

INCREMENTAL KINETIC MODELING OF SPECTROSOPIC DATA USING A REDUCED CALIBRATION MODEL

Julien Billeter and Dominique Bonvin

Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne Switzerland

15th Scandinavian Symposium on Chemometrics June 21, 2017, Naantali (Finland)

INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: (i) transformation of **C** to **X**, and (ii) modeling of each individual extent, \mathbf{x}_i , $\forall i = 1,...,R$ reactions

<u>Condition</u>: $S_{a} \ge R$

INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: (i) transformation of **C** to **X**, and (ii) modeling of each individual extent, \mathbf{x}_i , $\forall i = 1,...,R$ reactions

<u>Condition</u>: $S_{a} \ge R$

Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model $C_a = f(A)$ with a minimum number of species $\rightarrow S_a < R$

INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: (i) transformation of **C** to **X**, and (ii) modeling of each individual extent, \mathbf{x}_i , $\forall i = 1,...,R$ reactions

<u>Condition</u>: $S_{a} \geq R$

Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model $C_a = f(A)$ with a minimum number of species $\rightarrow S_a < R$

Aim of this Work

Incremental kinetic modeling using a calibration model of spectroscopic data with a reduced set of species $\boxed{S_{\rm a} < R}$

MATERIAL BALANCE EQUATIONS

Consider the material balance equations of a reaction system with

- S_a (available) species
- *R* reactions
- p inlets
- 1 outlet

$$\dot{\mathbf{n}}_{a}(t) = \mathbf{N}_{a}^{\mathrm{T}} \mathbf{r}_{v}(t) + \mathbf{C}_{in,a} \mathbf{q}_{in}(t) - \boldsymbol{\omega}(t) \ \mathbf{n}_{a}(t), \quad \mathbf{n}_{a}(0) = \mathbf{n}_{0,a}$$

$$S_{a} \times R \ R \ S_{a} \times p \ p \ 1 \ S_{a} \qquad S_{a}$$
with $\boldsymbol{\omega}(t) \coloneqq \frac{q_{out}(t)}{V_{out}(t)} \text{ and } \mathbf{r}_{v}(t) = V(t) \ \mathbf{r}(t)$

INCREMENTAL KINETIC MODELING

The kinetic problem is decomposed into sub-problems of lower dimension and complexity.

The extent-based incremental kinetic modeling proceeds in <u>two steps</u>:

I. Transformation to extents

Computation of the contribution of each reaction in the form of an extent (+ state reconstruction of the unmeasured numbers of moles, if necessary)

II. Model identification (parameter estimation)

Modeling of each individual rate expression from its corresponding extent

INCREMENTAL KINETIC MODELING I. Transformation to extents

i. Computation of p extents of inlet and 1 extent of initial conditions:

$$\dot{\mathbf{x}}_{in}(t) = \mathbf{q}_{in}(t) - \boldsymbol{\omega}(t) \ \mathbf{x}_{in}(t), \ \mathbf{x}_{in}(0) = \mathbf{0}_{p} \quad \Rightarrow \mathbf{x}_{in}(t) = \int_{0}^{t} \dot{\mathbf{x}}_{in}(\tau) d\tau$$

$$\dot{x}_{ic}(t) = -\boldsymbol{\omega}(t) \ x_{ic}(t), \qquad x_{ic}(0) = 1 \quad \Rightarrow x_{ic}(t) = \int_{0}^{t} \dot{x}_{ic}(\tau) d\tau$$

ii. Computation of the reaction-variant (vRV) form of the measurements:

$$\tilde{\mathbf{n}}_{a}^{vRV}(t) = \mathbf{N}_{a}^{\mathrm{T}} \tilde{\mathbf{x}}_{r}(t) = \tilde{\mathbf{n}}_{a}(t) - \mathbf{C}_{in,a} \mathbf{x}_{in}(t) - \mathbf{n}_{0,a} x_{ic}(t)$$

iii. Computation of the *R* extents of reaction: $\tilde{\mathbf{x}}_{r}(t) = (\mathbf{N}_{a}^{\mathrm{T}})^{+} \tilde{\mathbf{n}}_{a}^{vRV}(t)$

with
$$\dot{\mathbf{x}}_{r}(t) = \mathbf{r}_{v}(t) - \boldsymbol{\omega}(t) \mathbf{x}_{r}(t), \quad \mathbf{x}_{r}(0) = \mathbf{0}_{R}$$

Condition: $\operatorname{rank}(\mathbf{N}_{a}) = \mathbf{R} \Longrightarrow S_{a} \ge \mathbf{R}$

Rodrigues et al., Comp. Chem. Eng. 73 (2015), 23

INCREMENTAL KINETIC MODELING II. Model identification

A rate expression is postulated for each extent of reaction, and each identification problem is solved separately by comparing the corresponding measured and modeled extent:

INCREMENTAL KINETIC MODELING $S_a < R$

Two approaches are possible to adapt the incremental kinetic modeling to the case $S_a < R$ i.e., when there are less measured species than reactions:

1. COMBINED DYNAMIC MODELING AND STATIC RECONSTRUCTION

- i. Some reaction extents $(\mathbf{x}_{r,1})$ are **modeled dynamically** using candidate rate expressions and their rate parameters are **estimated simultaneously**
- ii. The remaining extents $(\mathbf{x}_{r,2})$ are reconstructed statically from $\tilde{\mathbf{n}}_{a}^{vRV}$ and $\mathbf{x}_{r,1}$, and their rate expressions are identified incrementally

2. SIMULTANEOUS IDENTIFICATION OF REACTION SUBSYSTEMS

- i. Some extents of reaction are computed statically from $\tilde{\mathbf{n}}_{a}^{vRV}$
- ii. One determines the subsets of reactions whose rate expressions can be identified separately between subsets but simultaneously within each subset

INCREMENTAL KINETIC MODELING ($S_a < R$) 1. Dynamic modeling / Static reconstruction

i. Definition of $\tilde{\mathbf{n}}_{a}^{vRV}$ in terms of two types of reaction extents $(\mathbf{x}_{r,1}, \mathbf{x}_{r,2})$ $\tilde{\mathbf{n}}_{a}^{vRV}(t_{h}) = \mathbf{N}_{a,1}^{\mathrm{T}} \mathbf{x}_{r,1}(t_{h}) + \mathbf{N}_{a,2}^{\mathrm{T}} \mathbf{x}_{r,2}(t_{h})$

ii. Static reconstruction of $\mathbf{x}_{r,2}$ in terms of $\tilde{\mathbf{n}}_{a}^{vRV}$ and $\mathbf{x}_{r,1}$ (substitute $\mathbf{x}_{r,2}$)

$$\mathbf{n}_{a}^{vRV}(t_{h}) = \mathcal{A}_{a}\mathbf{x}_{r,1}(t_{h}) + \mathcal{B}_{a}\tilde{\mathbf{n}}_{a}^{vRV}(t_{h})$$

with $\mathcal{A}_a = (\mathbf{I}_{S_a} - \mathcal{B}_a)\mathbf{N}_{a,1}^{\mathrm{T}}, \mathcal{B}_a = \mathbf{N}_{a,2}^{\mathrm{T}}(\mathbf{N}_{a,2}^{\mathrm{T}})^+ \text{ and } \operatorname{rank}(\mathbf{N}_{a,2}) < S_a \Rightarrow R_2 < S_a$

iii. Reconstruction of the unmeasured states $\hat{\mathbf{n}}_{u}$ using $\tilde{\mathbf{n}}_{a}^{vRV}$, $\mathbf{x}_{r,1}$, \mathbf{x}_{in} and x_{ic}

INCREMENTAL KINETIC MODELING ($S_a < R$) 1. Dynamic modeling / Static reconstruction

1A. <u>SIMULTANEOUS IDENTIFICATION</u> of the R_1 reactions from $\mathbf{x}_{r,1}$

$$\begin{split} \min_{\boldsymbol{\theta}_{r,1}} & \left\| (\mathbf{I}_{S_a} - \boldsymbol{\mathcal{B}}_a) \tilde{\mathbf{n}}_a^{v_R V}(t_h) - \boldsymbol{\mathcal{A}}_a \mathbf{x}_{r,1}(t_h) \right\|_W^2 \quad \forall h = 1, \dots, H \\ \text{s.t.} & \dot{\mathbf{x}}_{r,1}(t) = \mathbf{r}_{v,1}(\tilde{\mathbf{c}}(t), \boldsymbol{\theta}_{r,1}) - \boldsymbol{\omega}(t) \mathbf{x}_{r,1}(t), \quad \mathbf{x}_{r,1}(0) = \mathbf{0}_{R_1} \\ & \hat{\mathbf{n}}_u(t_h) = \boldsymbol{\mathcal{A}}_u \mathbf{x}_{r,1}(t) + \boldsymbol{\mathcal{B}}_u \tilde{\mathbf{n}}_a^{v_R V}(t_h) + \mathbf{C}_{in,u} \mathbf{x}_{in}(t_h) + \mathbf{n}_{0,u} x_{ic}(t_h) \end{split}$$

STATIC RECONSTRUCTION of $\mathbf{x}_{r,2}$ from $\mathbf{x}_{r,1}$

$$egin{aligned} \hat{\mathbf{x}}_{r,2}(t_h) &= (\mathbf{N}_{a,2}^{ ext{T}})^+ \, ilde{\mathbf{n}}_a^{vRV}(t_h) - (\mathbf{N}_{a,2}^{ ext{T}})^+ \, \mathbf{N}_{a,1}^{ ext{T}} \mathbf{x}_{r,1}(t_h) \ R_2 &< S_a \qquad S_a \qquad R_1 \end{aligned}$$

1B. INCREMENTAL IDENTIFICATION of the R_2 reactions from $\mathbf{x}_{r,2}$

$$\begin{split} \min_{\substack{\boldsymbol{\theta}_{r,2,i} \\ \text{s.t.}}} & \left\| \hat{x}_{r,2,i}(t_h) - x_{r,2,i}(t_h) \right\|_W^2 \quad \forall h = 1, \dots, H, \ \forall i = 1, \dots, R_2 \\ \text{s.t.} & \dot{x}_{r,2,i}(t) = r_{v,2,i}(\tilde{\mathbf{c}}(t), \underline{\boldsymbol{\theta}}_{r,2,i}) - \boldsymbol{\omega}(t) x_{r,2,i}(t), \quad x_{r,2,i}(0) = 0 \end{split}$$

INCREMENTAL KINETIC MODELING $(S_a < R)$ 2. Simultaneous identification of subsystems

i. Definition of $S_a < R$ observable extents \mathbf{x}_r° as

 $\mathbf{x}_{r}^{\circ}(t) = \mathbf{S}^{\mathrm{T}} \mathbf{x}_{r}(t), \text{ s.t. } \mathbf{N}_{a}^{\mathrm{T}}(\mathbf{S}^{\mathrm{T}} \mathbf{S}) = \mathbf{N}_{a}^{\mathrm{T}} \text{ and } \mathbf{S}^{\mathrm{T}} \mathbf{S} \neq \mathbf{I}_{R}$

S constructed as $\operatorname{rref}(\mathbf{N}_{a}^{\mathrm{T}})$, and removing the rows with either no or more than one non-zero elements.

ii. Computation of the reaction-variant (vRV) form of the measurements:

$$\mathbf{n}_{a}^{vRV}(t) = \mathbf{N}_{a}^{\mathrm{T}}\mathbf{x}_{r}(t) = \mathbf{N}_{a}^{\mathrm{T}}\mathbf{S}^{\mathrm{T}}\mathbf{x}_{r}^{\circ}(t)$$

- iii. Computation of the R° observable extents: $\tilde{\mathbf{x}}_{r}^{\circ}(t_{h}) = (\mathbf{N}_{a}^{\mathrm{T}}\mathbf{S}^{\mathrm{T}})^{+}\tilde{\mathbf{n}}_{a}^{vRV}(t_{h})$
- iv. Partition of \mathbf{N} in $\begin{bmatrix} \mathbf{N}^{\circ} \\ \mathbf{N}_{u} \end{bmatrix}$ and reconstruction of the S_{u}° unmeasured observable states $\hat{\mathbf{n}}_{u}^{\circ}(t_{h})$ based on \mathbf{N}_{u} using $\tilde{\mathbf{n}}_{a}^{vRV}$, $\tilde{\mathbf{x}}_{r}^{\circ}$, \mathbf{x}_{in} and x_{ic}

INCREMENTAL KINETIC MODELING $(S_a < R)$ 2. Simultaneous identification of subsystems

SUBSYSTEM IDENTIFICATION (directed bipartite graph)

- 1. Create a graph with nodes for extents and concentrations
- 2. For each pair (i, j), if $\mathbf{N}_{i,j} \neq 0$, add a directed arc $x_i \rightarrow n_j$
- 3. Label the arcs to observable conc. as reconstruction arcs $(-\rightarrow)$
- 4. For each pair (i, j), add a directed arc $x_i \leftarrow n_j$ if $r_i(n_i(t))$
- 5. Remove reconstruction arcs / single nodes (subgraph separation)
- 6. For each subgraph/subset (strongly connected nodes)
 - i. Add reconstruction arcs with end nodes in the subgraph (+ starting nodes)
 - ii. Label weakly connected nodes as interpolation nodes

SEPARATE MODEL IDENTIFICATION BETWEEN SUBSETS

- Rate expressions (rate parameters) corresponding to strongly connected extent nodes of each subset are **identified (estimated) simultaneously**
- Extents corresponding to interpolation nodes are interpolated from their measurements or simulated from models identified in previous subsets

SIMULATED EXAMPLE Reaction system and operating conditions

• Reaction scheme

$$\begin{array}{lll} \mathbf{A} + \mathbf{B} & \stackrel{r_1}{\longrightarrow} \mathbf{C} & r_1 = k_1 c_{\mathbf{A}} c_{\mathbf{B}} \\ \mathbf{C} + \mathbf{D} & \stackrel{r_2}{\longrightarrow} \mathbf{E} & r_2 = k_2 c_{\mathbf{C}} c_{\mathbf{D}} \\ \mathbf{B} & \stackrel{r_3}{\longrightarrow} \mathbf{F} & r_3 = k_3 c_{\mathbf{B}} \\ \mathbf{D} & \stackrel{r_4}{\longrightarrow} \mathbf{G} & r_4 = k_4 c_{\mathbf{D}} \end{array}$$

- Experimental conditions
 - Species A is initially present (0.1 mol in 1 L)
 - $\circ~$ Species B (2 mol L^-1) and D (1.5 mol L^-1) are dosed at a flow rate q_{in} of 0.5 L h^-1 for 12 min
 - $\circ\,$ All species absorb except species F and G
 - $\circ\,$ The absorbance (500 and 1500 cm^-1) is measured for 60 min

SIMULATED EXAMPLE Multivariate spectroscopic measurements

SIMULATED EXAMPLE Predicted concentrations

SIMULATED EXAMPLE 1. Dynamic modeling / Static reconstruction

1A. <u>SIMULTANEOUS IDENTIFICATION</u> of $R_1 = 2$ reactions $(x_{r,1}, x_{r,2})$

$$\begin{split} \hat{k}_{\!_1} &= 206 \pm 4 \ [194, \ 217] \ (99.7\%), \\ \hat{k}_{\!_2} &= 149.5 \pm 0.4 \ [148.2, \ 150.8] \ (99.7\%), \\ (k_{\!_1,true} &= 200, \ k_{\!_2,true} = 150) \end{split}$$

SIMULATED EXAMPLE 1. Dynamic modeling / Static reconstruction

1A. <u>SIMULTANEOUS IDENTIFICATION</u> of $R_1 = 2$ reactions $(x_{r,1}, x_{r,2})$

$$\begin{split} \hat{k}_1 &= 206 \pm 4 \ [194, \ 217] \ (99.7\%), \\ \hat{k}_2 &= 149.5 \pm 0.4 \ [148.2, \ 150.8] \ (99.7\%), \\ (k_{1,true} &= 200, \ k_{2,true} = 150) \end{split}$$

1B. INCREMENTAL IDENTIFICATION of the $R_2 = 2$ reactions $(x_{r,3}, x_{r,4})$ $\hat{k}_3 = 1.02 \pm 0.01 \ [1.00, 1.04] \ (99.7\%),$ $\hat{k}_4 = 1.02 \pm 0.01 \ [0.99, 1.04] \ (99.7\%),$ $(k_{3,true} = 1.00, \ k_{4,true} = 1.00)$

Matrix of stoichiometry N

$$\mathbf{N} = \begin{bmatrix} -1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$

Stoichiometric matrix of measured species N_a (A, C, E)

$$\mathbf{N}_{a} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Construction of the matrix \mathbf{S}

$$\mathbf{N}_{a}^{\mathrm{T}} \xrightarrow{\mathrm{rref}} \mathbf{S} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ s.t. } \mathbf{N}_{a}^{\mathrm{T}}(\mathbf{S}^{\mathrm{T}}\mathbf{S}) = \mathbf{N}_{a}^{\mathrm{T}} \text{ and } \mathbf{S}^{\mathrm{T}}\mathbf{S} \neq \mathbf{I}_{R}$$
$$\implies x_{r,1} \text{ and } x_{r,2} \text{ are measured!}$$

REACTION SUBSYSTEM 1

 $\hat{k_1} = 200 \pm 5 \ [185, 214] \ (99.7\%), \ k_{1,true} = 200$ $\hat{k_3} = 1.7 \pm 0.3 \ [0.9, 2.5] \ (99.7\%), \ k_{3,true} = 1$

Interpolation node

REACTION SUBSYSTEM 2

$$\begin{split} \hat{k}_2 &= 153 \pm 3 \,\, [143,\, 163] \,\, (99.7\%), \,\, k_{_{2,true}} = 150 \\ \hat{k}_4 &= 0.9 \pm 0.1 \,\, [0.7,\, 1.2] \,\, (99.7\%), \,\, k_{_{4,true}} = 1 \end{split}$$

CONCLUSION AND PERSPECTIVES

Incremental kinetic modeling via a reduced spectroscopic calibration model $S_a < R$ is possible in two ways:

- Method 1 Modeling simultaneously $(R S_a)$ reaction extents, and modeling incrementally the remaining extents;
- Method 2Expressing the effects of the R reactions by means of $S_a < R$
extents, and identifying the subsets of reactions whose rate
expressions can be identified separately (between subsets)

OPEN QUESTIONS

- Method 1 In which conditions does it allow an incremental modeling?
- Method 2 In which conditions does it allow subgraph separation?- Use of empirical extents (linear combinations of extents)?

THANK YOU FOR YOUR ATTENTION

ANNOUNCEMENT

In July 2017, **Prof. D. Bonvin** will retire and the **Laboratoire d'Automatique** of the EPFL will close its doors!

References

- Bhatt N., Amrhein M., Bonvin D., Incremental identification of reaction and mass-transfer kinetics using the concept of extents, *Ind. Eng. Chem. Res.* 50 (2011) 12960
- Billeter J., Srinivasan S., Bonvin D., Extent-based kinetic identification using spectroscopic measurements and multivariate calibration, Anal. Chim. Acta. 767 (2013) 21
- Rodrigues D., Srinivasan S., Billeter J., Bonvin D., Variant and invariant states for chemical reaction systems, *Comp. Chem. Eng.* 73 (2015) 23
- Masic A., Billeter J., Bonvin D., Villez K., Extent computation under rank-deficient conditions, IFAC World Congress 2017 (available on https://infoscience.epfl.ch/record/224435)
- > Billeter J., Villez K., Bonvin D., Extent-based model identification using a reduced set of measurements, in preparation