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INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: 
(i) transformation of C to X, and 
(ii) modeling of each individual extent, xi , ∀i = 1,…,R reactions

Condition: Sa ≥ R

2



INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: 
(i) transformation of C to X, and 
(ii) modeling of each individual extent, xi , ∀i = 1,…,R reactions

Condition: Sa ≥ R

Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model Ca = f (A) 
with a minimum number of species → Sa < R

3



INTRODUCTION AND MOTIVATION

Extent-based Incremental Kinetic Modeling

Decomposition of the identification problem into sub-problems: 
(i) transformation of C to X, and 
(ii) modeling of each individual extent, xi , ∀i = 1,…,R reactions

Condition: Sa ≥ R

Reduced Calibration Model of Spectroscopic Data

For practical reasons, one wants to build a calibration model Ca = f (A) 
with a minimum number of species → Sa < R

Aim of this Work 

Incremental kinetic modeling using a calibration model of spectroscopic 
data with a reduced set of species  Sa < R
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MATERIAL BALANCE EQUATIONS

Consider the material balance equations 
of a reaction system with

• Sa (available) species

• R reactions

• p inlets

• 1 outlet
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INCREMENTAL KINETIC MODELING

The kinetic problem is decomposed into sub-problems 
of lower dimension and complexity. 

The extent-based incremental kinetic modeling proceeds in two steps:

I. Transformation to extents
Computation of the contribution of each reaction in the form of an extent
(+ state reconstruction of the unmeasured numbers of moles, if necessary)

II. Model identification (parameter estimation)
Modeling of each individual rate expression from its corresponding extent

6Bhatt et al., Ind. Eng. Chem. Res. 50 (2011), 12960



INCREMENTAL KINETIC MODELING
I. Transformation to extents

i. Computation of p extents of inlet and 1 extent of initial conditions:

ii. Computation of the reaction-variant (vRV) form of the measurements:

iii. Computation of the R extents of reaction:

Condition:
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INCREMENTAL KINETIC MODELING
II. Model identification

A rate expression is postulated for each extent of reaction, and 
each identification problem is solved separately by comparing 
the corresponding measured and modeled extent:
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INCREMENTAL KINETIC MODELING
Sa < R

Two approaches are possible to adapt the incremental kinetic modeling
to the case  Sa < R i.e., when there are less measured species than reactions:

1. COMBINED DYNAMIC MODELING AND STATIC RECONSTRUCTION

i. Some reaction extents (xr,1) are modeled dynamically using candidate 
rate expressions and their rate parameters are estimated simultaneously

ii. The remaining extents (xr,2) are reconstructed statically from       
and xr,1, and their rate expressions are identified incrementally

2. SIMULTANEOUS IDENTIFICATION OF REACTION SUBSYSTEMS

i. Some extents of reaction are computed statically from 

ii. One determines the subsets of reactions whose rate expressions 
can be identified separately between subsets but
simultaneously within each subset
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INCREMENTAL KINETIC MODELING (Sa<R)
1. Dynamic modeling / Static reconstruction

i. Definition of        in terms of two types of reaction extents (xr,1, xr,2)

ii. Static reconstruction of xr,2 in terms of and xr,1 (substitute xr,2)

with                        ,                     and

iii. Reconstruction of the unmeasured states     using       , xr,1, xin and xic

10Billeter et al., Extent-based Model Identification using a Reduced Set of Measurements, in preparation
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INCREMENTAL KINETIC MODELING (Sa<R)
1. Dynamic modeling / Static reconstruction

1A. SIMULTANEOUS IDENTIFICATION of the R1 reactions from xr,1

STATIC RECONSTRUCTION of xr,2 from xr,1

1B. INCREMENTAL IDENTIFICATION of the R2 reactions from xr,2

11Billeter et al., Extent-based Model Identification using a Reduced Set of Measurements, in preparation
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INCREMENTAL KINETIC MODELING (Sa<R)
2. Simultaneous identification of subsystems

12Masic et al., IFAC World Congress 2017
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INCREMENTAL KINETIC MODELING (Sa<R)
2. Simultaneous identification of subsystems

SUBSYSTEM IDENTIFICATION (directed bipartite graph)
1. Create a graph with nodes for extents and concentrations 
2. For each pair (i, j), if Ni,j ≠ 0, add a directed arc xi → nj
3. Label the arcs to observable conc. as reconstruction arcs (        )
4. For each pair (i, j), add a directed arc xi ← nj if 
5. Remove reconstruction arcs / single nodes (subgraph separation)
6. For each subgraph/subset (strongly connected nodes)

i. Add reconstruction arcs with end nodes in the subgraph (+ starting nodes)
ii. Label weakly connected nodes as interpolation nodes

SEPARATE MODEL IDENTIFICATION BETWEEN SUBSETS
• Rate expressions (rate parameters) corresponding to strongly connected 

extent nodes of each subset are identified (estimated) simultaneously
• Extents corresponding to interpolation nodes are interpolated from their 

measurements or simulated from models identified in previous subsets

13Masic et al., IFAC World Congress 2017
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SIMULATED EXAMPLE
Reaction system and operating conditions

• Reaction scheme

• Experimental conditions
o Species A is initially present (0.1 mol in 1 L)

o Species B (2 mol L-1) and D (1.5 mol L-1) are dosed 
at a flowrate qin of 0.5 L h-1 for 12 min 

o All species absorb except species F and G

o The absorbance (500 and 1500 cm-1) is measured for 60 min
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SIMULATED EXAMPLE
Multivariate spectroscopic measurements
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SIMULATED EXAMPLE
Predicted concentrations
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SIMULATED EXAMPLE
1. Dynamic modeling / Static reconstruction
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SIMULATED EXAMPLE
1. Dynamic modeling / Static reconstruction
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1A. SIMULTANEOUS IDENTIFICATION
of R1 = 2 reactions (xr,1, xr,2)

1B. INCREMENTAL IDENTIFICATION
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems

Matrix of stoichiometry N

Stoichiometric matrix of measured species Na (A, C, E)

Construction of the matrix S

 xr,1 and xr,2 are measured!
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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SIMULATED EXAMPLE
2. Simultaneous identification of subsystems

25

,1r
x

A
n

,3r
x

B
n

F
n

REACTION SUBSYSTEM 1

Interpolation 
node

1

,

1

3 3

,

ˆ

ˆ 200 5 [185, 214] 20

1.7 0.3 

(99.7%),

 (9[0. 9.9, 7% 

0

1),2.5]
tr

true

ue

k k

k k= =
= ± =

±

xr,1

xr,3



SIMULATED EXAMPLE
2. Simultaneous identification of subsystems
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CONCLUSION AND PERSPECTIVES

Incremental kinetic modeling via a reduced spectroscopic calibration 
model  Sa < R is possible in two ways:

Method 1 Modeling simultaneously (R – Sa) reaction extents, 
and modeling incrementally the remaining extents;

Method 2 Expressing the effects of the R reactions by means of Sa < R 
extents, and identifying the subsets of reactions whose rate 
expressions can be identified separately (between subsets)

OPEN QUESTIONS

Method 1 - In which conditions does it allow an incremental modeling?

Method 2 - In which conditions does it allow subgraph separation?
- Use of empirical extents (linear combinations of extents)?
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ANNOUNCEMENT

In July 2017, Prof. D. Bonvin will retire and 
the Laboratoire d’Automatique of the EPFL will close its doors!


