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Abstract

The significant progress that has been made in recent years both in
hardware implementations and in numerical computing has rendered
real-time optimization-based control a viable option when it comes to
advanced industrial applications. More recently, the need for control of
a process in the presence of a limited amout of hardware resources has
triggered research in the direction of embedded optimization-based con-
trol. At the same time, and standing at the other side of the spectrum,
the field of big data has emerged, seeking for solutions to problems
that classical optimization algorithms are incapable to provide. This
triggered some interest to revisit the family of first order methods com-
monly known as decomposition schemes or operator splitting methods.
Although it is established that splitting methods are quite beneficial
when applied to large-scale problems, their potential in solving small to
medium scale embedded optimization problems has not been studied
so extensively. Our purpose is to study the behavior of such algorithms
as solvers of control-related problems of that scale. Our effort focuses
on identifying special characteristics of these problems and how they
can be exploited by some popular splitting methods.
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1
Introduction

The significant progress that has been made in recent years both in
hardware implementations and in numerical computing has rendered
real-time optimization-based control a viable option when it comes to
advanced industrial applications. More recently, the need for control of
a process in the presence of a limited amout of hardware resources has
triggered research in the direction of embedded optimization-based
control. Many efficient high-speed solvers have been developed for
both linear and nonlinear control, based on either first order methods
(FiOrdOs [133], QPgen [57],[59], DuQuad [88]), interior point (IP)
methods (FORCES [43], CVXGEN [84]) and active set methods
(QPOASES [50]).

In this work we focus on systems with linear dynamics, giving rise
to convex control problems. The purpose of the survey is to explore
a family of first order methods known as decomposition schemes or
operator splitting methods. The abstract form of the problem at hand
is the minimization of the sum of two convex functions subject to linear
equality constraints, and can be written as

minimize f(z) + g(Lz) , (1.1)
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with variables z ∈ Rn, where f and g are closed, proper convex func-
tions and A : Rn → Rp is a linear map. A splitting method can be
applied to the above problem after rewriting it as

minimize f(z) + g(y)
subject to Lz = y ,

(1.2)

by alternatingly (or simultaneously) minimizing over y and z. Clearly,
the solutions of problems (1.2) and (1.1) are identical. Inequality con-
straints that might appear are already embedded in one of the two
functions in the form of indicator functions, i.e., a membership func-
tion for a set C

δC(z) =
{

0 z ∈ C
∞ otherwise, (1.3)

which is the reason why both f and g are considered to be extended-
real-valued functions (see [18, § 3.1.2]). Formulations similar to the
above have been studied extensively and we can look for their roots in
the method of multipliers [75], [110], the Arrow-Hurwicz method [3],
Douglas-Rachford splitting [44] and ADMM [60], [55]. Decomposition
of the original problem into simpler ones is beneficial when distributed
computation tools are available. This potential is already suggested in
the classical references [15] and [45]. It was not until recently, though,
that decomposition algorithms were indeed applied in modern engineer-
ing problems (signal and image processing, big data analysis, machine
learning, [17] and [27]), in cases where off-the-shelf interior point solvers
simply fail due to the large dimensions involved. The thesis [47] pro-
vides a comprehensive description of the connection of several splitting
algorithms under a common framework. Finally, the book [7] provides
a mathematically rigorous introduction to operator splitting methods
in general Hilbert spaces.

The plethora of different approaches for solving problem (1.2) is
partly a consequence of the problem-dependent behavior of first or-
der methods. This behavior has both its pros and cons; on one hand,
sensitivity to the problem’s structure and data requires pre-processing
and tuning of several parameters, a procedure that can be cumber-
some. However, it is exactly this procedure that gives the flexibility
to customize the solver to the problem at hand, and, in many cases,
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outperform by several orders of magnitude general purpose solvers.
Consequently, there are numerous approaches, each of which can be
less or more pertinent for the specific problem. Mentioning some of
the most important categorizations, we can solve either the primal
problem, the dual problem, or a primal-dual formulation. Regarding
primal approaches, the most popular one is the primal decomposition
method [15], [19], where the original problem is decomposed into a
master problem and two subproblems. The two subproblems have both
local and shared (complicating) variables, while the master subprob-
lem manipulates only the complicating variables. Primal decomposition
works well when the complicating variables for the two subproblems are
few.

Dualization plays a crucial role in more complicated problems. It
can be performed by means of Lagrangian relaxations (dual decomposi-
tion [35], [49], [123], [14]), augmented Lagrangian relaxations [13], [117],
[116], alternating minimization (Gauss-Seidel) augmented Lagrangian
schemes (ADMM), mixture of Lagrangian with augmented Lagrangian
schemes (AMA [131]), linearized augmented Lagrangians or approxi-
mate minimization schemes ([23], [4]) and, finally, mixtures of alter-
nating minimization with partial linearization (PDHG [139], [48], [22],
[30] and several similar primal-dual schemes [28], [134], [16]).

Although it is well-established that splitting methods are quite ben-
eficial when applied to large-scale problems, their potential in solving
small to medium scale embedded optimization problems has not been
studied so extensively. It was not until very recently that the first
works attempting to apply decomposition methods in control prob-
lems started making their appearance [102], [56], [57], [59], [105]. Our
purpose is to study the behavior of such algorithms as solvers of control-
related convex problems of that scale, i.e., from tens to a few hundreds
of variables. Our effort focuses on identifying special characteristics of
these problems and how they can be exploited by some popular split-
ting methods. Some of the questions that we attempt to answer are:

1. It is very common in practice that optimal control problems come
with a quadratic objective, since in this way stability can be
proven for regulation or tracking purposes. What is the best way
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to exploit this smooth term, along with the special structure of
the dynamics equation?

2. Given that a control problem has to be solved repeatedly (e.g.,
MPC), how does warm-starting of the solution affect the speed?

3. Given the structure of the problem at hand, which algorithms
will converge more quickly?

4. Are there ways to precondition the problem in order to reduce
the solve time?

In what follows we present three well-understood splitting algo-
rithms, the alternating direction method of multipliers (ADMM), the
alternating minimization algorithm (AMA) and a primal-dual algo-
rithm (PDA), the most popular representative of several primal-dual
schemes that have been recently developed. These three methods come
from different sides of the spectrum described above, but also hold
very strong similarities. Our choice is motivated from the fact that the
methods are analyzed and extended from several communities, and
hence their properties are well-understood.

The paper is organized as follows: In Chapter 2 we formulate the
problem we want to solve and look at it from three different perspec-
tives, resulting in the three algorithms we use. Subsequently we intro-
duce the algorithms under a unified scheme and report their properties.
In Chapters 3 and 4 we build on the basic variants of the methods pre-
sented before, introduce several enhanced versions and focus on their
applicability for solving optimization problems. More specifically, in
Chapter 3 we review how one can exploit the structure of the problem
to accelerate the theoretical convergence rates. In Chapter 4 we extend
the discussion on acceleration to more practical schemes, i.e., stepsize
selection and preconditioning. We provide a comprehensive literature
review of existing methods and we present generic preconditioned ver-
sions of the three algorithms. In Chapter 5 we discuss the computa-
tional aspects; we identify the bottlenecks in each method and propose
ways to speed up the computation. In Chapter 6 we summarize the
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observations that we have made and attempt to construct a guideline
about how to choose a splitting scheme given a problem. Finally, the
algorithms are illustrated with three examples in Chapter 6.

1.1 Notation and Definitions

Let Z = (Rn, 〈·, ·〉) be a Euclidean space equipped with the inner prod-
uct 〈z, x〉 = z>x and the corresponding norm ‖z‖ =

√
〈z, z〉. Sym-

metric n-dimensional matrices are denoted with Sn, while positive
(semi)definite matrices are denoted with (Sn+)Sn++. We also consider
the scaled norm ‖z‖P =

√
〈z, Pz〉, with P ∈ S+. The matrix norm

of the linear operator M ∈ Rm×n is defined as ‖M‖ = sup
z 6=0

‖Mz‖
‖z‖ . The

minimum and maximum eigenvalue of a matrix Q ∈ Rn×n are denoted
by λmin(Q) and λmax(Q), respectively.
The domain of the extended-real-valued function f is defined as
dom f = {z ∈ Z : f(z) < +∞} and f is proper if dom f 6= ∅ and
f > −∞. The function f is closed if its epigraph epi f = {(z, t) ∈
Rn × R : f(z) ≤ t} is a closed nonempty convex set. The range of
extended-real-valued functions is denoted with R∪{+∞} = R. We de-
note the conjugate of a convex function with f?, while a minimizer is
denoted by an asterisk, i.e., f(z∗) ≤ f(z) ∀z ∈ Z. Finally, for succinct-
ness in the notation, we denote the class of all proper, closed, convex
functions from Z to R with Γ0(Z).
The indicator function of a convex set C is denoted with δC(·). For the
common norm balls the notation changes to δi(z, α), i = 1, 2,∞, which
denotes the constraint ‖z‖i ≤ α. Similar notation to the 2-norm ball is
used for the second-order cone constraint, with the difference that the
second argument is a scalar affine function itself, i.e., δ2(Ax+b, c>z+d)
denotes the constraint ‖Az + b‖2 ≤ c>z + d. The most common pairs
of indicator functions with their conjugate representation are given in
Table A.1.



2
The Algorithms

We narrow the general formulation discussed in the previous section
to our problems of interest, which can, without loss of generality, be
written as

minimize (1/2)z>Qz + c>z +
M∑
i=1

gi(Liz + li)

subject to Az = b ,
(P)

with variable z ∈ Rn and data Q ∈ Sn+, Li ∈ Rpi×n, li ∈ Rpi , A ∈ Rm×n

and b ∈ Rm. The following assumption holds:

Assumption 1. The functions gi : Rpi → R are closed, proper, convex
functions, i.e., gi ∈ Γ0(Rpi).

Formulation (P) is quite general and can describe any convex opti-
mization problem. The choice of the quadratic part (1/2)z>Qz + c>z

and the equality constraints Az = b being represented in an explicit
way is motivated by the standard form of control problems. The
constraints are usually expressed through indicator functions gi.

It is important to mention that the original formulation (1.2) in-
volves two functions in the objective, while in (P) we consider two

255
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groups of functions. The first group contains two functions expressed
as

f(z) := h(z) + δD(z) , (2.1)
where h : Rn → R is defined as h(z) = (1/2)z>Qz + c>z and f : Rn →
R. Note that we use the indicator function

δD(z) =
{

0 Az = b

∞ otherwise.

to restrict h to the subspace spanned by the dynamics equation. The
second group constitutes of M functions gi(yi). By introducing slack
variables yi = Liz + li, i = 1, . . . ,M , and subsequently concatenating
the vectors and matrices associated with the affine terms in the gi(·)
functions as L = (L1, . . . , LM ) and l = (l1, . . . , lM ), we can recast (P)
as

minimize f(z) + g(y)
subject to Lz − y = −l ,

where g(y) =
M∑
i=1

gi(yi), g : Rp1 × · · · ×RpM → R. Thus we end up with

the original formulation (1.2). Note that it is possible to proceed with
such a scheme because the variables are still updated in two sequential
turns, since all the yi updates occur in parallel.

The splitting schemes we will discuss provide both a primal and a
dual solution to problem (P). However, their construction derives from
several reformulations of (P). In the following sections, we derive the
dual problem to (P), a saddle function reformulation, and then set the
foundations for the derivation of the splitting methods by means of the
proximal operator acting on these three different forms.

2.1 The dual problem

We start by deriving the Lagrangian for (P), which can be written as

L(x, y;λ) = f(z) + g(y) + 〈λ, Lz + l − y〉 , (L)

where λ = (λ1, . . . , λM ), λi ∈ Rpi are dual variables associated with
the equality constraints introduced above. We use the concatenated
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variables when it comes to derivations for lighter notation. We make
the following standing assumtption:

Assumption 2. The Lagrangian (L) associated to (P) has a saddle
point, i.e.,

L(z∗, y∗;λ) ≤ L(z∗, y∗;λ∗) ≤ L(z, y;λ∗) ∀z, y, λ ∈ Rn × Rp × Rp .

The dual problem of (P) can be derived by means of the Lagrangian
formulation. We have that

d(λ) = min
z,y
{f(z) + g(y) + 〈λ, Lz + l − y〉}

= −max
z

{
−f(z)− 〈L>λ, z〉

}
−max

y
{−g(y) + 〈y, λ〉}+ 〈l, λ〉.

(2.2)

Making use of the convex conjugate function (see Appendix A), the
dual function can be expressed as

d(λ) = −f?(−L>λ) + 〈l, λ〉 − g?(λ), (D)

where g?(λ) =
M∑
i=1

g?i (λi) and f? is the conjugate of the sum of the two
functions h + δD. The conjugate of a convex function restricted in a
subspace is well-defined and given in [76, Proposition 1.3.2]. The dual
problem to solve becomes

λ∗ = argmin
λ

F (λ) + g?(λ) ,

where F (λ) := f?(−L>λ)− 〈l, λ〉.
Note that if a partial dualization with respect to y is performed

in (2.2), we acquire the saddle formulation of (P)

S(z;λ) = 〈Lz + l, λ〉+ h(z) + δD(z)− g?(λ) . (S)

The optimization procedure takes place in two steps; a proximal
step involving the dynamics and a linear approximation of h, followed
by a proximal step that involves the conjugate function g?.

In the algorithms considered here, all formulations (P), (S) and (D)
play a significant role. Although we mostly deal with the primal prob-
lem (P), the saddle and dual counterparts are essential for drawing
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a complete picture of the relations between the several methods. The
derivation of the algorithms is a result of the application of several sim-
ple iterative schemes in order to minimize (D) or find a saddle point
of (S). These schemes are based on the application of the proximal
operator.

2.2 Proximal methods

For f ∈ Γ0(Rn), its proximal operator prox f : Rn → Rn is defined as

prox f (x) := argmin
z

{
f(z) + (1/2)‖z − x‖2

}
. (2.3)

The proximal operator firstly appear in the seminal work by
Moreau [86, 87]. The operator is evaluated at a given point x and
looks for a minimizer that makes a compromise between the minimizer
of the function f and the point x.

We refer to proximal methods as being a family of abstract algorith-
mic schemes that find a minimizer of a (sum of) convex function(s) by
means of the proximal operator. More details can be found in the recent
survey [104]. The course notes [135] also provide a detailed reference
to the topic.

Proximal Minimization Algorithm (PMA) PMA is mostly a concep-
tual scheme for minimizing the function f described above by means
of the prox operator. It is written as the iteration

zk+1 := prox ρkf (zk) , (2.4)

i.e., it minimizes f while not moving too far away from the previous
minimizer. The distance to zk is controlled by the sequence {ρk}. The
algorithm converges for ρk > 0 and

∑∞
k=1 ρ

k =∞.
The method was introduced in [82, 83], while a more general form

than the one presented here in [117]. Convergence properties have been
further analyzed in [68]. Although it is applicable under mild assump-
tions, the PMA is only useful when the proximal operator of f is easy
to compute.
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Proximal Gradient Method (PGM) Consider the case that we want
to minimize l(z) = f(z) + g(z), f ∈ Γ0(Rn) is smooth and g ∈ Γ0(Rn).
The proximal gradient method is the iteration

zk+1 := prox ρkg

(
zk − ρk∇f(zk)

)
, (2.5)

where ρk > 0 is a stepsize, either constant or determined by line search
methods.

It is interesting to rewrite the method as

zk+1 = argmin
z

{
g(z) + (1/2)‖z − (zk − ρk∇f(zk))‖2

}
= argmin

z

{
g(z) + f(zk) + 〈∇f(zk), z − zk〉+ (1/2ρk)‖z − zk‖22

}
.

Consequently, the method minimizes the sum of the (possibly) nons-
mooth function g and a quadratic approximation of the smooth function
f centered at the previously computed optimizer zk. If the stepsize is
chosen to be fixed in the range (0, 1/Lf ], where Lf is a Lipschitz con-
stant for ∇f , then the quadratic model upper bounds f around zk

and the method can be shown to converge [8]. In reality the method
converges for any ρ ∈ (0, 2/Lf ), but the quadratic model does not
necessarily act as an upper bound for stepsizes that are larger than
1/Lf . Note that, under the extra assumption of smoothness of f , the
algorithm can deal with the sum of two functions in the objective, in
contrast to the PMA.

Forward-Backward Splitting (FBS) Although not necessarily a prox-
imal method, the FBS algorithm is a generalization of the PGM. More
generally, the FBS algorithm can be used to find a root of the sum of
two operators A and B that satisfy specific properties [7, § 25.3] (spe-
cial cases of which are subdifferentials, gradients, proximal and linear
operators). Finding a minimizer of the sum of two convex functions
can be cast as finding a root of the sum of two (monotone) operators,
involving the gradient and subdifferential mappings of the functions.
Monotone operator theory is a large and important field, with strong
connections to convex optimization theory and algorithmic develop-
ment [7, 119]. Its treatment goes beyond the scope of this manuscript.
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We will, however, touch upon some aspects of it in order to derive one
of the schemes presented in this work.

Douglas-Rachford Method (DRM) While PGM allows for dealing
with the summation f + g by ‘linearizing’ f , DRS decomposes the op-
timization problem and applies an alternating scheme, while dropping
the assumption for smoothness of f . The algorithm is composed of a
sequence of proximal steps, expressed as

vk+1 = prox ρf

(
λk − wk

)
λk+1 = prox ρg

(
vk+1 + wk

)
wk+1 = wk + vk+1 − λk+1 (2.6)

Here ρ > 0 is a stepsize, bearing no further restrictions, in constrast to
PGM. The original motivation for the method was the decomposition
of the ‘difficult’ proximal evaluation prox f+g(x) of the PMA. The
scheme dates back in the 50’s [60], [55], while a more recent analysis in
the framework of convex optimization is performed in [45].

2.3 Origin of the methods and a unified framework

We consider three approaches for solving (P), all based on decomposing
the problem into simpler ones with respect to the f and g functions.
A common trait of the resulting algorithms is that they are derived
by applying the proximal methods presented in the previous section
to the dual function (D). Although seemingly close, the algorithms
presented below exhibit unique characteristics that can be handy when
solving different optimization problems. The distinction mainly regards
the easiness of the applicability of the algorithm, as well as the tradeoff
between number of iterations and computational load per iteration. We
will come back to this discussion in the end of the chapter.

Alternating minimization algorithm (AMA) [131] AMA derives
from applying PGM to the dual problem (D), i.e., when considering
the smooth part of the objective being f = F (λ) and g = g?(λ) in (2.5).
The equivalence is derived in Appendix B.1. This being the case, the
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method requires smoothness of F (λ), a property that can be recov-
ered if and only if the function f in the original formulation (2.1) is
strongly convex (see Appendix A, Lemma A.2). Finally, since conver-
gence of the PGM comes under stepsize restrictions, AMA converges
for 0 < ρ <

2σf
‖L‖2 , where σf is the strong convexity modulus of f .

Algorithm 1 Alternating minimization algorithm (AMA)

Require: Initialize λ0 ∈ Rp, and 0 < ρ <
2σf
‖L‖2

loop
1: zk+1 = argmin

z
f(z) +

∑M
i=1〈λki , Liz〉

2: yk+1
i = prox 1

ρ
gi

(
Liz

k+1 + li + λki /ρ
)
, i = 1, . . . ,M

3: λk+1
i = λki + ρ(Lizk+1 + li − yk+1

i ), i = 1, . . . ,M
end loop

From the perspective of the Lagrangian function, the first step of
AMA is equivalent to the mininimization of (L) with respect to the z
variable. The second step involves the minimization of the augmented
Lagrangian (AL), that can be expressed for problem (P) as

Lρ(z, y;λ) = f(z) + g(y) + 〈λ, Lz+ l− y〉+ (ρ/2)‖Lz+ l− y‖22 . (AL)

Augmented Lagrangian functions have a long history in the optimiza-
tion literature [116], [13]. Roughly speaking, minimization of the aug-
mented Lagrangian function instead of the classical one results in faster
convergence due to better regularization of the problem through the
quadratic term. The augmented Lagrangian minimization problem re-
sults in proximal steps that can be implemented in parallel. In the
end, a dual multiplier update ensures convergence of the algorithm by
enforcing consensus of the sequence of updates {Lzk + l} to {yk}.

Primal-Dual Algorithm (PDA) In the context of large-scale convex
optimization, the evaluation of the minimizer of f , as it appears, e.g.,
in the first step of AMA, might be undesirably expensive. This is,
e.g., the case when f is a quadratic function with a dense Hessian,
the minimization of which would require an inversion. This motivated
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the development of numerous primal-dual algorithms that comprise
a sequence of evaluations of proximal operators, where the gradients
and linear operators involved in the steps are called explicitly without
inversion.

Early works of this type involved two functions in the objective and
could not exploit potential regularity properties such as smoothness
of the functions [22, 73]. Later works expanded the previous ones to
handle an extra (third) smooth function [28, 30], and even to deal with
inexactness in the evaluation of the proximal steps [134]. These versions
come under many different names, mostly referred to as the Vũ-Condat
algorithm. In this work, we adopt the name Primal-Dual Algorithm
(PDA) to describe a method that is generic enough to encapsulate
most of the existing ones, though suitable for our setting. The proposed
algorithm is in line with the recent scheme presented in [26].

Algorithm 2 Primal-Dual Algorithm (PDA)
Require: Initialize λ0 ∈ Rp, z0 ∈ Rn. Choose stepsizes τ, ρ > 0 such
that √τρ

√∑M
i=1 ‖Li‖2 < 1− (Lh/2)τ

loop
1: zk+1 = proxτδD

(
zk − τ(∇h(zk) + L>λk)

)
2: λk+1

i = proxρig?i
(
λki + ρi(Li(2zk+1 − zk) + li)

)
, i = 1, . . . ,M

end loop

An important common characteristic of these methods is that they
make use of the information that f is the sum of a smooth and
a non-smooth term, h and δD, respectively, as presented in (2.1).
Consequently, a quadratic model is constructed for f , i.e., f̂(z) =
δD(z) + h(zk) + 〈∇h(zk), z − zk〉+ (1/2τ)‖z − zk‖22, and is minimized
instead of the original function in the first pass. In contrast to AMA,
the cost and the dynamics are not lumped together in this case. The
function h being smooth, information about the Lipschitz constant of
its gradient is incorporated into the algorithm, typically resulting in
faster convergence. The first step of the algorithm involves the projec-
tion of the evaluated gradient iteration onto the dynamics’ subspace,
while the second step is comsposed of dual variable updates by means
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of proximal operators that can be performed in parallel, as is the case
for AMA. Using the Moreau identity (Lemma A.2 in Appendix A), we
can express this step in terms of prox gi/ρi , getting rid of the conju-
gate. PDA can be seen as the FBS applied to the saddle problem (S).
The derivation is presented in Appendix B.

Alternating direction method of multiplier (ADMM) [60], [55], [61]
This is probably the most popular of the splitting methods, mostly due
to its simplicity and the very few assumptions for convergence in com-
parison to other splitting schemes. It was rediscovered 30 years later
under a new name: split Bregman method [64]. In the case of ADMM,
the functions f and g need only be convex. Application of the PMA
to the dual function (D) results in the minimization of a composite
augmented Lagrangian, commonly known as the method of multipli-
ers [75],[110],[13]. The difficulty to deal with the composite proximal
operator, as discussed earlier, motivated research for a scheme that can
split the proximal step into two. ADMM can be derived as a special
case of DRM applied to the dual problem. The derivation is presented
in Appendix B.

Algorithm 3 Alternating direction method of multipliers (ADMM)
Require: Initialize y0 ∈ Rp, λ0 ∈ Rp, and ρ > 0

loop
1: zk+1 = argmin

z
f(z) +

∑M
i=1〈λki , Liz〉+ (ρ/2)

∑M
i=1 ‖Liz + li − yki ‖2

2: yk+1
i = prox 1

ρ
gi

(
Liz

k+1 + li + λki /ρ
)
, i = 1, . . . ,M

3: λk+1
i = λki + ρ(Lizk+1 + li − yk+1

i ), i = 1, . . . ,M
end loop

Compared to AMA, ADMM only differs in the minimization of the
augmented Lagrangian function in the first step. This trait has the ad-
vantage that no stepsize restrictions occur for ADMM, in constrast to
AMA and PDA. On the other hand, the augmented Lagrangian mini-
mization complicates the first step by the addition of a (possibly dense)
quadratic form, even in the case that the original structure of f al-
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lowed for a cheaper evaluation. This is not the case with AMA and
PDA, where the first step remains simple.

2.4 Alternative interpretations

Proximal method of multipliers ADMM and PDA can be analyzed
through the lens of Rockafellar’s Proximal method of multipliers [116].
This approach is followed in the recent manuscript [122], which clari-
fies several aspects of popular splitting methods and shows their close
connection.

For the purpose of analysis, the proximal augmented Lagrangian for
(P) is defined as

Pρ(z, y;λ) =f(z) + g(y) + 〈λ, Lz + l − y〉+
ρ

2‖Lz + l − y‖2 + 1
2‖z − z

k‖2P1 + 1
2‖y − y

k‖2P2 ,
(PAL)

where P1 ∈ Sn+ and P2 ∈ Sp+.
Applying the multiplier method to (PAL), one gets the Proximal

method of multipliers (PMM) algorithm:

(zk+1, yk+1) ∈ argmin
z,y

Pρ(z, y;λ) (2.7)

λk+1 = λk + ρ(Lzk+1 + l − yk+1). (2.8)

This is the most general form of the multiplier method [75],[110]. One
observes that if (L) is considered instead of (PAL), the dual decompo-
sition algorithm is recovered, while if one minimizes (AL) we recover
the classical method of multipliers.

Alternating minimization of (2.7) over the variables z and y with
proper choices of the matrices P1 and P2 gives rise to ADMM and
Chambolle-Pock’s method, a simplified version of PDA. The former is
recovered for the choice P1 = 0, P2 = 0, while the latter by setting
P1 = (1/τ)I − ρL>L and P2 = 0. In this case, the matrix P1 is chosen
such that it simplifies the minimization with respect to z, and can be
seen as a partial linearization of the objective. In general, the prox-
imal terms are introduced in order to ensure strong convexity of the
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minimization subproblems. This is important, e.g., in the case that con-
vergence of a variable to a unique optimizer is required (see discussion
about convergence in Chapter 3).

Envelope functions As we have already seen, it is highly desirable to
interpret the splitting methods presented above through simple algo-
rithms, the properties of which are well-analyzed. Such an interpreta-
tion allows us to exploit this knowledge and improve upon the methods,
as will be more clearly demonstrated in the following chapters. In the
recent works [107] and [106], AMA and ADMM are shown to be equiv-
alent to a gradient-type method applied to smooth functions inspired
from the so called Moreau envelope function, defined as the value func-
tion of the proximal minimization problem (2.3):

fρ(x) := inf
z

{
f(z) + (1/2ρ)‖z − x‖2

}
. (2.9)

The envelope function fρ is convex and smooth with 1/ρ Lipschitz
continuous gradient. Furthermore, the set of minimizers of f and fρ are
the same, which practically means that the nonsmooth optimization
problem involving f can be substituted by a smooth one involving
fρ. Finally, the PMA can be seen as an application of the gradient
method on fρ. The interested reader is referred to [104, § 3.1] for a
more extended discussion.

Generalizing this idea, Patrinos et al. define the forward-backward
envelope (FBE) for the composite optimization problem min . l(z) =
f(z) + g(z) as:

lFB
ρ (x) := inf

z

{
f(x) + 〈∇f(x), z − x〉+ g(z) + (1/2ρ)‖z − x‖2

}
(2.10)

Although the FBE is not necessarily convex, the set of its stationary
points turns out to be equal to the set of its minimizers for specific
restrictions on ρ, which is in turn equal to the set of minimizers of
the original composite function l. All the details are given in [107]. In
addition, AMA can be interpreted as a variable stepsize gradient method
applied to the FBE of the dual problem (D).

In a similar manner, a Douglas-Rachford envelope (DRE) is intro-
duced in [106]. It turns out that the DRE is nothing but the FBE
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evaluated at proxρf (x) instead of x, i.e., lDR
ρ (x) = lFB

ρ (proxρf (x)).
If the smooth function f is also quadratic, the DRE is convex for
ρ ∈ (0, 1/Lf ). This observation gives rise to new ways of analyzing and
improving ADMM, expressed as a variable stepsize gradient method
applied to the DRE of the dual problem. The reader can resort to [106]
for a more detailed analysis.

Interpretation of the splitting schemes as an application of the gra-
dient method to a smooth function has important practical implica-
tions. Smoothness is a highly desirable property that enables accel-
eration of the methods, either through application of optimal over-
relaxation schemes, as they will be presented in Chapter 3, or through
injection of second order information, which will be further discussed
in §7.3.

2.5 Relaxation

Relaxation has been used to speed up the convergence of PMA in [45],
giving rise to the iteration

zk+1 = (1− θk)zk + θk prox ρkf (zk), θk ∈ (0, 2) .

The idea roots back to Successive Over-Relaxation for the solution
of linear systems, variations of which can be applied to any iterative
method. It typically speeds up convergence for values θk > 1, and it
can be used in ADMM by substituting Lzk+1 with

θkLzk+1 − (1− θk)(−yk + l) .

The sequence {zk} is also over-relaxed in PDA where θk = 2 is used at
every iteration.

2.6 Termination

Given that problem (P) is convex, necessary and sufficient conditions
for convergence are the primal and dual feasibility conditions (see, e.g.,
[18, Chapter 5]). Writing the conditions for formulations (L) and (S), we
get termination criteria for ADMM, AMA and PDA, respectively. The
optimality conditions practically translate to primal and dual residuals
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that (asymptotically) go to zero as the algorithmic schemes progress.
In practice, the algorithms are terminated when the conditions are
satisfied to some prespecified accuracy. In Appendix C we present in
detail how the derivation is performed for each of the algorithms.

We should note that, traditionally, first order (splitting) methods
do not provide information about the feasibility of the problem. In the
case of infeasibility, the subproblems to which the original problem is
split will not converge to a common solution, something that is reflected
in the residuals that do not decrease. After having observed this be-
havior for some time, the user can terminate the algorithm and claim
infeasibility. It is only recently that the authors of [101] suggested an
ADMM scheme that also returns a feasibility certificate. The idea is to
use homogeneous self-dual embedding, a method commonly used with
interior-point methods [138], [137]. The original problem is written as a
feasibility problem by embedding the KKT conditions into a system of
linear equations. From the solution of the embedding problem, one can
either recover the solution of the original one, or a certificate for primal
or dual infeasibility. Infeasibility detection using ADMM to solve QPs
is also treated in the recent work [112]. In this manuscript we do not
consider these variants, which should be used if infeasibility detection
is crucial for the problem at hand.

2.7 Discussion

A valid question that arises is: which method should be used given an
optimal control problem? Throughout the course of this survey we will
come back to this question and will attempt to give some guidelines for
practitioners who want to use these methods as mere technology.

From a first look to Algorithms 1, 2 and 3, several differences are
already visible. In terms of applicability, ADMM requires minimal as-
sumptions in order to work (convexity). The same holds for PDA (note
that h can be set to zero in the case of absence of a smooth term in the
objective). AMA requires strong convexity of f , which might seem, in
principle, restrictive. However, in the framework of MPC, and assum-
ing a quadratic cost in terms of both states and inputs, i.e., z = (x, u),
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with x being the concatenated (over a prediction horizon) state vector
and u the corresponding vector of the inputs, we can distinguish two
plausible formulations for which this holds:

1. The optimization problem is rewritten in terms of the control
inputs only, i.e., the states are eliminated. In this case, f becomes
strongly convex and the dynamics equation Az = b vanishes.
Then f(z) = z>Hz + r>z, for some dense Hessian H, and the
stepsize is upper bounded by λmin(H)/‖L‖2.

2. We have that z>Qz > 0 for z 6= 0 and Az = 0, i.e., positive
definiteness of Q in the nullspace of A (see [59, Proposition 33]).
This translates into positive definiteness of the objective (in both
x and u), when restricted to the nullspace of the dynamics. In
this case we can write the KKT system[

K11 K21
K21 K22

]
=
[
Q A>

A 0

]−1

. (2.11)

The KKT matrix in nonsingular, and hence the first step of AMA
can be solved by means of a matrix inversion. The stepsize is
upper bounded by λmin(K11)/‖L‖2.

In conclusion, for a plethora of MPC problems involving regulation or
tracking, all three methods are potentially applicable.

Restrictions on the stepsizes hold for both AMA and PDA. There is
an obvious downside, but also an upside about this fact. The former re-
gards the small stepsizes that are required for convergence, especially if
the matrices Q and L in (P) are badly conditioned. The upside, though,
is that the stepsize selection for AMA is made easier in comparison to
ADMM, i.e., the stepsize can be selected as the maximum allowable
one. The selection is trickier in the case of PDA, since the condition
√
τρ
√∑M

i=1 ‖Li‖2 < 1 − (Lh/2)τ involves two stepsizes affecting one
another.

Finally, there are several computational differences among the three
algorithms. As we mentioned above, augmented Lagrangian methods
like ADMM tend to converge faster than Lagrangian methods due to
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the extra regularity coming from the quadratic term. This is more vis-
ible when the objective function does not involve a quadratic term by
construction. On the other hand, the augmentation term contributes
with a (possibly) dense quadratic form to an originally (possibly)
non-dense objective. Consider, e.g., a quadratic objective of the form
h(x, u) = (1/2)x>Qx+ (1/2)u>Ru, where Q and R are diagonal. The
first step of AMA would require the solution of the KKT system (2.11),
with K11 diagonal, while ADMM would densify the matrix. Solving
via the Schur complement would require inversion of K11 (see [18, Ap-
pendix C, Example C.4]), which becomes costly in the latter case. Re-
garding PDA, the first step requires a projection onto the dynamics’
subspace. Such a projection can be written in closed form as

PD(p) = p+A>(AA>)−1(b−Ap) , (2.12)

where p = zk − τ(∇h(zk) + L>λk), and thus requires the inversion of
AA>, with A ∈ Rm×n as defined in (P). This operation is inexpen-
sive if m << n. The A matrix for a typical MPC problem is of size
Nnx×N(nx +nu). It thus makes sense to prefer such an inversion, es-
pecially if nu > nx. The fact that the matrix under inversion is positive
(semi)definite, allows for further offline manipulation, as we will see in
Chapter 4.

This short discussion reveals that a good choice depends mostly on
two factors: 1. Time investment for offline tuning and 2. the computa-
tional complexity of the first step, which in all cases involves a linear
system solve. We will elaborate more on these aspects in the subsequent
chapters.



3
Convergence Results and Accelerated Variants

Slow convergence is usually the case with first order methods, and the
algorithms presented above are no exception to this rule. Slow conver-
gence can be caused both by the primal or dual iterations. Indeed, the
proximal step usually amounts to a projected gradient iteration, while
the dual update is a gradient update step. In this aspect, the algo-
rithms presented here cannot achieve a rate better than the existing
worst case lower complexity bounds for first order methods [91], [93]1

In what follows we frequently refer to convergence in function values
and in sequence values. By saying that ‘we have O(1/kq), q ∈ (0, 2]
global rate of convergence in function values for some function f ’, we
mean that

lim
k→+∞

kq(f(zk)− p∗) ≤M ,

where p∗ is the optimal value of f and M > 0. Accordingly, ‘global
O(1/kq) convergence rate of a sequence {zk}’ means that

lim
k→+∞

kq(‖zk − z∗‖) ≤M ,

where z∗ is the optimizer and M > 0.
1Nesterov’s results point to the existence of a problem for which the algorithms

cannot converge at a rate faster than the one presented in the aforementioned works.
It is often (and hopefully) the case that for specific problem instances the algorithms
behave much better than the lower complexity bounds.

270
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Accordingly, we refer to convergence rate of o(1/kq) for a sequence
{zk}’ (or in the function values of f) when

lim
k→+∞

kq(‖zk − z∗‖) = 0, lim
k→+∞

kq(f(zk)− p∗) = 0 ,

respectively.
Intuitively, big-O says that ‘the sequence in the parenthesis (func-

tion values or iterates values) can decay no faster than the sequence
{1/kq}’, while the little-o convergence rate means that ‘the sequence
in the parenthesis will decay strictly faster than {1/kq}’, hence is a
stronger statement.

Finally, ergodic convergence rates can be derived for the se-
quence and function values making use of the running average z̄N =
1
N

∑N
k=1 z

k, so that

‖z̄N − z∗‖ ≤ M

N q
, f(z̄N )− p∗ ≤ M

N q
,

respectively.
As was shown in the previous chapter, the splitting methods we

discuss derive from the application of proximal algorithms to the dual
composite function of (P). Consequently, the convergence results for
these splitting methods also derive from existing convergence results
of the proximal algorithms we use. Common sense dictates that the
more knowledge we have about the function at hand, the better the
convergence rates we can derive. Accordingly, structural assumptions
are crucial for converging faster to optimality. The most important
ones are smoothness and strong convexity, with the underlying relation
between them. The definitions of the two properties are given below,
along with the lemma that associates them (3.1), and can be found in
several convex analysis textbooks (see, e.g., [7]).

Definition 3.1 (Smoothness). A function f ∈ Γ0(Rn) is β-smooth if it
is differentiable in Rn and

f(z) ≤ f(x) + 〈∇f(x), z − x〉+ (β/2)‖z − x‖2 (3.1)

holds for all z, x ∈ Rn.



272 Convergence Results and Accelerated Variants

Definition 3.2 (Strong convexity). A function f ∈ Γ0(Rn) is β-strongly
convex if

f(z) ≥ f(x) + 〈u, z − x〉+ (β/2)‖z − x‖2 (3.2)

holds for all z, x ∈ Rn and all u ∈ ∂f(x).

Definition 3.3 (Lipschitz continuous gradient). A differentiable function
f ∈ Γ0(Rn) has a β-Lipschitz continuous gradient if

‖∇f(z)−∇f(x)‖ ≤ β‖z − x‖ (3.3)

holds for all z, x ∈ Rn. β-Lipschitz continuous gradient is equivalent
to β-smoothness of the function.

Lemma 3.1. Let f ∈ Γ0(Rn). The following statements are equivalent:
i. The function f is β-strongly convex function.
ii. The conjugate function f? ∈ Γ0(Rn) has 1/β-Lipschitz continuous
gradient.

3.1 Sublinear convergence

First order methods typically come with sublinear convergence rates,
both in function values and in terms of the iterates. These rates are
given from q ∈ (0, 2] as presented in the previous section, depending
on the structure of the problem at hand. Very roughly speaking, the
following hold:

1. When no structural assumptions on the functions are made, sub-
linear convergence rates typically amount to an o(1/k) global rate
in function values.

2. Under the assumption of smoothness, several acceleration tech-
niques can be applied, resulting in an O(1/k2) global rate in func-
tion values.

3. The convergence rate of the sequences of variables can usually
be recovered as O(1/

√
kq) from the function value’s convergence

rate.
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4. Under the assumption of smoothness and strong convexity, linear
convergence rates of the form O(ωk), ω ∈ (0, 1) can be recovered.

Until very recently, almost all the convergence rate results regarding
splitting methods, when no extra structural properties hold, were of
big-O complexity. This landscape changed significantly with the works
of Davis et al. [37, 36], where a faster rate of little-o complexity is
proven to hold for the majority of the known splitting schemes. Since
the derivation of convergence rates for decomposition schemes was (and
is) a very active area of research, with a vast number of results, we
will focus here on the latest advancements, i.e., the fastest and tightest
known rates that exist. In addition, we will restrict ourselves to present-
ing only nonergodic convergence rates; the interested reader can find
more information regarding ergodic rates in [122, 74, 37] for ADMM
and [22, 36] for PDA.

More specifically, ADMM converges at a global rate of o(1/k) if
function values [36] and at O(1/

√
k) in the sequences of primal and

dual variables, for an arbitrarily large stepsize ρ [122]. Since AMA is
equivalent to PGM applied to the dual problem (see Appendix B), an
O(1/k) convergence rate in the dual function values is proven in [8,
Theorem 3.1], enhanced to o(1/k) in [36]. In the case of PDA, a pre-
primal dual gap function is shown to shrink with rate o(D/

√
k), where

D is a constant involving the diameter of all (bounded) subsets of
the primal-dual space where the problem is defined (see [36] for the
technical details).

3.2 Accelerated sublinear convergence

By making further assumptions on the function’s structure, faster con-
vergence rates can be recovered. In his work [109], Polyak proposed
a way to speed up the gradient method, namely to use the modified
update

ẑk = zk + αk(zk − zk−1)
zk+1 = ẑk − ρk∇f(zk) ,
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on the smooth convex function f . This method is commonly known
as the heavy ball method. In this way the next iterate depends on the
last gradient update and the previous step zk − zk−1, which is called
a momentum sequence. This seemingly small change of updating the
new iterate as a linear combination of the two previous iterates greatly
improves the performance of the original gradient scheme.

3.2.1 Nesterov acceleration

In his seminal paper [92], Nesterov modified the heavy ball method
by simply evaluating the gradient at the extrapolated point ẑk instead
of zk. In addition, he proposed a special formula for computing the
relaxation sequence {αk}, resulting in an optimal convergence rate for
minimizing a smooth convex function using only gradient information.
The simple update formula is:

αk =
(

1 +
√

4(αk−1)2 + 1
)
/2

ẑk = zk + αk−1 − 1
αk

(zk − zk−1) (3.4)

zk+1 = ẑk − ρk∇f(ẑk) ,

with α0 = 1. Subsequently, Güler extended Nesterov’s results for the
PMA [69], while Beck and Teboulle extended it for the PGM [8].
Tseng [132] unified the analysis of fast PGM and proposed a condi-
tion for the acceleration sequence under which convergence is ensured.
More specifically, the sequence {αk} needs to satisfy

1− αk+1

(αk+1)2 ≤
1

(αk)2 .

Application of such schemes results in an O(1/k2) global rate of
convergence in function values; a rate that is optimal for first order
methods involving a smooth and a nonsmooth function. Convergence
in terms of the sequence was not proven until very recently [21], and
the derivation of a rate is still open (unless further assumptions on the
structure of the function are made). Apart from the theoretical results,
the scheme has been observed to practically accelerate convergence in
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numerous problem instances. In addition, the extra computational cost
is insignificant.

FAMA The acceleration of AMA was derived for the dual objective
in [10] as a direct dual application of the fast PGM (FPGM) derived
for the composite nonsmooth + smooth minimization in [8], and pop-
ularized under the name FISTA. The derivation can be found in Ap-
pendix B. A rate of O(1/k) of the primal sequence is also proven in [10].
The algorithm was also independently developed in [63] for slightly dif-
ferent stepsize conditions. FAMA can practically be applied to every
problem that AMA can solve.

Algorithm 4 Fast alternating minimization algorithm (FAMA)
Require: Initialize α0 = 1, λ0 = λ−1 ∈ Rp, and ρ ≤ σf

‖T‖2

loop
1: zk = argmin

z
f(z) +

∑M
i=1〈λ̂ki , Liz〉

2: yki = prox 1
ρ
gi

(
Liz

k + li + λ̂ki /ρ
)
, i = 1, . . . ,M

3: λki = λ̂ki + ρ(Lizk + li − yki ), i = 1, . . . ,M
4: αk+1 =

(
1 +

√
4(αk)2 + 1

)
/2

5: λ̂k+1
i = λki + ((αk − 1)/αk+1)(λki − λk−1

i ), i = 1, . . . ,M
end loop

FADMM A fast version of ADMM (FADMM), based on Nesterov’s
acceleration, was first presented in [63]. The algorithm is presented
below. In the case that f and all the functions gi, i = 1, . . . ,M are
strongly convex, a global O(1/k2) rate is achieved in terms of dual
function values. In the absence of assumptions no convergence rates
can be proven. In addition, convergence must be enforced by means of
a restart rule, as will be discussed in the next section.

Remark 3.1. Following the discussion from §2.4, the interpretation of
the DR algorithm as a gradient scheme immediately allows for exten-
sions to accelerated variants. Indeed, the authors in [106] propose an
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Algorithm 5 Fast alternating direction method of multiplier
(FADMM)

Require: Initialize ŷ0 = y−1 ∈ Rp, λ̂0 = λ−1 ∈ Rp, ρ > 0, α0 = 1.
loop
1: zk = argmin

z
f(z) +

∑M
i=1〈λ̂ki , Liz〉+ ρ

2
∑M
i=1 ‖Liz + li − ŷki ‖2

2: yki = prox 1
ρ
gi

(
Liz

k + li + λ̂ki /ρ
)
, i = 1, . . . ,M

3: λki = λ̂ki + ρ(Lizk + li − yki ), i = 1, . . . ,M
4: αk+1 =

(
1 +

√
4(αk)2 + 1

)
/2

5: ŷk+1
i = yki + ((αk − 1)/αk+1)(yki − yk−1

i ), i = 1, . . . ,M
6: λ̂k+1

i = λki + ((αk − 1)/αk+1)(λki − λk−1
i ), i = 1, . . . ,M

end loop

accelerated DR method using Nesterov’s sequence. Application of the
proposed algorithm to the dual Douglas-Rachford envelope (see §2.4)
results in another FADMM which also achieves a global O(1/k2) rate
is achieved in terms of dual function values. This version of FADMM
holds only for quadratic f and comes with stepsize restrictions (remem-
ber that in this case the DRE is convex).

3.2.2 Adaptive restart

It is frequently the case that the momentum sequence generated from
acceleration schemes can result in oscillatory behaviour in the conver-
gence of the function value to the optimal one. The term αk−1

αk+1 in (3.4)
is the amount of required momentum; if this amount is underestimated
convergence is slower, while in the opposite case it causes a rippling
behaviour, leading again to slower convergence.

The authors in [100] propose a restarting scheme, namely per-
forming a test every (few) iteration(s). Depending on the result of the
test, the momentum term is set back to αk = 1 and the procedure
is restarted. In order to demonstrate the scheme, consider again the
accelerated version of the gradient method presented in (3.4). Two
simple tests are provided; one ensuring that the function value keeps
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decreasing (restart if f(zk+1) > f(zk)) and the other one checking
whether the new direction is pointing towards the negative gradient
(restart if 〈∇f(ẑk+1), zk+1−zk〉 > 0). Although a heuristic, the scheme
significantly accelerated the convergence of gradient and proximal
gradient schemes it was initially applied to. The generalization to
ADMM and AMA followed shortly after.

Since AMA is equivalent to PGM, restart can be immediately ap-
plied to its fast version, i.e., Algorithm 11 in Appendix B. In order to
avoid function evaluations, the use of the gradient-based restart test is
preferred. Since the gradient iteration for Algorithm 11 is the proximal
step λk+1 = proxρg?

(
λ̂k + ρ(Lzk + l)

)
, we can view it as a generalized

gradient scheme [100] of the form:

λk+1 := λ̂k + ρG(λ̂k),

where G(λ̂k) is the generalized gradient at λ̂k (note that zk is a function
of λ̂k from Step 2 of Algorithm 11). Consequently, the gradient-based
restart test can be expressed as 〈−G(λ̂k), λk+1 − λk〉 > 0, and can be
applied right after Step 3 of Algorithm 4

4: if 〈λ̂k − λk, λk − λk−1〉 > 0
5: λ̂k = λk−1

6: Repeat Steps 1,2,3 of Algorithm 4.
7: else
8: Go to Step 4.

Note that the algorithm cannot cycle since the restart condition
will not be satisfied once λ̂k = λk−1. In the recent work [58], the
restarted version of Algorithm 11, and, consequently, the restarted
FAMA, is proven to preserve the optimal O(1/k2) convergence rate in
function values.

Along the same lines, restart schemes have also been applied to
ADMM in [63]. In this case, acceleration is applied to both sequences
{yk} and {λk}. In order to ensure convergence, the combined residual
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ck = ρ−1‖λk−λ̂k‖2+ρ‖yk−ŷk‖2 needs to vanish in the sense lim
k→∞

ck = 0.
The restart scheme can be plugged to Algorithm 5 after Step 4 and is
presented below. The constant η ∈ (0, 1) corresponds to the decay rate
of the residual term ck.

5: ck = ρ−1‖λk − λ̂k‖2 + ρ‖yk − ŷk‖2
6: if ck < ηck−1

7: ŷk+1
i = yki + ((αk − 1)/αk+1)(yki − yk−1

i ), i = 1, . . . ,M
8: λ̂k+1

i = λki + ((αk − 1)/αk+1)(λki − λk−1
i ), i = 1, . . . ,M

9: else
10: αk+1 = 1, ŷk+1 = yk, λ̂k+1 = λk

11: ck ← η−1ck−1

12: endif

Remark 3.2. It is possible that the restart scheme slows down the con-
vergence of both FAMA and FADMM. Every time a restart happens,
one full iteration of the algorithm goes to waste since the previous point
is used instead of the over-relaxed one. In the worst-case scenario the
algorithm will require double the number of iterations it would actually
need if no restart was applied. Subsequently, restart methods will not
necessarily improve on the fast versions of the two algorithms presented
above.

FPDA The accelerated variant of PDA comes under the assump-
tion that f = h + δD is σf -strongly convex, denoted hereafter as
F(ast)PDA (Algorithm 6). The acceleration is achieved by means of
adaptive change of the primal and dual stepsizes τ and ρi. Further-
more, instead of taking a fixed momentum sequence {2(zk+1 − zk)} as
in Algorithm 2, a variable relaxation parameter θk is introduced. The
scheme results in a global O(1/k) convergence rate for the primal se-
quence {zk}, [16, Theorem 19]. A local O(1/k2) convergence in function
values also applies, as proven in [22, Theorem 2] in the case that two
functions comprise the objective of Algorithm 2.
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Algorithm 6 Fast Primal-Dual Algorithm (FPDA)
Require: Initialize λ0 ∈ Rp, z0 ∈ Rn, y0 ∈ Rm.
Choose stepsizes τ, ρ1, . . . , ρM > 0 such that τ < 2σf/Lh
µ ≥ Lh + 1, τ0

(∑M
i=1 ρ

0
i ‖Li‖2

)
≤
√

1 + τ0(2σf − Lhτ0)/µ and

θ0 = 1/
√

1 + τ0(2σf − Lhτ0)/µ.
loop
1: zk+1 = prox(τk/µ)δD

(
zk − (τk/µ)(∇h(zk) + c+ L>λk)

)
2: ẑk+1 = zk+1 + θk(zk+1 − zk)
3: λk+1

i = proxρkg?i
(
λki + ρki (Liẑk+1 + li)

)
, i = 1, . . . ,M

4: τk+1 = θkτk, θk+1 = 1/
√

1 + τ0(2σf − Lhτk+1)/µ,
ρk+1
i = ρki /θ

k+1, i = 1, . . . ,M
end loop

3.2.3 Smoothing

It is evident by now that smoothness is the key property that allows for
accelerated convergence in first order splitting schemes. Since the three
algorithms of interest are primal-dual methods, it comes as no surprise
that strong convexity of the function f is needed in order to achieve the
fast rate. This is a direct result of the celebrated dual relation between
smoothness of the dual (primal) and strong convexity of the primal
(dual) (see Lemma (3.1) in Appendix A).

Subsequently, the proximal regularization of a convex function, at-
tributed to Moreau, was extended by Nesterov in the work [94]. More
specifically, consider the class of nonsmooth convex functions that can
be expressed in the following form:

q(x) = max
z∈Z
{〈z,Ax〉 − φ(z)} ,

for some x ∈ Rn, where A ∈ Rm×n, Z is compact and convex and
φ some continuous convex function in Z. Nesterov defines a prox-
function for the set Z, denoted as D, as a σD-strongly convex and
continuous function (over Z), with Z ⊆ domD, and its prox cen-
ter as z0 = argmin

z∈Z
D(z). Assuming that D(z0) = 0, it holds that
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D(z) ≥ (σD/2)‖z − z0‖22, ∀z ∈ Z. The smooth approximation of q is
given by

qρ(x) = max
z∈Z
{〈z,Ax〉 − φ(z)− ρD(z)} .

As a result, qρ is (‖A‖2/ρσD)-smooth.
A useful discussion that provides an intuitive explanation for the

method can be found in [96]. The convergence of the method is ana-
lyzed in [94]. Smoothing is extended to composite minimization prob-
lems in [95], as well as to more general prox-functions [9]. The authors
of [9] unified smoothing methods and proved that, for any accelerated
first order scheme applied to the smoothed function qρ, the original
(nonsmooth) objective q will converge with rate O(1/k) to its optimal
value. Application of smoothing has also gained attention in the MPC
community [90], as well as in solving continuous-time optimal control
problems [41].

3.3 Linear convergence

The linear rate’s advantage over the sublinear one is that, at least the-
oretically, any accuracy level can be achieved. Linear convergence rates
can be achieved by making use of the basic versions of the algorithms
(Algorithms 1, 2, 3) with the extra assumption of strong convexity and
smoothness of at least one of the functions in the objective [93, Chap-
ter 2]. In other words, linear convergence emerges from the structural
properties of the functions, if these properties are there. This stands in
stark contrast to the accelerated versions of the algorithms presented
above that require no extra assumptions, achieving the acceleration
only by means of the injected relaxation sequences and variable step-
sizes.

Linear convergence of ADMM has been proven for several problem
formulations. In [40], the authors prove global linear O(ωk), ω ∈ (0, 1)
convergence under a variety of scenarios in which at least f is strongly
convex and smooth. Tighter (and general) linear convergence bounds
for the method have been recently presented in [57].

AMA also has a linearly convergent version under the extra assump-
tion that the dual function f?(−L>λ) is strongly convex in the variable
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λ (see [131, Proposition 2]). In this scenario, all primal and dual se-
quences {zk} and {yk}, {λk} converge to their optimizers linearly. The
assumption can be quite restrictive in control problems since L is (al-
most) always a tall matrix.

Chambolle and Pock propose a third algorithm in their paper, which
achieves global linear convergence of both the primal and dual sequences
[22, Theorem 3]. Strong convexity of the functions f and g? is required
as well as knowledge of the convexity modula σf and σg? . Strong con-
vexity of the conjugate function translates to smoothness of the original
ones (gi), an assumption that is highly unlikely to hold in our problems
of interest. The result is generalized in the case of M > 1 functions in
the objective [16, Theorem 24].

In Table 3.1 we provide an up-to-date report of the existing con-
vergence rates of the methods and their accelerated variants. Wherever
a dash ‘-’ appears, it means that there does not exist (or we are not
aware of) such a result. Note that linear convergence always comes
under additional assumptions. In some cases, there might be recent
advancements that outperform the results presented here.

3.4 Discussion

The most interesting characteristic of the fast versions is that they
require no further assumptions in order to work, both for the case of
(F)AMA and (F)ADMM. Taking also into accout the insignificant com-
putational cost that they incur renders them competitive alternatives
to the original versions.

Following our discussion from § 2.7, we see that quadratic control
problems with strongly convex objective (in the effective domain im-
posed by the constraints) are very common. Correspondingly, fast gra-
dient methods are widely used in the MPC community [115]. FAMA is
nothing but a way to apply fast gradient methods to problems where
more complicated constraints appear, hence the recent interest in con-
trol [59].
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Stepsize
restric-
tions

Strong
convex-
ity

Convergence:
function values

Convergence:
sequences

ADMM no no o(1/k) [37] O(1/
√
k)

[122], O(ωk)
[40, 81, 56, 98,
57]

AMA yes yes on f o(1/k) on the
dual [37]

O(1/
√
k)

on the pri-
mal [10],
O(ωk) [131]

PDA yes no o(D/
√
k) in

pre-primal
dual gap [36]

O(ωk) [22, 16]

FADMM no no O(1/k2) on the
dual under as-
sumptions

-

FAMA yes yes on f O(1/k2) on the
dual [63, 10]

O(1/k) on the
primal [10]

FPDA yes yes on f - local O(1/k)
on the primal
[22], global
O(1/k) on the
primal [16]

Table 3.1: Convergence rate for the basic and accelerated versions of the three algo-
rithms. The linear rates that appear are achieved under extra assumptions, discussed
in the previous section of this chapter. It is important to mention that (F)ADMM
is the only algorithm among the ones presented in this table that couples the z and
the y variables in the z-update, i.e., that introduces an augmented Lagrangian term.

We close the chapter with a comment on Table 3.1. Although the
theoretical rates summarized there might seem of little practical im-
portance, they should not be overlooked. It is remarkable how the the-
oretical proof for convergence of the gradient method at O(1/k2) moti-
vated the development of many algorithms that make use of this result,
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let alone the toolboxes developed for solving control problems (QPgen,
DuQuad, FiOrdOs). The sole reason for this is that accelerated variants,
in practice, often work significantly better than the original versions.



4
Stepsize Selection and Preconditioning

In this chapter we discuss a crucial issue that affects every first order
scheme, namely how the limited information provided by a first or-
der oracle can be optimally used in order to speed up the algorithmic
progress. The discussion boils down to two topics: stepsize selection and
conditioning of the problem. Although seemingly different, these two
aspects are strongly related. We first explore how the stepsize can be
selected for the three methods we have presented, moving from well-
behaved functions with strong regularity properties to functions for
which very little information is provided. We subsequently generalize
the notion of the stepsize and show how to select the right metric,
i.e., the right space in which the problem should be solved. This is
equivalent to preconditioning of the problem.

4.1 Stepsize

As in every first order method, the stepsize is crucial for the speed of
the convergence. In augmented Lagrangian methods, where the stepsize
(of the dual update) coincides with the penalty parameter and can be
practically unbounded, the question of selecting a suitable one remains

284
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open in the general case. We first provide a few results that have to do
with optimally choosing the stepsize under some assumptions on the
problem structure. We then move to the more general (and practical)
case where we do not know much about the problem’s structure and
hence we adapt the stepsize according to the latest information we get
from querying the function.

4.1.1 Optimal stepsize selection

The case where the first term of the composite objective in (2.1), f , is
smooth and strongly convex, is well-studied and has strong results of
linear convergence, as was discussed in §3.3. Based on these results, the
stepsize parameters can be tuned so that the corresponding convergence
rates are maximized. These computations, however, require knowledge
of both the strong convexity constant (σf ) and the smoothness con-
stant (Lf ) of the function. These quantities are, generally, difficult to
determine. Thus, the majority of the authors treat the case of QPs,
where both constants are associated to the extreme eigenvalues of the
Hessian of the dual function (D).

In the case of ADMM, the authors of [56] determine the optimal
stepsize ρ, having first proven a linear rate of convergence for inequal-
ity form, strongly convex QPs, and under an additional assumption
that the constraint matrix is either full row rank or invertible.These
requirements are relaxed in the recent works [113] and [57].

We mentioned is §3.3 that Chambolle and Pock’s scheme also
achieves a linear convergence rate for the sequences, provided that we
have two functions in the objective (i.e.,M = 1) and that both of them
are strongly convex. As is the case with ADMM, this is achieved by
picking the optimal values for the primal and dual stepsizes τ and ρ

as they appear in Algorithm 2. The optimal stepsizes are again chosen
based on the convexity modula. The result is generalized in the case of
multiple functions gi in [16].

4.1.2 Practical stepsize selection

In most cases the problem does not have a favorable structure and/or
there is an absence of information needed to optimally compute the
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stepsize. Therefore, we resort to more practical schemes in order to
speed up the convergence. Two approaches have been mostly followed
in the literature to address this issue.

The first approach involves heuristic schemes that give rise to sub-
optimal fixed stepsizes. The procedures that are followed approximate
the ones applied when the problem indeed has the desirable structural
properties. Some knowledge of the geometry is still needed, restricting
these methods mostly to QPs. Since in MPC and the associated prob-
lems of interest the existence of a quadratic term in the objective is
common, we are interested in such structures and will return to them
in the preconditioning section.

The second approach is adaptive updating of the stepsize(s) based
on new information that becomes available as the algorithms iterate.
This is commonly achieved by trying to guess the local structural prop-
erties of the involved functions either by direct function evaluations, or
indirectly, via, e.g., the residuals’ evolution. As mentioned in §2.6, split-
ting algorithms converge when consensus to a common solution between
the subproblems has been achieved. A good indication for this is the
convergence of the primal and dual residuals rk and sk (Appendix C).
Since the faster the residuals decrease the faster the termination of the
algorithm, it intuitively makes sense to try and balance the residuals
so that they converge at the same speed. Furthermore, computation
of the residuals per iteration exhibits how they evolve, and thus it is
sensible to try and ‘correct’ their behaviour if it is not desirable. This
can be performed via the stepsizes.

AMA Although in the original version of AMA, as presented in [131],
stepsize selection rules are not explicitly discussed, the equivalence of
the method (and its accelerated version FAMA) with the PGM (and
FPGM) algorithms (Algorithms 10 and 11 in Appendix B)allow for
variable stepsizes. This is achieved by means of a backtracking stepsize
rule. Backtracking is highly used in practical optimization for com-
puting a suitable stepsize without having much knowledge about the
structure of the problem [99, Chapter 3]. The approach was first devel-
oped in [8] for the ISTA and FISTA methods, and proceeds as follows:
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First, recall from (2.5) that AMA is PGM applied to the negative
dual problem. In the same section we have shown how PGM can be in-
terpreted as a proximal step involving a quadratic approximation of the
smooth part (F ) of the composite objective. Consequently, a quadratic
model that upper bounds the negative dual function can be constructed
at a given point µ, denoted as −d̂(λ) = QLF (λ, µ), where

QLF (λ, µ) := F (µ) + 〈λ− µ,∇F (µ)〉+ LF
2 ‖λ− µ‖

2 + g?(λ) . (4.1)

We denote the solution of (4.1) as

pLF (µ) = prox g?/LF (µ− (1/LF )∇F (µ)) .

A sufficient condition for ISTA to converge is that −d(pLF (µ)) ≤
QLF (pLF (µ), µ) [8, Lemma 2.3], i.e., the original function evaluated
at the next iterate is below the corresponding value of the quadratic
model. Subsequently, an estimate of the local Lipschitz constant L̄F can
be computed at every iteration by successively increasing L̄F , starting
from a small estimate, until the condition is satisfied. The scheme can
give rise to significantly smaller estimates of the Lipschitz constant
compared to the conservative upper bound LF , and, hence results in
larger stepsizes ρk = 1/L̄kF . The same backtracking rule applies to
FISTA, and thus to the FAMA algorithm.

PDA Same as with ADMM, PDA’s primal and dual residuals are in-
versely propotional to the (primal and dual) stepsizes τ and ρi, as indi-
cated in (C.8). Consequently, one can achieve some residual balancing,
and thus faster convergence, by adaptively choosing the stepsizes based
on the latest residuals’ update. The authors of [62] suggest checking a
backtracking condition in order to guarantee convergence. In the case
of PDA, convergence is based on ensuring that the primal and dual
sequences move toward the solution set at every iteration, hence we
have monotonicity of the sequences. The backtracking scheme reduces
the stepsizes when this monotonic decrease is about to be violated. It is
quite useful in practice since it often leads to long stepsizes that violate
the stability conditions, exactly as with AMA. The full details can be
found in [62].
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ADMM Observing the ADMM iterates (Algorithm 3), one easily
identifies that the dual stepsize or penalty parameter ρ is nothing but a
weight on the penalization of the primal feasibility condition y−Lz− l,
i.e., a weight on the primal residual rk (C.10). Consequently, by moni-
toring the primal residual one can either increase ρ when it gets large or
decrease it when it is small compared to sk. This is exactly the scheme
proposed in [72], that reads as follows:

ρk+1 =


2ρk ‖rk‖ > c‖sk‖,
0.5ρk ‖sk‖ > ‖rk‖/c,
ρk otherwise

(4.2)

with c > 1. The numbers suggested above are indicative and can
be scaled according to the problem. This adaptive stepsize scheme is
proven to converge and can frequently reduce the required number of
iterations in practical applications. It is, however, a fact, that the ab-
sence of restrictions in the penalty parameter is often a major drawback
in ADMM in comparison to the other splitting schemes, leading to ex-
tensive offline tuning until a sensible stepsize is calculated.

4.2 Preconditioning

The most pronounced weakness of general first order methods is their
inability to efficiently deal with ill-conditioned problems. There are
two ways to deal with bad conditioning: Either to a) choose a new
coordinate system that adjusts better to the geometry of the problem
or b) to cast the problem in a different form such that its geometry
becomes more favorable, and then apply the algorithms to solve the
recast problem.

Since strong duality allows us to treat a problem in both its pri-
mal and dual forms, we have the option to alter the geometry of both
spaces. Consider the original problem (P). Primal preconditioning is
equivalent to left preconditioning of the primal variables, where dual
preconditioning is equivalent to left preconditioning of the constraints.

Consider the scaling variables zp = Dz, yd = Ey, with D ∈ Rn×n

and E ∈ Rp×p, with E = diag(E1, . . . , EM+1) and Ei ∈ Rpi×pi , i =
1, . . . ,M . The sub(super)scripts p and d indicate scaled variables from
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the primal or from the dual preconditioning matrices. Problem (P) is
then transformed to

minimize f(D−1zp) +
M∑
i=1

gi(E−1
i ydi )

subject to ELD−1zp + El = yd ,
(4.3)

or, by setting (·)p = D(·), (·)d = E(·) and (·)dp = E(·)D−1, the problem
can be expressed in its preconditioned version as

minimize f(D−1zp) +
M∑
i=1

gi(E−1
i ydi )

subject to Ldpzp + ld = yd ,
(PrecP)

with variables zp and yd.

Remark 4.1. Although the use of the word ‘preconditioning’ generally
refers to multiplication with any matrix, while ‘scaling’ refers to pre-
conditioning with diagonal matrices, in this context we use both words
to refer to any general preconditioner. If the matrix has some special
structure, this is explicitly mentioned.

There are two points to consider before casting the original problem
to (PrecP).

1. The preconditioned version should be faster to solve in terms of
iterations.

2. The subproblems should not become computationally too costly
to solve.

In practice, we look for a reformulation that is, in total, cheaper to solve
than the original one. This requirement already poses serious restric-
tions on the structure of the scaling matrices D and E. Furthermore,
the most important question that arises is how to choose a good pre-
conditioner. As we will see, a common way is to optimize the known
convergence rate of an algorithm equivalent to the splitting scheme of
interest.
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4.2.1 Preconditioners under structural assumptions

Same as with the stepsize, knowledge of the structure of the function
f enables the computation of (in many cases optimal) preconditioners.
In order to generalize the notion of the stepsize, we need to extend the
notions of smoothness and strong convexity, given in Definitions 3.1
and 3.2. The idea is that if there exist positive definite matricesM and
H such that the first composite term of the negative dual function (D),
i.e., the function F (λ) = f?(−L>λ)−〈l, λ〉 , satisfies the following two
properties:

The function F − (1/2)‖ · ‖2H is convex.
The function (1/2)‖ · ‖2M − F is convex, (4.4)

then F can be lower and upper-bounded by quadratic functions. Manip-
ulation of the level sets of the bounding functions so that they resemble
those of F allows for faster convergence to the solution of the origi-
nal problem. Structurally, properties (4.4) imply that F is λmin(H)-
strongly convex and λmax(M)-smooth.

AMA Applying AMA to problem (PrecP) we recover the precondi-
tioned version of AMA, denoted as PrecAMA, which reads as follows:

Algorithm 7 Preconditioned Alternating Minimization Algorithm
(PrecAMA)

Require: Initialize λ0 ∈ Rp, ‖ELΣ−1
f L>E>‖ = 1.

loop
1: zk+1 = argmin

z
f(z) +

∑M
i=1〈λki , Ldi z〉

2: (ydi )k+1 = Ei proxPigi
(
E−1
i (Ldi zk+1 + ldi + λki )

)
, i = 1, . . . ,M

3: λk+1
i = λki + Ldi z

k+1 + ldi − (ydi )k+1, i = 1, . . . ,M
end loop

The matrix E = diag(Ei), i = 1, . . . ,M is the constraint precondi-
tioner mentioned above, while P = E>E. There are several interesting
observations to be made about Algorithm 7. Firstly, the stepsize ρ
has been absorbed by the preconditioner. The initial restriction on the
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stepsize in the basic version of AMA is now translated into the condi-
tion involving the matrix norm, where f − ‖ · ‖2Σf is convex, for some
Σf � 0. In that case, smoothness of F can be determined using the
dual relation between smoothness and strong convexity (Lemma 3.1),
resulting in F being λmin(LΣ−1

f L>)-smooth. Furthermore, the primal
update in Step 1 can be expressed in the original variable z, since AMA
is invariant when scaling the primal variables. The proximal step, how-
ever, changes significantly. In order to write it, we need to introduce
the generalized proximal operator for a function f : Rn → R, defined
as

prox P
ρf (x) := inf

z

{
f(z) + 1

2ρ‖z − x‖
2
P

}
. (4.5)

If P is not diagonal, the proximal step is not separable down to the
component anymore, as is the case with several functions gi (e.g., indi-
cator for nonnnegative orthant, l1 norm). Consequently, the proximal
step cannot be solved efficiently. Even in the case of diagonal scaling,
the closed form representation of the proximal step can be ruined. Ta-
ble 4.1 at the end of the chapter illustrates some common cases of
proximal operators and how diagonal scaling affects their representa-
tion. Finally, note that the unscaled variable y does not appear in any of
the updates, conveniently allowing us to work directly with the scaled
version yd without making any conversions.

Next, we discuss how to choose the matrix E. The motivation
comes from the convergence properties of the PGM applied to the
dual problem (D) (see Chapter 2 and Appendix B). The approach is
discussed in detail in the recent work [59]. Starting from the equiv-
alence of the two algorithms, the analysis is performed on the iter-
ation λk+1

i = proxρg?i
(
λki + ρ(Lizk+1 + li)

)
(Step 2, Algorithm 10).

Note that this amounts to a simple proximal iteration in the di-
rection of the negative gradient of F , and consider the stepsize to
be ρ = 1/LF . As mentioned before, this is equivalent to the mini-
mization of the quadratic upper bound (4.1) of −d(λ), QL(λ, µ) =
F (µ) + 〈λ − µ,∇F (µ)〉 + LF

2 ‖λ − µ‖
2 + g?(λ), repeated here for clar-

ity. The quadratic model has uniform curvature LF in all directions,
being a poor approximation of the original composite dual function
in the case that F is ill-conditioned. It is shown in [59, Proposi-
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tions 9, 10] that F is actually well approximated by the quadratic model
F (µ)+〈λ−µ,∇F (µ)〉+ 1

2‖λ−µ‖
2
P , where P−1 = LΣ−1

f L>. In this way,
the quadratic model is scaled to better approximate the level curves of
F . This bound is tight for many functions, however it results in com-
plicated proximal operators. It is thus preferable to approximate with
some diagonal P such that P−1 ≈ LΣ−1

f L>, and P−1 � LΣ−1
f L> for

guaranteeing convergence. Rewriting P = E>E, the convergence con-
dition is expressed as I � ELΣ−1

f L>E>, while the quadratic model can

be refined by minimizing its condition number, i.e., λmax(ELΣ−1
f
L>E>)

λmin(ELΣ−1
f
L>E>) .

Small modifications have to be performed in the (common) case when
LΣ−1

f L> is singular, but, ultimately, the problem can be cast as an
SDP, or solved by means of several heuristics [59, § 6].

ADMM The scaled version of the algorithm reads as follows:

Algorithm 8 Preconditioned Alternating Direction Method of Multi-
plier (PrecADMM)
Require: Initialize z0 ∈ Rp, λ0 ∈ Rp, and ρ > 0

loop
1: zk+1 = argmin

z
f(z) +

∑M
i=1〈λki , Ldi z〉+ (ρ/2)

∑M
i=1 ‖Ldi z+ ldi −

(ydi )k‖2

2: (ydi )k+1 = Ei proxPi(1/ρ)gi

(
E−1
i (Ldi zk+1 + ldi + λki /ρ)

)
, i =

1, . . . ,M
3: λk+1

i = λki + ρ(Ldi zk+1 + ldi − (ydi )k+1), i = 1, . . . ,M
end loop

The algorithm is quite similar to PrecAMA, except for the addition
of the augmented Lagrangian term in the objective.

Same as with AMA, the purpose is to compute an optimal precon-
ditioner E based on the properties of the dual function (D). Ignore for
a moment the dynamics equation from the function f , i.e., resulting in
f(z) = 1

2z
>Qz+c>z, and assume that the matrix L is full row rank. The

properties of the dual term F can be determined from the properties of
the primal objective f . Under the assumption that f −‖ ·‖2Σf is convex
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and ‖ · ‖2Mf
− f is convex, it holds that F is λmin(LM−1

f L>)-strongly
convex and λmax(LΣ−1

f L>)-smooth (see also [57, Proposition 8]). In ad-
dition, application of the Douglas-Rachford algorithm to (D) with the
function F having these properties results in a linear convergence rate
of the dual sequence that improves with the ratio λmax(LΣ−1

f
L>)

λmin(LM−1
f
L>) [57,

Proposition 6]. Note that the above expression corresponds to some
notion of condition number, formulated as the ratio of the maximum
eigenvalue of the quadratic upper bound to the minimum eigenvalue
of the quadratic lower bound for the function F . Consider now the
preconditioned version of the problem, i.e., (PrecP), where only the
constraints are scaled with E, while the primal variables remain un-
scaled. The new condition number for the scaled problem becomes
λmax(ELΣ−1

f
L>E>)

λmin(ELM−1
f
L>E>) . Consequently, we can freely choose the matrix E

so that the ratio becomes one. However, choosing any positive defi-
nite matrix would result in a complicated proximal step (Step 2) in
Algorithm 8, as discussed before. This is why E is typically set to a
diagonal matrix. The matrix is commonly determined by solving an
SDP (see [56], [57]) or by means of (suboptimal) heuristic schemes if
the SDP is too expensive to solve [59]. Note that the preconditioning
problem is solved once and offline.

Unfortunately, the indicator function for the dynamics δD results in
loss of smoothness for f . Furthermore, in MPC problems we typically
encounter L to be a tall, full column rank matrix. In these cases there
are several heuristics for determining a matrix E that does its best in
scaling the problem given the restrictions. These schemes are analyzed
in the works [56] and [57].

PDA In the case of the PDA, the philisophy behind the derivation
of preconditioners is quite different from that followed with AMA and
ADMM. The results appearing in the literature derive mostly from the
fact that PDA can be written as the application of the PMA (Chap-
ter 2) to a variational inequality involving the optimality conditions
of (S) [73]. However, preconditioning can be intuitively interpreted in
the same way as before, i.e., through the construction of quadratic
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approximations for the saddle function (S), followed by tuning of the
curvature in different directions. The scaled version of the algorithm is:

Algorithm 9 Preconditioned Primal-Dual Algorithm (PrecPDA)
Require: Initialize λ0 ∈ Rp, z0 ∈ Rn. Choose T, P such that√∑M

i=1 ‖P
1/2
i LT−1/2‖2 < 1− (Lh/2)‖T‖.

loop
1: zk+1 = proxT−1

δD

(
zk − T (∇h(zk) + c+ L>(λd)k)

)
2: (λdi )k+1 = proxP

−1
i
g?i

(
(λdi )k + Pi(Li(2zk+1 − zk) + li)

)
, i =

1, . . . ,M
end loop

The matrices T and P are related to the preconditioners D and E
via the equations T = (D>D)−1 and Pi = E>i Ei, i = 1, . . . ,M .

The preconditioned version of PDA is a direct generalization of the
work [108] with M = 1. The stepsizes τ and ρ of the original version
(Algorithm 2) are now picked to be different along the dimensions of
both the primal and the dual problem. This can be easily shown if we
take a close look at the iterations of Algorithm 9. The first iteration
can be expressed as

zk+1 = argmin
z

δD(z) + 〈z,Qzk + c+ L>(λd)k〉+ 1
2‖z − z

k‖T−1 .

For fixed λd, this step corresponds to the minimization of the convex
part of the saddle function (S), using a linear approximation of h and
regularized by a quadratic term with different curvature in each direc-
tion. Note that, in a manner similar to AMA, the minimization problem
involves a quadratic upper bound of the original function. Picking the
curvature (inverse stepsize) of the proximal term results in shaping the
level sets of the original problem. Along the same lines, the second
iteration

(λdi )k+1 = argmin
λdi

g?i (λd)−〈λd, L(2zk+1−zk)+ l〉+ 1
2‖λ

d
i −(λdi )k‖P−1

i

involves the maximization of a quadratic lower bound of the concave
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part of the saddle function (S). The level curves are shaped through
Pi.

Convergence of Algorithm 9 follows as long as the condition√∑M
i=1 ‖P

1/2
i LT−1/2‖2 < 1 − (Lh/2)‖T‖ holds. This is a sufficient

condition that proves convergence of PDA, initially derived in [134]
and [30]. In the preconditioned version developed in [108], where h = 0,
the condition becomes less conservative (allows for larger stepsizes).

4.3 General functions

In the previous section we focused on strongly convex and smooth func-
tions f so that the smooth part of the optimization problem is nicely
approximated by quadratic functions. In the general case, though, such
a property might be missing, hence the techniques for deriving precon-
ditioners that were discussed before are not applicable.

When this is the case, is has been practically observed that im-
proving the conditioning of the L matrix speeds up the convergence
of the corresponding algorithms [24], [51], [59], [108]. This is typically
done by means of equilibration, i.e., by choosing E and D−1 in (PrecP)
so that the rows and columns of the equilibrated ELD−1 matrix have
(approximately) the same norm. There is a variety of heuristic meth-
ods that perform equilibration, e.g., [124], [20] and the impact on the
convergence speed of the methods can be significant.

Remark 4.2. Since preconditioning only affects the data of the opti-
mization problem, it is obvious that we can combine it with the accel-
eration techniques discussed previously without any further modifica-
tions. Consequently, both adaptive stepsize rules and Nesterov acceler-
ation (with restart) can be blended into one algorithm that solves the
preconditioned problem (PrecP). In the recent work [65], PGM is com-
bined with all the above to give an improved version of the algorithm.
Once applied to the dual problem (D), the proposed algorithm results
in a preconditioned FAMA (with possibly variable stepsize).
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5
Numerical Linear Algebra

In this chapter we analyze the numerical operations involved in the
splitting algorithms. The primary goal is to identify the key operations
which can result in computational bottlenecks for the methods of in-
terest. At a first glance, it is easy to conclude that the first step of all
the methods (and their variants) amounts to the solution of a linear
system, which is commonly the most computationally intensive part of
the algorithms. We will discuss in detail the structure of these linear
systems and present different tools and techniques to solve them. In
addition, matrix-vector product is another common operation which
will be analyzed in detail. We propose ways to perform both opera-
tions, making use of modern linear algebra packages and support our
findings with experimental results.

5.1 Linear system solve

The requirement for solving a linear system arises in the z-minimization
step of AMA and ADMM (Algorithms 1, 3 and variants). This is due
to the fact that the step can be expressed as an equality-constrained
QP, thus it gives rise to KKT conditions written in the form of a linear
system [99, 18].

297
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AMA Recalling the Lagrangian definition (L), the first step of Algo-
rithm 1 reads:

minimize L(z;λk)
subject to Az = b ,

with variable z and λk entering as a parameter. The first order opti-
mality conditions give rise to:[

Q A>

A 0

] [
z

ν

]
=

−c− M∑
i=1

L>i λ
k
i

b

 . (5.1)

ADMM With the only difference from AMA being the minimization
of the augmented Lagrangian (AL), the first step of Algorithm 3 is:

minimize Lρ(z; yk, λk)
subject to Az = b ,

expressed as the linear system
(
Q+ ρ

M∑
i=1

L>i Li

)
A>

A 0

[z
ν

]
=

−c− M∑
i=1

L>i λi − ρ
M∑
i=1

L>i (li − yki )

b

 .

(5.2)

Clearly, the linear systems (5.1) and (5.2) have very similar struc-
ture, commonly refered to as a KKT system. From now on we denote
a general KKT system as[

K11 K>21
K21 0

] [
z

ν

]
=
[
k1
k2

]
, (5.3)

where
K =

[
K11 K>21
K21 0

]
(5.4)

is the KKT matrix. For a typical MPC problem with horizon N , nx
states and nu inputs, (5.4) is symmetric and indefinite of dimension
((N + 1)2nx + Nnu) × ((N + 1)2nx + Nnu)1. For the sake of clarity,

1Matrix A is not necessarily the dynamics matrix of the system, but any general
equality constraint. However, since in the majority of the cases considered in control
problems this equality constraint will represent the dynamics, we refer to A = K21
as ‘dynamics matrix’ hereafter.
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we consider from now on that (5.4) is of dimension n × n, z ∈ Rn1 ,
ν ∈ Rn2 , where n1 + n2 = n.

We observe the following:

1. In the case of linear time-invariant (LTI) systems, the matrix (5.4)
does not change over the iterations of AMA. The same holds for
ADMM, as long as the penalty parameter ρ remains constant.
Thus we can either precompute the inverse or factorize (5.3) using
an LDL> factorization. Alternatively, block elimination can be
used. The resulting matrices can be cached and reused over the
iterations. The interested reader can refer to [18, Appendix C] for
a quick guide.

2. When an adaptive penalty ρ is used, K11 varies over the iter-
ations when ADMM is used. In practice, this means that K11
cannot be prefactored. When the dynamics equation has been
suppressed (K21 = 0), one can use a simultaneous diagonaliza-
tion technique [80] to aleviate the complexity. Note that, in AMA,
a varying stepsize does not create any issue regarding the linear
system solve.

3. The sparsity of (5.3) depends, apparently, on the Hessian Q, as
well as the dynamics matrix A, in the original problem defini-
tion (P). One can expect that Q is always block diagonal and
generally sparse, while A has a banded structure, with possible
dense bands. In the case of ADMM, the sparsity of the K11 block

might be lost by the addition of
M∑
i=1

L>i Li. This is not the case
with AMA.

PDA The need for solving a linear system comes from the first step
of the algorithm, where a projection onto the dynamics’ subspace has
to be performed. We repeat the explicit form of the solution, formerly
given in §2.7:

PD(p) = p+A>(AA>)−1(b−Ap) . (5.5)

The matrix AA> ∈ S++ can be treated offline by means of a Cholesky
factorization. From Step 1 of Algorithm 2 one can see that the stepsize
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does not enter the inversion.

5.1.1 Numerical methods for solving linear systems

It is evident that there are two important steps associated to the solu-
tion of the linear systems arising in the three algorithms, namely (5.3)
for AMA,ADMM and (5.5) for PDA: Factor and Solve. In this section
we discuss various methods to perform these two steps. We consider
the problem:

Kz = k , (5.6)

where K ∈ Sn×n. The matrix K refers either to the KKT matrix (5.4),
or K = AA>, encompassing both (5.3) and (5.5). The interpretation
will be clear from the context.

Numerical methods to solve (5.6) can be categorized in two
families: (i) direct solvers and (ii) iterative solvers. We focus on the
first category, given the size of our problems of interest.

In what follows we discuss different approaches for solving linear
systems arising from ADMM, AMA, PDA and their variants, using
different linear algebra libraries written for the programming language
C. The purpose is to perform a comprehensive comparison and identify
which combination of approach and software package is more suitable
for a given problem. The approaches taken are: matrix inversion and
matrix-vector multiplication, factorization and forward-backward sub-
stitution, block elimination, nullspace method and Riccati recursion.
We analyze the computational complexity by means of Floating Point
Operations (flops), one flop being equal to one addition, subtraction,
multiplication, or division of two floating-point numbers. Memory com-
plexity is measured in terms of the amount of memory used to store
floating point numbers.

1. Precompute inverse: The computation of the inverse of K is
performed offline, with the drawback that, although (5.3) might
be sparse, once inverting, the sparsity is lost. Thus, the com-
putational and memory complexities of K−1k are O(2n2) and
O(n2), respectively. The computational and memory complexi-
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ties for computing the inverse of the matrix (performed offline)
are O(n3) and O(n2), respectively.

2. Factor and solve: When the matrix K does not change be-
tween consecutive solves (as is, e.g., the case where LTI systems
are considered), it can be pre-factored. In this way, only the fac-
tors are used in the solve step, rendering the operation much
cheaper than inverting the matrix. The following factorizations
are possible:

• LU, LDL>, and Cholesky factorization: LU factorizes K
as K = LU , where L is lower triangular and U an upper
triangular matrix. The cost for an unstructured matrix is
(2/3)n3 flops. It is advantageous to use on banded matrices
since it preserves the bandwidth [66, 136]. LDL> is suitable
for symmetric invertible matrices. The factorization cost re-
duces to (1/3)n3 flops. An advantage against LU is that only
the storage of a lower triangular matrix L and a diagonal
D are required. On the downside, it does not preserve the
(possibly) banded structure of K, typically leading to ad-
ditional fill-in. Finally, Cholesky is a special case of LDL>,
applicable to positive definite matrices. The matrix is fac-
tored as K = LL>, at the cost of (1/3)n3 flops. It can be
applied to factor K when PDA is used.

• Since the factors resulting from the previous step are lower
(and) upper triangular matrices, the solve step can be per-
formed using forward and backward substitutions. The cost
of a forward-backward operation for an unstructured ma-
trix is 2n2.
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It is important to exploit sparsity when the factor and solve steps
are performed. Among available linear algebra packages for C,
CLAPACK [2] performs these operations treating the matrices
as dense. Hence, the computational and memory complexities for
performing the factorization (offline) are O(n3/3) and O(n2), re-
spectively, while for the forward-backward substitution (online
step) O(2n2) and O(n2). On the contrary, SuiteSparse [39] uses
a Compressed Sparse Row (CSR) format to store the matrix ele-
ments, exploiting the advantage of having few nonzero elements.
The CSR format represents the matrix by three vectors. The first
vector contains integers representing the number of nonzero ele-
ments in each row. The second (integer) vector stores the indices
at which nonzero elements are present in each row. The last vec-
tor stores all the nonzero elements of the matrix. If the matrix is
sparse (which is indeed the case with (5.3)), then the computa-
tional complexity to perform the factorization is much less than
O(n3/3). The memory complexity is also reduced to O(nnz + n),
where nnz is the number of nonzeros in L. The forward-backward
substitution step ends up having computational and memory
complexities of (roughly) O(2nnz + n) and O(nnz + n), respec-
tively.

3. Block elimination: Block elimination is suitable for systems
that have the KKT form (5.3). The system is solved in two steps,
namely z = K−1

11 (k1−K21ν) and Sν = k2−K21K
−1
11 k1, where S is

the Schur complement of K11 in K, given by S = −K21K
−1
11 K

>
21,

and S can be factored using a Cholesky factorization. However,
since (5.3) is structured, exploiting this fact can further reduce
the complexity. It is interesting to analyze this in more detail,
following the same procedure as in [18, §C.4].
Since we solve repetitively, there is once the factorization cost of
K11, the formulation of K−1

11 K
>
21, as well as the factorization of S,

which costs (2/3)n3
2 flops. Subsequently, two solves are performed

at each iteration with respect to ν and z. Forward-backward sub-
stitution for z and ν cost O(n2

1) and O(n2
2) flops, respectively,

hence resulting in quadratic complexity in the horizon length and
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the number of states and inputs.
If K11 is diagonal (see, e.g., AMA variants with diagonal Hes-
sians in the cost), the factorization cost for K11 is zero. Conse-
quently, the total solve cost is dominated by the solution of ν.
If K11 is block diagonal, with blocks of size nx and nu, the fac-
torization can be performed for each block separately, resulting
in (2/3)

∑N
i=1(n3

x +n3
u) flops. The same holds for the z-solve step

which can be carried out in 2
∑N
i=1(n2

x + n2
u) flops.

4. Nullspace method: One significant drawback of block elim-
ination is that it assumes that the K11 matrix is invertible
which need not always be the case. The nullspace method can
be used even in the case when K11 is not invertible. We define
H = (1/2)

(
K11 +K>11

)
. The requirement for using the method

is that ker(H) ∩ ker(K12) = {∅} (see [12] for more details). The
offline computation steps are:

(a) Find a particular solution ẑ such that K12ẑ = k2

(b) Compute the matrix Z such that K12Z = 0, i.e., the range
of Z is the null space of K12. This can be computed using,
e.g., rank-revealing QR or rank-revealing LU decomposi-
tion.

(c) Factorize K21K
>
21 and Z>K11Z for the linear system solves

that will follow.

Once the vector ẑ and matrix Z are computed, the rest of the
calculations are performed online as follows:

(a) Solve Z>K11Zy = Z> (k1 −K11ẑ). The vector K11ẑ can
be precomputed offline. If the rank of K21 is n2, then the
dimension of y is n1 − n2. Assuming that the factorization
of Z>K11Z has been performed offline, the online compu-
tations require only forward backward solves, leading to a
computational complexity of O((n1 − n2)2), for the fully
dense factorization.



304 Numerical Linear Algebra

(b) Once y is computed, z of (5.3) is calculate using z = Zy +
ẑ. This step involves a matrix-vector multiplication and a
vector addition, resulting in a computational complexity of
O(n1n2).

(c) Finally, ν is computed by solving the equation K>21ν =
k1−K11z. Notice thatK21 is a rectangular matrix in most of
the cases, thus one can solve for ν if K21K

>
21 is full rank by

using the left pseudoinverse ν = (K21K
>
21)−1K21(k1−K11z).

Again, the factorization of K21K
>
21 can be computed offline

since K21 is fixed. Subsequently, the computational com-
plexity is O

(
n2

2
)
assuming the factorization is fully dense.

5. Riccati recursion: Suppose that the KKT system (5.3) we
have examined results from the minimization of a multistage
cost coupled with the system’s dynamics, expressed by the ma-
trix A. Under the assumption that f is convex quadratic in
states and inputs, this fact allows for an alternative way to per-
form the z-minimization step in both ADMM, AMA (and the
variants), namely to perform a Riccati recursion. This approach
has been commonly considered in the control literature, mostly
due to its computational advantages that arise in several cases
(see [52, 54, 6, 53, 97] for details). This method has approximate
computational complexity N(6n2

x + 8nxnu + 2n2
u) and memory

complexity N(2n2
x + 3nxnu + n2

u/2). In the case of LTI systems
the memory complexity can be further reduced.

6. Custom solver: Finally, we created a custom solver for the sake
of comparison with the aforementioned methods. The approach is
based on exhaustive code generation (see, e.g., [84]). The idea is to
compute the LDL> factorization in Matlab, and then explicitly
write the entries of the matrix in a generated C file. Subsequently,
the data is loaded in C and used with a custom forward-backward
solver. A reverse-CutHill McKee reordering is utilized to reduce
the fill in L [34, 39]. The matrices L,D,L> are stored explicitly,
using a format similar to CSR, as opposed to SuiteSparse which
stores only L and D. Thus, for the forward-backward step the
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computational and memory complexities are O(2nnz + n) and
O(2nnz + n).
Table 5.1 summarizes the above discussion regarding the com-
plexities. Looking at the table, we can roughly state that, if one
disregards SuiteSparse and the exhaustive code generation, the
Riccati recursion beats by far the remaining three approaches for
moderate to long horizon lengths, since it is the only one scal-
ing linearly with the horizon. The block elimination and nullspace
methods are cheaper compared to matrix pre-inversion and CLA-
PACK because they exploits the block diagonal structure of the
KKT system. Finally, the sparsity-exploiting methods (SuiteS-
parse and custom solve) scale linearly with the horizon, but the
computational complexity added by the remaining nonzero ele-
ments after the factorization has been performed is, generally,
unknown. We can roughly say that the resulting lower triangular
L matrix will have an almost banded structure, but the width of
the band is not known in advance.

Method Computational Memory
Inverse O

(
2n2) O

(
n2)

CLAPACK O
(
2n2) O

(
n2)

SuiteSparse O (2nnz + n) O (nnz + n)
Block elimination O

(
N2(nx + nu)2) O

(
N2(nx + nu)2)

Nullspace method O
(
N2nx(nx + nu)

)
O
(
N2nx(nx + nu)

)
Riccati O

(
N(6n2

x + 8nxnu + 2n2
u)
)

O
(
N(2n2

x + 3nxnu + n2
u/2)

)
Custom O (2nnz + n) O (2nnz + n)

Table 5.1: Computational and memory complexities for online linear system solve.
The block elimination and nullspace methods perform on the KKT system (5.3),
hence the complexity is expressed in terms of nx, nu and N . The same holds for the
Riccati recursion, which operates in a special way. For the rest of the methods, n
can be either N(2nx + nu) for (5.3), or Nnx for (5.5).

5.1.2 Numerical results

In this section we perform numerical experiments regarding the linear
system solve operation discussed before. The comparison involves only
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factor and solve methods, namely matrix pre-inversion and matrix-
vector multiplication, forward-backward substitution with CLAPACK
and SuiteSparse, as well as the custom solver. All the experiments are
performed on Mac OS with Intel core i7 2.8 GHz with 16GB RAM. We
consider a multi-stage optimal control problem of the form:

minimize (1/2)
N∑
i=1

(
x>i Qxi + u>i Rui

)
+ (1/2)x>N+1QxN+1,

subject to xi+1 = Axi +Bui , i = 0, . . . , N
umin ≤ ui ≤ umax , i = 0, . . . , N
‖Fxxi‖2 ≤ fx , i = 0, . . . , N + 1
‖Fuui‖2 ≤ fu , i = 0, . . . , N .

(5.7)

The matrices Q and R are set to be the identity and the system is
randomly generated. The number of states equals the number of inputs.
We vary the size of the inputs (states) and also the horizon length as
per Table 5.2.

nx 4 10 20 30 30 40
nu 2 5 10 15 15 20
N 4 10 10 15 20 20

Table 5.2: Problem (5.7) instances of varying size.

The problem is created and parsed in Matlab, while the solve
step is performed in C. The results are illustrated in Figures 5.1, 5.2
and 5.3 for ADMM, AMA and PDA, respectively. The time depicted is
per algorithmic iteration, using four different ways to perform the lin-
ear system solve, for increasing number of variables. The upper yellow
part of each bar plot is the time needed for the remaining operations
(proximal step, dual update etc.). The scale is logarithmic.
It is evident that, irrespective to the problem size, SuiteSparse and the
custom solver outperform CLAPACK and the pre-inversion approach.
The main reason for this is that the KKT system and its factors are
sparse. Especially for the custom solver, the explicit storage of LT (in
constrast to SuiteSparse), allows for sequential access of the memory
or spatial locality, which is important for problems for which the size
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Figure 5.1: Computational load distribution per iteration of ADMM. The remain-
ing operations in yellow color refer to the remaining algebraic operations of the
algorithm.

of the data does not fit into the cache. Regarding the pre-inversion,
once inverted, the KKT matrix becomes fully populated, with obvious
implications.
For the case of PDA, the trends are similar to ADMM and AMA. How-
ever, the size of the linear system to solve is significantly smaller than
in the other two cases. We also observe that the remaining operations
have non-negligible contribution in the total iteration time.

5.2 Matrix-Vector multiplication

Matrix-vector multiplication (matvec operation hereafter) is the most
common and the second most expensive operation from the compu-
tational viewpoint. In this section we compare popular linear algebra
packages that compute matvecs, analyse their computational complex-
ity, and illustrate timing results for varying sizes and different sparsity
patterns.
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Figure 5.2: Computational load distribution per iteration of AMA.

PDA

No. of variables
20 110 220 480 630 840

Ti
m

e 
(n

s)
 p

er
 it

er
at

io
n

102

103

104

105

106

107

Custom
SuiteSparse
Invert
LAPACK
Remaining operations

Figure 5.3: Computational load distribution per iteration of PDA.
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More specifically, we consider:

• forloops: In this naive approach, the matrix is treated as dense
and unstructured. Two nested for-loops are used to compute the
matvec. The computational and memory complexities are O(n2)
and O(n2).

• BLAS: BLAS stands for Basic Linear Algebra Subprograms. It
performs basic linear algebra operations e.g., vector manipula-
tion (addition, multiplication), matrix-vector manipulation and
matrix-matrix manipulation. BLAS considers dense matvec op-
erations, with corresponding computational and memory com-
plexity of O(n2) and O(n2).

• SuiteSparse : SuiteSparse representes the matrices in CSR for-
mat, as we already mentioned in §5.1.1. The matvec operation has
computational and memory complexities of O(nnz) and O(nnz).

• Custom methods : We perform exhaustive code generation for
this method [84]. The idea is to explicitly write the entries of the
matrix in a generated C file.

5.2.1 Experiments

Problem Formulation: Looking at all three algorithms and their
variants, one observes two matvec operations that are present in all
cases: Lz and L>λ. We thus restrict our analysis to these two opera-
tions, since they are the most common and they both involve the same
matrix, namely L. Since Li, i = 1, . . . ,M are the linear maps that
appear in the gi functions in (P), they mostly represent constraints
on states and inputs. These constraints also tend to be stage-wise, or,
less frequently, they couple more than one time stage, however almost
always resulting in a structured and sparse matrix L. If a condensed
formulation of the problem is considered (i.e., the constraints are ex-
pressed in terms of the control inputs only), then possibly existing
state constraints will impose a full, lower triangular structure on L. To
summarize, among the common cases, L can be a full lower triangu-
lar matrix, in the worst case. Following this reasoning, to compare the
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Figure 5.4: Custom code generation performs well, but at the cost of very long pre-
processing periods. Once the matrices become half-full, BLAS (in orange) clearly
outperforms the alternatives, keeping an almost constant cost per solve, regardless
of the sparsity.

aforementioned approaches, we compute matvecs on a lower triangular
banded matrix with varying size and varying sparsity. To vary spar-
sity, we start with a diagonal matrix and gradually fill in the matrix
by adding bands until it becomes a completely filled lower triangular
matrix.

The results are depicted in Figure 5.4. The plotted times for a
matvec operation are in ns, using the (optimized) gcc compiler. Various
matrix sizes are used, with different sparsity percentages. The plotted
curves regard diagonal matrix, 50% fill-in as well as fully populated
lower triangular matrix. When sparse matrices are considered, the cus-
tom method beats all the others since all the entries of the matrix are
explicitly written. As expected, SuiteSparse follows closely, exploiting
the sparsity. As the matrix becomes gradually filled, SuiteSparse and
the custom method become costlier, while the solve time for BLAS
does not change considerably, due to the fact that irrespective of spar-
sity BLAS always treats the matrix as fully dense. Furthermore, it is
worth noting that the code generation for the custom method poten-
tially takes too much time to execute, rendering it impractical for any
purpose (see Figure 5.5).
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6
Examples

We demonstrate some of the methods presented in the previous sections
with three optimal control problems. The first example involves MPC
for tracking of a reference signal, boiling down to solving a sequence of
QPs. The second example considers the planetary soft landing problem,
an originally nonconvex problem that is relaxed to a second-order cone
representable problem. The third example is an economic optimization
problem targeting the minimization of a building’s energy consumption
given price and weather forecasts, which can be expressed as an LP.

In all the examples termination is based on the decrease of the
corresponding residuals, as they are introduced in Appendix C. The
residuals are measured in the l1 norm.

6.1 Aircraft control

In this example the linearized model of a Boeing 747-200 (B747) is
considered [71]. The model has nx = 12 states and nu = 17 inputs
and the aim is the tracking of a reference signal r(k) for two of the
states, namely the airspeed and the roll angle. We discretize with
sampling period Ts = 0.2s and consider a total simulation period of

312
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40s. First, a steady state target calculator computes a pair of setpoints
(∆xs(k),∆us(k)) for the aircraft, according to a desired reference sig-
nal. Subsequently, an MPC controller tracks the delivered setpoint.

Problem formulation We are interested in tracking a specific profile
in the airspeed as well as a change in the roll angle. More specifically,
the airspeed experiences a drop of 3m/s, lasting from the 23rd to the
28th seconds of the simulation, while the roll angle changes from 0◦
to 30◦ and back. The first change occurs between the 6th and the 9th

second of the simulation, while the second one between the 12th and
the 15th. The original problem can be cast as

minimize ‖∆xN −∆xs‖2P +
∑N−1
i=0

(
‖∆xi −∆xs‖2Q + ‖∆ui −∆us‖2R

)
subject to ∆x0 = ∆x̄0

∆xi+1 = A∆xi +B∆ui, i = 0, . . . , N − 1
∆umin ≤ ∆ui ≤ ∆umax i = 0, . . . , N − 1 .

(6.1)
We condense the problem, i.e., we eliminate the states and express

it in terms of the inputs. This will give rise to a dense Hessian matrix
H ∈ SnuN++ . The problem to solve becomes

minimize ∆u>H∆u+ h(k)>∆u
subject to ∆umin ≤ ∆u ≤ ∆umax ,

(6.2)

with variables ∆u = (∆u0,∆u1, . . . ,∆uN−1) ∈ RnuN . Note that the
reference signals parametrize the affine part of the objective (term
h(k)). This is a smooth and strongly convex QP. Since only box con-
straints on the inputs are applied, (6.2) can be solved by applying directly
the PGM, and obtain a linear convergence rate. Although this might be
the most efficient way to deal with the problem at hand, the aim of this
work is to demonstrate how decomposition methods can be applied as
an alternative to solve the problem. This being the case, we can solve it
by means of the accelerated methods presented in Chapter 3, making
use of the strong convexity of the objective. Subsequently, we decide
to mitigate the bad conditioning of the dense Hessian by applying a
Cholesky factorization, writing it as H = KK>, K being lower tri-
angular and invertible. A change of basis is performed, ∆̂u = K>∆u.
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Now the problem can be reformulated as

minimize ∆̂u>∆̂u+ ĥ(k)>∆̂u
subject to L∆̂u ≤ l ,

(6.3)

with variables ∆̂u ∈ RnuN . The matrix-vector pair (L, l) describes the
polytopic constraints that are now imposed in the place of the simple
bound constraints that we had in (6.2). This is the price paid for elim-
inating the dense Hessian in the objective. Note that the problem can
be cast in the form (1.2), with f(z) = z>z+ ĥ(k)>z and g(y) = δ−(y),
y = Lz − l. Consequently, we are able to apply left preconditioning
to the constraints by means of the methods discussed in Chapter 4.
We solve the problem for the following scenarios: N = 5, N = 12,
cold-started, warm-started at the primal and dual optimal points of
the previous solve. The outputs are reported in Table 6.1.

The resulting QP makes a nice benchmark for applying splitting
algorithms, since it exhibits favorable properties that allow for accel-
eration in different ways. Strong convexity encourages the use of ac-
celerated relaxation, while the simple form of the indicator function g
allows for preconditioning without altering the complexity of the prox-
imal step. Note, however, that the linear convergence rate that would
hold if PGM was applied directly to (6.2) cannot be recovered, since
for both AMA and ADMM smoothness and strong convexity of the
objective is not sufficient for ensuring a linear rate (§3.3).

The problem is solved in a rolling horizon fashion until the end of the
simulation period. At every solve, the initial state is perturbed by 1%
with respect to the previously computed one. Preconditioning is used
in all the cases, performed only on the dual variables, i.e., a diagonal
matrix E was chosen based on the heuristic row-column equilibration
algorithm proposed in [124]. We make use of nine, in total, versions of
the splitting methods presented in this work. The idea is to start with
the basic versions of the algorithms and observe how the performance
increases as we gradually enhance them by means of the techniques
discussed in Chapters 3 and 4.

• FAMA (Algorithm 4), preconditioned (Algorithm 7) and
restarted. In the basic version, the stepsize is chosen as ρ = 1/Lf .
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No stepsize selection is needed for the preconditioned versions.

• Relaxed ADMM (Algorithm 3), preconditioned (Algorithm 8)
with and without adaptive stepsize selection. In the case where
N = 5, the ‘optimal’ pair of preconditioner and stepsize was cho-
sen by solving the SDP proposed in [56]. For the case N = 12
the SDP becomes too big to solve and we resort back to the
equilibration heuristic. When preconditioned, the stepsize is cho-
sen to be ρ = 1. In the basic version, further tuning is required
(the problem data affects the selection more), and ρ was set to
0.005. The relaxation parameter generally speeds-up convergence,
as discussed in §2.5, and it is set to 1.8.

• FADMM (Algorithm 5), preconditioned with and without adap-
tive stepsize. The stepsizes are set as in the previous case, and
the restarting constant η is set to 0.999.

PDA did not behave particulary well for this example, hence it was not
involved in the comparison. A possible reason for this is the sufficient
stepsize condition as given in Algorithm 2 that gave rise to conserva-
tive stepsizes in this case. The termination threshold was set to 10−3.
Finally, we restrict the number of iterations to a maximum of 104, since
an algorithm that reaches this number is already impractical for our
purposes.

Discussion The comparison’s results are depicted in Table 6.1. It is
typically the case for all nine algorithms that the iteration count in-
creases once the reference signals change violently from one problem to
the next. This effect is depicted in Figure 6.1. As a first observation,
FAMA works significantly better than the other methods for this prob-
lem. One reason for this is the effective restarting policy, which seems
to reduce drastically the iteration count when the reference changes.
Although ADMM also includes a restarting scheme, there were more
outliers observed at the points of change. A possible remedy for this is
further tuning of the η parameter.
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Average Iters Peak Iters
N = 5 Cold Warm Cold Warm

FAMA 3196.2 3068.9 7386.3 6407.5
+ precondition 133.4 35.0 330.2 76.2
+ restart 36.1 22.5 82.4 48.9
ADMM relax 1393.6 857.8 2715.5 1555.3
+ precondition 312.2 96.0 313.2 136.5
+ adaptive 92.8 33.4 187.7 69.6
FADMM 1278.8 1148.0 2578.5 2347.5
+ precondition 264.7 324.8 354.9 390.2
+ adaptive 76.40 73.3 167.1 120.1

N = 12 Cold Warm Cold Warm

FAMA 5384.9 1626.4 9111.9 2490.6
+ precondition 401.3 150.3 617.1 194.7
+ restart 51.8 38.7 84.7 61.5
ADMM relax 4059.0 3502.9 5234.3 3856.5
+ precondition 1111.1 507.4 1110.6 620.6
+ adaptive 207.4 90.4 336.4 153.0
FADMM 2814.4 2294.6 3749.3 2483.9
+ precondition 876.6 965.2 1085.1 1175.2
+ adaptive 110.6 117.0 165.4 155.8

Table 6.1: Iteration count for several versions of the three algorithms for Prob-
lem (6.3). The first column contains average number of iiterations over 195 problem
instances when N = 5, and over 188 problem instances when N = 12. The second
column contains the average number of iterations counted over the periods when
the reference signals change, i.e., 6th − 9th, 12th − 15th and 23rd − 28th seconds.

Preconditioning has a dramatic effect on the behaviour of all the
methods, reducing the number of iterations by an approximate factor
of 10 to 40 in the case of FAMA.

Looking more carefully into FAMA, we see that reseting the accel-
eration scheme has a positive effect. Regarding ADMM, the accelerated
variant behaves better (on average) in all problem instances. The adap-
tive stepsize speeds up the convergence in all cases.
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Figure 6.1: Number of iterations in correlation to the varying reference signals.
The two references (red line) are scaled and translated so that their effect on the
number of iterations is visible. The dashed lines represent the iterations for 195
subproblems, solved by means of PrecFAMA and Adaptive PreADMM with warm-
starting. It is obvious that when the references change, the iteration count goes up
accordingly. However, FAMA handles the changes much better than ADMM.

Warm-starting is quite effective as well. Contrary to the other meth-
ods, FADMM seems to behave in a puzzling way, since warm-starting
can potentially deteriorate its performance, at least for this example.
A possible reason might be that the extrapolated sequences generated
from the FADMM change more rapidly from one iteration to the next
and so the effect of warm-starting is negated. This could also explain
why FAMA seems to support warm-starting better, since it has a more
effective (less prone to tuning) restarting policy. Adaptation of the
stepsize seems to be reducing dependency on warm-starting, robustify-
ing, in some sense, the optimization problem. This argument is further
supported by the observation that the adaptive and preconditioned
versions of (F)ADMM do not exhibit such a big difference in the num-
ber of iterations when the problem size changes, i.e., from N = 5 to
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Figure 6.2: Iterations’ statistics for the three variants of the three algorithms,
depicted as box plot. Preconditioning has a double effect: it reduces both the absolute
number of iterations as well as its variance. The case demonstrated is for N = 5,
cold-started.

N = 12. The effect of the enhancements is depicted in Figure 6.2.
The solutions achieved are accurate enough in all cases, with a

normed relative error (‖u−u∗‖/‖u∗‖) of ≈ 10−2 for N = 5 and ≈ 10−1

for N = 12. Figure 6.3 is representative of the quality of tracking.

6.2 The planetary soft landing problem

The problem presented in [1] regards the situation where an au-
tonomous spacecraft lands on the surface of a planet by using
thrusters, which produce a force vector that has both an upper and
a nonzero lower bound on its magnitude. The control constraints are
thus represented by a nonconvex set which has the form of a ring.
These kind of constraints appears in a plethora of optimal control
problems, but the case of planetary landing is of interest because,
under some assumptions, the optimal trajectories of a relaxed version
of the problem (where the nonconvex constraint set is replaced with a
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Figure 6.3: Tracking performance for the preconditioned FADMM algorithm with
adaptive stepsize selection in the case that N = 12. Even for the relatively big error
relative to the optimal solution (10−1), and given the small perturbation on the
initial state, the quality of tracking is still satisfactory.

convex one) are also optimal for the original problem. Hence a lossless
convexification can be achieved. The relaxed problem can be written
as an SOCP.

Problem formulation We first present the original (nonconvex) prob-
lem:

minimize (x0 − z0)>Q(x0 − z0) + α
∑N−1
i=0 ‖ui‖2

subject to xi+1 = Axi +Bui + Ewi, i = 0, . . . , N − 1
xN = xf ,

γ|e>1 xi| ≤ e>2 xi, i = 0, . . . , N
1 ≤ ‖ui‖ ≤ c, i = 0, . . . , N − 1 ,

(6.4)

with variables xi, ui and α ∈ R++ a positive weight. Variable x =
(px, py, vx, vy) is the state of the x− y position and the corresponding
velocity coordinates of the spacecraft. The conic constraint corresponds
to a glide slope constraint, ensuring that the spacecraft remains in a
cone defined by a minimum slope angle. The nonconvex constraint on
the inputs can be convexified by lifting, as discussed in [1, § 3]. The
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relaxed problem can be written as

minimize (x0 − z0)>Q(x0 − z0) + α
∑N−1
i=0 σi

subject to xi+1 = Axi +Bui + Ewi, i = 0, . . . , N − 1
xN = xf ,

γ|e>1 xi| ≤ e>2 xi, i = 0, . . . , N
‖ui‖ ≤ c, i = 0, . . . , N − 1
‖ui‖ ≤ σi, i = 0, . . . , N − 1
σi ≥ 1, i = 0, . . . , N − 1 ,

(6.5)

with variables xi, ui, σi.

There exist several scenaria in which the solutions of (6.5) and
(6.4) coincide. We consider one such scenario, similar to the numerical
instances presented in [1, § 5]. The data is

A =
[

0 I

−θ2I θS

]
∈ Rn, B = E =

[
0
I

]
∈ Rm , S =

[
0 2
−2 0

]
,

g = 3.7114 is the gravitational acceleration of Mars, w = −e2g, θ =
1/Tr is its rotation rate with rotation period Tr = 1.026 days, c = 4,
γ = 1/

√
3, z0 = (−15, 20,−10, 1), xf = (0, 0.1, 0, 0). The system is

discretized using a zero-order hold with sampling period of 0.33s. For
a final time of 15s this gives N = 45. The weight matrix that penalized
the initial state is chosen as Q = diag(2, 2, 1, 1). The problem can be
expressed as (P) with:

f(x, u, σ) =
{

(x0 − z0)>Q(x0 − z0) +
N−1∑
i=0

σi : A(x, u) = b

}
, (6.6)

which can be further split into a smooth and a nonsmooth part ac-
cording to (2.1), i.e., h(x, σ) = (x0 − z0)>Q(x0 − z0) +

∑N−1
i=0 σi and

δD(x, u) = δ{A(x,u)=b}(x, u). The proximal terms are:

g1,i(Gxi) = δ2(e>1 xi, (1/γ)e>2 xi), i = 0, . . . , N (6.7)
g2,i(ui) = δ2(ui, c), i = 0, . . . , N − 1 (6.8)
g3,i(ui, σi) = δ2(ui, σi), i = 0, . . . , N − 1 (6.9)
g4,i(σi) = δ+(σi − 1), i = 0, . . . , N − 1 , (6.10)
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where δ2(x, t) denotes the indicator function for the second-order cone
(Table A.1, Appendix A). We overloaded notation for the dynamics
equation by denoting

A =



−A −B I 0 · · · 0 0 0
0 0 −A −B · · · 0 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · I 0 0
0 0 0 0 · · · −A −B I

0 0 0 0 · · · 0 0 I


, b =



Ew0
Ew1
...

EwN−1
xf


,

and G is defined as G =
[

e>1
(1/γ)e>2

]
.

Problem’s (6.5) objective function is not strongly convex, and thus
cannot benefit from an accelerated version of the methods mentioned
above. In addition, the presence of the 2-norm ball and SOC constraints
render preconditioning expensive (see Table 4.1). Consequently, we end
up with few options in terms of choosing an algorithm. We try ADMM
(with and without over-relaxation), FADMM (which comes with no ex-
tra assumptions) as well as PDA. For ADMM we set the stepsize to
ρ = 0.3, while for the fast version some retuning needed to be done,
setting it to ρ = 1. This is typically done using a trial-and-error proce-
dure, having as indicator the balance between the primal and the dual
residuals’ decrease (see also (4.2)). For PDA the primal stepsize is set
to τ = 1/Lh, while ρ is chosen such that the inequality in Algorithm 2
is satisfied. Finally, the over-relaxation constant for ADMM is set to
θ = 1.8. The simulation we run involves the computation of the opti-
mal open loop state-input trajectories for 20 different initial conditions
spread uniformly around z0, perturbed by at most 10% of its nominal
value.

Discussion The soft-landing problem is a nice and challenging bench-
mark for first order splitting algorithms since, although it might
not have favorable numerical properties, it is highly decompos-
able, involving lots of easy-to-compute proximal steps (equations
(6.7),(6.8),(6.9),(6.10)). All the updates can be expressed in closed form
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Figure 6.4: Iterations’ statistics for the four algorithms.

and are separable across time. They involve projections onto the non-
negative orthant, the second-order cone and the 2-norm ball, translated
into the corresponding conjugate operations when PDA is used (see Ta-
ble A.1 in Appendix A).

The numerical results are demonstrated in the form of a box plot
in Figure 6.4. Overall, ADMM with over-relaxation and FADMM per-
form the best among the proposed methods, while the basic version of
ADMM (no over-relaxation) performs the worst. PDA behaves simi-
larly to ADMM, being a competitive option for this problem.

It should be pointed out that the average number of iterations
needed to converge to a relative accuracy of 10−3 is high for all four
methods. This is a specifically difficult problem to solve due to the large
number of active constraints at optimality, as depicted in Figure 6.5.
This is the reason that even augmented Lagrangian-based methods,
which usually behave well, take so many iterations for convergence.
Nevertheless, the figure suggests that the quality of the solution is
good enough, even with this small accuracy.
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Figure 6.5: Trajectory of the position as the spacecraft lands to the specified point
xf = (0, 0.1). The initial state lies within some interval away from the desired one
z0 = (−15, 20). With red color is depicted the glide angle constraint. Observe that
many state constraints are active at the optimal trajectory. In the second plot the
optimal input trajectory is depicted. As expected, the convex relaxation is exact,
i.e., the inputs stay in between 1 and 4. Note that almost all of them are saturated
at optimality.

6.3 Building economic control

In this section, we consider a control problem for a building heating
system and design an MPC controller to minimize the total cost of
operation that takes into account the prediction of the weather. The
heating system is modeled by a discrete linear system

xi+1 = Axi +Bui +Bdi

yi = Cxi .

The linear model is extracted by means of the platform OpenBuild [67].
The linear system has ten states in xi without specific physical inter-
pretation, since they have resulted from model reduction. The sys-
tem input ui = (u1, u2, u3) includes the electrical power input (kW)
to the heating system of the three zones. The disturbance input di =
(d1, d2, d3) constitutes the outside temperature ( ◦C), solar gains (kW),
and internal gains (kW). The output of the system yi = (y1, y2, y3) rep-
resents the temperature in the three building zones. The sampling rate
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of the system is Ts = 20 min. All data is recovered from the software
EnergyPlus [33].

Problem formulation The purpose is to design an economic MPC
controller with the objective to keep the temperature of the building
zones within the comfort constraints, while minimizing the energy bill.
The economic MPC controller uses an economic linear cost function
in Problem 6.11, as opposed to the usual quadratic cost function used
in regulation problems. The inputs and the outputs of the model are
subject to box-constraints.

minimize
∑N
i=0 c

T
i ui

subject to xi+1 = Axi +Buui +Bddi, i = 0, . . . , N − 1
yi = Cxi,

umin ≤ ui ≤ umax i = 0, . . . , N − 1
ymin ≤ yi ≤ ymax, i = 1, . . . , N ,

(6.11)

The input constraints capture the heating capacity of the build-
ing system with umin = 0 kW and umax = 15 kW , while the out-
put constraints ensure comfort in the building with ymin = 22 ◦C and
ymax = 26 ◦C. The sequence di denotes the disturbance prediction, and
ci is the electricity prices with a periodic high price and low price peri-
ods, i.e., ci = 0.04 $/kWh (between 00:00Hrs to 10:00Hrs, and 16:00Hrs
to 24:00Hrs) and ci = 0.2 $/kWh (between 10:00Hrs to 16:00Hrs). The
problem can be formulated as a linear program.

The fact that the ratio of states to inputs is relatively large (10/3)
makes the condensed formulation (state elimination) an attractive op-
tion. Since the cost is linear and involves only the inputs, condensing
the problem will not complicate the objective more. The extra com-
plication comes in terms of the output constraints which turn into
polytopic ones, as was the case with the Boeing example. Hence, the
part of the constraints matrix associated to the outputs becomes full
lower triangular and the problem can be recast as an inequality form
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LP:

minimize c>u

subject to Lu ≤ l , (6.12)

with variables u = (u0, . . . , uN−1) ∈ R3N . We solve the problem for
N = 72 periods (24h), in a receding horizon fashion, assuming that
the disturbance prediction di varies in a uniform way and up to 20%
around the predicted value. We run the simulation for a duration of
24h.

Due to the linear objective, only (F)ADMM and PDA can solve
the problem. The heuristic preconditioning approach used in the Boeing
example is also used here, hence a left preconditioner for the constraints
is computed. The comparison is performed between ADMM, FADMM
and PDA, for their preconditioned and original versions, both for cold
and warm-starting. The stepsize is chosen to be ρ = 0.1 for ADMM,
while a primal preconditioner T is computed in the case of PDA in
order to ensure that the stepsize inequality of Algorithm 9 is satisfied.
The same technique for the derivation of preconditioners is suggested
in [108].

Discussion The numbers of iterations and timings are presented in
Table 6.2 and depicted in Figure 6.6. We have put a ceiling of 1000
iterations per solve. As commonly observed (see, e.g., [62]), PDA does
not behave well when solving LPs. However, preconditioning has an
impressive effect on PDA, reducing the number of iterations (for the
same termination threshold) by a factor of 10-20. The effect is beneficial
for the other methods, as well. Additionally, warm-starting makes a big
difference, with its effect being more pronounced in the cases of ADMM
and PDA.

Another interesting observation is that FADMM does not perform
as well as ADMM in this case. A possible reason for this is the frequent
reset of the acceleration scheme, which reached an average of 20% over
the total number of iterations.
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Original Preconditioned
No. Iters Cold Warm Cold Warm

ADMM 465.8 248.7 155.1 73.9
FADMM 490.4 367.3 185.6 169.7
PDA NA NA 543.7 212.2

Table 6.2: Number of iterations and solve times averaged over 72 optimal control
problems solved in a rolling horizon. The indication ‘NA’ means that the average
was above the threshold of 1000 iterations.
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Figure 6.6: Iterations’ statistics for the original and preconditioned versions of the
three algorithms, depicted as box plot. PDA’s iterations count is saturated, since it
failed (on average) to reach optimality within 1000 iteations



7
Summary

Operator splitting methods have made their way to the control commu-
nity, being recently applied in embedded applications modeled as small
to medium scale optimization problems, typically covering a range of
hundreds to few thousands of variables. Optimization-based control and
estimation regularly involve sequences of convex (quadratic) problems,
parameterized by some quantity that varies over time. These problems
frequently need to be solved in real time, under tight sampling periods.
This is in contrast to large-scale optimization problems arising in fields
like machine learning, where the purpose is to recover a suboptimal
solution to one instance of a problem, involving an immense number of
variables. In this work we attempt to analyze splitting methods from
this perspective and assess whether they make a good candidate for
control.

7.1 When splitting should (and should not) be used

As this survey progressed, we gradually revealed ways that mitigate
the dependence of splitting methods on the problem data and the tun-
ing parameters. One can picture a continuum between first order and

327
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higher order splitting schemes, starting from the original versions of
the algorithms, as presented in Chapter 2, proceeding to adaptive and
preconditioned versions in Chapter 4, finding at the end more sophis-
ticated splitting schemes that incorporate second order information,
briefly mentioned in §7.3 that follows. As we move along this spec-
trum, robustness and accuracy is increased at the expense of more
time spent in pre-processing (computation of efficient preconditioners)
and an increase in the per iteration cost.

The algorithms presented in this work involve a reasonable pre-
processing period and result in reasonably simple updates. Our claim
is that first order splitting methods are not suitable for:

1. High accuracy requirements.

2. Solving a family of problems that differ significantly from each
other.

The second case arises due to the fact that first order splitting methods
need offline tuning. When the problem data changes this tuning has
to be redone. There is no evidence that a once well-tuned splitting
algorithm will provide a good solution to a modified problem. The
latter suggests that, although some robustification of the methods has
been achieved in the ways described above, they are not on par with
higher order methods in this aspect.

On the other hand, splitting methods are suitable for :

1. Problems that need to be repeatedly solved and are similar to
each other.

2. Platforms where resources and/or computational power are lim-
ited.

The first case regards MPC problems, especially involving linear time-
invariant (LTI) systems, where the data does not change significantly.
In addition, warm-starting the variables to previous solutions offers a
significant advantage. Concerning the second point, a requirement for
low computational cost is the ability to end up with simple updates for
the subproblems. This happens, e.g., when the matrices that appear
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in the problem stay constant, hence no inversion and/or factorization
needs to be performed online. This is typically the case for LTI systems,
with tracking or regulation objective.

7.2 A rough guideline

Once it is decided that the problem at hand is amenable to splitting,
the first question that comes to mind is how to perform this splitting.
This choice can heavily affect the speed of the algorithm. Choosing a
splitting pattern is equivalent to formulating the subproblems that have
to be solved in the three algorithmic schemes presented in Chapter 2.
Consequently, the choice will also confine the options for acceleration
and preconditioning. A general guideline would be the following:

1. All subproblems should have a closed form solution if possible; if
not, they should be cheap to solve. The whole purpose of using
splitting on (P) is to end up with simpler subproblems.

For a given set of data, there ideally exist theoretically optimal stepsize
and relaxation constants. Due to the fact that these constants cannot
be computed in most of the cases, we reduce the dependency on those
by means of several heuristics. More specifically, we have observed that:

2. Preconditioning should always be used if possible. It has been
empirically observed and experimentally supported that it is the
most decisive factor for speeding up convergence.

3. Adaptation of the stepsize, especially in ADMM, can speed up
convergence greatly. In the case that simultaneous diagonaliza-
tion can be used (see Chapter 5), adaptation should be used.
It is observed that, even in the case that the optimal stepsize is
known, adaptation might further reduce the number of iterations.

4. If an accelerated version of an algorithm can be used without
heavily altering a well-structured problem, then it should be used.
Acceleration improves significantly on the number of iterations
needed for convergence. Restarting of the scheme is optional in
the case of AMA. Although restarting can end up increasing the
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number of iterations needed for convergence, in our experience it
generally acts beneficially to the method. In both FADMM and
FAMA, the combination of the accelerated restarted versions with
an adaptive stepsize strategy works well in practice. For FPDA
the adaptation is already embedded in the method.

In the subsequent Figures 7.1, 7.2 and 7.3 we attempt to give a rough
guideline on how an algorithm should be modified, once selected. The
flow chart should be conceived as a proposed sequence of steps, in the
sense that they usually (but not necessarily) enhance the performance
of the algorithm. The steps suggested are also allowable, in the sense
that convergence guarantees are ensured and the computational cost is
not significantly increased.

The choice of the algorithm should be motivated from the problem
formulation. It is important, e.g., to choose whether to solve the con-
trol problem in its dense or sparse form. This choice is motivated from
the ratio of states to inputs, the length of the horizon and the spar-
sity patterns, as discussed in Chapter 5. This option typically comes
with a tradeoff between expensive operations and the number of it-
erations. For example, it is common that the more decomposable the
problem is, the more iterations it will take to converge. This tradeoff
has to be evaluated on the specific application. Time-critical appli-
cations might tolerate an increased computational cost per iteration
in order to achieve a (relatively) accurate solution in less iterations.
Resource-limited applications might, on the other hand, prefer lighter
computations at the expense of more iterations for convergence. It is
difficult, however, to know in advance which of the two approaches will
take less time.

Finally, the experimental results we have on both randomly gen-
erated and benchmark control problems have lead us to the following
conclusions:

5. Restarted FAMA and its preconditioned version work well for
QPs. In almost all the examples we have generated, the method
outperformed the other two candidates.
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FAMA

Easy 
Prox

Yes$No$Adaptive 
stepsize

AMA

No$Restart

FAMA

Yes$

Heuristic
Prec.

Optimal
Prec.

Figure 7.1: Flow chart for AMA. The block ‘Easy Prox’ refers to whether a diagonal
preconditioner would complicate the prox step, according to Table 4.1. The optimal
preconditioner refers to minimizing the exact condition number of the scaled dual
function, as discussed in Chapter 4. In case the SDP is too big, or it fails to be solved,
a heuristic method is employed. Note that there is an unconditional transission from
AMA to FAMA for the reason that FAMA can be applied to any problem that AMA
can solve, while the former one is almost always faster.
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Easy 
Prox

Yes$No$

PDA
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Prec.

Optimal
Prec.

PDA
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stepsize

Strongly
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FPDA

Yes$
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Figure 7.2: Flow chart for PDA. An optimal preconditioner can be derived by
solving the same SDP as with AMA. This will give raise to a constraint precondi-
tioner P , that subsequently has to be scaled by a primal preconditioner T so that
the stepsize condition is satisfied (see Algorithm 9).



7.2. A rough guideline 333

Easy 
Prox

Yes$No$

ADMM

Yes$

No$Heuristic
Prec.

Optimal
Prec.

FADMM
or

Relaxation

Adaptive 
stepsize

ADMM

Figure 7.3: Flow chart for ADMM. Derivation of the optimal diagonal precondi-
tioner follows the same reasoning as in the case of AMA.
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6. ADMM is the most robust option when little pre-processing is
desired. This holds both in terms of its ability to solve a wide
variety of convex problems, as well as its decent performance
even with little tuning.

7. PDA seems to be the most sensitive to tuning, as well as the
slowest to converge in terms of iterations. However, the method
has a potentially low cost per iteration and it works under general
assumptions. For this reason it deserves more development, since
the majority of the works concerning it are mostly theoretical,
with almost no solid practitioners’ guidelines on how to tune and
use it.

7.3 Extensions and other directions

Second order information A reasonable extension to the precondi-
tioned versions of the algorithms presented in Chapter 4 would be to
look for variable metric schemes, i.e., preconditioners that adapt while
iterating. Higher order methods emanate from the idea of variable pre-
conditioners since exact (or approximate) Hessians of the problem at
hand are evaluated while iterating, resulting in significantly faster con-
vergence than ordinary first order methods. The trade-off comes again
with the complexity of the proximal operator, as well as the compu-
tation of the preconditioner that has to be performed frequently. In
addition, convergence of the algorithms becomes more subtle to prove.
Few works exist that combine splitting algorithms with more sophisti-
cated preconditioners such as [11], [29], [107]. Although the injection of
second order information in the splitting schemes is not covered exten-
sively in this survey, it is almost always the case that, if the evaluation
of a solution to the subproblems is easily computable (see, e.g., [107]),
the speedup gained can be remarkable.

Distributed control Leaving behind the range of small to medium
scale problems discussed in this survey, splitting methods have been
as well used in the framework of distributed control, where traditional
centralized control methods would require strong computational power
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in one entity as well as a dense communication scheme over the net-
work. Distributed MPC [120] overcomes these difficulties by allocating
computational tasks on different subsystems and requiring only par-
tial communication between them. Similar to centralized MPC, dis-
tributed MPC allows coupling among the dynamics and the costs of
the sub-systems. However, the coupling is limited by certain commu-
nication constraints, hence distributed optimization algorithms are re-
quired to take these constraints into consideration. The research in
this area has mainly focused on the impact of distributed optimization
on system properties such as stability and feasibility, and on develop-
ing efficient distributed optimization algorithms. Currently available
distributed optimization algorithms which have been studied for dis-
tributed MPC [127], [32] require a variable amount of communication
per time-step. The practical performance of these methods is highly
dependent on the network topology and sensitive to communication
errors.

Inexact splitting Motivated by distributed optimization, where in-
exact solutions of the local problems and communication errors may
occur, we introduce another area of recent interest regarding splitting
methods, i.e., convergence under inexact updates. The main effort is
put into analysing the effect of errors on the overall algorithm and
providing conditions under which convergence can still be guaranteed.
An analysis of first order methods with erroneous gradients (inexact
oracles) was performed in [42]. This work derives the interesting con-
clusion that the accelerated versions of the algorithms, based on the
over-relaxation sequences presented in Chapter 3, result in error ac-
cumulation in this case, hence they are not necessarily superior to the
original versions. Convergence rates of inexact proximal gradient meth-
ods are derived in [121]. Inexact versions of a generalized form of PGM
and of PDA have been introduced in [114] and [30], respectively. In the
control field, related works include [111], [130] and [89].

Infinite-dimensional problems We can roughly state that all the theo-
retical results stated for the three algorithms presented in this work are
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originally derived in Hilbert-space settings [7], [128], [5], [85], [21], [30].
The authors of [125] use these converegence guarantees to solve the
constrained linear quadratic regulator problem, i.e., an infinite-horizon
MPC regulation problem by means of the AMA and FAMA [126].
In [41], the authors consider an infinite-dimensional optimal control
problem constrained in a finite dimensional space. Consequently, the
dual problem is expressed in this lower-dimensional space, where the
problem becomes tractable. A fast dual gradient method is then used
on the dual function.

Three-operator splitting The generalization of decomposition meth-
ods to the case where more than two functions appear in the objective
of (P), without performing any reformulations (e.g., by introducing
copies of variables, as we do throughout this work), has been an open
area of research for many years. The recent breakthrough from Davis
et al. [38] allows for splitting an objective with three composite terms.
The scheme results in a novel three-block ADMM, where (at least) one
of the three terms needs to be strongly convex, with guaranteed con-
vergence under certain stepsize restrictions. Analyzing three-operator
splitting schemes from a more general viewpoint, the authors in [79]
recover a different novel version of ADMM, as well as a unification
of several existing primal-dual splitting schemes which involve two or
more composite terms (including the PDA presented in this work). The
area of multiple-operator splitting methods is at its infancy and several
developments are expected in the coming years.

Non-convex splitting Whereas a fair number of well-established tech-
niques exist for decomposing convex Non-Linear Programs (NLPs),
there is, as yet, no consensus around a set of splitting methods ap-
plicable to nonconvex programs. However, one can make a clear dis-
tinction between Sequential Convex Programming (SCP) approaches
and augmented Lagrangian techniques.

An SCP method consists in iteratively solving convex NLPs, which
are local approximations of the original nonconvex NLP, by means of
splitting techniques similar to the ones described in this survey. A case
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in point is the approach of [129], in which an l1 penalty is used to relax
the nonconvex constraints. On the contrary, an augmented Lagrangian
method aims at decomposing a nonconvex auxiliary problem inside a
dual loop [25], [70], [78]. While convergence guarantees can be derived
in both frameworks, computational drawbacks also exist on both sides.
For instance, it is not clear how to preserve the convergence properties
of SCP schemes when subproblems are solved to a low level of accuracy,
which is likely to occur if a first-order method is applied as an inner
solver. On the contrary, the inexactness issue can be rigorously handled
inside an augmented Lagrangian algorithm [31], [46]. However, it is
still not clear how the primal nonconvex subproblems should be solved
efficiently via a splitting technique [77].
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A
Definitions

In this Appendix we give several definitions of notions that appear
throughout the survey.

Subdifferential and Conjugacy

Definition A.1 (Subdifferential). The subdifferential of a convex func-
tion f at x is defined as

∂f(x) = {u : 〈u, z − x〉 ≤ f(z)− f(x) ∀z ∈ dom f}.

Note that when f is differentiable, ∂f(x) = {∇f(x)}.

Definition A.2 (Conjugate). The conjugate of a convex function f :
Rn → R, denoted by f? : Rn → R, is defined as

f?(λ) = sup
z
{〈z, λ〉 − f(z)} .

Theorem A.1. Let f ∈ Γ0(Rn). The following relation holds:

u ∈ ∂f(x), for some x ∈ Rn, ⇔ x ∈ ∂f?(u) .

The notion of the conjugate function is quite useful in the frame-
work of first order methods for convex optimization. Below, we give
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Description f(z) f?(λ)
Nonnegative orthant δ+(z) δ−(λ)
Box/l∞-norm ball (‖z‖∞ ≤ α) δ∞(z, α) α‖λ‖1
l1-norm ball (

∑
i |zi| ≤ α) δ1(z, α) α‖λ‖∞

l2-norm ball (‖z‖2 ≤ α) δ2(z, α) α‖λ‖2
Second-order cone (‖z‖2 ≤ t, (z, t) ∈ Rn+1) δ2(z, t) δ2(λ, y)

Table A.1: Conjugate relations.

some pairs of conjugate functions that we usually meet in the prob-
lems of interest. Table A.1 by no means covers the wide spectrum of
convex conjugate functions that can be analytically derived. We refer
the interested reader to the work [27] for an exhaustive list of conju-
gate functions. Similarly, since proximal operators of convex functions
have been derived in numerous works, we do not intend to list them
here. We once more refer the interested reader to [27] for a list, as
well as [104] for the derivation procedure of the most common ones.
Finally, the Matlab library [103] implements many proximal operators
for direct use, serving as a supplement to [104].

Useful identities Moreau identity is a very useful Lemma that asso-
ciates a convex function with its conjugate. This is instrumental for
deriving all the algorithms presented in this work, since, as we saw,
their derivation depends on the application of proximal methods to
the dual function (D), which is expressed via conjugate functions. Be-
low we give Moreau identity associated to the proximal, as well as the
generalized proximal operator (4.5).

Lemma A.2. Let f ∈ Γ0(Rn). Then for any x ∈ Rn

prox ρf?(x) + ρprox f/ρ(x/ρ) = x, ∀ 0 < ρ < +∞ .

Lemma A.3. Let f ∈ Γ0(Rn) and P ∈ S++. Then for any x ∈ Rn

prox P
ρf (x) + ρP−1 prox P−1

f/ρ (P (x/ρ)) = x, ∀ 0 < ρ < +∞ .
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The Moreau identity is, hence, very useful for computing the prox
of a conjugate function knowing the prox of the original one (and vice
versa).



B
Derivation of the Algorithms from Proximal

Methods

The subsequent results are instrumental as they demonstrate the equiv-
alence of the AMA, PDA and ADMM to proximal algorithmic schemes,
as presented in Chapter 2, when applied to the dual problem (D) or the
saddle formulation (S). We repeat here the dual function for clarity:

−d(λ) = F (λ) + g?(λ) ,

where F (λ) := f?(−L>λ)− 〈λ, l〉.

AMA and PGM. The Alternating Minimization Algorithm can be
derived from the application of the PGM iteration (2.5) to −d. The
proof is inspired from [10, Lemma 3.2], where the equivalence between
the accelerated versions of AMA and PGM is drawn.

Since f is strongly convex, it follows from Lemma 3.1 that f? is
smooth. Subsequently, F is also smooth. Then ∇F is Lipschitz con-
tinuous with some constant LF , and the proximal gradient algorithm
reads
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Algorithm 10 Dual Proximal Gradient Method
Require: Initialize ρ < 2/LF .

loop
1: zk+1 = argmin

z
f(z) + 〈L>λk, z〉

2: λk+1
i = proxρg?i

(
λki + ρ(Lizk+1 + li)

)
, i = 1, . . . ,M

end loop

The following Lemma holds:

Lemma B.1. The second step of Algorithm 10 is equivalent to steps 2
and 3 of Algorithm 1 combined, written as

yk+1
i = prox gi/ρ

(
Liz

k+1 + li + λki /ρ
)

λk+1
i = λki + ρ(Lizk+1 + li − yk+1

i ) .

Proof. Step 1 of Algorithm 10 amounts to computing the gradient of
f?(−L>λ)− 〈λ, l〉. Using Theorem A.1,

−L>λk ∈ ∂f(zk+1)⇔ zk+1 = ∇f?(−L>λk) .

Thus, the gradient of F can be expressed as

∇F (λk) = −Lzk+1 − l .

Step 2 is, apparently, the proximal step with respect to g?i in the direc-
tion of the negative gradient.

We are now ready to prove the assertion. To this end, we first denote
µki = λki + ρ(Lizk+1 + li), and subsequently substitute the result of the
proximal step yk+1

i to the dual update λk+1
i :

λk+1
i = λki + ρ(Lizk+1 + li)− ρprox gi/ρ(λ

k
i /ρ+ Liz

k+1 + li)
= µki − ρprox gi/ρ(µ

k
i /ρ) .

Using Moreau identity (A.2), it directly follows that

λk+1
i = µki − µki + prox ρg?i

(µki ) = prox ρg?i
(µki ) .
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Finally, the accelerated version of PGM, named Fast Proximal Gra-
dient Method (FPGM) [10],[59], applied to the dual problem, is given
below. The method is the result of simply applying Nesterov’s momen-
tum scheme to Algorithm 10, as discussed in Chapter 3. Any other
acceleration sequence [132] would result in similar algorithms.

Algorithm 11 Fast Dual Proximal Gradient Method
Require: Initialize ρ ∈ (0, 1/LF ], λ−1 = λ0 ∈ Rp, α−1 = α0 = 1.

loop
1: λ̂k = λk + ((αk−1 − 1)/αk)(λk − λk−1)
2: zk = argmin

z
f(z) + 〈L>λ̂k, z〉

3: λk+1
i = proxρg?i

(
λ̂ki + ρ(Lizk + li)

)
, i = 1, . . . ,M

end loop

PDA and FBS. Consider the problem (P) that can be written as

minimize h(z) + δD(z) + g(Lz + l) ,

with h(z), δD(z) as defined in (2.1). The saddle formulation (S) is
repeated here for clarity:

S(z;λ) = 〈Lz + l, λ〉+ h(z) + δD(z)− g?(λ) . (B.1)

The saddle subdifferential of (S) [118] is defined as

∂S(z;λ) =
[
∂zS(z;λ)
∂λS(z;λ)

]
.

A solution to the minimization problem can be derived by finding a
saddle point (z∗, λ∗) of S, so that (0, 0) ∈ ∂S(z∗;λ∗). The relation can
be easily derived from strong duality and the primal-dual optimality
conditions.

After taking the partial derivatives we have[
0
0

]
∈
[
L>λ∗ +∇h(z∗) + ∂δD(z∗)
−Lz∗ − l + ∂g?(λ∗)

]
. (B.2)
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Let us now derive the optimality conditions for the two iterations of
Algorithm 2. It is easy to see that the following inclusion is satisfied [30]:[
−∇h(zk)

0

]
∈
[
∂δD(zk+1) + L>λk+1

−Lzk+1 − l + ∂g?(λk+1)

]
+
[
(1/τ)I −L>
−L (1/σ)I

] [
zk+1 − zk
λk+1 − λk

]
,

which can be further written as

B(wk) ∈ A(wk+1) + P (wk+1 − wk) , (B.3)

where w = (z, λ) ∈ Rn × Rp and

B(w) =
[
−∇h(z)

0

]
, A(w) =

[
∂δD(z) + L>λ

−Lz − l + ∂g?(λ)

]
, P =

[
(1/τ)I −L>
−L (1/σ)I

]
.

Note that, at optimality (when wk+1 = wk = w∗), (B.3) reduces
to (B.2).

For an invertible operator P , (B.3) can be reordered as

wk+1 = (I + P−1 ◦A)−1 ◦ (I − P−1 ◦B)(wk) . (B.4)

Equation (B.4) is nothing but a generalized form of the PGM, where
instead of prox g(·) and ∇f(·) we have the operators (I + A)−1 and
B, respectively, while the operator P−1 acts as a generalization of the
stepsize ρ. Under several assumption on the operators A and B, PDA
is a preconditioned version of FBS operating at the primal-dual space
Rn×Rp seeking for a w such that (0, 0) ∈ A(w) +B(w), while AMA is
FBS operating at the dual space Rp seeking a solution λ to the inclusion
0 ∈ ∂g?(λ) +∇F (λ).

ADMM and DRS. The DRS scheme constitutes of three iterations,
and when applied to the dual problem results in:

vk+1 = prox ρF

(
λk − wk

)
(B.5)

λk+1 = prox ρg?

(
vk+1 + wk

)
(B.6)

wk+1 = wk + vk+1 − λk+1 , (B.7)

where d = F + g?, as defined in the begining of the chapter. The
function F does not need to be smooth in this case. We are going to
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analyze the three iterations sequentially, following the approach form
the lecture notes [135].

For (B.5), we have that

prox ρF

(
λk − wk

)
= argmin

v

{
F (v) + (1/2ρ)‖v − λk + wk‖22

}
,

the optimality condition of which is

0 ∈ −L∂f?(−L>v)− l + (1/ρ)(v − λk + wk) (B.8)

We are going to show that the proximal step (B.5) is equivalent to an
augmented Lagrangian minimization update. For this purpose, consider
the minimization problem

minimize f(z) + (ρ/2)‖Lz + l + (λk − wk)/ρ‖22
with variable z ∈ Rn, which can be equivalently written as

minimize f(z) + (ρ/2)‖u‖22
subject to Lz + l + (λk − wk)/ρ = u,

(B.9)

with variables z ∈ Rp, u ∈ Rp. Introducing a Lagrange multiplier v ∈
Rp, the optimality conditions for problem (B.9) become:

−L>v ∈ ∂f(z), ρu = v, Lz + l + (λk − wk)/ρ− u = 0 ,

which, by elimination of the variables z, u, can be written as

0 ∈ −L∂f?(−L>v)− l + (1/ρ)(v − λk + wk),

which is (B.8).
Furthermore, we have from (B.5) that

vk+1 − λk + wk ∈ −ρ∂F (vk+1)
= −ρ(−L∂f?(−L>vk+1)− l)
= ρ(Lzk+1 + l) ,

where zk+1 is a minimizer of problem (B.9). To wrap up, Step (B.5)
can be written as

zk+1 = argmin
z

{
f(z) + (ρ/2)‖Lz + l + (λk − wk)/ρ‖22

}
vk+1 = λk − wk + ρ(Lzk+1 + l) . (B.10)
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Step (B.6) reads as λk+1 = prox ρg?

(
λk + ρ(Lzk+1 + l)

)
. From

Lemma (B.1), Step (B.6) is equivalent to

yk+1
i = prox gi/ρ

(
Liz

k+1 + li + λki /ρ
)

λk+1
i = λki + ρ(Lizk+1 + li − yk+1

i ) .

Finally, Step (B.7) results in wk+1 = ρyk+1. Substituting wk+1 back
to the augmented Lagrangian in (B.10), we end up with the ADMM
iterations.



C
Stopping Conditions

We make use of the KKT conditions in order to terminate the algo-
rithms presented in this work. We write down the optimality conditions
for the Lagrangian (L) or for the saddle function (S) and express them
in terms of the optimality conditions derived from each iterate of the
corresponding algorithms. The algorithm is terminated once the KKT
conditions are satisfied to some prespecified accuracy.
AMA Consider the Lagrangian (L). The KKT conditions are:

0 = Liz
∗ + li − y∗i , i = 1, . . . ,M (C.1)

0 = ∇f(z∗) +
M∑
i=1

L>i λ
∗
i (C.2)

0 ∈ ∂gi(y∗i )− λ∗i , i = 1, . . . ,M (C.3)

Taking the optimality condition for Step 1 of Algorithm 1, we have
that

∇f(zk+1) +
M∑
i=1

L>i λ
k
i = 0

∇f(zk+1) +
M∑
i=1

L>i λ
k+1
i +

M∑
i=1

L>i (λki − λk+1
i ) = 0 ,
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hence condition (C.2) is satisfied if L>(λk+1−λk) = 0. Accordingly we
have for Step 2 that

∂gi(yk+1
i ) + λki + ρ(Lizk+1 + li − yk+1

i ) 3 0
∂gi(yk+1

i ) + λk+1
i 3 0 ,

which means that condition (C.3) is always satisfied each time Step
2 is executed. Finally, the primal optimality condition reads Lizk+1 +
li − yk+1

i = 0, i = 1, . . . ,M . We can thus write the primal and dual
residuals as

rk+1 = Lzk+1 + t− yk+1 (C.4)
sk+1 = L>(λk+1 − λk) . (C.5)

PDA Consider the saddle function (S) with h(z) = (1/2)z>Qz+ c>z.
The KKT conditions are:

0 = Qz∗ + c+ ∂δD(z∗) +
M∑
i=1

L>i λ
∗
i (C.6)

0 ∈ ∂g?i (p∗i )− Liz∗ − li, i = 1, . . . ,M (C.7)

As before, we write down the optimality conditions for each step of
Algorithm 2. The residuals read

rk+1 = (Q− (1/τk)I)(zk+1 − zk) + L>(λk+1 − λk) (C.8)
sk+1 = P k(λk − λk+1) + L(zk+1 − zk) (C.9)

where P k = diag( 1
ρk1
, . . . , 1

ρkM
).

ADMM Writing the optimality conditions for each step of Algorithm
3, we derive the formulas for the primal and dual residuals,

rk+1 = Lzk+1 + l − yk+1, (C.10)
sk+1 = ρL>(yk − yk+1) , (C.11)

as given in [17].

Remark C.1. When the preconditioned versions of the algorithms are
considered (Chapter 4), the residuals can be expressed in terms of the
scaled variables in a similar manner.
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