
Estimation of fatigue S-N curves of welded joints using

advanced probabilistic approach

Luca D’Angelo1,∗, Alain Nussbaumera,2

aResilient Steel Structures Laboratory (RESSLAB), Swiss Federal Institute of Technology
Lausanne

Abstract

This paper provides a new advanced probabilistic approach for reliable es-
timation of the fatigue characteristic S-N curves of welded joints both for
constant amplitude (CA) and variable amplitude (VA) loading conditions.
The presented approach, which is referred to as the ML-MCS approach,
combines Maximum Likelihood method (ML) and Monte-Carlo Simulations
(MCS) method to estimate true p-quantiles of CA and VA S-N curves by
using complete experimental data-sets. The ML-MCS approach includes a
linearization method for use of S-N curves in combination with linear damage
accumulation rule as well as for direct comparison with current standards.
Application of the ML-MCS approach on two study cases and comparison
with current standards shows that the use of the ML-MCS approach may
have a significant impact in re-definition of CA and VA S-N curves of cur-
rent standards and in particular of the CAFL, of the S-N curve second slope
and of the critical value of accumulated damage at failure. The last section of
the paper provides accurate guidelines for future experimental tests needed
for re-definition of current standards.
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Nomenclature

CA Constant Amplitude

cdf Cumulative density function

CAFL Constant Amplitude Fatigue Limit

CA S-N curve S-N curve for CA fatigue loadings

dt Observed damage sum at the end of the tth experimental test

Dc Critical damage sum (random variable)

dc,.5 Characteristic value of critical damage sum, corresponding to the me-
dian of Dc

EV Extreme Value probability distribution

FAT Fatigue strength in MPa at 2 · 106 cycles, according to characteristic
S-N curve

logN Log-Normal probability distribution

fY Probability density function of random variable Y

FY Cumulative distribution function of random variable Y

H(·) Unit step function

HCF High cycle fatigue: N ≥ 5 · 106 cycles

I(θ) Fisher information matrix for parameter vector equal to θ

logN log-Normal probability distribution

log(S-N) plane S-N plane in which both S axis and N axis are plotted in log scale

LS Least Squares

m0 Intercept of the CA S-N curve, in the log(S-N) plane

m1 Slope of the CA S-N curve, in the log(S-N) plane

MCS Monte-Carlo simulations

ML Maximum Likelihood

nf Number of failures

nr Number of run-outs

nLL(θ) Negative log-likelihood for model parameter vector equal to Θ)

ntot Number of stress range levels (number of blocks in a blocked VA load
sequence or number of levels in a VA spectrum)

ntot,1 Number of stress range levels, for stress ranges higher than or equal to
the CAFL

ntot,2 Number of stress range levels, for stress ranges lower than the CAFL

N Normal probability distribution
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pdf Probability density function

Pf Probability of failure

P t
f Target probability of failure

p-quantile Referred to a S-N curve, it indicates the curve which realizes p · 100%
probability of failure

Ps = 1− Pf Probability of survival

run-out Number of cycles reached without failure of the specimen at the end
of the test, either because the time limits for the test were reached or
because other parts of the tested specimen failed

S Nominal applied stress range

Sco Cut-off stress range

V Natural logarithm of the CAFL (random variable)

v.05 Characteristic value of the log-CAFL, corresponding to 95% exceeding
probability

VA Variable Amplitude

VAFL Variable Amplitude Fatigue Limit

VA S-N curve S-N curve to for VA fatigue loadings

(xi, yi) |i=1...ntot
CA fatigue data-set

α Confidence level

δ Binary variable which is equal to 1 for a failure and to 0 for a run-out

∆m = m1 −m2 Slope difference, in the log(S-N) plane

ε Error term in S-N model

ηiter, ηres Parameters which define the number of simulations in ML-MCS scheme
for estimation of VA S-N model

ηsam Number of simulations in MCS scheme for estimation of CA character-
istic S-N curves

θ CA S-N model vector

Θ VA S-N model vector

µD Location parameter of critical damage probability distribution, Dc

µV Location parameter of log-CAFL probability distribution

σ Logarithm of the scale parameter of log-life probability distribution

σV Logarithm of the scale parameter of log-CAFL probability distribution

σD Scale parameter of critical damage probability distribution, Dc

Σ VA S-N model covariance matrix

ρ CA S-N model correlation matrix
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φ Standardized normal pdf

φd Load dynamic amplification factor

Φ Standardized normal cdf

ς Percentage of stress range cycles of a loading spectrum, which exceeds
the characteristic value of CAFL
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Figure 1: VA S-N curves

1. Introduction

Traditional fatigue analysis of welded joints under variable amplitude
(VA) loadings is based on the nominal stress approach, also called classifi-
cation method. The fatigue verification can be based: 1) On the constant
amplitude fatigue limit (CAFL) or 2) On damage accumulation rule, having
assumed an S-N curve formulation below the CAFL. The most largely used
rule is the Haibach’s rule [1], which considers a S-N curve with a reduced
slope, m2 = 2m1 + 1 below the CAFL (see Figure 1).
In this paper, we will focus on S-N curves under normal stress ranges, but
similar developments can also be made for shear stress ranges.

1.1. S-N curves for constant amplitude loadings

Within the CAFL-based verification, the choice of the constant amplitude
(CA) fatigue S-N curve is of primary importance. CA S-N curves express
fatigue strength of welded joints under CA loadings by giving the fatigue
life, N , at each stress range, S, for a certain probability of survival, Ps, on
the basis of a certain confidence level. S-N curves are estimated by using
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experimental fatigue test results; however, due to the inherent randomness
in the fatigue life, a statistical treatment of experimental results is needed.

In Eurocode 3 Part 1-9 [2], median S-N curve (Ps=50%) is derived by
fitting a linear regression which has a slope m1 = −3 to the failure data
points, using a least squares (LS) analysis procedure. The characteristic S-N
curve is then derived by translating the median S-N curve on the 5% pre-
diction bound, at 2 · 106 cycles, and by arbitrarily assuming the CAFL at
5 · 106 cycles. This statistical procedure is unrealistic since it neglects im-
portant information from experimental observations by disregarding run-out
data and it arbitrarily assumes the CAFL without experimental proof. For
clarification, it is important to recall here that S-N curves in Eurocode 3
Part 1-9 [2] were established for the design of new structures. Indeed, sim-
plicity (i.e. having a set of parallel curves) was prioritized with respect to
accuracy (i.e. different curve slopes, position of the CAFL). This choice was
motivated by the need of ranking the different details according to their fa-
tigue reserve (ratio between the applied nominal stress range and the fatigue
strength at 2 · 106 cycles (FAT)), in order to quickly be able to identify the
fatigue critical locations. Limitations above, in particular when assessing
existing structures and needing more accuracy, may be overcome by using a
stochastic S-N model including aleatory CAFL and by estimating model pa-
rameters with Maximum Likelihood (ML) method. Many authors used ML
method to estimate S-N curves for fatigue experimental data-sets containing
both failures and run-outs [3, 4]. In [5] Pascual proposed a Random Fatigue
Limit (RFL) model to fit a complete experimental data-set using ML method
and to estimate median and characteristic S-N curves with Profile Likelihood
Ratio (PLR) based confidence bounds. In [6] Lassen et al. fitted the RFL
model from Pascual to two experimental data-sets of a plate with welded
attachments. In Part 3 of the JCSS Probabilistic Model Code (PMC) [7] a
ML-based approach is recommended for the estimation of S-N curves. The
epistemic uncertainty related to the model parameter vector is estimated by
using the Fisher information matrix. However, this recommended approach
is affected by the following limitations: 1) It does not specify if the CAFL
has to be considered as an aleatory variable whose parameters are included
in the model parameter vector or if it has to be considered as a deterministic
value which is arbitrarily assumed at a given number of cycles.; and 2) It
does not specify how to relate the epistemic uncertainty on the parameter fit
to the aleatory uncertainty on the fatigue life.

The existence of the CAFL is still an object of dispute; Sonsino [8] pro-
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poses a CA bi-linear S-N curve where stress range cycles below the knee
point are accounted with a slope m′1 = −22. The knee point is arbitrarily
fixed at N = 107. The slope m′1 = −22 is also arbitrarily fixed in order to
have 10% constant stress range decrease with respect to the log(N) axis for
each order of magnitude. This approach is presented as safe due to the lack
of experimental results in the high cycle fatigue (HCF) region (N ≥ 5 · 106

cycles) and the related high scatter of fatigue life in this region which does
not allow to provide experimental validation to the CA bi-linear S-N model.
For this reason the authors believe that the choice of a CA S-N model includ-
ing random CAFL seems to be the most realistic choice allowing for correct
interpretation of experimental results in the HCF region.
The RFL model proposed by Pascual, allows to overcome limitations of cur-
rent Eurocode approach but it does not give an explicit method to derive the
true p− quantile S-N curve from ML estimate of CA S-N stochastic model
parameters. Furthermore, the RFL model-based median S-N curve is not
linear and direct comparison with current standards is not straightforward.

In this article a new approach, based on the ML method and on the
Monte-Carlo Simulations (MCS) method, is proposed for estimation of me-
dian and characteristic S-N curves under CA fatigue loadings. The presented
approach is referred as ML-MCS approach.
The novel contribution of this approach allows for increasing reliability of
estimated CA S-N curves and it can be summarized in following points: 1)
Linear S-N model with random CAFL is fitted directly to experimental data;
2) p-quantiles of S-N curve, corresponding to the true (100·p%) probability of
failure, are estimated using MCS method with nested sampling of epistemic
uncertainty on the parameter fit and aleatory uncertainty on the fatigue life;
3) Linearization of ML-MCS-based characteristic S-N curves allows to make
direct comparison with current standards.

1.2. S-N curves for variable amplitude loadings

Within the damage accumulation-based verification, the choice of a reli-
able CA fatigue S-N curve is of primary importance, but it is not sufficient,
since a reliable definition of damage accumulation is also required.
The fatigue verification of welded joints under VA loadings is conventionally
based on CA S-N curves, used in combination with Miner’s linear damage
accumulation rule. According to Miner’s rule, the following condition has to
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be fulfilled for fatigue verification:

ntot∑
i=1

ni
Ni

≤ Dc (1)

where:

• ni is the number of cycles corresponding to the applied nominal stress
range, Si;

• ntot is the number of stress range levels (number of blocks in a blocked
VA load sequence or number of levels in a VA spectrum);

• Ni is the number of cycles to failure corresponding to Si;

• Dc is the critical value of the damage sum, often taken as unity.

The first critical aspect in using Miner’s rule is how to consider the influence
on the fatigue damage of the stress range cycles below the CAFL.
In Eurocode standards [9] and in IIW recommendations [10], the CA char-
acteristic S-N curve is bent at the CAFL position from the slope m1 = −3
to the slope m2 = −5; a cut-off limit is fixed at 108 cycles. The use of
the reduced (flatter) slope m2 = 2m1 + 1 = −5 has first been proposed by
Haibach [1], by assuming a continuously decreasing of the fatigue limit as a
function of the linear accumulated damage [11] (see Figure 1. A cut-off limit,
or Variable Amplitude Fatigue Limit (VAFL) is set at the value reached at
108 cycles, that is 0.405·FAT).
In AASHTO bridge design specifications [12], the CA S-N curve is extrapo-
lated below the CAFL with no slope change, but a variable amplitude fatigue
limit (VAFL) is set at CAFL/2, which is another way of dealing with all stress
ranges lower than CAFL that contribute less to fatigue damage.
Up to now, the use of the second slope m2 has not been sufficiently jus-
tified by means of VA fatigue test results; thus the influence of the stress
range cycles below the CAFL, on the fatigue damage, is still under debate
[13, 14, 15, 16, 17].

The second critical aspect in using Miner’s rule is related to the choice of
the critical value of the damage sum, Dc.
Miner and Palmgren [18] settled Dc to 1.0 by assuming that the fatigue dam-
age corresponding to each stress cycle of a VA loading sequence is the same
as that due to the same stress cycle under CA loading sequence. However,
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many studies have shown that the stress cycles of a VA loading sequences
could be more damaging than the same stress cycles under CA loading, with
the result that the Miner’s rule can be unsafe in some cases.
Existing studies [16, 19, 13, 20, 21, 22, 23, 24, 15, 25] give a qualitative
indication of influence of different VA loading spectrum parameters (load se-
quence, stress ratio, spectrum shape, loading bandwidth and block length) on
the fatigue strength of different types of welded connections; however, these
works only provide general trends and do not present a rigorous statistical
approach which allows to make inference about the reduced slope, m2, and
the critical damage sum, Dc. Moreover, they are affected by two substantial
limitations: 1) The CA S-N curves used with Miner’s rule have inaccurate
definition of CAFL and of fatigue life scatter (especially in HCF region); 2)
The approach used in these studies is qualitative and does not allow one to
formally characterize the randomness in the S-N curve variables and in the
critical damage sum variable.

In order to provide a reliable estimate of characteristic VA S-N curves
a new probabilistic scheme has been developed and integrated into the ML-
MCS approach presented in Section 1.2. The critical damage sum is modeled
as a random variable whose parameters are included in the VA S-N model
parameter vector. The slope of the characteristic S-N curve and the pa-
rameters of Dc distributions are estimated by using the new scheme which
combines ML and MCS techniques by using the CA S-N stochastic model
and the experimental data-set from VA fatigue tests.
The novel contribution of this scheme is summarized in following points:

• The slope of the S-N curve below the CAFL, m2 and the critical damage
sum Dc are validated by using VA experimental results;

• The effect of the stress range cycles below the CAFL is not arbitrarily
assumed but it’s represented by the estimated m2 and Dc;

• Loading spectrum parameters (load sequence, stress ratio, spectrum
shape, loading bandwidth and block length effects) are represented in
the variability of the Dc random variable. The representativeness of
the estimated characteristic VA S-N curve is strictly connected to the
use of realistic loading spectra having representative parameters when
experimental data-sets are produced.

1.3. Structure of the paper
The article is structured as follows:
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• in Section 2 the ML-MCS approach for estimation of characteristic CA
and VA S-N curves is presented;

• in Section 3 the application of the ML-MCS approach on two study
cases is presented;

• in Section 4 results of analysis of considered study cases are presented;

• in Section 5 results are discussed;

• in Section 6 the impact of use of the presented approach for estimation
of CA and VA S-N curves is discussed;

• in Section 7 areas of future works are identified and accurate guidelines
for future experimental tests are provided.

2. ML-MCS method

2.1. S-N curves for CA loadings

The following linear CA S-N stochastic model describes the relationship
between the nominal applied stress range, S, and the number of cycles to
failure, N , under CA loadings (see Figure 2 ):

Y =
m0 +m1X

H(X − V )
+ ε(0, exp(σ)) (2)

where: Y is the natural logarithm3 of the number of cycles, N ; X is the
natural logarithm of the nominal applied stress range, S; m0 is the intercept
of the S-N curve in the log(S-N) plane; m1 is the slope of the S-N curve;
H(·) is the unit step function; V is the natural logarithm of the CAFL; and
ε is the error term, which is assumed to be normally distributed with mean
equal to 0 and standard deviation equal to exp(σ). From the last assump-
tion it follows that the difference between Y and its mean E(Y ) is normally
distributed with mean equal to 0 and standard deviation equal to exp(σ).
V is a random variable following a Normal or an Extreme Value (EV) dis-

tribution with probability density function (pdf) equal to fV (v, µV , σV ) =

3Natural logarithms are preferred since they are mathematically less heavy to manip-
ulate
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S

N (m0 +m1 · (ln(S)), exp(σ))

N (µV , exp(σV ))

Figure 2: Median CA S-N curve with model parameters (case of V = N )

1
exp(σV )

φV

(
v−µV

exp(σV )

)
, where φV is either the standardized Normal pdf or the

standardized EV pdf.
The log-fatigue life, Y , is a random variable following a Normal distribution
with pdf equal to fY (θ; y, x) =

∫ x
−∞

1
exp(σ+σV )

φY |V (θ; y, x)φV (θ; v) dv, where

φY |V is the standardized Normal pdf and θ = (m0,m1,m2, σ, µV , σV ) is the
CA stochastic model parameter vector. The pdf fY expresses the probability
of having a failure at Y = y for an applied stress range equal to exp(x). The
probability of having a failure at Y ≤ y is given by the cumulative distribu-
tion function (cdf), FY (θ; y, x) =

∫ x
−∞

1
exp(σV )

ΦY |V (θ; y, x)φV (θ; v) dv, where
ΦY |V is the standardized Normal cdf. Since there are no closed forms of fY
and FY , they have to be evaluated numerically.
The sample log-Likelihood is related to the pdf and the cdf of log-fatigue life
Y as follows:

nLL(θ) = −
nf∑
i=1

ln (fY (θ; yi, xi))−
nr∑
i=1

ln (1− FY (θ; yi, xi)) (3)

where (xi, yi)|i=1,...,ntot is the experimental data-set, nf is the number of fail-
ures and nr is the number of run-outs. The sample log-Likelihood, L(θ),

11



expresses the probability of observing (y1, . . . , yntot), at log-stress ranges
(x1, . . . , xntot) for a given model parameter vector, θ.
The ML estimate θ̂ of θ is the model parameter vector which minimizes the
negative sample log-Likelihood, nLL(θ). Under some regularity conditions,
ML estimators have asymptotic normality property [26]: as the sample size
increases, the distribution of θ tends to the Normal distribution with mean
equal to θ̂ and covariance matrix, ρ, equal to the inverse of the observed

Fisher Information matrix, I(θ̂)−1.
The new ML-MCS scheme presented in this paper allows for comput-

ing the p-quantile, yp(x̃), of the fatigue log-life, at the stress range, exp(x̃),
through following steps:

1. The p-value is chosen, with P t
f = p.

2. The parameter ηsam (sample size, typically 1 · 105) is chosen.

3. The sample θi|i=1...ηsam is generated from the multivariate normal distri-

bution N
(
θ̂, ρ
)

; then, y (θi, x̃) |i=1...ηsam , v (θi) |i=1...ηsam are sampled by

using the sampled θi|i=1...ηsam . The epistemic uncertainty of S-N model
parameters is taken into account in the θi|i=1...ηsam sampling, while the
aleatory uncertainty of the CAFL and the aleatory uncertainty of the
fatigue life are taken into account in the y(θi, x̃)|i=1...ηsam , v (θi) |i=1...ηsam

sampling.

4. For each element of the sample, the probability Pfi (yp(x̃)) is computed:

Pfi (yp(x̃)) =

{
0 if y (θi, x̃) ≥ yp(x̃) or v (θi) ≥ x̃

1 if y (θi, x̃) < yp(x̃) and v (θi) < x̃

5. The objective function, O (yp(x̃)), is built:

O (yp(x̃)) =

[
(
∑ηsam

i=1 Pfi (yp(x̃)))

ηsam
− P t

f

]2

It is noted that the objective function expresses the square deviation
of the expected value of the S-N stochastic model-based probability of
failure from the p−value.

6. The p-quantile of the fatigue log-life, at stress range exp (x̃),is computed
by minimizing the objective function, O (yp(x̃)):

ŷp(x̃) = argmin
yp(x̃)

(O(yp(x̃)))
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ln(N) = a.05 +m1 · ln(S)

ln(N) = m0 +m1 · ln(S)

exp(v.05)

exp(µV )

Median curve
True 0.05 quantile curve
Linearized 0.05 quantile curve

Figure 3: ML-MCS-based median, 0.05 quantile and linearized 0.05 quantile S-N curves

The 0.05 quantile S-N curve, obtained with the scheme above, represents
ML-based characteristic CA S-N curve. Since ML-based characteristic S-N
curve is non-linear (see Figure 3), a linearization scheme is proposed here for
direct comparison with characteristic S-N curves from standards:

1. A straight line with slope equal to m̂1 (ML estimate of m1 parameter)
and passing through the true 0.05 quantile of the fatigue life at the
maximum tested stress range, is drawn;

2. The line above is intersected with the horizontal line representing the
true 0.05 quantile of the CAFL distribution.

The ML-MCS-based linearized characteristic S-N curve is shown in Figure 3.

2.2. S-N curves for VA loadings

The S-N curve under VA loadings (Equation 4) and the fatigue failure
condition (Equation 5) describe the VA S-N stochastic model:

Y =

{
m0 +m1X + ε (0, exp(σ)) , for X > V
m0 + V∆m+ (m1 −∆m)X + ε (0, exp(σ)) , for X ≤ V

(4)
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ntot∑
i=1

ni
exp (Y (xi))

= Dc (µD, σD) , if max(xi) > V (5)

wherem0 andm1 are the intercept and the slope of the S-N curve; ε (0, exp(σ))
is the error term; V (µV , σV ) is the natural logarithm of the CAFL4; ∆m =
m1 − m2, where m2 is the slope of the S-N curve below the CAFL; and
Dc (µD, σD) is the critical damage sum. Dc is a random variable following
a log-Normal (conventional choice) or a Weibull distribution with location
parameter equal to µD and scale parameter equal to σD.

The VA S-N stochastic model is defined by the model parameter vector
Θ = (θ, µD, σD)|∆m and by the covariance matrix Σ(Θ).
The generic VA fatigue data-set is denoted as follows:

($t, yt) |t=1...nts (6)

where $t is the tth stress range spectrum, yt is the natural logarithm of
number cycles to the end of the tth test and nts is the total number of tests.
The damage, dt, associated with the tth test, is:

dt (θ,∆m) =

ntot1∑
i1=1

ni
exp (Y (m0,m1, σ;xi))

+

ntot2∑
i2=1

nj
exp (Y (m0,m1, σ, V (µV , σV ),∆m;xj))

(7)
where ntot1 and ntot2 are respectively the number of stress range cycles above
the CAFL and below the CAFL in the spectrum $t.
The fatigue failure condition is:

dt (θ,∆m) = Dc (µD, σD) (8)

where the critical damage sum, Dc, is a random variable following a log-
Normal or a Weibull distribution, with parameters µD and σD.
The new ML-MCS scheme presented in this paper allows for computing pa-
rameters µD, σD and ∆m, through following steps:

1. The experimental VA fatigue data-set is re-sampled ηres time. The re-
sampled experimental data-set is:

($t, yt) |t=1,...,nts·ηres

4m0,m1, σ, µV , µV are defined in the CA S-N stochastic model
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2. One accumulated damage sample dt|t=1,...,nts·ηres is generated by using
the re-sampled experimental data-set ($t, yt) |t=1,...,nts·ηres and by sam-
pling S-N curves from the CA S-N stochastic model. When sampling
S-N curves, at each step one vector θ̃k is sampled from the CA S-N

stochastic model
[
θ, ρ
]
, then, one S-N curve is sampled by using the

sampled θ̃k. The epistemic uncertainty of S-N model parameters is
taken into account in the θ̃k sampling, while the aleatory uncertainty
of the CAFL and the aleatory uncertainty of the fatigue life are taken
into account in the S-N curve sampling. Re-sampling of the VA-fatigue
data-set allows for taking into account the effect of loading spectrum
parameters on the uncertainty of critical damage, Dc.
For a given value of parameter ∆m̃ the negative log-Likelihood of the
sample dt|t=1,...,nts·ηres is computed as follows:

nLLk (µDk
, σDk

) |∆m̃ = −
ηres∑
j=1

[
nf∑
t=1

ln (fD (µDk
, σDk

,∆m̃; dt)) +

nr∑
t=1

ln (1− FD (µDk
, σDk

,∆m̃; dt))

] (9)

where nf is the number of failures, nr is the number of run-outs, fD
is the pdf of the random variable Dc and FD is the cdf of the random
variable Dc.

3. ML estimates of parameters µD and σD are computed by minimizing
the negative log-Likelihood of the re-simulated sample:

(µ̂D, σ̂D)k = arg min
µDk

,σDk

(nLLk(µDk
, σDk

)|∆m̃)

4. Steps 1-3 are iterated ηiter times.
The G matrix and the L vector are built:

G = [(θ)k (µ̂D)k (σ̂D)k]|∆m̃ for k = 1, . . . , ηiter

L =
[(

ˆnLL
)
k

]∣∣∣
∆m̃

for k = 1, . . . , ηiter

5. Under the assumption of asymptotic normality of ML estimators5 µ̂D, σ̂D, ˆnLL,
it is observed that: 1) The matrix G contains niter realizations of the

5This hypothesis is verified by using probability plots
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multivariate Normal random variable (θ, µ̂D, σ̂D); and 2) The vector L
contains ηiter realizations of the Normal random variable ˆnLL.
For a given value of parameter ∆m̃, the VA S-N model parameter vec-
tor, Θ, and the covariance matrix, Σ(Θ)are computed as follows:

Θ (∆m̃) = E
[
G
]∣∣

∆m̃

Σ (∆m̃) = E
[(
G− E

(
G
))
·
(
G− E

(
G
))T]∣∣∣

∆m̃

The mean of the ˆnLL distribution is indicated as ˆnLL.

6. Steps 1-5 are repeated for different values of ∆m̃. The ML estimate of
the parameter ∆m is chosen as the value which minimizes the mean of
the ˆnLL distribution6:

∆m̂ = argmin
∆m̃

(
ˆnLL(∆m̃)

)
The ML estimate of the VA S-N model parameter vector and the co-
variance matrix are:

Θ̂ = Θ (∆m̂)

Σ = Σ (∆m̂)

A sensitivity study with respect to the relative variation in ˆnLL is performed
in order to determine the parameters ηiter and ηres that have to be used in

the ML-MCS scheme described above. Since the ˆnLL is not a deterministic
parameter, the minimum search algorithm includes a Box-plot test to ensure

that ˆnLL (∆m̂) is lower than ˆnLL (∆m̂± 1) at 5% significance level. The
ML-MCS based characteristic S-N curve is defined as follows:

y.05 =

{
a.05 + m̂1x, for x > v.05

a.05 + v.05∆m̂+ (m̂1 −∆m̂)x, for x ≤ v.05
(10)

The characteristic S-N curve in Equation 10 has to be used in combination

6The choice of computing different Θ(∆m̃) vectors by assuming different values of ∆m̃

(steps 1-5) and then to proceed in searching for the value ∆m̂ which minimizes ˆnLL(∆m̂)
(step 6) was made because the initial choice of including ∆m in the model parameter
vector did not work in terms of numerical optimization
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Figure 4: ML-MCS-based VA characteristic S-N curve and re-scaled VA characteristic S-N
curve

with following damage accumulation rule:

ntot∑
i=1

ni
exp(y.05 (xi))

≤ dc,.5, with dc,.5 = F−1
D (0.5, µD, σD) (11)

where F−1
D is the inverse of the cdf of the critical damage, Dc.

The ML-MCS-based VA characteristic S-N curve has to be re-scaled for direct
comparison with VA characteristic S-N curves from the standards, which
consider dc,.5 = 1.0.
The ML-MCS-based re-scaled VA characteristic S-N curve (see Figure 4) is
defined as follows:

yr.05 =

{
a.05 − ln (1/dc,.5) + m̂1x, for x > v.05

a.05 − ln (1/dc,.5) + v.05∆m̂+ (m̂1 −∆m̂)x, for x ≤ v.05
(12)

Three cases are considered for the cut-off stress range, Sco: 1) No cut-off
stress range; 2) Cut-off stress range at 14.6 MPa, which corresponds to the
cut-off stress range of the lowest FAT category in EN 1993-1-9; 3) Cut-off
stress range at 50% of the CAFL, according to [12, 27].
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3. Study cases

The CA S-N stochastic model is fitted to two different fatigue data-sets:

1. From CA fatigue testing of 29 welded in-plane gussets having attach-
ment length, L ≤ 150mm (see Appendix A). This detail is classified as
FAT40 according to EN1993-1-9 [2], as FAT 50 (with CAFL=29 MPa)
according to IIW recommendations [10], and as FAT56 (with CAFL=31
MPa) according to AASHTO bridge design specifications [12];

2. From CA fatigue testing of 26 end-welded cover plate beams hav-
ing beam flange thickness, tf = 9.78 mm and cover-plate thickness,
13.1 mm ≤ tc ≤ 14.3 mm (see Appendix A). This detail is classified as
FAT50 according to EN1993-1-9 [2]. Since the CA experimental data-
set considered has not the same classification as the VA experimental
data-set (FAT45), the observed stress ranges Si are reduced by a factor
(45/50=0.9) to account for size effect and then to be consistent with
the VA experimental data-set detail classification. Note that the very
same detail is classified as FAT 50 (with CAFL=29 MPa) according
to IIW recommendations [10], where the influence of tc and tf is not
taken into account, and as FAT 40 (with CAFL=18 MPa) according
to AASHTO bridge design specifications [12], where the influence of tc
and tf is stronger than in Eurocode standards.

These data-sets are reported, with some differences/errors, in the Commen-
tary to Eurocode 3 [2]. Errors above are corrected in Appendix A. The CA
characteristic S-N curves were computed for both details by using the ML-
MCS approach presented in Section 2.1 and compared to the characteristic
S-N curves from current standards.

The parameters ∆m,µD, σD of the VA stochastic model were estimated
by fitting the following VA experimental data-sets:

1. From VA fatigue testing of 21 welded in-plane gussets, under 9 different
three-blocks stress range spectra with a block length ranging between
800 and 152 · 103 cycles and constant relative damage (Sm1

i · ni/Smax)
(ICOM tests, [25]). (see Appendix B) The attachment length, L, is
equal to 150 mm;

2. From VA fatigue testing of 32 end-welded cover plate beams, under
5 different wide-band Rayleigh-type stress range spectra with a block
length ranging between 1001 and 10001 cycles [13] (see Appendix B).
The thickness of the beam flange and of the cover plate is 25.4 mm.
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Parameter ML estimate
V = N

ML estimate
V = EV

MLE St.Dev. MLE St.Dev.
m0 25.770 0.945 25.804 0.954
m1 -2.666 0.209 -2.674 0.211
σ -1.048 0.144 -1.048 0.144
µV 3.864 0.127 3.966 0.104
σV -1.667 0.498 -1.712 0.590

ˆnLL 12.34 13.52

Table 2: In-plane gusset, CA S-N model parameters

Since the estimated CA S-N stochastic models were used for ML-MCS es-
timation of VA S-N stochastic model, VA details were chosen so that they
consistently have the same Eurocodes, IIW and AASHTO FAT classification
of the CA details.
VA characteristic S-N curves were computed for both details by using ML-
MCS approach presented in Section 2.2 and compared to characteristic S-N
curves from current standards.

4. Results

4.1. CA S-N curves

The ML estimate and the standard deviation of the CA S-N model vector
parameters are shown in Table 2 for the in-plane gusset data-set and in Table
3 for the cover plate data-set. The correlation coefficients cij = ρij/

√
ρiiρjj

of the CA S-N model are shown in Table 4 for the in-plane gusset data-set
and in Table 5 for the cover plate data-set.

ML-MCS-based characteristic CA S-N curves are shown in Figure 7 for
the in-plane gusset detail and in Figure 8 for the cover plate detail. For both
details the case V = N , having the best ML fit, is presented. Comparison
with characteristic S-N curves from standards is also shown. It is remarked
that the MCS scheme used for estimation of characteristic S-N curves takes
into account both: 1) The epistemic uncertainty of S-N model parameters;
and 2) The aleatory uncertainty of the CAFL and of the fatigue life. Nested
sampling of the epistemic uncertainty and of the aleatory uncertainty allows
for computing true p−quantiles of the fatigue life.
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Parameter ML estimate
V = N

ML estimate
V = EV

MLE St.Dev. MLE St.Dev.
m0 28.657 2.852 28.775 2.920
m1 -3.416 0.786 -3.448 0.804
σ -0.544 0.197 -0.540 0.199
µV 3.451 0.0577 3.540 0.0679
σV -1.623 0.408 -1.592 0.440

ˆnLL 24.47 24.74

Table 3: Cover plate, CA S-N model parameters

c =



1.00 −1.00 0.00 −0.06 0.06
... 1.00 −0.00 0.05 −0.06
...

... 1.00 −0.00 0.00
...

...
... 1.00 −0.62

...
...

...
... 1.00


Table 4: In-plane gusset, CA S-N model correlation matrix, (V = N ) case

c =



1.00 −1.00 0.07 −0.05 0.06
... 1.00 −0.07 0.05 −0.06
...

... 1.00 −0.04 0.04
...

...
... 1.00 −0.03

...
...

...
... 1.00


Table 5: Cover plate, CA S-N model corr. matrix, (V = N ) case
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Figure 5: Influence of the aleatory uncertainty of the fatigue life and of the CAFL, in-plane
gusset

In order to assess the influence of the aleatory uncertainty following analysis
was carried out, by considering the cover-plate and the in-plane gusset data-
sets:

1. 106 S-N curves were sampled by only considering the epistemic un-
certainty of S-N model parameters; two vectors of size (106 × 1) were
created by taking from each sampled curve the CAFL and the num-
ber of cycle N∗ corresponding to the fatigue strength at 2 · 106 cycles
according to the median S-N curve (S = 68.3 MPa for the in-plane
gusset, while S = 69.9 MPa for the cover-plate). These vectors were
fitted with two log-Normal distributions (CAFL and N∗ log-Normal
distributions);

2. Step 1 was repeated by considering both the epistemic uncertainty of
S-N model parameters and the aleatory uncertainty of the fatigue life
and of the CAFL;

3. Log-Normal distributions of the CAFL and of N∗ estimated at Step
1 were compared to log-Normal distributions of the CAFL and of N∗

estimated at Step 2, in terms of the coefficient of variation (see Figures
5 and 6).

4.2. VA S-N curves

VA S-N models were estimated for the two considered details, using the
ML-MCS scheme presented in Section 2.2.
A sensitivity study was carried out for choosing the sampling parameters
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Figure 6: Influence of the aleatory uncertainty of the fatigue life and of the CAFL, cover-
plate
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Figure 7: In-plane gusset, characteristic S-N curves
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Figure 8: Cover plate, characteristic S-N curves

ηiter = 5000, ηres = 100 to be used for the estimation of VA S-N models.
Three cut-off cases (No cut-off, Sco =14.6 MPa, Sco = 0.5·CAFL) and two
critical damage sum distributions (Dc = logN , Dc = W) were considered.

The combination ηiter = 5000, ηres = 100, which gives a variation in ˆnLL
lower than 0.2%, was chosen for the estimation of VA S-N models.
The ML estimate of the slope range, ∆m̂, was estimated by producing
notched box plots at the several values of ∆m and by choosing the low-
est n̂LL(∆m) with 5% significance level (see Figures 9 and 10).
The ML estimates of parameters µD, σD, ∆m and the value of the negative

log-Likelihood at ML estimates, for the in-plane gusset data-set, are shown in
Table 6. The combination (no cut-off/Dc = logN ) gives the best fit in terms
of negative log-Likelihood. Between the two cut-off cases, the case Sco = 14.6
MPa gives the best fit in terms of negative log-Likelihood. Correlation coeffi-
cients between model parameters are shown in Table 7. Figure 11 shows the
ML-MCS-based VA characteristic S-N curve for the in-plane gusset detail.
The combination no cut-off / Dc = logN , which gave the best ML fit of VA
test results, was chosen. The slope m2 is equal to -7.7 and the median value
of the critical damage sum, dc,.5, is equal to 0.74. The ML-MCS-based VA
S-N curve was re-scaled according to Equation 12 for direct comparison with
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Figure 10: Cover plate, negative log-Likelihood notched box plot, no cut-off / Dc =W
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Cut-off case / Dc m̂o m̂1 σ̂ µ̂V σ̂V µ̂D σ̂D ∆m̂ ˆnLL

no cut-off /
logN

25.77 -2.67 -1.05 3.86 -1.67

-0.31 0.60 5 1009
W 1.00 1.48 5 1343

14.6 MPa /
logN -0.30 0.60 5 1009
W 1.00 1.48 5 1343

0.5·CAFL /
logN -0.26 0.61 5 1117
W 1.07 1.40 5 1486

Table 6: In-plane gusset, VA S-N curve parameters

c =



1.00 −1.00 0.00 −0.05 0.06 −0.01 0.01
... 1.00 −0.00 0.05 −0.06 0.00 0.00
...

... 1.00 −0.01 0.01 0.01 0.02
...

...
... 1.00 −0.62 −0.08 −0.02

...
...

...
... 1.00 0.04 0.02

...
...

...
...

... 1.00 0.37
...

...
...

...
...

... 1.00


Table 7: In-plane gusset, VA S-N model correlation matrix, no cut-off / Dc = logN
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Figure 11: In-plane gusset, MCS-ML characteristic VA S-N curve, no cut-off / Dc = logN

standard VA S-N curves (see Figure 12). The ML estimates of parameters
µD, σD, ∆m and the value of the negative log-Likelihood at ML estimates, for
the cover-plate data-set, are shown in Table 8. The combination no cut-off
/ Dc = W gives the best fit in terms of negative log-Likelihood. Between
the two cut-off cases, the case Sco =14.6 MPa gives the best fit in terms of
negative log-Likelihood. Correlation coefficients between model parameters
are shown in Table 9. The assumption of asymptotic normality of the mul-
tivariate vector (µ̂D, σ̂D, ˆnLL) was verified for both the cover-plate data-set
and the in-plane gusset data-set, by using density and probability plots.
When observing ML-MCS-based characteristic failure damage sums for the

cover-plate data-set (see first column of Table 10), it is evident that the low-
est damage sum (third spectrum in B.15, failure at 104 · 106 cycles) lies an
abnormal distance from other damage sum values. In order to assess whether
this value can be classified as an outlier, the box-plot method was applied
to observed failure log-damage sums. Results of the analysis are shown in
Table 10: since the lowest failure log-damage sum (-2.60) exceeds the lower
outer fence (Flo), it can be classified as extreme outlier. The cover-plate
VA data-set was re-analysed by neglecting the failure point corresponding
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Figure 12: In-plane gusset, characteristic VA S-N curves

Cut-off case / Dc m̂o m̂1 σ̂ µ̂V σ̂V µ̂D σ̂D ∆m̂ ˆnLL

no cut-off /
logN

28.65 -3.42 -0.54 3.45 -1.62

0.50 1.46 7 1431
W 1.70 1.40 8 1183

14.6 MPa /
logN 0.50 0.87 4 1339
W 1.75 1.61 7 1190

0.5·CAFL /
logN 0.59 1.24 6 1482
W 2.13 1.28 8 1324

Table 8: Cover plate, VA S-N curve parameters
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c =



1.00 −1.00 0.08 −0.05 0.06 −0.03 0.01
... 1.00 −0.07 0.05 −0.06 0.02 0.01
...

... 1.00 −0.04 0.04 0.02 0.00
...

...
... 1.00 −0.03 −0.00 −0.01

...
...

...
... 1.00 0.03 −0.00

...
...

...
...

... 1.00 −0.71
...

...
...

...
...

... 1.00


Table 9: Cover plate, VA S-N model correlation matrix, no cut-off / Dc =W

log(D) Quartiles Fences

−3

−2

−1

0

1
lo

g−
da

m
ag

e

1.25

Q3

Q1

IQ

=
=
=

1.25
0.88
0.36

Fuo
Fui
Fli
Flo

=
=
=
=

2.34
1.79
0.34
−0.21

1.25
1.25
1.25

-2.60
0.92
0.92
0.84

Table 10: Cover plate, outlier disqualification

to the classified outlier: the ML estimates of parameters of Dc distribution
and the ML estimate of slope change, ∆̂m are shown in Table 11. Figure
13 shows the ML-MCS-based VA characteristic S-N curve for the cover-plate
detail. The combination no cut-off / Dc = logN , which gave the best ML
fit of VA test results after outlier disqualification, was chosen. The slope m2

is equal to -9.4 and the median value of the critical damage sum, dc,.5, is
equal to 1.31. The ML-MCS-based VA S-N curve was re-scaled according to
Equation 12 for direct comparison with standard VA S-N curves (see Figure

Outlier disqualification Cut-off case Dc µ̂D σ̂D ∆m̂ n̂LL
no no cut-off W 1.70 1.40 8 1183
yes no cut-off logN 0.27 0.58 6 934

Table 11: Cover-plate, outlier disqualification: models comparison
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Figure 13: Cover plate, MCS-ML characteristic VA S-N curve, no cut-off / Dc = logN

14). Figure 15 shows the ML-MCS-based pdfs of Dc, for the in-plane gusset
detail and the cover-plate detail; comparison with conventional logN (0, 0.3)
damage distribution (red shaded pdf) is also provided.

5. Discussion

In this paper a new probabilistic approach for estimation of CA and VA
S-N curves of welded components was presented, with application to two
study cases.

Concerning CA S-N curves, results presented in Section 4.1 provide fol-
lowing indications:

• For both details, modeling the CAFL as V = N in ML-MCS based
S-N curves, gives a better fit in terms of sample log-Likelihood, with
respect to the case (V = EV) (see Tables 2 and 3);

• For both details, the intercept, m0, and the slope, m1, of the ML-MCS
based S-N curves are fully linearly correlated. Also, for both details
there is no linear correlation between: 1) The S-N curve variance pa-
rameter, σ, and all other parameters; and 2) The S-N curve parameters
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Figure 14: Cover plate, characteristic VA S-N curves, no cut-off / Dc = logN

m0, m1 and the log-CAFL parameters µV , σV . Furthermore, the cover-
plate detail shows no linear correlation between the location parameter
and the scale parameter of the log-CAFL probability distribution while
the in-plane gusset data-set shows moderate negative linear dependency
between these two parameters (see Tables 4 and 5);

• The study of the epistemic and aleatory randomness shows the strong
influence of the aleatory randomness of the fatigue life and of the CAFL,
respectively on the N distribution (the coefficient of variation increases
from 0.09 to 0.38 for the in-plane gusset and from 0.46 to 0.86 for the
cover-plate, see Figures 5 and 6) and on the CAFL distribution (the
coefficient of variation increases from 0.13 to 0.28 for the in-plane gusset
and from 0.06 to 0.24 for the cover-plate, see Figures 5 and 6)

• The ML-MCS characteristic S-N curves for two considered details were
linearized for direct comparison with current standards. Eurocode
1993-1-9 standards, AASHTO bridge design specifications and IIW rec-
ommendations provide estimation of fatigue strength in the FL region
(N< 5 ·106 cycles) which is similar to the estimation based on ML-MCS
approach (see Figures 7 and 8).
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Figure 15: ML-MCS based pdfs of Dc. Shaded red is the pdf of logN (0, 0.3) distrib.

A larger difference can be observed in the HCF region: for the cover
plate detail both Eurocode and AASHTO-based S-N curves provide
unsafe estimation of the CAFL and of the knee point (with significant
amount of experimental failure points lying below the CAFL), while the
AASHTO-based S-N curve provides over-conservative estimation of the
CAFL (see Figure 8); for the in-plane gussets all standards provide very
similar estimation of CAFL (see Figure 7);

• The assumption of having the knee point at a number of cycles which
increases as the fatigue strength at 2 million cycles decreases (as as-
sumed in AASHTO specifications) seems to be confirmed by estimated
ML-MCS S-N curves (in-plane gusset has FAT= 54 and knee point at
9.8 · 106 cycles, while the cover plate has FAT= 46 and knee point at
2.7 · 107 cycles). This has to be confirmed by further experimental
results.

Concerning VA S-N curves, results presented in Section 4.2 provide fol-
lowing indications:

• The estimates of VA S-N stochastic model for both in-plane gusset and
cover-plate data-sets (see Tables 6 and 8) show that the VA S-N curve
without stress range cut-off maximizes the Likelihood information: the
modeling of a cut-off at 14.6 MPa (lowest Eurocode FAT detail) and a
cut-off at 0.5·CAFL, in conjunction with m2 << −3, are not supported
by VA experimental results. Also, this indicates that experimental try-
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outs with lower cut-off values should be tried. Indeed, Baptista [25]
found experimentally on in-plane gusset detail a cut-off limit;

• For the in-plane gusset data-set, the graph ˆnLL − ∆m shows that
Dc = logN with ∆m̂ = 5 gives the best fit in terms of Likelihood (see
Figure 9. For the cover plate data-set, the analysis of experimental
points by using box-plot method allowed to classify one failure points

as a extreme outlier: after outlier disqualification, the graph ˆnLL−∆m
shows that Dc = logN with ∆m̂ = 6 gives the best fit in terms of
Likelihood (see Table 11). The disqualification of the outlier point does
not affect the median value of Dc distribution (which remains equal to
1.31). These values are higher then Haibach proposition (recommended
in the Eurocode 3 Part 1-9 [9]) of ∆m = 2;

• ML fit provides support Dc = logN for both the in-plane gusset and for
the cover-plate data-sets, once disqualification of one extreme outlier
of the cover-plate data-set is made;

• The VA S-N model correlation matrix shows that there is no linear
correlation between the parameters of the S-N curve and the parameters
of the Dc distribution, for both in-plane gusset and cover plate data-
sets (see Tables 7 and 9). This seems to indicate that the location and
the scale parameter of Dc are influenced only by the characteristics of
loading history and not by the fatigue strength of the studied detail.
Further analysis of different fatigue details is needed to confirm this
indication;

• For the cover plate data-set, where experimental results were obtained
under wide-band Rayleigh type stress range spectra having short block
lengths, the median value of Dc is equal to 1.31, while for the in-plane
gusset study case, where experimental results were obtained under 3-
blocks spectra with stress ranges cycling down from constant maximum
stress (no over-loads which could retardate the crack opening), the
median value of Dc is equal to 0.74. This seems to indicate that there
is a strong influence of loading characteristics and in particular of load
sequence on the critical damage sum distribution, which is coherent
with results from [16] and [15];

• The slope range ∆m = m1 −m2 is equal to 5 for the in-plane gusset,
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while it is equal to 6 for the cover-plate: this confirms the existence
of a second slope m2 (in disagreement with results from [13], [14], [16]
and [17]) and it seems to indicate that the influence of the loading
characteristics on the second slope m2 is small;

• Re-scaling of ML-MCS characteristic VA S-N curve at Dc = 1 allowed
for direct comparison of ML-MCS-based VA S-N curves with standard
VA S-N curves, showing that S-N curve from AASHTO specification is
highly over-conservative for the cover plate data-set at all stress ranges
(see Figure 14), and that all standard S-N curves (Eurocode, IIW,
AASHTO) are slightly over-conservative at stress ranges lower than 30
MPa, for the in-plane gusset data-set (see Figure 12);

6. Conclusions

In this paper a new ML-MCS approach was proposed for estimation of: 1)
CA S-N curve of welded joints; 2) VA S-N model of welded joints, including
both the VA S-N curve and the critical value of damage sum, which are used
in Miner’s equation when the fatigue life of a welded joint under the effect
of VA loading is computed.
The novel contribution of the ML-MCS approach consists in: 1) Using MCS
to find true p-quantiles of CA S-N curves; 2) Re-simulating VA experimental
fatigue tests and in estimating the VA S-N curve second slope, m2, and the
critical damage sum, Dc, with ML method. Linearization method is also
proposed for direct comparison of ML-MCS characteristic S-N curves with
current standards.

The ML-MCS approach constitutes a powerful tool for re-definition of
standard CA S-N curves of welded joints, for both new structures as well as
existing structures. However, since for new structures the simplicity is pri-
oritized over the accuracy (see Section 1.2), the estimation of more accurate
S-N curves is more important for existing structures, where reliable assess-
ment of remaining fatigue life is of primary importance. Use of ML method
allows to use run-out data for estimation of S-N curves. The novel idea of
using MCS technique to estimate true p-quantiles of fatigue life gives more
insight into realistic estimation of CAFL and knee point position.
According to considered study cases, arbitrarily fixing the CAFL at fixed
number of cycles lead to an un-safe assumption which could be extremely
dangerous for fatigue verifications based on CAFL.
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It is recalled that the effectiveness of the proposed ML-MCS approach is
conditioned to the use of experimental CA data-sets which have significant
information in the HCF region.

The ML-MCS approach constitutes a powerful tool for re-defining the
second slope of S-N curves, m2, as well as the critical value of the damage
sum used in Miner’s rule, Dc. The novel idea of re-simulating experimental
VA fatigue tests and to estimate m2 and Dc with ML method allows one to:
1) Give experimental support to the amount of the reduction of S-N curve
slope, ∆m = m1−m2; 2) Give experimental support to the choice of proba-
bility distribution of Dc.
The considered study cases show that the ML-MCS approach gives the most
realistic estimation of failure damage sum with respect to existing standards.
It is also noted that there is strong influence of load sequence on Dc proba-
bility distribution; it follows that realistic load histories should be used for
producing VA experimental results, when the proposed ML-MCS approach
is used for re-definition of m2 and Dc in current standards.

7. Future works

The results of this paper provide a strong foundation for future work in
fatigue verification of welded connections, in particular for existing struc-
tures. Results have shown that there is a need of more CA and VA fatigue
experimental results in the HCF region. Three areas of future work have been
identified as follows: 1) Re-definition of CA S-N curves in Eurocode stan-
dards for existing structures; 2) Re-definition of Miner’s rule in Eurocode
standards; and 3) Inclusion of the bi-linear CA S-N model without CAFL
into the ML-MCS approach.

In order to re-define CA S-N curves of welded joints in Eurocode stan-
dards, a fatigue test program should be carried out according to following
steps: 1) Choice of details to include in the re-definition of Eurocode stan-
dards (i.e. longitudinal attachment, transversal attachment, cover plate, T-
joint, . . . ); 2) CA fatigue testing of selected details. It is recommended to
use stress ranges varying from 1.5 ·FATEN to 0.5 ·CAFLEN, where FATEN and
CAFLEN are respectively the FAT and the CAFL of tested details, according
to EN 1993-1-9. A minimum number of three data points is required for
each stress range level. Experimental tests in which N = 108 will be reached
without failure will be classified as run-outs. Use of the scheme recommended
above will ensure significant CA experimental results in the HCF region; 3)
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Estimation of CA S-N stochastic models as well as characteristic S-N curves
of considered details, using ML-MCS approach.

Once the CA S-N stochastic model has been estimated for the selected
details, a VA fatigue test program needs to be carried out in order to re-
define S-N curve second slope, m2, and critical damage, Dc. The following
steps should be followed:

1. VA fatigue testing of selected details. Due to the strong influence of
load history on the critical damage sum Dc, it is recommended to use
realistic loading spectra for VA tests; one possibility would be to re-
peatedly apply real road bridge recorded load histories to to the tested
specimens.
It is recommended to use a number of cycles, ñtot, for each loading
spectrum, such that:

smax∫
exp(µ̂V )

ñtot · f̃S(s)

N(s)
ds ≤ 3.0 (13)

where f̃S(s) is the loading spectrum, smax is the maximum stress range
of the loading spectrum, µ̂V is the ML estimate of median value of
log-CAFL and N(s) is the number of cycles to failure according to me-
dian CA S-N curve7. Experimental tests in which ntot will be reached
without failure will be classified as run-outs. Use of the scheme recom-
mended above will ensure to have significant VA experimental results
in the HCF region.
It is recommended to use stress range loading spectra which have ς
varying from 0.5 to 0.05,where ς is the percentage of stress range cy-
cles exceeding the characteristic value of the ML-MCS based CAFL. A
minimum number of five different load spectra should be used and a
minimum number of three data points is required for each stress range
loading spectrum;

7According to results presented in Section 4, dc = 3.0 is higher than the 0.9 quantile of
Dc distribution for both cover-plate and in-plane gusset study cases: the choice of dc = 3.0
in Equation 13 will then ensure to have a significant run-out if the experimental test ends
without a failure after ñtot cycles
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N (m0 +m1 · (ln(S)), exp(σ))

N (m0 + µXk
(22 + m1)− 22X, 22 · exp(σXk

))

N

S

Figure 16: Bi-linear S-N curve without CAFL

2. Estimation of VA S-N stochastic models of considered details, which
include m2 = (m1 −∆m) and Dc, using ML-MCS approach.

The ML-MCS approach presented in this paper is based on linear CA
S-N curve having random CAFL. The existence of CAFL is still a topic for
debate; Sonsino [8] suggests that CAFL does not exist and that stress range
cycles below the knee point should be accounted with a slope m′1 = −22. The
knee point is arbitrarily fixed at 107 cycles; due to the lack of experimental
results in the HCF region, m′1 = −22 is arbitrarily chosen in order to have
a 10% constant stress range decrease with respect to the log(N) axis. The
ML-MCS approach can be adapted to a bi-linear S-N model having a slope
m′1 = −22 for stress range cycles below the knee point. The bi-linear model
should be defined as follows:

Y =

{
m0 +m1X + ε (0, exp(σ)) , for X > Xk

m0 + µXk
(22 +m1)− 22X + ε (0, 22 · exp(σXk

)) , for X ≤ Xk

(14)
where µK and exp(σK) are respectively the location and the scale parameters
of the Xk random variable, which represents the natural logarithm of the
stress range at the knee point (see Figure 16).
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Thereafter, the model parameter vector, θ, relative to the S-N model with
random CAFL, should be transformed as follows:

θ = (m0,m1, σ, µV , σV ) → θ = (m0,m1, σ, µXk
, σXk

) (15)

As for the case of the S-N model with CAFL, the ML-MCS approach has
the advantage of estimating the knee point instead of arbitrarily assuming
its position.
Future work is required for: 1) Implementing the CA bi-linear S-N model
into the ML-MCS approach; and 2) Validating it with experimental data-
sets which contain significant information in the HCF region.
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Appendix A. CA experimental data-sets

In this section the two analysed CA experimental data-sets are presented.
The applied stress range, S, the number of cycles to the end of the test, N ,
the test outcome, δ and the failure location are presented in Tables A.12 and
A.13. The two considered details are shown in Figures A.17 and A.18 with
relevant geometrical features.
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Figure A.17: In-plane gusset detail
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Figure A.18: Cover plate detail
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Test series S [MPa] N δi failure location

Hirt (1975)
L=100 mm

80 1922000 1 weld toe
80 1810000 1 weld toe

120 514000 1 weld toe
120 361000 1 weld toe
160 210000 1 weld toe
160 199000 1 weld toe

ICOM (2015), L=150 mm 50 3800000 1 weld toe

Kondo (2002)
L=100 mm

140 528000 1 weld toe
140 252000 1 weld toe
140 272000 1 weld toe
100 826000 1 weld toe
80 1409000 1 weld toe
80 1431000 1 weld toe
60 16142000 0 -
60 5492000 1 weld toe
60 5144000 1 weld toe
55 4049000 1 weld toe

Bae (2004)
L=150 mm

100 387000 1 weld toe
100 561000 1 weld toe
100 721000 1 weld toe
100 787000 1 weld toe
66 1000000 1 weld toe
66 1430000 1 weld toe
66 1710000 1 weld toe
66 1730000 1 weld toe
33 13430000 0 -
33 16600000 0 -
33 18630000 0 -
33 23420000 0 -

Table A.12: In-plane gusset, CA experimental data-set. δi is a binary variable which is
equal to 1 for a failure and to 0 for a run-out
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Test series S [MPa] N δi failure location

Fisher (1977)

27.6 100000000 0 -
27.6 100000000 0 -
27.6 100000000 0 -
27.6 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
32.4 34930000 1 weld toe
32.4 37714000 1 weld toe
34.5 16613000 1 weld toe
34.5 32506000 1 weld toe
34.5 8451000 1 weld toe
34.5 47293000 1 weld toe
34.5 89314000 0 -
34.5 89314000 0 -
41.4 11418000 1 weld toe
41.4 12158000 1 weld toe
41.4 4327000 1 weld toe
41.4 12158000 1 weld toe
41.4 100000000 0 -
41.4 100000000 0 -
55.2 2334000 1 weld toe
55.2 5006000 1 weld toe
55.2 4235000 1 weld toe
55.2 1351300 1 weld toe

Table A.13: Cover plate, CA experimental data-set. δi is a binary variable which is equal
to 1 for a failure and to 0 for a run-out
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Si [MPa] ni

30 3700 29600 15200 6400 152 · 103

40 2700 1560 12500 6400 2700 64 · 103 64 · 103

50 3278 1383 800 33 · 103

60 3701 1896 800 800
70
80 1562 800 800 8 · 103 8 · 103

90
100 800 800

nfail · 106 →

1.11 1.61 4.61 > 40.0 6.78 13.2 9.52 3.17 15.08
1.18 2.43 4.73 10.4 9.64 9.15 > 22.1 3.65

14.0 16.1 3.67
> 29.6

Table B.14: In-plane gusset, VA experimental data-set. The column Si represents the
stress ranges of the loading spectrum. The columns ni represent the number of cycles
associated to the stress ranges of the first column; each column of ni represents a different
spectrum. In the lower part of the table, the number of cycles to failure, nfail, are presented;
the values which are presented in the same column were obtained under the same loading
spectrum. The symbol > is used to indicate a run-out

Appendix B. VA experimental data-sets

In this section the two analysed VA experimental data-sets are presented.
The loading spectra, the number of cycles to the end of the test and the test
output are presented in Tables B.14 and B.15, whose captions explains how
to read the Table.
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Si [MPa] ni

8 170
9 73 1200

10 170 3600
11 190 1200 1600
12 237 1700 1300
13 3500 800
14 207 73 1300 900
15 800 200
16 146 600 100
17 190 300 60
18 83 200 60
19 40 237 100 10
20 60
21 16 40
22 207 20
23 5 10
25 2 146
26 1 670
27 600
28 83
29 1 300
30 40 200
31 1
32 100
33 16
34 60
35 40
36 5
37 20
38 2 10
51 1
58 1

nfail · 106 →

> 107.2 120 > 104 > 109 34.7
> 107.2 120 > 104 > 109 > 34.7
> 107.2 > 120 > 104 > 109 > 34.7
> 107.2 > 120 104 > 109 > 34.7
> 107.2 120 34.7
> 107.2 120 > 34.7

Table B.15: Cover plate, VA experimental data-set. The column Si represents the stress
ranges of the loading spectrum. The columns ni represent the number of cycles associated
to the stress ranges of the first column; each column of ni represents a different spectrum.
In the lower part of the table, the number of cycles to failure, nfail, are presented; the
values which are presented in the same column were obtained under the same loading
spectrum. The symbol > is used to indicate a run-out
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