
Call-graph-based Optimizations in Scala
Semester Project

Romain Beguet

Mentored by Nicolas Stucki Supervised by Dmitry Petrashko Directed by Martin Odersky

École polytechnique fédérale de Lausanne, Switzerland
{first.last}@epfl.ch

1. Introduction
Scala [3] provides various high-level features that programmers can
utilize in order to write readable, modular, and extensible code
in a productive manner. Generics, virtual methods, higher-order
functions and higher-kinded types [7] are some of these features.
As one could expect, most of them come with a cost, generally in
the form of an overhead in runtime performance. Take for example
the following equivalent codes [10]:
Java

1 public double average(int[] data) {
2 int sum = 0;
3 for(int i = 0; i < data.length; i++) {
4 sum += data[i];
5 }
6 return sum * 1.0d / data.length
7 }

Scala

1 def average(x: Array[Int]) = {
2 x.reduce(_ + _) * 1.0 / x.size
3 }

The Scala version is more concise and descriptive because a lot of
the implementation is abstracted out by the reduce method. How-
ever, it uses some costly mechanisms under-the-hood to achieve it.
Observe the implementation of reduce and foreach below:

1 def reduce(op: Function2[Obj, Obj, Obj]): Obj = {
2 var first = true
3 var acc: Obj = null
4 this.foreach{ e =>
5 if (first) {
6 acc = e
7 first = false
8 } else acc = op.apply(acc, e)
9 }

10 acc
11 }
12 def foreach(f: Function1[Obj, Obj]) {
13 var i = 0
14 val len = length
15 while (i < len) {
16 f.apply(this(i));
17 i += 1
18 }
19 }

• Boxing occurs when this(i) (an integer) has to be passed to
the apply method of Function1[Obj, Obj].

• Dynamic dispatch happens at several places: this.foreach,
op.apply, f.apply, etc.

As a result, the performance of the Scala version is tremendously
impacted: while the Java version runs in 20ms, the Scala version
takes as long as 650ms, which is more than 30 times slower.

1.1 Existing Solutions

In order to address these overheads, several techniques have been
developed. For example, specialization [4] is a feature offered by
Scala compilers which aims at removing the important overhead
introduced by the implicit boxing of primitive values in generic
code by using heterogeneous compilation instead of the default ho-
mogeneous compilation (erasure) [12]. It operates more or less by
duplicating the generic code marked specialized for every primitive
type that Scala has [8], which is 10 including the reference type
(Unit, Boolean, Byte, Char, Short, Int, Long, Float, Double
and AnyRef). However, there are well-known pitfalls of using this
method:

Code size explosion. For a generic code parameterized by n type
variables, it needs to generate 10n variants of it. Not only does
it affect the final size of the executable, it also introduces addi-
tional drawbacks at runtime: it can pollute the CPU cache, and
even prevent the JVM from performing more costly optimiza-
tions due to spending more time on optimizing every variant.

Erasure incompatibility. Specialized code must only be called
from a non-generic callsite or another specialized generic call-
site to be taken advantage of. Indeed, if a type that is erased to a
non-primitive type is used to instantiate some specialized code,
it will fallback to the erased version of the code, because the
lack of knowledge about the true type argument prevents it from
choosing the right variant. Thus, the optimization is completely
canceled. This is very problematic because it means that it be-
comes totally ineffective when used with existing code-bases or
libraries that do not use specialization.

Miniboxing [13] also tries to reduce the boxing overhead. It is a
middle ground between the heterogeneous and homogeneous ap-
proaches, encoding several primitive types into a larger one and
thus reducing the duplication factor, without paying the price of
boxing. In most benchmarks, miniboxing matches the performance
of specialization, while generating significantly less low-level code
(3n instead of 10n). However, it still suffers from the incompatibil-
ity with erasure-based compilation.

1.2 Whole Program optimizations

The techniques presented above both try to solve a problem that is
inherent to the fact that the compilation is done in an open world.
That is, our code could be used as a library for another project,
which means it must keep its interface intact and only optimizations
local to procedures can be applied. Dotty-linker [1] [9] is a project

Figure 1. Call graph with type propagation

which is designed to be used as the final compilation step towards
releasing an executable program. Therefore, it has way more free-
dom in terms of transformations that it can apply to the code: it can
perform any transformation that keep the code functionally equiv-
alent. It also means that it has knowledge of the whole program. In
particular, it knows the entry points of the program, thus enabling
call-graph-based whole program optimizations [2], which are the
focus of this project.

2. Call-graph-based Optimizations
In this section, I will present some optimizations that can be imple-
mented in dotty-linker using the call graph construction algorithm.

2.1 Dead code elimination

Dead code elimination is an optimization phase which aims at
removing all the code that is unreachable in our final binaries.
Typically, the Scala standard library is very well furnished and
it is very rare that a single program uses every aspect of it. As
a result, the final standalone binaries of that program will con-
tain a lot of dead code, which could have been eliminated us-
ing dead code elimination. In dotty-linker, this phase is pretty
straightforward to implement once we have access to the call
graph. We basically write a MiniPhaseTransform which, upon
transforming a method m, first checks that it is reachable us-
ing the call graph (m ∈ reachableMethods) and eliminates
it if not. Eliminating for now means replacing its body with
throw new DeadCodeEliminated. Note that for obvious rea-
sons, this optimization is totally incompatible with reflection.

2.2 Auto specialization for types

Auto specialization [10] is an optimization phase which tries to
solve the problem stated in the introduction, i.e. remove the over-
head introduced by the boxing of primitive values when entering
generic code. Remember that specialization (or miniboxing) both
generate every possible duplicate of the subject code regardless of
which variants are actually used in the program. Consider the fol-
lowing program:

1 object Foo {
2 def foo[@specialized A, @specialized B](x: A, y: B):

A = x
3

4 def main(args: Array[String]): Unit = {
5 foo[Int, Int](4, 2)
6 }
7 }

Method foo will have 100 variants generated for it, even though the
only call to this method in the whole program is foo[Int, Int].
Generating the call graph for this program using type arguments
propagation [11] yields the call graph from figure 1. Therefore, we
can simply generate the specialization of foo for [Int, Int] in
our example.

More generally, assume that reachable methods are stored in the
call graph alongside the context they were called with. A call
context maps the type parameters (T1, ..., Tn) of the method called
to the type arguments (X1, ..., Xn) it was called with. Then we
can simply generate specializations of a method for each unique
instantiation of this method appearing in the call graph. Formally,
we can specialize a method m with type parameters T1, ..., Tn for
every type argument tuple (X1, ..., Xn) in the set:

{(X1, ..., Xn) : ∃ sub | (m, sub) ∈ reachableMethods

∧ sub = {Ti → Xi}1≤i≤n}

Therefore, our example could be specialized to:

1 object Foo {
2 def foo[A, B](x: A, y: B): A = x // could be dead

code eliminated
3

4 def foo_Int_Int(x: Int, y: Int): Int = x
5

6 def main(args: Array[String]): Unit = {
7 foo_Int_Int(4, 2)
8 }
9 }

Finally, note that Auto does not only mean that the needed spe-
cializations are automatically chosen, it also means that the pro-
grammer does not have to annotate manually what to specialize.
Although it may be useful to offer some way to control how auto
specialization should work for some particular applications, most
of the time letting the compiler specialize everything should yield
good results. In fact, this is precisely what a C++ compiler does
when compiling code which instantiates templates. For Scala pro-
grams, it was shown [11] that the average method needed to be
specialized 1.5 times in the worst case, and often much less.

2.3 Auto specialization for terms

Another interesting aspect of auto specialization is that in addition
to specializing generic methods for different type arguments, it can
also be used to specialize methods for different term arguments: in
the actual implementation of the call graph construction algorithm,
type parameters and term parameters are treated the same way.
Therefore, if we are certain that some argument x passed to a
method has precisely the type T (not just a subtype of it), we can
create another variant of this method which handles specially this
case. In this specialized variant, any virtual call to x can be inlined
because we know exactly which implementation would be called at
runtime. Consider the following code:

1 object Foo {
2 class A {
3 def hi = println("hi from A")
4 }
5 class B extends A {
6 override def hi = println("hi from B")
7 }
8 def bar(x: A) = x.hi
9 def foo(x: A) = bar(x)

10 def main(args: Array[String]): Unit = {
11 foo(new B)
12 }
13 }

Here, both methods foo and bar could benefit from term special-
ization:

• The call to foo in method main is an initiator. For now, the
call graph construction algorithm can only initiate a precise
tracing of the term argument if the argument passed is of the
form new T... or if it is a literal value. However a

stronger analysis could also consider the call foo(x) in the
following code as an initiator:

1 def main(args: Array[String]): Unit = {
2 val x = new T...
3 ...
4 foo(x)
5 }

• The call to bar in method foo is a propagator. If a precise
tracing of some term argument has been initiated, it will be
propagated (the same way type arguments are propagated as
explained in subsection 3.2) as long as the concerned term is
directly used. Likewise, a stronger analysis could also consider
the call bar(y) in the following code as a propagator:

1 def foo(x: A) = {
2 val y = x
3 ...
4 bar(y)
5 }

In the end, the code produced by term specialization could look
like:

1 object Foo {
2 class A {
3 def hi = println("hi from A")
4 }
5 class B extends A {
6 override def hi = hi_B(this)
7 static def hi_B(x: B) = println("hi from B")
8 }
9 def bar(x: A) = x.hi

10 def foo(x: A) = bar(x)
11

12 def bar_B(x: B) = B.hi_B(X)
13 def foo_B(x: B) = bar_B(x)
14

15 def main(args: Array[String]): Unit = {
16 foo_B(new B)
17 }
18 }

Here, static methods by definition do not require runtime dispatch.
At best, they could even be inlined.

3. Call graph construction
After having shown concrete use cases of a call graph algorithm in
a Scala compiler, I will now briefly introduce how the call graph is
built in dotty-linker, as it is needed to understand my contributions
which I present later on. Let’s take an example of program for
which we want to build the call graph:

1 class A {
2 def foo: A = new B
3 }
4 class B extends A {
5 override def foo: A = this
6 }
7 object Foo {
8 def main(args: Array[String]): Unit = {
9 var x: A = new A

10 var i = 0
11 while (i < 2) {
12 x = x.foo
13 i += 1
14 }
15 }
16 }

3.1 Collecting Summaries

The first step towards building the call graph is to generate a simpler
representation of every method in the code, which is done in dotty-

Algorithm 1 Call graph construction algorithm
edges← {}
reachableMethods← {}
reachableTypes← {}
for all e ∈ entryPoints do

reachableMethods← reachableMethods ∪ e
end for
while new reachableMethods or new reachableTypes do

for all caller ∈ reachableMethods do
for all call c ∈ summarycaller do

case c is "new T "
reachableTypes← reachableTypes ∪ T
edges← edges ∪ caller→ T.<init>
reachableMethods← reachableMethods ∪ T.<init>

case c is "rec.callee"
for all T ∈ reachableTypes, T <:< type(rec) do

if ∃ method o ∈ T : sig(o) = sig(callee) then
edges← edges ∪ caller→ callee
reachableMethods← reachableMethods ∪ callee

end if
end for

end for
end for

end while

linker by the CollectSummaries phase: without diving too much
into details, to each method is associated a MethodSummary which
contains different kind of information about it:

1 case class MethodSummary(methodDef: Symbol,
2 thisAccessed: Boolean,
3 methodsCalled: Map[Type, List[CallInfo]],
4 accessedModules: List[Symbol],
5 argumentReturned: Byte,
6 argumentStoredToHeap: List[Boolean]
7)

In particular, methodsCalled is collection of CallInfos rep-
resenting every call that occurs inside the method’s body. A
CallInfo stores data about the call that is relevant to the call
graph construction, including the method called, as well as the type
and term arguments. In our example, the (simplified) summaries
will be:

• A.foo: [new B]

• B.foo: []
• main: [new A, x.foo]

3.2 Building the Call Graph

The algorithm for building the call graph is based on a worklist
data structure storing methods and types that are found reachable
during the construction of the call graph. As such, the call graph
is extended as long as the worklist has not reached a fixed point.
In other words, the algorithm reiterates as long as the last itera-
tion introduced new reachable methods or types. Algorithm 1 is a
pseudo code giving a good intuition of the actual implementation.
The reason why a worklist data structure is necessary is because it is
possible to discover new potential calls from an already processed
callsite later during the call graph construction. Indeed, a callsite
can have several out edges: in the case of dynamic dispatch for ex-
ample [6], where some method m of class C is called, we cannot
know at compile time which implementation will be called at run-
time if C has several subclasses overriding m. Therefore, we must
add an edge from the callsite to each implementation of m from
every subtype of C that are found reachable in the program. The

Figure 2. Call graph after one iteration

Figure 3. Call graph after two iterations

fact that this information will build up throughout the call graph
construction is precisely why it may be necessary to come back to
expand an already processed callsite, thus justifying the worklist-
based algorithm. Let’s take back our example to illustrate this. After
running step by step one iteration of our algorithm, the call graph
is as in figure 2. The attentive reader may notice that it is missing
a call to B.foo. This happens because the type B is found reach-
able only after the call x.foo is processed. Fortunately, since the
reachable types after that first iteration are [A, B], the second it-
eration of the algorithm will yield the correct call graph which can
be seen in figure 3. The algorithm is obviously way more complex
in reality, as it has to deal with a lot of different constructs which
may introduce new reachable methods or types: super calls, calls
through Java code, calls to inner functions, etc.
Another aspect that we want to handle is the propagation of type ar-
guments. Consider the following example containing generic code:

1 object Foo {
2 def foo[A]: Unit = {}
3 def bar[A, B]: Unit = {
4 Foo.foo[A]
5 Foo.foo[B]
6 }
7 def main(args: Array[String]): Unit = {
8 Foo.bar[Int, Double]
9 }

10 }

In such scenario, it can be very interesting to evaluate exactly what
type arguments each generic method is called with and to output
an edge for each different instantiation. Indeed, this information
can be then utilized by later optimization phases to great help,
particularly for auto specialization as explained previously. Since
we know the entry points of the program, we can clearly perform
this evaluation. The intuition is the following:

• When a generic method o with type parameters O1, ..., On is
called with type arguments X1, ..., Xn, we build a substitution
map sub defined as {Oi → Xi}1≤i≤n, which we store along-
side o in our set of reachable methods. Additionally, we assume
that entry points have an empty context.

• When we process a callsite: we have to put ourselves in its con-
text: any time a generic code is instantiated with type arguments
X1, ..., Xn, we first apply to it the substitution map ctx of our
current context. The result Y1, ..., Yn of the application is sim-
ply defined as:

Algorithm 2 Call graph construction algorithm - updated
edges← {}
reachableMethods← {}
reachableTypes← {}
for all e ∈ entryPoints do

reachableMethods← reachableMethods ∪ (e, {})
end for
while new reachableMethods or new reachableTypes do

for all (caller, ctx) ∈ reachableMethods do
for all call c ∈ summarycaller do

case c is "new T "
reachableTypes← reachableTypes ∪ T
edges← edges ∪ caller→ T.<init>
reachableMethods← reachableMethods ∪ T.<init>

case c is "rec.callee[X1, ..., Xn]"

Yi ←

{
S if ∃S : (Xi → S) ∈ ctx
Xi otherwise

∀1 ≤ i ≤ n

for all T ∈ reachableTypes, T <:< type(rec) do
if ∃ method o ∈ T : sig(o) = sig(callee) then

let O1, ..., On be the type parameters or o
sub← {Oi → Yi}1≤i≤n

edges← edges ∪ (caller, ctx)→ (callee, sub)
reachableMethods← reachableMethods ∪ (callee, sub)

end if
end for

end for
end for

end while

Figure 4. Call graph with type propagation

Yi =

{
S if ∃S : (Xi → S) ∈ ctx
Xi otherwise

∀1 ≤ i ≤ n

The updated algorithm is given in algorithm 2. For our example, it
generates the call graph from figure 4.
In reality there are many other cases which have to be handled
but I do not cover here: generic classes, inheriting generic base
classes, inner functions/classes depending on outer type variables,
etc. The complete set of rules to perform context-sensitive call
graph construction and a detailed explanation of the algorithm can
be found in paper [11].

4. Contributions
In this section, I will present my contributions to the project. I will
only concentrate on the biggest contributions, omitting bug fixes,
testing, etc. which, even though took a lot if not most of the time I
spent on the project, are not really worth presenting in a report.

Figure 5. Call graph with no pattern matching support

4.1 Adding support for Pattern Matching

Consider the following code:

1 case class Bar(x: Int)
2 object Foo {
3 def main(args: Array[String]): Unit = {
4 Bar(2) match {
5 case Bar(x) => println(x)
6 case _ =>
7 }
8 }
9 }

Before adding support for pattern matching [5], the call graph
looks like in figure 5. When compiling the program with dead code
elimination activated, we get:

1 Exception in thread "main"
dotty.runtime.DeadCodeEliminated

2 at Bar$.unapply(Test.scala:112)
3 at Foo$.main(Test.scala:116)
4 at Foo.main(Test.scala)

Indeed, since calls to unapply are implicitly done upon check-
ing against the different cases during pattern matching, our current
call graph implementation did not catch them and they were con-
sequently eliminated. Therefore, the way I chose to address this
issue was to explicitly add in our method summary every possible
implicit call that can happen during a pattern matching. In order
to do this, I first identified exactly all the possible forms that the
unapply function can take:

1. unapply returning a Boolean

2. unapply returning an Option[T]

3. unapply returning an Option[(T1, ..., Tn)]

4. unapply returning a ProductN[T1, ..., Tn]

5. unapplySeq returning an Option[Seq[T]]

Then, when transforming a Match tree, simply fetch the top-level
cases that are Unapply trees and register a call to their correspond-
ing unapply function (given through Unapply.fun), with the
Match selector as argument (given by Match.sel). However, there
may be more to do depending on the return value of the unapply
call:

1. For the first case, there are no more calls to register since the
returned boolean will simply be checked in a branch.

2. In the second case, the returned value is an Option[T]. In this
case we need to register an additional call to its empty method
followed by a call to get.

3. In the third case, an Option[(T1, ..., Tn)] is returned.
Thus we must first register the same two calls as for the second
case, with additional calls to the product elements’ getters (_1,
..., ._n).

4. In the fourth case, like for the third one, we must register calls
to the product element’s getters. However, the return value is
not an option which is checked for emptiness, but a reference

Figure 6. Call graph with pattern matching support

which is checked for nullity, so we don’t need to generate calls
to empty or get.

5. The fifth case is a bit more tricky. We first generate the calls
to Option’s empty and get as in the second case, but we
must as well register the calls to access the elements of the
resulting sequence. After inspecting the disassembly of a simple
test, we find out that: first of all, the length of the resulting
sequence is checked against the number of arguments given
in the pattern, which means we must register a call to Seq’s
lengthCompare method. Then, we notice that the first element
is retrieved with the head method. Also, the subsequent ones
(if any) are accessed with the apply method. We also generate
these calls and we are done.

With this implemented, we can safely compile and run our example
code with dead code elimination enabled, or any pattern matching
constructs which contains Unapply trees in the top-level cases. The
new call graph looks like in figure 6.
In order to completely support pattern matching however, we must
also handle nested patterns. Consider the following code:

1 object Foo {
2 object Twice {
3 def unapply(x: Int) = if (x % 2 == 0) Some(x / 2)

else None
4 }
5 object Thrice {
6 def unapply(x: Int) = if (x % 3 == 0) Some(x / 3)

else None
7 }
8 def main(args: Array[String]): Unit = {
9 6 match {

10 case Twice(Thrice(x)) => println(x)
11 case _ =>
12 }
13 }
14 }

If we use the implementation described so far to compile and run
our code, we get:

1 Exception in thread "main"
dotty.runtime.DeadCodeEliminated

2 at Foo$Thrice$.unapply(Test.scala:126)
3 at Foo$.main(Test.scala:130)
4 at Foo.main(Test.scala)

The reason is that although we correctly registered the implicit
calls for out top-level case Twice.unapply, we did not do it for
Thrice.unapply. To fix this, we have to consider the decon-
structed values of the top-level cases as the new selectors for the
nested patterns, and therefore recursively register the implicit calls
on these new expressions. Looking at our example, we can see this
process as transforming the nested pattern into:

1 Twice.unapply(6).get match {
2 case Thrice(x) => ...
3 }

and performing the exact same implicit call generation described
above on this new Match tree. We do this recursively, to finally
obtain a complete support for pattern matching in the call graph
construction algorithm.

Algorithm 3 Call graph construction algorithm handling closures
edges← {}
reachableMethods← {}
reachableTypes← {}
for all e ∈ entryPoints do

reachableMethods← reachableMethods ∪ (e, {})
end for
while new reachableMethods or new reachableTypes do

for all (caller, ctx) ∈ reachableMethods do
for all call c ∈ summarycaller do

case c is "new T "
reachableTypes← reachableTypes ∪ T
edges← edges ∪ caller→ T.<init>
reachableMethods← reachableMethods ∪ T.<init>

case c is "rec.callee[X1, ..., Xn]"

Yi ←

{
S if ∃S : (Xi → S) ∈ ctx
Xi otherwise

∀1 ≤ i ≤ n

for all T ∈ reachableTypes, T <:< type(rec) do
if ∃ method o ∈ T : sig(o) = sig(callee) then

let O1, ..., On be the type parameters or o
sub← {Oi → Yi}1≤i≤n

edges← edges ∪ (caller, ctx)→ (callee, sub)
reachableMethods← reachableMethods ∪ (callee, sub)

end if
end for

end for
for all closure C ∈ summarycaller do

reachableTypes← reachableTypes ∪ C
end for

end for
end while

Besides, we do not need to handle specially constructs like those
presented in the code below because they are transformed into
Match trees before the call graph is built:

1 val Twice(x) = 4
2 val f: PartialFunction[Int, Int] = { case x => 2 * x }

However, patterns in cases of a try catch construct which require
unapply calls must be dealt with specially. Since the selector is not
explicitly written, we must transform our original tree:

1 try {
2 throw ...
3 } catch {
4 case Extractor(x) => ...
5 }

into the following pattern matching construct, where ex is a syn-
thetically created selector of Throwable type representing the
thrown exception.

1 ex match {
2 case Extractor(x) => ...
3 }

We then simply register implicit calls as described above on this
new tree.

4.2 Adding complete support for Closures

Before this contribution, closures were partially supported. They
would only be tracked by the call graph algorithm when passed as
argument in a call, such as in lst.map(x => 2 * x). However,
consider the following code:

Figure 7. Call graph with no closure support

Figure 8. Call graph with closure support

1 object Foo {
2 def main(args: Array[String]): Unit = {
3 val bar = (x: Int) => x
4 println(bar(2))
5 }
6 }

The call graph for this example is as shown in figure 7. When
compiling the program with dead code elimination activated, we
get:

1 Exception in thread "main"
dotty.runtime.DeadCodeEliminated

2 at Foo$.$anonfun$1(Test.scala:137)
3 at ...
4 at Foo$.main(Test.scala:138)
5 at Foo.main(Test.scala)

Unlike for the pattern matching issues, here the call is explicitly
done in bar(2). The reason our closure is not found reachable is
simply because it looks as if it was never instantiated to the call
graph algorithm. Recall from algorithm 2 that a type is considered
reachable if and only if there is an explicit call to its constructor
somewhere (this is a slightly simplified, i.e. things are done differ-
ently for modules). Since at this point in the compilation closures
are still not in their final form, they do not have a constructor avail-
able to be called, and therefore it is not possible to simply add a
call to a constructor in the method’s summary. Instead, I chose to
modify the MethodSummary class so that it can store a collection
of closures that are defined in the method. Then it required handling
these closures specially when generating the call graph, as can be
seen in algorithm 3. Basically we assume that a closure becomes
reachable as soon as its enclosing method becomes reachable. We
could be more precise about this in the future but it is clearly not
a priority right now. The reason it solves the problem is simply
that since the closure type becomes part of the reachableTypes at
some point, all the conditions required for its implemented method
to be considered reachable when processing a call to the closure
will be satisfied. At this point, the example program runs correctly
and the call graph is as shown in figure 8.
Unfortunately, there is a flow with this simple fix which is illus-
trated by the following example:

1 object Foo {
2 def foo[T] = (x: T) => x
3 def main(args: Array[String]): Unit = {
4 val bar = foo[Int]
5 println(bar(2))
6 }
7 }

Once more, a DeadCodeEliminated exception will be thrown
when trying to run it. The reason is not obvious: here, the method

apply implemented by the closure defined in foo has signature
T => T, but the apply call done in bar(2) expects a method with
signature Int => Int. Taking a look at algorithm 3, we can notice
that the condition sig(o) = sig(callee) is not satisfied for this
reason exactly, preventing our closure from becoming reachable.
To fix this, we should use the context ctx of the enclosing method
when adding our closure to the set of reachable types. In our
example, the context at this moment is {T → Int}. Therefore, we
should simply apply this context to the type of our closure so that
its implemented method has type Int => Int instead of T => T
when added to reachableTypes. More formally, assuming the
implemented method of the closure has type (T1, ..., Tn−1)⇒ Tn,
we construct a new closure type which implemented method has
type (R1, ..., Rn−1)⇒ Rn where R1, ..., Rn is defined as:

Ri =

{
S if ∃S : (Ti → S) ∈ ctx
Ti otherwise

∀1 ≤ i ≤ n

Finally, we simply add this new closure to the set of reachable
types instead of the original one and it will successfully become
reachable since the signatures will match.

5. Future Work
Adding to the compiler toolbox a way of generating precise call
graphs for Scala programs lays the foundations for further analyses
and new specific optimizations based on it. On top of the few
optimizations mentioned in section 2, we can cite inlining and
devirtualization. Most importantly, it provides a strong basis upon
which brand-new, Scala-specific optimizations can be thought of.
Hence, the current goal is to have a stable call graph construction
algorithm which can handle all Scala features while being as pre-
cise as possible. As a matter of fact, there is a lot of room for im-
provement to make it the most precise possible. For example, some
specific flow sensitive analyses could help further reduce the size
of the call graph such as pointer analysis, which could be used to
limit the number of out-edges from a callsite subject to dynamic
dispatch by using our knowledge of the pointer and discarding in-
feasible calls.
Additionally, dead code elimination and auto specialization are two
optimizations that are being developed in parallel to the call graph
algorithm. Paper [11] already presents very motivating results.

6. Conclusion
Working with Dotty was a very interesting and fulfilling experi-
ence. I could discover the internals of the compiler and understand
many concepts while working on a very ambitious project doing
concrete work. I was able to discover many bugs and edge cases
throughout my journey, which combined with hours of diving into
the complex code-base of the call graph construction algorithm and
extensive periods of debugging finally allowed me to get a solid
enough grasp of its mechanisms, thanks to which I could success-
fully implement support for pattern matching and complete support
for closures.

References
[1] Dotty-linker project, . URL https://github.com/dotty-linker/

dotty.

[2] Call graph with dce, pull request, . URL https://github.com/
lampepfl/dotty/pull/1840.

[3] Scala Programming Language. URL http://scala-lang.org/.

[4] I. Dragos and M. Odersky. Compiling Generics Through User-Directed Type
Specialization. In ICOOOLPS, Genova, Italy, 2009.

[5] B. Emir. Object-oriented pattern matching. PhD thesis, École Polytechnique
Fédérale de Lausanne, 2007. URL https://infoscience.epfl.ch/
record/109881/.

[6] S. Milton and H. W. Schmidt. Dynamic dispatch in object-oriented languages.
Technical report, 1994. URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.67.5597&rep=rep1&type=pdf.

[7] A. Moors. Type Constructor Polymorphism for Scala: Theory and Practice
(Type constructor polymorfisme voor Scala: theorie en praktijk). PhD thesis,
Informatics Section, Department of Computer Science, Faculty of Engineering
Science, 2009. URL https://lirias.kuleuven.be/handle/1979/
2642. Joosen, Wouter and Piessens, Frank (supervisors).

[8] M. Odersky. The Scala Language Specification Version 2.9. 2014. URL http:
//www.scala-lang.org/docu/files/ScalaReference.pdf.

[9] D. Petrashko. Dotty linker: Making your scala applications smaller and faster,
2015. URL https://d-d.me/talks/scaladays2015/#/.

[10] D. Petrashko. Autospecialization in dotty, 2016. URL https://d-d.me/
talks/flatmap2016/#/.

[11] D. Petrashko, V. Ureche, O. Lhoták, and M. Odersky. Call graphs for
languages with parametric polymorphism. Technical report, EPFL, 2016.
https://infoscience.epfl.ch/record/217276.

[12] M. Schinz. Compiling Scala for the Java Virtual Machine. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2005.

[13] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code
Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

