technically challenging. Mediating one’s input to

generate the corresponding output in VR incur on inevitable tracking and sensory rendering

latency and imprecision. Below we discuss two base concepts of the field of VR, namely

immersion and presence, as well as how VR relies on human perception to succeed.

2.1.1 Immersion

The concept of immersion refers to the objective level of sensory fidelity a VR system provides

[Slater, 2003, Sanchez-Vives and Slater, 2005]. An extensive literature has studied, for instance,

how the level of visual immersion depends on the system’s rendering software and display

technology. In that frame of mind [Pausch et al., 1993] compared head-mounted and stationary

displays. [Bowman and McMahan, 2007] have chosen to study the level of visual immersion

on application effectiveness by combining various immersion components such as field of
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Figure 2.1 – Human-Virtual Environment interaction loop. Adapted from [Bowman and
McMahan, 2007].

view, field of regard (total size of the visual field surrounding the user), display size, display

resolution, stereoscopy, frame rate, etc.

2.1.2 Presence

The experience of a virtual environment (VE) through immersive aparatus can give rise to the

sense of presence [Held and Durlach, 1992, Slater and Usoh, 1993], which has been described

as the feeling of "being there", in the VE, and is marked by the "illusion of non-mediation"

[Lombard and Ditton, 1997], when the equipment managing the feedback loop goes unnoticed

in the user-VE relation. What is central to the state of presence is that the user act in and

react to the VE as if it were real, despite the fact that the user knows that it is a simulation.

For instance, the experiment proposed by [Meehan et al., 2002] expose subjects to a virtual

pit, and the reactions that the VE triggers in the subject may be equivalent to those of a real

exposure [Sanchez-Vives and Slater, 2005].

The concept of presence refers to a person’s subjective psychological response to a VR system

[Slater, 2003]. Therefore, albeit the fact that technical specifications of a VR system (how

immersive it is) is a driving factor for the sense of presence, presence is above all the result of a

person’s psychological state, thus depending on many other factors. For instance, two users

can have different experiences of presence with the same VR system, and the same user can

have different experiences of presence in the same system at different times [Slater, 2003].

However, if the term "presence" is widely accepted as the label to design this feeling of "being
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there" [Heeter, 1992, Slater, 2003], its precise and specific understanding is still debated today.

In this sense, [Slater, 2009] proposes two orthogonal components to presence, namely

• place illusion (PI) – encompasses the classical "being there" definition;

• plausibility (Psi) – the extent with which the participant feels that what happens is real.

[Slater et al., 2010a] performed an experiment to evaluate the relative importance of simulation

elements to PI and Psi. They concluded that effective PI relates mainly to immersive apparatus

and to having and controlling a virtual body (sensorimotor contingencies relating real and

virtual body). Thus being tightly connected to the notion of an efficient feedback loop. In other

words, sensorimotor feedback is the basic foundation for PI to occur; "the sense of ’being

there’ in a VE is grounded on the ability to ’do’ there" [Sanchez-Vives and Slater, 2005]. On the

other hand, effective Psi has been associated to illumination realism, with the virtual body still

playing a prominent role. Hence, Psi seems to be especially related to higher order cognitive

priors about what elements are contained in reality, and how one expect these elements to

behave and look like. Both illusions can occur, together or independently, albeit participants’

knowledge that the virtual environment is a simulation.

2.1.3 Human Perception applied to VR

Perception involves mechanisms that receive sensorial input and transform them from lower-

level information (e.g. physical data) into higher-level information (e.g. shape and motion),

and the processing of this information which is influenced by one’s concepts, expectations and

selective mechanisms (knowledge and attention) [Bernstein, 2013]. Thus, one’s perception is

influenced at different levels, from the most mechanical aspects of the sensorial apparatus,

to one’s current psychological state, to cognition. Notably, much of the information we

experience as being collected from the external world may be product of brain inference

[Ramachandran et al., 1991].

As a consequence, the VR feedback loop is effective even if its technical specifications are

inferior to physical reality and physiological limits, i.e. to be effective, it only has to be as good

as human perception and expectations. Ultimately, the subjective match of simulation and

expectation can give rise to an "illusion of non-mediation" [Lombard and Ditton, 1997], which

is at the core of the idea that one can feel to be present in the virtual world.

Perhaps, one of the most interesting samples of faulting perception is that of crossmodal

illusions. For instance, in the well known ventriloquist effect, the synchronicity of the mov-

ing puppet mouth and the ventriloquist voice gives the perception that the sound is being

projected from the puppet. This illusion implies that auditory perception can be shaped

by vision, i.e. the perception of the ensemble predominates over a single modal input. VR

researchers have long explored this sort of modal predominance to improve interaction. In a

family of navigation techniques known as redirected walking, the predominance of visual over
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vestibular sensorial input is exploited in order to maximize the virtual space accessible through

natural walking [Razzaque et al., 2001, Steinicke et al., 2010]. In a more recent approach, [Kohli

et al., 2012] redirect the movement of an end effector to provide congruent visual and tactile

stimulation, which seems to predominate over proprioceptive information.

Our approach to the problem of immateriality of VR draws from this literature. We rely on

crossmodal perception, and explore a complete change of viewing perspective. First, we favor

a third person perspective (3PP) instead of permanently offering the traditional first person

perspective (1PP) of VR interactions. Second we act on the user-avatar mapping to achieve a

broader range of interactions, effectively modifying the motor mapping of reaching tasks in

order to guide the interaction with the virtual environment.

2.2 Embodiment and self-consciousness

Embodiment, as defined in the fields of philosophy of the mind and cognitive neuroscience,

emphasizes the relevance of sensorimotor skills to the shaping of the mind and the subjective

experience of having and controlling a body [Blanke and Metzinger, 2009]. To this extend, we

walk through definitions of the self and of sense of embodiment; we present experimental

protocols that manipulate the perception of the bodily self; finally, we give emphasis to the

manipulation of point of view, which is especially relevant for Chapters 3 and 4.

2.2.1 Defining the self

In [Gallagher, 2000], Gallagher overviews two orthogonal components of the self, the minimal

self and the narrative self. The former refers to the minimal necessary condition for the

instantaneous experience of being a self, and is limited to what is accessible to immediate

self-consciousness. The latter refers to higher level concepts defining a self-image, such as the

auto-biographical views that persons build for themselves, thus having a narrative past and

future.

The research we propose relates to the concept of a minimal self. More specifically, to the

account of a minimal phenomenal self [Blanke and Metzinger, 2009], which is defined as

"the experience of being a distinct, holistic entity capable of global self-control and attention,

possessing a body and a location in space and time". Thus contemplating physical aspects

that help to define a bodily self. Interestingly, this self distinction relates to the components

of presence proposed by Slater [Slater, 2009]. Notably, the simulation mechanisms found to

support place illusion (immersive apparatus and sensorimotor contingencies) overlaps with

aspects that define the minimal phenomenal self [Blanke and Metzinger, 2009].
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2.2.2 Sense of Embodiment

[De Vignemont, 2011] proposes the following general definition of embodiment: "E is embod-

ied if some properties of E are processed in the same way as the properties of one’s body". In

de Vignemont’s definition, one may feel a tool – such as a hammer – to be embodied without

feeling that the tool is part of one’s body (no ownership). Kilteni and Slater [Kilteni et al., 2012a]

adapt de Vignemont’s definition considering the Sense of Embodiment (SoE) in the context of

VR: "SoE toward a body B is the sense that emerges when B’s properties are processed as if they

were the properties of one’s own biological body". Here we make a distinction to the use of the

expression "Sense of" before Embodiment. As described by de Vignemont, "sense of" refers

to the fact that the subject feels such phenomena, instead of only knowing it exists/happens.

For instance, one may learn and believe due to anatomy studies that she has a gallbladder

that is part of her body, but we do not feel the gallbladder as being ours. However, the way we

experience our relation with limbs such as arms and hands are more complex and complete

than that, as we not only know we have arms and hands, but we feel and control them. In

other words, it is the subjective experience of embodiment – of higher interest from the VR

perspective – in which a healthy subject may be deceived to accept and believe in a virtual

representation attributed to her.

According to [Longo et al., 2008, Kilteni et al., 2012a], a successful sensorial manipulation of

the sense of embodiment (SoE) may rise from three components of the instantaneous bodily

self:

• Sense of agency: [Sanchez-Vives et al., 2010] defines it as the sense of "global motor

control, including the subjective experience of action, control, intention, motor se-

lection and the conscious experience of will". It is proposed that the sense of agency

emmerges from the comparison between predicted and actual sensory consequences

of one actions [David et al., 2008].

• Sense of Body ownership: it refers to one’s self-attribution of a body [Blanke, 2012, Gal-

lagher, 2000]. The emmergence of a sense of ownership is said to rely on the spatial and

temporal correlations among sensory cues (visual, tactile, proprioceptive, vestibular)

that arise from our body [Jeannerod, 2004].

• Sense of self-location: is determined by a certain volume in space, where one feels

to be located [Kilteni et al., 2012a]. Under normal circumstances, one experience

to be located within one’s own body. However, this unity may be disrupted under

certain circunstances, such as when a person have an out of the body experience (OBE)

[Lenggenhager et al., 2006].

Thus, SoE refers "to the ensemble of sensations that arise in conjunction with being inside,

having, and controlling a body" [Kilteni et al., 2012a]. It is also argued that embodiment is not

a discrete condition, that is, it can be experienced in different levels, depending on how many

properties are met as well as the intensity that they are met.
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2.2.3 Manipulating the Bodily Self

The instantaneous experience of embodiment emerges from the coherent multisensorial

integration taking place in the brain, which has been referred to as bodily self-consciousness

(the pre-reflective sensation of being the subject of an experience) [Legrand, 2006, Blanke, 2012,

Blanke et al., 2015]. Experimental protocols have shown that this body representation is much

more malleable than commonly assumed. For instance, conflicting sensorial stimulation can

temporarily change how one perceives properties of their own body (i.e. an altered bodily

self-consciousness). Notably, it can lead to the illusion of owning a fake – either material

or virtual – limb [Botvinick and Cohen, 1998], body [Slater et al., 2010b], and even another

individuals’ body [Petkova and Ehrsson, 2008]. These illusions are explored below.

Rubber Hand Illusion

In the rubber hand illusion (RHI) a fake model of the hand is placed at a position coherent

with the subject body, while a physical barrier is used to occlude the real hand from sight.

The experimenter then repeatedly and synchronously strokes both, the real and the rubber

hand. By watching the fake hand being touched at the same moment and region as felt by the

real hand, the subject may experience and report the sensation that the fake hand belongs to

her body, and even despond to threats directed to the fake hand [Armel and Ramachandran,

2003]. Additionally, when asked to use the opposite hand to point to where the hidden hand is,

subjects tend to wrongly localize the position of the occluded hand towards the rubber hand.

This measurement is better known as proprioceptive drift, and correlates with the subjective

report of ownership provided by the subjects. Figure 2.2 illustrates the RHI.

The protocol above describes a bodily illusion induced by the congruent visuo-tactile stimula-

tion, but a variaty of experiments explored other senorial congruences, such as sensorimotor

correlations. For instance, passive and active synchronous movements (visuo-proprioceptive

and visuo-motor) were shown to elicit the illusion [Tsakiris et al., 2010, Walsh et al., 2011, Kalck-

ert and Ehrsson, 2012a, Kalckert and Ehrsson, 2012b], possibly stronger for active movement

[Tsakiris et al., 2010]. Moreover, interoceptive signals are also known to play a relevant role,

modulating the intensity [Tsakiris et al., 2011] and even driving the illusion [Suzuki et al., 2013].

Nonetheless, the RHI was shown to work in VR setups. It has been induced through visuo-

tactile [Slater et al., 2008] and visuo-motor [Sanchez-Vives et al., 2010, Yuan and Steed, 2010]

synchrony.

The RHI is generally not successful if the sensorial stimuli applied to real and fake hands are

asynchrounous, if the fake hand is placed at a position incongruent or too far relative to the

body, or if the object replacing the hand does not resembles a hand [Tsakiris and Haggard,

2005, Blanke et al., 2015].
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Figure 2.2 – Illustration of the rubber hand illusion. After synchronous and repeated stroking of
the real hand and the rubber hand, the subjects feel as if the seen fake is theirs own. Evidence
shows that visual receptive fields are brought into allignment with the rubber hand (yelow
areas), and that visual information realigns the proprioceptive map (blue arm profile). Figure
from [Botvinick, 2004].

Full Body Ownership Illusion

The full body ownership illusion (FBOI) is analogous to the RHI. It has been studied using

cameras and VR, demonstrating that a whole alien body (real, fake or virtual) can be felt as

ones’ own body. In [Petkova and Ehrsson, 2008], Petkova and Ehrsson demonstrate two setups

capable of inducing the sense of ownership of a mannequin and even of another person’s body.

In the mannequin protocol, a camera is positioned on the head of the surrogate body, and the

image of the camera is transmitted to an HMD worn by the subject. By applying synchronous

visuo-tactile stimulation to the abdomen of the subject and the mannequin body (Figure

2.3), subjects reported the feeling of ownership toward the mannequin. Additionally, when

the experimenter slides a knife over the abdomen of the mannequin, a strong physiological

response was observed. This response was stronger when the visuo-tactile stimulation was

applied synchronously. Figure 2.3 illustrates this illusion.

Similarly, [Slater et al., 2010b] have replicated these results in VR. With visuo-tactile stimulation

and visuo-motor congruence of the point of view, the experiment led male subjects to feel

ownership of a young female body.

2.2.4 Perpective taking

Alterations to the sense of embodiment can be observed even when the surrogate body

position does not coincide with the point of view of the scene, i.e. seen from a third person

perspective (3PP). In this setup a stereoscopic camera watches a subject or mannequin from

the back, and transmit the 3PP image to the subject through a HMD. The synchronous visuo-
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Figure 2.3 – Full body ownership illusion. After synchronous and repeated stroking of the real
body and the dummy body, subjects feels as if the seen fake body is their own body. There is
an associated increase in skin conductance response when the dummy body is threatened by
a knife (Figure from [Petkova and Ehrsson, 2008]).

tactile stimulation delivered to the subject or mannequin back (Figure 2.4) was shown to

provoke the sensation of ownership of the distant body, seen from a third person perspective

[Lenggenhager et al., 2007]. These results have been replicated in [Lenggenhager et al., 2009].

However, literature diverges with respect to FBOI in 3PP. Other experiments suggest that

1PP plays a major role. For instance, [Slater et al., 2010b] performs an experiment including

visuo-tactile congruence and perspective as factors. Their results suggest that 1PP is a critical

factor for the ownership of a body transfer illusion, contrasting previous studies that suggest

visuo-tactile congruence to be the main contributory factor to the ownership illusion. More-

over, [Pomés and Slater, 2013] presents a setup in which a virtual body is seen from behind.

Congruent or incongruent visuo-tactile stimulation could be applied, and the subject could

control the arms of the virtual body. No effect of visuo-tactile congruency has been found, and

the ownership scores were generally low.

While we agree that perspective might significantly impact the sense of ownership, in Chapter 4

we sought to further this knowledge by manipulating perspective and visuo-motor congruence

of the whole body in two experiments. We also highlight that the animation algorithms used

in [Pomés and Slater, 2013] are simpler and produce more artifacts than the ones we use here.

From a more practical standpoint, changing the perspective from first (1PP) to third person

perspective (3PP) allows taking a new and potentially more informative point of view within

a VR application (such as for training [Maupu et al., 2009, Salamin et al., 2010, Covaci et al.,

2014]).
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Figure 2.4 – Full body ownership illusion in 3PP. After synchronous and repeated stroking of
the real body and the dummy body, subjects feels as if the seen fake body is their own body.
This illusion is argued to be valid even if the body is seen from a third person perspective
(Figure from [Lenggenhager et al., 2007]).

2.3 The self as an actor

The movement distortion we propose in Chapter 5 is designed to guide reaching movements,

facilitating or hindering the completion of a reaching task. Thus, we are especially interested

on the body of knowledge that describes how motor planning and movement control are

managed.

Moreover, the ability to differentiate self-generated actions from externally generated stimuli

is transparent to the healthy subject. Although we take this ability for granted, empirical

evidence shows that the mechanisms that are likely to control the self-attribution of actions

have to undergo constant adaptation. Here we briefly discuss these mechanisms.

2.3.1 Internal Models of movement control

An internal model is a system that mimics the behavior of a natural process, predicting the

future state of a system, such as the velocity and position of an acting limb [Wolpert et al., 1995].

It is widely accepted to explain the representation of movements and intentions. The execution

of an internal model does not imply an external movement, it can also result from imagining

an action or seeing an actions, such as in Ramachandrans mirror-box [Ramachandran and

Rogers-Ramachandran, 1996].

It is argued that the internal model controlling the movement of a limb makes use of an inverse

and a forward model of the limb [Desmurget et al., 1999, Desmurget and Grafton, 2000] (Figure

2.5). The inverse model translates an intention into motor commands (e.g. intended end

effector position into rotations for the chain of joints), while the forward model of the limb

uses a copy of the motor commands (known as the efference copy) to predict the sensory
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consequences for that motor command [Wolpert et al., 1995]. The predicted consequences

are further compared to the actually sensed information of that movement (reafference),

a self generated movement is expected to result in minimal discrepancy, and its sensorial

consequences are suppressed [Kawato, 1999, Wolpert and Flanagan, 2001]. Notably, Helmholtz

discusses the need for such mechanism to explain why the image of the world is perceived still

following the voluntary movement of the eyeball [von Helmholtz, 1910]. In comparison, if one

gently taps the eyeball with the finger, the whole world seems to move. Therefore, the intention

to move and the motor commands provided to the extraocular muscles might be responsible

for this difference in perception. This mechanism is also used to explain why people usually

cannot tikle themselves. In [Blakemore et al., 1999], the increased latency between one’s

action and its sensory consequences (mediated by a mechanical device) resulted in a higher

sensation of "tickliness", despite the fact that subjects were not aware about the manipulation

of latency.

Figure 2.5 – Internal model of action. The inverse model is used to plan an action, and the
forward model is used to monitor this action. The output of comparisons (dotted lines) are
used to refine the inverse and forward models (motor adaptation). According to [Frith et al.,
2000, Blakemore et al., 1999, Blakemore et al., 2002], these comparisons also play a role in the
attribution of action (agency). Figure adapted from [De Vignemont and Fourneret, 2004].

2.3.2 Comparator model and the sense of agency

The comparison mechanisms described by internal models have been extensively suggested

to underlie the self-attribution of actions [Blakemore et al., 2002, De Vignemont and Fourneret,
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2004, Frith, 2012]. In short, this view suggests that if significantly incongruent signals arrive

to one of the comparators (Figure 2.5), the subject may become aware that something went

wrong with an intended action. [Blakemore et al., 2002] states: "we seem to be unaware of the

results of the comparison between the predicted and intended outcome of motor commands,

and the comparison between the predicted and actual sensory feedback, as long as the desired

state is successfully achieved". Under this view, the comparator mechanism has a central

role in segmenting self from externally generated actions. This proposition could model well

certain clinical conditions known to impair the sense of agency, such as delusions of control

in schizophrenic patients [Franck et al., 2001, Blakemore et al., 2002].

Moreover, in a pioneering study [Nielsen, 1963] has demonstrated that, when the visual

feedback of the movement of a healthy subject is replaced by the movement of a second

person, the subject might miss-attribute the seen movement to himself. This was the case

even when there was a discrepancy between the performed and seen movements, with subjects

reporting the feeling of strangeness or impression that their hands have been pulled by some

external force. This experiment illustrates that there is a limit within which a person is unaware

about discrepancies that may occur to her own movements.

2.3.3 Sensorimotor adaptation

Sensorimotor adaptation is essentially an iterative process of optimization of the inverse

and forward models by minimizing discrepancies between predicted and actual outcome of

actions. Motor adaptation is essential to successfully interact with the external world and to

accommodate to the constant body reshaping that people undergo. For instance, forward

models are only useful if they can produce unbiased predictions, thus a forward model has to

remain calibrated through motor adaptation, and when the discrepancy between estimated

and actual sensorial feedback configures an error, this error can be used to improve the

forward model [Shadmehr et al., 2010].

Notably, [von Helmholtz, 1910] describes the adaptation effect following the use of prism

goggles, which rotate the whole field of view of a subject by a fixed angle. He demonstrated that

a subject can adapt her movements rather quickly to comply with the altered visual feedback

of space. At the start of the exposure, the subject commits errors when pointing at targets.

After an adaptation period, the subject becomes capable of compensating for the angular

displacement. Following the exposure period, an after effect is observed, in which the subject

tends to commit pointing errors to the opposite direction, quickly restoring to the correct

visuo-motor mapping.

Moreover, motor adaptations may happen even if the subject is unaware about the manipula-

tion. For instance, [Kannape and Blanke, 2012, Kannape and Blanke, 2013] shows that when

subjects are faced with an angular or temporal deviation of their gait, they tend to adjust for

this deviation without being aware of such manipulation (up to a certain threshold).
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In the experiment we present in Chapter 5, we quantify by how much we can distort the visual

feedback of a reaching movement. Relating our experiment to the concepts we discussed here,

we want to know to what extent subjects will correct their movement in order to comply with

the distortion, before becoming aware that the seen movement does not correspond with their

actual movement.
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3 Increasing the Awareness of the Vir-
tual Environment

In this chapter we discuss two approaches designed to provide increased awareness of a

controlled virtual body posture and its relation with the environment. In our scope, to be aware

means to be informed through perception about the objects, conditions and events involving

the user in the virtual environment. In the first approach we use non-planar projections as

a means to increase the Field of View in embodied Virtual Reality (Section 3.1). In practice

this requires renouncing perspective projection in favor of a non-planar one. In the second

approach we examine how first and third person perspectives could be combined in order to

sum up their advantages (Section 3.2). Namely, 1PP of a virtual body can consistently induce

the sense of ownership of the surrogate body, while 3PP can provide constant feedback of the

virtual body posture and its relation with the environment.

By exploring these approaches we expect to better understand how the sight of the virtual body

affects the sense of embodiment, virtual body/environment relation and quality of interaction.

We close the chapter with an overview of the techniques, and by pointing the one of our

preference for a more complete evaluation (presented in Chapter 4).

3.1 Non-planar Projection with HMDs

This section has been adapted from [Debarba et al., 2015b].

Even with the recent rise of affordable HMD, which brought VR back into the popular imagi-

nary while approaching the mass market, delivered FoV is still a lot inferior than the human

eye FoV. Oculus DK2, which is arguably among the most popular models offers a maximum of

≈ 106◦ FoV, even though in practice most users experience something around 90◦ as the FoV

also depends on the eye/lenses and lenses/screen distances. On the other hand, human FoV is

≈ 180◦ horizontally, and ≈ 135◦ vertically (with a downward bias). This allows us to be visually

aware of our body at all times –the fact that we have one, its posture, and its relation with the

environment–, which is not the case while using an HMD and controlling a virtual body.

We explore the use of non-planar projections to address this limitation, i.e. showing more of
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(a) (b)

(c) (d)

Figure 3.1 – Virtual environment and screenshots of tested projections. Orthogonal and
perspective views of the virtual environment used in the experiment (a). Render capture of
the left eye for Perspective (b), Equirectangular (c) and Hammer (d) projections respectively.
Notice that it is possible to see the virtual body (including the nose) with the non-planar
projections.

the virtual body and environment at the cost of altering the projection we experience in the

natural world. To assess this issue, we performed an experiment that evaluates how one feels

and performs in a selection and docking task while controlling a virtual body in a cluttered

virtual environment. Our implementation and choices of non-planar projections notably

relies on cartography, which studies means to represent the surface of the Earth over a plane.

Here we compare the regular Perspective projection ( ≈ 106◦ vertical FoV), with the Hammer

( ≈ 180◦ vert. FoV) and Equirectangular ( ≈ 180◦ vert. FoV) non-planar projections (Figure

3.1bcd). During the development phase, we tested several non-planar projections and selected

Hammer and Equirectangular, being consistent with the positive results presented in [Ardouin

et al., 2013].

Equirectangular is a cylindrical projection with the property of equidistance, while Hammer
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is an azimuthal projection with the property of equal-area. Detailed information on these

projections can be found in [Kennedy and Koop, 1994].

In order to assess whether seeing the virtual body more often increases subject’s identification

with it, we evaluate the reported sense of Embodiment with a questionnaire considering: (a)

sense of agency, i.e. feeling of control over the virtual body; and (b) sense of body ownership, i.e.

feeling that a virtual body is one’s own body. The questionnaire was based on the one presented

in [Slater et al., 2010b]. A simulation sickness questionnaire (SSQ) was also administered

[Kennedy et al., 1993]. The questionnaires we used are available in Appendix C

3.1.1 Related Work

Non-planar projection has been studied as an alternative to perspective projection in order

to increase the FoV of a camera (i.e. perspective is limited to < 180◦), and/or to keep better

proportionality for the information:rendering area ratio (i.e. large FoV perspective projection

tends to render most of the information in a small region at the center of the image). This

allows for the presentation of more environmental information with reduced effort (e.g. less

camera movements). Early works have approached non-planar projections on conventional

displays, while more recent work have also explored this matter in an HMD and augmented

reality context.

[Glaeser and Gröller, 1999] proposed the use of such mappings as an alternative to perspective

rendering when a wide FoV is required. When rendering in a desktop, they argue that the

distortions introduced to the image by a non-planar projection are less detrimental to its

comprehension than the distortion due to a wide FoV perspective projection. On a related

investigation, [Ardouin et al., 2013] evaluates how subjects perform in a navigation task for

various 360◦ non-planar projections, with the VE seen through a 22 inches screen. They

point to some advantages and favored the usage of Hammer and Equirectangular projections.

Furthermore, [Mulloni et al., 2012] explores how different panoramic images in a computer

screen affect subjects’ ability to find and correctly point to objects at their surroundings.

Closer to our context, a few studies also approached non-planar projections rendered by

HMDs. [Ardouin et al., 2012] proposed a system that delivers 360◦ of horizontal FoV to the

user. The image is captured by a camera from the top of the users head and is fed to the

HMD, providing easy and intuitive control of the point of view. However, the project is mostly

conceptual and the evaluation was solely based on user impressions. [Orlosky et al., 2014]

brings a deeper study using a pair of cameras and 233◦ fisheye lenses to evaluate perception

of objects in the periphery of vision.

To the best of our knowledge, no past work explored the use of non-planar projections in an

immersive VR setup and from the perspective of embodied interaction.
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3.1.2 Materials and Methods

Projection Implementation

The experiment was developed with the Unity game engine. To obtain the non-planar projec-

tion images, we render a 360◦ image using six 90◦ perspective cameras. We then map the 6

rendered images into a high density cube mesh. This cube mesh is then transformed into a

sphere by normalizing the length of vectors formed by each vertex relative to the center of mass

of the whole mesh. Finally, the resulting spherical mesh is transformed into a plane with a

cartographic projection equation (latitude and longitude coordinates into x and y coordinates).

This approach is similar to the one employed by [Bourke, 2009] to project over a hemispherical

surface.

Virtual Environment and Task

The VE consisted of a chair, on which the virtual body is seated. Additionally, a pair of two levels

shelves were placed along each side of the chair, where targets could appear at 6 predefined

positions (2 targets within and 4 beyond a 90◦ FoV while looking forward). The target has the

shape of a tennis ball with 6.7 cm diameter. An additional docking volume is shown in front

of the virtual body, it has the same size as the targets and is rendered with transparency. An

overviews of the VE is shown in Figure 3.1a.

The task consisted of reaching and docking targets with the dominant hand (as indicated

by the subject), in each trial: a target appears; the subject searches for it; then (s)he moves

the end effector in order to intersect the target; (s)he selects the target by holding a trigger

button and translates it toward the semi-transparent docking volume; finally, (s)he releases

the target by releasing the trigger button; the next target appears. Subjects were asked to

perform the task as fast and accurately as they could. There were a total of 6 different targets,

which were repeated 4 times each, for a total of 24 trials per block. Subjects performed a block

for each tested projection, yielding a total of 3 blocks. If no interpenetration between target

and docking volume occurs (i.e. docking error bigger than 6.7 cm), the trial is marked as failed

and has to be repeated by the end of the block.

Tracking and Motion

A PhaseSpace ImpulseX2 with 14 cameras is used to track the position of 4 LED markers

attached to hands and elbows. To retrieve hands orientation and allow for input selection,

a pair of PS Move controllers are used. They communicate with a Playstation 3, which uses

the software Move.me to stream the controllers data to our program. The arms of the virtual

body are driven by inverse kinematics, which defines a posture relying on the 6 degrees of

freedom of the tracked hands as well as the position of the tracked elbows. LED markers were

also added to the chair for a calibration step (match real and virtual chairs). The subjects were

asked (and assumed) to keep their posture and avoid moving trunk and legs – a predefined
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seated posture is applied to the virtual body for these body parts. For the experiment, a gender

matching virtual body was used, and its height was scaled to match the height of the subject.

An Oculus DK 2 is used as display, the Oculus also provides drift-free orientation based on its

inertial sensors and optical tracking. This orientation is used to rotate the virtual camera and

the head of the virtual body. No position tracking was used, thus the point of view rotated

around a predefined pivot position in the virtual body neck. The setup is shown in Figure 3.2.

Figure 3.2 – Overview of the system setup. An Oculus DK2 HMD was used as display, and
to track head orientation. Optical markers were used for position tracking, while a pair of
PSmove controllers were used to track hand orientation and to acquire the target.

Experiment Design

The experiment followed a within-subject design with random projection order. A total of

6 subjects aged from 17 to 25 participated on the experiment (1 female). Projection was the

main factor to be controlled. Target position was also treated as a factor for the time related

responses.

3.1.3 Results

Time and precision: we consider reach time (RT) – time until the selection of a target –, dock

time (DT) – time from selection to dock –, dock error (DE) – error in cm between predefined

docking position and actually docked position. These values are computed by taking the

median of the successful trials for each combination of subject, target position (except for

DE) and projection. Subject 2 had difficulty to adapt to the non-planar projections and is not

considered for RT, DT and DE analyses. Subject 2 had to perform 104 trials to successfully dock

a total of 48 targets (i.e. docking error of less than 6.7 cm) for Equirectangular and Hammer

projections together. Other subjects had to repeat a maximum of 4 trials during the whole

experiment.
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Figure 3.3 – Non-planar projections performance results. Time to reach (left) and dock (cen-
ter) in seconds, and docking precision (right) in centimeters. Reach time with non-planar
projections was significantly shorter for most of the lateral targets. Perspective presented time
advantage for docking , as well as smaller docking error. Error bars indicates the estimated
standard deviation. Significance results were computed with Tukey HSD test. ’∗’, ’∗∗’ and
’∗∗∗’ indicates p < .05, p < .01 and p < .001 respectively.

For RT and DT, statistical analysis was carried with two-way ANOVA with projection and target

position as independent variables. RT presented an interaction between projection an target

position (F (10,40) = 3.9, p < 0.001), indicating a trade-off for these factors. For DT only target

position yield a significant difference (F (5,20) = 6.848, p < 0.001). We further analyzed the

effect of projection to RT and DT per target position using Tukey HSD test. For DT, difference

was significant for one of the frontal targets in favor of Perspective as compared to Hammer.

For RT, the difference was significant for 3 of the lateral targets in favor of Equirectangular as

compared to Perspective, and for 2 of the latter targets in favor of Hammer as compared to

Perspective (details presented in Figure 3.3). Further analysis with Tukey HSD to the mean

head movement per trial (in radians) shows that subjects performed significantly less head

turns with Equirectangular (M = .57 SD = .11) and Hammer (M = .69 SD = .16) projections

as compared to Perspective (M = .83 SD = .10, with p < .001 and p < .011 respectively).

Suggesting that subjects took advantage of the increased FoV, which in turn led to a decrease

in search time.

To analyze DE we used Tukey HSD corrected for multiple comparisons with projection as the

only independent variable, which has shown that Perspective performed significantly better

than Hammer. Figure 3.3 shows the RT, DT and DE means and standard deviations for each

projection.

Collisions with environment: we assess subjects’ understanding of the environment and its

relation with the virtual body by considering the mean of collisions per trial (MCol) between

virtual body and shelves while performing the task. We compute MCol for the arms (upper

arm and forearm), hands, and arms/hands together. If simultaneous collisions happens,

only one collision is considered. Analysis was carried with Wilcoxon signed rank test with
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Figure 3.4 – Collisions of the body with shelves per subject. Everyone but subject 3 presented
less body/shelves collisions while using perspective projection.

Holm-Bonferroni correction. The increase in collisions with Hammer and Equirectangular

projections were not statistically significant when compared to Perspective projection (p =
0.059 for corrected α = .0167 and p = .156 for corrected α = .025 respectively). MCol per

subject for each projection is shown in Figure 3.4.

Figure 3.5 – Reported sense of agency and sense of body ownership, and simulation sickness
questionnaire results.

Sense of embodiment: we assess the senses of Agency (AG) and Body Ownership (BO) with

a questionnaire. Agency score is the mean of 3 questions, whether the subject felt: to be

in control of the VB, not to be in control of the VB, and the VB was responsive to his/her

movements. Ownership score is the mean of 3 questions, whether the subject felt: that the

VB was his/her body; that the VB was not his/her body; to be wearing VB clothes. Negative

questions had their score inverted before taking the mean score.

Statistical analysis was carried with Wilcoxon signed-rank test and Holm-Bonferroni correc-

tion. No significant difference was found for both agency and ownership (smaller p-value at

p = .134 for corrected α= .0167). As the virtual body could be seen the whole time, we were

expecting an increase with non-planar projections. However, these results suggest that the

non-planar projections had no consistent effect to the reported sense of embodiment (Figure
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3.5).

Cybersickness: was assessed with the simulation sickness questionnaire (SSQ). The mean score

for Equirectangular, Hammer and Perspective projections were 1.83, 1.67 and 1.5 respectively

(Fig 3.5). No statistically significant difference was found with Wilcoxon signed-rank test and

Holm-Bonferroni correction (smaller p-value at p = .572 for corrected α= .0167).

3.1.4 Discussion

On the one hand, our results indicate that the large FoV non-planar projections may increase

reaching performance when interacting with targets beyond the perspective FoV, leading

to less head rotations. On the other hand, the time needed to dock as well as the docking

precision were reduced, even though the difference was not always statistically significant.

Additionally, the amount of collisions between the virtual body and environment obstacles

have increased with the non-planar projections. Although the difference was not significant,

we expected that the visual feedback of the body would improve subject’s perception of the

virtual body/environment relation, which was not the case. Even with the reduced FoV, the

spatial model [Tversky, 1993] that one creates in perspective projection seems to be more

effective than the more constant – but distorted – visual feedback that the large FoV non-

planar projections provide. This did not prevent subjects from succeeding in the proposed

experiment, but may point a poor translation of structural visual information into movement

planning, such as observed by the usage of a prism glasses [von Helmholtz, 1910]. Alternatively,

the distorted feedback may negatively affect the recalibration of proprioception by integrating

sensorial input into inaccurate postural information.

Finally, the non-planar projections were not detrimental to the reported senses of agency and

of body ownership. They also did not elicited significantly stronger cybersickness as compared

to Perspective projection.

We were initially expecting to find differences between Hammer and Equirectangular projec-

tions. More specifically, we had the expectation that Equirectangular projection would provide

more accurate structural information, given that it preserves some straight lines (Figure 3.1c).

Such information could be useful to prevent collisions and increase docking precision. As

both non-planar projections presented very similar performance, this hypothesis could not be

verified. As a matter of fact, our results are in line with [Ardouin et al., 2013], in which naviga-

tion performance and subjective evaluation ranked Equirectangular and Hammer projections

to be very close as compared to the other projections the authors have tested.

Furthermore, there are other basic 3D user interaction tasks that should be considered in

the future, such as navigation and finer manipulation. It might be the case that non-planar

projections are less suitable for fine manipulation of objects (e.g. involving the fingers). In

addition, SSQ scores may be altered in a navigation task, given that change in visual flow

promoted by non-planar projections would be coupled with additional forms of movement.
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Finally, we point to the fact that subjects only used each projection for 2 to 5 minutes in our

experiment. A long term adaptation might play a strong role on performance, and no related

work explored this venue yet.

3.2 Combining 1PP and 3PP

Part of this section has been adapted from [Debarba et al., 2013].

In this section we build an argument in favor of combining 1PP and 3PP. We emphasize

how this could bring together the desirable characteristics we exposed in the introduction

chapter, namely, strong sense of embodiment and awareness of the virtual body posture

and its relation with the virtual environment. We propose and discuss a design space of

perspective combinations. The evaluation of our favored perspective combination interface is

later presented in section 4.3.

Carefully designed third person perspective (3PP) is often used in games to convey information

about user surroundings [Maupu et al., 2009, Taylor, 2002], information that otherwise would

not be observed in first person perspective (1PP) due to the narrow field of view (FOV) of

regular screens. On the contrary, the human horizontal FOV is close to 180◦, hence allowing

us to easily spot events involving our body. Immersive displays such as the CAVE or head

mounted displays (HMD) may reduce the pointed visual issue for 1PP, but VR is still limited

when rendering information to other senses involved on full-body interaction. For example,

haptic displays may be mature for interaction with probes and even hands, but are still unable

to provide realistic full-body haptic rendering.

Nevertheless, full-body interaction became recently accessible with the advent of Kinect.

Notably, full-body interaction games tended to adopt the 3PP instead of 1PP view of the

controlled avatar, demonstrating user’s need for continuous feedback of the character pose

and of its relation with the environment. Many factors yield the use of 3PP visualization for

full-body interaction in ordinary video game setups: the narrow FOV of a common screen; the

latency of the tracking system; the mismatch in scale, position, orientation and articulation

model between real and virtual body, limbs and joints. On the other hand, all these limitations

do not prevent users from performing the desired pose and successfully interacting with the

environment when using the 3PP. This exalts 3PP potential to convey body posture awareness.

Therefore, we propose to combine 1PP and 3PP, taking advantage of their qualities in order

to complement each other. With 1PP users can experience stronger sense of embodiment

towards the avatar [Blanke, 2012, Havranek et al., 2012, Petkova et al., 2011, Slater et al., 2010b].

On the other hand, with the 3PP users can be constantly aware of the virtual body pose [Maupu

et al., 2009] and its relation with surrounding VE [Boulic et al., 2010, Taylor, 2002].

With respect to our needs, we argue that the best combination is to use the 1PP as the main

viewpoint, and to augment it with 3PP. This approach supports the aforementioned advantages
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of each perspective, which are deeply linked to the general goal of this thesis.

3.2.1 Related Work

There are several studies employing multiple viewports for to visualize/navigate/interact

in/with VE [Stoakley et al., 1995, Schmalstieg and Schaufler, 1999, Kiyokawa and Takemura,

2005, Hirose et al., 2006, Wang et al., 2011]. However, only one addresses the issue of embodied

interaction and body relation with the environment [Salamin et al., 2008]. Additionally, a

perspective comparison paper also speculate on this possibility [Maupu et al., 2009].

A classical approach is the worlds in miniatures [Stoakley et al., 1995], which augments the

1PP visualization of a VE using a dynamic viewpoint for the overview and manipulation of the

VE. [Schmalstieg and Schaufler, 1999] proposed SEAMS, which allows the user to observe and

move to different scenes, it conceptually seams worlds together through viewports. [Kiyokawa

and Takemura, 2005, Hirose et al., 2006] proposed a multi-viewport system for navigation

and manipulation of remote objects, simultaneous viewports are used to visualize and to give

interactive access to content that may be in another VE or out of users visual reach. [Wang

et al., 2011] proposed pop-up depth views, in which perception of a 3D cursor is enhanced by

the use of orthogonal viewports. These viewports are positioned around the cursor, and it is

proposed that they pop-up whenever cursor movement speed is below a certain threshold.

Perhaps, the setup proposed by [Salamin et al., 2008] is the closest to our proposition. It

equips a subject with a HMD and two cameras, one fixated to the HMD (1PP) and a second to

a metallic structure attached to a backpack (3PP). The image of the 3PP camera is fed to the

HMD, while the image of the 1PP camera is used to overlay the body of the subject in the 3PP

image. It is proposed that this could reduce the impact of body occlusion present in 3PP.

Additionally, [Maupu et al., 2009, Boulic et al., 2009] compare 1PP with two orthogonal 3PP

(from the left and from behind the region of interest). It assessed the performance of these

two conditions for a reaching task, suggesting the adoption of a 3PP to control the posture of a

virtual avatar and its relation with the environment. Indeed, they conclude by proposing a

combined interface that could alternate across perspectives, in which the user would be able

to switch to 3PP to adjust his avatar body posture, and return to 1PP to experience its point of

view at that given pose.

This work focuses in a yet overlooked problem. How to combine 1PP and 3PP while preserving

the sense of embodiment of the virtual body. We propose a design space to classify these

interfaces and to guide their design.

3.2.2 Design Space for Combining Perspectives

There is not an obvious single manner to combine 1PP and 3PP, in fact, the possible combina-

tions are endless, and a single setup is unlikely to generalize well across different applications.
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To address this matter, we formulate a design space for how the combination of 1PP and 3PP

could be carried (Figure 3.6). Based on this design space, we argue that one has to answer the

following design questions to define a combination proposition:

Figure 3.6 – Design space for combining 1PP and 3PP viewpoints. To design an interface one
has to decide: (i) if 1PP and 3PP will be presented simultaneously or in alternation; (ii) if one
of the perspectives will be enforced by the interface; (iii) the behavior and properties of 3PP
cameras; (iv) the number of 3PP cameras.

(i) Will 1PP and 3PP be presented simultaneously or in alternation?

In the simultaneous presentation of perspectives, we additionally have to decide how to blend

the perspectives. This could be achieved either by overlaying information of the scene or by

placing extra viewport(s). For instance, in Figure 3.7 we explore the placement of additional

viewports, associating them to real life metaphors. In the specific setup depicted, 1PP is the

main viewpoint through which a subject experience the VE, and 3PP is inserted in the scene

through viewports (See Figure 3.8). We detail this setup and its implementation in Section

3.2.3 below.

On the other hand, perspectives may be presented in an alternating manner. In this case,

one has to consider the most effective way to switch between perspectives, so that it is time

efficient and it does not disturb the VR experience (e.g. preventing interpenetration and

cybersickness). We make considerations on the design of an alternating interface in Section

3.2.4.

(ii) Will one of the perspective options be enforced over the other by the interface (e.g. be

the default mode, appear more often, etc)?

In our specific case we put high priority to the sense of embodiment, thus we tend to favor

1PP as the main point of view. This is the case for the simultaneous perspective combination

proposed in section 3.2.3. However, the alternating interface we propose does not enforce

an specific perspective, as it allows the subject to switch to what she believes to be the most

appropriate at any given moment (Section 3.2.4). Alternatively, [Salamin et al., 2008] presents

a setup in which 3PP exerts the main role, and the 1PP image is presented overlaying part of
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the user body, conveniently addressing the issue of body occlusion in 3PP.

(iii) Should the 3PP cameras have an autonomous behavior, a static placement, or be di-

rectly controlled?

While the settings of 1PP are straightforward, with a unique assumed placement (the virtual

body eyes) and a behavior expected to mimic subjects’ head movements, 3PP has no well

defined constraints. 3PP could be programmed with an autonomous behavior, such as follow-

ing the virtual body and presenting information deemed critical by the controlling algorithm,

it could also be directly mapped to be under subjects’ control, or it could be strategically

positioned to support a given task.

Based in our observations and assumed real life experience, we do suggest a couple of con-

straints to optimize the 3PP camera settings: (1) virtual/real body consistency of orientation

facilitates the mapping of oneself into a virtual body, making it less cognitively demanding to

predict the virtual body response to one’s actions. That is, if the reference frame of the subject

and the virtual body (as observed by a 3PP camera) are similar, it is easier for a subject to

project the degrees of freedom under her control into the surrogate body. We could observe

this in preliminary tests used to refine the design of experiments that follow in Chapter 4. In

the occasion a lateral 3PP of the avatar was considered, which we deemed to be unnecessary in

the experiment as it clearly affected performance; (2) favor a mirror metaphor if a 3PP camera

is facing the user, taking advantage of our skill to control the posture of our body reflection in

a mirror.

(iv)How many 3PP viewpoints should be used?

In most cases we believe that one 3PP camera might be sufficient. For instance, we might

experience an expressive increase in complexity of interaction and attention dispersion if a

complex behavior or direct user control are used to set the parameters of multiple cameras.

However, additional 3PP cameras might be relevant if the 3PP cameras are static, or if multiple

orthogonal views are adopted (e.g. to increase comprehension of space), such as in previously

discussed related work [Maupu et al., 2009, Wang et al., 2011].

As mentioned earlier, we have designed and implemented two interfaces combining 1PP

and 3PP. The first presents 1PP and 3PP simultaneously, while the second alternates between

perspectives.

3.2.3 Design 1: Simultaneous Perspective Interface

In this interface we enforce the usage of 1PP, and adopt multiple static 3PP cameras, which

are presented in viewports. We explored different metaphors to insert and manipulate these

viewports: augmented reality glasses (Figure 3.7a); trunk attached (Figure 3.7b); virtual tablet
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(Figure 3.7c); and floating balloon (Figure 3.7d).

Figure 3.7 – Possible placement of viewports. If multiple viewports are preferred, one has to
decide where they should be included. Here we present possible arrangements for viewports,
in this figure the user takes a 1PP view of the world, which is augmented by 3PP viewports
attached to specific body coordinate systems: (a) screens fixed to the head; (b) screens fixed
to the chest; (c) screen fixed to the palm; (d) screen floating above the wrist. Contrast of the
background was intentionally reduced to increase legibility.

The augmented reality glasses metaphor is uncomfortable when rendering with stereo due

to the large disparity of objects near to user’s eyes. It also partially occludes the 1PP view of

the scene as it is attached to the head coordinate system. Attaching the screens to the chest

coordinate system addresses these issues. However, the latter is inconvenient if the FoV is

narrow, which is the case of HMDs and shutter glasses in a CAVE. The virtual tablet metaphor

attaches the 3PP screen to the palm, to see the screen the palm has to be shown to the 1PP

camera, what may lead to a conflict if the user wants to use that hand to interact. Thus we

also propose the floating balloon metaphor, which attaches the screen to the avatar wrist

and applies an offset to the vertical position of the screen, so it stands right above the wrist.

The screen orientation is defined so its normal vector always points toward the 1PP camera

(Figure 3.7d). Additionally, these hand based approaches may facilitate the attention switch of

the user as the screens are over/near to the main interaction tools of the user, i.e. the virtual

body hands. We implement a proof of concept, which is presented with a CAVE (Figure 3.8)
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Figure 3.8 – Proof of concept of our simultaneous perspective interface. The 3PP inserts depicts
two pairs of screens, one pair attached to the head and the other to the chest. These inserts
are highlighted with black frames.

3.2.4 Design 2: Alternating Perspective Interface

In this interface we do not enforce a perspective in particular, the user is free to alternate

between 1PP and 3PP whenever they decide to. We also adopt a single 3PP camera which is

fully controlled by the user. More specifically, it rotates and translates identically to the 1PP

camera, but is defined with 120 cm offset (see Figure 4.1).

The alternation of perspectives requires the implementation of a transition phase. We carefully

designed one with the priority of preventing cybersickness. Cybersickness is mainly attributed

to sensorial mismatch of vestibular and visual systems [LaViola Jr, 2000], i.e. when visual

movement is present in the lack of its vestibular counterpart or the inability to anticipate a

visual flow. To address the latter, we let the users trigger when the transition would occur, thus

allowing them to anticipate the mismatch. The former is discussed below.

We then considered three different perspective transition approaches. The first followed a

parametric curve trajectory with acceleration and deceleration phases. It lasted for 1 second

and was intended to avoid interpenetration of the virtual body and virtual camera, known

to be detrimental to the VR experience [Burns et al., 2006]. This approach was however not

efficient as it required a long trajectory and continuous changes in the direction of movement

(in order to dodge the virtual head). Moreover, this design often gave the false impression

of real movement to the users, in preliminary tests we observed that some of them would

even try to compensate for the movement, risking to lose balance. The second alternative

was teleportation, it had the advantage of avoiding translation. However, teleportation is also

known to cause disorientation [Bowman et al., 1997], affecting user’s ability to immediately

resume a task on the new point of view. Finally, we opted in favor of a very fast straight line

movement. The movement only lasts for 200 ms, and the vision is slightly blurred. The short
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length and blurred image made it unlikely that the user could perceive the virtual camera and

body interpenetration. In the experiment presented in Section 4.3, this transition allowed

subjects to quickly resume their actions in the new point of view, and none of them reported

feeling sickness with the fast transition. Figure 3.9 presents screenshots of this transition.

We also found support to this implementation in [Lopez et al., 2014]. There the authors com-

pared different camera movement metaphors in order to exchange the avatar being controlled.

They found that subjects generally prefer simpler straight movements or teleportation in the

transition, rejecting complex curved movements.

Figure 3.9 – Screenshots of perspective alternation. If the alternation between 1PP and 3PP is
preferred, one has to decide how the transition will occur, and how it gets triggered. In the
top, the red line shows a trajectory that avoid interpenetration, which was the first we have
tried, the blue line shows the trajectory we preferred. In the bottom, a very quick and straight
movement (b) is used to move from 1PP (a), to 3PP (c). This method has been tested in Section
4.3.

3.2.5 Discussion

In this section we have proposed a design space for interfaces seeking to combine 1PP and

3PP in a single visualization pipeline. To simplify its usage, we defined it in 4 design decisions:

modality (simultaneous or in alternation); priority (1PP, 3PP, or not enforced); number of 3PP

cameras; 3PP cameras behavior. In Table 3.1 we list the designs we implemented with those

we found in literature according to the design space we propose.
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Table 3.1 – Classification according to the proposed design space. (* originally a desktop
interface / not a full-body interface.)

interface modality priority # of 3PP cameras 3PP behavior

Design 1 (Sec. 3.2.3) simultaneous 1PP 1+ static

Design 2 (Sec. 3.2.4) alternating not enforced 1 head linked

[Maupu et al., 2009] alternating not enforced 2 orthogonal static

[Salamin et al., 2008] simultaneous 3PP 1 trunk attached

[Hirose et al., 2006]* simultaneous 1PP unlimited static

[Wang et al., 2011]* simultaneous 1PP 2 cursor attached

[Stoakley et al., 1995]* simultaneous 1PP 1 user controlled

We believe that the combination of perspectives may be applied for learning and evaluation of

body postures, such as dance steps, martial arts, physiotherapeutic exercises, and preparatory

training for dangerous situations. Further adding to research on physical action learning

with VR, such as the study by [Bailenson et al., 2008] which shows subjects’ preference for

using stereoscopic rendering and a 3PP representation of the user and instructor (prerecorded

animation) side by side. The non VR condition used a monoscopic view of the instructor alone

(i.e. video lesson).

Although we perform no formal experiment to compare our interface design propositions,

it became clear that the attention switch required in the simultaneous setup was time con-

suming, and that the learning curve was steeper than the alternating design. On the other

hand, the alternating design presents less visual load to the subject, provide control of the 3PP

camera without requiring much effort from the user, and might be easier to adapt to different

tasks and applications. Thus, we would generally recommend the latter.

3.3 Synthesis and conclusion

In this chapter we explored two approaches to provide users with increased awareness of a

controlled virtual body:

In the first approach we implement non-planar projections as a means to increase the FOV.

We performed a short experiment where subjects wore a HMD and were instructed to perform

a selection and docking task while using either Perspective ( ≈ 106◦ vertical FoV), Hammer

or Equirectangular ( ≈ 180◦ vertical FoV for both) projection. Our results demonstrate some

advantages, such as the reduction in search time. Other aspects, such as the simulation

sickness and the sense of embodiment questionnaires seem not to be affected by the change

in projection method. On the other hand, quality of interaction seems to be consistently lower,

with increased time to dock and reduced docking precision. Finally, the spatial understanding

of the virtual body/environment relation seems impaired as all but one subject presented an
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increase in the mean collisions per trial with the non-planar projections.

In the second approach we propose a design space for combining 1PP and 3PP in a single

visualization pipeline. By combining perspectives we expect to be able to take advantage of

their individual strengths. Namely, 1PP of a virtual body is known to consistently induce the

sense of ownership of the surrogate body, while 3PP can provide constant feedback of the

virtual body posture and its relation with the environment. We explored a couple of setups

based in this design space, from which we chose a design that allows the subject to alternate

between 1PP to 3PP at will.

Given that the performance gain of an increased FoV was limited, we believe that non-planar

projections could be used for quick inspection of the environment. In such scenario, the

user would switch from perspective to a non-planar projection and back as an alternative to

rotating the head. This could allow for the efficient gathering of the structural information of

the environment, as demonstrated in our time to reach results, and would be much like the

alternating perspective interface that we propose in the second part of this chapter.

Taken together, we still expect the 1PP/3PP alternating perspective solution to fit better to our

needs. It is simple to use, and provides more information about virtual body/environment

than the increase in FoV offered by the non-planar projection. Thus we test that approach in

terms of the sense of embodiment in Chapter 4.

Regarding the display modality, we decided to use an HMD instead of a CAVE for the remaining

of this work. Indeed, the HMD is convenient as it occludes the real body from the user’s field

of view. Analogously to the rubber hand illusion, in which the illusion is not effective if the

real hand is not occluded, seeing the own body while in a CAVE might anchor the perception

of the self to the real body. Additionally, the movement distortion experiments presented in

Chapter 5 can only be effective if the subject is not visually aware of their own body posture.
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In this chapter we present two experiments, both of which explore factors that influence the

sense of embodiment over a virtual body. In particular, we manipulate the point of view,

confronting first and third person perspectives (1PP and 3PP), and visuomotor contingencies

that relate the body of the subject to the virtual body.

Literature with respect to the sense of ownership and self-location of a virtual body seen

from 3PP shows seemingly discordant voices. On the one hand, a series of experiments have

suggested that 3PP may prevent or severely reduce the sense of ownership of a virtual body

[Slater et al., 2010b, Petkova et al., 2011, Maselli and Slater, 2013, Pomés and Slater, 2013],

which seems to happen as soon as the point of view ceases to overlap with the fake body

[Maselli and Slater, 2014]. On the other hand, other experiments suggest a positive response

[Lenggenhager et al., 2007, Lenggenhager et al., 2009, Aspell et al., 2009]. Moreover, [Noel

et al., 2015] has recently shown that the full body illusion from 3PP causes alterations to the

peripersonal space (i.e. the space within immediate reach of one’s body parts), which drifts in

the direction of the seen body.

With these experiments we expect to clarify the role of visuomotor congruency of the whole

body to the sense of embodiment, with special attention to the case of 3PP.

Both experiments have a condition of high embodiment compatibility, in which the virtual

body was seen from 1PP and responded to subject’s movements. Alternatively, perspective

could be set to 3PP, and two distinct visuomotor discrepancies have been explored. In the first

experiment we introduce a 1 second delay between the performed and seen body movements,

while in the second experiment we use pre-recorded motion data to animate the virtual body,

thus not accounting for the movements of the subject. In the second experiment we add a

passive haptics device to deliver visuo-motor-tactile congruence, and introduce a perspective

condition in which the subject is able to switch between 1PP and 3PP at will. The detailed

discussion of this condition has been presented in Section3.2.
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4.1 Related Work

3PP is often employed in non-immersive virtual environments such as video games to increase

awareness of the environment and threats to the player [Taylor, 2002], thus overcoming field

of view limitations of 1PP. In VR, the usage of orthogonal third person viewpoints has been

explored and was for instance recommended to help setting the posture of a motion controlled

virtual body [Maupu et al., 2009]. The use of 3PP is also recommended to compensate for the

compression of distance perception inherent to immersion systems such as large stereoscopic

projection. This was demonstrated in a VR basketball application in which motor behavior

were closer to reality in 3PP than in 1PP (speed at moment of release closer to real throw

than in 1PP) [Covaci et al., 2014]. Moreover, using an HMD setup [Salamin et al., 2010] has

shown that a short training is sufficient for subjects to perform distance estimation in 1PP

and 3PP with similar precision. The question is therefore to know if these benefits of 3PP can

be exploited without detrimental consequences to the sense of presence and the ability to

embody a virtual body.

The illusory ownership of a whole body seen from outside has been demonstrated by [Lenggen-

hager et al., 2007]. In that experiment, the synchronous stroking at matching locations of the

back of the subject and his/her virtual representation (video or mannequin) led subjects to

feel that they were located in the . It is argued, analogously to the rubber hand illusion, that

the integration of congruent multisensory information could lead to the sense of ownership of

a body seen in extra-personal space.

The question of perspective has been further explored in VR. [Slater et al., 2010b] performs

an experiment involving visuotactile congruence and perspective. They suggest that 1PP is a

critical factor for the ownership of a body transfer illusion, contrasting previous studies that

suggest visuotactile synchrony to be the critical contributory factor to the ownership illusion.

Closer to the aspects we explore here, [Pomés and Slater, 2013] presents a setup in which a

virtual body is seen from behind. Congruent or incongruent visuotactile stimulation could be

applied, and the subject could control the movements of the virtual body arms. No effect of

visuotactile congruency has been found, and the ownership scores were generally low.

While we agree that perspective might have a significant impact to the sense of ownership,

we sough to couple it with full body control, adding a new dimension to this subject. We also

highlight that the animation algorithms used in [Pomés and Slater, 2013] could only animate a

few degrees of freedom, thus being simpler than the ones we use here.

4.2 Experiment 1: Perspective and Visuo-motor Synchrony

This section has been adapted from [Debarba et al., 2015a].

Using an experimental paradigm based on full-body visuomotor synchronous mapping (the
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coherent replication of one’s real body by a virtual body), we studied the effect of perspective

(1PP vs. 3PP) and synchrony (movement delay) on the sense of embodiment as well as on the

performance in a reaching task. We assessed subjective reports of the sense of agency, sense

of body ownership and self-location, which relate to the sense of embodiment [Kilteni et al.,

2012a]. This allowed studying how full body visuomotor synchrony is effective in inducing

embodiment with respect to perspective, and in measuring the performance trade-offs for

performing a reaching task with a 3PP viewpoint.

4.2.1 Materials and Methods

Equipment

A Phasespace Impulse X2 was used for motion capture; 10 cameras were used to track 38

markers attached to a motion capture suit and to the HMD. Data were acquired at a frequency

of 60Hz. An Oculus DK1 was used to display images at a resolution of 640 x 800 pixels per eye.

Its inertial sensors were used to obtain instantaneous head orientation, which was corrected

for drift around the vertical axis using the attached optical markers (other axis of rotation do

not drift). Figure 4.2b shows a subject wearing the suit and HMD. The integrated HMD sensors

were used because they offer shorter latency than the optical markers.

Posture reconstruction: Full body motion capture was performed in real time. To account for

body size variability, a calibration step was performed based on a standard posture (T-stance)

that subjects were asked to perform. Lower and upper body of the virtual body were adjusted

in scale, followed by arm adjustments. Finally, orientations of limbs, trunk and head were

adjusted to closely match those of the subjects. A new iteration was performed if required.

This calibration allowed for a close match of real and virtual bodies, and known limitations

(e.g. incorrect arm and forearm proportions) were minimal thanks to the subjects’ recruiting

criteria. To animate the virtual body we used an in-house analytic IK implementation which

reinforces co-location of tracked markers and end effectors positions [Molla and Boulic,

2013]. Fingers were not animated and were kept in a neutral pose. Discontinuities of posture

reconstruction could occasionally occur during motion capture if the position of a marker

became unknown – limitations of the optical tracking equipment – and we limited the visual

consequence to the drop of one animation frame (less continuous movement). This occurred

rarely during our experiment, only in case of very fast reaching movements (system could

momentarily lose track of the marker) or self-occlusion.

Virtual environment: The subject stood over a flat plane, in which we avoided presentation

of any potential spatial cues. A unique neutral and not textured virtual body was used for all

subjects. Shadows from a parallel light source were projected in the ground right in front of

the virtual body.
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Figure 4.1 – 3PP camera behavior. The 3PP camera was set using a 120 cm offset relative to the
1PP position. The offset position was also used as its center of rotation.

Experiment Design

For this experiment, subjects wearing motion capture sensors and HMD (Figure 4.2a-c) were

asked to touch virtual targets that popped-up at a set of predefined positions within a hemi-

sphere aligned with their virtual body (Figure 4.2d). The order of the targets was shuffled.

This task was repeated for combinations of 1PP and 3PP (Figures 4.2a and 4.2b respectively)

in synchronous and asynchronous visuomotor condition (1 second of delay to the motion

capture data). The experiment followed a within subject factorial design with the factors

perspective (1PP/3PP) and synchrony (Sync/Async). Each factor combination was repeated 3

times, for a total of 12 blocks per subject. A subject went through all the blocks of a perspective

condition before switching to the other. The perspective presentation order was counterbal-

anced per subject, while the presentation order of the 6 blocks (3 Sync and 3 Async) within

each perspective condition was randomized.

Implementation

Perspectives: 1PP – markers attached to the Oculus were used to place the virtual camera as

close as possible to the subject eyes position. Rotation and translation were computed from

those markers and from the inertial sensors in the Oculus; 3PP – the only difference with

1PP was an offset of 120cm backwards (behind the avatar). Translation and rotation were

centered at that point (Figure 4.1). Figure 4.2ab shows how the subject sees the body and

virtual environment in 1PP and 3PP respectively.

During preliminary tests we have also considered other 3PP camera settings, such as observing

the virtual body from a lateral point of view. However, this conception clearly affected the

perception of space, and consequently the reaching task performance. Moreover, further

evidence on cognitive neuroscience suggests that misalignment of orientation affects the

sense of ownership of the virtual body. [Blanke et al., 2015] proposes that the orientation

match of real and surrogate bodies is a constraint to successfully manipulate bodily self-

consciousness. The rationale being that the incongruent orientation results in proprioceptive

and vestibular discrepancies, thus reducing the multisensory channels that drive this illusion.
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(a) (b)

(c) (d)

Figure 4.2 – Overview of perspective conditions and setup. (a-c) The subject was equipped
with an HMD and a motion capture suit containing 37 LED markers. (ab) Illustrates a subject
performing the reaching task in 1PP and 3PP. (c) Targets could be acquired with any body part.
(d) Targets were arranged on 16 pre-defined positions laying in the surface of a sphere, they
were presented in a randomly shuffled order. The image projected in the screen (a-c) shows
what the user is currently looking at and only serve illustrative purposes.

Synchrony: Sync – motion capture and camera translation and rotation in real time; Async – 1

second delay of motion capture and cameras translation, camera rotations were kept in real

time to prevent cybersickness.

Task: Target reaching with 16 predefined positions. Targets were spread over the surface of a

sphere segment of 80cm radius, centered at x = 0, y = 1.2m and z = 0 (with positive y pointing

up). Targets were represented as spheres of 10cm radius. After each reach, the subject had to

return beyond a line in the floor, oriented along the lateral axis. The next target appeared 1

second after assuming the aforementioned position.
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Table 4.1 – Questionnaire and results. Answers were given in a visual analog scale (VAS)
ranging from 0 to 100. Median, interquartile (IQR) and p-values (Wilcoxon Signed-Rank
test) for synchrony and perspective factors are presented. Results per groups (perspective
presentation order: 1PP-3PP and 3PP-1PP) are also shown.

Procedure

Each block consisted of 90 seconds of VR exposure during which subjects were standing

and performed several reaching movements using any part of their body. After each block,

subjects were guided to a desktop computer and were asked to remove the HMD and to fill-in

the questionnaire using a regular mouse. Questions were presented in white over a black

background. The subjects were allowed to sit and rest between blocks, and were informed

about how many blocks were left.

The questionnaire was adapted from [Lenggenhager et al., 2007, Tsakiris et al., 2010] to esti-

mate subjective sense of agency (Q1), sense of body ownership (Q2) and self-location (Q3).

Q4 asked whether the subject felt to have two bodies (control). A Visual Analogue Scale (VAS)

was used to record answers ranging from “disagree” to “agree” (100%). The questionnaire is

presented in Table 4.1.

Recruiting

In order to minimize variations on the motion capture stability and visual experience over

subjects, we established four recruitment criteria: male gender; ability to focus on infinity

without glasses or using corrective lenses bundled with Oculus HMD; height between 170 cm

and 185 cm; body mass index (BMI) between 18 and 23.

A total of 16 subjects participated to this study (ages from 21 to 31, mean of 26, all right

handed). They were recruited through an online call in the university and were paid 20 CHF

per hour of their time. The experiment took between 70 to 110 minutes, depending on the

setup time (calibration and adjustments). This experiment was approved by the Commission

cantonale d’éthique de la recherche sur l’être humain in Vaud, Switzerland. Subjects signed a

consent form and were paid 20 CHF/hour for their participation.
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Figure 4.3 – Criteria defining the two stages of a reaching. MTS2 is measured from the last
cross of 50% of the distance between initial position of the limb and target position, MTS1 is
computed as MT - MTS2. The black dotted line represents the initial distance between used
end effector and target. The curved line represents a hypothetical reaching trajectory.

Dependent Variables

The dependent variables are; reported sense of Agency (Agc), sense of Body Ownership (BOwn),

Self-Location (SLoc), Mean Time to reach (MT), and End Effector choice (EE). Agc, BOwn and

SLoc were measured through questions Q1, Q2 and Q3 respectively.

MT represents the mean time each subject took to reach a specific target out of the 16 possible

targets (Figure 4.2a), and is relevant only for the synchronous condition. For analysis, it is

split in two stages, the early one accounts mostly for visual search and movement initiation

(MTS1) and the late one accounts for movement completion and target hit (MTS2). MTS2

is measured from the last cross of 50% of the distance between initial position of the limb

and target position, MTS1 is computed as MT - MTS2 (4.3). As the typical velocity profile of a

reaching movement tends to be symmetrical and to resemble a normal distribution [Sciutti

et al., 2012], this splitting criteria allows dividing the movement where it is more likely to reach

its maximum velocity. This is also where it is less likely that information expected to be part of

MTS1 would affect MTS2, and vice versa.

Finally, the end effector preference ratio (EE) describes the preferred limb used for selection

per given target. It is measured as the proportion of times the subject used a given limb over

the total number of reaching movements he performed for that target.

Hypotheses

We identified five hypothesis that our experimental manipulation allows to investigate.

H1: The synchrony of avatar movement influences the sense of embodiment and each of
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its component : Agc (H1.1), BOwn (H1.2) and SLoc (H1.3). This indicates whether full body

visuomotor synchrony is a factor influencing the components of embodiment.

H2: The perspective factor influences the sense of embodiment and each of its component

: Agc (H2.1), BOwn (H2.2) and SLoc (H2.3). This indicates whether perspective is a factor

influencing the components of embodiment.

H3: Agency is an enabling factor for body ownership and self-location. Observing a correlation

between the reported Agc with BOwn (H3.1) and SLoc (H3.2) indicates whether the sense of

agency for the avatar’s movement is linked to other components of embodiment.

H4: Time to reach targets is influenced by perspective. In particular, we expect that 3PP

presents shorter MT by reducing the required visual search time (H4.1). More specifically,

we expect MTS1 to be smaller for 3PP (H4.2), and MTS2 to be equivalent across perspective

change (H4.3). This analysis will highlight locations of targets showing an advantage for 3PP,

or conversely. We do not consider the Async trials in this question as its effect is inherently

negative.

H5: Subjects can accomplish the task in a similar manner across perspective conditions.

This is assessed through variations of preferred end effector (EE) per target position across

perspective.

Analysis

Questionnaire analysis for H1 and H2 was carried out using Wilcoxon Signed-Ranks Test,

for which data were paired per subject across the combination of conditions (1PP/3PP and

Sync/Async). Spearman correlation was computed between variables for H3.

Only the data in the Sync condition was used for performance analysis of MT (H4). Our

analysis includes time to reach responses (MT, MTS1 and MTS2), and was carried out with

paired samples t-test. More specifically, we compare difference on MT, MTS1 and MTS2

between perspectives for each of the 16 possible targets. Outliers were defined based on the

interquartile distance (i.e. less than quartile of 25%−1.5∗ IQR or greater than quartile of

75%+1.5∗ IQR) per perspective × target position combination. Targets that were selected

using the trunk or the head were very few, and were removed to prevent bias. Therefore, from

the total of 1760 trials, 1627 were kept for analysis. If a data point for a given perspective and

target position combination was missing for a subject (i.e. no selection performed for that

specific combination), its pair was also removed from the analysis.

The same subset of trials was used for EE choice (H5). One-sided paired t-test was used to

compare perspectives for superior and inferior limbs, as well as left and right sides of the body

for each target position.
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Figure 4.4 – Boxplots of reported sense of agency (Q1), sense of body ownership (Q2) and
self-location (Q3). Lines represent per subject change in response across perspective; ***
means significance with p<0.001

4.2.2 Results

Differences for synchrony are significant for Agc, BOwn and SLoc (all p<0.001, Figure 4.4),

confirming H1.1, H1.2 and H1.3. Although Q4 was meant to be a control question, it also

presents a significant difference (p<0.02), but much weaker. Perspective only has significant

effect for Q4 when considering Sync condition alone (p<0.03). Differences for perspective are

not significant for Agc, BOwn nor SLoc (Figure 4.4), thus failing to reject equality for H2.1, H2.2

and H2.3. Agc responses are positively correlated with BOwn and SLoc, supporting H3.1 and

H3.2 (all p<0.01). Table 4.1 shows the Median, interquartile and p-values for the whole sample

analysis, as well as for groups (2 groups, those who started with 1PP and those who started

with 3PP). The responses to all questions except Q4 agree when statistics for unbalanced

groups are taken, which demonstrates no order effect for relevant measurements.

MT shows no global advantage for any specific perspective, but selection of targets surround-
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Figure 4.5 – Mean difference for Mean Time (MT) response. The redder, the bigger the advan-
tage of 1PP; the greener, the bigger the advantage of 3PP; p-values in red indicate significant
differences in a two-sided paired t-test for that specific target

ing the avatar show an advantage for 3PP, and selection of targets that may be occluded by the

virtual body show an advantage for 1PP. Only 6 out of the 16 ( 37%) target positions presented

statistically significant difference of MT between conditions (Figure 4.5). MTS1 follows the ten-

dency of MT, with significant differences for 10 out of 16 target positions ( 62%). MTS1 reveals

a clearer advantage of 3PP for targets that are not subject to occlusion. On the other hand,

targets that are likely to be occluded presented the biggest differences of MT and MTS1. H4.1

and H4.2 are supported when visual occlusion is unlikely, but rejected otherwise. Nonetheless,

MTS2 shows a clear disadvantage for 3PP as 8 out of 16 target positions presented statistically

significant differences supporting 1PP (50%). In addition, only 2 out of 16 targets presented

an advantage for the mean of 3PP as compared to 1PP in MTS2. Thus, providing evidence

to reject H4.3. Figure 4.6 reports MTS1, MTS2 and their differences for each perspective and

target combination.

Proportions of end effectors (EE) used for reaching are shown in Figure 4.7. They are similar

when considering distribution for superior and inferior limbs, the difference being significant

for only one target. However, lateralization seems to be unbalanced in 1PP, presumably due to

handedness (subjects were all right-handed). This lateral distribution asymmetry does not

seem to be present in 3PP. Laterality was significantly different for three targets located at the

lower left of the virtual body. Thus, H5 is confirmed when considering superior and inferior

limbs, but not entirely when considering right/left sides.

4.2.3 Discussion and Conclusion

The subjective reports of all three components of embodiment show a significant impact of

visuomotor synchrony on body ownership and self-location. This is in line with experiments
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Figure 4.6 – Mean difference for Mean Time Stage 1 and 2 (MTS1/MTS2) responses. The redder,
the bigger the advantage of 1PP; the greener, the bigger the advantage of 3PP; p-values in red
indicate significant difference in a two-sided paired t-test for that specific target.

using full-body visuomotor synchrony in virtual mirror paradigms that elicit a high sense

of ownership [González-Franco et al., 2010]. Other experiments comparing the influence

of visuomotor and visuotactile congruency on body ownership also demonstrated a strong

influence of visuomotor synchrony on multiple measures of embodiment [Kokkinara and

Slater, 2014].

Data also show that, in the context of our full-body interaction and reaching task, perspective

(1PP vs. 3PP) did not influence the subjective evaluations of embodiment. This contrasts with

some previous work where the perspective change was observed to influence ownership of

a virtual body [Slater et al., 2010b, Petkova et al., 2011, Maselli and Slater, 2013]. We suggest

three possible interpretations for that. First, the difference between 1PP and 3PP could be

present but our measures are not sensitive enough: the perspective effect could be compressed

and no longer significant as compared to the effect size of visuomotor synchrony. A second

interpretation is related to the active nature of our task, which differs from the experimental

paradigms of the eariler studies. This reaching task required a high level of involvement, a

sustained cognitive load, and potentially led to the mental state of flow [Csikszentmihalyi

and Csikszentmihalyi, 1992]. This is also observed in computer games, for which different

perspectives are all compatible with high engagement. Finally, we might face a ceiling effect

of full-body visuomotor control as compared to the influence of perspective. Even though

the sense of agency is decoupled from the sense of ownership in its neural basis [Tsakiris

et al., 2010], ownership may be strongly driven by agency when shape and proprioceptive

congruency are present [Walsh et al., 2011]. This is also partially supported by the positive

correlation observed between the sense of agency and the reported body ownership and

self-location.

Taken together, these results suggest that a 3PP can be used for immersive full-body reaching

tasks and is compatible with a high level of embodiment into the virtual body. Only the

differences in reaching behavior between 1PP and 3PP highlight some specific advantages
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Figure 4.7 – End effector (EE) of preference for each target per perspective. +/- indicates
significant difference (increase/decrease) for inferior/superior limbs and/or left/right sides of
the body (e.g. + at the left of the target indicates increased usage of left EEs in that perspective).
In 3PP laterality was enforced in contrast to handedness in 1PP.

according to the location of targets. The lower performance over the end of the movement

(MTS2) for 3PP suggests a decrease in precision, most likely due to the reduction of targets

angular size and depth cues (one may expect similar difference if smaller targets are used).

On the other hand, the absolute difference between early and late stages of movement (MTS1

and MTS2) suggests a visual search advantage for 3PP, as long as the target is not subject to

occlusion. Conversely, the comparison of the use of body parts (choosing to use upper or

lower end effectors) suggests that our subjects did not change the way they interact with the

VE. They often used the feet for lower targets in both 1PP and 3PP, suggesting that they were

comfortable in exploring the full control over the virtual body independently of perspective.

Finally, as we observe a crossing of the dominant hand towards targets on the opposite side

only in 1PP, we believe 3PP may be used to stimulate the use of the non-dominant hand

in specific applications, such as for cognitive and clinical applications (e.g. spatial neglect

rehabilitation).

Additional research would be required to disentangle the interaction between subjective

reports of embodiment and observed reaching behavior. A computational model of the

sense of embodiment based on observations of behavior would in theory be able to provide

automatic estimates of the user’s level of embodiment by analyzing movement data. But

our experiment does not show any direct link or correlation that would provide an obvious

solution. Similarly, more experimentation would be necessary to compare our results with

reaching behavior in reality. Using the appropriate perspectives could for instance compensate

for the known limitations of VR for reaching [Maupu et al., 2009], throwing [Covaci et al., 2014]

or other natural interaction movements. Evaluating the transfer of skill from VR training to the

real situation would in turn provide information on the benefit of providing subjects with a

feedback on their body and their surrounding (such as in 3PP).
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4.3 Experiment 2: Perspective and Multimodal Congruence

In this experiment we assessed the effect of congruent visuo-motor-tactile feedback (full body

control and passive haptic feedback) and perspective to the sense of embodiment of a virtual

body. We additionally investigated how subjects behave when the possibility of alternating

perspective at will is presented (see Section 3.2), and how the reported embodiment of the

surrogate body in this condition compares to 1PP and 3PP alone. Our experiment consisted of

a short series of tasks that the subject had to perform (or watch the virtual body performing),

which ended up by exposing the subject to a virtual pit threat.

4.3.1 Materials and Methods

Equipment and Software

An Oculus development kit 2 HMD was used to display a virtual scene (960 x 1080 pixels per

eye, 100deg field of view, 75 Hz). Head tracking was performed using its inertial sensors (low

latency) and corrected for drift around the vertical axis using optical tracking.

A pair of Bose® Quietcomfort 15 headphones were used for environmental noise canceling

and to provide non localized white noise, thus phonically isolating the user from the real

environment. Using a microphone, the experimenter could talk to the subjects directly

through the headphones and provide instructions throughout the experiment.

A Wii remote was used to allow the subjects to trigger when they would like to switch the

perspective in the alternating condition. The Wii controller was also been used for the mental

ball drop task (detailed later in the paper). For consistency, the avatar also held an object

similar to a Wii remote.

Galvanic skin response (GSR) was measured using a g.GSRsensor connected to a g.USBamp

amplifier (g.tec) and recorded with the OpenViBE software [Renard et al., 2010].

A Phasespace Impulse X2 optical tracking system was used for motion capture. Our Phasespace

system uses 14 cameras and 40 markers attached to a motion capture suit and to the head

mounted display. A VRPN server interfaced the capture system (updated at 240 Hz) to the

rendering engine (75Hz). Details for the animation of the virtual body are the same as in the

experiment 1 (Section 4.2.1).

A physical object and its virtual representation were used to convey congruent visuo-tactile

stimulation when walking over the pit. This manipulation is known as passive haptics, when

a seen virtual object has a physical equivalent, which is calibrated to spatially match, thus

rendering accurate tactile sensations. This device is made of wood and its dimensions are

140cm ×40cm ×10cm. Fig 4.8a shows an overview of the experimental environment and the

equipment the subject had to wear.
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Figure 4.8 – Experiment setup and scene overview. (a) The subject was fit with a motion
capture suit, an Oculus DK2, GSR sensors and a Wii remote, the image projected in the screen
shows what the user is currently looking at, and only serve illustrative purposes. (b) presents
an overview of the virtual scene.

The virtual environment was developed using Unity 3D, and was inspired by the pit room

proposed by Meehan et al. [Meehan et al., 2002]. It featured a main room and a 10m deep

virtual pit. The main room was 3.4 meter high and slightly smaller in surface than the captured

space. For each session, the pit was initially covered by a wooden floor. A wooden ramp was

located in the center of the scene. During a session run, the floor covering the pit would

eventually fall (at the command of the experimenter), revealing the pit to the subject and

leaving the virtual body standing on the wooden ramp overseeing the pit. An overview of the

virtual environment is presented in Fig 4.8b.

Experimental Design

The experiment had two manipulated variables and followed a mixed factorial design, with

multimodal congruency as the between subject variable and perspective as the within subject

variable. Response variables were determined in order to assess components of the sense of

embodiment, consisting of an embodiment questionnaire (Table 4.2), the variation of GSR

following a threat event, and a mental imagery task where the subject had to estimate the

time an imaginary ball would take to hit the ground (mental ball drop – MBD). The response

variables are detailed later in the paper.

Subjects were assigned to one of two equal sized groups. The first group performed the

experiment in a congruent visuo-motor-tactile condition (VMT group), in which subjects

could control the movement of the virtual body, had to perform a sequence of tasks and could

interact with a passive haptic device that stands in between the virtual body and the bottom of

the pit. The second group could not control the virtual body (¬VMT group), instead subjects

50



4.3. Experiment 2: Perspective and Multimodal Congruence

Figure 4.9 – Perspective conditions. The subject could experience the scene in three different
conditions: (a) first person perspective (1PP); (b) third person perspective (3PP); or be free to
alternate (ALT) between 1PP and 3PP. When in the alternate condition, subject were asked to
perform at least 3 perspective switches.

had to watch the virtual body moving as recorded from one of the subjects of the VMT group.

The only level of control that the ¬VMT group had was the rotations of the virtual camera.

This aspect was kept across groups because it is critical to prevent cybersickness. The lack of

sensorimotor feedback is expected to negatively impact the sense of embodiment of the virtual

body. As the motion recordings of the VMT group were necessary for the ¬VMT condition, we

ran all subjects of that group before proceeding to the second group.

Each subject repeated the experimental session three times, once for each perspective condi-

tion: first person perspective (1PP), third person perspective (3PP), and a novel one in which

the subject could alternate between the 1PP and 3PP at will (ALT ). In the ALT session, subjects

could decide when to trigger the perspective switch by pressing a Wii remote button with the

right thumb, they were also instructed to perform this action at least three times. Perspective

presentation order was counterbalanced.

A perspective transition took 200ms, and consisted of a quick and straight movement between

two endpoints (Fig 4.9). The endpoint defined by 1PP was the position in between the virtual

body eyes, while the endpoint referent to 3PP had a 120cm offset toward the back of the scene

(Fig 4.8) and translated relative to the 1PP endpoint (Fig 4.1). This 3PP endpoint was chosen

to prevent the point of view from standing directly over the pit as it gets revealed. That is, in

3PP the virtual body would get exposed to the pit, while the visual point of view would remain

over a safe area (the concrete floor. More details on the implementation of the ALT perspective

condition are presented in Section 3.2.4.
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Procedure

After reading the information sheet and completing the informed consent form, subjects

were asked to fill in a characterization form with questions about their background (other

experiments, experience with HMDs ...) and physical characteristics (height, weight and age).

Then the experimenter played a video demonstrating the stages of a session and subjects were

asked to wear the motion capture suit. Subjects in the VMT group had to undergo the motion

capture calibration at this point. A brief training on how the mental ball drop (MBD) task

should be performed followed, using the laboratory floor as a reference.

Finally, the experimenter helped the subject fit the HMD and the noise canceling headphones,

and tested the verbal communication through microphone. The GSR electrodes were placed

in the left hand and the wii remote in the right hand. The subject then went through an

experiment session. After the session was complete, the image on the HMD went black,

and instructions of the MBD task appeared. The task was repeated 5 times, and then the

experimenter removed the HMD and the headphones and asked the subject to fill in the

embodiment questionnaire (Table 4.2). The session procedure was repeated three times, once

per perspective condition.

After the experiment subjects filled-in a post experiment questionnaire about their perspective

of preference for different stages of the session, as well as whether they considered the floor of

the laboratory or the floor of the virtual environment during the MBD task.

This experiment was approved by the Commission cantonale d’éthique de la recherche sur

l’être humain in Vaud, Switzerland. Subjects signed a consent form and were paid 20 CHF/hour

for their participation.

Session Overview

An experimental session was divided into 4 stages: REACH, WALK, WAIT and OBSERVE. For

the VMT group the session started with a short communication to check the setup, then:

REACH : the subject had to reach 12 targets appearing around him/her (Fig 4.10a). There were

six ground and six air-targets activated one after the other in a shuffled order, and between

each target reach the subject had to place back both feet on a central target. The targets were

placed such that they were at equal distance to the central target (ground targets), and to the

chest of the participants (air targets).

WALK : a 13th target eventually lights up in front of the wooden ramp, inviting the subject to

walk from the initial position to the edge of the ramp, i.e. the passive haptic device (Fig 4.10b).

The central target and the front of the ramp were separated by 2.1 meters.

WAIT : once the subjects arrive to the end of the ramp, they were orally instructed – through

their headphones – to feel the edges of the ramp with their feet, sensing the passive haptic
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device while observing the virtual body simultaneously touching it (Fig 4.10c). During this

event the experimenter would press a button, and the floor would fall down within 1 to 5

seconds (random), with a cracking sound (Fig 4.10d).

OBSERVE: the floor fall event marked the transition to the OBSERVE stage. In this stage the

subjects were asked to read some words in the pit wall opposite to where the virtual body

stands, so that they had to face the pit.

For the ¬VMT group the virtual body was driven by the data recorded from the VMT group.

No passive haptic device was used and the subject did not have to act to complete the session.

The subject was told that the virtual body would move by itself, and that (s)he should pay

attention to what the virtual body was doing. The camera position also moved according to

the recording, but the camera rotation could still be controlled by the subject. We kept this

level of control due to its critical role preventing cybersickness [LaViola Jr, 2000]. The session

started with a short communication, and further communication followed to remind subjects

to pay attention to the virtual body, and that they could not control it (in case they tried to). To

assign the recordings to subjects in the ¬VMT group we have paired VMT and ¬VMT subjects,

the pairing was random and assured that the subjects in both groups were assigned to the

same perspective order, i.e. a ¬VMT subject that did the experiment in the 1PP, 3PP and ALT

order used the recording of a VMT subject who did the experiment in that same order. We

had to repeat some of the VMT group recordings due to a technical issues with the recording

software used for the first 5 subjects.

Response Variables

The questionnaire was designed to assess the senses of agency, ownership, self-location and

the reaction to threat. It contained 10 questions, two for each measure, plus two controls.

Questions were formulated based on related experimental protocols [Longo et al., 2008, Caspar

et al., 2015, Lenggenhager et al., 2007], and designed for 7-point likert scale answers, ranging

from “Strongly DISAGREE” (-3) to “Strongly AGREE” (+3). We use the mean of the two related

questions as the value to four response variables; Ownership, Agency, Self-location and Threat.

The questions were presented in a random order after each session.

Galvanic Skin Response: GSR was recorded to assess physiological responses to threat (floor

fall event). The threat is expected to increase arousal, affecting skin conductance. We expect a

GSR increase due to the threat, and we expect that the increase magnitude will be related with

sense of ownership. This type of measurement has been shown to be valid in stressful virtual

environments by Meehan et al. [Meehan et al., 2002], being responsive even after multiple

sessions with the same subject. On the other hand, GSR tends to present high inter-subject

variability, making it less reliable for confronting VMT and ¬VMT groups.

The electrodes were placed on the index and little fingers of the subject and the GSR was

recorded at a sampling rate of 512 observations per second. Our GSR response variable is
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Figure 4.10 – Overview of the session stages. (a) First the subject has to reach for targets that
can appear either in the air or in the floor (REACH stage); (b) a final target invites the subject
to walk to the wood platform (WALK); (c) once on the platform, the subject is asked to feel
the edges with their feet (WAIT); (d) finally, the wooden floor beneath the platform collapses,
revealing the pit to the subject (OBSERVE). Subjects in the ¬VMT group do not perform these
task, instead they watch recordings from the VMT group. The session was followed by the
mental ball drop (MBD) task and an embodiment questionnaire.

defined as the difference between the median GSR in the interval between 1 and 6 seconds

following the floor fall event, minus the median GSR in the 5 seconds preceding this event.

Median GSR was preferred because some subjects presented a response that could go beyond

the ≈ 6µS (microsiemens) recording window that our setup allowed. By using the medi an

instead of mean these subjects could be kept in the analysis.

Mental Ball Drop: MBD is a mental imagery task adapted from [Blanke and Metzinger, 2009].

In this task, the subjects estimate the time a ball would take to fall down from their hand to

the floor. This measurement was performed at the end of each session, when the virtual body

was standing on the wooden ramp at the top of the pit. It is intended to assess self-location in

reference to the pit in 1PP and in 3PP.

Before performing this task the screen turned black, and the measurement was then performed

with the subjects unaware of their surroundings. Subjects were instructed to press and hold

the trigger button of the wii remote controller to release the virtual ball, and to release the

trigger button when they estimated that the ball have reached the floor. Subjects were not

instructed about which floor they should consider (lab floor, point-of-view floor or pit floor).

It was repeated five times for each session. The median of these five trials gives the MBD time

estimation for a given subject and condition.

MBD is meant to detect whether the subject have similar time estimation in 1PP and 3PP.
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Table 4.2 – Embodiment questionnaire applied in the end of each session. Answer was given
in a 7 point likert scale ranging from strongly disagree (-3) to strongly agree (3). The variable
corresponds to the mean answer to both questions.

Response Question:
variable During the last session ...

Agency Q1 ... it felt like I was in control of the body I was seeing
Q2 ... whenever I moved my body I expected the virtual body to move
in the same way

Ownership Q3 ... I felt as if I was looking to my own body
Q4 ... it felt that the virtual body was my own body

Self-location Q5 ... it felt as if my body was located where I saw the virtual body to be
Q6 ... it seemed as if I were sensing the movement of my body in the
location where the virtual body moved

Threat Q7 ... I felt as if the pit posed a threat to myself
Q8 ... it felt as if I could get hurt if the virtual body was to fall in the pit

More bodies Q9 ... it felt as if I had more than one body

Turning virtual Q10 ... it felt as if my real body was turning virtual

Consistently shorter times in 3PP could indicate weak sense of self-location, as the subject

might be using the bottom of the pit in 1PP, and the floor under the camera in 3PP.

Reach performance: For the VMT condition only, we computed the median of the time to reach

the targets with the hand. It is meant to assess a possible difference in performance between

1PP, 3PP and ALT conditions.

ALT usage: To assess how subjects act in the ALT condition we compute the proportion of time

spent in 1PP (p.time.1PP). We also consider this variable for the different stages of a session

(REACH, WALK, WAIT and OBSERVE). We also look for correlations between p.time.1PP and

other response variables.

Analysis

For the response variables agency, ownership, self-location, threat, GSR, more bodies and

turning virtual, the analysis was carried using mixed design analysis of variance (ANOVA)

with perspective (1PP vs. 3PP vs. ALT) as a within subject factor, and multimodal congruency

(VMT vs. ¬VMT) and perspective order(p.order: 1PP-3PP-ALT vs. 1PP-ALT-3PP vs. 3PP-1PP-

ALT vs. 3PP-ALT-1PP vs. ALT-1PP-3PP vs. ALT-3PP-1PP) as between subject factors. We

included p.order to verify if the comparison of perspective levels may have affected the response

variables (i.e. does the perspective used in the prior sessions interferes with the response given

for the current session?).

The reaching performance was assessed with a two-way multiple comparisons ANOVA, with
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Target position (Ground vs. Air) and Perspective (1PP vs. 3PP vs. ALT) as the within subject

variables.

As ANOVA assumes that the residuals of the model fit will follow a normal distribution, we

tested this assumption with the Shapiro-Wilk test. If residuals are deemed not normal we

transform the response with a Box-Cox transformation yλ, which does not alter the order

of the response values (monotonic transformation). We favored a λ close to 1 in order to

minimally distort the data. The use of Box-Cox transformation is a common procedure to

improve data distribution [Box and Cox, 1964].

We conducted post-hoc analysis with pairwise t-tests and Holm-Bonferroni correction when

a significant main effect of perspective or interaction between perspective and multimodal

congruency was found. For the latter we select a subset of possible comparisons in order to

limit the correction of the alpha significance level. More specifically, we fix the value of one of

the variables, and test for the combinations of the other, and vice versa. This yields a total of 9

comparisons. We do not perform any post-hoc for significant effects related to p.order, and

simply report that a statistically significant difference has been found.

Regarding the behavior of subjects while in the ALT condition, we evaluate whether the session

stage and multimodal congruency have an effect on the choice of perspective. We also look

for correlations between p.time.1PP and other response variables.

Statistical analysis was conducted using R.

4.3.2 Results

A total of 48 subject participated on this experiment (8 females, age between 19 – 30, mean

22.6). All had normal or corrected to normal vision, normal physical and psychological

condition and did not suffer from acrophobia. For technical reasons and for optimal use of

the motion capture system, we also limited recruitment to subjects with height from 165 to

190 cm, and body mass index in the range from 18 to 27. Only 4 subjects reported having

participated in an experiment using VR in the past, while 17 reported having tried a head

mounted display (HMD) in the past, one of which with weekly frequency.

Questionnaire

The overview of questionnaire results is presented in Fig 4.11. Details of the post-hoc statistical

tests are presented in table 4.5.

Agency: agency response was affected by multimodal congruency (F1,36 = 97.7 p < .001), per-

spective (F2,72 = 8.7 p < .001), as well as their interaction (F2,72 = 3.4 p < .039). The post-hoc of

the interaction indicates a significant effect of multimodal congruence for all perspective con-

ditions (VMT > ¬VMT). The sense of agency was significantly lower for 3PP when multimodal
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Figure 4.11 – Reported senses of agency, ownership, self-location and threat. The perspective
factor could be set to 1PP, 3PP, or ALT (alternate between 1PP and 3PP). The multimodal con-
gruency factor comprised two groups of subjects, VMT and ¬VMT (congruent and incongruent
visuo-motor-tactile feedback respectively). Error bars represent the confidence interval of the
mean (CI).

Table 4.3 – Results per experimental condition. Answers were given on a 7 point likert scale
ranging from strongly disagree (-3) to strongly agree (3). The variable corresponds to the mean
answer value given to the grouped questions.

VMT ¬VMT

Response 1PP 3PP ALT 1PP 3PP ALT

Agency 2.54± .61 2.35± .62 2.46± .71 1.15±1.37 −.38±1.69 .77±1.29

Ownership 1.5±1.03 .79±1.41 1.19±1.52 1.44± .91 −.52±1.53 .79±1.16

Self-location 2.19± .91 .65±1.84 1.48±1.38 1.46± .98 −.04±1.62 1.02± .88

Threat 1.56±1.66 −.25±1.96 .54±2.19 .58±1.45 −.98±1.66 .06±1.33

GSR .72± .54 .46± .43 .67± .69 .56± .69 .40± .52 .53± .54

congruency was not present (1PP:¬VMT and ALT:¬VMT > 3PP:¬VMT).

Ownership: a significant main effect of multimodal congruency (F1,36 = 4.5 p < .042), perspec-

tive (F2,72 = 22.8 p < .0001) and their interaction (F2,72 = 5.2 p < .008) was found. Post-hoc of

the interaction indicates that the response score in 3PP:¬VMT was significantly lower than

1PP:¬VMT, ALT:¬VMT and 3PP:VMT. The average ownership response was always positive

when multimodal congruency was present, with no significant difference between perspective

conditions in this case. It suggests that the lack of multimodal congruency negatively affects

ownership only for 3PP.

Self-location: showed a significant effect of multimodal congruency (VMT > ¬VMT, F1,36 = 4.3,

p < .046), perspective (F2,72 = 33.8, p < .0001) and of the interaction between perspective and

presentation order (F10,72 = 3.1, p < .003). Post-hoc analysis of the perspective factor shows
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a significant difference between all three conditions: 1PP > 3PP and ALT, and ALT > 3PP.

The interaction with p.order suggests that the perspective presentation order influenced the

reported self-location. Specifically, subjects starting the experiment in 1PP or ALT gave lower

self-location scores to 3PP, while subjects starting in 3PP gave similar scores to all perspective

conditions (Fig 4.12).

Threat: was significantly affected by the perspective factor (F2,72 = 21.4 p < .0001). Post-hoc

shows a significant difference for all perspective comparisons (1PP > 3PP and ALT, and ALT

> 3PP). Although Fig 4.11 may suggest a consistent decrease of Threat score in the ¬VMT

condition, the statistical test failed to reject the equality (F (1,36) = 3.4, p > .07).

More bodies: a significant effect of perspective and its interaction with multimodal congruency

was found (F2,72 = 4.3 p < .017 and F2,72 = 6.8 p < .003 respectively). Post-hoc analysis has

shown statistically significant difference with 3PP:VMT and 1PP:¬VMT > 1PP:VMT (t23 = 4.56

p < .002 and t46 = 3.12 p < .03 respectively). It suggests higher subjective agreement with this

control question when ownership might be expected, despite sensory or perspective manip-

ulation. However, the interaction between multimodal congruency and presentation order

(F5,36 = 3.1 p < .021) also suggests that presentation order played a role on the interpretation

of the question. This interaction is not detailed.

Turning virtual: a significant effect of perspective was found (F2,72 = 16.4 p < .001). Post-

hoc analysis shows that 1PP and ALT > 3PP (t47 = 4.83 p < .001 and t(47) = 4.53 p < .001

respectively).

Galvanic Skin Response

Eight subjects were excluded from this analysis due to missing data or to failing GSR connectors

for at least one of the 3 sessions. The threat event caused a significant increase of the median

for all 6 possible combinations of conditions as computed by a pairwise Wilcoxon summed-

rank test. The relation between increased GSR and the threat can be visually accessed in

Fig4.13 and Fig4.14. When comparing the increase observed across the the levels of perspective

and multisensory congruence, ANOVA shows a significant effect of perspective (F (2,76) = 6.2,

p < .004). Post-hoc shows a significant stronger response in 1PP and ALT as compared to 3PP

(t(39) = 3.4 p < .005 and t(39) = 2.6 p < .027). The difference between 1PP and ALT was not

significant (t (39) = .94 p > .35).

GSR also presented a positive correlation with the Threat question, but not with Ownership,

Agency or Self-location. This suggests that the GSR was effectively related to how threatened

the subject felt, validating the threat event. On the other hand, this measurement is usu-

ally expected to correlate with the sense of ownership [Petkova et al., 2011], although other

experiments have failed to find such correlation [Kokkinara and Slater, 2014].
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Figure 4.12 – Reported sense of self-location at different levels of perspective and p.order
factors. Perspective order seems to influence reported sense of self-location for the 3PP
condition. e.g. when answering self-location questions for 3PP after 1PP or ALT subjects
tended to provide lower responses, which suggests a comparison bias.

Mental Ball Drop

The MBD time for the subjects that reported using the virtual environment floor were similar.

One tailed t-test failed to reject that the time in 3PP is as high as 1PP, which makes it unlikely

that subjects performed the task differently across the different perspective conditions. Times

for these subjects in 1PP and 3PP conditions are shown in the supplementary material (4.16).

Reaching Performance

Task performance is only valid for the VMT group. The factor perspective had no significant

influence on task performance (i.e. time to reach targets), (F (2,42) = 1.59, p > .21), results are

shown on supplementary material (4.17).

ALT Condition Analysis

Subjects performed 2 to 30 perspective switches, with mean±SD of 11±5.6. Two subjects

performed less perspective changes than instructed by the experimenter. The mean±SD

proportion of time spent in 1PP was .68± .13. That is, nearly one third of the time in ALT

condition was spent in 3PP. The breakdown of the proportion of time spent in 1PP during each

stage of the ALT session is available in supplementary material 4.18, the graphic presents a

boxplot with median and interquartile ranges to give a better picture of the group preference.

Notably, overall perspective choice seems to shift to 1PP once the reaching task is complete.

1PP was especially preferred by VMT group when they had to complete the walking task. This

was not the case for the¬VMT group, who had no practical incentive to change perspective (the
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Figure 4.13 – Floor fall event locked GSR variation (units in microsiemens). The green shaded
area highlights the time interval used to compute median GSR before floor fall event, while
the red shaded area highlights the interval used to compute median GSR after floor fall event.
Each line represents the GSR of an individual subject.

stage is completed independently of their actions). The walk stage was the only presenting a

significant difference between the groups, as analyzed by a paired t-test (t (35) = 2.88, p < .01).

The proportion of time in 1PP presents a significant positive correlation with the reported

sense of self-location (r = .29 p < .05) and threat (r = .33 p < .022), but do not correlate with

agency (r =−.43 p > .77) and ownership (r = .12 p > .4). The latter suggests that the possibility

of alternating perspective had no influence to the sense of ownership of the virtual body.

4.3.3 Discussion

In this study we manipulated visual perspective (1PP, 3PP and ALT) and multimodal con-

gruence (VMT and 6VMT). We assess the sense of embodiment with a questionnaire and the

change in galvanic skin response due to a threat. Our threat was effective, and a clear and sig-

nificant increase in GSR could be observed following the threatening event for every condition.

Subjects could successfully perform all stages of all the sessions (only the VMT group had to

be active).
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Figure 4.14 – GSR difference resulting from the floor fall event. Difference between the medians
of the intervals preceding (5 to 0 seconds before) and succeeding (1 to 6 seconds after) the
floor fall event was significant in all conditions. Moreover, a significant difference between
1PP and 3PP was also observed.

Figure 4.15 – Example of a GSR record of a session. The vertical lines indicate events transmit-
ted by Unity to OpenVIBE. The REACH stage (A to B) tends to take most of the session time.
For this specific signal one can observe anticipatory increase of arousal when approaching the
region of the threat (B), and on the onset of the threat (C). (D) marks the end of this session
and the start of the MBD task.

Effect of multimodal congruence

The experimental manipulation of multimodal congruence had the expected effect on the 3PP

condition. The 3PP-VMT group reported a significantly stronger sense of agency, ownership

and self-location than the 3PP-¬VMT group.

In 1PP the multimodal congruence effect was verified for agency and self-location, but not

present for ownership. Thus suggesting a strong effect of perspective to the sense of ownership

only when no other congruent sensorial clues exist. This is an appealing advantage for 1PP, as

it suggests that observing the virtual body from a natural point of view while only controlling

camera orientation is sufficient for the subject to self identify with the fake body, independently

of proprioceptive and tactile congruence.

Moreover, even though the response to the agency questions was significantly inferior for

¬VMT, its absolute value is still positive, unveiling a degree of agreement with the sense of
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Figure 4.16 – Boxplot with median and interquartile range of MBD time.

agency question statements. These results find support on the recent work of [Kokkinara

et al., 2016]. In their study, seated subjects developed the feeling of agency and ownership of a

walking virtual body, but only when the externally controlled virtual body was experienced

from a 1PP. The authors make the argument that, in line with the more subjective account

of agency proposed by [Vosgerau and Newen, 2007, Synofzik et al., 2008b], the intention

to walk may have been produced during observation, driving the self-attributing that they

report. They also make a link with the findings of [Banakou and Slater, 2014], who suggests

the possibility of inducing agency of an action of a virtual body – that the subject did not

performed – as a result of a currently strong sense of ownership of that body. In fact, our ¬VMT

condition closely replicates their experimental paradigm – with the exception that our task

had higher complexity –, and our agency and ownership results are compatible with theirs,

supporting their view.

1PP vs 3PP

Notably, our statistical analysis failed to reject the equivalency of ownership between 3PP

and 1PP in the VMT group in questionnaire responses. Although there is a clear difference

for the ¬VMT group and consistent evidence in literature that 1PP act as a decisive factor

[Slater et al., 2010b, Petkova et al., 2011, Maselli and Slater, 2013, Maselli and Slater, 2014], the

questionnaire results suggest that most of its influence to the sense of ownership could be

mediated by multimodal congruence.

On the other hand, a significant difference was found in the GSR measurement. This measure-

ment has been linked to the sense of ownership [Petkova et al., 2011], but its reliability as a

proxy to ownership is unclear. In our study, GSR correlates with threat questions, validating

the physiological measurement and questionnaire relation, but it did not correlated with the
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Figure 4.17 – Boxplot with median and interquartile range of time to reach floor and air
targets per perspective. Performance was similar across perspective conditions. This response
variable is only valid for the VMT group.

ownership.

It remains unclear if the sense of ownership in 3PP reported in the questionnaire relates

to higher order processes that provide a judgment of ownership, influenced by agency and

the engagement in an involving task [Synofzik et al., 2008a] (such as reaching targets), or

if it is a product of the sensorimotor contingencies. A compelling new measurement that

could clarify whether action in 3PP can boost the sense of ownership are those assessing the

peripersonal space. Notably, [Noel et al., 2015] has shown that the classical 3PP full body

illusion [Lenggenhager et al., 2007] results in a spatial drift of the peripersonal space with

relation to the subjects body. More specifically, the boundaries of the peripersonal space

are projected forward, toward the seen body. This protocol could help to disentangle the

contribution of sensorimotor and task involvement to the sense of embodiment.

Moreover, the response to the sense of self-location for 3PP was higher for subjects who expe-

rienced this condition first, revealing the tendency to make relative judgments with respect

to this response variable. This indicates that the within subject design for the Perspective

variable had an impact on self-location response.

Alternating perspective

Nevertheless, the ability to choose the point of view resulted in embodiment responses that

were similar to the exclusive 1PP condition. Thus, we conclude that the ALT condition is a

viable alternative for VR applications to maximize the sense of embodiment, without com-

promising the contextual information that 3PP can provide nor the stronger bound to the
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Figure 4.18 – Proportion of time spent in 1PP for each stage of the ALT session. Subjects
tended to make a balanced use of perspectives in the REACH stage, while favoring 1PP for the
following stages.

virtual body that 1PP seems able to promote. We also highlight that more subjects preferred

the ALT condition, and that they had the perception of performing faster in that condition,

even though we found no clear effect of perspective in our performance measure (Table 4.4).

Moreover, none of the subjects reported feeling sick due to the perspective switch, although

we highlight that no formal testing has been conducted to this sense.

Finally, the post experiment comparative questionnaire shows that subjects generally perceive

the 3PP as safer than 1PP (Table 4.4). A potential application of ALT could be on post-traumatic

stress disorder and phobia treatment, in which one can develop a strong sense of embodiment

of the virtual body in 1PP, and eventually switch to 3PP when the body is exposed to a threat.

This would allow the exposure to happen in a more reassuring manner, while still preserving a

stronger bound to the virtual body, thus making the experience of self-exposure gradual.

4.4 Synthesis and Conclusion

In the first experiment we found a strong main effect of visuomotor synchrony to all ques-

tionnaire items, but no main effect of perspective. Reported senses of agency, ownership and

self-location were high as long as the sensorimotor response was synchronous. Moreover,

3PP reduced search time of targets in the vicinity of the virtual body, while 1PP allowed more

precision when approaching the target. These performance results were expected, given

that, as the 3PP gives immediate feedback of user surroundings, but reduce angular size and

stereoscopy view of targets. Interestingly, we also found that subjects act similarly in the

reaching task, independently of perspective.
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Table 4.4 – Post-experiment responses for the VMT group. Most subjects preferred to use 1PP,
and felt safer in 3PP. When asked about conditions, subjects though ALT to be more efficient
in the reaching task. ALT was also preferred by more subjects than the other conditions.

Which point of view ... 1PP 3PP

... makes you feel safer when the floor falls? 3 21

... do you prefer to use when the floor falls? 19 5

... do you prefer to use to walk forward? 22 2

... do you prefer to use to reach the targets? 19 5

Which condition ... 1PP 3PP ALT

... do you prefer to perform the reaching task? 2 2 19

... is more efficient to reach the targets? 8 5 10

In the second experiment, we saw a main effect of visuo-motor-tactile congruence on agency

and self-location, but not on the sense of ownership. In turn, perspective had a main effect on

self-location, threat and GSR, which were overall lower for 3PP. Interestingly, we also found an

interaction between these factors for the agency and ownership responses. It yields similar

agency and ownership scores across perspective conditions when multimodal congruency is

present, but lower scores for 3PP when there is no multimodal congruency. We have also tested

the ALT condition, which offers a new take on how switching perspective can feel natural while

permitting the experience of a 3PP viewpoint on demand. Responses for the ALT condition

were similar to 1PP regardless of the number of times that subjects switched perspectives or

the proportion of time that they spent in each point of view.

Our studies diverge from literature on the sense of embodiment in 3PP due to the fact that we

not only manipulate aspects of visuo-tactile congruence, but also allowed full-body control

(visuo-motor congruence), including the global aspects of the body by walking. This is impor-

tant because recent evidence on the relative contribution of visuo-motor and visuo-tactile

congruencies suggests the predominance of the former, as well as an additive effect [Maselli

and Slater, 2013, Kokkinara and Slater, 2014].

Although the sensorimotor manipulation was not equivalent across experiments, both ex-

periment presented similar outcomes in the congruent condition. However, results for the

incongruent conditions diverge. On the one hand, the sense of embodiment in 1PP was strong

independent of the sensorimotor contingencies for the second experiment. On the other hand,

sense of embodiment in 1PP was affected as much as for 3PP when a second of latency was

added to the motion capture data in the first experiment. Notably, it suggests that 1 second of

latency may be more detrimental to the sense of embodiment than no control of the body at

all.

Some methodological differences between these two experiments have to be highlighted

though. In the second experiment subjects were exposed to a virtual threat, and multisen-
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sory congruency was a between subject factor. In contrast, there was no threat in the first

experiment, and the virtual environment was minimalist, with the visuo-motor synchrony as

a within subject factor.

In summary, our results contribute to the understanding of the interplay of the multiple

components supporting embodiment and show that several factors (visuomotor congruency,

visuotactile congruency or perspective) can have a positive impact on body ownership and

embodiment depending on the tasks to perform and on the stimuli provided. In our case, in

absence (experiment 1) and presence (experiment 2) of tactile stimulation and in the context

of action oriented tasks, visuomotor synchrony dominates over perspective. Under other

circumstances, perspective can dominate over visuotactile congruency when the manipulation

focuses on the contrast between the location of the touch and the change of perspective [Slater

et al., 2010b]. Understanding the cognitive mechanisms of embodiment is a fundamental

challenge for the development of VR interaction and needs to be investigated further. It is

precisely because VR allows controlling factors such as perspective and analyzing behavior

in ecologically valid conditions (e.g. differences in timing of reaching movements) that it

provides the necessary environment for conducting this cognitive neuroscience research.
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Table 4.5 – Perspective taking and embodiment statistical significance tests summary.

Variable Multimodal Congruence Perspective Interaction

Agency F1,36 = 89.84 p < .001 d = 2.47 F2,72 = 9.70 p < .001 F2,72 = 4.49 p < .015

Ownership F1,36 = 4.49 p < .042 d = 0.44 F2,72 = 22.75 p < .001 F2,72 = 5.22 p < .008

Self-location F1,36 = 4.31, p < .046 d = 0.41 F2,72 = 33.77, p < .001 F2,72 = 0.30 p > .738

Threat F1,36 = 1.62 p > .075 F2,72 = 21.44 p < .001 F2,72 = 0.47 p > .627

More bodies F1,36 = 3.84 p > .057 F2,72 = 4.34 p < .017 F2,72 = 6.76 p < .003

Turning Virtual F1,36 = 0.00 p > .946 F2,72 = 16.41 p < .001 F2,72 = 0.74 p > .482

GSR F1,36 = 0.59 p > .448 F2,76 = 4.21, p < .020 F2,72 = 0.28 p > .754

Perspective post hoc

Variable 1PP vs. 3PP 1PP vs. ALT 3PP vs. ALT

Self-location t47 = 6.94 p < .001 d = 1.52 t47 = 3.64 p < .001 d = .57 t47 = 4.19 p < .001 d = 0.54

Threat t47 = 6.17 p < .001 d = 1.04 t47 = 3.21 p < .003 d = .48 t47 = 3.97 p < .001 d = 0.50

GSR t39 = 3.01 p < .020 d = 0.37 t39 = 0.48 p > .630 d = .07 t39 = 2.47 p < .040 d = 0.35

Turning virtual t47 = 4.83 p < .001 d = 0.87 t47 = 0.66 p > .510 d = 0.11 t47 = 4.53 p < .001 d = 0.62

Interaction post hoc
VMT

Variable 1PP vs. 3PP 1PP vs. ALT 3PP vs. ALT

Agency t23 = 1.16 p > .777 d = 0.32 t23 = 0.47 p > .948 d = 0.13 t23 = 0.73 p > .948 d = 0.19

Ownership t23 = 2.60 p > .079 d = 0.69 t23 = 1.04 p > .928 d = 0.30 t23 = 1.25 p > .889 d = 0.28

More bodies t23 = 4.56 p < .002 d = 1.00 t23 = 2.55 p > .124 d = 0.63 t23 = 1.32 p > .601 d = 0.34

¬VMT
Variable 1PP vs. 3PP 1PP vs. ALT 3PP vs. ALT

Agency t23 = 3.69 p < .008 d = .94 t23 = 1.46 p > .627 d = 0.30 t23 = 3.52 p < .01 d = .68

Ownership t23 = 5.48 p < .001 d = 2.15 t23 = 3.18 p < .025 d = 0.71 t23 = 4.30 p < .003 d = 0.86

More bodies t23 = 0.87 p > .601 d = 0.26 t23 = 1.92 p > .268 d = 0.40 t23 = 2.16 p > .249 d = 0.53

1PP 3PP ALT
Variable VMT vs. ¬VMT VMT vs. ¬VMT VMT vs. ¬VMT

Agency t37 = 4.78 p < .001 d = 1.97 t38 = 8.32 p < .001 d = 3.26 t42 = 6.27 p < .001 d = 2.17

Ownership t45 = 0.22 p > .928 d = 0.06 t46 = 3.01 p < .024 d = 0.93 t43 = 1.01 p > .928 d = 0.26

More bodies t46 = 3.12 p < .026 d = 0.88 t45 = 1.12 p > .601 d = 0.34 t45 = 2.06 p > .249 d = 0.56
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5 Movement Distortion and Embodi-
ment

In this Chapter we use VR to quantify the extent to which a subject self attributes a distorted

movement. Specifically, the movement of an arm that is manipulated in order to facilitate

or hinder the completion of a reaching task. We achieve this by decreasing or increasing

the amplitude of the hand movement required to reach for a target, while maintaining the

apparent amplitude (visual feedback) fixed. Thus, the most salient feature of the distortion

during the movement is that the visual feedback may move faster or slower than the real

(performed) movement. This builds into a visuo-proprioceptive discrepancy, characterizing a

spatiotemporal distortion.

We perform two experiments with our distortion model. The first aims at quantifying the

limits of self-attribution of the distorted movement, in which subjects were asked if a seen

movement matches the movement they have performed. The second experiment acquires

subject’s impressions on whether a given level of distortion makes the reaching task easier

or harder to complete than expected. The latter is not obvious because it involves a trade-off

between the manipulated movement amplitude (objective manipulation of difficulty) and the

subjects’ capacity to promptly correct an ongoing movement that has been distorted. This

topic is further detailed in Section 5.2.

In our context of research, the spatiotemporal distortion can be used to facilitate or hinder

the completion of a task, to prevent interpenetration with other elements of the VE [Burns

et al., 2006, Burns et al., 2007], or to accommodate the visual surface of a virtual object into a

passive haptics device of different shape [Kohli et al., 2012, Kohli et al., 2013]. For instance,

according to user’s engagement and their current level of ability, an application designed

for physical activity can redirect the virtual body movements in order to reduce or augment

the effort necessary to complete a task. This could be the case for applications on physical

rehabilitation, such as for post stroke patients, who may experience reduced mobility and

impaired fine control of movements [Rohrer et al., 2002].

Moreover, the interpretation of such manipulation includes questioning how the interplay of

discrepancy detection and judgment of agency influences the self-attribution of a movement.
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We discuss it in terms of current theories of agency.

5.1 Related work

While aspects of motor planning have been discussed in Section 2.3, here we present relate

work on the context of VR.

Burns has explored two aspects of visuo-proprioceptive mismatch. The first on the perception

of miss-location of real and virtual hand, [Burns et al., 2006] shows that a person may be

strikingly unaware of visuo-proprioceptive mismatches which were gradually introduced over

a long period of time. Specifically, subjects that have been primed to know the mismatch

would happen only notice the discrepancy when it reaches ≈ 20deg, while unprimed subjects

would only realize it when the mismatch reaches ≈ 40deg. The second aspect concerns the

perception of movements with spatiotemporal distortions (speed reduction/amplification,

results presented in Table 5.1) [Burns and Brooks, 2006]. They finally propose an interaction

technique that takes advantage of both perceptual limits to prevent interpenetration of the

virtual hand with the (immaterial) VE.

In a related topic, [Kohli, 2010] explores the distortion of movements in order to redirect haptic

sensation. The goal is to use a passive haptic device as a proxy to a more complex virtual object.

To evaluate this concept the authors designed an experiment where subjects had to perform

a multi-directional pointing task over a tilted plane, while the visual feedback presented an

user aligned tapping plane [Kohli et al., 2012]. The authors have aimed at identifying potential

performance aspects, and have only informally evaluated the subject of perception [Kohli

et al., 2013].

This specific topic has also been explored by another group, mostly relying on augmented

reality setups. In [Ban et al., 2012a], the authors redirect haptic feedback of complex symmetric

objects to a proxy cylinder. This work was further extended to represent more complex

symmetrical objects by adding bumps to the proxy object [Ban et al., 2012b]. Finally, They

explore the inclusion of more than one point of redirection (normally the index finger), to

allow for pinching gestures [Ban et al., 2014].

The work on redirected haptics has been further explored by [Spillmann et al., 2013] on the

field of surgery simulation. In this case, the remapping was relevant to understand the visuo-

motor-tactile responses one receives through a surgical instrument (i.e. tool mediated contact

preserving).

Furthermore, [Kokkinara et al., 2015] have shown that by increasing the speed of reaching

movements, an after effect change to the perception of space could be observed. More

specifically, after being exposed to a spatiotemporal distortion (2x and 4x the speed) between

real and virtual hands (avatar), subjects tended to overestimate the size of an object, indicating

a visuo-proprioceptive remapping. They have also shown that this distortion seems to have
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only a small impact to the sense of embodiment of the virtual body.

Finally, [Lecuyer et al., 2000, Lécuyer et al., 2008, Jauregui et al., 2014] explores the notion

of pseudo haptics, which examines cross-modal perception in order to create the subjective

sensation of haptic interaction with objects of different physical properties. For instance,

[Lecuyer et al., 2000] manipulates the control-display ratio (CDR - the ratio mapping the

input of a device to an output in a display) of a mouse to convey pseudo haptic sensations.

The mouse is used to control a cube in the screen, and when the cube passes through a

delimited area, the CDR could either increase or reduce. Subjects reported the sensation of

"lightness" and "gliding" when the CDR increase, and "friction" and "viscosity" when the CDR

was reduced. That is, the added/reduced effort resulting from the longer/shorter distance the

subject had to cover due to an incongruent visual, proprioceptive and tactile feedback was felt

as a tangible obstacle.

5.2 Distortion Model

We implement a distortion model that alters the visual feedback of movements in order to

facilitate or hinder a reaching action. In practice, we reduce or increase the distance between

the position where the movement starts and the target.

Figure 5.1 graphically depicts the behavior of the function in 1D, with the target position (pt g t )

equals to 0, we assume that the target is static. The horizontal axis represents the real hand

position (pr eal ), while the vertical axis depicts the redirected (virtual) hand position (pvi r t ).

The movement is mapped with a 1:1 ratio while it is outside a given distance range (dr ang e = 1

around the target in the figure). Once it enters the dr ang e , the facilitating distortion (green

lines) speeds up the movement until the virtual hand reaches the target (position 0), while

the hindering distortion (red lines) slows down the movement. Conversely, once the virtual

hand reaches the target the movement speed is inverted. As a result, the interaction size of the

virtual target is not altered and the virtual hand is brought back to collocation with the real

hand. The black line represents the movement without remapping.

The position of the virtual hand is defined by:

pvi r tn =
{

pr ealn + v̂di rn ×∆dn , i f ||pt g t −pr ealn || < dr ang e

pr ealn , other wi se
(5.1)

where vdi rn is the direction of the distortion

vdi rn =
{

pt g t −pr ealn , i f ||pt g t −pr ealn || > dr ang e

vdi rn−1 , other wi se
(5.2)
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Figure 5.1 – Overview of the reaching distortion function. Horizontal axis depicts the real hand
position, while the vertical axis depicts the virtual hand position. The lines map a movement
from the left to the right, with a distance range of 1 and a target position set at 0. The virtual
colored hands in the left shows where the current real hand position would be mapped into.
The green and red colors represents a facilitating and a hindering distortion respectively.

and ∆dn describes the magnitude of the distortion

∆dn = (
||pt g t −pvi r tn−1 ||

dr ang e
−1)×dg ai n ×dr ang e (5.3)

Finally, dg ai n defines the difference in distance proportion (normalized according to dr ang e )

that the subject has to cover in order to reach for the target. If dg ai n = 0.5, the movement

becomes 50% longer than the apparent distance. If dg ai n = −0.5, the movement becomes

50% shorter than the apparent distance. Based on the definition of index of difficult (I D), we

expect this distortion to alter the difficulty of the reaching task. The I D is normally used as

part of the Fitts law (a reaching/pointing time prediction equation often used in the field of

human computer interaction). ID is defined by the equation:

I D = log2(
D

W
+1) (5.4)

Where D represents movement amplitude (distance) and W the target width. Intuitively,

increasing the distance to the target (D) results in a higher I D, while reducing this distance
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results in a lower I D, modulating the I D of the task while the W parameter is kept constant.

Experiment 2 evaluates whether this distortion effectively alters the difficulty of the task

(Section 5.5).

The most salient feature of our distortion model during the movement is the difference in

velocity. A distortion that facilitates the reaching movement presents an increased velocity

until the virtual hand reaches the target, and a reduced velocity if the movement continues

on the same direction, until virtual and real hand matches in position by leaving the distance

range. The opposite happens with a distortion that hinder the movement. In the experiments

we perform, the first part of this movement is always present. Thus, we opted to set the

distortion in terms of change in speed, instead of the change in movement amplitude. This

way we are in line with the hypothesis that it is a mismatch between the actual and predicted

(by forward models) sensorial input that brings an error to awareness of the subject [Blakemore

et al., 2002]. To do so the variable dg ai n can be defined by a speed multiplier using dg ai n =
− speedmul t

speedmul t+1 .

5.3 Materials and Methods

Equipment and Software

An Oculus development kit 2 HMD was used to display the virtual scene (960 x 1080 pixels per

eye, 100deg field of view, 75 Hz). Head tracking was performed using its inertial sensors (low

latency) and corrected for drift around the vertical axis using optical tracking.

A pair of Bose® Quietcomfort 15 headphones were used for environmental noise canceling

and to provide non localized white noise, thus phonically isolating the user from the real

environment.

A PhaseSpace ImpulseX2 optical tracking system was used for motion capture. Our setup uses

18 cameras and a total of 14 LED markers, from which 4 were attached to the HMD and 10 to

the upper limbs of the subject. Three markers were fixated in a non-collinear arrangement over

the back of each hand of the subject, allowing the reconstruction of position and orientation

of the hand in free space (6 degrees of freedom). A marker was fixated over the top of each

shoulder, allowing to track trunk movement to some extent. Finally, a marker was fixated to

each elbow, these markers are used to solve the ambiguity of elbow bend direction relative to

the shoulder to hand vector. Figure 5.2a shows a subject wearing HMD, headphones and LED

markers. We assessed a latency in the range of 30ms to 40ms from physical action to HMD

display.

The virtual environment was developed using the Unity game engine. It consists of a virtual

body, a chair and a carpet – collocated with the subject body and a real chair and carpet used

in the real environment.
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Figure 5.2 – Overview of the reaching experiment setup. (a) shows a subject equipped with a
HMD, headphones and motion capture markers. In (b) the subject observes the virtual body,
and in (c) he performs the task.

The virtual body was animated in real time using the FinalIK1 package available at the Unity

asset store2. Virtual body hands position and orientation have high priority, and the rest of the

posture is defined ensuring the collocation of the virtual hands with the rigid body defined by

the LED markers (plus the position deviation). Hips and legs were not tracked nor animated,

participants were asked to remain seated during the whole VR blocks of the experiments.

Figure 5.2bc shows sample captures of the posture reconstruction used in the experiments.

Moreover, the virtual body and its limbs were scaled to approximately match the body of the

subject. This was done before the start by measuring the subjects height and their right arm

and leg segments.

As the markers attached to the hands could not be fixed in identical positions across subjects,

a short real hand to virtual hand registration was necessary. Once equipped with the HMD,

the participant could see small green spheres at positions corresponding to the LED markers

being worn. The participant was then asked to position these spheres over the hands of the

virtual body, at the equivalent position where the LED markers are located in her hand.

Task

Participants had to repeatedly perform a reaching task during both experiments. The task

consisted of two movements and a question. In the first movement the subject had to take a

tennis ball hold with their right hand inside a semitransparent virtual target. After a random

interval lasting between 200ms and 600ms inside that target, the target disappeared and a

second semitransparent target appeared in a position opposite to the first. The participant had

to perform a second movement and take the ball inside the new target. However, the visual

1root-motion.com
2assetstore.unity3d.com
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Figure 5.3 – Overview of the reaching experiment trial. The trial consisted of two movements
and a question: the first movement uses a target to position the hand and is not distorted; the
second movement goes from target one to target two and may or may not be distorted. The
question was different for each experiment: experiment 1 asked whether the movement was
exactly like the one performed by the subject; experiment 2 asked if the applied distortion
made the task easier or harder than with no distortion.

feedback of the second movement could be distorted (spatiotemporal distortion), interfering

with the task. The reaching is complete once the ball is kept inside this second target for

150ms. The tennis ball and the semitransparent targets have a diameter of ≈ 6.7cm and 10cm

respectively. Finally, a forced choice question appears, participants could answer the question

by orientating their head to face the desired answer. The question and answer options were

different according to the experiment. Figure 5.3 gives an overview of a task trial. The subject

had to lower the right hand before the next trial could start.

We used 4 predefined positions for the targets. They were arranged around a central point at

the height of the eyes of the subject. One target above, one below, one to the left, and one to

the right of this point. These four positions defined a plane parallel to the projection plane

of the virtual cameras (assuming that the subject faces forward). The distance of each target

from the central point was equivalent to 25% of the subject’s arm length.The central point

was at 50% the subject’s arm length far from the camera. Therefore, if a the task defines a trial

with a distorted movement leftwards, the subject had to first reach for the target to the right of

the central point, and then perform a movement to the target located to the left of the central

point. The apparent distance of the movement is equivalent to 50% of the subject’s arm length,

while the actual movement also depends on the magnitude of the distortion defined by dg ai n .

The positions of the central target and targets are defined relative to the head position of the

subject at the start of each block.
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Procedure

The subject was first asked to read an information sheet and to complete and sign an informed

consent form. Next the subject was asked to fill in a characterization form, with regular

questions about their background (other experiments, experience with HMDs ...) and physical

characteristics (height, weight and age).

Then, the experimenter measured the approximate length of the right arm, forearm, thigh

and leg of the subject, which was used to scale the virtual body dimensions to match those of

the subject. This information was also used to set the distance between targets, so that the

effort and the ability to reach could be kept roughly equivalent across subjects. The subject

is instructed to sit and the experimenter then fixates the optical markers to both arms of the

subject. Once ready, the experimenter gives a detailed overview of the stages of each trial, and

expose the structure of the experiment, which starts with two short training blocks. Finally,

the subject was equipped with the HMD and noise canceling headphones to start the training.

In the first training block the subject completed 8 trials without any redirection, two in each

direction. In the second training block the subject completed 8 addition trials, but now with

significant redirection (-.8 and .8), one for each combination of direction and distortion type.

The subject was told beforehand whether there would be a distortion in the training block,

and what answer the subject should give in such case. This procedure was adopted to ensure

that the subject understood the task, and were shown what a movement distortion looked like

without a verbal description of its features.

After completing the training the subject went through two blocks of trials, as described in

Section 5.4. Each block took between 15 and 25 minutes, depending upon subject’s pace and

precision in recognizing a deviated movement. An interval was given between the blocks, as

well as if the subject requested for a pause during the block. Experiment 1 was complete after

the second block.

The subject was given time to rest before starting experiment 2 (Section 5.5). Once the subject

was ready, the experimenter went through the new instructions. Experiment 2 consisted of 2

short blocks of trials (3 to 5 minutes), with movements always towards the left of the subject.

Finally, the experimenter conducted a debriefing with the subject.

A total of 20 subjects participated on both experiments (mean age 23.9 with SD of 4.5, 3 female).

Six subjects reported having participated in an experiment using virtual reality in the past,

while 8 reported having tried a HMD in the past, one of which with weekly frequency.

This experiment was approved by the Commission cantonale d’éthique de la recherche sur

l’être humain in Vaud, Switzerland. Subjects signed a consent form and were paid 20 CHF/hour

for their participation.
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5.4 Experiment 1: Just Noticeable Difference

Experiment 1 was designed to estimate the limits of subjective self-attribution of a redirected

movement that facilitates or hinder the completion of a goal directed task. After the completion

of each trial, we ask the subject whether "the movement you saw exactly corresponds to the

movement you have performed", which the subject had to answer by facing a "Yes" or "No"

timed button. The limits of self-attribution can be defined as the magnitude of distortion to

which the subject as likely to self-attribute a distorted movement (answer "Yes") than not.

The experiment followed a within subject design with two independent variables: orientation

of distortion (facilitating or hindering movement) and movement direction (left, right, up or

down).

To quantify these limits we adopt concepts and procedures from psychophysics. Psychophysics

acts on the understanding of how a stimuli affects one’s sensation/perceptions, its methods

are often employed to assess the just noticeable difference (JND) between a standard and an

altered stimuli. The JND can be interpreted as a constant proportion K of the intensity I of

the standard stimulus, as defined by Weber’s law:

∆I = K ∗ I (5.5)

Thus, we focus on measuring the constant K , which is then used to compute the∆I for a given

stimulus intensity I . In our case, once we know what is an admissible K for our distortion

(one for facilitating and one for hindering) we want to compute a virtual stimulus given a real

stimulus:

Ivi r tual = Ir eal +∆I = Ir eal + Ir eal ∗k = (1+k)∗ Ir eal (5.6)

Moreover, our study is distinct from regular psychophysics paradigms in two ways:

(i) We assess the JND across different sensory modalities, i.e. the visual feedback is altered

with regard to its forward model prediction and proprioceptive feedback;

(ii) The question is not explicit about the physical features of the distortion, instead it asks

whether the subject consider the movement they see to be equivalent to the one they have

performed.

The speed change is the most salient stimuli, and its proportion constant is defined by the

speed multiplier speedmul t . However, based on preliminary tests and related work [Burns and

Brooks, 2006], we observed that the speedmul t yields strong asymmetry between the mean
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(a) (b)

(c) (d)

Figure 5.4 – Samples of adaptive staircases. Note that the staircases were oriented to either
reduce (ab) or increase (cd) the required movement, starting either from a high distortion (ac)
or a no distortion (bd) value. The JND was computed as the mean of the last 4 blue points,
which represents turns in the trend of the staircase.

thresholds and variance of facilitating and hindering distortions. Thus, we decided to define

the measurement intervals of the experiment in terms of mscale = log2(speedmul t +1). As

such, the measurement scale can be converted back into speed with speedmul t = 2mscale −1,

for which the mscale values of -1, 0 and 1 corresponds to speedmul t values of -0.5, 0 and 1

respectively. That is, -1 is half the speed, while 1 is twice the speed.

In order to assess the JND, distortion intensity was controlled with an adaptive staircase, a

procedure that changes the intensity of the stimulus discrepancy based on the whether the

subject identified or not the discrepancy in the last trial [Meese, 1995]. In our specific case, if

the participant answers "Yes" to a correct or distorted movement, the discrepancy is increased.

If the subject answers "No" to a distorted movement, the discrepancy is decreased. Finally, if

the subject answers "No" to a correct stimuli, we do not alter this parameter, as this would

change the orientation of the distortion (from facilitating to hindering and vice versa).

The staircase was complete when either the subject changed the direction of the staircase

7 times (e.g. from a distortion increase to a distortion decrease trend) or performed a total

of 20 trials in the same staircase. The JND was computed as the mean of the 4 last staircase
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turns (Figure 5.4). Each subject underwent a total of two blocks of 16 staircases, two for each

combination of movement direction and distortion type, for a total of 32 staircase procedures.

Thus, for each combination of distortion orientation and movement direction the subject

performed 4 staircases: 2 starting with correct movements, with an initial trend of distortion

increase, and 2 starting at a high level of distortion, with a distortion decrease trend (Figure

5.4).

The size of the staircase step changed dynamically, it starts as 0.2 (-0.2 if the trend is to decrease

the distortion), and after the first staircase turn it is reduced by half. This value is kept for the

rest of the trials of that staircase. To prevent the sequential presentation of trials from the

same staircase, 4 of the 16 staircases of the block are run concurrently.

A second relevant measurement is the point of subjective equality (PSE), i.e. the point at which

the participant subjectively evaluates a presented stimulus to be equivalent to the standard

one. The PSE may be computed as the point in between the facilitating and hindering JNDs.

A sequence of 8 non distorted movements was presented in the start and end of each block,

for which the subjects were not aware. We expected to observe if an adaptation could occur by

assessing the change in the rate of "Yes" answers to the non-distorted movements preceding

and succeeding the experimental block.

5.5 Experiment 2: Task Difficulty

The second experiment acquires subject’s impressions on whether a given level of distortion

makes the reaching task easier or harder to complete than it would be without any distortion.

For instance, we suppose that the difficulty will change according to the index of difficulty

(ID), as used by the Fitts law. Intuitively, the ID increases if a distortion imposes a bigger am-

plitude of movement (hindering distortion), and decreases if a smaller amplitude is imposed

(facilitating distortion). However, the distortion might also cause a big mismatch between

internal forward models predictions of sensorial input and actual sensorial input, requiring

the subject to promptly adapt an ongoing movement in order to comply with the distortion.

Moreover, behavioral experiments have shown that the minimum delay needed for a visual

or proprioceptive signal to influence an ongoing movement is 80–100 ms [Desmurget and

Grafton, 2000]. Thus, if a movement is shortened by too much it may become unpractical in

terms movement control mechanisms, potentially contradicting the assumption we make

with the index of difficulty.

Experiment 2 followed a factorial within-subject design, with distortion intensity as the only

independent variable (in the same scale as experiment 1, with 9 values ranging from −.8 to .8

in steps of .2). Movement direction was always towards the left.

The response variable was the difference in difficulty, after each reaching the subject was

asked: "Did the distortion made the task easier or harder?". The answer was given in a 6 points

79



Chapter 5. Movement Distortion and Embodiment

Table 5.1 – Estimated points of Just Noticeable Difference (JND) for different scales (Mean ±
Standard Deviation), and comparison with experiment from literature.

Direction JND [speedmul t ]* JND [speedmul t ] JND [mscale ] t-test
[Burns and Brooks, 2006]

faster | slower faster | slower faster | slower p <
Left +.44 | −.08 +.86(±.38) | −.13(±.07) +.82(±.27) | −.21(±.12) .001

Right +.40 | −.06 +.84(±.39) | −.21(±.06) +.83(±.29) | −.36(±.12) .001

Up +.51 | −.16 +.65(±.34) | −.18(±.06) +.68(±.29) | −.29(±.10) .001

Down +.38 | −.27 +.90(±.44) | −.27(±.06) +.85(±.29)| −.47(±.11) .001
*Values from [Burns et al., 2006], in which the task was not target directed and the question

explicitly concerned speed perception.

scale (Fig 5.3). Participants were led to believe that all the trials were distorted.

The experiment was divided into two short blocks, each with a total of 36 trials, 4 for each of

the 9 levels of distortion intensity. By asking a more explicit question about the distortion, we

expect to find whether the subject is capable of perceiving that a distortion is presented, and

to consistently rate its difficulty (e.g. not using the center of the difference in difficulty rating

scale).

5.6 Results

For the analysis of experiment 1, we exclude the staircases that failed to converge, we defined

these as: (i) staircases that reached 20 trials before completing a minimum of 5 turns, (ii)

answering "no" when the staircase was at a no distortion point in the range of the last 4

staircase turns. A total of 640 staircases were completed, 62 of which removed because of (i)

and 39 because of (ii), leaving a total of 539 staircase procedures. We also excluded 2 subjects

from further analysis, as they failed to converge in at least 1 staircase per combination of

conditions.

The JND results in terms of speedmul t and mscale are presented in Table 5.1, absolute values

comparing the distortion orientation is presented in Figure 5.5. We also present the JND in

terms of percent of reduction (facilitate) and increase (hinder) of the required movement

amplitude (i.e. dg ai n) in Table 5.2 and Figure 5.5. When using dg ai n for the scale we obtain

similar variances, i.e. a balanced distribution across the facilitation and hindering distortions.

Therefore we decided to compute PSE in this scale (the mean of both JND).

For experiment 2, results are presented in Figure 5.6. The blue line and the shaded region

represents a loess (locally weighted regression) fit and its 95% confidence interval [Cleveland

and Devlin, 1988]. The vertical dashed lines represents the results of experiment 1 for the

leftward movement for comparison. The green and red shaded areas highlight the "easier"

and "harder" levels of difficulty available in the scale.
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Figure 5.5 – Bar plots of the JND thresholds in different scales. The difference between
facilitating and hindering movement was significant for all directions and in the different
scales, except for the downward movement in the change in amplitude scale.

Figure 5.6 – Subjective evaluation of the difference in difficulty due to movement distortion.
The point where subjects become uncertain of whether the distortion was affecting difficulty
coincides with the JND for hindering distortion. Note that in this experiment the subject only
performed movements toward the left.
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Table 5.2 – Estimated points of Just Noticeable Difference (JND) and Point of Subjective
Equality (PSE) for distance proportion difference scale (dg ai n , Mean ± Standard Deviation).

Direction JND [dg ai n] t-test PSE [dg ai n] PSE [dg ai n]
decrease | increase p < arithmetic mean gaussian fit mean

Left −.41± .11 | +.17± .10 .001 −.120± .07 −.116

Right −.42± .11 | +.30± .10 .004 −.060± .08 −.070

Up −.35± .12 | +.24± .09 .008 −.060± .08 −.077

Down −.42± .10 | +.39± .11 .343 −.014± .06 −.013

5.7 Discussion

The JNDs we have obtained are higher than the closely related work of [Burns and Brooks,

2006]. This was the case especially for the facilitating distortion, which was more than 2 times

bigger for two of the 4 movement directions. The higher tolerance might reflect two factors:

we do not prime the subject to look for a specific physical feature of the distortion; and we ask

about the experience of agency (self-attribution). This difference of the JND in the context of

agency is valuable in the research of embodied interaction. In such case we are not focused on

the limits of perception, but in the overall feeling of control of a body.

Moreover, we also emphasize that our task was goal directed, thus requiring a great level of

attention and precision from the subject. Normally, one would expect discrepancies to be

easier to spot under this condition, which was not the case if compared to [Burns and Brooks,

2006]. However, what became apparent is that subjects are biased to self-attribute movements

as long as the task becomes easier than its apparent difficulty.

Although we might not have direct access to the output of predictions made by the forward

models, the comparator mechanism suggests that if sensorial input and predictions mis-

matches are big enough, one may become aware of the sensory discrepancy [Frith et al.,

2000, Blakemore et al., 2002]. However, below a certain threshold, the brain will typically

monitor the movement, and may correct for visuo-proprioceptive discrepancies without the

subject awareness [Nielsen, 1963, Jeannerod, 2003].

Curiously, when questioned about the means used to identify if a distortion did occurred,

subjects often reported using the effort, e.g. expected and dispensed effort to complete the

reaching task. This contradicts the use of an online comparator model, suggesting that the self-

recognition in an action (or lack thereof) was often the result of a retrospective component of

agency [Haggard and Chambon, 2012]. This approximates our results to the account of agency

proposed by [Synofzik et al., 2008b], in which a higher order – non-minimal – representation

of the self and its current state and intentions can affect how one evaluate the ownership of

actions.

Moreover, the perception of hindering distortions across movement directions is not as uni-
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Table 5.3 – Potential bias according to distortion orientation and movement direction.

Direction Distortion type potential bias

Left Facilitating -
Hindering arm reach limits

Right Facilitating -
Hindering -

Up Facilitating against gravity
Hindering against gravity

Down Facilitating toward gravity
Hindering toward gravity

form as the facilitating distortion. Notably, the movement toward left was especially sensible

to the hindering distortion. We believe this relates to the different bodily receptors stimulated

by the movements, e.g. the movement toward left requires the full extension of the arm, and

involves self-contact with the chest. Moreover, the upward and downward movements are

influenced by gravity. This might make the movement toward the right the less biased in terms

of JND comparison (Table 5.3). Additionally, it is necessary to note that the measurement

scale of the experiments (mscale ) are in log2(speedmul t +1). Thus, the conversion to dg ai n

and speedmul t may result in additional bias.

Nonetheless, experiment 2 validates the notion that our distortion model manipulates the

difficulty of the task. It also suggests that subjects are capable of perceiving the facilitating

distortion below the assessed JND interval when explicitly questioned about it.

Finally, the relation of distortion perception and effort that we have found suggests a link

between our work and pseudo-haptics. Our manipulation is essentially similar to that of

pseudo-haptics, it reduces/increases the control-display ratio of the arm movement. However,

distinct from a computer mouse, the arm has an absolute relation with the body, and thus

different sensory receptors. We believe that an interesting venue to investigate this relation is

to understand how the thresholds we have found may apply to pseudo-haptics, e.g. if I want

to produce the sensation of friction of the medium while moving the arm, are our thresholds

capable of defining the minimal necessary distortion one has to apply?

5.8 Conclusions

In this Chapter we have explored the limits of self-attribution of a distorted movement in

VR. Our distortion model allows continuity of movement, so that an end effector position is

deviated and then attracted back into collocation with the real hand. We propose this behavior

in order to preserve the width of the target, and also because we intend to use this distortion

model in a more complex scenario in the future, such as the reaching scenario presented in

Section 4.2.
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Chapter 5. Movement Distortion and Embodiment

We found that subjects can accept a wide range of distortions when questioned about self-

identification of a movement. Notably, we found consistent evidence of a bias toward ac-

cepting distortions that make a task easier. Finally, the experiment on task difficulty suggests

that, when asked directly about the distortion characteristics, subjects are aware about the

facilitating distortion well below the JND we obtained with experiment 1. On the other hand,

subjects could identify the hindering distortion as such in both experiments.

We believe that the thresholds we map here could be used in designing more engaging VR

interactions. Particularly, movement distortion can be used to manipulate the difficulty of

tasks, and consequently leveraging the challenge so that it matches the skills of the user and

promotes the state of flow [Csikszentmihalyi and Csikszentmihalyi, 1992, Brondi et al., 2015].

Indeed, we envision its use in applications such as post stroke rehabilitation, in which the

movement can be redirected to modulate the difficulty of the task, helping the subject to

achieve the intended goal and gradually increasing the difficulty of the task as the subject

progresses. Alternatively, by requiring more effort from healthy subjects, one could propose

applications that instigate physical activity.
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6 Conclusion

In this thesis we studied the sense of embodiment when bodily discrepancies are presented.

Our main objective was to explore alternatives to prevent incongruent tactile feedback in

virtual reality, while preserving a consistent sense of embodiment of a virtual body. That

is, instead of extending the research in the direction of haptic feedback, we take a different

perspective to the problem and explore two approaches that may help to prevent virtual

body/environment contacts from happening:

• To provide a more informative take of the virtual body posture and its relation with the

environment.

• To manipulate the visual feedback of movements in order to assess human sensitivity to

postural distortion. These manipulations could be used to prevent visual artifacts (e.g.

interpenetration).

In particular, we are interested on the impact of these manipulations on the senses of agency

and ownership of the surrogate virtual body. For that we have drawn from the fundamental

research on the embodied self that human perception is flawed, and that conflicting multi-

sensorial stimulation may converge into an altered experience of bodily self-consciousness

[Blanke et al., 2015].

To address the first item, we evaluated the use of non-planar projection in 1PP as compared to

the use of 3PP (Chapters 3 and 4 respectively). We opted for the latter, preferring the specific

setup in which the subject can alternate between 1PP and 3PP during the simulation.

To address the second item, we investigated the extent to which subjects accept/notice a

distortion that remaps a performed movement into an incongruent visual feedback (Chapter 5).

We find these limits to be rather high if compared to more objective perception measurements,

especially when the distortion can facilitate the completion of the task.

We emphasize that we only look at a small set of manipulation possibilities within these two

approaches. We further discuss this in the limitations and outlook sections of this Chapter.
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Chapter 6. Conclusion

6.1 Contributions

In this thesis we investigate alternatives to address two common limitations of embodied

virtual reality, namely, field-of-view and the lack of physical feedback. We present three main

contributions:

First, we manipulated visual feedback and arrived to a compelling option of alternating the

point of view between 1PP and 3PP during simulation. Subjective evaluation of embodiment

for this condition were very similar to those of 1PP alone, suggesting that the interruption of

the point of view during the simulation is not detrimental to the experience of ownership of a

virtual body. None of the subjects participating in the experiment reported sickness with the

perspective transition that we propose, although we should point that no formal evaluation

has been performed.

Second, we explore the influence of perspective taking and full body motor control on the

embodiment of a virtual body. We show that the visuo-motor correlation over the whole

body movement plays a strong role on the sense of ownership of a virtual body located in the

extra-personal space (3PP). In the context of the scientific debates investigating the influence

of perspective taking and visuo-motor contingencies over the sense of ownership, our result

stands out by supporting the view that a 3PP is compatible with ownership. Therefore, we

raise the discussion about the role of full-body task involvement (engaged interaction) in the

sense of embodiment, which is not present in related literature, and could be related to the

divergence of results. Moreover, although 3PP is competent at informing the relation between

virtual body and its surroundings, our experimental results suggest a trade-off in terms of

interaction reaching performance. This makes sense, while 3PP amplify the visible volume of

the space, the angular size of end effector and targets are reduced, and stereo-graphic depth

perception cues are reduced proportionally to the distance between observer and observed

objects.

Third, we quantify the extent to which subjects tend to self attribute distorted movements

(sense of agency). We have focused on the subgroup of goal oriented movements, more specif-

ically, we interfere by adjusting the effort required to complete a task, consequently facilitating

or hindering a goal directed movement. Our results show that subjects perform poorly in

detecting discrepancies when the nature of the distortion is not made explicit. Additionally,

we have found that subjects are biased toward self-attributing distorted movements that make

the task easier. This is in line with two accounts of agency, the comparator model [Blakemore

et al., 2002] and the notion of judgement of agency [Synofzik et al., 2008b].

Taking these contributions altogether, we can devise the following interaction design guide-

lines for embodied virtual reality:

1. Without long term adaptation, non-planar projections only hold an advantage for visual

search time compared to regular perspective projection.
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2. Non-planar projections could be further explored in an alternating interface, being used

for quick inspection of the VE.

3. There is a performance trade-off between 1PP and 3PP for reaching. 3PP increases

surrounding awareness but decrease visual size and occlude some targets.

4. Subjects make similar use of end effectors for selection regardless of the point of view of

the virtual body.

5. Under optimal multisensory congruence condition – including sensorimotor contin-

gencies – one might feel body ownership of a virtual body seen from a 3PP.

6. Alternating perspectives (1PP-3PP) did not affected the sense of embodiment as com-

pared to 1PP, regardless of the multisensory congruence setting.

7. Considering the speed distortion scale, our self-attribution thresholds are considerably

higher than the discrepancy perception thresholds reported in [Burns and Brooks, 2006].

8. The speed related measurement scale used in the movement distortion experiments

may not be adequate considering the distribution of JND results. The change in distance

is a more convenient scale, but the conversion might have added bias.

9. People seem to have a bias to self-attribute movements that make their task easier.

6.2 Outlook

Although it is the problem of the immateriality of the virtual world that bounds both of our

courses of action together (perspective taking and movement distortion), the relevance of our

research exceeds this boundary.

Particularly, movement distortion can be used to manipulate the difficulty of tasks, and

consequently modulate the engagement of the user. Indeed, we envision its use in applications

such as post stroke rehabilitation, in which the movement can be redirected to modulate the

difficulty of the task, helping the subject to achieve the intended goal, and gradually increasing

the difficulty of the task as the subject improves. Alternatively, by requiring more effort from

healthy subjects, one may propose applications that stimulate physical movement.

Moreover, we believe that the investigation about tolerance to movement distortion can yield

new venues to the development of motion capture hardware and animation software. The

perception that the visual feedback can be severely altered without major effects to the self-

attribution of movements may put in doubt the urgency for accurate absolute tracking in a

range of full body applications in consumer VR. Notably, we argue that the main priority of

motion sensors are neither precision in terms of absolute position nor preserving movement

dynamics, instead it is to accurately track the proximity between limbs/end effectors, thus

preserving visuo-tactile stimuli on situations where self-contact is present.
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6.3 Limitations and Future Work

The manipulation of viewpoint, posture and movement to guide successful interaction and its

relation with the sense of embodiment is complex, and we only scratch the surface of the range

of possibilities. This project will resume, taking special attention to movement distortion, but

we also make considerations on the subject of viewpoint.

To begin, the inter-subject variance of the just noticeable difference is considerable. In a real

life application, the ideal would be to personalize this setting. We plan to investigate this issue

in two fronts: (1) with further analysis of the collected motion capture data, using machine

learning algorithms and defining movement features, such as target over/under shooting; (2)

with an experiment to identify whether electroencephalography (EEG) signal correlates with

the self-attribution of distorted movements (brief description available in A).

Furthermore, the distortion model presented in Chapter 5 manipulates the amplitude of

the movement required to complete a reaching. While we have shown that this affects the

difficulty of the task, a second elementary way to manipulate difficulty is by altering the size of

the target, making its (motor) interaction space bigger or smaller than its visual size. We have

a complementary experiment on this subject, which is briefly presented in Appendix B.

Regarding the point of view, our results diverge from other comparative experiments. It

remains unclear if this difference relates to higher order processes that provide a judgement

of ownership, influenced by agency and the engagement in an involving task [Synofzik et al.,

2008a], or if it is a product of the sensorimotor contingencies. A compelling new measurement

that could clarify whether action in 3PP can augment ownership and self-location are those

assessing the peripersonal space. Notably, [Noel et al., 2015] has shown that the classical 3PP

full body illusion [Lenggenhager et al., 2007] results in a spatial drift of the peripersonal space

with relation to the subjects body. More specifically, the boundaries of the peripersonal space

are projected forward, toward the seen body. This protocol could help to disentangle the

contribution of sensorimotor and task involvement to the sense of embodiment.

Moreover, one of the main practical limitations of 3PP is the virtual body occlusion. Body oc-

clusion caused discomfort to some subjects when they had to walk in the virtual environment,

as well as weaker performance when the subject had to interact with objects located in front

of the virtual body. One way we have identifyied to address these limitations is by making the

body semi-transparent. Indeed, [Martini et al., 2015] present an experiment showing that one

may develop the sense of body ownership of a semi-transparent virtual body seen in 1PP. In

future work we would like to evaluate whether [Martini et al., 2015] findings extend to 3PP.

In particular, we believe that the alternating perspective method that we propose could be

enhanced by making the virtual body semi-transparent, but only when it is seen from a 3PP.

Nevertheless, we propose the use of redirected movement to manipulate the interaction of the

virtual body with the virtual environment, which represents a broad range of possible move-

ments and interaction strategies. However, we have only explored a small set of interactions in
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our experiments, i.e. goal directed reaching movements. We believe that the scenarios and

situations where this approach is desirable should be better defined through experimentation.

Additionally, we have only manipulated movement based on a displacement of an end point.

To contemplate a more complete context of interaction with the virtual environment, more

dimensions of the movement and possible distortion should be considered. For instance,

how do users perceive a movement that deviates from an obstacle in between start and end

position of a movement? In this case the distortion would be orthogonal to the intended

direction of movement, but would not interfere with the final position (except by inducing

subjects to perform unnecessary corrective movements)

We expect to expand the subject of movement distortion in two main directions. By extending

the complexity of distortion to account for a trajectory (not only a target position), and to

better understand the relation of JND with the sense of ownership and agency of a full body.

The former is especially relevant for virtual body interactions with the environment, as the

trajectory could better account for environment constraints or obstacles. The latter involves

transferring our current results on distortion to whole body interaction experiments.

Finally, we explored relatively new aspects of embodied interaction in virtual reality. Altogether

we verified that visuo-motor contingencies of the whole body and meaningful interaction with

the virtual environment have a significant influence on aspects of the sense of embodiment,

and that subjects are receptive to movement distortions that facilitate the completion of a task.

Despite only covering a limited range of sensorimotor manipulations and tasks, our findings

add useful new guidelines to the VR interaction toolbox.

89





A Appendix

A.1 Neural signatures of self-movement and movements distortion

in embodied VR

We seek to identify if movements above and below the JND threshold elicit known error

associated waveform components of EEG ERPs. In particular, we look for traces of event

related negativity (ERN), N400 (negative 400ms) and error positivity components (Pe).

• ERN is a short negative component starting ≈ 150ms after a visual stimuli. It is stronger

at the fronto-central regions of the scalp, and is associated to a mismatch between

expected and presented stimulus [Falkenstein et al., 2000].

• Pe is a long positive component starting ≈ 200ms after the visual stimuli. It is stronger

at centro-parietal regions and is associated to commited errors [Falkenstein et al., 2000].

• N400 is a weaker negative component starting ≈ 400ms after the visual stimuli. It is

stronger at the fronto-central regions and is associated to semantic incongruence [Kutas

and Federmeier, 2011] and the observation of erroneous actions [Amoruso et al., 2013].

In the context of embodied VR, we highlight two experiments that explore these signals:

In the first, [Pavone et al., 2016] has performed an experiment in which subjects observe a

virtual body performing a reaching (pre-recorded) movement toward a mug. The image is

set so that the arm seems to stretch out of the subject shoulders. They demonstrate the three

components could be observed when the virtual hand misses the mug. Notably, amplitude of

ERN was associated with the sense of ownership of the virtual body.

In the second, [Padrao et al., 2016] performs an experiment in which a virtual hand could

move to the wrong direction (relative to the instructed direction) either because of a system

intervention or a mistake made by the subject. They report a stronger ERN specifically when
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the subject was the one to cause the incongruent event, and a stronger N400 when the system

manipulated the movement.

We use the same setup presented in Chapter 5. The subject performs a reaching movements

towards the right, and a small subset of distortions are used, comprising correct movement, a

distortion below JND, and a distortion above JND. We hypothesize that an ERN may be found

below the JND threshold, as the subject might self-attribute errors and required adjustments

at this range, and that an N400 may be found above the JND threshold, as the source of the

error might be attributed to an external source. However, we highlight the fact that the error

we present is relatively more subtle than those of related work, and it may be too subtle to

actually produce these components at a recognizable amplitude. Finally, we also experiment

with machine learning algorithms to to use the ERP waveform as predictor to the subject

answer.
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B.1 Manipulating movement precision

In this experiment we manipulate the difficulty to accurately complete a tapping task. The

tapping task could be made easier or harder by changing the mapping from the real to the

virtual hand, i.e. the virtual hand position could diverge from the real hand position. More

specifically, the interaction (motor) area of the target could be made bigger or smaller than

its visual size. Thus, we warp the space around the target, being capable of fitting a bigger

or smaller physical area than the virtual (visual) feedback suggests, effectively facilitating or

hindering the completion of the task.

The subject had to perform a multi-directional pointing task, as described by the annex B of

ISO 9241-411 [ISO, 2012]. This task consists of multiple pointing movements – 11 in this case –

toward targets equally spaced over the borders of a circle. Subsequent targets are defined as to

maximize the distance between them.

After each round of movements we make two questions:

• Did the virtual hand moved like you?

• Did you missed any target?

The first question is meant to assess the JND of the proposed manipulation (more detains on

JND in Section 5.4). The second question is meant to disentangle the subjective bias of being

unsuccessful in a given task from being capable of detecting a distortion. An overview of a

pointing trial is shown in Figure B.1.

B.1.1 Distortion Model

The tapping task could be made easier or harder by manipulating the position mapping of

the real to the virtual hand (pr eal and pvi r tual respectively) i.e. the virtual and real hands
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Figure B.1 – Overview of the pointing experiment trial. The subject had to tap 11 targets in
a multi-direction pointing task. The current target is highlighted in orange. The movement
could be distorted in the region surrounding the each target. Once the subjects tap the last
target, they are asked whether the seen movement corresponds to the performed, and whether
they have missed a target.

positions could diverge.

A distance range (dr ang e ) is used so that when the target to hand distance (dr eal ) is bigger

than dr ang e no remapping occurs. The dr ang e is also used to normalize the values to the range

[0,1], and then scale this normalized remapping back into world units.

Our dynamic remapping uses properties of exponentiation of values between 0 and 1 so that

when the exponent is bigger than 1 the interaction width of the target becomes bigger, and

when it is less than 1 the interaction width of the target is reduced. Thus facilitating and

hindering the completion of the goal directed task (Figure B.2).

Figure B.2 – Overview of the pointing distortion function. The real movement (left) is mapped
into a virtual movement according to the settings of the function (right). The lower left corner
of the graphics represents the center of the target.
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B.1. Manipulating movement precision

The distortion method is presented below:

dvi r tual =
{

dr ang e × ( dr eal
dr ang e

)a , if dr eal < dr ang e

dr eal , otherwise
(B.1)

Where dr eal = ||vdi r || and vdi r = pr eal −pt g t . The exponent a is defined by

a = log t g ti nter acti on
dr ang e

(
t g t

dr ang e
)

Where t g t represents the radius of the target, and t g ti nter acti on represents a desired radius

of the interaction target. Therefore, when t g ti nter acti on < t g t the task becomes harder, and

when t g ti nter acti on > t g t the task becomes easier. Mind that our distortion model assumes

that t g t and t g ti nter acti on are smaller than dr ang e .

The current position of the virtual hand (pvi r tual ) is then set using:

pvi r tual = pt g t − ˆvdi r ×dvi r tual

where vdi r = pr eal −pt g t

B.1.2 Materials and Methods

Equipment

The participant wore an Oculus Development Kit 2 HMD to visualize the virtual scene. A

PhaseSpace ImpulseX2 system with 18 cameras was used to capture participant and virtual

object movements. A total of 14 LED markers were used, 4 attached to the HMD, 4 attached

to the hand, 3 attached to the table, and 4 attached to the tapping surface. The glove had a

marker over the index fingertip, and two over the back of the hand. A rigid and flat stick was

positioned between the top of the subject’s index finger and the glove in order to prevent the

finger from flexing. The table and the tapping surface were also tracked. Figure B.3 presents

an overview of the setup.

The markers on the glove were pre-calibrated. To compensate for small changes in length of

the index finger, we calibrate the tapping surface. The calibration consisted of pointing at

three predefined corners of the tapping surface. The plane defined by these corners was then

used to translate and rotate the tapping surface into a compatible position.
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Figure B.3 – Overview of the pointing experiment setup. The subject sit in a chair and wore an
HMD and a motion tracking glove.

Experiment design

We manipulated two variables, the visual index of difficulty of the task (visualID), and the

difference in the index of difficulty caused by the distortion (diffID). Details on the index

of difficulty and its relation with distance of movement and size of target in a reaching task

were presented in Chapter 5. The visualID could be set to 4 or 5, we did so while keeping the

distance constant (27cm) and solving for the required width of the target using the equation

t g t = D
2vi sual I D−1

where D = di st ance. The diffID could be set to −2.5, −2, −1.5, −1, −0.5, 0

(no distortion), 0.5, 1, 1.5, 2 or 2.5. A positive diffID means that the motor size of the target

became smaller than the visual feedback suggests (i.e. harder), while a negative diffID had the

opposite effect (i.e. easier). Similarly to t g t , the t g ti nter acti on is computed with the equation

t g ti nter acti on = D
2vi sual I D+di f f I D−1

.

We design this experiment to analyze two aspects of redirected interaction:

First, we want to assess the just noticeable difference (JND) for this distortion model and

task, i.e. the thresholds after which the distortion becomes likely to be perceived.

Second, we want to replicate the bias presented in Chapter 5, i.e. confirm that subjects are

biased to self-attribute movement distortions that make the task easier. We can confirm

that if we obtain a negative point of subjective equality (PSE) in the diffID and if subjects

self-attribute movements when they report no missed target ("no" to second question) more

often than when they report to have missed a target ("yes" to second question).

B.1.3 Results and Conclusions

We received 15 subjects, two of whom have been excluded due to very poor distortion recogni-

tion performance.
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The JNDs and the PSE were obtained by fitting a normal distribution to the data of each subject.

The PSE is equivalent to the mean of the distribution, while the JNDs were computed as the

PSE±1.178×SD .

We found the following JNDs thresholds (in di f f I D units) 1.20± .56 and −1.73± .74 for

the hindering and facilitating distortions respectively. Thus, distortions within this range of

di f f I D values were more likely to be self-attributed than not (Figure B.4).

Figure B.4 – Pointing experiment JND and PSE results. The graphic presents the mean self-
attribution for the different levels of diffID. The vertical lines represent the mean JNDs and
PSE found by fitting a normal distribution to the data of each subject. Subjects tended to
self-attribute distorted movements more often when the distortion made the task slightly
easier than the unmodified movement. Error bars represent the standard error of the mean.

We obtained a meanpmSD of −.27± .39, a t-test shows that the PSE was significantly smaller

than zero (t12 = 2.44 p < .032, Figure B.4). Moreover, subject were less likely to self-attribute

a movement when they were aware that a at least one target in the trial had been missed

(t12 = 8.36 p < .001, Figure B.5). These results support the notion that subjects are biased

toward self-attributing movements that make the task easier to complete, as suggested in

Chapter 5.

In this experiment we expand the characteristics of the movement distortion model by manip-

ulating the size of the target, instead of the distance to reach it (as in Chapter 5). We show that

the bias toward self-attribution of movements that make the task easier is also present for this

family of manipulation, therefore making the findings of Chapter 5 more consistent.

97



Appendix B. Appendix

Figure B.5 – Pointing experiment relation of self-attribution and perception of errors. Subjects
were more likely to self-attribute a movements when they were not aware of pointing errors.
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C Appendix

Additional materials for the study: Effect of perspective and visuo-motor synchrony to the

sense of embodiment presented in Section 4.2

1. Pre-experiment characterization questionnaire.

2. Embodiment questionnaire applied after each experimental condition.
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CHARACTERIZATION
All the gathered data will be treated anonymously.

* Required

Identi᐀�er (᐀�lled by the experimenter) *

Height *

Weight *

Age *

Gender *

 Male

 Female

How often do you participate on experiments using Virtual Reality equipments? *
e.g. experiments in other labs of the university.

 Never participated of an experiment

 A few times

 Every month

 Every week

 Every day

How often do you use head mounted displays? *

 Never used

 A few times

 Every month

 Every week

 Every day

How often do you play video games? *

 Never played

 A few times

 Every month

 Every week

 Every day

Edit this form
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Powered by

How often do use the Microsoft Kinect, Nintendo Wii or Playstation move? *

 Never used

 A few times

 Every month

 Every week

 Every day

Hand of preference *
usually, the hand you write with

 Left hand

 Right hand

Area(s) of expertise/study/work/interest *
e.g. computer science, math, sales, mechanical engineering etc.

Are you a student? *

 Yes, bachelor student

 Yes, master student

 Yes, PhD student

 No, I'm not a student

This content is neither created nor endorsed by Google.  

Report Abuse  Terms of Service  Additional Terms

Submit

Never submit passwords through Google Forms.
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D Appendix

Additional materials for the study: Effect of perspective and multi-modal congruence to the

sense of embodiment presented in Section 4.3

Pre-experiment characterization questionnaire were the same presented in Appendix C

1. Embodiment questionnaire applied after each experimental condition.

2. Post-experiment perspective questionnaire.
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Questionnaire
* Required

Subject ID *
(曒�lled by the experimenter)

Condition *
(曒�lled by the experimenter)

 First (1) Person Perspective

 Third (3) Person Perspective

 First/Third (1/3) Person Perspective

Read carefully

During the last session …

… it felt as if my body was located where I saw the virtual body to be *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

... I felt as if I was looking to my own body *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

… It seemed as if I were sensing the movement of my body in the location where the virtual body
moved *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

… it felt as if I could get hurt if the virtual body was to fall in the pit *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

Edit this form
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…It felt that the virtual body was my own body *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

... whenever I moved my body I expected the virtual body to move in the same way *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

…it felt as if my real body was turning virtual *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

…it felt as if I had more than one body *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

…it felt like I was in control of the body I was seeing *

-3  
strongly
DISGREE

-2 -1 0 1 2
3  

strongly
AGREE

… I felt as if the pit posed a threat to myself *

-3  
strongly

DISAGREE
-2 -1 0 1 2

3  
strongly
AGREE

Submit

Never submit passwords through Google Forms.
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POST EXPERIMENT
* Required

Subject ID *
(逭郖lled by the experimenter)

Which point of view do you prefer to use to walk forward? *

 THIRD person perspective

 FIRST person perspective

Which point of view makes you feel safer when the 鬠䢍oor falls? *

 THIRD person perspective

 FIRST person perspective

Which point of view do you prefer to use when the 鬠䢍oor falls? *

 THIRD person perspective

 FIRST person perspective

Which point of view do you prefer to use to reach the targets? *

 FIRST person perspective

 THIRD person perspective

Which condition do you PREFER to perform the reaching task? *

 THIRD person perspective alone

 Being able to switch between FIRST and THIRD person perspective

 FIRST person perspective alone

Which condition do you think to be MORE EFFICIENT to perform the reaching task? *

 FIRST person perspective alone

 Being able to switch between FIRST and THIRD person perspective

 THIRD person perspective alone

Which 鬠䢍oor did you consider when performing the Mental Ball Drop? *

 The 鬠䢍oor of the virtual environment

 The 鬠䢍oor of the lab

Submit

Never submit passwords through Google Forms.

Edit this form
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E Appendix

Additional materials for the study: Embodied interaction and non-planar projections in

immersive virtual reality presented in Section 3.1

Pre-experiment characterization questionnaire were the same presented in Appendix C

1. Embodiment questionnaire applied after each experimental condition.

2. Simulation Sickness questionnaire (provided by the Cyberpsychology Lab of the Univer-

sity of Quebec).
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Embodiment Questionnaire 
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No______________                 Date____________________ 

 

SIMULATOR SICKNESS QUESTIONNAIRE 
Kennedy, Lane, Berbaum, & Lilienthal (1993)*** 

 
Instructions : Circle how much each symptom below is affecting you right now. 

 

1. General discomfort 

 

None Slight Moderate Severe 

2. Fatigue 

 

None Slight Moderate Severe 

3. Headache 

 

None Slight Moderate Severe 

4. Eye strain 

 

None Slight Moderate Severe 

5. Difficulty focusing 

 

None Slight Moderate Severe 

6. Salivation increasing 

 

None Slight Moderate Severe 

7. Sweating 

 

None Slight Moderate Severe 

8. Nausea 

 

None Slight Moderate Severe 

9. Difficulty concentrating 

 

None Slight Moderate Severe 

10. « Fullness of the Head »  

 

None Slight Moderate Severe 

11. Blurred vision 

 

None Slight Moderate Severe 

12. Dizziness with eyes open 

 

None Slight Moderate Severe 

13. Dizziness with eyes closed 

 

None Slight Moderate Severe 

14. *Vertigo 

 

None Slight Moderate Severe 

15. **Stomach awareness 

 

None Slight Moderate Severe 

16. Burping 

 

None Slight Moderate Severe 

 

* Vertigo is experienced as loss of orientation with respect to vertical upright. 

 

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of 

nausea. 

 

 
Last version : March 2013 

 

***Original version : Kennedy, R.S., Lane, N.E., Berbaum, K.S., & Lilienthal, M.G. (1993). Simulator Sickness 

Questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 

3(3), 203-220. 
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1PP: First Person Perspective

3PP: Third Person Perspective

CDR: Control Display Ratio

EEG: Electroencephalography

FBOI: Full Body Ownership Illusion
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GSR: Galvanic Skin Response
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MT: Mean Time
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VE: Virtual Environment
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VMT: Visuo Motor Tactile

VR: Virtual Reality
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