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Supplementary Notes

S-parameter retrieval

In the following, we will consider two cylindrical waveguides separated by a
device under test (DUT) of thickness s, the scattering parameters of which will
be assessed. A loudspeaker is used to generate sound in the first (incident)
waveguide, the second waveguide being closed with an anechoic termination,
and four microphones are placed at locations xi at both sides of the interface to
measure the sound pressures Pi = P (xi), as shown in Fig. (1). Mathematically,
the pressures Pi are defined by:

P1 = (ae−jkx1 + bejkx1)ejωt (1a)

P2 = (ae−jkx2 + bejkx2)ejωt (1b)

P3 = (ce−jkx3 + dejkx3)ejωt (1c)

P4 = (ce−jkx4 + dejkx4)ejωt (1d)

where, k represents the wave number in the ambient fluid and an e+jωt sign
convention has been adopted. The four complex pressures, P1 to P4, repre-
sent the superposition of two plane waves, travelling in opposite directions, as
depicted in Fig. (1). The four wave amplitude coefficients (a, b, c, d) can be
derived from Eq. (1a-1d) as functions of the four pressures :

a =
j(P1e

jkx2 − P2e
jkx1)

2sink(x1 − x2)
(2a)
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b =
j(P2e

−jkx1 − P1e
−jkx2)

2sink(x1 − x2)
(2b)

c =
j(P3e

jkx4 − P4e
jkx3)

2sink(x3 − x4)
(2c)

d =
j(P4e

−jkx3 − P3e
−jkx4)

2sink(x3 − x4)
. (2d)

Let us look at the DUT as a 2-port, with “inward” sound pressures rep-
resented by ae−jkx in the incident medium and de+jkx in the transmission
medium, and “outward” sound pressure represented by bejkx and ce−jkx. Then,
the reflected waves amplitudes (b, c) can be related to the incident wave ampli-
tudes (a, d) by the scattering matrix [S]. For the measurement setup described
in Fig. (1), the corresponding matrix equations is:(

b
ce−jks

)
Refflected

=

(
S11 S12

S21 S22

)(
a

dejks

)
Incident

(3)

where s is the thickness of the sample.
To compute the four scattering parameters Sij , two measurement configura-

Figure 1: Schematic representation of four microphone measurement setup.

tions must be considered, corresponding to two different load conditions at the
left and right termination of the waveguides, yielding two different sets of am-
plitudes (a1, b1, c1, d1) and (a2, b2, c2, d2). Then, the elements of the [S] matrix
are given by:

S11 =
b1d2e

jks − b2d1e
jks

a1d2ejks − a2d1ejks
(4a)

S12 =
a1b2 − a2b1

a1d2ejks − a2d1ejks
(4b)

S21 =
c1e

−jksd2e
jks − c2e−jksd1e

jks

a1d2ejks − a2d1ejkl
(4c)

S22 =
a1c2e

−jks − a2c1e
−jks

a1d2ejks − a2d1ejks
. (4d)
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However, for symmetrical (S11 = S22) and reciprocal (S12 = S21) networks,
the [S] matrix has only two different elements and a single measurement suffices.
This is the case for proposed unit-cell where the [S] matrix is given by:

S11 = S22 =
ab− cd

a2 − d2e2jks
(5a)

S12 = S21 =
ace−jks − bdejks

a2 − d2e2jks
. (5b)

If an anechoic termination is used as a load, then d = 0 and the reflection
and transmission coefficients R and T can be derived from equations 5a-5b:

R = S11 = S22 =
b

a
(6)

T = S12 = S21 =
c

a
e−jks. (7)

Note that these coefficients are calculated whit respect to the two terminal
planes of the sample x = 0 and x = s.

Figure. (2) shows a picture of the measurement setup used to retrieve the
transmission coefficient of the helicoidal unit-cells.

Figure 2: Four microphone measurement setup.

3



Transmitted, Reflected and Lost Power

Using the measurement procedure proposed in the preceding section, the reflec-
tion, transmission and lost power coefficients (|R|2, |T |2 and α = 1−|R|2−|T |2)
have been assessed on the 8 helicoidal unit-cells. As depicted in Fig. (3), the
percentages of the reflected and lost power depend on the the number of he-
licoidal turns and increase as unit-cells density increases. While the designed
unit-cells have been optimized for best impedance matching, the occurrence
of unpredictable losses and reflections in the fabricated prototypes yields the
observable discrepancies between the measurements and simulations of sound
power transmission coefficient amplitudes (See Fig. 1 in the main manuscript).
These discrepancies are relatively small for coarse unit-cells with few number
of turns, for which the values of sound power reflection coefficients and losses
are much lower than the transmitted one, and increase for denser unit-cells as
highlighted by the higher values of reflections and losses. The effect of sound
power reflections and losses can be linked to the following physical origins:

• Actual vs. simulated helicoid wall thickness:
In the numerical simulation, the helicoidal and cylindrical walls are as-
sumed to present a smooth and rigid surfaces and zero thicknesses. There-
fore, the only Acoustic pressure field has been accounted for in the COM-
SOL simulations, where the internal walls of the structure are set to hard
boundary conditions, yielding the wall vibration, and the thermoviscous
losses have been intentionally discarded. This simplifications are justified
by the difficulty to render the actual wall thickness in the geometrical ren-
dering of COMSOL without paying the price of prohibitive computational
costs, relative to meshing and numerical processing [1]. However, due
to the 3D-printing technology employed for building the prototypes, the
actually fabricated helicoidal and cylindrical walls present unpredictable
porosity and are not smooth, with random surface states varying around
average thickness of 0.5mm and 1mm respectively (considering the fab-
rication precision, each prototype present varying thicknesses around the
average). Such construction tolerances result in increasing the frictions
within channels, and also in making the walls vibrate under the incident
sound field, thus transferring part of the incident acoustic energy into
mechanical energy.

• Thermoacoustic losses not accounted for in the simulations:
The thickness of the helicoidal walls are of the same order of magnitude
as the width of the narrow acoustic paths, especially for the denser unit-
cells, and it affects the transmission characteristics. Then, in addition
to the disregarded porosity of the prototypes walls, the thermoviscous
losses resulting from the ultra-thin labyrinthine pathways is the second
dominating factor contributing to decreasing the transmission coefficient.

• Presence of residual powder in the prototypes:
The SLS fabrication process results in leaving residual material powder
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inside the channels of the labyrinthine paths . While almost all the resid-
ual powder can be blown away for coarse unit-cells using compressed air,
it is difficult if not impossible for denser twisted shapes. Consequently
the paths are not cleaned properly in denser unit-cells and the remain-
ing powder can block the channels increasing sound power reflection and
absorption.

The last identified sources of discrepancies are dominant for the denser unit-
cells, and the whole mentioned problems are the consequences of the 3D printing
technology.

The most straightforward way to minimize the influence of the aforemen-
tioned problems consists in increasing the global length of each unit-cell h while
increasing the thickness, which results in reducing fabrication problems and er-
rors due to the lower density of helicoidal turns, and consequently lower value
of absorption and reflection. However, this solution presents the critical short-
coming of increasing the global thickness of the structure, which contradicts
the metasurface denomination. Another option consists in choosing an alterna-
tive piecewise function f(τ) for the modulation of helicoid to decrease both the
sound power reflection and lost power coefficients. This solution has not been
investigated here however.

Instead, rather than focusing on achieving unitary sound power transmission
coefficient on all unit-cells, which is finally not required to obtain a Bessel beam
(doughnut shaped) with helical phase front, a uniform transmission coefficient
among unit-cells can be targeted. This can be done by partially blocking the
output of each unit-cell, to the price of a degradation of the overall transmission
performance. Then, the proposed design still preserves the thickness criterion
of acoustic metasurfaces, transforming an incident plane wave into a helicoidal
wave, to the price of a relative deterioration of the efficiency in terms of power
transmission.
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Figure 3: Measured transmitted, reflected and lost power in the helicoidal unit-
cells.
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Mathematical definitions of the proposed helicoidal unit-
cells

The helicoid can be mathematically described as the following parametric equa-
tion:

~r(ρ, t) =< x, y, z >

=< ρ cos(2π
∫ t

0
f(τ)dτ), ρ sin(2π

∫ t
0
f(τ)dτ), b t >,

where ρ is the radius of helicoid, b is the constant rate of gradual displace-
ment along z-axis, and for b = 1, t defines the height of the unit-cell. The
spatial modulation function of the helicoid is f(τ) = fc + f∆xm(t), where fc is
the average spatial frequency of twists, f∆ is the deviation from fc and xm(t)
is a piecewise function allowing changing the spatial variations. Therefore, fc
controls the phase of the transmission coefficient, whereas f∆ and xm have
an influence on the amplitude of the transmission coefficient, acting on the
impedance matching. The mathematical definitions of the helicoidal unit-cells
used for acoustic OAM have been summarized in Table. 1.
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Measurement setup for the OAM Metasurface

The measurement setup for our proposed acoustic OAM is shown in Fig. 4 and
the corresponding dimensions have been summarized in Table. 2.

Figure 4: Schematic representation of the acoustic OAM measurement setup.

Table 2: OAM measurement setup dimensions.

Symbol Value (mm) Symbol Value (mm)
Dout 200 h 100
Din 194 θ1 45o

tw 3 θ2 22.5o

tb 3.5 R1 45
ta 4 R2 81.50
tp 8 r1 88
d 30 r2 66
dm 7 r3 44
L 800 r4 22

The diameter of the holes holding the unit-cells is chosen to be 0.8mm bigger
than d = 30mm (unit-cell diameter) in order to fit the helicoidal unit-cells in
the support holes.
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Figure 5: Acoustic OAM measurement setup.
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