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Abstract—In this paper, we propose a new graph-based com-
pression scheme for image coding. Our approach relies on the
careful design of a graph that optimizes the overall rate-distortion
performance. In particular, we model the pixels as nodes of a
graph and we treat the pixel intensities as a signal living on
an unknown graph topology. We then introduce a novel graph
learning algorithm targeted for image compression that uncovers
the connectivities between the pixels, by taking into consideration
the coding of the image signal and the graph topology in rate-
distortion terms. The cost of the graph description is introduced
in the optimization problem by treating the edge weights as
another graph signal that lies on the dual graph, and minimizing
the sparsity of its graph Fourier coefficients (GFT). In this way,
we obtain a convex optimization problem whose solution defines
the transform of the image signal. The experimental results show
that the proposed method outperforms classical fixed transforms
such as DCT, and confirm the potential of graph-based methods
for adaptive image coding solutions.

I. INTRODUCTION

One of the major applications of the emerging field of graph
signal processing [1] is image representation and compression.
An image can be represented by a graph, where the nodes are
the image pixels and the edge weights capture the correlation
between adjacent pixels. Such a flexible representation permits
to go beyond traditional transform coding by moving from
classical fixed transforms such as the discrete cosine transform
(DCT) to graph-based transforms that are adapted to the actual
signal structure, such as the graph Fourier transform (GFT). By
using such transforms, it is possible to obtain a more compact
representation of an image, as the energy of the image signal is
concentrated in the lowest frequencies. This provides a strong
advantage compared to the classical DCT transform especially
when the image contains arbitrarily shaped discontinuities.
In this case, the DCT transform coefficients in this case
are not necessarily sparse and contain many high frequency
coefficients with high energy.

However, one of the biggest challenges in graph-based
image compression is the choice of the graph and the cor-
responding transform. A good graph for effective transform
coding should lead to easily compressible signal coefficients,
at the cost of a small overhead for coding the graph. Most
state-of-the-art methods design the graph by considering pair-
wise similarities among the pixel intensities and they provide
significant gain in the coding of piecewise-smooth images
[2] [3] [4]. They however report unsatisfactory results on
natural images, where the cost required to describe the graph
outweighs the coding gain provided by the adaptive graph
transform. Since the definition of the graph is often not
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straightforward, the problem of designing a graph transform
stays critical and may actually represent the major obstacle
towards effective compression of images.

In this work, we propose a novel graph-based framework
for effective coding of images that takes into account the
coding of the images as well as the cost of transmitting the
graph. In particular, we introduce an innovative way for coding
the graph by treating its edge weights as a graph signal that
lies on the dual graph. We then compute the graph Fourier
transform of this signal and code its quantized transform
coefficients. The choice of the graph is posed as a rate-
distortion optimization problem that is cast as a graph learning
problem. The cost of coding the image signal is captured
by minimizing the smoothness of the image on the learned
graph while the transmission cost of the topology is controlled
by penalizing the sparsity of the graph Fourier coefficients
of the edge weight signal that lies on the dual graph. The
solution of our optimization problem is a graph that provides
an effective tradeoff between the quality of the transform
and its transmission cost. Experimental results on natural
images confirm that the proposed algorithm can efficiently
infer meaningful graph topologies, which eventually lead to
improved coding results compared to non-adaptive methods
based on DCT.

A few attempts have been recently proposed to learn the
structure and in particular a graph from data observations.
In [5], the authors formulate the graph learning problem
as a precision matrix estimation with generalized Laplacian
constraints. In [6], a sparse combinatorial Laplacian matrix is
estimated from the data samples under a smoothness prior. In
[7], a new class of transforms called graph template transform
is proposed; the authors use a graph template to impose a spar-
sity pattern and approximate the empirical inverse covariance
based on that template. Even if all these methods contain some
constraints on the sparsity of the graph, none of them takes
into account the real cost of representing, and thus coding,
the graph. Instead, in this paper, we go beyond prior art and
we fill this gap by defining a new graph learning problem for
image compression that takes into account the graph coding
cost.

II. BASIC DEFINITIONS ON GRAPHS

For any graph G = (V,£) where V and & represent
respectively the node and edge sets and |V| = N and |€] = M,
we define the weighted adjacency matrix W € RV >N where
W,; is the weight associated to the edge (i,j) connecting



nodes ¢ and j. In this paper, we consider undirected graphs
with no self loops, thus W is symmetric and has a null
diagonal. The graph Laplacian is defined as L = D — W,
where D is a diagonal matrix whose i-th diagonal element D;;
is the sum of the weights of all the edges incident to node <.
Since L is a real symmetric matrix, it is diagonalizable by an
orthogonal matrix
L = UATT,

where ¥ € RNXN s the eigenvector matrix of L that
contains the eigenvectors as columns and A € RV*V is the
diagonal eigenvalue matrix where the eigenvalues are sorted
in increasing order.

The graph Laplacian L can also be defined using the
incidence matrix B € RY*M [8] such that

1, if e=(1,7)
Bic: _17 1fe:(]>l)
0, otherwise,

where an orientation is chosen arbitrarily for each edge. Then,

let W € RMXM e 3 diagonal matrix where W, = i if
= (4,7). We can define the graph Laplacian L as
L = BWBT. (1)

It is important to underline that the graph Laplacian obtained
using (1) is independent from the edge orientation in G.

A graph signal z € R” in the vertex domain is a real-valued
function defined on the nodes of the graph G, such that x;,
i=1,..., N is the value of the signal at node ¢ € V [1]. For
an image signal, we can consider an associated graph where
the nodes of the graph are the pixels of the image. Then, the
smoothness of = on G can be measured using the Laplacian
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Eq. (2) shows that a graph signal x is considered to be smooth
if strongly connected nodes have similar signal values. Finally,
the eigenvectors of the Laplacian are used to define the graph
Fourier transform (GFT) [1] of the signal x as follows:

2 =0Tg.

The graph signal x can be easily retrieved from & by inversion,
namely x = ¥Z. Analogously to the Fourier transform in the
Euclidean domain, the GFT is used to describe the graph signal
in the Fourier domain.

III. GRAPH-TRANSFORM OPTIMIZATION
A. Rate-distortion tradeoff

Graph-based image compression methods use a graph rep-
resentation of the image signal through its GFT, in order
to obtain a data-adaptive transform which captures the main
characteristics of the image. The GFT coefficients are then
encoded, instead of the signal values. In general, a signal
that is smooth on a graph has its energy concentrated in

the low frequency coefficients of the GFT, hence it is easily
compressible. To obtain good compression performance, the
graph should therefore be chosen such that it leads to a
smooth representation of the signal. On the other hand, it
should also be easy to encode, since it has to be transmitted
to the decoder for signal reconstruction. Often, the cost of
the graph representation outweighs the benefits of using an
adaptive transform for signal representation. In order to find
a good balance between graph signal representation benefits
and coding costs, we introduce a new graph learning approach
that takes into consideration the above mentioned criteria.

We first pose the problem of finding the optimal graph as
a rate-distortion optimization problem defined as

Loin  D(L) +7(Re(L) + Re (L)), 3)

where D(L) is the distortion between the original image and
the reconstructed one. The total coding rate is composed of
two representation costs, namely the cost of the transform
coefficients R.(L) and the cost of the graph description
R (L). Each of these terms possibly depends on L and on
the coding scheme. We describe them in more details in the
rest of the section.

B. Distortion approximation
The distortion D(L) is defined as follows

D(L) = ||lz — &[|* = |2 — &I,

where x and Z are respectively the original and the recon-
structed image, and & and &, are respectively the trans-
form coefficients and the quantized transform coefficients.
The equality holds due to the orthonormality of the GFT.
Considering a uniform scalar quantizer with the same step size
q for all the transform coefficients, if ¢ is small the expected
value of the distortion D(L) can be approximated as follows
[10]
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With this approximation, the distortion depends only on the
quantization step size and it does not depend on the chosen
L [2]. For simplicity, in the rest of the paper we adopt
this assumption. Therefore, the optimization problem (3) is
reduced to minimizing the rate terms.

D=

C. Rate approximation of the transform coefficients

We can evaluate the cost of the transform coefficients R.(L)
by using the approximation proposed in [2], [4]

N-1
Re(L) = 2T Lo = 27 (Z An/}ﬂ/}f) x

N-—
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1=0
where )\; and ¢; are respectively the [-th eigenvalue and
eigenvector of L. Therefore, R.(L) is an eigenvalue-weighted
sum of squared transform coefficients. It assumes that the



(b)

Fig. 1. An example of a graph (a) and its corresponding dual graph (b). The
edges in the first graph (labeled with lower case letters) become the nodes of
the corresponding dual graph.

coding rate decreases when the smoothness of the signal x
over the graph defined by L increases. In addition, (4) relates
the measure of the signal smoothness with the sparsity of the
transform coefficients. The approximation in (4) does not take
into account the coefficients that corresponds to Ao = 0 (i.e.,
the DC coefficients). Thus, (4) does not capture the variable
cost of DC coefficients in cases where the graph contains
a variable number of connected components. However, we
impose that the graph is connected in our work, which removes
the influence of the number of connected components. In this
case, the cost of the DC coefficient is independent of L, so
we can avoid to consider it in the R, approximation.

D. Rate approximation of the graph description

The graph description cost R (L) depends on the chosen
method to code the graph. In order to reduce the graph
transmission cost, we choose to use a fixed topology B for
the graph and to vary only the edge weights. Therefore, the
graph can be defined only by a vector w € RM, where w, is
the weight of the edge e. Then, by using (1) we can define
the graph Laplacian L = BT diag(w)B.

In order to compress the edge weight vector w, we propose
to treat it as a graph signal that lies on the dual graph Gg,.
Given a graph G, its dual graph G, is an unweighted graph
where each node of G, represents an edge of G and two nodes
of G4 are connected if and only if their corresponding edges
in G share a common endpoint. An example of a dual graph is
shown in Fig. 1. We choose to use this graph representation for
the signal w because consecutive edges usually have similar
weights, so the dual graph can provide a smooth represen-
tation of w. Also for G; we can define its graph Laplacian
matrix Ly € RM*M and the corresponding eigenvector and
eigenvalue matrices ¥y € RM*M and Ay € RM*M guch that
Lqg=U4A,V%.

Since w can be represented as a graph signal, we can
compute its GFT @ € RM as

W= Vlw.

Therefore, we can use w to describe the graph and we evaluate
the cost of the graph description by measuring the coding cost
of w. It has been shown that the total bit budget needed to code
a vector is proportional to the number of non-zero coefficients

[11], thus we approximate the cost of the graph description
by measuring the sparsity of w as follows

Re = [l = [[Wgwl:. )

E. Graph learning problem

By using (1), (4) and (5), the graph learning problem (3)
becomes equivalent to the following optimization problem

min z” B(diag(w))BT 2 4 || ®Tw||1, (6)
weRM

where « is a constant parameter.

Building on the rate-distortion formulation of (6), we find
the optimal graph topology by solving the following optimiza-
tion problem

min z” B(diag(w))BTz + o||®Tw|; — 1T log(w),
weRM @
s.t. w<1,

where o and 3 are two positive regularization parameters and
1 denotes the constant one vector. The logarithmic term has
been added to penalize low weight values and to avoid the
trivial solution. In addition, this term guarantees that w,, > 0,
Vm, so that the graph is always connected. The inequality
constraint has been added only to guarantee that all the weights
are in the range (0, 1], which is the same range of the most
commonly used weighting functions [12].

The problem in (7) can be cast as a convex optimization
problem with a unique minimizer. To solve problem (7), we
write the first term in the following form

2? B(diag(w))BT z = tr((BT 2™ B)diag(w))
= vec(BT z2T B)Tvec(diag(w))
= vec(BT 22" B)" M, w,

where tr(-) denotes the trace of a matrix, vec(+) is the vector-
. . 2 I . .
ization operator, and M,,, € R™ *M s a matrix that converts
the vector w in vec(diag(w)). Then, we can rewrite problem
(7) as
min vec(BT 22" B)T My, w + || ¥ w||, — 817 Tog(w),
weR
s.t. w<1.

®)

The problem in (8) is a convex problem with respect to the
variable w and can be solved efficiently via interior-point
methods [13].

IV. IMAGE COMPRESSION APPLICATION

We now describe how the above graph learning problem
can be applied to image compression. As pointed out in
the previous sections, we have two different information to
transmit to the decoder: the transform coefficients of the image
signal £ and the description of the graph w. The transform
coefficients are quantized using a uniform quantizer with the
same step size g for all the coefficients. Then, we code the
quantized coefficients until the last non-zero coefficient using
an adaptive bitplane arithmetic encoder and we transmit the
position of the last significant coefficient.
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Fig. 2. Block classification of Lena.

To code the graph, we use its GFT coefficients vector w. In
order to reduce the cost of the graph description, we reduce
the number of elements in w taking into account only the first
M < M coefficients, which usually are the most significant,
and setting the other M — M coefficients to zero. The reduced
vector w, € RM is then quantized and coded with the same
entropy coder used for the image signal.

The principal steps of the proposed image compression
method are summarized in Fig. 3. Given an image signal,
we first solve the optimization problem in (8) obtaining the
optimal solution w*. To transmit w* to the decoder, we first
compute its GFT coefficients w* and the reduced vector 0y,
then we quantize and code it using an entropy coder. It is
important to underline that, since we perform a quantization
of Wy, the reconstructed signal w* is not equal to the original
w* and its quality depends on the quantization step size used.
The graph described by w™* is then used to define the GFT
transform for the image signal.

Since it is important to find the best tradeoff between the
quality of the graph and its transmission cost, for each block
we test different quantization step sizes {A; }1<;<¢ for a given
graph represented by wy. To choose the best quantization step
size, we use the following rate-distortion problem

min D(A;) +7(Re(A) + Ra (Ay), 9)

where Rg(A;) is the rate of 1y 5, the coefficient vector
W quantized with A, D(Ai) and R <(A;) are respectively
the distortion and the rate of the reconstructed image signal
obtained using the graph transform described by wy »,. We
underline that in (9) we evaluate the actual distortion and rate
without using the approximation introduced previously in (3),
(4), (5). The coding methods described previously are used to
compute the rates R.(A;) and R (A;).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method. We first describe the general experimental setting,
then we present the experimental results obtained.

A. Experimental setup

We test our method on four standard grayscale images
(Lena, Boat, Peppers and House) and we split them into
non-overlapping 16x16 pixel blocks. The chosen topology

Solve the GL problem (8)

]

Code the solution weight vector
coefficients 0 using different A;

|
i, define the graph transform of }

For each A
the image and evaluate rate and distortion

]

Choose the best A;

]

Quantize & with the quantizer ¢

]

Output A;, Wy 5, and &4 }

Fig. 3. Block diagram of the proposed method.

of the graph is a 4-connected grid: this is the most used
graph topology for graph-based image compression, since its
number of edges is not too high, and thus the coding cost is
limited. In a 4-connected square grid with /N nodes, we have
M = 2v/N(vV/N — 1) edges. In all our experiments, we set
M = 64 and @Q = 8. To find the best value for the parameters
« and B of the graph learning problem in (8), we use the
following strategy. The value of the parameter a depends on
the characteristics of the block. For this reason, we perform
a block classification using the structure tensor analysis, as
done in [14]. Let p; and po be the two eigenvalues of the
structure tensor, where p; > po > 0, we can subdivide the
image blocks in the following way:

o Class 1: smooth blocks, if 1 ~ uo =~ 0;

e Class 2: blocks with a dominant principal gradient, if

p1 > po =~ 0;

o Class 3: blocks with a more complex structure, if pq and

Lo are both large.
Fig. 2 shows an example of block classification. We set o =
100 for blocks that belong to the first class, &« = 500 for
blocks that belong to the second class and o« = 800 for blocks
that belong to the third class. For all the three classes, we set
£ =1 in the graph learning problem.

We compare the performance of the proposed method
against the classical DCT transform. To have a fair compari-
son, we code the transform coefficients & of the image signal
using the same entropy coder for the graph-based method and
for DCT-based encoder. In the first case, in addition to the
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Fig. 4. RD comparison between the proposed method and DCT.

TABLE I
AVERAGE GAIN IN PSNR MEASURED WITH THE BJONTEGAARD METRIC.

Image class 1 | class 2 | class 3
Lena 0.06 0.66 0.52
Boat 0.03 0.31 0.47

Peppers 0.10 0.77 0.89
House 0.02 0.63 0.62

bitrate of %, we count the bitrate due to the trasmission of
w;. A, and 3 additional bits per block to transmit the chosen
quantization step size A; for w,. For both methods, we vary
the quantization step size g of the transform coefficients to
vary the encoding rates.

Finally, in our method for each block we compare the RD-
cost of the GFT and the one of the DCT. Then, we eventually
code the block with the transform that has the lowest RD-cost
and we use 1 additional bit per block to signal if we are using
the GFT or the DCT.

B. Results

In Fig. 4, we show the performance of the two methods on
the image House. More results are given in Table I, where we
use the Bjontegaard metric [15] to compute the average gain in
PSNR compared to the DCT. In the second and third classes,
the proposed method outperforms DCT providing an average
PSNR gain of 0.6 dB for blocks in the second class and 0.64
dB for blocks in the third class. It is interesting to point out that
there is not a significant difference in performance between the
second class and the third one. Instead, in the first class the
gain is nearly 0, as DCT in this case is already optimal.

The obtained results show that the proposed method can
outperform classical fixed transforms as DCT, even if they

could be further improved by optimizing the coding method,
in particular the quantization strategy.

VI. CONCLUSION

In this paper, we have introduced a new graph-based frame-
work for image compression. We have proposed an innovative
method for coding the graph by treating the edge weights as
a new signal that lies on the dual graph. In order to obtain
an effective coding method, we have also formulated a graph
learning problem targeted for image compression. The solution
of the proposed learning problem is a graph that provides an
effective tradeoff between the quality of the transform and the
cost of the graph description.

We believe that the proposed method participates to opening
a new research direction in graph-based image compression.
The obtained results show that the proposed method outper-
forms the classical DCT. More work on the coding part may
lead to further improvements in coding performance.
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