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Abstract

This semester project is aiming to compare different airfoils in order to select the most
promising one as blade shape for scaled the straight-bladed giromills used in wind tun-
nel experiments. For this matter, a large amount of steady-state CFD-simulations have
been performed trying to characterize aerodynamic airfoil’s performance at low Reynolds
number. It is a continuation of a previous semester project which already selected the nu-
merical model to use for the simulation and developed an automation process for batching
several simulations which facilitated the creation of the dataset presented in this report.

In total, thirteen profiles have been investigated through various angles of attack and
for chord Reynolds numbers of 1 ·104, 2 ·104 and 4 ·104. The airfoils chosen consist of five
symmetrical NACA profiles of different thicknesses (NACA 0005 to NACA 0021), three
modified NACA with sharp leading edge (NACA 0005-05, NACA 0009-05 and NACA
0012-05), two 5% cambered NACA profiles (NACA 5505 and NACA 5510) and three spe-
cific airfoils for low Reynolds number (E387, S1223 and BW3). Based on the tangential
force coefficients of the airfoils, NACA 5505 and BW3 showed the overall best perfor-
mances at this range of Reynolds which is in accordance with the existing studies on the
subject as they are both thin airfoils with around 5% maximum camber at mid chord.



Project report WIRE Laboratory Eric Sauvageat

Contents

1 Introduction 8

2 Vertical Axis Wind Turbines 8

2.1 Operating principle of a VAWT . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Power extraction from a VAWT . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Definition of the project 12

3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Airfoils selection 18

4.1 Symmetrical profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Non-symmetrical profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results 20

5.1 Symmetrical NACA 00xx profiles . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 NACA 00xx-xx profiles with sharp leading edge . . . . . . . . . . . . . . . 23

5.3 NACA 55xx profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Other profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Reliability of the results 27

7 Discussion and comparison between airfoils 29

7.1 Comparison with existing data . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Continuation of the project 40

8.1 Simulation of the airfoils as part of a VAWT . . . . . . . . . . . . . . . . . 40

9 Summary 42

Appendices 44

A Performance of airfoils 44

A.1 NACA 0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 NACA 0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CFD Prediction of low-Reynolds Airfoil Performance 2



Project report WIRE Laboratory Eric Sauvageat

A.3 NACA 0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.4 NACA 0018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.5 NACA 0021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.6 NACA 0005-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.7 NACA 0009-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.8 NACA 0012-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.9 NACA 5505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.10 NACA 5510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.11 E387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.12 S1223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.13 BW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Comparison with existing data (additional content) 83

B.1 Data from Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.2 Data from Sheldahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C Comparison between simulations (additional content) 87

C.1 Addition of a camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.2 Specific airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D Matlab scripts 89

D.1 Script ”read.m” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

D.2 Script ”plotClCd.m” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

D.3 Script ”compareLD-v2.m” . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CFD Prediction of low-Reynolds Airfoil Performance 3



Project report WIRE Laboratory Eric Sauvageat

List of Figures

1 Example of a straight two-bladed Vertical Axis Wind Turbine. Image taken
from: http://www.thefullwiki.org/Darrieus_wind_turbine . . . . . . 9

2 Flow velocities and force diagram on a single blade [1] . . . . . . . . . . . . 10

3 Variation of angle of attack over θ for λ = 2 . . . . . . . . . . . . . . . . . 10

4 Automation process for the simulations (by E. Piccoli) . . . . . . . . . . . 13

5 Mesh for non-symmetrical airfoils . . . . . . . . . . . . . . . . . . . . . . . 16

6 Y+ values on the surface of the E387 airfoil . . . . . . . . . . . . . . . . . 16

7 NACA symmetrical profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Non-symmetrical profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Polars for NACA 0005, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 21

10 Polars for NACA 0009, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 21

11 Polars for NACA 0012, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 22

12 Polars for NACA 0018, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 22

13 Polars for NACA 0021, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 23

14 Polars for NACA 0005-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 23

15 Polars for NACA 0009-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 24

16 Polars for NACA 0012-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 24

17 Polars for NACA 5505, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 25

18 Polars for NACA 5510, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 25

19 Polars for E387, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

20 Polars for S1223, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . 26

21 Polars for BW3, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

22 Residuals for E387 at Re = 104 and α = 4° . . . . . . . . . . . . . . . . . . 28

23 Example of 2 velocity contours . . . . . . . . . . . . . . . . . . . . . . . . . 28

24 Comparison of lift coefficients of NACA 0009, Re = 4 · 104 . . . . . . . . . 29

25 Comparison of lift coefficients of NACA 0018 with Kumar, Re = 2 · 104 . . 30

26 Comparison of lift coefficients of NACA 0018 with Kumar, Re = 4 · 104 . . 31

27 Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 4 · 104 . 31

28 Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 4 · 104 . 32

29 Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 4 · 104 . 32

30 Comparison between symmetrical airfoils, Re = 104 . . . . . . . . . . . . . 33

31 Comparison between symmetrical airfoils, Re = 2 · 104 . . . . . . . . . . . 34

32 Comparison between symmetrical airfoils, Re = 4 · 104 . . . . . . . . . . . 34

CFD Prediction of low-Reynolds Airfoil Performance 4

http://www.thefullwiki.org/Darrieus_wind_turbine


Project report WIRE Laboratory Eric Sauvageat

33 Effect of the sharp leading edge on NACA 0005 . . . . . . . . . . . . . . . 35

34 Effect of the sharp leading edge on NACA 0009 . . . . . . . . . . . . . . . 35

35 Effect of the sharp leading edge on NACA 0012 . . . . . . . . . . . . . . . 36

36 Effect of the 5% camber on NACA 0005 . . . . . . . . . . . . . . . . . . . 37

37 Comparison of NACA 5505 and NACA 5510 . . . . . . . . . . . . . . . . . 37

38 Comparison of E387, S1223 and BW3 at Re = 4 · 104 . . . . . . . . . . . . 38

39 Comparison of NACA 0012, NACA 5505, E387 and BW3 . . . . . . . . . . 39

40 Double Multiple Stream Tube model for VAWT . . . . . . . . . . . . . . . 41

A.1 Polars for NACA 0005, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 Polars for NACA 0005, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Polars for NACA 0005, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 46

A.4 Polars for NACA 0009, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 47

A.5 Polars for NACA 0009, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 48

A.6 Polars for NACA 0009, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 49

A.7 Polars for NACA 0012, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 50

A.8 Polars for NACA 0012, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 51

A.9 Polars for NACA 0012, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 52

A.10 Polars for NACA 0018, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 53

A.11 Polars for NACA 0018, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 54

A.12 Polars for NACA 0018, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 55

A.13 Polars for NACA 0021, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 56

A.14 Polars for NACA 0021, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 57

A.15 Polars for NACA 0021, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 58

A.16 Polars for NACA 0005-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 59

A.17 Polars for NACA 0005-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 60

A.18 Polars for NACA 0005-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . 61

A.19 Polars for NACA 0009-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 62

A.20 Polars for NACA 0009-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 63

A.21 Polars for NACA 0009-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . 64

A.22 Polars for NACA 0012-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 65

A.23 Polars for NACA 0012-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . 66

A.24 Polars for NACA 0012-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . 67

A.25 Polars for NACA 5505, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 68

A.26 Polars for NACA 5505, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 69

CFD Prediction of low-Reynolds Airfoil Performance 5



Project report WIRE Laboratory Eric Sauvageat

A.27 Polars for NACA 5505, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 70

A.28 Polars for NACA 5510, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . 71

A.29 Polars for NACA 5510, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . 72

A.30 Polars for NACA 5510, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . 73

A.31 Polars for E387, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.32 Polars for E387, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.33 Polars for E387, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.34 Polars for S1223, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.35 Polars for S1223, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.36 Polars for S1223, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.37 Polars for BW3, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.38 Polars for BW3, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.39 Polars for BW3, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.1 Comparison of lift coefficients of NACA 0018 with Kumar, Re = 104 . . . . 83

B.2 Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 104 . . . 83

B.3 Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 2 · 104 . 84

B.4 Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 104 . . . 84

B.5 Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 2 · 104 . 85

B.6 Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 104 . . . 85

B.7 Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 2 · 104 . 86

C.8 Comparison between NACA 0009 and NACA 5510 . . . . . . . . . . . . . 87

C.9 Comparison of E387, S1223 and BW3 at Re = 104 . . . . . . . . . . . . . . 87

C.10 Comparison of E387, S1223 and BW3 at Re = 2 · 104 . . . . . . . . . . . . 88

List of Tables

A.1 Data for NACA 0005, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 Data for NACA 0005, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Data for NACA 0005, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 46

A.4 Data for NACA 0009, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 47

A.5 Data for NACA 0009, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 48

A.6 Data for NACA 0009, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 49

A.7 Data for NACA 0012, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 50

A.8 Data for NACA 0012, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 51

A.9 Data for NACA 0012, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 52

CFD Prediction of low-Reynolds Airfoil Performance 6



Project report WIRE Laboratory Eric Sauvageat

A.10 Data for NACA 0018, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 53

A.11 Data for NACA 0018, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 54

A.12 Data for NACA 0018, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 55

A.13 Data for NACA 0021, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 56

A.14 Data for NACA 0021, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 57

A.15 Data for NACA 0021, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 58

A.16 Data for NACA 0005-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 59

A.17 Data for NACA 0005-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . 60

A.18 Data for NACA 0005-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . 61

A.19 Data for NACA 0009-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 62

A.20 Data for NACA 0009-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . 63

A.21 Data for NACA 0009-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . 64

A.22 Data for NACA 0012-05, Re = 104 . . . . . . . . . . . . . . . . . . . . . . 65

A.23 Data for NACA 0012-05, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . 66

A.24 Data for NACA 0012-05, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . 67

A.25 Data for NACA 5505, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 68

A.26 Data for NACA 5505, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 69

A.27 Data for NACA 5505, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 70

A.28 Data for NACA 5510, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . 71

A.29 Data for NACA 5510, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . 72

A.30 Data for NACA 5510, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . 73

A.31 Data for E387, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.32 Data for E387, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.33 Data for E387, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.34 Data for S1223, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.35 Data for S1223, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.36 Data for S1223, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.37 Data for BW3, Re = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.38 Data for BW3, Re = 2 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.39 Data for BW3, Re = 4 · 104 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CFD Prediction of low-Reynolds Airfoil Performance 7



Project report WIRE Laboratory Eric Sauvageat

1 Introduction

Today maybe more than ever, the management of the Earth’s resources calls for a
rethinking of the energy production and distribution. The fossil fuels era is globally
recognised to run the world’s population into a stone wall and new technologies have now
to emerge to fill the predictable energetic gap.

The wind conversion to electricity has been exploited for a long time and is now an
integral part of the world’s landscape mostly in the form of Horizontal Axis Wind Turbines
(HAWTs). These devices have benefited from a large volume of research which has lead
to significant progress in the domain during the past decades. However, the improvements
on these devices are getting more incremental which lead to an increased interest in less
common technologies such as the Vertical Axis Wind Turbines (VAWTs).

This type of wind turbines has gained a growing interest in the recent years and they
are offering some interesting advantages compared to the horizontal devices. For instance,
they are insensitive to the wind direction which is simplifying their designs as they do not
require any yaw equipment. They have a better capacity to withstand high winds and
could provide potential improvement to the power density in wind farms.

However, the studies on the VAWTs are scarce and there is a large margin for improve-
ments if one can overcome the difficulties linked with this technology. Amongst them, we
can mention the difficulty to self-start and to predict their global performance correctly
due to their more complex aerodynamic than the HAWTs. In fact, the blades of such
turbines are experiencing large variation in the incoming flow direction which makes the
prediction of their aerodynamics performance difficult.

The present report is focusing on the study of the scaled VAWTs used for wind tunnel
experiments. It is aiming to predict and compare the performance of different airfoil
profiles that could be used as blade shapes in such turbines. Furthermore, it is part of
a bigger project which expands from the study of the airfoil’s aerodynamic performance
alone (subject of the present report) to the simulation of these airfoils as part of a VAWT
and finally to the selection of the most promising profile for an experimental testing in
the wind tunnel at EPFL.

2 Vertical Axis Wind Turbines

There are different types of VAWTs, and they can be categorised whether they are
actuated by the lift (Darrieus rotor) or the drag force (Savonius rotor). During this
project, we will study a specific type of Darrieus rotor; the three straight-bladed type,
also called giromill.

Giromills are using straight vertical blades attached to the middle axis and arranged
symmetrically around it. They can have different number and shape of blades and an
example of a two-bladed turbine is presented in Figure 1. For practical and economical
reasons, the most widely used shapes for such turbines are the conventional NACA profiles
well known in aerodynamics.

As said previously, the performance’s prediction of such turbines is not an easy task,
mostly because of their operating principle which is involving some complex aerodynamic

CFD Prediction of low-Reynolds Airfoil Performance 8
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behaviour. This principle will be presented briefly in the section 2.1.

Figure 1: Example of a straight two-bladed Vertical Axis Wind Turbine. Image taken
from: http://www.thefullwiki.org/Darrieus_wind_turbine

2.1 Operating principle of a VAWT

Similarly to the airplane’s wings, the operating principles of these turbines relies on
the lift and drag forces occurring on the blade when it is facing the air flow. These forces
depend on the wind speed, the blade profile and the angle at which it is facing the wind
(called angle of attack and designated as α). The forces acting on a single blade of a
giromill are presented in Figure 2 and their effects will be further detailed in section 2.2.
On a VAWT, the difficulty is that the blades are rotating which means they are subject
to some continuous changes in wind direction (even reaching α higher than stall). In
the case of giromills with more than one blade, the downwind part of the turbine will be
subject to disturbed incoming flow velocity after the crossing of the upwind blade and this
phenomena is also participating to difficulties that occur for modelling the performance
of such turbines.

The angle at which the blade is facing the wind is depending not only on the azimuth
angle θ, but also on the tip-speed ratio λ (TSR). This ratio is a key parameter for the
study of a VAWT and is defined as the ratio between the ground speed of the blade’s tip
and the wind velocity:

λ =
ωR

U∞
(1)
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Figure 2: Flow velocities and force diagram on a single blade [1]

In fact, the relation between the angle of attack α and the TSR can be deduced from
the force and velocity diagram from Figure 2:

α = tan−1(
sin(θ)

cos(θ) + λ
) (2)

It means that, for a given TSR, the angle of attack of an airfoil in a VAWT is oscillating
at a certain amplitude in function of the azimuth angle θ. This phenomena is represented
in Figure 3 for a complete revolution of the turbine and has the consequence that a large
range of angles of attack have to be studied in order to characterized the performance of
airfoils operating in such turbines.

Figure 3: Variation of angle of attack over θ for λ = 2
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2.2 Power extraction from a VAWT

From Figure 2, we can see that the main force that will create a torque and cause the
turbine to turn is the tangential force Ft. This instantaneous force can be described
with the lift (L) and drag (D) forces for each angle of attack as:

Ft = L sin(α) −D cos(α) (3)

Similarly, this expression can be written with normalized coefficient for each of the force.
The tangential force coefficient is defined as:

Ct = Cl sin(α) − Cd cos(α) (4)

With Cl and Cd being the lift and drag coefficients that are generally used for describing
airfoil’s performance in aerodynamics. They are defined as:

Cl =
L

1
2
ρSv2∞

(5)

Cd =
D

1
2
ρSv2∞

(6)

1
2
ρv2∞ being the dynamic pressure of the inflow and S the surface of the blade that can

be described by its chord length c and its height h.

This tangential force coefficient enable to characterize the instantaneous torque Qi

which can be expressed with the radius of the rotor and the relative velocity of the wind
arriving on the blade (respectively R and W on Figure 2) by:

Qi =
1

2
ρW 2hcCtR (7)

This torque is a function of α and consequently of azimuthal angle θ. Therefore it can
be averaged for the complete rotation of the turbine and multiplying it by the number of
blades is giving the total torque (Q). The total power output (P) from the turbines
will be then the multiplication of this torque with the rotational speed of the turbine ω:

P = Q · ω (8)

The goal for a VAWT is therefore to maximize this coefficient of tangential force in
order to maximize the torque created by the wind and consequently the power output
from the turbine. Practically, we can already consider the ratio between the lift and drag
coefficient (lift-to-drag ratio) as being a good indicator of the performance of a given
blade. The higher is this ratio, the higher should be the power extraction of the turbine.

CFD Prediction of low-Reynolds Airfoil Performance 11



Project report WIRE Laboratory Eric Sauvageat

3 Definition of the project

The main purpose of this project is to predict and compare the performance of different
airfoil profiles for a use as blade shapes in scaled VAWTs.

More specifically, the goal is to deal with the three-bladed scaled VAWTs that are used
for experimental testing in the wind tunnel of the WIRE lab at EPFL. As seen before,
the efficiency of a VAWT depends highly on the tangential force that will occur on the
blades of the turbines. It is described by its coefficient of tangential force which depends
on the lift-to-drag ratio. The idea is then that, knowing the lift-to-drag ratio of a given
profile over the range of angle of attack occurring during the rotation of the turbine, we
should be able to estimate the power production of a VAWT using such blade shape.

Studying the aerodynamics performance of the blade itself could then be sufficient to
study and predict the performance of the turbine in its whole. Practically, a large range of
numerical steady-state simulations will be performed on different airfoil profiles in order to
compare them on their basis of their tangential force coefficient. The commercial software
Ansys Fluent will be used for this task. On the long term, it should enable to create a
database of airfoil’s performances at low Reynolds numbers in order to select the most
promising profile for an experimental testing.

In term of scale, we are dealing with blade chord of 5 cm and radius rotor of around 8
cm. A study with this kind of scaled VAWT has already been performed at the WIRE
Laboratory and the parameters of the simulations will be chosen according to the ones
used in reference [2]:

• The chord Reynolds number1 is in the range of 2 · 104. In fact the simulations will
be performed with three different Reynolds number; Rec = 1 ·104, 2 ·104 and 4 ·104.

• The Tip Speed Ratio is set to λ = 2 which means the study will have to consider
angle of attack ranging from approximately −30° to 30° (see Figure 3). In fact, it has
now been shown in various studies that stall delay occurs on VAWT and therefore,
a dynamic stall model will be applied to compute the lift and drag coefficients for
the bigger range of angle (especially surpassing stall). We are then considering only
angle of attack ranging from 0 to 14° with an increment of 2°.

Considering the number of simulations to perform in order to characterize one profile (24
in total), an automation of the process has been created by Emile Piccoli in a previous
semester project [3] at the WIRE Laboratory and this is represented schematically in
Figure 4. Basically, this process is enabling the launch of multiple simulations in series
on Fluent. After importing the geometry and creating the mesh in ANSYS, launching
the Fluent solver is writing a ”Setup Output case file” that can be extracted from the
Fluent folder and stored for each airfoil. Journal files are then automatically generated
with Python using the specific airfoil’s setup case file for each angle of attack and each
Reynolds number. A main command program is then used to run all the journal files
directly in Fluent until all the files have been launched. For the results, Fluent have been
configured to write down the history of lift and drag coefficients for each case and it is
additionally writing a case and a data file for the solution. All the scripts used for this

1For practical reasons, we will speak only about ”Reynolds number” in the rest of the report
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report are available in Emile’s report (see [3]) as well as their detailed description. For
this report, only the post-process file written in Matlab will be presented in Appendix D.

Figure 4: Automation process for the simulations (by E. Piccoli)

3.1 Challenges

Low-Reynolds aerodynamic

The main challenge in this project is linked to the simulation of the flow around the
airfoil alone. In fact, we are dealing here with the low-Reynolds aerodynamic in which
the viscous effect are of primary importance for the right modelling of the air flow. More
specifically, we are not located in fully laminar nor turbulent regime, but in a transition
mode between both which is responsible for the complexity of the calculations that we have
to deal with. In fact, the potential flow theories that can be applied for higher Reynolds
do not seem to be valid anymore for the calculation of the lift force and transition models
have to be considered (well summarized in [4]).

Several transition models are offered by commercial software like Ansys Fluent but the
choice between them is not obvious as it relies mostly on previous experiences which are
really scarce in this range of Reynolds number. This aspect has mainly be addressed
by the previous semester project, especially regarding the choice of the model that will
enable the best prediction of the flow features around the airfoil. Particularly, it was paid
a great attention to the Laminar Separation Bubble (LSB) phenomena as it seems to have
significant impact on the calculated aerodynamic forces at this range of Reynolds number
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(see [5] for more details). The model chosen and the validation performed by Emile will
be presented in section 3.2 but the complete process for the model’s choice will not be
repeated in this report (see [3]).

Meshing and convergence of non-symmetrical airfoils

The previous semester project focused on finding the best model for the simulations
and automating the process in order to enable the simulations of many different airfoils.
Therefore, it has only performed simulations on symmetrical NACA 0012 and NACA 0018
profiles and it appeared that the mesh chosen for this matter was not suitable anymore
when dealing with non-symmetrical ones. A previous semester project at the WIRE Lab
was found to be dealing with that kind of mesh but it used a meshing software (GAMBIT)
which was no longer available and it was not possible to reproduce the exact same mesh
on Fluent. The building of a new mesh was then necessary and it finally appeared to be
very time consuming in this project. After trying large amounts of meshes, an acceptable
mesh has been found and is presented in section 3.2.

Still, even if this mesh seemed visually acceptable, it could not provide good convergence
for the non-symmetrical airfoils. In fact, very few cases have reached convergence and
there is still some improvements needed in this domain if we want some more reliable
results for the non-symmetrical profiles (see section 6).

3.2 Numerical setup

Symmetrical profiles

For symmetrical profiles, the numerical setup was already described and validated in
the previous report and after re-writing all the files, the automation process worked nicely
and the simulations gave good results. As only few corrections have been added to his
work, only few details will be given about the setup for symmetrical airfoils in this report.

Simulations were launched using a typical C-Mesh with a 12.5 chord length radius for
the front section and a square of size s = 12.5 m for the past section. This mesh can
be seen in the previous report [3]. A mesh convergence had also been performed in the
previous report in order to ensure a good capture of the flow patterns near the airfoil.
The Y+ value had been studied and the size of the first cell has been adapted in order to
get some Y+ values close to one.

The boundary conditions were defined on three different groups of edges:

• Inlet: Defined as velocity components applied on the main x and y axis for the
simulations of the three different chord Reynolds numbers and angles of attack.
Chord length was set to 1 m and the properties of the fluid were the default ones
in Fluent. Therefore the velocity magnitude was applied for each of the three chord
Reynolds numbers as:

U∞ =
Rec · ν
c

(9)

And then simply projected on the main axis in order to simulate the angle of attack
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α as:

Ux = cos(α) · U∞

Uy = sin(α) · U∞

• Outlet: Defined as a pressure boundary condition, set as the value of the static
pressure

• Airfoil: Treated as a no-slip wall.

Regarding the solver, two-dimensional with double precision and with second order
upwind difference scheme for velocity has been chosen by Emile. Pressure-velocity cou-
pling was performed by the default SIMPLE algorithm. He tested different turbulence
models for low-Reynolds regimes on his simulations and evaluated the k-epsilon and the
sst-transition against the datasets from Kumar et al. [6] for the NACA0018 symmetrical
profile (CFD-simulations with Fluent as well). The sst-transition model was found to
perform better and after a visual inspection of the flow patterns and a comparison with
extrapolated experimental data from Sheldahl [7], this model was chosen for the rest of
the project. In term of convergence, Emile judged it on the basis of the residuals and on
the lift and drag coefficient’s histories. He let the simulations run for 10’000 iterations for
each case and found good convergence for low angle of attack (below 10−6 for continuity
equation). For higher angles of attack, he had to lower the under-relaxation factor in
order to avoid oscillatory behaviour on the lift and drag coefficient (0.35 for momentum
and 0,2 for pressure) and sometimes launch recalculation when there was no convergence
reached in 10’000 iterations.

Other variations of parameters have been tried by Emile such as varying the size of the
domain or the mesh resolution. All these can be found in detail in his report [3] as well
as his results and validation with existing data.

We kept globally the same setup for our symmetrical profiles’ simulations but with an
addition of convergence factor for all residuals at 10−5 in order to gain some computing
time when the convergence of the solution was reached before.

Non-symmetrical profiles

Numerical simulations of non-symmetrical profiles have not been performed by Emile
and, as said before, the mesh built for the symmetrical ones was not working anymore.
The mesh built for the simulations of non-symmetrical airfoils is presented in Figure 5.
It consists of the same C-mesh used for the symmetrical simulations but includes a circle
of radius R = 2 · chord centered around the airfoil. The cell’s size is set at 0.3 m in the
domain and refined at 0.03 m for the inside circle. An inflation layer (10 layers with 1.3
growth rate) as well as an edge sizing (130 divisions with smooth transition bias of 1.2)
are then applied around both sides of the airfoil in order to capture the viscous effects
and to refine the elements at the leading and trailing edges. After a new grid convergence,
the size of the first cells have been reset to 1.8 · 10−3 m in order to keep the Y+ value
around one. As an example, the Y+ for E387 airfoil at Re = 104 and α = 8° is presented
in Figure 6. Similar graphs can be found for all non-symmetrical cases.
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(a) Mesh (b) Mesh, zoomed

Figure 5: Mesh for non-symmetrical airfoils

Figure 6: Y+ values on the surface of the E387 airfoil

As we saw before, the convergence for the non-symmetrical airfoils is still a big issue in
this project and it will have to be addressed seriously in the next semester report. In fact,
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the minimum orthogonal quality of this mesh is really poor (2.6 · 10−5) and the need for a
new design is important. Improvements on the mesh has been addressed by my tutor V.
Rolin and a new mesh for this kind of profile is under creation. Simulations should be run
on this new mesh soon in order to potentially get better convergence on non-symmetrical
airfoils.

3.3 Expected results

As said before, the studies in this range of Reynolds are scarce as the focus has mainly
stayed on Re > 106 which is the order of magnitude at which are operating big aeroplanes.
The research focusing on low-Reynolds numbers are often limited to Re > 105 and for
this reason, only few studies concerning small wind turbines or small aircraft (drones) are
offering results for Re ≈ 104. Additionally, the measurements of aerodynamic forces at
this regime are particularly difficult as they are generally smaller than at bigger Reynolds
numbers (which means their relative uncertainties are much higher) and they are more
sensitive to the model geometry and roughness which make it hardly repeatable (see [4]).
Modelling the flow pattern at this low Reynolds regime is also a complex matter (as briefly
discussed in section 3.1). For all these reasons, the data presented below must be treated
with great care. The results available for the range of Reynolds that interests us can be
classified in 4 categories:

1. Experimental data:

These are not easy to find but, for Re = 4 · 103, there is a paper from 1997 which
tested the influence of different airfoils shape (camber, thickness, ...) on aerodynamic
characteristic [8]. They found that, added separately, the airfoil with the best perfor-
mance at this Reynolds should be thin, have a sharp-leading edge and have a camber
of about 5% at about mid chord. It is important to note that these recommendations
has been formulated on conditions added separately and on small sample.

Some results are also available for Re = 6 · 104 from both the University of Illinois
at Urbana-Champaign (UIUC) and Princeton University. Actually, the second is not
available on-line but the tests from UIUC are resumed in two books [9] that are really
extensive. They have tested different types of airfoils which are promising for the
model-aviation at different Reynolds, including Re = 6 · 104 and even lower for some
airfoils (NACA 0009 for example has been tested at Re = 4 · 104). All the detailed
results will not be presented here but this book has been very interesting to make a
first selection of airfoils for our simulations.

2. CFD-results:

The main results in this domain are provided by Kumar et al. in a study on the
implementation of VAWT on Mars [6]. They are the results of CFD simulations of
NACA 0018 profile with Fluent at Reynolds number between 1000 and 160’000 using
both free transition and fully turbulent model with the introduction of a self-designed
intermittency function which is modifying the effective viscosity. They have compared
their results with both experimental data at Re = 160′000 and with the extrapolated
ones of Sheldahl and have found that the S-A free transition model seemed to predict
more accurately the aerodynamic forces of NACA 0018.
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3. Extrapolation of experimental data:

Another way of validation used by Emile was the dataset created by Sheldahl et al.
[7]. These are experimental data for four different symmetrical airfoils tested at bigger
Reynolds (≈ 0.5 · 106), with angle of attack ranging from 0 to 180°. These data have
then been extrapolated to Reynolds number down to 10’000 and are to consider with
great attention as they contains, for example, some negative lift value for positive angle
of attack (see in the Results section).

4. Xfoil predictions:

On Internet (for example; http://www.airfoiltools.com), it is possible to find some
basic lift and drag polar computed with Xfoil. They do not have great values in term
of accuracy but their predictions for Re = 50′000 are pretty close to the ones found
in our simulations for Re = 40′000 and it is particularly true for the results of the
comparison between airfoils. Therefore, it has also been used for the choice of the
airfoils to simulate in our project.

As a quick conclusion, even if the results are scarce at this Reynolds regime, they are
existing data that are of interests not too far from our Reynolds range or some that could
potentially help to find the right model to perform our simulations. At least, some will
be used for a comparison with our results in order to improve their reliability. Based
on the four types of results presented before and on the literature, the awaited results
for our range of Reynolds should pretty similar to the conclusions of Sunada [8] and the
thin, cambered (around 5%) airfoils should show good aerodynamics performance in our
simulations.

4 Airfoils selection

Until now, a total of thirteen different airfoils have been simulated during the semester.
This project is not over and more have to be tested in the following months in order to
get the most diversified range of airfoils possible. For this semester, the airfoils simulated
can be classified in two categories whether they are symmetrical or not.

4.1 Symmetrical profiles

All the symmetrical profiles are shapes developed by the National Advisory Committee
for Aeronautics (NACA). They include classical and modified NACA 4 digits’ profiles.
The modifications are introducing a sharp leading edge for three of the profiles. It is
represented by the addition of 2 digits preceded by an hyphen after the classical NACA 4
digits’ writing. The first one represents the shape of the leading edge (0 being ”sharp”)
and the second one specifying the location of the maximal thickness. All these profiles
are drawn in Figure 7.

The classical NACA profiles are the most common ones used in the domain of research
of VAWT and that is almost the only ones that can be compared with existing data. That
is especially true for NACA 0012 and NACA 0018 and the choice to begin with these two
was then pretty logical. Regarding the sharp leading edges, the purpose was to see if the
prevision from Sunada regarding this parameter [8] was justified or not.

CFD Prediction of low-Reynolds Airfoil Performance 18

http://www.airfoiltools.com


Project report WIRE Laboratory Eric Sauvageat

Figure 7: NACA symmetrical profiles

4.2 Non-symmetrical profiles

Regarding the non-symmetrical profiles, they have been selected on two basis. Firstly,
as the NACA 0005 and 0009 had performed pretty well and as their profiles is pretty easy
to draw, the goal was to apply them a camber of 5% at mid-chord and see if they would
perform better than the classical ones. Note that, for practical reason, the thickness
of NACA 0009 has been changed to 10% for its cambered version. Then, for the three
last profiles, a literature review of high lift-to-drag ratio for low-Reynolds aerodynamics
airfoils was made and pointed them as potentially interesting profiles. They are presented
in the following list:

• E387

This airfoil is typical high-lift airfoil designed in the early 1960s by Richard Eppler.
The choice for this airfoil in particular is linked to the fact that it is very often
used for wind-tunnel experiments which means that possibly, we could get some
comparison data to evaluate our simulations for this profile.

• S1223

The S1223 is an airfoil designed to have a very high lift force at Re ≈ 200′000 (in
fact the highest according to ref. [9]). Looking at other references, it seemed that
this airfoil could potentially also perform pretty good in our range of Reynolds and
that is why it has been chosen.

• BW-3

The Bergey BW-3 profile was basically developed for wind turbines. In fact, his
shape (5% max. thickness and 5.7% max. camber at 45.4% chord) is pretty close
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to the description of Sunada [8] for what should be the best airfoil choice for low-
Reynolds and additionally, its performance seemed pretty promising according to
the Xfoil prediction on http://www.airfoiltools.com.

All the non-symmetrical profiles simulated during this project are shown in Figure 8:

Figure 8: Non-symmetrical profiles

5 Results

Preliminary remark: The main goal of this project being the comparison of the aero-
dynamic performances of a large range of different airfoils, it is important to note that
the focus of this project was less to compute some very accurate polars of the lift and
drag coefficients than have sufficiently accurate data for airfoils comparisons. However,
as a comparison can only make sense if the results are quite realistic, we have tried to
perform a maximum of comparisons with existing experimental and/or simulated data.

All the results presented in this chapter come from CFD-simulations performed for the
WIRE Laboratory at EPFL during the autumn semester 2016. The simulations were
launched in parallel on 11 cores on the workstation available to students in the WIRE
Laboratory. Each of them lasted more less 30 minutes and the complete study of one
airfoil was generally taking around one night (8 different angles of attack for 3 Reynolds
numbers each time). For each simulation, the Cl and Cd coefficients were written at each
iteration in two different text files by Fluent. Matlab was used for the post processing
in order to get the number of iterations, the Cl and Cd values after convergence of the
solution, the lift-to-drag ratios and the tangential force coefficients for each angle of attack
and each Reynolds number. All these data were stored in Excel files which are given in
Appendix A for each airfoil. The lift and drag polars were then created with Matlab
as well as the lift-to-drag ratio and the coefficient of tangential force over the angle of
attack for each Reynolds. Considering the amount of data, only the lift and drag polars
at Reynolds 2 · 104 and its range of convergence will be presented in this section for each
airfoil. All the complete results (Tables of values and polars for all three Reynolds) can
be found in Appendix A. A discussion on the reliability of the results will be presented in
section 6 and the comparison between airfoils will then be performed in section 7 based
on the lift-to-drag ratios and the coefficients of tangential force.
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5.1 Symmetrical NACA 00xx profiles

NACA 0005

Converged for α = [0; 2; 4; 6; 8]

Figure 9: Polars for NACA 0005, Re = 2 · 104

NACA 0009

Converged for α = [0; 2; 4; 6; 8; 10]

Figure 10: Polars for NACA 0009, Re = 2 · 104
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NACA 0012

Converged for α = [0; 4; 6; 8; 10]

Figure 11: Polars for NACA 0012, Re = 2 · 104

NACA 0018

Converged for α = [0; 2; 4; 6; 8; 10]

Figure 12: Polars for NACA 0018, Re = 2 · 104
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NACA 0021

Converged for α = [0; 2; 4; 6; 8]

Figure 13: Polars for NACA 0021, Re = 2 · 104

5.2 NACA 00xx-xx profiles with sharp leading edge

NACA 0005-05

Converged for α = [0; 2; 4; 6; 8]

Figure 14: Polars for NACA 0005-05, Re = 2 · 104
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NACA 0009-05

Converged for α = [0; 2; 4; 6; 8; 10]

Figure 15: Polars for NACA 0009-05, Re = 2 · 104

NACA 0012-05

Converged for α = [0; 6; 8; 10]

Figure 16: Polars for NACA 0012-05, Re = 2 · 104
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5.3 NACA 55xx profiles

NACA 5505

Converged or considered valid2for α = [0; 2; 4; 6]

Figure 17: Polars for NACA 5505, Re = 2 · 104

NACA 5510

Converged or considered valid for α = [0; 2; 4; 6]

Figure 18: Polars for NACA 5510, Re = 2 · 104

2 See section 6
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5.4 Other profiles

E387

Converged or considered valid for α = [0; 2; 4; 6; 8]

Figure 19: Polars for E387, Re = 2 · 104

S1223

Converged or considered valid for α = [0; 2; 4; 6]

Figure 20: Polars for S1223, Re = 2 · 104
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BW3

Converged or considered valid for α = [0; 2; 4; 6; 8]

Figure 21: Polars for BW3, Re = 2 · 104

6 Reliability of the results

Globally speaking, the results obtained with our simulations are similar to ones that
could have been expected from such simulations. The lift and drag polars have classical
patterns in most cases (rise of lift and low drag until stall angle, then drop of lift and rise
of drag). In general, we got convergence for low angles of attack for most symmetrical
airfoils but hardly any for angles approaching stall (more complex behaviour of the flow).

Concerning non-symmetrical airfoils, this was a bit different as we got almost no con-
vergence at all during our simulations. Still the polars have nice patterns but without
further investigations, they were not usable directly. After study of the lift and drag
histories, it was noticed that some cases presented some completely stabilized coefficients
(study on the last 1’000 iterations). Moreover, a study of the residuals revealed that they
were already very low and stable in some cases (see for example Figure 22). It was of
course not sufficient for using the results but, after a careful visual inspection of the flow
patterns for each of the case, it has been decided that the results that would present
stabilized lift and drag coefficients, low residuals and a regular flow pattern at the same
time, could be used for a global comparison with the other airfoils.

An example of two different flow patterns is presented in Figure 23. One can clearly
see that Figure 23b is presenting very weird flow pattern and this kind of case was di-
rectly considered as non valid while the velocity contours in Figure 23a, if coming along
with stabilized residuals and coefficients, was considered valid for a comparison. All the
results that did not converged but were considered valid for the following comparisons are
highlighted in green in the tables of results in Appendix A.
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In fact, one more time, only low angles of attack were able to satisfy both conditions
and even if all range of α are presented in the results, it is of utmost importance to keep
that in mind in order to realize meaningful comparisons.

Figure 22: Residuals for E387 at Re = 104 and α = 4°

(a) Velocity contour for S1223 at Re = 104 and
α = 4°

(b) Velocity contour for NACA 5510 at Re =
4 · 104 and α = 12°

Figure 23: Example of 2 velocity contours
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7 Discussion and comparison between airfoils

7.1 Comparison with existing data

In this section are presented some comparisons with existing data (experimental or
CFD-simulations) in order to judge the model used for our simulations. As said, data on
the low-Reynolds number aerodynamic are pretty scarce and only few airfoils have already
been tested in the exact same conditions. In the symmetrical ones, NACA 0018 and
NACA 0012 are probably the most tested and compared airfoils. The previous semester
project used these two airfoils as validation for the numerical model by comparing it to
the data from Kumar [6] for NACA 0018 and from Sheldahl [7] for NACA 0012. Sunada
[8] is also providing some experimental data for NACA 0006, NACA 0009 and NACA
0012 but only for Re 0 4 · 103. The wind tunnel of the University of Illinois at Urbana-
Champaign (UIUC) also tested a large range of airfoils at different Reynolds number and
their result for NACA 0009 at 4 · 104 is the only one which is really matching our range
of Reynolds. Finally, it will not be detailed here but a global comparison have been done
with http://www.airfoiltools.com as it seemed that their own comparison tool was
giving similar results than ours. Depending on the results found, the comparison method
will globally stay the same, studying the lift and drag coefficients mostly.

Comparison with experimental results

As said before, UIUC tested a large range of airfoils and NACA 0009 has been tested
at Re = 4 · 104. The comparison with our own simulation for this Reynolds is presented
in Figure 24 (error bars of 10% have been added on the experimental data):

Figure 24: Comparison of lift coefficients of NACA 0009, Re = 4 · 104

These results for low angles of attack are pretty satisfactory, at least until stall happens
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(≈ 8° for this case according to the experimental data and to http://www.airfoiltools.

com/). We note as well that, according to Table A.6, the cases α = [2, 10, 12, 14] did not
converged in our simulations and it is precisely the data that present the more difference
with the experimental ones. Therefore, we can say that our simulation is pretty accurate
in this case.

CFD-results from Kumar

The data from Kumar et. al [6] have been simulated for the study of the implementation
of VAWT on Mars. Therefore, due to the atmosphere and the wind speed on this planet,
they are dealing with low Reynolds numbers typically in the range that interests us.
NACA 0018 was chosen for their simulations and it then provides a good comparison tool
for our own simulations. Emile already performed a comparison for his results and used
it in order to validate his use of the sst-transition model in Fluent. He found that his own
results were mostly in a reach of a 20% error with the ones for Kumar for low angles of
attack. In our case, error bars have been set to 25% on the data from Kumar and only
two Reynolds tested are presented here because the case Re = 104 got almost no angle of
attack converged (see Table A.10) and is therefore not relevant for a comparison. Figure
25 and 26 are presenting the comparison of our simulations with the ones from Kumar at
Re = 2 · 104 and Re = 4 · 104.

We can note first that our simulations didn’t converged for α 1 12° and that more
cases converged for Re = 2 · 104 (see Table A.11 and A.12). Keeping that in mind, we
can globally say that our simulations overestimated the ones from Kumar but that the
similarity between the two dataset is not so bad until stall happens. Still the difference
is consequent and it shows one more time the difficulty of CFD-analysis in this range of
Reynolds number.

Figure 25: Comparison of lift coefficients of NACA 0018 with Kumar, Re = 2 · 104
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Figure 26: Comparison of lift coefficients of NACA 0018 with Kumar, Re = 4 · 104

Extrapolated data from Sheldahl

In this section, we will present the comparison of three airfoils (NACA 0012, 0018 and
0021) with the extrapolated data from Sheldahl [7]. As a consequence of the extrapolation,
some data from Sheldahl are typically non relevant (for example Cl ≤ 0 for symmetrical
airfoils at α 1 0). Only Re = 4 ·104 will be presented in this section as the convergence of
our simulations at this Reynolds is pretty good and therefore our results can be considered
relevant.

Figure 27: Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 4 · 104
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Figure 28: Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 4 · 104

Figure 29: Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 4 · 104

This three comparison are showing one more time the limitations of both simulations
and extrapolations. Lift coefficient in Figure 27 is a typical example of what extrapolation
can lead to but overall, these data show a good similarity with our simulations at low
angles of attack. Here as well we can note that our simulations tend to overestimate the
lift and drag coefficients from Sheldahl. The rest of the comparison performed with the
extrapolated data can be found in Appendix B and shows globally the same results.
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7.2 Discussion of the results

Thickness

In this section, the results of our simulations are presented, discussed and comparisons
amongst them are performed.

The first parameter to study in our project was the effect of the thickness on the per-
formance of airfoils at low Reynolds numbers. Looking at the results for the symmetrical
airfoils, thinner airfoils generally have higher lift at this range of Reynolds than thicker
ones. They also seem to have a smaller drag at low angles of attack but this one seems
to be growing faster with angle of attack than for thicker airfoils. To assess on this pa-
rameter, five symmetrical airfoils with different thickness have been simulated and the
comparison based on their lift-to-drag ratios and their coefficients of tangential force at
Reynolds Re = 104, Re = 2 · 104 and Re = 4 · 104 are presented in Figure 30, 31 and 32.

The effect of the thickness seems to induce some consequent variations depending on
the Reynolds number. In fact, for the two lowest Reynolds, thinner profiles (NACA 0005,
NACA 0009 and NACA 0012) definitely performs better than the two thicker ones (NACA
0018 and NACA 0021) but this tendency is less clear for Re = 4 ·104 as the thicker profiles
are closer and even better at some angles of attack than the thinner ones. Focusing on
the relevant angles of attack (where convergence occurred for all airfoils namely α 0 8°),
the three thinner airfoils are still performing slightly better at the highest Reynolds and
therefore, we can express the conclusion that thinner airfoils are generally performing
better at this range of Reynolds. As a consequence of the fast rising drag on really thin
airfoils (NACA 0005), we have to note that the performances of such profiles seem to drop
pretty quickly after angle of attack around 6 − 8°.

Figure 30: Comparison between symmetrical airfoils, Re = 104

CFD Prediction of low-Reynolds Airfoil Performance 33



Project report WIRE Laboratory Eric Sauvageat

Figure 31: Comparison between symmetrical airfoils, Re = 2 · 104

Figure 32: Comparison between symmetrical airfoils, Re = 4 · 104

Addition of a sharp leading edge

One of the parameter to study in this project was the addition of a sharp leading edge.
Having a look at the raw results, it does not seem to improve the performance of the
airfoils. In fact it generally lowers the lift coefficient while keeping the drag more less
constant. Three symmetrical profiles (NACA 0005, NACA 0009 and NACA 0012) have
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been added a sharp leading edge and their comparison in term of lift-to-drag ratios with
the classical profiles at different Reynolds numbers are presented in Figure 33, 34 and 35:

Figure 33: Effect of the sharp leading edge on NACA 0005

Figure 34: Effect of the sharp leading edge on NACA 0009
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Figure 35: Effect of the sharp leading edge on NACA 0012

It seems that the addition of a sharp leading edge on symmetrical profiles have clearly a
negative effect on airfoil’s performance at Re = 2 ·104 and Re = 4 ·104. For Re = 104, the
effect is more neutral and it seems that the smaller is the Reynolds, the better is the effect
of the addition of a sharp leading edge. Therefore, our results could be in accordance with
the ones of Sunada [8] as his conclusion was made on Reynolds 0 4 · 103 but generally
speaking, the effect of a sharp leading edge is recognized to have a positive impact even
at Re 1 103 and that is not the case in our results.

Addition of a camber

According to Sunada [8], the addition of a camber should improve the low Reynolds
performance of airfoils at very low Reynolds. In our simulation, the results showed that
the addition of a 5% camber was improving a lot the lift coefficient but also resulted
in an increase of the drag at low angles of attack. Therefore, a comparison have been
done on NACA 0005 to see which increase would have the more impact on the general
performance. The comparison of NACA 0005 and NACA 5505 is presented in Figure 36.
The result of this comparison is pretty clear and match the previsions that have been
made on the addition of camber at low Reynolds.

Even if they are not exactly the same thickness, it is interesting to note that the
comparison between NACA 0009 and NACA 5510 is not so clear as we can see in Figure
C.8 in Appendix C. Still the camber is at least equaling the performance of the classical
airfoils and we can say that globally, the addition of a camber is slightly improving the
low Reynolds’ performance of airfoils.

In addition, the effect of the thickness can one more time be pointed out with Figure 37.
Similarly to symmetrical profiles, the thinner cambered profiles seem to perform better
at low Reynolds while the results are more mitigated for Re = 4 · 104.
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Figure 36: Effect of the 5% camber on NACA 0005

Figure 37: Comparison of NACA 5505 and NACA 5510

Searching for better performance

In reality, the research of airfoils showing high performances at low Reynolds is not
limited to NACA profiles. In fact, the existing results in this domain have shown that
they were better profiles to maximize lift-to-drag ratio in this range of Reynolds. Based
on the literature, we have then selected three special airfoils all dedicated for maximizing
low Reynolds airfoils’ performance. These are profiles E387, S1223 and BW3 and looking
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at the raw results, their lift coefficient is effectively higher than the classical symmetrical
NACA profiles. Their drag is also higher and it will be interesting to see if they are really
improving the performance at such low Reynolds (these airfoils are generally considered
for Reynolds around 105 − 106. As said before, all the results for the non-symmetrical
profiles have to be considered with care as the simulations have shown poor convergence
for most of the cases.

A comparison of these three specific airfoils at Re = 4·104 is presented here. It will then
enable a visual comparison with the site http://www.airfoiltools.com which simulated
them with Xfoil at Re = 5 · 104. Keeping in mind that the results are considered valid
with α 0 8° for E387 and BW3 and α 0 4° for S1223, this comparison is presented in
Figure 38 and is pretty similar to what was predicted by Xfoil. Namely, a very fast drop
in lift-to-drag ratio for S1223 (stall at ≈ 4°) and a overall best performance of BW3 at
this range of Reynolds. The comparison for lower Reynolds are presented in Appendix C
and are confirming the good performance of BW3.

Figure 38: Comparison of E387, S1223 and BW3 at Re = 4 · 104

Final comparison

Now, considering all the results, one more comparison can be done by selecting the most
promising airfoils. In fact, this choice is depending on which Reynolds number we consider
and therefore, some airfoils might be chosen just because they show good performance
at one given Reynolds. Consequently, the following choice have been made for the final
comparison:

• NACA 0012 for its good performance at Re = 4 · 104

• NACA 5505 because it is surpassing NACA 0005 and NACA 5510 almost on the
whole range of Reynolds (and recalling NACA 0005 was showing one of the best
overall performance of the symmetrical profiles).
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• The two best specific airfoils (E387 and BW3) for their overall good performances.
S1223 has a too low stall angle for making sense for use in a VAWT

The comparison of these 4 airfoils is presented in Figure 39 restricting this time at α = 10°
as almost none of the simulations converged (or were considered as relevant) at higher
angles of attack.

The results are pretty clear and two airfoils in particular seem to perform better at the
three Reynolds number tested. It is NACA 5505 and BW3 which are pretty close in term
of shape (BW3 has also a maximum thickness of around 5% with a max camber of 5.7%
around mid-chord). It is then pretty logical that these two have approximately the same
performances and the fact that they are overall better goes in the direction of Sunada’s
conclusions [8] for low Reynolds airfoils’ performances.

One more time, we can also note the similarity with the prediction from Xfoil; even if the
absolute values are different and the profile NACA 5505 is not available, the comparison
presented on http://www.airfoiltools.com have some similarities with our comparison
for Re = 4 · 104. Though, forgetting the others airfoils would be precipitated and not
realistic as more tests have to be designed with (hopefully) a better convergence of the
solutions. It is also important to keep in mind that these simulation are not entirely
representative of the performance of the VAWT that will use these airfoils as blade shapes
and this has to be simulated further (see section 8).

Figure 39: Comparison of NACA 0012, NACA 5505, E387 and BW3
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8 Continuation of the project

As said before, this report is presenting the first part of a bigger project with is aiming
to predict the performance of VAWTs using these airfoils as blade shape (see section
8.1). Additionally, more work is needed in order to have really relevant results on the
non-symmetrical airfoils due to the low convergence of our solutions and more airfoils
have to be simulated to get a better panel of the shapes possible. According to Xfoil
predictions (which worked pretty well until now), AH6407 would definitely be a good
choice for further research in shapes and looking at the literature on the subject, the
simple 5% cambered plate seems to offer very interesting performance while having low
complexity (see for example [10]). Another type of airfoils that could be investigated are
the two-parts’ airfoils, with a flexible trailing edge for example. It seems that this type
of modification can improve interestingly the aerodynamics’ performances for low TSR
although it rises the level of complexity of the blades.

8.1 Simulation of the airfoils as part of a VAWT

Modelling the airfoils as part of a scaled VAWT will be performed by applying the
Double Multiple Stream Tube (DMST) model. It will be very briefly introduced here
in order to get a better understanding of the work presented in this report. This model
has basically been developed by I. Paraschivoiu [11] for the Darrieus wind turbines and
further described among others by Islam et al. [1] or by H. Beri and Y.Yao [12].

This model is basically dividing the domain into parallel ”stream tubes” in which
will be considered a certain wind velocity. Each of this tube will be then separated
in two, with an upwind and a downwind half (see Figure 40a taken from [12]). The
velocity at rotor level is calculated for each half tube using the actuator theory (see
Figure 40b also taken from [12] used as well for horizontal axis wind turbines. In fact, the
airfoils rotating are represented by two actuators having an induction factor a (upwind)
and a’(downwind) on which the air will apply aerodynamic forces. According to this
theory (and assuming complete expansion from upwind wake before reaching the second
actuator), the downstream equilibrium velocity between the two blades is:

Ve = V∞(1 − 2a) (10)

And the induced velocity hitting the downwind blade is then described by:

Vad = Ve · (1 − a′) = V∞(1 − 2a)(1 − a′) (11)

With a and a’ being the induction factor of the actuators which are expressed by:

a =
V∞ − Vau

V∞
(12)

a′ =
Ve − Vad

Ve
(13)

Vau and Vad being respectively the upstream- and downstream-induced velocities arriv-
ing on the actuators and V∞ being the incoming wind speed before the turbine.
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Using the local wind velocity and the aerodynamic coefficients of the airfoils, it can
then compute the aerodynamic forces acting on the blades and model the thrust applied
on the airfoils by the upcoming wind (and therefore its thrust coefficient). At the same
time, the equation for the conservation of momentum is solved with the actuators theory
for assumed induction factors and the corresponding thrust coefficient is computed.

It is then using an iterative process for adjusting the induction factors for each of the
tube until the solution for both thrust corresponds in each tube. Note that the thrust
of the airfoils on the incoming wind also influences the aerodynamics condition and is
therefore modifying the induced flow velocity and its effect on the blade.

For this matter, it is important to note that the aerodynamic performances of the
airfoils are needed at angles of attack bigger that 14° (see section 2.1). It has been shown
that dynamic stall is present on VAWT and therefore this model is also implementing a
dynamic stall model for α > 14° in order to compute the aerodynamic performances on
the whole rotation of the turbine.

(a) Stream tubes (∆θ constant) (b) Actuator model applied on VAWT

Figure 40: Double Multiple Stream Tube model for VAWT

This model is globally recognized to show some good agreements between calculations
and experimental results and it can already give an idea of the power production for a
given airfoil. This part of the project is done in parallel by V.Rolin also in the WIRE
Laboratory, having as a long term objective to study which airfoil would have the best
theoretical performance as part of a VAWT and launch an experiment in the wind tunnel
at EPFL.
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9 Summary

The low Reynolds aerodynamics is definitely a difficult domain to study and the re-
sults presented in this report are to be considered with care. Obviously, the convergence
problems on the non-symmetrical simulations have to be addressed and the research for
higher performances’ airfoils have to go on. However, the results obtained during this
project are already interesting and it seems that they should be sufficiently accurate for
the main purpose of this work which is the comparisons between airfoils and the selection
of the most promising one(s).

From our simulations, two airfoils seem to show overall better performances than the
rest; NACA 5505 and BW3. Based on their tangential force coefficients, both should be
able to generate positive torque when used as blade shape in a scaled VAWT. It confirms
mostly what can be found in the literature as they are both thin airfoils with a camber
of around 5% and that already shows that these simulations make sense at this level.

The addition of a sharp leading edge has also been investigated in this project and
it seems that such modification is not really improving aerodynamics performances at
Reynolds numbers bigger than 104. Though, the literature seem to think the contrary
and it is maybe worth continuing the study of this parameter to understand how such a
difference can appear.

Except those uncertainties on the results, we can highlight the fact that the automation
process created in the previous semester project and completed with this one is now
working nicely and it offers a real opportunity for the creation of large dataset of airfoil’s
performances at this range of Reynolds numbers. Especially if we consider the new mesh
created recently for the non-symmetrical profiles which should definitely improve the
convergence of the solutions for a large range of new airfoils.
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Appendices

A Performance of airfoils

A.1 NACA 0005

Reynolds 10’000

Table A.1: Data for NACA 0005, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 2.16E-05 0.032207 0.000671 -0.03221 3715

2 0.19747 0.033087 5.9684 -0.02618 3217

4 0.36591 0.035187 10.3989 -0.00958 4694

6 0.65062 0.064825 10.0365 0.003538 6492

8 0.85514 0.1057 8.0899 0.014337 5788

10 0.91817 0.1649 5.5682 -0.00295 9764

12 0.96821 0.22162 4.3688 -0.01547 10000

14 0.92567 0.25882 3.5764 -0.0272 10000

Figure A.1: Polars for NACA 0005, Re = 104
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Reynolds 20’000

Table A.2: Data for NACA 0005, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 2.23E-05 0.022533 0.000989 -0.02253 2517

2 0.19258 0.022871 8.4202 -0.01614 3096

4 0.37256 0.026703 13.9521 -0.00065 4788

6 0.6172 0.053312 11.577 0.011494 4776

8 0.82786 0.095766 8.6446 0.020382 6215

10 0.95139 0.17363 5.4795 -0.00578 10000

12 0.96309 0.22069 4.3641 -0.01563 10000

14 0.88877 0.24194 3.6736 -0.01974 10000

Figure A.2: Polars for NACA 0005, Re = 2 · 104
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Reynolds 40’000

Table A.3: Data for NACA 0005, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 2.65E-05 0.01594 0.001661 -0.01594 1554

2 0.18319 0.016066 11.4024 -0.00966 3446

4 0.41427 0.025804 16.0546 0.003157 6447

6 0.615 0.04647 13.2341 0.018069 4052

8 0.80739 0.10196 7.9187 0.011399 10000

10 1.031 0.18982 5.4316 -0.0079 10000

12 0.99697 0.22813 4.3702 -0.01586 10000

14 0.85004 0.22737 3.7385 -0.01498 10000

Figure A.3: Polars for NACA 0005, Re = 4 · 104
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A.2 NACA 0009

Reynolds 10’000

Table A.4: Data for NACA 0009, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -9.02E-05 0.035558 -0.00254 -0.03556 4081

2 0.1588 0.036174 4.3898 -0.03061 4051

4 0.26273 0.040535 6.4816 -0.02211 4783

6 0.51314 0.061146 8.3921 -0.00717 7836

8 0.7551 0.087524 8.6273 0.018417 5472

10 0.91931 0.13599 6.7603 0.025716 7290

12 0.88492 0.20094 4.4039 -0.01256 10000

14 0.85407 0.24332 3.51 -0.02948 10000

Figure A.4: Polars for NACA 0009, Re = 104
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Reynolds 20’000

Table A.5: Data for NACA 0009, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -9.58E-05 0.025156 -0.00381 -0.02516 2858

2 0.14788 0.025806 5.7307 -0.02063 3229

4 0.3084 0.033232 9.2804 -0.01164 4129

6 0.5449 0.04248 12.8273 0.01471 6198

8 0.72384 0.063393 11.4183 0.037963 4757

10 0.88268 0.11427 7.7243 0.040739 7444

12 0.93138 0.21133 4.4071 -0.01307 10000

14 0.8565 0.24351 3.5172 -0.02908 10000

Figure A.5: Polars for NACA 0009, Re = 2 · 104
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Reynolds 40’000

Table A.6: Data for NACA 0009, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -8.19E-05 0.018002 -0.00455 -0.018 2093

2 0.1053 0.019545 5.3873 -0.01586 10000

4 0.42932 0.023228 18.4827 0.006776 6809

6 0.54788 0.030748 17.8182 0.026689 5426

8 0.73384 0.049426 14.8473 0.053186 4141

10 0.84761 0.11469 7.3903 0.034236 10000

12 1.0377 0.23694 4.3798 -0.016 10000

14 0.90513 0.25656 3.528 -0.02997 10000

Figure A.6: Polars for NACA 0009, Re = 4 · 104
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A.3 NACA 0012

Reynolds 10’000

Table A.7: Data for NACA 0012, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -4.83E-05 0.039337 -0.00123 -0.03934 5014

2 0.077304 0.040869 1.8915 -0.03815 4902

4 0.19375 0.049408 3.9213 -0.03577 4734

6 0.42623 0.065967 6.4614 -0.02105 10000

8 0.59562 0.087089 6.8392 -0.00335 8408

10 0.86552 0.12798 6.7631 0.024264 5726

12 0.77158 0.18017 4.2825 -0.01581 10000

14 0.781 0.22989 3.3973 -0.03412 9899

Figure A.7: Polars for NACA 0012, Re = 104
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Reynolds 20’000

Table A.8: Data for NACA 0012, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -0.00018 0.028771 -0.00629 -0.02877 4659

2 0.045652 0.031242 1.4612 -0.02963 10000

4 0.34865 0.039246 8.8838 -0.01483 7562

6 0.54321 0.047166 11.5168 0.009873 7086

8 0.64118 0.058735 10.9164 0.031071 5699

10 0.83666 0.08893 9.408 0.057705 5101

12 0.82236 0.17461 4.7098 0.000187 10000

14 0.7885 0.23025 3.4245 -0.03266 10000

Figure A.8: Polars for NACA 0012, Re = 2 · 104
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Reynolds 40’000

Table A.9: Data for NACA 0012, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -6.95E-05 0.021976 -0.00316 -0.02198 3420

2 0.20302 0.024397 8.3214 -0.0173 7341

4 0.44052 0.026347 16.7198 0.004446 6819

6 0.53382 0.030492 17.5067 0.025474 4969

8 0.65977 0.039503 16.702 0.052705 5218

10 0.86708 0.064165 13.5133 0.087377 4157

12 0.88879 0.1621 5.483 0.026232 10000

14 0.88585 0.25466 3.4786 -0.03279 10000

Figure A.9: Polars for NACA 0012, Re = 4 · 104
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A.4 NACA 0018

Reynolds 10’000

Table A.10: Data for NACA 0018, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 3.33E-05 0.057298 0.00058 -0.0573 7743

2 -0.0009628 0.059652 -0.01614 -0.05965 10000

4 0.1467 0.069779 2.1024 -0.05938 10000

6 0.2479 0.08198 3.0239 -0.05562 10000

8 0.35201 0.10139 3.472 -0.05141 10000

10 0.44774 0.12767 3.507 -0.04798 10000

12 0.59696 0.1812 3.2945 -0.05312 8145

14 0.38233 0.18232 2.097 -0.08441 10000

Figure A.10: Polars for NACA 0018, Re = 104
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Reynolds 20’000

Table A.11: Data for NACA 0018, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -0.00031 0.048605 -0.00642 -0.04861 4867

2 0.28012 0.0507 5.525 -0.04089 7798

4 0.33908 0.054373 6.2361 -0.03059 6910

6 0.41443 0.061341 6.7562 -0.01769 6076

8 0.53858 0.073996 7.2785 0.00168 5959

10 0.61146 0.10157 6.0203 0.006155 7970

12 0.59579 0.15106 3.9439 -0.02389 10000

14 0.67733 0.20981 3.2283 -0.03972 10000

Figure A.11: Polars for NACA 0018, Re = 2 · 104
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Reynolds 40’000

Table A.12: Data for NACA 0018, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.071488 0.035375 2.0209 -0.03538 10000

2 0.34093 0.034724 9.8181 -0.02281 9917

4 0.50201 0.035872 13.9946 -0.00077 8228

6 0.5528 0.039302 14.0653 0.018696 10000

8 0.62304 0.04724 13.1889 0.039931 8147

10 0.70669 0.058763 12.0261 0.064846 5731

12 0.72385 0.09165 7.898 0.06085 10000

14 0.75291 0.18358 4.1012 0.004015 10000

Figure A.12: Polars for NACA 0018, Re = 4 · 104
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A.5 NACA 0021

Reynolds 10’000

Table A.13: Data for NACA 0021, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 3.84E-05 0.073461 0.000523 -0.07346 6286

2 0.043501 0.074656 0.582686 -0.07309 17506

4 0.13895 0.084065 1.652888 -0.07417 11519

6 0.17491 0.093077 1.8792 -0.07429 8206

8 0.18283 0.10684 1.7112 -0.08036 10000

10 0.27244 0.12793 2.1297 -0.07867 10000

12 0.38986 0.1554 2.5088 -0.07095 10000

14 0.50012 0.20233 2.4718 -0.07533 10000

Figure A.13: Polars for NACA 0021, Re = 104
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Reynolds 20’000

Table A.14: Data for NACA 0021, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.000444 0.060807 0.007305 -0.06081 5769

2 0.24884 0.061444 4.0498 -0.05272 6681

4 0.39341 0.065218 6.0323 -0.03762 8613

6 0.34181 0.07238 4.7225 -0.03626 6408

8 0.48838 0.086345 5.6562 -0.01754 4797

10 0.38008 0.11419 3.3286 -0.04645 10000

12 0.64007 0.16695 3.8339 -0.03022 10000

14 0.61388 0.21288 2.8837 -0.05805 10000

Figure A.14: Polars for NACA 0021, Re = 2 · 104
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Reynolds 40’000

Table A.15: Data for NACA 0021, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.000401 0.041072 0.009758 -0.04107 4737

2 0.23435 0.042005 5.5791 -0.0338 5624

4 0.42982 0.043447 9.893 -0.01336 4651

6 0.54796 0.046835 11.6998 0.010699 10000

8 0.55438 0.053249 10.4111 0.024424 5087

10 0.59766 0.07265 8.2265 0.032236 7832

12 0.60362 0.11539 5.2311 0.012631 10000

14 0.95991 0.21895 4.3842 0.01978 10000

Figure A.15: Polars for NACA 0021, Re = 4 · 104
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A.6 NACA 0005-05

Reynolds 10’000

Table A.16: Data for NACA 0005-05, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 9.86E-05 0.032493 0.003033 -0.03249 3828

2 0.18114 0.033377 5.4272 -0.02704 3322

4 0.40621 0.038024 10.6829 -0.0096 5299

6 0.61649 0.067203 9.1735 -0.00239 5524

8 0.82867 0.10927 7.5835 0.007119 5943

10 0.80542 0.15258 5.2786 -0.0104 10000

12 0.93736 0.21944 4.2716 -0.01975 10000

14 0.81217 0.22299 3.6422 -0.01988 10000

Figure A.16: Polars for NACA 0005-05, Re = 104
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Reynolds 20’000

Table A.17: Data for NACA 0005-05, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.000101 0.022898 0.004402 -0.0229 2633

2 0.1658 0.023167 7.1568 -0.01737 3418

4 0.40297 0.036811 10.9469 -0.00861 4471

6 0.60353 0.061365 9.8351 0.002057 4796

8 0.79493 0.104 7.6435 0.007644 7841

10 0.81872 0.1568 5.2214 -0.01225 10000

12 0.73306 0.17707 4.1399 -0.02079 10000

14 0.13154 0.063841 2.0605 -0.03012 10000

Figure A.17: Polars for NACA 0005-05, Re = 2 · 104
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Reynolds 40’000

Table A.18: Data for NACA 0005-05, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.000131 0.016375 0.008006 -0.01638 1665

2 0.15345 0.016593 9.2483 -0.01123 3735

4 0.40911 0.033735 12.127 -0.00512 3857

6 0.61707 0.057617 10.71 0.007201 4628

8 0.74101 0.10197 7.2671 0.002153 10000

10 0.83559 0.16107 5.1877 -0.01353 10000

12 0.83594 0.19549 4.2762 -0.01741 10000

14 -0.30118 -0.04045 7.445 -0.03361 10000

Figure A.18: Polars for NACA 0005-05, Re = 4 · 104
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A.7 NACA 0009-05

Reynolds 10’000

Table A.19: Data for NACA 0009-05, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -1.51E-05 0.037282 -0.0004 -0.03728 4835

2 0.10968 0.037764 2.9042 -0.03391 4389

4 0.22525 0.039233 5.7413 -0.02343 4522

6 0.55302 0.054639 10.1214 0.003467 6134

8 0.69911 0.083931 8.3296 0.014183 5795

10 0.76879 0.12569 6.1168 0.009723 8126

12 0.73548 0.17873 4.1151 -0.02191 10000

14 0.89132 0.25239 3.5316 -0.02926 10000

Figure A.19: Polars for NACA 0009-05, Re = 104
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Reynolds 20’000

Table A.20: Data for NACA 0009-05, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -5.00E-05 0.02746 -0.00182 -0.02746 4461

2 0.087916 0.02823 3.1143 -0.02514 3781

4 0.19528 0.03141 6.217 -0.01771 10000

6 0.53201 0.050088 10.6216 0.005797 4972

8 0.70939 0.077716 9.1279 0.021768 4793

10 0.67224 0.1182 5.6874 0.000331 10000

12 0.73591 0.1822 4.0391 -0.02521 10000

14 0.48706 0.1626 2.9955 -0.03994 10000

Figure A.20: Polars for NACA 0009-05, Re = 2 · 104
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Reynolds 40’000

Table A.21: Data for NACA 0009-05, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -0.00013 0.021091 -0.00619 -0.02109 3558

2 0.071073 0.023043 3.0843 -0.02055 10000

4 0.41199 0.030864 13.3484 -0.00205 6905

6 0.5596 0.046707 11.9811 0.012043 3952

8 0.65192 0.071775 9.0828 0.019653 7463

10 0.7095 0.13083 5.423 -0.00564 10000

12 0.72797 0.18621 3.9095 -0.03079 10000

14 0.82254 0.23724 3.4671 -0.03121 10000

Figure A.21: Polars for NACA 0009-05, Re = 4 · 104
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A.8 NACA 0012-05

Reynolds 10’000

Table A.22: Data for NACA 0012-05, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -2.02E-05 0.043593 -0.00046 -0.04359 6182

2 0.065334 0.044517 1.4676 -0.04221 5572

4 0.15118 0.047056 3.2127 -0.0364 10000

6 0.24432 0.053426 4.5729 -0.0276 10000

8 0.61873 0.071511 8.6523 0.015296 6369

10 0.74859 0.10683 7.0074 0.024786 5927

12 0.70827 0.15664 4.5216 -0.00596 9184

14 0.68858 0.21522 3.1995 -0.04224 10000

Figure A.22: Polars for NACA 0012-05, Re = 104
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Reynolds 20’000

Table A.23: Data for NACA 0012-05, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 -2.46E-05 0.034376 -0.00072 -0.03438 5156

2 0.083321 0.035524 2.3454 -0.0326 10000

4 0.1599 0.039455 4.0526 -0.02821 10000

6 0.48166 0.044753 10.7626 0.005839 9669

8 0.60857 0.065852 9.2414 0.019485 5102

10 0.69384 0.097277 7.1326 0.024685 6966

12 0.63443 0.15451 4.1061 -0.01923 10000

14 0.59877 0.19348 3.0947 -0.04288 10000

Figure A.23: Polars for NACA 0012-05, Re = 2 · 104
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Reynolds 40’000

Table A.24: Data for NACA 0012-05, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.000167 0.028454 0.005862 -0.02845 4076

2 0.11301 0.029281 3.8595 -0.02532 7092

4 0.2832 0.031911 8.8748 -0.01208 10000

6 0.49878 0.0422 11.8195 0.010168 7506

8 0.59828 0.060262 9.928 0.023589 6025

10 0.58438 0.091908 6.3583 0.010964 9975

12 0.65509 0.16872 3.8828 -0.02883 10000

14 0.70154 0.22428 3.1279 -0.0479 10000

Figure A.24: Polars for NACA 0012-05, Re = 4 · 104
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A.9 NACA 5505

Reynolds 10’000

Table A.25: Data for NACA 5505, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.25275 0.038928 6.4927 -0.03893 2281

2 0.4365 0.043015 10.1476 -0.02776 2324

4 0.61048 0.050379 12.1179 -0.00767 2346

6 0.75428 0.062623 12.0447 0.016563 10000

8 0.8891 0.088845 10.0073 0.035759 10000

10 0.99959 0.12768 7.8292 0.047842 10000

12 1.0032 0.16716 6.0015 0.045072 10000

14 0.98405 0.20994 4.6874 0.034363 10000

Figure A.25: Polars for NACA 5505, Re = 104

CFD Prediction of low-Reynolds Airfoil Performance 68



Project report WIRE Laboratory Eric Sauvageat

Reynolds 20’000

Table A.26: Data for NACA 5505, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.27916 0.030185 9.2483 -0.03019 2265

2 0.48507 0.034671 13.9904 -0.01772 2232

4 0.65996 0.042488 15.5328 0.003652 10000

6 0.82515 0.056019 14.7299 0.03054 10000

8 1.0111 0.067005 15.0898 0.074364 10000

10 1.0489 0.10288 10.1947 0.080812 3074

12 0.97879 0.15432 6.3426 0.052555 10000

14 0.93798 0.20115 4.6632 0.031747 10000

Figure A.26: Polars for NACA 5505, Re = 2 · 104
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Reynolds 40’000

Table A.27: Data for NACA 5505, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.32123 0.024782 12.9524 -0.02478 10000

2 0.54081 0.028849 18.762 -0.00993 10000

4 0.73086 0.03568 20.4841 0.01539 10000

6 0.95309 0.038357 24.8477 0.061478 10000

8 1.0412 0.059739 17.4289 0.085746 10000

10 1.0449 0.094385 11.071 0.0885 8477

12 0.94258 0.15344 6.1429 0.045884 10000

14 0.91613 0.19899 4.6037 0.028545 10000

Figure A.27: Polars for NACA 5505, Re = 4 · 104
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A.10 NACA 5510

Reynolds 10’000

Table A.28: Data for NACA 5510, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.13498 0.047224 2.8624 -0.04729 10000

2 0.32121 0.053123 6.0465 -0.04188 10000

4 0.49526 0.06259 7.9127 -0.02789 10000

6 0.65369 0.075837 8.6196 -0.00709 10000

8 0.79273 0.094932 8.3505 0.016319 10000

10 0.88994 0.12355 7.203 0.032862 10000

12 0.93006 0.1627 5.7165 0.034229 10000

14 0.93121 0.20176 4.6155 0.029517 10000

Figure A.28: Polars for NACA 5510, Re = 104
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Reynolds 20’000

Table A.29: Data for NACA 5510, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.18986 0.038619 4.9163 -0.03862 10000

2 0.40038 0.044592 8.9788 -0.03059 10000

4 0.57154 0.052973 10.7891 -0.01298 10000

6 0.70847 0.06541 10.8312 0.009003 10000

8 0.80419 0.08499 9.4622 0.027759 10000

10 0.86269 0.11517 7.4907 0.036387 10000

12 0.91812 0.15707 5.8451 0.037246 10000

14 0.89302 0.19513 4.5766 0.026711 10000

Figure A.29: Polars for NACA 5510, Re = 2 · 104
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Reynolds 40’000

Table A.30: Data for NACA 5510, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.24841 0.032715 7.5934 -0.03271 10000

2 0.45471 0.036324 12.518 -0.02043 10000

4 0.6188 0.04384 14.1152 -0.00057 10000

6 0.8101 0.04749 17.0584 0.037449 10000

8 0.93109 0.059457 15.6599 0.070704 10000

10 1.0213 0.075302 13.5622 0.10318 10000

12 0.93803 0.13855 6.7705 0.059509 10000

14 0.8763 0.18528 4.7296 0.032219 10000

Figure A.30: Polars for NACA 5510, Re = 4 · 104
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A.11 E387

Reynolds 10’000

Table A.31: Data for E387, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.10068 0.040931 2.4596 -0.04093 1653

2 0.26353 0.046764 5.6352 -0.03754 1709

4 0.43415 0.056294 7.7122 -0.02587 10000

6 0.59467 0.069723 8.5291 -0.00718 10000

8 0.7293 0.089271 8.1695 0.013097 10000

10 0.78234 0.11654 6.7129 0.021079 10000

12 0.80561 0.15259 5.2796 0.018241 10000

14 0.83614 0.1917 4.3617 0.016273 10000

Figure A.31: Polars for E387, Re = 104
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Reynolds 20’000

Table A.32: Data for E387, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.15457 0.032565 4.7465 -0.03257 1463

2 0.36192 0.038357 9.4356 -0.0257 10000

4 0.53158 0.046975 11.3163 -0.00978 10000

6 0.65351 0.059654 10.9549 0.008983 10000

8 0.72381 0.080566 8.9841 0.020953 10000

10 0.74861 0.10993 6.81 0.021737 10000

12 0.78253 0.14422 5.4258 0.021626 10000

14 0.82552 0.18729 4.4077 0.017982 10000

Figure A.32: Polars for E387, Re = 2 · 104
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Reynolds 40’000

Table A.33: Data for E387, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.2733 0.024233 11.2781 -0.02423 10000

2 0.48115 0.026939 17.861 -0.01013 10000

4 0.63041 0.034337 18.3595 0.009722 1595

6 0.76385 0.04134 18.4773 0.038731 3513

8 0.74446 0.070571 10.549 0.033724 10000

10 0.78472 0.096611 8.1224 0.041121 10000

12 0.87348 0.1537 5.683 0.031264 10000

14 0.95532 0.21756 4.391 0.020012 10000

Figure A.33: Polars for E387, Re = 4 · 104
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A.12 S1223

Reynolds 10’000

Table A.34: Data for S1223, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.18008 0.091671 1.9644 -0.091671 2127

2 0.48412 0.086263 5.6122 -0.069315 10000

4 0.77615 0.10032 7.7365 -0.045937 10000

6 0.91457 0.12172 7.5139 -0.025452 10000

8 0.98657 0.14673 6.7238 -0.0079958 10000

10 1.0405 0.1749 5.9488 0.0084291 10000

12 1.1515 0.21854 5.269 0.025643 10000

14 1.2216 0.26308 4.6435 0.040272 10000

Figure A.34: Polars for S1223, Re = 104
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Reynolds 20’000

Table A.35: Data for S1223, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.33512 0.077395 4.33 -0.077395 2265

2 0.67124 0.07344 9.1401 -0.049969 10000

4 0.86682 0.084929 10.2064 -0.024256 10000

6 0.93795 0.11053 8.4861 -0.01188 10000

8 0.97639 0.13811 7.0694 -0.00088407 10000

10 1.0559 0.15933 6.6269 0.02644 10000

12 1.1442 0.20244 5.6519 0.039871 10000

14 1.3472 0.28907 4.6603 0.045424 10000

Figure A.35: Polars for S1223, Re = 2 · 104
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Reynolds 40’000

Table A.36: Data for S1223, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.57649 0.049819 11.5717 -0.049819 10000

2 0.96822 0.042987 22.5232 -0.009171 10000

4 1.108 0.05421 20.4387 0.023211 10000

6 0.93392 0.10583 8.8247 -0.007629 10000

8 0.97918 0.13275 7.3759 0.0048139 10000

10 1.0696 0.16172 6.6139 0.02647 10000

12 1.181 0.20575 5.7401 0.044295 10000

14 1.3434 0.29809 4.5068 0.035767 10000

Figure A.36: Polars for S1223, Re = 4 · 104
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A.13 BW3

Reynolds 10’000

Table A.37: Data for BW3, Re = 104

Reynolds = 10000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.28681 0.04331 6.6222 -0.04331 1928

2 0.48034 0.04965 9.6746 -0.032856 1837

4 0.65657 0.061426 10.6888 -0.015476 1912

6 0.82137 0.080258 10.2341 0.0060383 10000

8 0.92483 0.1047 8.8335 0.025035 10000

10 0.99479 0.13738 7.2413 0.037453 10000

12 1.0193 0.17748 5.7435 0.038333 10000

14 1.0142 0.21775 4.6577 0.034079 10000

Figure A.37: Polars for BW3, Re = 104
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Reynolds 20’000

Table A.38: Data for BW3, Re = 2 · 104

Reynolds = 20000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.33847 0.037694 8.9793 -0.037694 10000

2 0.56163 0.040956 13.7132 -0.02133 10000

4 0.7443 0.051871 14.349 0.0001749 10000

6 0.88989 0.066577 13.3663 0.026806 10000

8 0.96007 0.089532 10.7232 0.044955 10000

10 0.9587 0.12794 7.4931 0.040476 10000

12 0.96128 0.17306 5.5547 0.030586 10000

14 0.97177 0.21242 4.5753 0.028992 10000

Figure A.38: Polars for BW3, Re = 2 · 104
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Reynolds 40’000

Table A.39: Data for BW3, Re = 4 · 104

Reynolds = 40000.0

Alpha CL CD Cl/Cd Ct number of iterations

0 0.42614 0.031551 13.5063 -0.031551 10000

2 0.64819 0.032593 19.8875 -0.0099514 10000

4 0.88518 0.032668 27.0963 0.029159 10000

6 1.0453 0.040372 25.8915 0.069112 10000

8 1.1097 0.059858 18.5396 0.095172 10000

10 0.93964 0.12365 7.5995 0.0414 10000

12 0.93725 0.17235 5.4383 0.026282 10000

14 0.95283 0.21026 4.5305 0.026467 10000

Figure A.39: Polars for BW3, Re = 4 · 104
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B Comparison with existing data (additional con-

tent)

B.1 Data from Kumar

Figure B.1: Comparison of lift coefficients of NACA 0018 with Kumar, Re = 104

B.2 Data from Sheldahl

Figure B.2: Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 104
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Figure B.3: Comparison of lift coefficients of NACA 0012 with Sheldahl, Re = 2 · 104

Figure B.4: Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 104
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Figure B.5: Comparison of lift coefficients of NACA 0018 with Sheldahl, Re = 2 · 104

Figure B.6: Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 104
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Figure B.7: Comparison of lift coefficients of NACA 0021 with Sheldahl, Re = 2 · 104
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C Comparison between simulations (additional con-

tent)

C.1 Addition of a camber

Figure C.8: Comparison between NACA 0009 and NACA 5510

C.2 Specific airfoils

Figure C.9: Comparison of E387, S1223 and BW3 at Re = 104
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Figure C.10: Comparison of E387, S1223 and BW3 at Re = 2 · 104

CFD Prediction of low-Reynolds Airfoil Performance 88



Project report WIRE Laboratory Eric Sauvageat

D Matlab scripts

All the Matlab scripts presented in this section were written for this project. They were
used for post processing oh the data after the simulations were completed.

The first one is reading the lift and drag histories from Fluent and creates the tables
presented in A. Three Excel tables are created per airfoil, one for each Reynolds number.
For each angle of attack, the script is writing down the number of iterations, the Cl and
Cd coefficients and is additionally computing the lift-to-drag ratio as well as the tangential
force coefficients. This script is presented in Appendix D.1.

The second script is reading the values from the previously created Excel tables. It is
then plotting the lift and drag polars for each Reynolds number of a given airfoil. It is
presented in Appendix D.2.

The last one is comparing the airfoils amongst them. Many versions of this scripts
exist (for existing data as well) for the principle remains always the same. The lift-to-
drag ratios and the tangential force coefficients are taken from the Excel files and plotted
for the comparison. A version of this script is presented in Appendix D.3.

D.1 Script ”read.m”

function[] = read(fileOut1)

% Collect and read all the Cl and Cd files to extract the last iterations

% of each file in order to have for each Reynolds and each alpha, the Cl

% and Cd corresponding.

type = ’BW3’;

%Range of Reynolds and alpha

aoa = {’0’,’2’,’4’,’6’,’8’,’10’,’12’,’14’};

Re={’10000.0’,’20000.0’,’40000.0’};

name_Cd={’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,...

’’,’’};

name_Cl={’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,’’,’’;’’,...

’’,’’};

% Vectors Cl and Cd for Re = 10000.0

a1 = zeros(8,1);

a2 = zeros(8,1);

% Vectors Cl and Cd for Re = 20000.0

b1 = zeros(8,1);

b2 = zeros(8,1);

% Vectors Cl and Cd for Re = 40000.0

c1 = zeros(8,1);

c2 = zeros(8,1);
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% Name of each files :

for i=1:8

for j=1:3

name_Cd{i,j}= strcat(’CD-’,type,’-sst_stdInit_convE-5-a’,aoa{i},...

’Re’,Re{j},’.txt’);

name_Cl{i,j}= strcat(’CL-’,type,’-sst_stdInit_convE-5-a’,aoa{i},...

’Re’,Re{j},’.txt’);

end

end

%Storing number of iterations for each simulation:

n=zeros(8,3); %1 column per Reynolds and 1 line per alpha

%Reading the values of each file and extracting the last one for

%Reynolds = 10000.0

for i=1:8

temp1 = dlmread(name_Cl{i,1},’’,2,1);

a1(i)=temp1(length(temp1));

n(i,1)=length(temp1);

temp2 = dlmread(name_Cd{i,1},’’,2,1);

a2(i)=temp2(length(temp2));

length(temp2)

end

%Reading the values of each file and extracting the last one for

%Reynolds = 20000.0

for i=1:8

temp1 = dlmread(name_Cl{i,2},’’,2,1);

b1(i)=temp1(length(temp1));

n(i,2)=length(temp1);

temp2 = dlmread(name_Cd{i,2},’’,2,1);

b2(i)=temp2(length(temp2));

length(temp2)

end

%Reading the values of each file and extracting the last one for

%Reynolds = 40000.0

for i=1:8

temp1 = dlmread(name_Cl{i,3},’’,2,1);

c1(i)=temp1(length(temp1));

n(i,3)=length(temp1);

temp2 = dlmread(name_Cd{i,3},’’,2,1);

c2(i)=temp2(length(temp2));

length(temp2)

end

A = {’Reynolds = 10000.0’,’’,’’,’’,’’,’’;’Alpha’,’CL’,’CD’,’Cl/Cd’,’Ct’,...

’number of iterations’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,...

’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,...
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’’,’’,’’,’’;’’,’’,’’,’’,’’,’’};

B = {’Reynolds = 20000.0’,’’,’’,’’,’’,’’;’Alpha’,’CL’,’CD’,’Cl/Cd’,’Ct’,...

’number of iterations’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,...

’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,...

’’,’’,’’,’’;’’,’’,’’,’’,’’,’’};

C = {’Reynolds = 40000.0’,’’,’’,’’,’’,’’;’Alpha’,’CL’,’CD’,’Cl/Cd’,’Ct’,...

’number of iterations’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,...

’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,’’,’’,’’,’’;’’,’’,...

’’,’’,’’,’’;’’,’’,’’,’’,’’,’’};

%Calcul de Ct = Cl*sin(aoa) - Cd*cos(aoa)

for i=1:8

alpha=str2num(aoa{i});

Ct1(i)=a1(i)*sin(alpha*pi()/180)-a2(i)*cos(alpha*pi()/180);

Ct2(i)=b1(i)*sin(alpha*pi()/180)-b2(i)*cos(alpha*pi()/180);

Ct3(i)=c1(i)*sin(alpha*pi()/180)-c2(i)*cos(alpha*pi()/180);

end

% Grouping of the values for each Reynolds

for i=1:8

A{i+2,1} = aoa{i}; % For Re = 10000.0

A{i+2,2}=num2str(a1(i));

A{i+2,3}=num2str(a2(i));

A{i+2,4}=num2str(a1(i)/a2(i));

A{i+2,5}=num2str(Ct1(i));

A{i+2,6}=num2str(n(i,1));

B{i+2,1} = aoa{i}; % For Re = 20000.0

B{i+2,2}=num2str(b1(i));

B{i+2,3}=num2str(b2(i));

B{i+2,4}=num2str(b1(i)/b2(i));

B{i+2,5}=num2str(Ct2(i));

B{i+2,6}=num2str(n(i,2));

C{i+2,1} = aoa{i}; % For Re = 40000.0

C{i+2,2}=num2str(c1(i));

C{i+2,3}=num2str(c2(i));

C{i+2,4}=num2str(c1(i)/c2(i));

C{i+2,5}=num2str(Ct3(i));

C{i+2,6}=num2str(n(i,3));

end

%Writing the tables

xlswrite(fileOut1,A);

xlswrite(fileOut1,B,2);

xlswrite(fileOut1,C,3);
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D.2 Script ”plotClCd.m”

function[] = plotClCd(xls1)

% extract and plot lift and drag coefficients from excel file

% The files should contain one Reynolds per sheet

% and the value should go from the range A3 to F10.

type = xls1;

% Angles

aoa = [0 2 4 6 8 10 12 14];

%Reading the files for each Reynolds (one per sheet) and each alpha (8 in

%total)

cont11 = xlsread(type,1,’A3:E10’); %Reynolds 1 (10000)

cont12 = xlsread(type,2,’A3:E10’); %Reynolds 2 (20000)

cont13 = xlsread(type,3,’A3:E10’); %Reynolds 3 (40000)

for i =1:8

Cl11(i)=cont11(i,2);

Cl12(i)=cont12(i,2);

Cl13(i)=cont13(i,2);

Cd11(i)=cont11(i,3);

Cd12(i)=cont12(i,3);

Cd13(i)=cont13(i,3);

ratio11(i) = cont11(i,4);

ratio12(i) = cont12(i,4);

ratio13(i) = cont13(i,4);

Ct11(i)=cont11(i,5);

Ct12(i)=cont12(i,5);

Ct13(i)=cont13(i,5);

end

% plotting Polars for Reynolds 1 : (10000.0)

fig1 = figure(’color’,’white’);

% plotting Cl

subplot(1,2,1);

plot(aoa,Cl11,’-+’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 1.2])

xlim([-2 18])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cl’,’fontsize’,18)

title(’Lift coefficient, Re=10000.0’)

% plotting Cd

subplot(1,2,2);

plot(aoa,Cd11,’-+’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([0 0.4])

xlim([-2 18])
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xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cd’,’fontsize’,18)

title(’Drag coefficient, Re=10000.0’)

% plotting Polars for Reynolds 2 : (20000.0)

fig2 = figure(’color’,’white’);

% plotting Cl

subplot(1,2,1);

plot(aoa,Cl12,’-+’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 1.2])

xlim([-2 18])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cl’,’fontsize’,18)

title(’Lift coefficient, Re=20000.0’)

% plotting Cd

subplot(1,2,2);

plot(aoa,Cd12,’-+’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([0 0.4])

xlim([-2 18])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cd’,’fontsize’,18)

title(’Drag coefficient, Re=20000.0’)

% plotting Polars for Reynolds 3 : (40000.0)

fig3 = figure(’color’,’white’);

% plotting Cl

subplot(1,2,1);

plot(aoa,Cl13,’-o’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 1.2])

xlim([-2 18])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cl’,’fontsize’,18)

title(’Lift coefficient, Re=40000.0’)

% plotting Cd

subplot(1,2,2);

plot(aoa,Cd13,’-o’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([0 0.4])

xlim([-2 18])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Cd’,’fontsize’,18)
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title(’Drag coefficient, Re=40000.0’)

D.3 Script ”compareLD-v2.m”

function[] = compareLD-v2(xls1,xls2,xls3,xls4)%,xls5,xls6)

% extract and plot some lift and drag coefficient from excel files

% in order to compare them. The files should contain one Reynolds per sheet

% and The value should go from the range A3 to F10.

% Number of file to compare

N = nargin;

% Range of Y axis

ysupRatio1=20;

ysupRatio2=20;

ysupRatio3=30;

ysupCt1=0.1;

ysupCt2=0.1;

ysupCt3=0.1;

%Name of the files (entered)

fileName = {xls1,xls2,xls3,xls4};%,xls5,xls6};

% Angles

aoa = [0 2 4 6 8 10];% 12 14];

%allocating space

contRe1 = zeros(6,(4*N));

contRe2 = zeros(6,(4*N));

contRe3 = zeros(6,(4*N));

Cl1=zeros(6,4);

Cl2=zeros(6,4);

Cl3=zeros(6,4);

Cd1=zeros(6,4);

Cd2=zeros(6,4);

Cd3=zeros(6,4);

ratio1=zeros(6,4);

ratio2=zeros(6,4);

ratio3=zeros(6,4);

Ct1=zeros(6,4);

Ct2=zeros(6,4);

Ct3=zeros(6,4);
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for j=1:N

%position of the coefficient (8x5 tab) for this airfoils (j)

li = 1;

lf = 8;

ri = 4*(j-1)+1;

rf = 4*(j-1)+4;

% for xls j

contRe1(li:lf,ri:rf) = xlsread(fileName{j},1,’B3:E10’); %Reynolds 1 (10000)

contRe2(li:lf,ri:rf) = xlsread(fileName{j},2,’B3:E10’); %Reynolds 2 (20000)

contRe3(li:lf,ri:rf) = xlsread(fileName{j},3,’B3:E10’); %Reynolds 3 (40000)

end

for i=1:6

for j=1:N

%position des Cl

rCl = 4*(j-1)+1;

Cl1(i,j)=contRe1(i,rCl);

Cl2(i,j)=contRe2(i,rCl);

Cl3(i,j)=contRe3(i,rCl);

%position des Cd

rCd = 4*(j-1)+2;

Cd1(i,j)= contRe1(i,rCd);

Cd2(i,j)= contRe2(i,rCd);

Cd3(i,j)= contRe3(i,rCd);

%Position des ratios Cl/Cd

rRatio = 4*(j-1)+3;

ratio1(i,j) = contRe1(i,rRatio);

ratio2(i,j) = contRe2(i,rRatio);

ratio3(i,j) = contRe3(i,rRatio);

%Position des Ct

rCt = 4*(j-1)+4;

Ct1(i,j)= contRe1(i,rCt);

Ct2(i,j)= contRe2(i,rCt);

Ct3(i,j)= contRe3(i,rCt);

end

end

% plotting Reynolds 1 : (10000.0)

% plotting Cl/Cd ratio
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fig1 = figure(’color’,’white’);

subplot(1,2,1);

plot(aoa,ratio1(:,1),’-+’,aoa,ratio1(:,2),’-o’,aoa,ratio1(:,3),’-*’,...

aoa,ratio1(:,4),’-x’,’LineWidth’,1.5)%aoa,ratio1(:,5),’-s’,aoa,

%ratio1(:,6),’-d’,’LineWidth’,1.5)%,aoa,ratio1(:,6),’-d’,aoa,ratio1(:,7)

%,’-h’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupRatio1])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Lift-to-drag ratio’,’fontsize’,18)

title(’Lift-to-drag ratio, Re=10000.0’)

%legend(xls1,xls2,xls3,xls4,xls5,’Location’,’best’)

legend(’NACA 0012’,’NACA 5505’,’E387’,’BW3’,’Location’,’best’)

% plotting Ct comparison

subplot(1,2,2);

plot(aoa,Ct1(:,1),’-+’,aoa,Ct1(:,2),’-o’,aoa,Ct1(:,3),’-*’,aoa,...

Ct1(:,4),’-x’,’LineWidth’,1.5)

%aoa,Ct1(:,5),’-s’,aoa,Ct1(:,6),’-d’,’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupCt1])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Ct’,’fontsize’,18)

title(’Tangential force coefficient, Re=10000.0’)

legend(’NACA 0012’,’NACA 5505’,’E387’,’BW3’,’Location’,’best’)

% plotting Reynolds 2 : (20000.0)

% plotting Cl/Cd ratio

fig2 = figure(’color’,’white’);

subplot(1,2,1);

plot(aoa,ratio2(:,1),’-+’,aoa,ratio2(:,2),’-o’,aoa,ratio2(:,3),’-*’,...

aoa,ratio2(:,4),’-x’,’LineWidth’,1.5)

%aoa,ratio2(:,5),’-s’,aoa,ratio2(:,6),’-d’,’LineWidth’,1.5)%,aoa,

%ratio2(:,6),’-d’,aoa,ratio2(:,7),’-h’)’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupRatio2])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Lift-to-drag ratio’,’fontsize’,18)

title(’Lift-to-drag ratio, Re=20000.0’)

%legend(xls1,xls2,xls3,xls4,xls5,’Location’,’best’)

legend(’NACA 0012’,’NACA 5505’,’E387’,’BW3’,’Location’,’best’)
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% plotting Ct comparison

subplot(1,2,2);

plot(aoa,Ct2(:,1),’-+’,aoa,Ct2(:,2),’-o’,aoa,Ct2(:,3),’-*’,aoa,Ct2(:,4),...

’-x’,’LineWidth’,1.5)%aoa,Ct2(:,5),’-s’,aoa,Ct2(:,6),’-d’,’LineWidth’,

%1.5),aoa,Ct2(:,6),’-d’,aoa,Ct2(:,7),’-h’)’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupCt2])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Ct’,’fontsize’,18)

title(’Tangential force coefficient, Re=20000.0’)

%legend(xls1,xls2,xls3,xls4,xls5,’Location’,’best’)

legend(’NACA 0012’,’NACA 5505’,’E387’,’BW3’,’Location’,’best’)

% plotting Reynolds 3 : (40000.0)

fig3 = figure(’color’,’white’);

% plotting Cl/Cd ratio

subplot(1,2,1);

plot(aoa,ratio3(:,1),’-+’,aoa,ratio3(:,2),’-o’,aoa,ratio3(:,3),’-*’,...

aoa,ratio3(:,4),’-x’,’LineWidth’,1.5)%aoa,ratio3(:,5),’-s’,aoa,

%ratio3(:,6),’-d’,’LineWidth’,1.5)%,aoa,ratio3(:,6),’-d’,aoa,

%ratio3(:,7),’-h’)’LineWidth’,1.5)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupRatio3])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Lift-to-drag ratio’,’fontsize’,18)

title(’Lift-to-drag ratio, Re=40000.0’)

%legend(xls1,xls2,xls3,xls4,xls5,’Location’,’best’)

% plotting Ct comparison

subplot(1,2,2);

plot(aoa,Ct3(:,1),’-+’,aoa,Ct3(:,2),’-o’,aoa,Ct3(:,3),’-*’,aoa,Ct3(:,4),...

’-x’,’LineWidth’,1.5)%aoa,Ct3(:,5),’-s’,aoa,Ct3(:,6),’-d’,’LineWidth’,

%1.5),aoa,Ct3(:,6),’-d’,aoa,Ct3(:,7),’-h’)

set(gca,’fontsize’,14,’LineWidth’,1.2)

grid on

ylim([-0.1 ysupCt3])

xlim([-1 11])

xlabel(’\alpha (deg)’,’fontsize’,18)

ylabel(’Ct’,’fontsize’,18)

title(’Tangential force coefficient, Re=40000.0’)
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