## Incremental Kinetic Modeling of Spectrosopic Data using a Reduced Calibration Model

## Julien Billeter and Dominique Bonvin

$15^{\text {th }}$ Scandinavian Symposium on Chemometrics June 21, 2017, Naantali (Finland)

## INTRODUCTION AND MOTIVATION

## Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems:
(i) transformation of $\mathbf{C}$ to $\mathbf{X}$, and
(ii) modeling of each individual extent, $\mathbf{x}_{i}, \forall i=1, \ldots, R$ reactions

Condition: $S_{\mathrm{a}} \geq R$

## InTRODUCTION AND MOTIVATION

## Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems:
(i) transformation of $\mathbf{C}$ to $\mathbf{X}$, and
(ii) modeling of each individual extent, $\mathrm{x}_{i}, \forall i=1, \ldots, R$ reactions

Condition: $S_{\mathrm{a}} \geq R$

## Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model $\mathrm{C}_{\mathrm{a}}=\mathbf{f}(\mathbf{A})$ with a minimum number of species $\rightarrow S_{\mathrm{a}}<R$

## Introduction and Motivation

## Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems:
(i) transformation of $\mathbf{C}$ to $\mathbf{X}$, and
(ii) modeling of each individual extent, $\mathbf{x}_{i}, \forall i=1, \ldots, R$ reactions

Condition: $S_{\mathrm{a}} \geq R$

## Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model $\mathrm{C}_{\mathrm{a}}=\mathbf{f}(\mathbf{A})$ with a minimum number of species $\rightarrow S_{\mathrm{a}}<R$

## Aim of this Work

Incremental kinetic modeling using a calibration model of spectroscopic data with a reduced set of species $S_{\mathrm{a}}<R$

## Material Balance Equations

Consider the material balance equations of a reaction system with

- $S_{a}$ (available) species
- $R$ reactions
- $p$ inlets
- 1 outlet


$$
\begin{aligned}
\hline \dot{\mathbf{n}}_{a}(t)=\mathbf{N}_{a}^{\mathrm{T}} \mathbf{r}_{v}(t)+\mathbf{C}_{\text {in,a}} \mathbf{q}_{i n}(t)-\omega(t) \mathbf{n}_{a}(t), & \mathbf{n}_{a}(0)=\mathbf{n}_{0, a} \\
\hline S_{a} & S_{a} \times R \quad R \quad S_{a} \times p
\end{aligned}
$$

## Incremental Kinetic Modeling

The kinetic problem is decomposed into sub-problems of lower dimension and complexity.

The extent-based incremental kinetic modeling proceeds in two steps:
I. Transformation to extents

Computation of the contribution of each reaction in the form of an extent (+ state reconstruction of the unmeasured numbers of moles, if necessary)
II. Model identification (parameter estimation)

Modeling of each individual rate expression from its corresponding extent

## Incremental Kinetic Modeling I. Transformation to extents

i. Computation of $p$ extents of inlet and 1 extent of initial conditions:

$$
\begin{array}{lll}
\dot{\mathbf{x}}_{i n}(t)=\mathbf{q}_{i n}(t)-\omega(t) \mathbf{x}_{i n}(t), & \mathbf{x}_{i n}(0)=\mathbf{0}_{p} & \Rightarrow \mathbf{x}_{i n}(t)=\int_{0}^{t} \dot{\mathbf{x}}_{i n}(\tau) \mathrm{d} \tau \\
\dot{x}_{i c}(t)=-\omega(t) x_{i c}(t), & x_{i c}(0)=1 & \Rightarrow x_{i c}(t)=\int_{0}^{t} \dot{x}_{i c}(\tau) \mathrm{d} \tau
\end{array}
$$

ii. Computation of the reaction-variant ( $v \mathrm{RV}$ ) form of the measurements:

$$
\tilde{\mathbf{n}}_{a}^{v R V}(t)=\mathbf{N}_{a}^{\mathrm{T}} \tilde{\mathbf{x}}_{r}(t)=\tilde{\mathbf{n}}_{a}(t)-\mathbf{C}_{i n, a} \mathbf{x}_{i n}(t)-\mathbf{n}_{0, a} x_{i c}(t)
$$

iii. Computation of the $R$ extents of reaction: $\quad \tilde{\mathbf{x}}_{r}(t)=\left(\mathbf{N}_{a}^{\mathrm{T}}\right)^{+} \tilde{\mathbf{n}}_{a}^{v R V}(t)$

$$
\text { with } \dot{\mathbf{x}}_{r}(t)=\mathbf{r}_{v}(t)-\omega(t) \mathbf{x}_{r}(t), \quad \mathbf{x}_{r}(0)=\mathbf{0}_{R}
$$

Condition: $\operatorname{rank}\left(\mathbf{N}_{a}\right)=R \Rightarrow S_{a} \geq R$

## Incremental Kinetic Modeling II. Model identification

A rate expression is postulated for each extent of reaction, and each identification problem is solved separately by comparing the corresponding measured and modeled extent:

$$
\begin{array}{cl}
\min _{\boldsymbol{\theta}_{r, i}} & \left\|\tilde{x}_{r, i}(t)-x_{r, i}(t)\right\|_{W}^{2} \quad i=1, \ldots, R \\
\text { s.t. } & \dot{x}_{r, i}(t)=r_{v, i}\left(\tilde{\mathbf{c}}(t), \boldsymbol{\theta}_{r, i}\right)-\omega(t) x_{r, i}(t), \\
& x_{r, i}(0)=0 \\
& \boldsymbol{\theta}_{r, i} \leq \boldsymbol{\theta}_{r, i} \leq \overline{\boldsymbol{\theta}}_{r, i}
\end{array}
$$



## IncREMENTAL KinETIC MODELING $S_{a}<R$

Two approaches are possible to adapt the incremental kinetic modeling to the case $S_{a}<R$ i.e., when there are less measured species than reactions:

1. Combined Dynamic Modeling and Static Reconstruction
i. Some reaction extents ( $\mathbf{x}_{r, 1}$ ) are modeled dynamically using candidate rate expressions and their rate parameters are estimated simultaneously
ii. The remaining extents ( $\mathbf{x}_{r, 2}$ ) are reconstructed statically from $\tilde{\mathbf{n}}_{a}^{v R V}$ and $\mathbf{x}_{r, 1}$, and their rate expressions are identified incrementally
2. Simultaneous Identification of Reaction Subsystems
i. Some extents of reaction are computed statically from $\tilde{\mathbf{n}}_{a}^{v R V}$
ii. One determines the subsets of reactions whose rate expressions can be identified separately between subsets but simultaneously within each subset

## Incremental Kinetic Modeling $\left(S_{\mathrm{a}}<R\right)$ 1. Dynamic modeling / Static reconstruction

i. Definition of $\tilde{\mathbf{n}}_{a}^{v R V}$ in terms of two types of reaction extents $\left(\mathbf{x}_{r, 1}, \mathbf{x}_{r, 2}\right)$

$$
\tilde{\mathbf{n}}_{a}^{v R V}\left(t_{h}\right)=\mathbf{N}_{a, 1}^{\mathrm{T}} \mathbf{x}_{r, 1}\left(t_{h}\right)+\mathbf{N}_{a, 2}^{\mathrm{T}} \mathbf{x}_{r, 2}\left(t_{h}\right)
$$

ii. Static reconstruction of $\mathbf{x}_{r, 2}$ in terms of $\tilde{\mathbf{n}}_{a}^{v R V}$ and $\mathbf{x}_{r, 1}$ (substitute $\mathbf{x}_{r, 2}$ )

$$
\mathbf{n}_{a}^{v R V}\left(t_{h}\right)=\mathcal{A}_{a} \mathbf{x}_{r, 1}\left(t_{h}\right)+\mathcal{B}_{a} \tilde{\mathbf{n}}_{a}^{v R V}\left(t_{h}\right)
$$

with $\mathcal{A}_{a}=\left(\mathbf{I}_{S_{a}}-\mathcal{B}_{a}\right) \mathbf{N}_{a, 1}^{\mathrm{T}}, \mathcal{B}_{a}=\mathbf{N}_{a, 2}^{\mathrm{T}}\left(\mathbf{N}_{a, 2}^{\mathrm{T}}\right)^{+}$and $\operatorname{rank}\left(\mathbf{N}_{a, 2}\right)<S_{a} \Rightarrow R_{2}<S_{a}$
iii. Reconstruction of the unmeasured states $\hat{\mathbf{n}}_{u} \mathrm{using} \tilde{\mathbf{n}}_{a}^{v R V}, \mathbf{x}_{r, 1}, \mathbf{x}_{i n}$ and $x_{i c}$

## Incremental Kinetic Modeling $\left(S_{\mathrm{a}}<R\right)$ 1. Dynamic modeling / Static reconstruction

1A. Simultaneous Identification of the $R_{1}$ reactions from $\mathbf{x}_{r, 1}$

$$
\begin{aligned}
\min _{\boldsymbol{\theta}_{r, 1}} & \left\|\left(\mathbf{I}_{S_{a}}-\mathcal{B}_{a}\right) \tilde{\mathbf{n}}_{a}^{v R V}\left(t_{h}\right)-\mathcal{A}_{a} \mathbf{x}_{r, 1}\left(t_{h}\right)\right\|_{W}^{2} \quad \forall h=1, \ldots, H \\
\text { s.t. } & \dot{\mathbf{x}}_{r, 1}(t)=\mathbf{r}_{v, 1}\left(\tilde{\mathbf{c}}(t), \boldsymbol{\theta}_{r, 1}\right)-\omega(t) \mathbf{x}_{r, 1}(t), \quad \mathbf{x}_{r, 1}(0)=\mathbf{0}_{R_{1}} \\
& \hat{\mathbf{n}}_{u}\left(t_{h}\right)=\mathcal{A}_{u} \mathbf{x}_{r, 1}(t)+\mathcal{B}_{u} \tilde{\mathbf{n}}_{a}^{v V}\left(t_{h}\right)+\mathbf{C}_{i n, u} \mathbf{x}_{i n}\left(t_{h}\right)+\mathbf{n}_{0, u} x_{i c}\left(t_{h}\right)
\end{aligned}
$$

Static Reconstruction of $\mathbf{x}_{r, 2}$ from $\mathbf{x}_{r, 1}$

$$
\begin{gathered}
\hat{\mathbf{x}}_{r, 2}\left(t_{h}\right)=\left(\mathbf{N}_{a, 2}^{\mathrm{T}}\right)^{+} \tilde{\mathbf{n}}_{a}^{v R V}\left(t_{h}\right)-\left(\mathbf{N}_{a, 2}^{\mathrm{T}}\right)^{+} \mathbf{N}_{a, 1}^{\mathrm{T}} \mathbf{x}_{r, 1}\left(t_{h}\right) \\
R_{2}<S_{a} \\
R_{1}
\end{gathered}
$$

1B. INCREMENTAL Identification of the $R_{2}$ reactions from $\mathbf{x}_{r, 2}$

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}_{r, 2 i}}\left\|\hat{x}_{r, 2, i}\left(t_{h}\right)-x_{r, 2, i}\left(t_{h}\right)\right\|_{W}^{2} \quad \forall h=1, \ldots, H, \quad \forall i=1, \ldots, R_{2} \\
& \text { s.t. } \dot{x}_{r, 2, i}(t)=r_{v, 2, i}\left(\tilde{\mathbf{c}}(t), \boldsymbol{\theta}_{r, 2, i}\right)-\omega(t) x_{r, 2, i}(t), \quad x_{r, 2, i}(0)=0
\end{aligned}
$$

## Incremental Kinetic Modeling $\left(S_{\mathrm{a}}<R\right)$ <br> 2. Simultaneous identification of subsystems

i. Definition of $S_{a}<R$ observable extents $\mathbf{x}_{r}^{\circ}$ as

$$
\mathbf{x}_{r}^{\circ}(t)=\mathbf{S}^{\mathrm{T}} \mathbf{x}_{r}(t) \text {, s.t. } \mathbf{N}_{a}^{\mathrm{T}}\left(\mathbf{S}^{\mathrm{T}} \mathbf{S}\right)=\mathbf{N}_{a}^{\mathrm{T}} \text { and } \mathbf{S}^{\mathrm{T}} \mathbf{S} \neq \mathbf{I}_{R}
$$

S constructed as $\operatorname{rref}\left(\mathbf{N}_{a}^{\mathrm{T}}\right)$, and removing the rows with either no or more than one non-zero elements.
ii. Computation of the reaction-variant ( $v \mathrm{RV}$ ) form of the measurements:

$$
\mathbf{n}_{a}^{v R V}(t)=\mathbf{N}_{a}^{\mathrm{T}} \mathbf{x}_{r}(t)=\mathbf{N}_{a}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{x}_{r}^{\circ}(t)
$$

iii. Computation of the $R^{o}$ observable extents: $\tilde{\mathbf{x}}_{r}^{\circ}\left(t_{h}\right)=\left(\mathbf{N}_{a}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}}\right)^{+} \tilde{\mathbf{n}}_{a}^{v R V}\left(t_{h}\right)$
iv. Partition of $\mathbf{N}$ in $\left[\begin{array}{l}\mathrm{N}^{-} \\ \mathrm{N}_{u}\end{array}\right]$ and reconstruction of the $S_{u}^{\circ}$ unmeasured observable states $\hat{\mathbf{n}}_{u}^{\circ}\left(t_{h}\right)$ based on $\mathbf{N}_{u}$ using $\tilde{\mathbf{n}}_{a}^{v R V}, \tilde{\mathbf{x}}_{r}^{\circ}, \mathbf{x}_{i n}$ and $x_{i c}$

## Incremental Kinetic Modeling $\left(S_{\mathrm{a}}<R\right)$

 2. Simultaneous identification of subsystems
## Subsystem Identification (directed bipartite graph)

1. Create a graph with nodes for extents and concentrations
2. For each pair $(i, j)$, if $\mathbf{N}_{i, j} \neq 0$, add a directed arc $x_{i} \rightarrow n_{j}$
3. Label the arcs to observable conc. as reconstruction arcs ( $-\rightarrow$ )
4. For each pair $(i, j)$, add a directed arc $x_{i} \leftarrow n_{j}$ if $r_{i}\left(n_{j}(t)\right)$
5. Remove reconstruction arcs / single nodes (subgraph separation)
6. For each subgraph/subset (strongly connected nodes)
i. Add reconstruction arcs with end nodes in the subgraph (+ starting nodes)
ii. Label weakly connected nodes as interpolation nodes

## Separate Model Identification between Subsets

- Rate expressions (rate parameters) corresponding to strongly connected extent nodes of each subset are identified (estimated) simultaneously
- Extents corresponding to interpolation nodes are interpolated from their measurements or simulated from models identified in previous subsets


## Simulated Example

## Reaction system and operating conditions

- Reaction scheme

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \xrightarrow[r_{1}]{r_{2}} \mathrm{C} r_{1}=k_{1} c_{\mathrm{A}} c_{\mathrm{B}} \\
& \mathrm{C}+\mathrm{D} \xrightarrow[r_{2}]{ } \mathrm{E} r_{2}=k_{2} c_{\mathrm{C}} c_{\mathrm{D}} \\
& \mathrm{~B} \xrightarrow[r_{3}]{ } \mathrm{F} r_{3}=k_{3} c_{\mathrm{B}} \\
& \mathrm{D} \xrightarrow[4]{ }=k_{4} c_{\mathrm{D}}
\end{aligned}
$$



- Experimental conditions
- Species A is initially present ( 0.1 mol in 1 L )
- Species B ( $2 \mathrm{~mol} \mathrm{~L}^{-1}$ ) and D ( $1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ ) are dosed at a flowrate $q_{i n}$ of $0.5 \mathrm{~L} \mathrm{~h}^{-1}$ for 12 min
- All species absorb except species F and G
- The absorbance ( 500 and $1500 \mathrm{~cm}^{-1}$ ) is measured for 60 min


## Simulated Example Multivariate spectroscopic measurements



## SIMULATED EXAMPLE Predicted concentrations



## Simulated Example

## 1. Dynamic modeling / Static reconstruction

1A. Simultaneous Identification of $R_{1}=2$ reactions ( $x_{r, 1}, x_{r, 2}$ )
$\hat{k}_{1}=206 \pm 4[194,217](99.7 \%)$,
$\hat{k}_{2}=149.5 \pm 0.4[148.2,150.8](99.7 \%)$,
$\left(k_{1, \text { true }}=200, k_{2, \text { true }}=150\right)$


## Simulated Example

## 1. Dynamic modeling / Static reconstruction

1A. Simultaneous Identification of $R_{1}=2$ reactions ( $x_{r, 1}, x_{r, 2}$ )
$\hat{k}_{1}=206 \pm 4[194,217](99.7 \%)$,
$\hat{k}_{2}=149.5 \pm 0.4[148.2,150.8](99.7 \%)$,
$\left(k_{1, \text { true }}=200, k_{2, \text { true }}=150\right)$


1B. Incremental Identification of the $R_{2}=2$ reactions ( $x_{r, 3}, x_{r, 4}$ )
$\hat{k}_{3}=1.02 \pm 0.01[1.00,1.04](99.7 \%)$,
$\hat{k}_{4}=1.02 \pm 0.01[0.99,1.04](99.7 \%)$,
$\left(k_{3, \text { true }}=1.00, k_{4, \text { true }}=1.00\right)$


## Simulated Example

## 2. Simultaneous identification of subsystems

Matrix of stoichiometry $\mathbf{N}$

$$
\mathbf{N}=\left[\begin{array}{rrrrrrr}
-1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1
\end{array}\right]
$$

Stoichiometric matrix of measured species $\mathbf{N}_{a}(A, C, E)$

$$
\mathbf{N}_{a}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Construction of the matrix S

$$
\begin{aligned}
\mathbf{N}_{a}^{\mathrm{T}} \xrightarrow[\text { remove rows of 0 } 0 \mathrm{~s}]{\text { ref }} \mathbf{S} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { s.t. } \mathbf{N}_{a}^{\mathrm{T}}\left(\mathbf{S}^{\mathrm{T}} \mathbf{S}\right)=\mathbf{N}_{a}^{\mathrm{T}} \quad \text { and } \mathbf{S}^{\mathrm{T}} \mathbf{S} \neq \mathbf{I}_{R} \\
& \Rightarrow x_{r, 1} \text { and } x_{r, 2} \text { are measured! }
\end{aligned}
$$

## Simulated Example

## 2. Simultaneous identification of subsystems



Numbers of moles

Measured numbers of moles

## Simulated Example

## 2. Simultaneous identification of subsystems



## Simulated Example

2. Simultaneous identification of subsystems


## Simulated Example

2. Simultaneous identification of subsystems


## Simulated Example

## 2. Simultaneous identification of subsystems



## Simulated Example

## 2. Simultaneous identification of subsystems

## Reaction Subsystem 1




$$
\begin{aligned}
& \hat{k}_{1}=200 \pm 5[185,214](99.7 \%), k_{1, \text { true }}=200 \\
& \hat{k}_{3}=1.7 \pm 0.3[0.9,2.5](99.7 \%), k_{3, t \text { true }}=1
\end{aligned}
$$

## Simulated Example

## 2. Simultaneous identification of subsystems

Interpolation node

## Reaction Subsystem 2




$$
\begin{aligned}
& \hat{k}_{2}=153 \pm 3[143,163](99.7 \%), k_{2, \text { true }}=150 \\
& \hat{k}_{4}=0.9 \pm 0.1[0.7,1.2](99.7 \%), k_{4, \text { true }}=1
\end{aligned}
$$

## CONCLUSION AND PERSPECTIVES

Incremental kinetic modeling via a reduced spectroscopic calibration model $S_{a}<R$ is possible in two ways:

Method 1 Modeling simultaneously $\left(R-S_{a}\right)$ reaction extents, and modeling incrementally the remaining extents;

Method 2 Expressing the effects of the $R$ reactions by means of $S_{a}<R$ extents, and identifying the subsets of reactions whose rate expressions can be identified separately (between subsets)

## Open questions

Method 1 - In which conditions does it allow an incremental modeling?
Method 2 - In which conditions does it allow subgraph separation?

- Use of empirical extents (linear combinations of extents)?


## Announcement

## In July 2017, Prof. D. Bonvin will retire and the Laboratoire d'Automatique of the EPFL will close its doors!

## References

- Bhatt N., Amrhein M., Bonvin D., Incremental identification of reaction and mass-transfer kinetics using the concept of extents, Ind. Eng. Chem. Res. 50 (2011) 12960
- Billeter J., Srinivasan S., Bonvin D., Extent-based kinetic identification using spectroscopic measurements and multivariate calibration, Anal. Chim. Acta. 767 (2013) 21
- Rodrigues D., Srinivasan S., Billeter J., Bonvin D., Variant and invariant states for chemical reaction systems, Comp. Chem. Eng. 73 (2015) 23
> Masic A., Billeter J., Bonvin D., Villez K., Extent computation under rank-deficient conditions, IFAC World Congress 2017 (available on https://infoscience.epfl.ch/record/224435)
$>$ Billeter J., Villez K., Bonvin D., Extent-based model identification using a reduced set of measurements, in preparation

