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Zusammenfassung 

In den letzten Jahrzehnten wurden zahlreiche praktische Anwendungen von organischen 

elektronischen Bauelementen gezeigt. Aufgrund des Potenzials einer kostengünstigen 

Herstellung, ausgezeichneter Leistung und vielseitiger Funktionalitäten wie Flexibilität, 

Portabilität und Transparenz, werden sie als vielversprechende Alternativen zu anorganischen 

Halbleitertechnologien angesehen. In dieser Arbeit konzentrierte ich mich vor allem auf die 

Untersuchung einer speziellen Klasse organischer Halbleiter, Cyanin-Farbstoffen. Beginnend 

mit der Synthese von Cyaninpolyelektrolyten (Cy-Poly) und neuen Anionen wurden neue 

Funktionalitäten wie orthogonale Löslichkeit, Vernetzungsfähigkeit und 

Photosensibilisierungsfähigkeit eingeführt und die entsprechenden Materialien als aktive 

Komponenten in organischen elektronischen Bauelementen untersucht. Die Verwendung von 

Cyaninsalzen ermöglicht ein gemischtes ionisches/elektronisches Leitvermögen in festen 

organischen halbleitenden Dünnfilmen. Aufgrund der Anwesenheit von mobilen Anionen und 

ihrer Beförderung zu den jeweiligen Metallelektroden wird ein Ionenübergang erzeugt. Dies 

führt zu einer elektrochemischen Oxidation und Reduktion innerhalb des organischen 

Dünnfilms und zum Aufbau eines eingebauten elektrischen Feldes im intrinsischen Bereich 

mit Veränderung der potentiellen Energie. Die elektronische Leitfähigkeit wird in den 

dotierten Zonen erheblich verbessert, was die Ladungsinjektion an den Elektroden erleichtert. 

Der bemerkenswerte Potentialabfall im Übergangsbereich ermöglicht die Lichtemission der 

elektrolumineszenten Materialien sowie einen photovoltaischen Effekt bei der Beleuchtung 

mit weißem Licht. Ein besonderes Interesse galt der Stabilisierung ionischer Verbindungen in 

organischen elektronischen Bauelementen aus Cyanin-Farbstoffen, durch chemische 

Fixierung der ionischen Träger in der gewünschten Position. In den Bauteilen, welche die 

immobilisierbaren Phenylazid-Anionen enthalten, wurde ein unerwartetes Exiton-Quenching-

Verhalten beobachtet, das der Triplett Sensibilisierung von Trimethincyaninen auf die 

Photodekomposition von 4-Azidobenzoat-Ionen zugeschrieben wurde. 

Stichwörter: organische Photovoltaik, lichtemittierende elektrochemische Zelle, 

Photoleitfähigkeit, Triplett Photosensibilisator, Cyanin-Farbstoff, Phenylazid 
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Abstract 

Many practical applications among organic electronic devices have been demonstrated over 

the last decades. They are considered as promising alternatives to inorganic semiconductor 

technologies due to the potential of cost-effective fabrication, excellent performance and 

versatile functionalities such as flexibility, portability and transparency. In this work, I mainly 

focused on the investigation of a special class of organic semiconductors, cyanine dyes. 

Starting with the synthesis of cyanine polyelectrolytes (Cy-Poly) and novel anions, new 

functionalities such as orthogonal solubility, crosslinking capability and photosensitizing 

ability were introduced and the corresponding materials as active components in organic 

electronic devices were explored. The utilization of cyanines allows for the mixed 

ionic/electronic conduction in solid organic semiconducting thin films. Due to the presence 

of mobile anions, an ionic junction is created as a result of the ionic motion towards 

respective metal electrodes. This leads to electrochemical oxidation and reduction within the 

organic thin film and the establishment of a built-in electric field across the intrinsic region 

with potential energy shifts. The electronic conductivity is considerably enhanced in the 

doped zones, which facilitates charge injection from the electrodes. The remarkable potential 

drop in the intrinsic region enables light emission of the electroluminescent materials as well 

as a photovoltaic response upon white light illumination. A special interest was given to the 

stabilization of ionic junctions in cyanine dye organic electronic devices by chemically fixing 

the ionic carriers in the desired position. Unexpected exciton quenching behavior was 

observed in the devices containing the immobilizable phenyl azide anions, which was 

attributed to the triplet sensitization effect of trimethine cyanines on the 

photodecomposition of 4-azido benzoate ions.  

Keywords: organic photovoltaics, light-emitting electrochemical cells, photoconductivity, 

triplet photosensitizer, cyanine dye, phenyl azides 

 



Acknowledgements 

iii 
 

Acknowledgements 

I had a great honor to spend four years, which took one seventh of my life up to now, to 

pursue a PhD degree in this fantastic country Switzerland. (Un)fortunately this is going to 

come to an end. Before saying goodbye to everything here, I take this excellent opportunity 

to acknowledge all the people that have been involved in my life within this period.  

To start with, I would like to acknowledge my supervisor, Prof. Frank Nüesch, for accepting 

me as his PhD student, which initiated the whole story. He is always very kind and nice, and 

with a bit sense of humor. He regularly gives important scientific inputs during the group 

meetings and tries to offer key advice on my PhD project. Although he is quite busy, he is 

able to balance his efforts and offer opportunities to each student. It is a great pleasure for 

me to accomplish my study under his supervision.  

I would like to extend my deep gratitude to my co-supervisor, Prof. Christian Hinderling. He 

looks very energetic all the time and always smiles to everybody. He provides me with a 

spacious laboratory and a nice office, and he contributes to my PhD project significantly with 

precious ideas and fruitful discussions. Also, many thanks are given to him again for offering 

me the opportunities to undertake responsibilities for AFM and some scientific tasks in 

addition to the PhD project.  

Furthermore, I am very grateful to my group leader, Dr. Roland Hany. He is very patient and 

has an easy-going personal character. He predominantly guides my project with his solid 

knowledge and rich experience and constantly modifies the direction of my work with 

brilliant ideas to achieve our mutual goals.  

I would also like to thank my mentor, Prof. Kevin Sivula, for several helpful scientific 

discussions and nice conversations in his office or during the workshops in the Swiss 

mountains.  

Special thanks go to Prof. Andreas Lendlein (HZG, Germany), Prof. Manfred Wagner (TU Berlin, 

Germany) and Prof. Jin Xu (Xiamen University, China) for generously offering me 

recommendation letters, which were crucial for the successful enrollment at EPFL.  

I heartfelt thank all my colleagues at Empa and ZHAW who helped me with their time and 

expertise, which considerably contributed to the success of my work. Particularly Dr. Jakob 

Heier for fluorescence, profilometry and AFM measurements, Dr. Hui Zhang for initially 



Acknowledgements 

iv 
 

teaching me the fabrication and characterization of devices, Sandra Jenatsch for sharing the 

same SNF project and exploring the potential application of my dyes, Dr. Daniel Rentsch for 

NMR measurements, Dr. Mohammed Makha for lamination experiments and frequently 

transporting nitrogen tanks together with vital information exchange, Claudia Konrad and 

Fabian Deuber for their numerous little helps at the initial stage of my PhD, Beatrice Fischer 

for TGA, DSC, IR and GPC measurements, Dr. Peter Lienemann, Samuel Menzi and Jasmin 

Keist for XRF measurements, Dr. Sebastian Opitz for ESI-MS measurements, Dr. Dalin Wu, Dr. 

Manolis Tzirakis and Yongzen Tan for various chats about work, career and life during 

lunches and coffee breaks, Thibaud Fleurieau-Lintz for being the other chemist working with 

PFB anions besides me, Yeesong Ko, Simon Dünki, Anna Véron, Jean-Nicolas Tisserant, Jose 

Enrico Quinsaat, Chuyao Peng, Nicolas Leclaire, Donatas Gesevicius, Surendra Babu 

Anantharaman, Philip Caspari, Roland Steim and Anand Verma for many good moments 

together during everyday work and group events.  

I also thank the numerous friends that I have met and worked with in ACSSZ and that I have 

played with during badminton, skiing and swimming. All these people and activities 

significantly enriched my experience, brought much joy to me and made my life in 

Switzerland truly colorful.  

Last but not least, I must thank my wife, Yuting Zhang, for accompanying me in a foreign 

country. She understands me and believes in me. She spares no effort to take care of our 

little daughter, Ziyan Wang, without bothering me as far as possible. However, I feel quite 

sorry for them since I am very often not able to be with them during the evenings or over the 

weekends. Moreover, I feel shame that the first illness of my daughter in her life was because 

of me. So, be stronger, overcome various difficulties, WEILAIWOMENHUINIUBIDEBUDELIAO 

(translation: we have a bright future).  

Yes, the end is here.  

 

 

Lei Wang 

Oct. 2016 in Dübendorf 

 



Table of Contents 

v 
 

Table of Contents 

Zusammenfassung ..................................................................................................................................................... i 

Abstract ......................................................................................................................................................................... ii 

Acknowledgements ................................................................................................................................................ iii 

Table of Contents ...................................................................................................................................................... v 

List of Figures .............................................................................................................................................................. x 

List of Schemes ........................................................................................................................................................xix 

List of Tables .............................................................................................................................................................. xx 

Chapter 1: Introduction .......................................................................................................................................... 1 

1.1 Thesis Outline ................................................................................................................................................. 1 

1.2 Organic Electronics....................................................................................................................................... 3 

1.2.1 Organic photovoltaic and electroluminescent devices .......................................................... 3 

1.2.2 Synthesis and properties of organic semiconductors ............................................................. 8 

1.3 Ionic Junctions ............................................................................................................................................. 13 

1.3.1 Mixed ionic/electronic conduction in organic materials...................................................... 13 

1.3.2 Dynamic junction in organic electronic devices ...................................................................... 13 

1.3.3 Attempts towards a fixed ionic junction .................................................................................... 17 

1.4 Phenyl Azides ............................................................................................................................................... 24 

1.4.1 Photo-induced decomposition and reaction ........................................................................... 24 

1.4.2 Application for nanostructure modification ............................................................................. 30 

1.5 References ..................................................................................................................................................... 33 

Chapter 2: Synthesis of Cyanine Dyes and Polyelectrolytes ................................................................... 51 

2.1 Introduction .................................................................................................................................................. 51 

2.2 Experimental ................................................................................................................................................. 51 

2.2.1 Materials and methods ..................................................................................................................... 51 



Table of Contents 

vi 
 

2.2.2 Synthesis of Cy-Poly .......................................................................................................................... 52 

2.2.3 Synthesis of Cy-FN3 ........................................................................................................................... 54 

2.2.4 Synthesis of Cy-N3 ............................................................................................................................. 55 

2.2.5 Synthesis of Cy-MES .......................................................................................................................... 56 

2.2.6 Synthesis of Cy-PF6 ............................................................................................................................ 56 

2.3 Results and Discussion.............................................................................................................................. 57 

2.3.1 Synthesis and characterization of Cy-Poly ................................................................................ 57 

2.3.2 Synthesis of perfluorophenyl azides ............................................................................................ 61 

2.3.3 Anion exchange of cyanine dyes .................................................................................................. 62 

2.4 Conclusions ................................................................................................................................................... 66 

2.5 References ..................................................................................................................................................... 67 

2.6 Supporting Information ............................................................................................................................ 68 

2.6.1 NMR characterization for Cy-Poly ................................................................................................ 68 

2.6.2 NMR characterization for Cy-FN3 ................................................................................................ 82 

2.6.3 NMR characterization for Cy-N3 ................................................................................................... 92 

2.6.4 NMR characterization for Cy-MES ................................................................................................ 96 

2.6.5 NMR characterization for Cy-PF6 .............................................................................................. 101 

Chapter 3: Cyanine Dye Light-emitting Electrochemical Cells ........................................................... 105 

3.1 Introduction ............................................................................................................................................... 105 

3.2 Experimental .............................................................................................................................................. 107 

3.2.1 Materials and methods .................................................................................................................. 107 

3.2.2 Device fabrication and characterization .................................................................................. 107 

3.3 Results and Discussion........................................................................................................................... 108 

3.3.1 Determination of junction position and width ..................................................................... 108 

3.3.2 Photovoltaic effect of the p-i-n junction ................................................................................ 113 

3.3.3 Host-guest light-emitting electrochemical cells .................................................................. 117 



Table of Contents 

vii 
 

3.4 Conclusions ................................................................................................................................................ 119 

3.5 References .................................................................................................................................................. 120 

3.6 Supporting Information ......................................................................................................................... 124 

3.6.1 LECs with different Cy3-PF6 film thickness ............................................................................ 124 

3.6.2 Reversely biased Cy3-PF6 LECs .................................................................................................. 125 

Chapter 4: Photoconductivity in Ionic Cyanine Films ............................................................................ 126 

4.1 Introduction ............................................................................................................................................... 126 

4.2 Experimental .............................................................................................................................................. 127 

4.2.1 Device fabrication ............................................................................................................................ 127 

4.2.2 Methods .............................................................................................................................................. 128 

4.3 Results .......................................................................................................................................................... 129 

4.4 Discussion ................................................................................................................................................... 135 

4.5 Conclusions ................................................................................................................................................ 140 

4.6 References .................................................................................................................................................. 140 

4.7 Supporting Information ......................................................................................................................... 142 

Chapter 5: Visible-Light Induced Azide Decomposition in Trimethine Cyanine/Azido-Benzoate 

Films .......................................................................................................................................................................... 145 

5.1 Introduction ............................................................................................................................................... 145 

5.2 Experimental .............................................................................................................................................. 147 

5.2.1 Materials .............................................................................................................................................. 147 

5.2.2 Methods .............................................................................................................................................. 148 

5.3 Results .......................................................................................................................................................... 149 

5.3.1 Decarboxylation of fluorobenzoate anion ............................................................................. 149 

5.3.2 Thermal stability of Cy-FN3 and Cy-N3 films ........................................................................ 150 

5.3.3 Visible light induced decomposition of phenyl azide ........................................................ 152 

5.4 Discussion ................................................................................................................................................... 153 



Table of Contents 

viii 
 

5.4.1 Decarboxylation of 4-azido-2,3,5,6-tetrafluoro benzoate ................................................ 153 

5.4.2 Visible light sensitization of 4-azido benzoate ..................................................................... 154 

5.4.3 Photorelaxation of cyanine dyes ................................................................................................ 157 

5.4.4 Photolysis of azides ......................................................................................................................... 159 

5.4.5 Quenching of cyanine triplets by 4-azido benzoate .......................................................... 160 

5.5 Conclusions ................................................................................................................................................ 161 

5.6 References .................................................................................................................................................. 163 

5.7 Supporting Information ......................................................................................................................... 167 

5.7.1 NMR measurements of stored Cy3-FN3 film ........................................................................ 167 

5.7.2 ATR-IR measurements ................................................................................................................... 169 

5.7.3 Thermal stability of Cy3-N3 films at elevated temperatures........................................... 169 

5.7.4 Effect of thermal evaporation ..................................................................................................... 170 

5.7.5 White light irradiation on Na-N3 and Cy3-N3 ..................................................................... 171 

Chapter 6: Cyanine Dye Polyelectrolytes for Organic Bilayer Heterojunction Solar Cells ........ 173 

6.1 Introduction ............................................................................................................................................... 173 

6.2 Experimental .............................................................................................................................................. 175 

6.2.1 Materials and methods .................................................................................................................. 175 

6.2.2 Solar cell fabrication and characterization ............................................................................. 176 

6.3 Results and Discussion........................................................................................................................... 177 

6.3.1 Characterization of Cy-Poly thin films ..................................................................................... 177 

6.3.2 Cy-Poly/PCBM bilayer solar cells ............................................................................................... 178 

6.3.3 Hole mobility measurement ........................................................................................................ 183 

6.4 Conclusions ................................................................................................................................................ 185 

6.5 References .................................................................................................................................................. 185 

6.6 Supporting Information ......................................................................................................................... 188 

6.6.1 Absorption spectra and IPCE in the near-infrared wavelength region ....................... 188 



Table of Contents 

ix 
 

6.6.2 Electronic and ionic charges in cyanine dyes ........................................................................ 189 

Chapter 7: Conclusions and Outlook ........................................................................................................... 193 

7.1 Conclusions ................................................................................................................................................ 193 

7.2 Outlook ........................................................................................................................................................ 195 

Abbreviations and Symbols ............................................................................................................................. 197 

Curriculum Vitae .................................................................................................................................................. 203 

 

 

 

 

 

 

 

 



List of Figures 

x 
 

List of Figures 

Figure 1-1: Schematic illustration of organic bilayer or BHJ devices. .................................................. 4 

Figure 1-2: Schematic illustration of exciton dissociation process in a heterojunction solar cell.

 ......................................................................................................................................................................................... 5 

Figure 1-3: Schematic illustration of a LEC with or without an external voltage. ........................... 6 

Figure 1-4: J-V characteristics of a solar cell under dark (dotted line) or white light 

illuminated conditions (solid line). ..................................................................................................................... 7 

Figure 1-5: Chemical structures of conducting polymers PANI, PPV and PT. .................................. 9 

Figure 1-6: Chemical structures of small molecule organic semiconductors MePc, pentacene, 

BCP and C60. .............................................................................................................................................................. 10 

Figure 1-7: Schematic illustration of (a) cationic CPEs and (b) anionic CPEs. ................................. 11 

Figure 1-8: Typical absorbance spectra of Cy3, Cy5 and Cy7 thin films. .......................................... 12 

Figure 1-9: Schematic illustration of stabilization of ions by lowering the temperature. .......... 17 

Figure 1-10: Schematic illustration of stabilization of ions by polymerizing the ionic 

monomers. ................................................................................................................................................................ 20 

Figure 1-11: Schematic illustration of stabilization of ions by curing the ionic conductors. .... 21 

Figure 1-12: Schematic illustration of stabilization of ions by solvent-soaking under device 

charging. .................................................................................................................................................................... 22 

Figure 1-13: Schematic illustration of stabilization of ions by ion diffusion after lamination. 23 

Figure 1-14: Schematic illustration of singlet and triplet phenyl nitrenes....................................... 24 

Figure 1-15: Schematic illustration for direct photogeneration of phenyl nitrenes upon UV 

light irradiation. ....................................................................................................................................................... 25 

Figure 1-16: Schematic illustration for triplet sensitized photolysis of phenyl azides, (TS: 

triplet sensitizer). ..................................................................................................................................................... 26 

Figure 1-17: Simplified schemes for typical reactions of singlet and triplet phenyl nitrenes. . 29 

Figure 1-18: Simplified scheme for surface functionalization via direct binding of PFPAs. ...... 31 

Figure 1-19: Simplified schemes for surface functionalization with PFPAs by a two-step 

approach. ................................................................................................................................................................... 31 



List of Figures 

xi 
 

Figure 1-20: Chemical structures of photocrosslinkers bis(PFBA), sFPA, BABP and DAZH. ...... 32 

Figure 2-1: 1H NMR spectrum of Poly20 (DMSO-d6). .............................................................................. 69 

Figure 2-2: 1H diffusion-edited NMR spectra of Poly20 (DMSO-d6). ................................................ 70 

Figure 2-3: 13C{1H} NMR spectrum of Poly20 (DMSO-d6). ..................................................................... 70 

Figure 2-4: HSQC and HMBC NMR spectra of Poly20 (DMSO-d6). .................................................... 71 

Figure 2-5: 1H NMR spectrum of Poly30 (DMSO-d6). .............................................................................. 71 

Figure 2-6: 1H diffusion-edited NMR spectra of Poly30 (DMSO-d6). ................................................ 72 

Figure 2-7: 1H NMR spectrum of Poly50 (DMSO-d6). .............................................................................. 72 

Figure 2-8: 1H diffusion-edited NMR spectra of Poly50 (DMSO-d6). ................................................ 73 

Figure 2-9: 1H NMR spectrum of PEG25Poly50 (methanol-d4). ........................................................... 74 

Figure 2-10: 1H NMR spectrum of PEG50Poly50 (methanol-d4). ........................................................ 74 

Figure 2-11: 13C{1H} NMR spectrum of PEG50Poly50 (methanol-d4). ............................................... 75 

Figure 2-12: 1H NMR spectrum of Cy5-Poly20 (methanol-d4). ............................................................ 76 

Figure 2-13: HSQC and HMBC spectra of Cy5-Poly20 (methanol-d4). ............................................. 76 

Figure 2-14: 1H NMR spectrum of Cy5-Poly30 (methanol-d4). ............................................................ 77 

Figure 2-15: 1H NMR spectrum of Cy5-Poly50 (methanol-d4). ............................................................ 77 

Figure 2-16: 1H NMR spectrum of Cy3-Poly20 (methanol-d4). ............................................................ 79 

Figure 2-17: 1H diffusion-edited NMR spectra of Cy3-Poly20 (methanol-d4). .............................. 79 

Figure 2-18: 13C{1H} NMR spectrum of Cy3-Poly20 (methanol-d4). ................................................... 80 

Figure 2-19: 1H NMR spectrum of Cy3-Poly30 (methanol-d4). ............................................................ 80 

Figure 2-20: 1H NMR spectrum of Cy3-Poly50 (methanol-d4). ............................................................ 81 

Figure 2-21: 1H NMR spectrum of Cy5-PEG25Poly50 (methanol-d4). ............................................... 82 

Figure 2-22: 1H NMR spectrum of Cy5-PEG50Poly50 (methanol-d4). ............................................... 82 

Figure 2-23: 1H NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d). ................. 83 

Figure 2-24: 19F NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d).................. 83 

Figure 2-25: 13C NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d). ................ 84 

Figure 2-26: 1H NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) 

(chloroform-d). ........................................................................................................................................................ 84 



List of Figures 

xii 
 

Figure 2-27: 19F NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) 

(chloroform-d). ........................................................................................................................................................ 85 

Figure 2-28: 13C NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) 

(chloroform-d). ........................................................................................................................................................ 85 

Figure 2-29: 1H NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-

d6). ................................................................................................................................................................................ 86 

Figure 2-30: 19F NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-

d6). ................................................................................................................................................................................ 86 

Figure 2-31: 13C NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-

d6). ................................................................................................................................................................................ 86 

Figure 2-32: 1H NMR spectrum of TFP (methanol-d4). ........................................................................... 87 

Figure 2-33: 19F NMR spectrum of TFP (methanol-d4). ........................................................................... 87 

Figure 2-34: 1H NMR spectrum of Cy5-FN3 (with TFP) (methanol-d4). ............................................ 88 

Figure 2-35: 19F NMR spectrum of Cy5-FN3 (with TFP) (methanol-d4). ............................................ 89 

Figure 2-36: 13C NMR spectrum of Cy5-FN3 (methanol-d4). ................................................................ 89 

Figure 2-37: 1H NMR spectrum of Cy3-FN3 (with TFP) (methanol-d4). ............................................ 90 

Figure 2-38: 19F NMR spectrum of Cy3-FN3 (with TFP) (methanol-d4). ............................................ 90 

Figure 2-39: 13C NMR spectrum of Cy3-FN3 (methanol-d4). ................................................................ 91 

Figure 2-40: 1H NMR spectrum of Cy7-FN3 (with TFP) (methanol-d4). ............................................ 92 

Figure 2-41: 19F NMR spectrum of Cy7-FN3 (with TFP) (methanol-d4). ............................................ 92 

Figure 2-42: 1H NMR spectrum of 4-azido benzoic acid (5) (methanol-d4). ................................... 93 

Figure 2-43: 1H NMR spectrum of Cy5-N3 (methanol-d4). ................................................................... 94 

Figure 2-44: 1H NMR spectrum of Cy3-N3 (methanol-d4). ................................................................... 95 

Figure 2-45: 1H NMR spectrum of Cy7-Cl (methanol-d4) extracted after washing with NaOH 

aqueous solution (pH = 9). ................................................................................................................................. 95 

Figure 2-46: 1H NMR spectrum of Cy5-MES (methanol-d4). ................................................................ 97 

Figure 2-47: 13C{1H} NMR spectrum of Cy5-MES (methanol-d4). ........................................................ 97 

Figure 2-48: HSQC, HMBC and DQF-COSY NMR spectra of Cy5-MES (methanol-d4). .............. 98 

Figure 2-49: 1H NMR spectrum of Cy3-MES (methanol-d4). ................................................................ 99 



List of Figures 

xiii 
 

Figure 2-50: 13C{1H} NMR spectrum of Cy3-MES (methanol-d4). ..................................................... 100 

Figure 2-51: HSQC, HMBC and DQF-COSY NMR spectra of Cy3-MES (methanol-d4). ........... 100 

Figure 2-52: 1H NMR spectrum of bCy3-PF6 (with TFP) (DMSO-d6). ............................................. 101 

Figure 2-53: 19F NMR spectrum of bCy3-PF6 (with TFP) (DMSO-d6). ............................................. 102 

Figure 2-54: 1H NMR spectrum of STCy3-PF6 (with TFP) (DMSO-d6). ........................................... 102 

Figure 2-55: 19F NMR spectrum of STCy3-PF6 (with TFP) (DMSO-d6). ........................................... 103 

Figure 2-56: 1H NMR spectrum of Cy1-PF6 (with TFP) (DMSO-d6). ................................................ 103 

Figure 2-57: 19F NMR spectrum of Cy1-PF6 (with TFP) (DMSO-d6). ............................................... 104 

Figure 3-1: Chemical structures of Cy-PF6. .............................................................................................. 107 

Figure 3-2: Schematic of device architecture for Cy3-PF6 LECs. ...................................................... 108 

Figure 3-3: (a) Transient current density (open squares) and luminance (filled circles) in 

ITO/PEDOT/Cy3-PF6(30 nm)/Alq3/Ag LECs operated under constant bias at 3 V, (b) PL spectra 

recorded after biasing for different time. ................................................................................................... 110 

Figure 3-4: (a) Experimental IPCE spectra for pristine (black squares) and biased device at 

maximum current under light irradiated through ITO (blue circles) or Ag (red triangles) and 

simulated intrinsic layer absorbance spectra for light irradiated through ITO (blue dotted) or 

Ag (red dotted), (b) ratio of the absorbance for light irradiated through ITO and Ag for 

different junction thicknesses and positions, the vertical lines indicate the active layer 

thickness, experimental results of three different cells are marked by orange stars. ................ 111 

Figure 3-5: Schematic of p-doped, intrinsic and n-doped zones of active layer in a Cy3-PF6 

LEC at maximum current situation. ............................................................................................................... 112 

Figure 3-6: White light (solid lines) and dark (dotted lines) J-V characteristics of 

ITO/PEDOT/Cy3-PF6(30 nm)/Alq3/Ag devices measured before bias (pristine), after bias at 3 V 

for ~3 h to the maximum current and relaxation for 17 h after the bias is switched off. ........ 113 

Figure 3-7: White light (solid lines) and dark (dotted lines) J-V characteristics of 

ITO/PEDOT/Cy3-PF6((a) 30 nm, (b) 90 nm)/Alq3/Ag devices measured before bias (pristine), 

after bias at (a) 4 V, (b) 6 V for 10 – 20 min to the maximum current. ........................................... 114 

Figure 3-8: Evolution of Voc and Jsc in ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag device after 

biasing at 5 V (a) to different current or (b) for different time after maximum current is 

reached. ................................................................................................................................................................... 115 



List of Figures 

xiv 
 

Figure 3-9: Photovoltaic performance of ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag LECs before 

bias (pristine) and after bias at 5 V to the maximum current, after white light illumination for 

65 min and storage at -20 °C for 12 days. ................................................................................................. 116 

Figure 3-10: Variation of absorbance spectra of (a) bCy3-PF6 and (b) STCy3-PF6 thin films 

during storage in the dark in N2 at RT. ........................................................................................................ 118 

Figure 3-11: PL spectra of host-guest blend films in different ratio. .............................................. 119 

Figure 3-12: White light (solid lines) and dark (dotted lines) J-V characteristics of 

ITO/PEDOT/Cy3-PF6((a) 45 nm, (b) 60 nm, (c) 130 nm, (d) 155 nm)/Alq3/Ag and (e) 

ITO/MoO3/Cy3-PF6(60 nm)/Alq3/Ag devices measured before bias (pristine) and after bias at 

(a) 4 V, (b) 5 V, (c) 9 V, (d) 10 V, (e) 6 V for 10 – 20 min to the maximum current. .................... 124 

Figure 3-13: Photovoltaic performance of ITO/PEDOT/Cy3-PF6/Alq3/Ag LECs with different 

Cy3-PF6 thickness after biasing to the maximum current. .................................................................. 125 

Figure 3-14: (a) White light (solid lines) and dark (dotted lines) J-V characteristics of 

ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag LECs before and after bias at -6.5 V for ~20 min, (b) 

transient current and luminance in ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag LECs operated under 

constant bias at -5 V........................................................................................................................................... 125 

Figure 4-1: (a) Chemical structure of Cy5-PF6 and energy level diagram of the layers used in 

the thin film diodes. (b) Current-voltage curves of single layer Cy5-PF6 (40 nm) devices using 

MoO3 as anode buffer layer in the dark and under 1 or 3 sun irradiation. ................................... 130 

Figure 4-2: Current-voltage curves of single layer Cy5-PF6 (40 nm) devices using (a) MoO3 or 

(b) PEDOT anode buffer layers. The cathode buffer layers (Al or Ag) are indicated in the figure 

legend. Curves monitored in the dark are marked by dashed lines while curves measured 

under AM1.5 simulated solar light are drawn as full lines. Dotted lines correspond to the 

difference between current-voltage curves in the dark and under irradiation. ........................... 131 

Figure 4-3: (a) Conductivity  extracted from the linear slope of the current-voltage 

characteristics of an ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al device measured at different light 

intensities (full curves are shown in 4.7 Supporting Information, Figure 4-9). (b) Absorbance 

spectra of glass/MoO3 (10 nm)/Cy5-PF6 (40 nm) and IPCE spectra of the same device as in (a) 

at different bias voltages under 1 sun irradiation. (c) Relative conductivity  extracted from 

the linear slope of the current-voltage characteristics of ITO/PEDOT/Cy5-PF6 (x nm)/Alq3/Ag 

as a function of device thickness x. (d) Simulated absorptance spectra of the devices in (c). 132 



List of Figures 

xv 
 

Figure 4-4: (a) IPCE spectra of ITO/MoO3 (10 nm)/Cy5-PF6 (130 nm)/Alq3 (2 nm)/Ag(12 nm) 

devices at  (a) -3V or (b) 0 V bias under 1 sun irradiation from the front (ITO) and back side 

(Ag). (c) Current density-voltage curves in the dark and under illumination. .............................. 133 

Figure 4-5: (a) Poling curve of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices in forward 

direction at +3V. The luminescence emission is indicated in the graph. (b) Corresponding 

current-voltage characteristics of the same device after a poling time of 25 minutes in 

forward direction. Dashed and solid lines stand for dark and light J-V characteristics, 

respectively. ........................................................................................................................................................... 134 

Figure 4-6: (a) Absorbance and luminescence spectra of a 40 nm thick Cy5-PF6 layer 

sandwiched between ITO/MoO3 and Alq3/Al electrodes. The film was excited with a 4.5 mW 

laser emitting at 532 nm. (b) Field induced quenching efficiency QPL(E) of Cy5-PF6 

luminescence monitored at 730 nm. QPL(E) was calculated from equation (Eq. 4-3). .............. 135 

Figure 4-7: Photo-CELIV measurements of ITO/MoO3/Cy5-PF6 (40 nm or 130 nm)/Alq3/Al 

devices (a) Recombination kinetics measured by time delayed charge carrier extraction. (b) 

Extracted charge carrier mobility at different sweep rates (film thicknesses indicated in the 

graph). ...................................................................................................................................................................... 138 

Figure 4-8: Voc and Jsc values of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices irradiated at 

different light intensities. .................................................................................................................................. 142 

Figure 4-9: J-V characteristics of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices irradiated at 

different light intensities. .................................................................................................................................. 143 

Figure 4-10: IPCE spectra of ITO/MoO3/Cy5-PF6 (130 nm)/Alq3 (2 nm)/Al (8 nm) devices at 0 

V under 1 sun irradiation from the front (ITO) and back side (Al). ................................................... 143 

Figure 4-11: Ellipsometry measurements of Cy5-PF6. ......................................................................... 143 

Figure 4-12: J-V characteristics of ITO/PEDOT/Cy3-PF6 (130 nm)/Alq3/Ag before and after 

bias at +3V to maximum current. .................................................................................................................. 144 

Figure 4-13: (a) Poling curve of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices in reverse 

direction at different voltages. (b) White light (solid lines) and dark (dotted lines) J-V 

characteristics before and after biasing at -3 V to maximum current. ............................................ 144 

Figure 5-1: Chemical structures of Cy-FN3, Cy-N3 and Cy3-T. ......................................................... 148 

Figure 5-2: (a) 1H and (b) 19F NMR spectra of Na-FN3 in DMSO-d6 measured freshly, 2 hours 

or 7 hours after sample preparation. ........................................................................................................... 149 



List of Figures 

xvi 
 

Figure 5-3: Absorbance and PL spectra of (a, b) Cy3-FN3 and (c, d) Cy3-N3 thin films coated 

from ACN and stored in the dark at RT in N2. .......................................................................................... 151 

Figure 5-4: (a) Absorbance spectra of pristine Na-N3, Cy3-PF6, Cy3-N3 films and irradiated 

Cy3-N3 film using UV light and (b) PL spectra of Cy-N3 films before and after UV light 

irradiation. .............................................................................................................................................................. 152 

Figure 5-5: ATR-IR spectra of Cy3-N3 films before and after 2 h visible light (> 400 nm) 

irradiation. .............................................................................................................................................................. 153 

Figure 5-6: (a) CV spectra of Cy3-N3, Cy3-PF6 and Fc/Fc+, (b) frontier energy levels of Cy3 

and 4-azido benzoate anion. .......................................................................................................................... 156 

Figure 5-7: Schematic mechanism of sensitized azide photodecomposition via triplet energy 

transfer. .................................................................................................................................................................... 157 

Figure 5-8: Absorbance spectra for Cy3-N3, Cy5-N3 and Cy7-FN3 films before (solid lines) 

and after (dotted lines) monochromatic light irradiation for 1 h. ..................................................... 161 

Figure 5-9: 1H NMR spectrum of freshly coated Cy3-FN3 film from TFP (redissolved in 

methanol-d4). ........................................................................................................................................................ 167 

Figure 5-10: 19F NMR spectrum of freshly coated Cy3-FN3 film from TFP (redissolved in 

methanol-d4). ........................................................................................................................................................ 168 

Figure 5-11: 1H NMR spectrum of 21 days stored Cy3-FN3 film (redissolved in methanol-d4).

 .................................................................................................................................................................................... 168 

Figure 5-12: 19F NMR spectrum of 21 days stored Cy3-FN3 film (redissolved in methanol-d4).

 .................................................................................................................................................................................... 168 

Figure 5-13: ATR-IR spectra of Cy3-FN3 films before and after 21 days storage in the dark at 

RT in N2. ................................................................................................................................................................... 169 

Figure 5-14: ATR-IR spectra of Cy7-FN3 before and after storage in ACN for 23 hours (ACN 

removed before measure). ............................................................................................................................... 169 

Figure 5-15: (a) Absorbance and (b) PL spectra of Cy3-N3 films after different time of heating 

at 50 °C in the dark in N2. ................................................................................................................................. 169 

Figure 5-16: (a) Absorbance and (b) PL spectra of Cy3-N3 films after different time of heating 

at 70 °C in the dark in N2. ................................................................................................................................. 170 



List of Figures 

xvii 
 

Figure 5-17: (a) Absorbance and (b) PL spectra of Cy3-N3 films before and after 1 h thermal 

evaporation. ........................................................................................................................................................... 170 

Figure 5-18: Absorbance spectra of Na-N3 aqueous solution over time for (a) white light or 

(b) visible light (> 400 nm) irradiation. ........................................................................................................ 171 

Figure 5-19: Absorbance spectra of Cy3-N3/ACN solution over time for (a) white light or (b) 

visible light (> 400 nm) irradiation. ............................................................................................................... 171 

Figure 5-20: Absorbance spectra of Na-N3 films over time for (a) white light or (b) visible 

light (> 400 nm) irradiation. ............................................................................................................................ 171 

Figure 5-21: Absorbance spectra of Cy3-N3 films over time for (a) white light, (b) visible light 

(> 400 nm) or (c) visible light (> 610 nm) irradiation. ........................................................................... 172 

Figure 6-1: Chemical structures of Cy-Poly, Cy-MES and PCBM. ..................................................... 175 

Figure 6-2: Schematic of device architecture for Cy-Poly/PCBM bilayer solar cells. ................ 176 

Figure 6-3: (a) Decrease of film absorption maxima after CB washing. (b) Absorption spectra 

of Cy5-Poly50 and Cy3-Poly50 films before (solid lines) and after (dotted lines) CB washing.

 .................................................................................................................................................................................... 177 

Figure 6-4: Effect of PCBM thickness on ITO/MoO3/Cy5-Poly20(15 nm)/PCBM/Al solar cells 

performance characteristics. ............................................................................................................................ 179 

Figure 6-5: (a) J-V characteristics of ITO/MoO3/Cy5-Poly50/PCBM(40 nm)/Al solar cells with 

different Cy5-Poly50 thicknesses. (b) Fill factor (FF) and short circuit current (Jsc) variation as 

function as Cy5-Poly50 thickness. ................................................................................................................. 179 

Figure 6-6: White light (solid lines) and dark (dotted lines) J-V characteristics of (a) 

ITO/MoO3/Cy5-Poly/PCBM(40 nm)/Al and (b) ITO/MoO3/Cy3-Poly/PCBM(40 nm)/Al solar 

cells. .......................................................................................................................................................................... 181 

Figure 6-7: IPCE and absorption spectra for (a) ITO/MoO3/Cy5-Poly/PCBM(40 nm)/Al and (b) 

ITO/MoO3/Cy3-Poly/PCBM(40 nm)/Al solar cells. .................................................................................. 181 

Figure 6-8: White light (solid lines) and dark (dotted lines) J-V characteristics of (a) 

ITO/MoO3/Cy5-Poly(~5 nm)/PCBM(40 nm)/Ca (8 nm)/Al and (b) ITO/MoO3/Cy5-

PEG50Poly50(~5-15 nm)/PCBM(40 nm)/Ca(8 nm)/Al solar cells. ..................................................... 182 

Figure 6-9: Photo-current transients of Cy5-Poly/PCBM solar cells for different contents and 

voltage ramps. ...................................................................................................................................................... 183 



List of Figures 

xviii 
 

Figure 6-10: Absorption spectra of a ~40 nm thick PCBM film on glass measured on a UV-Vis 

Cary 50 spectrometer or using an integrating sphere. We demonstrate the accuracy of the 

baseline in the inte-grating sphere in wavelength regions without absorption with the 

spectrum of an uncoated glass substrate. ................................................................................................. 189 

Figure 6-11: (a) Dark-CELIV transients of Cy5-Poly/PCBM solar cells for different cyanine 

contents and voltage ramps. (b) Photo-CELIV transients taken before and after a 

measurement cycle. (c) J-V characteristics measured before and directly (less than 1 minute) 

after the CELIV experiments. Both measurements could be carried out on the commercial 

Paios system (Fluxim AG) without changing the electrical wiring. ................................................... 190 

Figure 6-12: J-V characteristics of ITO/MoO3/Cy5-Poly50/PCBM/Ca/Al solar cells as a 

function of bias voltage. ................................................................................................................................... 191 

 

 

 



List of Schemes 

xix 
 

List of Schemes 

Scheme 2-1: Synthesis of Cy-Poly. .................................................................................................................. 57 

Scheme 2-2: Synthesis of 4-azido-2,3,5,6-tetrafluorobenzoic acid. ................................................... 62 

Scheme 2-3: Synthesis of Cy-FN3. .................................................................................................................. 62 

Scheme 2-4: Synthesis of Cy-N3...................................................................................................................... 63 

Scheme 2-5: Synthesis of Cy-MES................................................................................................................... 65 

Scheme 2-6: Synthesis of crosslinked cyanine polymers. ...................................................................... 65 

Scheme 2-7: Synthesis of Cy-PF6. ................................................................................................................... 66 

 

 

 



List of Tables 

xx 
 

List of Tables 

Table 2-1: Repeating units and Mn of copolymers. .................................................................................. 58 

Table 2-2: Weight loss in three degradation stages and residue fraction of copolymers. ........ 59 

Table 2-3: Calculated weight fraction of copolymers. ............................................................................. 60 

Table 2-4: Glass transition temperature Tg of copolymers. ................................................................... 60 

Table 2-5: Elemental analysis of Cy3-N3. ..................................................................................................... 64 

Table 6-1: Device performance of ITO/MoO3/Cy-Poly/PCBM(40 nm)/Al solar cells................ 180 

Table 6-2: Device performance of ITO/MoO3/Cy5-Poly/PCBM(40 nm)/Ca (8 nm)/Al solar cells.

 .................................................................................................................................................................................... 182 

Table 6-3: Average mobility values for Cy5-Poly. .................................................................................. 184 

 

 

 

 



Chapter 1: Introduction 

1 
 

Chapter 1:  Introduction 

1.1 Thesis Outline 

The PhD project focused on the synthesis of novel cyanine dye counterions and the 

investigation of ionic junctions in cyanine based organic electronic devices. A particular goal 

was to fix the ionic junction in organic homojunction devices using cyanine dyes with an 

immobilizable anion. The fixation of ionic carriers in such devices leads to the establishment 

of a built-in potential and electric field across the intrinsic region, thereby attaining an 

efficient electroluminescence (EL) with a fast turn-on and a permanent photovoltaic response 

upon light illumination. To this end, special interest was given to an anionic phenyl azide 

which decomposes under UV light irradiation, leading to the formation of a highly reactive 

nitrene intermediate that rapidly reacts with adjacent covalent bonds. Therefore, the 

stabilization of such phenyl azide anions in place could be potentially achieved. The azido-

perfluorobenzoate and non-fluorinated azido-benzoate anions were synthesized and 

introduced into cyanine dyes as immobilizable counter ions. However, we observed an 

efficient exciton quenching effect in an organic device employing cyanine dyes with azide 

functionalized anions (Cy-N3) as active components. This exciton quenching arose from the 

chemical degradation of cyanine chromophores induced by azide or benzoate group 

decomposition, which occurred already during device fabrication. Therefore, the attempt to 

fix the ionic junction in Cy-N3 films was not successful. The photodecomposition mechanism 

of phenyl azides and photorelaxation of cyanine dyes is discussed. We propose that a visible 

light induced azide photolysis via a triplet energy transfer from cyanine dye chromophores to 

the anions caused the observed pronounced instability of azides and consequently resulted 

in the failure of the concept.  

Even though the fixation of ionic space charge turned out more challenging than expected, 

the effect of ionic charges on the optoelectronic properties were studied. For this purpose 

devices were poled to induce combined ionic and electronic effects. A particular concern of 

this project was to investigate the junction formation process in a cyanine dye light-emitting 

electrochemical cell (LEC). A method involving the combination of EL and photoluminescence 

(PL) measurements, photocurrent spectral response and optical modelling was proposed to 
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determine the position and width of the ionic junction during the LEC operation. The 

optimization of the ionic junction regarding its photovoltaic behavior was performed by 

altering the thickness of the active layer. To further improve the quantum efficiency of 

cyanine based LECs, new mono- (Cy1) and trimethine (Cy3) cyanines with 

hexafluorophosphate as a counter anion (Cy-PF6) were synthesized and the potential of their 

application in host-guest LECs was explored.  

These studies were extended to pentamethine cyanine dyes which exhibit very poor 

luminescence as solid films. However, they present strong photocurrent generation which 

astonishingly does not depend significantly on poling. A section of this thesis is devoted to 

the photocurrent generation mechanism in ionic pentamethine (Cy5) cyanine films. Single 

layer devices using Cy5 with a hexafluorophosphate anion (Cy5-PF6) as active material were 

fabricated, which exhibited a linear current density-voltage (J-V) characteristic upon white 

light irradiation. The observed linear field dependence, which was independent on the 

electrode buffer layers or on poling, indicated an intrinsic generation of charge carriers in the 

bulk Cy5-PF6 films. Further evidence that supported a bulk charge generation was provided 

by incident photon-to-current conversion efficiency (IPCE) measurements performed on a 

semitransparent device. The values of photoconductivity in such cyanine films can be directly 

extracted from the linear slope of J-V curves and the possible mechanisms for the photo-

induced generation of charge carriers are discussed.  

Being able to form bilayers would add a further degree of freedom to move charges across 

the interface from one layer to another one. During this thesis it was therefore attempted to 

synthesize cyanine polyelectrolytes. The latter could be used as a base layer for the 

construction of a bilayer, e.g. by depositing an acceptor molecule or even another cyanine 

dye on top of it. In order to find an orthogonal solvent for the soluble fullerene derivative 

[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) which does not remove or damage the 

underlying cyanine layer during the coating process, a special task of this project was to 

synthesize cyanine polyelectrolytes (Cy-Poly) that is not soluble in non-polar solvents. 

Different Cy-Poly copolymers consisting of a bulky polymer backbone as counter anions and 

cationic cyanine chromophores were synthesized. Absorbance spectra demonstrated a 

considerably reduced solubility of Cy-Poly films in chlorobenzene (CB) compared to cyanine 

small molecules. Thus, a second PCBM layer deposited from CB solutions onto Cy-Poly was 
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possible. The first bilayer solution-processed cyanine/PCBM organic solar cell (OSC) was 

fabricated and the optimization of cell performance was studied.  

1.2 Organic Electronics 

1.2.1 Organic photovoltaic and electroluminescent devices 

Recently, organic electronics has drawn great attention of researchers from both academia 

and industry. The common goal points in the direction of developing efficient, inexpensive, 

flexible and portable organic electronic devices, including organic solar cells (OSCs), organic 

light-emitting diodes (OLEDs), light-emitting electrochemical cells (LECs), organic field-effect 

transistors (OFETs) and electrochromic displays. Compared to inorganic semiconductor 

technologies, the potential of low-cost fabrication for organic electronics originates from the 

light weight and solution processability of organic materials. Besides, the emerging concepts 

for plastic electronics of being flexible and transparent have been demonstrated, bringing 

about new benefits and extending the application in wider fields.1-4  

Extensive research activities on organic semiconductor devices are addressing OSCs and 

OLEDs. Theoretically, reverse processes are taking place in OSCs and OLEDs. In an organic 

photovoltaic device, the energy of sunlight is converted to electrical current. In an 

electroluminescent device, the electrical energy is converted to light emission from the 

devices.  

In both types of devices, the photoactive layer is sandwiched between two metal electrodes 

and at least one of them is transparent, typically indium tin oxide (ITO). Electron and hole 

transport layers are usually required in the device architecture, thereby facilitating the charge 

extraction in OSCs or injection in OLEDs.5,6  

Operation principle of OSCs 

Historically, OSCs had a simple homojunction structure where dissociation of excitons takes 

place at the electrode interfaces (Schottky type) or relies on impurities or defects in the 

organic semiconductors.6,7 This stems mainly from the fact that excitons cannot be easily 

splitted into free carriers due to the high exciton binding energy in most organic 

semiconductors.8 Hence, the solar cell efficiencies were very low in such homojunction solar 

cells. Modern OSCs utilize a heterojunction structure consisting of two organic 
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semiconducting components with different electron affinities and ionization potentials. 

Exciton dissociation occurs predominately at the heterojunction interfaces. The electrons 

enter the region of the acceptor material with larger electron affinity and the holes travel 

through the donor material with lower ionization potential.6 Two major types of donor-

acceptor architectures have been demonstrated (Figure 1-1). Bilayer heterojunction devices 

contain two plane organic films on top of each other, forming a flat junction interface, while 

bulk heterojunction (BHJ) OSCs employ a blend of two admixed semiconductors as the 

photoactive layer material.9-11  

 
Figure 1-1: Schematic illustration of organic bilayer or BHJ devices. 

Compared to bilayer heterojunction, BHJ devices considerably increase the interfacial area 

between the donor and acceptor materials. This arises from the interpenetrating network in 

BHJ, leading to an intimate contact between the two active components. Generally, the best 

BHJ devices exhibit well-controlled nanoscale morphology with a phase separation between 

both materials in the range of exciton diffusion lengths. Substantially improved solar cell 

efficiencies can be therefore achieved.11-14  
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Figure 1-2: Schematic illustration of exciton dissociation process in a heterojunction solar cell. 

The process of exciton dissociation is schematically depicted in Figure 1-2. Upon light 

illumination, the absorption of a photon in the donor material directly promotes an electron 

from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 

orbital (LUMO), leading to the formation of an exciton, namely a bound electron hole pair. 

The generated exciton diffuses to the heterojunction interfaces, followed by the dissociation 

of exciton into free charge carriers. Finally, free holes and electrons reach the respective 

electrodes, yielding electrical power.6,13  

OLED and LEC 

Compared to OSCs, the reverse mechanism is present in OLEDs. Charge carriers are first 

injected from respective metal electrodes and recombine in the light-emitting layer, forming 

an exciton. Instead of dissociation, the exciton relaxes radiatively, causing luminescence. The 

emission of light is therefore observed.3,15 Efficient charge carrier injection from electrodes for 

high performing OLEDs is crucial, which requires additional and unavoidable charge transport 

and injection buffer layers between the electrodes and the emissive layers. These layers also 

define the zone where charge carriers recombine and confine the charge carriers of opposite 

sign in order to increase the recombination probability. Therefore, state-of-the-art OLEDs 

utilize a multilayer architecture where air-sensitive electrodes with low work functions are 

typically applied to reach reasonably low operation voltages. Apart from the time-consuming 

and costly thermal sublimation processes required for the fabrication of OLEDs, another 

shortcoming associates with the rigorous encapsulation of the devices to prevent them from 

being exposed to oxygen and moisture.16,17  
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In 1995, Pei and coworkers demonstrated the first polymer based LEC employing a blend 

active layer containing an electroluminescent organic semiconductor, a salt and an ion-

transporting polymer. Several promising advantages such as solution processability of the 

active layer, usage of air-stable electrodes, simple device geometry and low operating 

voltages make LECs an potentially cost-effective alternative to OLEDs.18,19,20  

 
Figure 1-3: Schematic illustration of a LEC with or without an external voltage. 

The operation mechanism of LECs has been intensively under debate. Recent studies show 

that the electrochemical doping model can best describe the working principle of LECs. This 

model involves the initial formation of electric double layers (EDLs) at electrode interfaces, 

which facilitates the charge injection by reducing the injection barriers. Subsequently, p- and 

n-type doped zones evolve within the active layer, leading to the formation of an intrinsic 

region where the emission of light takes place. The growing p- and n-doped regions result in 

a shrinking intrinsic layer, namely the p-i-n junction. In the end, the doped zones get very 

close or make contact, causing pronounced exciton quenching and eventually irreversible 

device degradation.16,17,21,22  

Critical parameters 

A typical current density-voltage (J-V) characteristic curve of a solar cell is shown in Figure 1-

4. Both dark and light curves from the J-V characteristics exhibit diode behaviors. The open 

circuit voltage (Voc) and short circuit current density (Jsc) can be directly obtained from the 

curve. The maximum power output (Pmax) of a solar cell is the maximized product of voltage 

and current. At the point of Pmax, the corresponding voltage and current density is Vmax and 

Jmax, respectively. The fill factor (FF) and the power conversion efficiency (PCE) of the solar cell 

is determined by the following equations (Eq. 1-1 and Eq. 1-2): 

          (Eq. 1-1) 



Chapter 1: Introduction 

7 
 

 

          (Eq. 1-2) 

where Pin is the incident light power density.6,13,23 

 
Figure 1-4: J-V characteristics of a solar cell under dark (dotted line) or white light illuminated 

conditions (solid line). 

In an organic luminescent device, the internal EL quantum efficiency ηint is defined as the ratio 

of the amount of emitted photons to the amount of injected charge carriers. The evaluation 

of ηint is complicated since the collection of photons in the viewing direction is limited, hiding 

a possible loss of the emitted photons. Further, the small fraction of the total emitted light 

that is recorded by the viewer may vary with the operating voltage, viewing angle, and with 

the location and width of the emission zone.24 Practically, the transient luminance (cd m-2) 

and current density (mA cm-2) is monitored during device operation. Thus, the switch-on time 

where light emission starts and the efficacy (cd A-1) of the device can be easily obtained.25-27  

Fabrication techniques 

Solution processing such as spin coating and doctor blading are commonly used techniques 

for production of thin film organic electronic devices. Soluble organic semiconducting 

materials are dissolved in an organic solvent (or water), followed by deposition on the target 

surface at room temperature (RT) or elevated temperature. During evaporation of the solvent, 

homogeneous thin films can be obtained. An important prerequisite for solution processing 

is that the underlying material stays unaffected during the coating step. If orthogonal 
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solvents that do not dissolve the underlying layers are not available, posttreatment that 

induces polymerization or crosslinking reactions in the first layer via heating or ultraviolet (UV) 

light curing is usually required. Thus, the resulting films become insoluble in organic solvents, 

thereby making the further coating on top of them possible.13,28  

Many organic semiconductors, especially small molecules, are not soluble in a wide variety of 

organic solvents. Hence, thermally stable small molecules and metal electrodes are usually 

deposited via vacuum evaporation technique. Compared to solution process, it takes much 

longer time to thermally sublimate materials since high vacuum (< 10-5 mbar) needs to be 

reached before the deposition starts. One advantage of thermal evaporation process is that 

the remaining contaminants like oxygen or water can be potentially removed using the high 

vacuum. Polymers can decompose under excessive heat and have too large a mass for 

evaporation.3,28,29 Side group modification of these polymers can be performed, which is 

capable of tuning their solubility substantially, yielding new soluble polymeric materials, e.g. 

polyelectrolytes. To achieve interpenetrating donor-acceptor networks or molecular doping, 

co-evaporation techniques are applied.13,30,31  

It has been proposed that the use of eutectic gallium-indium (EGaIn) can conveniently 

substitute the evaporated metal electrodes, e.g. Al. EGaIn is a liquid at RT and has a work 

function at roughly 4.2 eV, which is quite close to Al (4.3 eV) and Ag (4.5 eV). Instead of the 

time-consuming evaporation step, direct deposition of the liquid metal alloy on top of the 

organic materials leads to an efficient contact between each other. Functional BHJ based 

OSCs using EGaIn as top electrode can be achieved.32  

1.2.2 Synthesis and properties of organic semiconductors 

In 1977, the first discovery of conductive polymers was demonstrated by Heeger and 

coworkers.33 The electrical conductivity of a semiconducting polymer, polyacetylene, was 

substantially increased to several orders of magnitude after doping with iodine vapor. Later, 

numerous conductive polymers were reported including polyaniline (PANI), polyphenylene 

vinylene (PPV) and polythiophene (PT) (Figure 1-5).  
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Figure 1-5: Chemical structures of conducting polymers PANI, PPV and PT. 

In these polymers, the conjugated π-electrons are delocalized at the polymeric backbones 

containing alternating single and double bonds, resulting in a high electronic polarizability. 

By chemical synthesis and modification, the electrical, optical and mechanical properties of 

conjugated polymers can be largely modulated, thereby paving the way for applications in 

the field of organic optoelectronics and photovoltaics.4,28,34,35 A special class of conducting 

polymers consisting of non-conjugated polymer backbones with pendant π-conjugated 

groups was proposed, for instance, vinyl and methacrylate polymers containing pendant 

oligothiophenes which may have unique properties of both the non-conjugated backbone 

and the conjugated oligomers.4,36,37  

Small molecular weight organic semiconductors have also been intensively investigated for 

applications as photoactive components in organic electronic devices. Several commonly 

employed small molecule organic semiconductors such as metal phthalocyanine (MePc), 

pentacene, bathocuproine (BCP) and fullerene (C60) are shown in Figure 1-6.  
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Figure 1-6: Chemical structures of small molecule organic semiconductors MePc, pentacene, BCP 

and C60. 

Compared to conjugated polymers, several advantages of small molecule organic 

semiconductors have been proposed including ease of synthesis with simple purification 

process, high purity with well-defined molecular structure and molecular weight, possibility 

to be thermally evaporated, yielding closely packed homogeneous organic layers. 9,23,28,38,39  

Conjugated polyelectrolytes 

Conjugated polyelectrolytes (CPEs), as a novel class of conjugated polymers, contain an 

electronically delocalized π-electron system in the polymer backbone with pendant ionic 

functional groups. Their potential applications for optoelectronic and photovoltaic devices 

have attracted increasing attention from researchers. Generally CPEs can be classified into 

two types depending on the charges of the polymer backbone, which are cationic CPEs with 

positively charged backbones and anionic CPEs with negatively charged backbones (Figure 

1-7).40-45  
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Figure 1-7: Schematic illustration of (a) cationic CPEs and (b) anionic CPEs. 

CPEs exhibit superior optical and electronic properties, which are sensitively dependent on 

the hydrophobic polymeric backbones as well as the types of pendant ionic species. The 

unique characteristic of CPEs compared to neutral conjugated polymers associates with the 

high solubility in polar media, such as alcohol or water. This endows them with orthogonal 

solubility, allowing for the simple fabrication of multilayer structures by solution 

processing.40,44,46,47  

A number of schemes for the synthesis of CPEs have been reported. The first CPEs based on 

PT as polymer backbones were introduced in 1987 by Wudl and coworkers.48 The synthetic 

scheme involves an electropolymerization of a methyl sulfonate monomer, giving PT 

backbones with methyl sulfonate functional side groups, followed by the conversion into 

sodium salts. A more generalized synthetic scheme for CPEs was introduced by the synthesis 

of poly(p-phenylene) (PPP) based polyelectrolytes. Here, a neutral PPP precursor with tunable 

side groups was firstly obtained during polymerization, e.g. polycondensation. In a second 

step, the side groups were converted into ionic groups, e.g. by hydrolysis. Ionization of the 

pendant substitutes after polymerization leads to ease of characterization of the polymer 

precursors in common organic solvents before the solubility is dramatically varied in the final 

CPEs.40,41,49,50  

Cyanine dyes 

Cyanine dyes are charged low band gap organic semiconducting materials consisting of a 

polymethine group as the π-conjugated system and an accompanying counter ion. 

Generically, cyanine dyes contain two nitrogen centers, linked with an odd number of 

methine groups. Cyanine dyes can be classified based on the length of polymethine chains, 

e.g. Cy3, Cy5 and heptamethine (Cy7) dyes. Typical absorbance spectra of Cy3, Cy5 and Cy7 

films are shown in Figure 1-8. Different cyanines exhibit a diversity of physical, optical and 
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semiconducting properties, making them prominent candidates for different applications as 

photosensitizers, industrial paints, biological probes, electroluminescent organic 

semiconductors and active donor materials for OSCs.51-58  

 
Figure 1-8: Typical absorbance spectra of Cy3, Cy5 and Cy7 thin films. 

Cyanine dye chromophores can be readily achieved by organic synthesis, usually resulting in 

iodide or chloride as counter anions. To obtain a different anion, subsequent ion exchange 

reaction is required. A commonly applied strategy for counter anion conversion is 

demonstrated via a salt metathesis reaction, which leads to the precipitation of inorganic 

salts (e.g. silver halides) while leaving the dye chromophores with desired counter ions in the 

reaction media59 or performs in the opposite manner, namely precipitation of the dye 

chromophores with introduced anions while leaving the other pair in solution60. Ion exchange 

of cyanine dyes via a solvent-solvent extraction or using ion exchange resins is also possible. 

(For further information, see Chapter 2)  

Chemical modification on the polymethine group of cyanine dyes has been proposed. An 

activated chloro-substituted polymethinic linker on Cy7 dye chromophores was reacted with 

alkyl-thiols containing polyether or carboxylic functional groups. The efficient nucleophilic 

substitution provides possibilities to modify symmetric cyanine dyes with different 

nucleophiles, thereby introducing various possible functionalities.61 It was reported that 

cyanine dyes can be polymerized by connecting the dye chromophores in a head-to-tail 

fashion. This polymeric cyanines exhibit distinct bathochromic shifts and absorb solely in the 

near infrared (NIR) region.62  
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1.3 Ionic Junctions 

1.3.1 Mixed ionic/electronic conduction in organic materials 

The incorporation of ionic carriers in conjugated organic semiconductors leads to a mixed 

ionic/electronic conduction character. Driven by an applied external voltage or other triggers, 

ions redistribute within the organic layer, resulting in intrinsic electrochemical oxidation and 

reduction of the organic materials. Several effects associated with the electrochemical doping 

process have been demonstrated including the increase of electronic conductivity and 

variation of color and volume of the organic semiconductors. Due to these interesting 

behaviors, the mixed ionic/electronic conductors are employed for many applications such as 

organic light-emitting and photovoltaic devices, electroactive actuators, electrochromic 

displays, organic sensors and transistors.63,64  

Ion transport in solid organic materials 

Generally, state-of-the-art organic electronic devices employing the concept of mixed 

ionic/electronic conduction relies on additionally admixed ion-transporting polymer, e.g. 

poly(ethylene glycol) (PEG), to achieve fast ionic movement in solid organic films.18,65-67 This is 

mainly attributed to the fact that most organic materials are poor ionic conductors. PEG is a 

semicrystalline material and is known to have a low glass transition temperature (Tg) below 

0 °C, which results in a soft and flexible polymer film with low rigidity and stiffness at RT.68 

Therefore, above Tg the high amplitude conformation fluctuations of the polymers can 

potentially enhance their ion-conducting capabilities.69 With respect to the mechanism of ion 

transport, it has been proposed that the salts are dissolved in PEG films, generating 

polyether-salt complex electrolyte materials. The cation-containing complexes, formed due to 

cation coordination by the polyether oxygens, migrate in the solid films via a helical tunnel 

while the motion of anions, where the ions are less strongly solvated by the polymer, is 

realized due to the presence of anion-polymer van der Waals interaction by diffusing into 

regional free volumes caused by thermal fluctuations of the polymers.67,69-71  

1.3.2 Dynamic junction in organic electronic devices 

A commonly admixed ionic material in the polymer blends containing an active organic 

semiconductor and an ion-transporting PEG that enables the fast motion of ions is lithium 
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trifluoromethanesulfonate (LiCF3SO3). The generated lithium-PEG electrolyte due to the 

strong coordination of Li+ cations to the electronegative polyether oxygens drifts to the 

cathode, while the anions drift to the anode when an external bias is applied.67,70 Severe 

phase separation between the PEG and the active polymer in the blend is a known issue, 

which may result in poor film morphology and degraded device performance.63 Improved 

morphology of the active layer was achieved by embedding the oligo(ethylene glycol) 

segments into the light-emitting polymers either as side groups72-77 or in the main chains78-80, 

which potentially leads to a long-living light-emitting device without accelerated degradation 

of cell performance.  

The coexistence of ionic and electronic conduction in organic materials can also be achieved 

with a single active component without additional incorporation of ionic carriers, e.g. ionic 

transition metal complexes (iTMCs).17,81 Similar to iTMCs, cyanine dyes have also inherently 

both ionic and electronic charge conductivity. Therefore, in LECs using cyanines as active 

materials, no additional admixed salts are required.56 The movement of ions in a cyanine film 

is enabled due to the presence of a small and mobile counter anion accompanied with the 

cationic cyanine chromophores. For organic electronic applications, cyanine dyes have 

attracted intensive attention, attributed to their prominent characteristics including high 

extinction coefficient, good solution processability with a wide variety of organic solvents, 

ease of chemical synthesis and purification and tunable absorption and emission.82-84  

p-i-n junction LECs 

The incorporation of ionic species in conjugated organic electroluminescent materials 

initiated the first demonstration of LECs.18 With the assistance of ion-conducting polymer, 

ionic carriers in the photoactive layer redistribute upon the application of an external bias, 

leading to electrochemical oxidation and reduction to generate a p-doped region close to 

the anode and n-doped region close to the cathode. The doped regions are known to have a 

considerably enhanced electronic conductivity, thereby facilitating the charge carrier injection 

and transport from the respective metal electrodes. However, the electrochemical doping 

process is dynamic and reversible. Relaxation of ions occurs when the external voltage is no 

longer applied, resulting in an unstable p-i-n junction in organic LECs.16,21,85-87  

The ion profiles in stacked LECs remain an interesting and crucial issue to achieve a better 

understanding of the functional principle during LEC operation. Different methods have been 
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carried out to investigate the evolution process of a p-i-n junction in an operating device. 

During the electrochemical doping upon an applied bias, the formation of the high-

conductivity doped regions and the low-conductivity intrinsic region result in a clear increase 

of capacitance, observed by impedance spectroscopy measurements. A rough estimation of 

the junction width can be potentially obtained.88-91 The depth profile of ionic species can also 

be probed by secondary ion mass spectrometry (SIMS) technique, which yields the element 

distribution of ions within the device.91-93  

Direct visualization of the p-i-n junction in lateral structure LECs with a large interelectrode 

distance was obtained using optical microscopy and fluorescence imaging. The propagation 

of both p-type and n-type doped zones was monitored, demonstrating a clear image of 

junction formation process and a PL quenching behavior in the doped regions.65,94-97 

Furthermore, scanning Kelvin probe microscopy (SKPM) has been employed to study the 

potential profile of a functional LEC.65,98-100 Results indicate that the doped regions exhibit a 

flat potential profile whereas a sharp potential drop is usually observed in the light-emission 

zone.65,98 Nonetheless, direct imaging of a sandwiched LEC with a digital camera is not 

possible since the interelectrode space is usually very small (< 200 nm).101-103 Also, the 

electrochemical doping model cannot be simply translated from the lateral to the stacked 

LECs by scaling down the thickness of different zones since the intensity of the electric field in 

the device, which is sensitively depending on the thickness and the bias voltage, may 

consequently affect the field-dependent electron and hole mobilities.88,90,104,105  

Ionic space charge in cyanine photovoltaic devices 

The movement of the cyanine dye counter ions was found to be capable of modulating the 

photovoltaic behaviors of cyanine OSCs due to the effect of ionic space charge. In a 

cyanine/C60 organic bilayer heterojunction solar cell, the anions redistribute within the 

cyanine layer upon the application of an external bias, establishing ionic interfacial space 

charges at the anode/cyanine and cyanine/C60 interfaces due to accumulated ionic species. 

Clear changes in J-V characteristics were observed after biasing. The variation of Voc in such 

devices was well explained by the ionic motion which fine-tuned energy level of the donor 

and the donor-acceptor energy level offsets.106  

Besides, it has been reported that the mobile counter ions, chloride (Cl-) or 

hexafluorophosphate (PF6
-), can diffuse into the adjacent organic layers, creating an ionic 
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profile across the heterojunction interface and a built-in electric field. This resulted in the 

shifts of electronic orbital energy levels of both organic materials and the control of 

electronic current flow in the devices. The spectral current response of the biased devices was 

dramatically altered, which indicated a change in the direction of electron transfer process 

between the donor and acceptor materials. The ionic space charge can therefore 

tremendously modulate the photovoltaic effect and solar cell performance in organic thin 

film devices.107  

However, the above described ionic effect on photovoltaic behaviors is reversible and 

dynamic. Mobile ions can relax back upon removal of the external bias, which may take 

minutes to hours. Therefore, to achieve a permanent ionic distribution and internal built-in 

electric field, subsequent stabilization of the ionic carriers is required.  

Electrochromic displays 

The electrochromic effect of conjugated polymers is realized by the reversible 

electrochemical oxidation and reduction process originated from the ionic movement within 

the devices, which induces new absorption bands in the visible region of the materials. 

Electroactive polymers that exhibit a color change at different redox states are applied as the 

active components for electrochromic displays. Several promising advantages of polymer 

electrochromic materials have been demonstrated including ease of structure modification of 

the polymer backbone during synthesis, fast switching ability, multiple colors with the same 

material and high coloration efficiency.108-110  

Ionic electroactive actuators 

Associated with the electrochemical doping process, the ion transport induced volume 

change of conjugated polymers allows for the potential application for electroactive 

actuators and artificial muscles. Swelling and shrinking of the active polymers can be 

achieved due to the redistribution of the mobile ionic carriers in the devices upon an external 

voltage. Generally, the ingress and egress of ionic species (along with intercalating solvating 

species) in the conjugated polymers directly yields the expansion and contraction of the 

regional volume of the materials. A bending of the polymer thin film is therefore observed as 

a function of device charging.111-114  
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1.3.3 Attempts towards a fixed ionic junction 

Several attempts to achieve a fixation of ionic carriers have been performed in different 

organic electronic devices. As discussed above, the redistribution of ionic species driven by 

an external voltage is not stable since relaxation of ions takes place upon the removal of the 

bias. The established ionic junction with the desired ionic profiles and internal built-in electric 

field disappears gradually. A number of benefits can be obtained after the stabilization of 

ions including fast response of electroluminescence, permanent photovoltaic behavior, high 

rectification and well-controlled electronic current flow. For example, the initial ionic motion 

towards respective electrodes in LECs under a constant voltage is usually very slow, which 

considerably limits the switch-on time and the potential applications. Once the ionic carriers 

are fixed in place, the desirable ionic distribution and the doped zones are stabilized even 

during device idling. Therefore, an instantaneous light emission can be expected once the 

voltage is applied to the device with fixed ions. The proposed methods for stabilization of 

ionic junctions can be mainly categorized into four types: (1) reducing the ionic mobility by 

lowering the temperature, (2) generating immobile ionic species by chemical reactions, e.g. 

polymerization, (3) reducing the ionic conductivity by curing the ionic conductors, (4) bilayer 

devices containing oppositely charged mobile ions that are removed via solvent-soaking or 

diffuse into the other layer.  

Temperature-controlled stabilization of ions 

Initially, the stabilization of ions in LECs was demonstrated by physically immobilizing the 

ionic carriers at low temperature (Figure 1-9).115-124  

 
Figure 1-9: Schematic illustration of stabilization of ions by lowering the temperature. 
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Here, the devices were firstly operated under a constant bias at RT, which is above the Tg of 

the ion conductive PEG, to achieve the desired ion distribution and doping profiles in the 

active layer. In a second step, the generated p-i-n junction was frozen by reducing the 

temperature below the Tg of PEG (e.g. < 200 K). By lowering the temperature of PEG films 

below Tg, the segmental motion of the polymer chain was considerably restricted, which 

largely reduced the possible movement of ionic species in the PEG films and therefore 

achieved the immobilization of ions.68,69,120 Finally, devices with frozen junctions were 

characterized at cryogenic temperatures with respect to their electroluminescent behaviors. It 

was reported that the fixed p-i-n junction LECs exhibit several OLED characteristics including 

high diode rectification ratio, instantaneous response of the light emission and unipolar 

emission at low voltages.116-118  

It is well known that the electrochemical doping results in PL quenching in the both p-type 

and n-type doped zones.85,94,95,125,126 Therefore, the excessive presence of doped species in 

the doped regions leads to severe exciton quenching process, which eventually deteriorates 

the EL efficiency and the device performance especially when the doped zones get close to 

each other. It was found that the relaxation of ions in an established p-i-n junction initiates 

from the widening of intrinsic region, leading to narrowing doped regions from the intrinsic 

layer toward the metal electrodes. Thus, it can be concluded that the relaxation of a p-i-n 

junction initially leads to significantly less PL quenching effect due to the reduction of 

dopants without immediately affecting the Ohmic contact characteristics induced by the 

doped zones. Under a controlled doping relaxation, Gao and coworkers demonstrated that 

the quantum efficiency of EL in polymer LECs was considerably improved by elevating the 

temperature for a well-controlled period after a frozen p-i-n junction was achieved at low 

temperatures. The PL quenching phenomenon in the emission zone due to the excessive 

electrochemical doping was thus alleviated.124 Photovoltaic effects have been observed in 

stabilized p-i-n junction LECs, indicating that the established ionic profile and built-in electric 

field can potentially assist the splitting of excitons upon light illumination and the frozen 

junction devices can also be operated as solar cells.119,121,123,127  

Practically, the operation of LECs under reduced temperatures may be inconvenient, which 

considerably limits the potential application for lightening purposes. Several strategies have 

demonstrated the possibilities to immobilize the ionic motion at RT.128-131 LEC devices 

containing crown ether and Li salt as solid electrolyte materials and electroluminescent 
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polymer blends were fabricated. The utilized crown ether/Li salt complexes exhibited a high 

ionic mobility at elevated temperatures (60 °C – 80 °C) but a very low ionic conductivity at RT. 

A dynamic p-i-n junction is firstly achieved upon the application of an external bias on the 

LECs at high temperatures which enabled the motion of ionic charge carriers. Subsequently, 

the junction with desired doping profiles was cooled to RT, thereby stabilizing the ionic 

distribution in the active layer. Very high performing LECs with high external EL quantum 

efficiencies were obtained, which demonstrated prominent electrical and optical 

characteristics similar to those of OLEDs, including unipolar J-V dependence, light emission in 

forward bias only, and instantaneous light emission upon biasing.128  

Random copolymers consisting of a methyl methacrylate backbone with oligo PEG as pedant 

groups were designed, aiming at increasing the Tg of ionic transporting polymer above RT. 

Results demonstrated that the Tg of the copolymers increases clearly by diluting the PEG 

content with methyl methacrylate repeating units. Hence, stabilizing the mobile ions at RT by 

utilizing PEG based copolymers with high Tg as ion-transport material was achieved via a 

similar method as it was performed in Ref. [128] involving generating a p-i-n junction at 

elevated temperatures, followed by cooling to RT.129 A similar approach using an ionic liquid, 

imidazolium salt, as electrolyte has also been reported for the fixation of a p-i-n junction in 

LECs.130  

Polymerization of ionic species 

Leger and coworkers demonstrated another approach to achieve the stabilization of ions in 

organic homojunction or heterojunction devices by chemically fixing the ionic species in situ. 

This method involved polymerization of the functional ionic monomers, generating immobile 

and bulky polyelectrolytes in the active layer, which exhibited a largely reduced ionic 

mobility.132-134 Schematic illustration of this approach is shown in Figure 1-10.  
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Figure 1-10: Schematic illustration of stabilization of ions by polymerizing the ionic monomers. 

Instead of using the typical lithium salt in the matrix of the active layer, polymerizable ionic 

monomer pairs were employed as electrolyte materials for LECs application. During the 

device operation under a constant voltage, the mobile ion pairs drifted to the electrodes 

similar as Li salts. Subsequently, the vinyl-functionalized monomer species underwent a 

polymerization reaction initiated by the electrochemical generation of radicals in the 

conjugated polymers. This led to the covalent bonding via the vinylic groups of the ionic 

carriers, forming immobile ionic polymers in position. The immobilization of ions and fixation 

of the homojunction with desired electrochemical doping profiles were therefore achieved. 

The fixed junction was demonstrated to be stable under a wide range of operating voltages 

at RT. The resulting devices exhibited diode characteristics with high rectification, unipolar 

emission and a photovoltaic behavior.132 The concept of fixing the ionic carriers was also 

applied for the homojunction or donor/acceptor heterojunction photovoltaic devices, a high 

Voc was achieved and a significant improvement of Jsc was obtained owing to the improved 

charge carrier collection efficiency induced by the electrochemical doping processes.133  

It was found that the phase compatibility between the ionic monomers and conjugated 

polymers is very low, thereby resulting in poor film morphology in the device. This issue was 

addressed by replacing the polymerizable ionic monomers with ionic liquids, which exhibit a 

much better miscibility with the emissive polymers. These ionic liquids were functionalized 

with vinyl or allyl groups during synthesis via a salt metathesis reaction, which allowed for the 

following polymerization step. Significantly improved device performance was achieved 

including high brightness, excellent rectification and fast switch-on time.134  

Curable ionic conductors 
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It has been proposed that the small molecules containing acrylate or methacrylate groups 

can dissolve certain amount of lithium salts. This arises from the polar nature of the 

(meth)acrylate moieties and endows them with reasonable ionic charge conductivities in solid 

films. However, the ion conduction channels will be cut off if polymerization or crosslinking 

reaction of (meth)acrylate groups takes place, which considerably decreases the ionic 

transporting ability. Based on this behavior, Pei and coworkers demonstrated an approach to 

fix the mobile ions by curing the polymerizable ionic conductors.135,136 Schematic illustration 

of this approach is shown in Figure 1-11.  

 
Figure 1-11: Schematic illustration of stabilization of ions by curing the ionic conductors. 

In this approach, the (meth)acrylate functionalized ionic conducting materials were employed 

in the active layer containing an electroluminescent polymer and a typical lithium salt as 

electrolyte. During device charging, the crosslinking of acrylate or methacrylate groups 

occurred, which was initiated by the heat from device operation particularly at high current 

density or by the ionic radicals generated from electrochemical doping. A significantly 

decreased ionic conductivity of the cured polymer was obtained, resulting in the fixation of 

ionic carriers. This device exhibited a very fast switch-on below 5 ms, showing an instant light 

emission upon application of an external voltage. A stable photovoltaic response in fixed p-i-

n junction LECs was achieved, demonstrating a high Voc and an increase of Jsc without decay 

after device idling for 16 hours.135 A further attempt focused on combining the advantages of 

both (meth)acrylate and the ion-transporting PEG. A low molecular weight methacrylate 

group terminated PEG oligomer was applied as curable ionic conductor for the junction 

fixation in LECs. After curing, the devices exhibited a high maximum current efficacy up to 

11.9 cd A-1, a long lifetime up to 27000 hours before decaying to 75% of the peak brightness 

and a pronounced enhancement of the uniformity and stability of the junction.136  
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Further, the benefits of both polymerizable ionic monomers and crosslinkable ionic 

conductors are combined. Edman and coworkers reported that the best device performance 

in LECs regarding their rectification ratio and long-term stability was achieved by 

polymerizing the ionic monomer pairs together with the curable ionic transporting materials 

with PEG segments.137,138 An additional admixed radical initiator in the blend films brought 

about new advantages. For example, the utilization of a photo initiator enabled the junction 

stabilization process to be well-controlled. Upon a short term UV exposure at RT, the 

immediate formation of photo induced radicals initiated the curing reaction between the 

ionic species and the functionalized PEG units, yielding a rapid fixation of the p-i-n junction in 

the LECs with fast switch-on and high rectification ratio that did not dissipate after 24 hours 

storage.138  

Other methods 

The fixed ionic distribution has also applied for bilayer devices, achieving a stabilized p-n 

junction (Figure 1-12).  

 
Figure 1-12: Schematic illustration of stabilization of ions by solvent-soaking under device charging. 

Conjugated polyacetylenes with oppositely charged pendant groups and mobile ions were 

sequentially spin casted and sandwiched between two gold electrodes. The solvent used for 

the coating of second layer did not dissolve the first underlying polymer film, thereby 

resulting in a neat bilayer structure. Subsequently, the device was charged under an applied 

bias while immersed in a solvent, which dissolved the liberated salts. The liberation of the 

mobile cations and anions was attributed to the electrochemical doping process where the 
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injected charge carriers were stabilized by the pendant ionic species linked to the conjugated 

polymer backbones. Therefore, a p-n junction with fixed intrinsic ion profiles was obtained in 

the devices, which exhibited a diode behavior in the J-V characteristics with moderate 

rectification.139  

A novel approach for fixing the ionic junctions was demonstrated by Bernards and coworkers 

using a soft-contact lamination technique (Figure 1-13).  

 
Figure 1-13: Schematic illustration of stabilization of ions by ion diffusion after lamination. 

Bilayer devices containing two organic semiconducting materials with either mobile anions or 

cations were fabricated. Due to the gradients in concentrations, both mobile cations and 

anions diffused into the other layer. This resulted in the establishment of built-in potential 

and modification of the energy levels of organic semiconductors. The resulting devices with 

fixed ionic junctions demonstrated a very high rectification, which allowed the electronic 

current to flow preferentially in one direction. Photovoltaic response was obtained in such 

devices when illuminated by white light.140 A similar work was carried out using the 

lamination technique, demonstrating a fixed ionic junction between aqueous gels containing 

polyelectrolytes with oppositely charged mobile ions.141  

A chemically fixed p-n heterojunction via a B-F covalent bond formation process was 

established. In this method, two polymer films were solution casted sequentially from 

orthogonal solvents. The first and second layer consisted of a neutral polymer with an anion-

trapping functional group and a cationic polymer with mobile fluoride anions, respectively. 

Upon device charging, the fluoride anions drifted into the neutral polymer layer, which 

induced the B-F covalent bond formation. The ions were thus stabilized, leading to the 

electrochemical doping of the materials. The fixed p-n junction electronic devices showed an 

instantaneous EL emission and high current rectification.142  
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Theoretically, apart from the methods described above, other chemical reactions which 

enable a chemical linkage of functionalized mobile ionic groups in position upon an external 

trigger are also possible to be potentially employed for the fixation of ionic junctions.  

1.4 Phenyl Azides 

1.4.1 Photo-induced decomposition and reaction 

Organic azides, as a unique class of organic functional groups, have been investigated over 

several decades. It has been reported that azides can decompose by various triggers 

including temperature, light and acid or transition metal catalysts.143,144 Phenyl azides, as the 

simplest compound among all aromatic azides, decompose thermally or photochemically, 

leading to a wide variety of products. The complex photochemistry of phenyl azides and 

derivatives enables them to be excellent candidates as precursors for nanomaterial synthesis, 

photoaffinity labelling (PAL) agents, light-sensitive photoresists and surface engineering 

reagents.145-151  

Photo-induced decomposition of phenyl azides results in the cleavage of the nitrogen – 

nitrogen covalent bond in the azide groups, yielding very reactive phenyl nitrene 

intermediates by releasing dinitrogen gas. Different types of nitrenes (singlet and triplet) can 

be produced via photolysis of phenyl azides, which sensitively depends on the reaction 

conditions and mechanisms, such as the kind of photosensitizers used. Nitrenes are electron-

deficient molecular fragments with six electrons in the valence shell on the nitrogen atom. 

Singlet nitrenes have two electron pairs and an empty orbital whereas triplet nitrenes have 

one pair of electrons and two electrons with parallel spins (Figure 1-14).152-155  

 
Figure 1-14: Schematic illustration of singlet and triplet phenyl nitrenes. 
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Both singlet and triplet nitrene intermediates can undergo various chemical reactions 

including intra- or intermolecular cycloaddition, C-H insertion and H-abstraction. Differences 

between the singlet and triplet phenyl nitrenes were also drawn with regard to their preferred 

reactions and the resulting products.144,156-159  

Direct photogeneration of phenyl nitrenes 

Phenyl nitrenes can be obtained from aryl azides precursors upon light illumination. Phenyl 

azides absorb UV light, generating photoexcited azides which subsequently dissociate by 

expelling N2 and thereby yielding singlet nitrenes. On the other hand, intersystem crossing 

(ISC) process may take place, which leads to the formation of triplet excited azides, followed 

by decomposition to give triplet nitrenes. ISC from the singlet to the triplet nitrene may also 

exist, which was confirmed to be a barrier-less process. The rate of ISC can be significantly 

enhanced by heavy atoms or alcohols.146,161 A simplified scheme is shown in Figure 1-

15.143,145,146,156,160,162  

 
Figure 1-15: Schematic illustration for direct photogeneration of phenyl nitrenes upon UV light 

irradiation. 

To figure out which pathway is involved in producing triplet nitrenes, a triplet quencher can 

be artificially added into the reaction system. If the triplet aryl nitrenes are generated via 

singlet nitrenes, the addition of a triplet quencher would not affect the original 

photochemical process. Therefore, the products that arise from either singlet or triplet 

nitrenes can still be obtained. Since the presence of a triplet quencher can potentially block 

the pathway of triplet nitrenes generation from triplet azides in the excited state, the 



Chapter 1: Introduction 

26 
 

products that result preferentially from triplet nitrenes would be considerably decreased or 

disappear.143,145 For the direct photolysis of alkyl azides using UV light irradiation, it was 

reported that the addition of triplet sensitizer did not affect the product distribution. This 

experiment suggests that the decomposition of a directly photoexcited alkyl azide to yield a 

singlet nitrene is the prevailing reaction. As the competitive process, ISC to a triplet azide 

may proceed in a negligible manner.143,163  

Triplet sensitized photolysis of azides 

Alternatively, an efficient way to produce triplet nitrenes is via sensitized photolysis of organic 

azides in the presence of a triplet sensitizer. Here, the irradiated light is firstly absorbed by a 

triplet sensitizer, followed by an energy transfer process from the photoexcited sensitizer to 

the azides. This process directly populates the triplet state of the organic azides, which lose 

N2 and therefore result in the formation of triplet nitrenes. A simplified scheme for producing 

triplet phenyl nitrenes is shown in Figure 1-16.156,157,162-167  

 
Figure 1-16: Schematic illustration for triplet sensitized photolysis of phenyl azides, (TS: triplet 

sensitizer). 

As described above, direct photolysis of organic azides yields both singlet and triplet nitrenes, 

suggesting that the products originating from both nitrene intermediates can be obtained in 

a different ratio. For triplet sensitized photolysis, the products that arise from triplet nitrenes 

are predominately yielded. However, it was reported that the addition of a singlet sensitizer, 

which promotes the formation of singlet nitrenes, does not affect the product distribution, 

which remains the same as the case from the direct light illumination. It was therefore 

concluded that the generation of triplet nitrenes via triplet sensitization process stem solely 

from the dissociation of excited triplet azides and no ISC of singlet nitrenes are involved in 

the photochemical process.143,168,169  



Chapter 1: Introduction 

27 
 

Normally, organic azides absorb UV light below 290 nm and the maximum absorption signals 

of phenyl azides are situated in the range of 250 nm to 280 nm.145,149,162 Typical triplet 

sensitizers for photodecomposition of azides are aromatic ketones, e.g. acetophenone and 

benzophenone, which exhibit an absorption band between 300 nm and 400 nm.164,165,170 

Therefore, low-pressure or medium-pressure mercury lamps, which irradiate predominately in 

the UV region, are commonly employed as light sources for the photolysis of organic azides. 

However, it has been proposed that extensive irradiation using high-energy UV light may 

introduce photodecomposition of organic compounds due to their poor functional group 

tolerance.171,172  

Recently, visible light induced sensitization for the photolysis of organic azides has been 

demonstrated using ruthenium or iridium complexes as triplet sensitizers. Upon absorption 

of visible light, these photoexcited sensitizers undergo efficient ISC, yielding stable and long-

lived excited species in the triplet states. Subsequently, triplet – triplet energy transfer 

process from the triplet species of the sensitizers to the organic azides takes place, leading to 

the production of triplet nitrenes. The visible light sensitized azide photolysis is very attractive 

and useful in organic synthesis. With the addition of the transition metal complexes as 

photosensitive catalysts, organic chemical reactions that rely on triplet nitrenes may proceed 

under much milder conditions without using UV lamps as light sources.171,173,174  

Pronounced visible light sensitization using a ruthenium complex was achieved for the 

photolysis of vinyl or acyl azides. In these cases, the employed complex Ru(bpy)3
2+ has a 

triplet energy of 46 kcal/mol, while the triplet level of vinyl and acyl azides were calculated to 

be 45.4 kcal/mol and 41 kcal/mol, respectively. Clearly, the efficient photosensitization can be 

attributed to the perfect matching of the triplet energy levels between the sensitizer and the 

organic azides.171,173 For phenyl azides, the triplet energy was estimated to be in the range of 

68 – 75 kcal/mol, which is much higher than the energy of visible light sensitizers. Generally, 

triplet – triplet energy transfer proceeds with a diffusion-controlled rate when the triplet level 

of sensitizers is higher than that of the acceptors. However, for the sensitized 

photodecomposition of phenyl azides, measurable sensitization behaviors were obtained 

using sensitizers with triplet energy of 50 kcal/mol or less. This indicates that sensitizers with 

lower triplet energies are considerably more effective than expected for a classical 

endothermic energy transfer. To explain this phenomenon, it has been suggested that a non-

classical energy transfer process is involved, which occurs between the phenyl azides and 
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triplet sensitizers. It is known that the ground state of azide groups exhibit a linear 

configuration. Nonetheless, the photoexcitation of phenyl azides is accompanied by a strong 

bending of the N-N-N bond in the azide groups, resulting in a non-spectroscopic triplet state. 

This state cannot be detected by spectroscopic methods, but can be reached by energy 

transfer process. Therefore, it can be concluded that much less energy is required for a 

vertical excitation from thermally populated bent azides in the ground state to the excited 

triplet azides with the same bent configurations. Hence, efficient triplet sensitizers with low 

triplet energies can be expected for the photodecomposition of organic azides.170,175,176 

Matrix isolation technique 

Due to the high reactivity of nitrenes, it is not possible to capture these intermediates at RT 

since they rapidly react with the surrounding species, undertaking different chemical 

reactions and thereby yielding various products. At low temperatures, the reactivity of nitrene 

intermediates is significantly reduced. The matrix isolation technique enables the 

characterization of reactive species that are dispersed in an inert matrix material at cryogenic 

temperatures. Initially, the reactive nitrenes were successfully detected by freezing the 

organic material as matrix, e.g. organic solvents, to 77 K and measuring electron 

paramagnetic resonance (EPR) or absorption spectra.156,166,177-179  

However, the frozen solvents at 77 K may also have some interactions with the target reactive 

intermediates, which may potentially affect the resulting spectra and lead to ambiguities. 

Besides, frozen solvents are very often not transparent in the IR or UV spectral range. 

Therefore, inert noble gases, e.g. argon and neon, are considered as better matrix materials 

and a much lower temperature is typically required, which is at ~10 K.180-182 Triplet phenyl 

nitrenes were successfully trapped in an argon matrix and their IR absorption spectra were 

clearly identified, which exhibited strong and characteristic absorption signals at 747 cm-1 and 

655 cm-1.183-185  

Typical reactions of phenyl nitrenes 

The reactive nitrene intermediates undergo numerous chemical reactions once generated 

thermally or photochemically. They can insert into adjacent C-H or N-H covalent single bonds, 

react with alkenes via intermolecular cycloaddition to give aziridines, abstract hydrogen 

atoms from surrounding media such as organic solvents and undergo reversible or 
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irreversible rearrangements.151,153 A generalized reaction scheme for singlet and triplet phenyl 

nitrenes is shown in Figure 1-17.  

 
Figure 1-17: Simplified schemes for typical reactions of singlet and triplet phenyl nitrenes. 

An important reaction that takes place for singlet phenyl nitrenes is C-H insertion to yield 

secondary amines. This reaction can be both intra- or intermolecular and insertion to both 

C(sp2)-H and C(sp3)-H single bonds is possible. It has been suggested that the selectivity of 

insertion into sp3 C-H bonds decreases from tertiary, to secondary and to primary 

species.151,186 Besides, addition reactions to C=C double bonds were also reported for singlet 

nitrenes. Alternatively, ring expansion to a corresponding seven-membered azepine was 

detected, which was induced by structural rearrangement.187 It was found that the halogen 

atom substituents on the aromatic rings can substantially suppress the ring expansion of the 

singlet phenyl nitrenes and the insertion reactions are thus more favorable for fluorinated 

phenyl nitrenes.146,188-191  

Compared to singlet nitrenes which favor C-H insertion reactions, the triplet species of 

phenyl nitrenes demonstrate a strong preference to abstract hydrogen atoms to yield anilines 

or dimerize to generate azo compounds. For a reaction system without triplet sensitizers 

where the triplet nitrenes arise exclusively from singlet azides or nitrenes via ISC, it was 

suggested that nitro group functionalized phenyl azides largely increased the yield of anilines, 

indicating that the quantum yield of ISC was enhanced and the triplet products were 

promoted.145,146,162,192,193  

It should be noted that the above discussed chemical reactions for phenyl nitrenes are 

basically performed in solutions. The diffusion of reactive species is relatively free in the 
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solvents and the chance to undergo hydrogen abstraction or dimerization is reasonably high 

particularly for triplet nitrenes. However, if the motion of nitrenes is hindered such as in solid 

states, insertion reactions into the nearby covalent bonds would play a dominant role. 

Therefore, triplet phenyl nitrenes that favorably result in anilines or azo compounds as major 

products in solutions can also react in a very non-selective manner in the solid state, which 

enables the potential applications for thin film technologies.145,194  

1.4.2 Application for nanostructure modification 

Phenyl azides and derivatives have been widely employed as PAL agents, which consist of a 

biological ligand functionalized with a photoactive group. Upon light illumination, C-H 

insertion reaction by nitrene intermediates takes place, forming a stable covalent bond 

between the labelling agent and a target biopolymer, e.g. protein. The binding site structure 

of the labeled biomolecule will be characterized and determined.146,151,195-199 However, as 

described above, singlet phenyl nitrenes may undergo rapid ring expansion instead of 

insertion reaction, which results in poor PAL efficiencies. Therefore, perfluorophenyl azides 

(PFPAs) are demonstrated to be among the most popular PAL agents since the undesired 

ring expansion is not present. Besides, PFPAs exhibit many advantages including high 

reaction efficiencies, superior stability during storage in the dark and ease of preparation 

during synthesis.145,146  

Surface functionalization  

Recently, PFPAs have been applied as excellent coupling agents for surface functionalization 

techniques. p-substituted tetrafluorophenyl azides are among the best candidates as 

coupling agents since they are heterobifunctional with two reactive centers. During chemical 

synthesis, different organic groups with new functionalities can be designed and then 

introduced into the PFPAs bearing already a light sensitive azide group at the para position. 

Therefore, the successful binding between the azide and the target surface directly leads to 

the surface modification with the introduced functionalities. This strategy applies to the 

substrate surfaces that possess sufficient C-H, N-H and C=C covalent bonds, e.g. polymers or 

biomolecules, which serve as the target groups for the potential insertion and cycloaddition 

reactions.146,147,200-202 A schematic illustration is shown in Figure 1-18.  



Chapter 1: Introduction 

31 
 

 
Figure 1-18: Simplified scheme for surface functionalization via direct binding of PFPAs. 

With regard to the substrates such as metal oxides, silicon oxides and metal films that cannot 

be efficiently bonded by PFPAs via nitrene chemistry, a two-step approach is typically 

employed. Here, PFPAs with organic groups that enable an efficient binding to such 

substrates are firstly synthesized, e.g. silane-substituted PFPAs for metal oxides surfaces or 

thiol-functionalized PFPAs for gold films. These chemically modified PFPAs are then utilized 

to functionalize the corresponding substrates, yielding photoactive phenyl azides on the 

surface. Subsequently, the target molecules such as polymers are attached to the substrates 

via the azide coupling chemistry triggered by UV light or elevated tempertures.146,203-209 A 

schematic illustration of this two-step approach is shown in Figure 1-19.  

 
Figure 1-19: Simplified schemes for surface functionalization with PFPAs by a two-step approach. 

Morphology control 

One application of organic azides for organic electronics is to stabilize the heterostructure 

and film morphology of the active layer in BHJ organic solar cells. Generally, a certain phase 

separation between the donor and acceptor is required for the optimal solar cell performance. 

However, this specific morphology is thermodynamically not stable over time and 

degradation of cell performances is usually observed in an aged device. Here, the thermo- 

and photosensitive azides act as crosslinkers, which establish crosslinked nanostructures via 

nitrene chemistry in the photovoltaic devices.210-212  
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Bis-azides bearing two reactive nitrene precursors were used as small molecule additives in 

the BHJ blend layer. Upon UV light illumination, the photogenerated nitrene species reacted 

rapidly with the matrix materials, leading to crosslinking of the different components in the 

film and thus the stabilization of the desired bulk interpenetrating heterostructure. Some 

possible bis-azides photocrosslinkers are shown in Figure 1-20, including 

bis(perfluorophenyl) azide (bis(PFBA)), sterically hindered fluoro-phenyl-azides (sFPA), 4,4´-

bis(azidomethyl)-1,1´-biphenyl (BABP) and 1,6-diazidohexane (DAZH).213-217  

 
Figure 1-20: Chemical structures of photocrosslinkers bis(PFBA), sFPA, BABP and DAZH. 

The dual-functional sFPA crosslinkers demonstrated an excellent crosslinking capability. A few 

weight percent of this additive admixed into the blend resulted in stabilization of bulk 

morphology with high crosslinking densities. An enhancement of photovoltaic lifetime for 

BHJ organic solar cells was therefore achieved. Besides, it was suggested that the 

photocrosslinking reactions occurred predominantly between the side chains of the polymers. 

Thus, the crosslinking step did not affect the π-conjugated systems at the polymer 

backbones as well as optical and semiconducting properties of the active materials.214,215,217  

Azide-functionalized conjugated polymers are also applied for the stabilization of bulk 

morphology in OSCs.218-221 The azide functional groups are generally incorporated into the 

side chains of the polymer donor materials. The content of azide moiety in the system can be 

designed during the synthesis of the copolymers by conveniently tuning the feed ratio of 

azide-containing monomer units. Upon UV light exposure, the crosslinkable azides 

decompose, yielding reactive nitrene intermediates which rapidly react with the donor, the 

conjugated polymer, and the acceptor, typically fullerene and its derivatives, with little 
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selectivity. This results in stabilized domains with both donor – donor and donor – acceptor 

networks. On the other hand, it was found that the thermally induced nitrenes can selectively 

react with the fullerenes via addition reactions, leading to the stabilization of 

nanomorphology with pure donor – acceptor crosslinks. In this case, no reactions between 

the azides and the donor materials were observed.212,218,222  
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Chapter 2:  Synthesis of Cyanine Dyes and Polyelectrolytes 

2.1 Introduction 

Generic cyanine dyes contain two nitrogen centers, one of which is positively charged.1 To 

maintain charge neutrality, cyanine dyes are accompanied by a counter anion. Iodide or 

chloride usually results from the dye synthesis. In a subsequent step, exchange with a 

different anion is possible.  

Here, I present different strategies to alter the cyanine counter ion, generating new cyanine 

small molecules with a desired small anion or cyanine polyelectrolytes (Cy-Poly) with a large 

anionic polymer backbone. The aim of synthesizing such new cyanine dyes and their 

application in organic devices will be individually described in the following chapters.  

In this chapter, part of the data for Cy-Poly are taken from the following publication: “Cyanine 

dye polyelectrolytes for organic bilayer solar cells” by Lei Wang, Christian Hinderling, Sandra 

Jenatsch, Frank Nüesch, Daniel Rentsch, Roland Steim, Hui Zhang, Roland Hany, Polymer, 

2014, 55, 3195-3201. All synthesis was performed by the author. NMR measurements and 

spectra analysis were carried out by the author and Daniel Rentsch (Empa).  

2.2 Experimental 

2.2.1 Materials and methods 

Unless stated otherwise, all chemicals and solvents were used without further purification. 

Methyl methacrylate (MMA, distilled before use, Aldrich), 2-sulfoethyl methacrylate (H-MES, 

ABCR), ethylene glycol dimethacrylate (EDMA, Aldrich), poly(ethylene glycol) methyl ether 

methacrylate (PEGMA, filtered through a plug of basic alumina before use, Aldrich), 2,2´-

azobis(2-methylpropionitrile) (AIBN, recrystallized from diethyl ether before use, Fluka), 

silver(I) oxide (Ag2O, Sigma-Aldrich), thin layer chromatography (TLC) silica gel (Merck), 1,3,3-

trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-penta-1,3-dienyl]-3H-indolium 

chloride (Cy5-Cl, FEW Chemicals), 1-ethyl-2[3-(1-ethyl-3,3-dimethyl-1,3-dihydro-indol-2-

ylidene)-propenyl]-3,3-dimethyl-3H-indolium iodide (Cy3-I, FEW Chemicals), 2-[2-[2-chloro-

3-[2-(1,3-dihydro-1,1,3-trimethyl-2H-benzo[e]-indol-2-ylidene)-ethylidene]-1-cyclohexen-1-
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yl]-ethenyl]-1,1,3-trimethyl-1H-benzo[e]indolium chloride (Cy7-Cl, FEW Chemicals), 3-ethyl-2-

[3-(3-ethyl-3H-benzoxazol-2-ylidene)-propenyl]-benzoxazolium iodide (bCy3-I, FEW 

Chemicals), 3-ethyl-2-(2-((3-ethylbenzo[d]oxazol-2(3H)-ylidene)methyl)but-1-

enyl)benzo[d]oxazol-3-ium ethylsulfate (STCy3-ES, Synthon Chemicals), 3,3´-

diethylthiacyanine iodide (Cy1-I, Sigma-Aldrich), methyl pentafluorobenzoate (Aldrich), 4-

azidobenzoic acid (TCI America), sodium azide (NaN3, Sigma-Aldrich), sodium hydroxide 

(NaOH, Sigma-Aldrich), sodium bicarbonate (NaHCO3, Sigma), sodium sulfate (Na2SO4, 

Sigma-Aldrich), sodium hexafluorophosphate (NaPF6, Aldrich), hydrochloric acid (HCl, Sigma-

Aldrich), silver nitrate (AgNO3, Sigma-Aldrich), Amberlite IRA-400 chloride form (Aldrich), 

methanol (MeOH, Sigma-Aldrich), ethanol (EtOH, Sigma-Aldrich), 2-propanol (Sigma-Aldrich), 

dichloromethane (DCM, Sigma-Aldrich), chloroform (CHCl3, Sigma-Aldrich), tetrahydrofuran 

(THF, Merck), diethyl ether (Sigma-Aldrich), acetone (Sigma-Aldrich), 2,2,3,3-tetrafluoro-1-

propanol (TFP, Aldrich), dimethyl sulfoxide (DMSO, Carl Roth). 

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker 300 MHz, 400 MHz and 

500 MHz spectrometers. Thermogravimetric analysis (TGA) was carried out on a Netzsch TG 

209 F1. X-ray fluorescence (XRF) spectra were measured on an ARL Advant XP. Differential 

scanning calorimetry (DSC) analysis was carried out on a Perkin Elmer DSC 8000. Elemental 

analysis was carried out by the micro-laboratory of ETH Zürich. Ion chromatography analysis 

was carried out on a Metrohm 883 Basic IC plus. Electrospray ionization mass spectroscopy 

(ESI-MS) was carried out on a Waters Xevo TQD. Gel permeation chromatography (GPC) 

analysis was carried out on an Agilent Serie 1100.  

2.2.2 Synthesis of Cy-Poly 

Synthesis of Poly20 

The synthesis of Poly20 is described as a representative example. Copolymers Poly30, Poly50, 

PEG25Poly50 and PEG50Poly50 were prepared accordingly. MMA (1 mL, 9.35 mmol) and H-

MES (454 mg, 2.34 mmol) were dissolved in anhydrous THF (12 mL) under stirring. AIBN (9.7 

mg, 0.059 mmol) was then added to the solution under nitrogen flow and the reaction flask 

was heated to 70 °C under reflux for 20 h. The solution was then cooled to room temperature, 

poured into diethyl ether (90 mL) and agitated for 5 min. The precipitate was collected by 
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filtration and purified by washing twice with diethyl ether. Poly20 was then dried at 40 °C in 

vacuum (936 mg, yield 67%).  

Synthesis of Poly30 

MMA (1 mL, 9.35 mmol), H-MES (779 mg, 4.01 mmol), AIBN (11.0 mg, 0.067 mmol) and THF 

(14 mL) gave 1350 mg Poly30 (78%). 

Synthesis of Poly50 

MMA (0.63 mL, 5.89 mmol), H-MES (1.14 g, 5.87 mmol), AIBN (11.0 mg, 0.067 mmol) and THF 

(20 mL) gave 1233 mg Poly50 (71%). 

Synthesis of PEG25Poly50 

MMA (209 mL, 2.08 mmol), H-MES (812 mg, 4.18 mmol), PEGMA (632 mg, 2.11 mmol), AIBN 

(7.2 mg, 0.044 mmol) and THF (20 mL) gave 1160 mg PEG25Poly50 (70%). 

Synthesis of PEG50Poly50 

PEGMA (1.21 g, 4.02 mmol), H-MES (782 mg, 4.03 mmol), AIBN (6.8 mg, 0.041 mmol) and THF 

(20 mL) gave 361 mg PEG50Poly50 (18%). 

Synthesis of Cy5-Poly20 

The synthesis of Cy5-Poly20 is described as a representative example. Other Cy-Poly were 

prepared accordingly. Poly20 (200 mg containing 0.336 mmol sulfonic acid groups) and Ag2O 

(117 mg, 0.505 mmol) were mixed in MeOH (15 mL). The reaction flask was covered with 

aluminum foil to prevent exposure to light and was then stirred at 60 °C for 6 h. excessive 

Ag2O was completely removed via a filtration-centrifugation-filtration cycle. Cy5-Cl (148 mg, 

0.353 mmol) dissolved in MeOH (5 mL) was then added drop wise to the flask and the 

reaction mixture was stirred overnight. Subsequently, MeOH was added for dilution, the 

solution was centrifuged and AgCl was filtered. MeOH was then evaporated under reduced 

pressure and unreacted Cy5-Cl was removed by washing with EtOH for several times. EtOH 

was removed under reduced pressure and Cy5-Poly20 was dried under vacuum at 40 °C (170 

mg, 52%).  

Synthesis of Cy5-Poly30 

Poly30 (200 mg containing 0.468 mmol sulfonic acid groups), Ag2O (163 mg, 0.703 mmol), 

MeOH (20 mL) and Cy5-Cl (206 mg, 0.492 mmol) gave 179 mg Cy5-Poly30 (47%).  

Synthesis of Cy5-Poly50 
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Poly50 (200 mg containing 0.68 mmol sulfonic acid groups), Ag2O (236 mg, 1.02 mmol), 

MeOH (30 mL) and Cy5-Cl (299 mg, 0.714 mmol) gave 190 mg Cy5-Poly50 (28%).  

Synthesis of Cy5-PEG25Poly50 

PEG25Poly50 (200 mg containing 0.51 mmol sulfonic acid groups), Ag2O (162 mg, 0.70 mmol), 

MeOH (30 mL), and Cy5-Cl (226 mg, 0.54 mmol) gave 123 mg Cy5-PEG25Poly50 (43%). 

Synthesis of Cy5-PEG50Poly50 

PEG50Poly50 (287 mg containing 0.58 mmol sulfonic acid groups), Ag2O (191 mg, 0.83 mmol), 

MeOH (35 mL), and Cy5-Cl (266 mg, 0.63 mmol) gave 308 mg Cy5-PEG50Poly50 (60%). 

Synthesis of Cy3-Poly20 

Poly20 (200 mg containing 0.336 mmol sulfonic acid groups), Ag2O (117 mg, 0.505 mmol), 

MeOH (15 mL) and Cy3-I (181 mg, 0.353 mmol) gave 171 mg Cy3-Poly20 (52%). For Cy3-

Poly20, Cy3-Poly30 and Cy3-Poly50, unreacted Cy3-I was removed by washing thoroughly 

with 2-propanol instead of EtOH.  

Synthesis of Cy3-Poly30 

Poly30 (200 mg containing 0.468 mmol sulfonic acid groups), Ag2O (163 mg, 0.703 mmol), 

MeOH (20 mL) and Cy3-I (252 mg, 0.492 mmol) gave 170 mg Cy3-Poly30 (45%). 

Synthesis of Cy3-Poly50 

Poly50 (200 mg containing 0.68 mmol sulfonic acid groups), Ag2O (236 mg, 1.02 mmol), 

MeOH (30 mL) and Cy3-I (366 mg, 0.714 mmol) gave 172 mg Cy3-Poly50 (37%). 

2.2.3 Synthesis of Cy-FN3 

Synthesis of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) 

A mixture of methyl pentafluorobenzoate (1) (2 mL, 13.56 mmol) and NaN3 (1.15 g, 17.69 

mmol) was dissolved in a mixture of acetone (20 mL) and water (10 mL). The reaction flask 

was heated to 70 °C under reflux for 8 h. After cooling to room temperature, the solution was 

diluted with water (60 mL) and extracted by diethyl ether (3 X 60 mL). The extract was dried 

with Na2SO4 and the solvent was evaporated under reduced pressure to give 2 (3.02 g, 90%).  

Synthesis of 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) 

Methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) (2.81 g, 11.29 mmol) was dissolved in a 

mixture of water (12 mL) and MeOH (60 mL). Aqueous NaOH solution (20%, w/w, 6 mL) was 
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added drop wise to the flask and the mixture was then stirred for 3 h at room temperature. 

Subsequently, the solution was slowly acidified by 1 M aqueous HCl to pH = 1 and extracted 

with DCM (3 X 60 mL). The extract was dried with Na2SO4 and the solvent was evaporated 

under reduced pressure to give 3 (2.54 g, 96%). 

Synthesis of Cy5-FN3 

The synthesis of Cy5-FN3 is described as a representative example. Cy7-FN3 was prepared 

accordingly. 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (250 mg, 1.06 mmol) was dissolved in 

NaHCO3 aqueous solution (33 mL). The mixture was stirred for 30 min (pH = 8), diluted with 

20 mL water and extracted with DCM solution (50 mL) containing Cy5-Cl (419 mg, 1 mmol). 

The organic phase was further extracted with water (2 X 50 mL), dried with Na2SO4 and the 

solvent was evaporated under reduced pressure at room temperature to give Cy5-FN3 (458 

mg, 74%).  

Synthesis of Cy7-FN3 

4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (47 mg, 0.2 mmol), NaHCO3 aqueous solution (35 

mL) and Cy7-Cl (97 mg, 0.16 mmol)/CHCl3 (40 mL) solution gave Cy7-FN3 (51 mg, 40%). 

Synthesis of Cy3-FN3 

Cy3-I (800 mg, 1.56 mmol) was dissolved in MeOH and the solution was then mixed with 

AgNO3 (462 mg, 2.72 mmol) aqueous solution (50 mL), stirred for 30 min and filtered to 

remove precipitates. After evaporation of solvents, the solids were re-dissolved in CHCl3 (50 

mL) and unreacted AgNO3 was removed by filtration. 4-azido-2,3,5,6-tetrafluorobenzoic acid 

(3) (500 mg, 2.12 mmol) was dissolved in NaHCO3 aqueous solution (33 mL). The mixture was 

kept stirring for 30 min (pH = 8), diluted with 20 mL water and extracted with the previously 

prepared Cy3-NO3/CHCl3 solution. The organic phase was further extracted with water (2 X 

50 mL), dried with Na2SO4 and the solvent was evaporated under reduced pressure at room 

temperature to give Cy3-FN3 (528 mg, 54%).  

2.2.4 Synthesis of Cy-N3 

Synthesis of Cy5-N3 

4-azidobenzoic acid (5) (491 mg, 3.01 mmol) was dissolved in NaOH aqueous solution (30 

mL). The mixture was kept stirring for 4 h (pH = 9), diluted with 30 mL water and extracted 

with CHCl3 (60 mL) solution containing Cy5-Cl (339 mg, 0.81 mmol). The organic phase was 
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further extracted with water (2 X 50 mL), dried with Na2SO4 and the solvent was evaporated 

under reduced pressure at room temperature to give Cy5-N3 (302 mg, 68%).  

Synthesis of Cy3-N3 

Cy3-I (419 mg, 0.82 mmol) was dissolved in MeOH (50 mL) and the solution was then passed 

through Amberlite IRA-400 chloride form anion exchange resin to give Cy3-Cl/MeOH 

solution. After evaporation of MeOH, the Cy3-Cl solid was dissolved in CHCl3 (70 mL). 4-

azidobenzoic acid (5) (617 mg, 3.78 mmol) was dissolved in NaOH aqueous solution (50 mL). 

The mixture was kept stirring for 4 h (pH = 9), diluted with 20 mL water and extracted with 

the previously prepared Cy3-Cl/CHCl3 solution. The organic phase was further extracted with 

water (2 X 50 mL), dried with Na2SO4 and the solvent was evaporated under reduced pressure 

at room temperature. The product was obtained by recrystallization from water to give Cy3-

N3 (234 mg, 52%).  

2.2.5 Synthesis of Cy-MES 

Synthesis of Cy5-MES 

The synthesis of Cy5-MES is described as a representative example. Cy3-MES was prepared 

accordingly. H-MES (300 mg, 1.55 mmol) and Ag2O (500 mg, 2.16 mmol) were mixed in EtOH 

for 6 h. After cooling, the mixture was diluted with 20 mL EtOH. Excessive Ag2O was removed 

via a filtration-centrifugation-filtration cycle. 5 mL EtOH solution containing Cy5-Cl (616 mg, 

1.47 mmol) was then added drop wise and the mixture was stirred for 30 min at room 

temperature. The solution was then centrifuged and AgCl was removed by filtration. EtOH 

was evaporated and the products re-dissolved in DCM. Unreacted Ag-MES was three times 

extracted with water. The organic phase was dried with anhydrous Na2SO4, DCM was 

removed by evaporation and Cy5-MES was dried at 40 °C under vacuum (739 mg, 87%). 

Synthesis of Cy3-MES 

H-MES (300 mg, 1.55 mmol), Ag2O (500 mg, 2.16 mmol), EtOH (31 mL) and Cy3-I (705 mg, 

1.47 mmol) gave Cy3-MES (705 mg, 83%).  

2.2.6 Synthesis of Cy-PF6 

Synthesis of bCy3-PF6 
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The synthesis of bCy3-PF6 is described as a representative example. STCy3-PF6 and Cy1PF6 

were prepared accordingly. bCy3-I (809 mg, 1.76 mmol) was dissolved in MeOH (80 mL) and 

then added drop wise into a MeOH (50 mL) solution containing NaPF6 (1590 mg, 9.46 mmol). 

The mixture was stirred for 2 h. The precipitates were collected by filtration and purified three 

times by re-dissolution in DMSO and precipitation in MeOH to give bCy3-PF6 (309 mg, 37%). 

Synthesis of STCy3-PF6 

STCy3-ES (501 mg, 0.78 mmol) and NaPF6 (669 mg, 3.98 mmol) gave STCy3-PF6 (341 mg, 

67%).  

Synthesis of Cy1-PF6 

Cy1-I (513 mg, 1.1 mmol) and NaPF6 (2095 mg, 12.47 mmol) gave Cy1-PF6 (234 mg, 44%).  

2.3 Results and Discussion 

2.3.1 Synthesis and characterization of Cy-Poly 

 
Scheme 2-1: Synthesis of Cy-Poly. 

The Cy-Poly were synthesized according to Scheme 2-1. The synthetic route involved the 

thermal radical copolymerization initiated by AIBN. Next, the sulfonic acid side groups were 

deprotonated by reacting with Ag2O. Cyanine cations were then incorporated into the 

copolymers via a salt metathesis reaction with elimination of silver halides.  
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All copolymers were fully characterized by NMR spectroscopy (see 2.6 Supporting 

Information). The compositions were obtained by integration of monomer signals and were 

in good agreement with the feed ratio a:b:c of H-MES, MMA and PEGMA. For example, a feed 

ratio a:b:c of 1:4:0 yielded the copolymer Poly20 containing exactly 20% H-MES and 80% 

MMA monomer repeating units. This suggests that the monomer reactivity is very similar. A 

similar reactivity between H-MES and MMA was reported previously.2 Thereby, the content of 

cyanine dyes in the final polyelectrolytes could be conveniently tuned in advance by varying 

the feed ratio.  

GPC analysis was performed to determine the molecular weight of Poly20. However, due to 

the presence of sulfonic acid groups, the copolymer did not pass through the columns with 

THF as the eluent. Apparently, the sulfonic acid moieties cause an undesired interaction 

between the GPC column and the copolymer, thereby resulting in a longer retention of the 

polymer on the column and an erroneously low molecular weight. Therefore, the molecular 

weight of copolymers could not be determined by GPC.2 

The number of repeating units for the copolymers was obtained from 1H NMR spectra. Two 

methyl groups (δ1H 1.14 ppm, δ13C 25.8 ppm; δ1H 1.29 ppm, δ13C 29.3 ppm, recorded in 

DMSO-d6) with equal and small intensities were observed. Both groups showed an HMBC 

cross-correlation signal to a –CN group at 125.1 ppm. This indicates that these signals are 

due to the methyl groups of the (CH3)2CN-C- initiator fragment, located at the beginning of 

the chain.3 With the help of diffusion-edited 1H NMR experiments we further proved that this 

group was indeed attached to the polymer chain and does not stem from small molecular 

weight impurities.  

Integration of the methyl protons of the terminal groups and the monomer units in the 

middle of polymer chains gave the approximate number of repeating units. Accordingly, 

number average molecular weights Mn could be readily calculated (Table 2-1). 

Table 2-1: Repeating units and Mn of copolymers. 

Copolymer Repeating units Mn (g/mol) 

Poly20 324 38510 

Poly30 316 40530 
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Poly50 297 43706 

PEG25Poly50 274 54007 

PEG50Poly50 201 49662 

 

It should be noted that these Mn values are minimum molecular weights because polymer 

chains that terminate via recombination contain two terminal initiator fragments. For the 

polymerization of pure MMA it has been shown that polymers terminate predominately via 

disproportionation.3 Olefinic resonances in the 1H NMR spectra were detected at ~5.6 ppm 

and ~6.1 ppm with intensities < 1/3 of the initiator methyl groups. This confirms that 

polymer formation by disproportionation also dominates here, but signal intensities were too 

small for a quantitative analysis. 

TGA of different copolymers was carried out and the results are shown in Table 2-2.  

Table 2-2: Weight loss in three degradation stages and residue fraction of copolymers. 

Copolymer 
Weight loss and residue fraction (%) 

100-220 °C 220-380 °C 380-500 °C Residue (> 800 °C) 

Poly20 9.4 30.5 49.7 5.2 

Poly30 4.8 46.3 35.3 9.8 

Poly50 3.9 59.9 18.7 15.4 

PEG25Poly50 15.7 46.8 20.6 12.9 

PEG50Poly50 24.1 37.5 15.8 12.3 

 

Thermal degradation of all copolymers proceeds in a three-stage process. For copolymers 

without PEGMA as monomer units (Poly20, Poly30 and Poly50),  the predominant 

degradation occurs at the second stage between 220 °C to 380 °C and the third stage 

between 380 °C to 500 °C. As observed similarly in Ref. [3], the residue fraction at 

temperature above 800 °C, 5.2% for Poly20, 9.8% for Poly30, 15.4% for Poly50, increases with 

the increase of H-MES content in the polymers. Besides, it was found that the first weight loss 

between 100 °C to 220 °C becomes more dominant with the increase of PEGMA content in 
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the copolymers. This indicates that the PEGMA is thermally more labile compared to H-MES 

and MMA monomer units.  

Table 2-3: Calculated weight fraction of copolymers. 

Copolymer 
Calculated weight fraction (%) 

H-MES MMA PEGMA 

Poly20 32.7 67.3 0 

Poly30 45.4 54.6 0 

Poly50 66.0 34.0 0 

PEG25Poly50 49.3 12.7 38.0 

PEG50Poly50 39.3 0 60.7 

 

Further, the second weight loss (220-380 °C) values for Poly20 (30.5%), Poly30 (46.3%), Poly50 

(59.9%), PEG25Poly50 (46.8%) and PEG50Poly50 (37.5%) were in good agreement with the 

calculated weight fraction of H-MES content (Table 2-3) in Poly20 (32.7%), Poly30 (45.4%), 

Poly50 (66.0%), PEG25Poly50 (49.3%) and PEG50Poly50 (39.3%), suggesting that the second 

weight loss process is due to the degradation of H-MES moieties, which are thermally more 

labile than MMA. 

Table 2-4: Glass transition temperature Tg of copolymers. 

Copolymer Glass transition temperature Tg (°C) 

Poly50 49.5 

PEG25Poly50 5.7 

PEG50Poly50 -26.1 

 

Tg of Poly50, PEG25Poly50 and PEG50Poly50 was determined by DSC measurements (shown 

in Table 2-4). PEG is known to have a low Tg, which sensitively depends on the molecular 

weight.4 The increase of PEG units in the copolymers reduced Tg significantly, from 49.5 °C to 
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-26.1 °C. This result resembles the finding reported previously5,6, where it was found that Tg of 

copolymers could be altered by simply modifying the ratio of monomer units.  

The cyanine content in all Cy-Poly was confirmed by NMR measurements (see 2.6 Supporting 

Information). Integration of NMR signals for protons belonging to cyanine dye chromophores 

and MES matched, signifying the complete conversion of sulfonic acid groups. No residual 

Ag could be detected with XRF in Cy5-Poly20 and Cy3-Poly20 within the detection limit of 

~50 ppm. The reason for the successful salt metathesis reaction between the intermediate 

silver salt and the cyanine is the presence of the halide anions that drives the pairing by 

precipitation of AgCl or AgI.  

The synthesis of Cy-Poly containing more than 50% H-MES monomer units was not possible. 

The copolymers with higher H-MES content (> 50%) could be synthesized and the 

intermediate silver salt could be prepared. Subsequently, the incorporation of cyanine dyes 

led to an instant precipitation of both silver halides and partially formed Cy-Poly. The 

precipitates were not soluble in a wide variety of solvents and the Cy-Poly could therefore 

not be isolated from the silver halides. Apparently, the Cy-Poly solubility is sensitively 

dependent on the dye fraction and cyanine contents above 50% led to insoluble products. 

The unsuccessful synthesis of such Cy-Poly might be due to steric reasons. Since the bulky 

cyanine cations must arrange in close proximity to the sulfonate anions, this close 

arrangement of dye cations could become very difficult with the increasing density of anions 

present in the polymer backbone.  

2.3.2 Synthesis of perfluorophenyl azides 

The synthesis of 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) was reported in the literature.7,8 

The fluorine at para position of methyl pentafluorobenzoate (1) was firstly substituted by an 

azide to give methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2), followed by hydrolysis of the 

methyl benzoate group under basic conditions (Scheme 2-2).  
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Scheme 2-2: Synthesis of 4-azido-2,3,5,6-tetrafluorobenzoic acid. 

The synthesis was successful with high yields and all products were characterized by NMR 

spectroscopy and the 1H, 19F and 13C NMR chemical shifts were assigned (see 2.6 Supporting 

Information).  

2.3.3 Anion exchange of cyanine dyes 

Cyanine dyes with 4-azido-2,3,5,6-tetrafluorobenzoate counter anions (Cy-FN3) were 

synthesized according to Scheme 2-3. 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) was 

deprotonated with NaHCO3 to give Na-FN3, followed by solvent extraction with DCM or 

CHCl3. NMR spectra with chemical assignments for all Cy-FN3 dyes are compiled in 2.6 

Supporting Information.  

 

 
Scheme 2-3: Synthesis of Cy-FN3. 

The liquid-liquid extraction process efficiently separated the cyanine dyes with new counter 

ions from sodium chloride, yielding Cy5-FN3 and Cy7-FN3 with complete anion exchange 

dissolved in the organic phase. However, due to solubility problems, the direct solvent 
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extraction was not successful with the starting material Cy3-I, which gave only 30% to 65% 

ion exchange. Hence, the iodide in Cy3-I was firstly exchanged with nitrate, generating Cy3-

NO3, followed by solvent extraction to give Cy3-FN3.  

The anion exchange efficiency was quantified by NMR. A reference solvent TFP that contains 

both H and F atoms was added as an external standard to the NMR sample. By measuring 1H 

NMR and 19F NMR spectra and comparing H and F intensities between the dyes and the 

standard, the exchange ratio could be conveniently calculated.  

As observed from 19F NMR spectra, the 4-azido-2,3,5,6-tetrafluorobenzoate anions degraded 

in the range of 1% to 5% already during synthesis and storage at 4 °C. This observation was 

attributed to the decarboxylation of perfluorophenyl benzoate ions, as will be explained in 

Chapter 4.  

 

 
Scheme 2-4: Synthesis of Cy-N3. 

The synthesis of Cy-N3 was carried out according to Scheme 2-4 (for NMR data, see 2.6 

Supporting Information). Similar to the synthesis of Cy-FN3, 4-azidobenzoic acid (5) was 

deprotonated with NaOH to give Na-N3, followed by a solvent extraction to exchange the 4-

azidobenzoate anions. As found before, iodide could not be completely removed via solvent 

extraction. Here, Cy3-I was firstly passed through an Amberlite anion exchange resin, giving 
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Cy3-Cl. The following extraction process was performed with Cy3-Cl chloroform solution and 

Na-N3 aqueous solution.  

NaOH instead of NaHCO3 aqueous solution was used to deprotonate 4-azidobenzoic acid (5) 

since complete deprotonation with NaHCO3 was not successful. The pKa values of the 

structurally closely related benzoic acid and pentafluorobenzoic acid are 4.204 and 1.48 

respectively,9,10 which indicates that 4-azidobenzoic acid (5) is a much weaker acid than 4-

azido-2,3,5,6-tetrafluorobenzoic acid (3). Cy7-N3 could not be prepared by this synthetic 

route. It was found that the long heptamethine cyanine was more labile under basic 

conditions compared to trimethine or pentamethine dye, NMR (see 2.6 Supporting 

Information) showed that the Cy7 chromophores were destroyed during washing with pH = 9 

aqueous solution.  

Ion chromatography analysis confirmed that there were no residual chloride ions in Cy3-N3. 

ESI-MS spectra of Cy3-N3 showed a strong signal at m/z ~162, indicating the existence of 4-

azidobenzoate ions. Besides, no iodide signals were found in ESI-MS spectra.  

Table 2-5: Elemental analysis of Cy3-N3. 

Element weight fraction [C]% [H]% [N]% [O]% 

Measured values 
70.15 6.87 11.48 10.16 

70.14 6.75 11.63 10.31 

Calculated values 

(Cy3-N3) 
74.56 6.81 12.79 5.84 

Calculated values 

(Cy3-N3 ∙ 1.9 H2O) 
70.18 7.05 12.03 10.72 

 

According to elemental analysis (Table 2-5), Cy3-N3 contained ~5.9% water which originated 

from the recrystallization process. Water could not be removed by drying (10-3 mbar) at room 

temperature for ~16 h. Drying at elevated temperatures resulted in dye decomposition.  
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Scheme 2-5: Synthesis of Cy-MES. 

Similar to the synthesis of Cy-Poly, Cy-MES was prepared via salt metathesis reaction by 

elimination of silver halides (Scheme 2-5). Products were fully characterized by NMR 

spectroscopy and the results are shown in 2.6 Supporting Information. Using XRF analysis, no 

residual silver was found in both Cy3-MES and Cy5-MES within a detection limit of 50 ppm.  

 

 
Scheme 2-6: Synthesis of crosslinked cyanine polymers. 

Scheme 2-6 shows an alternative attempt to synthesize crosslinked cyanine polymers where 

Cy5-MES was directly polymerized with MMA as spacer and EDMA as crosslinker. However, 

this approach was not successful. The polymerization of MES anions strongly polarized the 

polymer backbone during the reaction. The increasing electrostatic repulsion hindered the 

further linking of MES. This resulted in a chain growth that highly favored MMA and EDMA 

over MES and consequently a limited number of MES could be polymerized. We also 

speculate that the AIBN initiator attacks the cyanine dye chromophores, causing an undesired 

consumption of the initiator and the loss of dye functionality.  



Chapter 2: Synthesis of Cyanine Dyes and Polyelectrolytes 

66 
 

 

 
Scheme 2-7: Synthesis of Cy-PF6. 

All Cy-PF6 were synthesized according to Scheme 2-7 via salt metathesis reactions. NMR 

results are shown in 2.6 Supporting Information. Due to the solubility difference between the 

starting materials (bCy3-I, STCy3-ES and Cy1-I) and the products, Cy-PF6 precipitates 

immediately in MeOH, which helped to isolate the products. The complete anion exchange 

was confirmed by 1H NMR and 19F NMR spectroscopy, using TFP as external reference 

compound. TLC analysis confirmed that there were no residual starting materials in final 

STCy3-PF6 and Cy1-PF6. No residual iodide in bCy3-PF6 and Cy1-PF6 was detected by XRF, 

further confirming that the anion exchange was complete and the products were pure.  

2.4 Conclusions 

Cy-Poly were synthesized via a versatile synthetic route involving an initial copolymerization 

of H-MES, MMA and PEGMA, followed by deprotonation of the pendant sulfonic acids 

groups and incorporation of cyanine dyes with elimination of silver halides. The composition 

of copolymers was confirmed by TGA and NMR spectroscopy. With the help of diffusion-

edited NMR measurements and the assignment of the terminal groups, the number of repeat 

units (~250) and Mn (~45 kg/mol) for the polymers could be calculated. As revealed by DSC 

measurements, incorporated PEG segments in the polymer backbone considerably decreased 

the Tg (from 49.5 °C to -26.1 °C). Two different cyanine cations Cy3 and Cy5 were introduced 

into the copolymers, yielding Cy3-Poly and Cy5-Poly with tunable cyanine contents ranging 

from 20% to 50%. Cy-Poly with cyanine contents larger than 50% could not be prepared due 

to steric reasons.  
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Anion exchange reactions for different cyanine dyes were carried out. 4-azido-2,3,5,6-

tetrafluorobenzoate or 4-azidobenzoate anions were introduced as counter anions to give 

Cy-FN3 or Cy-N3, respectively. The reaction scheme involved the deprotonation of the 

corresponding benzoic acids by a base (NaHCO3 or NaOH), followed by a solvent extraction 

process to isolate the cyanine dye with new counter anions in the organic phase from the 

reaction mixture. Cy-MES and Cy-PF6 were prepared via salt metathesis reactions either by 

precipitating silver halide as side product and leaving Cy-MES in the solution, or by 

precipitating directly Cy-PF6 as main product. Both approaches could nicely separate the 

desired ion pairs, thereby yielding Cy-MES and Cy-PF6 with high purity, confirmed by NMR, 

XRF and TLC analysis.  
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2.6 Supporting Information 

1H NMR, 19F NMR and 13C NMR spectra were recorded at 298 K on Bruker 300 MHz, 400 MHz 

and 500 MHz NMR spectrometers. Chemical shifts (δ) in ppm were calibrated to residual 

solvent peaks, DMSO-d6: δ = 2.49 and 39.5 ppm, methanol-d4: δ = 3.31 and 49.0 ppm, 

chloroform-d: δ = 7.26 and 77.2 ppm, for 1H NMR and 13C NMR respectively. No internal 

solvent calibration was performed for 19F NMR spectra. For 1H NMR and 19F NMR data 

coupling patterns are described as s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad and coupling constants J are reported in Hz. For 13C NMR data 

multiplicities of carbons are mentioned as s = quaternary, d = CH, t = CH2, and q = CH3. For 

1D and 2D NMR experiments standard Bruker pulse programs and measuring parameters 

were applied. Double quantum filtered homonuclear correlation spectroscopy (DQF-COSY), 

gradient selected heteronuclear single quantum coherence (gHSQC) and heteronuclear 

multiple bond coherence (gHMBC) were used for 1H and 13C NMR chemical shift assignments 

(w = weak correlation peak). The resonances belonging to low molecular weight impurities 

were identified by recording diffusion-edited 1H NMR spectra. 

2.6.1 NMR characterization for Cy-Poly 
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Identification of polymer part for Poly20, Poly30 and Poly50 

1H NMR (DMSO-d6, 400.13 MHz): δ 4.10 (m, 2H, H-f); 3.52 (s, 3H, H-e1); 3.50 (s, 3H, H-e2); 

2.80 (m, 2H, H-g); 1.80 (m, 2H, H-b2); 1.72 (m, 2H, H-b1); 0.89 (s, 3H, H-a2); 0.72 (s, 3H, H-a1). 

13C NMR (DMSO-d6, 100.61 MHz): δ 177.3 (s, C-d1); 176.5 (s, C-d2); 61.2 (t, C-f); 53.6 (t, C-b1); 

53.4 (t, C-b2); 51.8 (q, C-e2); 51.8 (q, C-e1); 49.6 (t, C-g); 44.4 (s, C-c2); 44.1 (s, C-c1); 18.6 (q, 

C-a2); 16.4 (q, C-a1). 

HMBC correlations: H-a1 → C-(b1, c1, d1); H-a2 → C-(b2, c2, d2); H-b1 → C-(d1); H-e1 → C-

(d1); H-e2 → C-(d2); H-g → C-(f). 

Two sets of resonances are observed for the polymer part. From the correlations of the 

methoxy protons “e” to at least two carboxyl carbons at 177.3 and 176.5 ppm in the HMBC 

NMR spectrum we concluded that the doubling of resonances observed in the polymer part 

must origin from its tacticity. For the NMR resonances assignable to the polymer part of all 

compounds at least two sets of resonances were observed. 

Identification of terminal group for Poly20, Poly30 and Poly50 
1H NMR (DMSO-d6, 400.1 MHz): δ 1.85 (m, 2H, H-5); 1.29 (s, 3H, H-4); 1.14 (s, 3H, H-3). 

13C NMR (DMSO-d6, 100.6 MHz): δ 125.1 (s, C-1); 50.6 (t, C-5); 29.8 (s, C-2); 29.3 (q, C-4); 25.8 

(q, C-3). 

HMBC correlations: H-3 → C-(1, 2, 4, 5); H-4 → C-(1, 2, 3, 5); H-5 → C-(1w). 

 
Figure 2-1: 1H NMR spectrum of Poly20 (DMSO-d6). 
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Figure 2-2: 1H diffusion-edited NMR spectra of Poly20 (DMSO-d6). 

 
Figure 2-3: 13C{1H} NMR spectrum of Poly20 (DMSO-d6). 
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Figure 2-4: HSQC and HMBC NMR spectra of Poly20 (DMSO-d6). 

 
Figure 2-5: 1H NMR spectrum of Poly30 (DMSO-d6). 
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Figure 2-6: 1H diffusion-edited NMR spectra of Poly30 (DMSO-d6). 

 
Figure 2-7: 1H NMR spectrum of Poly50 (DMSO-d6). 
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Figure 2-8: 1H diffusion-edited NMR spectra of Poly50 (DMSO-d6). 

 

Identification of polymer part for PEG25Poly50 and PEG50Poly50 

1H NMR (methanol-d4, 400.13 MHz): δ 4.33 (m, 2H, H-f); 4.12 (m, 2H, H-e); 3.74 (m, 2H, H-h); 

3.68 (m, H-i); 3.65 (m, 2H, H-j); 3.58 (m, 2H, H-k); 3.38 (s, 3H, H-l); 3.24 (m, 2H, H-g); 2.00 (m, 

2H, H-b2); 1.89&1.55 (m, 2H, H-b1); 1.09 (s, 3H, H-a2); 0.94 (s, 3H, H-a1).  
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13C NMR (methanol-d4, 100.61 MHz): δ 179.0 (s, C-d1); 178.1 (s, C-d2); 73 (t, C-k); 71.6 (t, C-i); 

71.4 (t, C-j); 69.7 (t, C-h); 65.5 (t, C-e); 61.6 (t, C-f); 59.2 (q, C-l); 55.4 (t, C-b2); 55.3 (t, C-b1); 

50.9 ( t, C-g); 46.4 (s, C-c2); 46.1 (s, C-c1); 19.7 (q, C-a2); 17.9 (q, C-a1). 

HMBC correlations: H-a1 → C-(b1, c1, d1); H-a2 → C-(b2, c2, d2); H-b1 → C-(d1); H-i → C-(h, i, 

j); H-j → C-(k); H-k → C-(j); H-l → C-(k); H-f → C-(d1, g); H-g → C-(f). 

Identification of terminal group for PEG25Poly50 and PEG50Poly50 
1H NMR (methanol-d4, 400.13 MHz): δ 1.38 (s, 3H, H-3); 1.28 (s, 3H, H-4). 

13C NMR (methanol-d4, 100.61 MHz): δ 126.4 (s, C-1); 31.6 (s, C-2); 30.6 (q, C-4); 26.9 (q, C-3). 

HMBC correlations: H-3 → C-(1, 2, 4); H-4 → C-(1, 2).  

 
Figure 2-9: 1H NMR spectrum of PEG25Poly50 (methanol-d4). 

 
Figure 2-10: 1H NMR spectrum of PEG50Poly50 (methanol-d4). 
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Figure 2-11: 13C{1H} NMR spectrum of PEG50Poly50 (methanol-d4). 

 

Identification of dye part for Cy5-Poly20, Cy5-Poly30 and Cy5-Poly50 
1H NMR (methanol-d4, 400.13 MHz): δ 8.21 (dd, J = 13.7, 12.4, 2H, H-10); 7.48 (m, 2H, H-5); 

7.40 (m, 2H, H-3); 7.31 (m, 2H, H-2); 7.24 (m, 2H, H-4); 6.63 (t, J = 12.4, 1H, H-11); 6.27 (d, J = 

13.7, 2H, H-9); 3.65 (s, 6H, H-13); 1.70 (s, 12H, H-12). 

13C NMR (methanol-d4, 100.61 MHz): δ 175.1 (s, C-8); 155.4 (d, C-10); 144.2 (s, C-1); 142.4 (s, 

C-6); 129.6 (d, C-3); 126.4 (d, C-11); 126.1 (d, C-4); 123.2 (d, C-5); 111.8 (d, C-2); 104.4 (d, C-9); 

50.4 (s, C-7); 31.7 (q, C-13); 27.9 (q, C-12). 

HMBC correlations: H-2 → C-(4, 6); H-3 → C-(1, 5); H-4 → C-(2, 5w, 6); H-5 → C-(1, 3, 7); H-9 

→ C-(7, 11); H-10 → C-(8, 10); H-11 → C-(9, 10w); H-12 → C-(5, 7, 8, 12); H-13 → C-(1, 8). 

Identification of polymer part for Cy5-Poly20, Cy5-Poly30 and Cy5-Poly50 
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1H NMR (methanol-d4, 400.13 MHz): δ 4.35 (m, 2H, H-f); 3.59 (s, 3H, H-e); 3.14 (m, 2H, H-g); 

1.92 (m, 2H, H-b2); 1.85 (m, 2H, H-b1); 1.01 (s, 3H, H-a2); 0.83 (s, 3H, H-a1). 

13C NMR (methanol-d4, 100.61 MHz): δ 179.3 (s, C-d1); 178.5 (s, C-d2); 62.0 (t, C-f); 55.5 (t, C-

b1); 54.0 (t, C-b2); 52.4 (q, C-e); 50.8 (t, C-g); 46.0 (s, C-c2); 45.7 (s, C-c1); 19.7 (q, C-a2); 17.4 (q, 

C-a1). 

HMBC correlations: H-a1 → C-(b1, c1, d1); H-a2 → C-(c2, d2); H-b1 → C-(d1w); H-e → C-(d1, 

d2); H-g → C-(f). 

 
Figure 2-12: 1H NMR spectrum of Cy5-Poly20 (methanol-d4). 

 
Figure 2-13: HSQC and HMBC spectra of Cy5-Poly20 (methanol-d4). 
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Figure 2-14: 1H NMR spectrum of Cy5-Poly30 (methanol-d4). 

 
Figure 2-15: 1H NMR spectrum of Cy5-Poly50 (methanol-d4). 
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Identification of dye part for Cy3-Poly20, Cy3-Poly30 and Cy3-Poly50 
1H NMR (methanol-d4, 400.13 MHz): δ 8.56 (t, J = 13.5, 1H, H-10); 7.56 (m, 2H, H-5); 7.46 (m, 

2H, H-3); 7.37 (m, 2H, H-2); 7.32 (m, 2H, H-4); 6.49 (d, J = 13.5, 2H, H-9); 4.23 (q, J = 7.3, 4H, 

H-12); 1.77 (s, 12H, H-11); 1.43 (t, J = 7.3, 6H, H-13). 

13C NMR (methanol-d4, 100.61 MHz): δ 175.6 (s, C-8); 152.3 (d, C-10); 143.0 (s, C-1); 142.4 (s, 

C-6); 130.1 (d, C-3); 126.8 (d, C-4); 123.6 (d, C-5); 112.2 (d, C-2); 103.4 (d, C-9); 50.7 (s, C-7); 

40.3 (t, C-12); 28.3 (q, C-11); 12.7 (q, C-13). 

HMBC correlations: H-2 → C-(4, 6); H-3 → C-(1, 5); H-4 → C-(2, 5, 6, 7w); H-5 → C-(1, 2w, 3, 7); 

H-9 → C-(6w, 7, 8w, 9, 10w, 11w); H-10 → C-(8, 9w); H-11 → C-(6, 7, 8, 11); H-12 → C-(1, 8, 13); 

H-13 → C-(12). 

DQF-COSY correlations: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-9 → H-

(10); H-10 → H-(9); H-12 → H-(13); H-13 → H-(12). 

Identification of polymer part for Cy3-Poly20, Cy3-Poly30 and Cy3-Poly50 

1H NMR (methanol-d4, 400.13 MHz): δ 4.34 (m, 2H, H-f); 3.59 (s, 3H, H-e); 3.13 (m, 2H, H-g); 

1.92 (m, 2H, H-b2); 1.85 (m, 2H, H-b1); 1.01 (s, 3H, H-a2); 0.84 (s, 3H, H-a1). 

13C NMR (methanol-d4, 100.61 MHz): δ 179.5 (s, C-d1); 178.5 (s, C-d2); 62.1 (t, C-f); 55.5 (t, C-

b1); 54.0 (t, C-b2); 52.5 (q, C-e); 50.8 (t, C-g); 46.2 (s, C-c2); 45.8 (s, C-c1); 19.8 (q, C-a2); 17.5 (q, 

C-a1). 

HMBC correlations: H-a1 → C-(b1, c1, d1); H-a2 → C-(c2, d2); H-b1 → C-(c1, d1); H-b2 → C-

(c2); H-e → C-(d1, d2); H-f → C-(g); H-g → C-(f). 
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DQF-COSY correlations: H-f → H-(g); H-g → H-(f). 

 
Figure 2-16: 1H NMR spectrum of Cy3-Poly20 (methanol-d4). 

 
Figure 2-17: 1H diffusion-edited NMR spectra of Cy3-Poly20 (methanol-d4). 
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Figure 2-18: 13C{1H} NMR spectrum of Cy3-Poly20 (methanol-d4). 

 
Figure 2-19: 1H NMR spectrum of Cy3-Poly30 (methanol-d4). 
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Figure 2-20: 1H NMR spectrum of Cy3-Poly50 (methanol-d4). 

 

Identification of dye part for Cy5-PEG25Poly50 and Cy5-PEG50Poly50 

1H NMR (methanol-d4, 400.13 MHz): δ 8.16 (dd, J = 13.7, 12.4, 2H, H-10); 7.44 (m, 2H, H-5); 

7.36 (m, 2H, H-3); 7.31 (m, 2H, H-2); 7.21 (m, 2H, H-4); 6.62 (t, J = 12.4, 1H, H-11); 6.28 (d, J = 

13.7, 2H, H-9); 3.65 (s, 6H, H-13); 1.65 (s, 12H, H-12). 

Identification of polymer part for Cy5-PEG25Poly50 and Cy5-PEG50Poly50 
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1H NMR (methanol-d4, 400.13 MHz): δ 4.37 (m, 2H, H-f); 4.08 (m, 2H, H-e); 

3.63&3.62&3.60&3.52 (m, H-h, i, j, k); 3.35 (s, 3H, H-l); 3.15 (m, 2H, H-g); 1.81&1.49 (m, 2H, H-

b); 1.05 (s, 3H, H-a2); 0.91 (s, 3H, H-a1).  

 
Figure 2-21: 1H NMR spectrum of Cy5-PEG25Poly50 (methanol-d4). 

 
Figure 2-22: 1H NMR spectrum of Cy5-PEG50Poly50 (methanol-d4). 

2.6.2 NMR characterization for Cy-FN3 
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1H NMR (chloroform-d, 300.13 MHz): δ 3.98 (s, 3H, H-d). 

19F NMR (chloroform-d, 376.50 MHz): δ -138.11 (m, 2F, F-a); -148.49 (m, 1F, F-c); -160.34 (m, 

2F, F-b). 

13C NMR (chloroform-d, 75.48 MHz): δ 159.49 (C-k); 147.06 – 136.07 (C-e, f, g, h, i); 108.10 (C-

j); 53.36 (C-d). 

 
Figure 2-23: 1H NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d). 

 
Figure 2-24: 19F NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d). 
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Figure 2-25: 13C NMR spectrum of methyl pentafluorobenzoate (1) (chloroform-d). 

 
1H NMR (chloroform-d, 300.13 MHz): δ 3.97 (s, 3H, H-d). 

19F NMR (chloroform-d, 376.50 MHz): δ -138.62 (m, 2F, F-a); -150.89 (m, 2F, F-b). 

13C NMR (chloroform-d, 75.48 MHz): δ 159.77 (C-k); 147.03 – 138.69 (C-e, f, h, i); 123.37 (C-g); 

107.61 (C-j); 53.20 (C-d). 

 
Figure 2-26: 1H NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) (chloroform-d). 
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Figure 2-27: 19F NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) (chloroform-d). 

 
Figure 2-28: 13C NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoate (2) (chloroform-d). 

 
19F NMR (DMSO-d6, 282.40 MHz): δ -141.38 (m, 2F, F-a); -151.60 (m, 2F, F-b). 

13C NMR (DMSO-d6, 75.48 MHz): δ 160.46 (C-k); 146.31 – 139.10 (C-e, f, h, i); 123.03 (C-g); 

108.96 (C-j). 
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Figure 2-29: 1H NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-d6). 

 
Figure 2-30: 19F NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-d6). 

 
Figure 2-31: 13C NMR spectrum of methyl 4-azido-2,3,5,6-tetrafluorobenzoic acid (3) (DMSO-d6). 
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1H NMR (methanol-d4, 400.13 MHz): δ 6.13 (1H, H-w); 3.85 (2H, H-x). 

19F NMR (methanol-d4, 376.50 MHz): δ -129.57 (tt, 2F, F-z); -141.93 (tt, 2F, F-y). 

 
Figure 2-32: 1H NMR spectrum of TFP (methanol-d4). 

 
Figure 2-33: 19F NMR spectrum of TFP (methanol-d4). 
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1H NMR (methanol-d4, 400.18 MHz): δ 8.26 (dd, 2H, H-10); 7.50 (m, 2H, H-5); 7.44 (m, 2H, H-

3); 7.32 (m, 2H, H-2); 7.29 (m, 2H, H-4); 6.64 (t, 1H, H-11); 6.30 (d, 2H, H-9); 3.62 (s, 6H, H-13); 

1.71 (s, 12H, H-12). 

19F NMR (methanol-d4, 376.54 MHz): δ -145.72 (m, 2F, F-a); -154.59 (m, 2F, F-b). 

13C NMR (methanol-d4, 125.76 MHz): δ 173.87 (s, C-8); 154.06 (d, C-10); 142.84 (s, C-1); 141.09 

(s, C-6); 128.29 (d, C-3); 125.17 (d, C-11); 124.81 (d, C-4); 121.85 (d, C-5); 110.38 (d, C-2); 

102.91 (d, C-9); 49.06 (s, C-7); 30.09 (q, C-13); 26.41 (q, C-12). 

 
Figure 2-34: 1H NMR spectrum of Cy5-FN3 (with TFP) (methanol-d4). 
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Figure 2-35: 19F NMR spectrum of Cy5-FN3 (with TFP) (methanol-d4). 

 
Figure 2-36: 13C NMR spectrum of Cy5-FN3 (methanol-d4). 
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1H NMR (methanol-d4, 500.13 MHz): δ 8.56 (t, 1H, H-10); 7.55 (m, 2H, H-5); 7.46 (m, 2H, H-3); 

7.37 (m, 2H, H-2); 7.32 (m, 2H, H-4); 6.46 (d, 2H, H-9); 4.22 (q, 4H, H-12); 1.77 (s, 12H, H-11); 

1.43 (t, 6H, H-13). 

19F NMR (methanol-d4, 470.59 MHz): δ -145.78 (m, 2F, F-a); -154.66 (m, 2F, F-b). 

13C NMR (methanol-d4, 125.76 MHz): δ 174.15 (s, C-8); 150.83 (d, C-10); 141.50 (s, C-1); 140.90 

(s, C-6); 128.65 (d, C-3); 125.37 (d, C-4); 122.19 (d, C-5); 110.83 (d, C-2); 102.05 (d, C-9); 49.26 

(s, C-7); 38.94 (t, C-12); 26.90 (q, C-11); 11.34 (q, C-13). 

 
Figure 2-37: 1H NMR spectrum of Cy3-FN3 (with TFP) (methanol-d4). 

 
Figure 2-38: 19F NMR spectrum of Cy3-FN3 (with TFP) (methanol-d4). 
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Figure 2-39: 13C NMR spectrum of Cy3-FN3 (methanol-d4). 

 
1H NMR (methanol-d4, 500.13 MHz): δ 8.55 (d, 2H, H-14); 8.27&8.03&7.64&7.50 (H-2, 3, 5, 6, 

7, 8); 6.30 (d, 2H, H-13); 3.80 (s, 6H, H-20); 2.79 (t, 4H, H-17); 2.04 (s, 12H, H-19); 2.00 (t, 2H, 

H-18). 

19F NMR (methanol-d4, 470.59 MHz): δ -145.79 (m, 2F, F-a); -154.65 (m, 2F, F-b). 
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Figure 2-40: 1H NMR spectrum of Cy7-FN3 (with TFP) (methanol-d4). 

 
Figure 2-41: 19F NMR spectrum of Cy7-FN3 (with TFP) (methanol-d4). 

2.6.3 NMR characterization for Cy-N3 

 
1H NMR (methanol-d4, 500.13 MHz): δ 8.06 (2H, H-a); 7.16 (2H, H-b). 
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Figure 2-42: 1H NMR spectrum of 4-azido benzoic acid (5) (methanol-d4). 

 
1H NMR (methanol-d4, 400.13 MHz): δ 8.26 (dd, J = 13.8, 12.4, 2H, H-10); 7.97 (2H, H-a); 7.50 

(m, 2H, H-5); 7.43 (m, 2H, H-3); 7.32 (m, 2H, H-2); 7.27 (m, 2H, H-4); 7.04 (2H, H-b); 6.63 (t, J = 

12.4, 1H, H-11); 6.30 (d, J = 13.8, 2H, H-9); 3.64 (s, 6H, H-13); 1.74 (s, 12H, H-12). 
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Figure 2-43: 1H NMR spectrum of Cy5-N3 (methanol-d4). 

 
1H NMR (methanol-d4, 400.13 MHz): δ 8.58 (t, J = 13.5, 1H, H-10); 7.97 (2H, H-a); 7.57 (m, 2H, 

H-5); 7.47 (m, 2H, H-3); 7.39 (m, 2H, H-2); 7.34 (m, 2H, H-4); 7.05 (2H, H-b); 6.48 (d, J = 13.5, 

2H, H-9); 4.22 (q, J = 7.3, 4H, H-12); 1.79 (s, 12H, H-11); 1.45 (t, J = 7.3, 6H, H-13). 
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Figure 2-44: 1H NMR spectrum of Cy3-N3 (methanol-d4). 

 
Figure 2-45: 1H NMR spectrum of Cy7-Cl (methanol-d4) extracted after washing with NaOH aqueous 

solution (pH = 9). 
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2.6.4 NMR characterization for Cy-MES 

 
1H NMR (methanol-d4, 400.13 MHz): δ 8.22 (dd, J = 13.8, 12.4, 2H, H-10); 7.48 (m, 2H, H-5); 

7.40 (m, 2H, H-3); 7.29 (m, 2H, H-2); 7.25 (m, 2H, H-4); 6.62 (t, J = 12.4, 1H, H-11); 6.27 (d, J = 

13.8, 2H, H-9); 6.12&5.60 (m, 2H, H-16); 4.49 (t, J = 7.1, 2H, H-18); 3.62 (s, 6H, H-13); 3.17 (t, J 

= 7.1, 2H, H-19); 1.92 (m, 3H, H-17); 1.71 (s, 12H, H-12). 

13C NMR (methanol-d4, 100.61 MHz): δ 175.3 (s, C-8); 168.6 (s, C-14); 155.5 (d, C-10); 144.3 (s, 

C-1); 142.5 (s, C-6); 137.6 (s, C-15); 129.7 (d, C-3); 126.6 (d, C-11); 126.5 (t, C-16); 126.2 (d, C-4); 

123.3 (d, C-5); 111.8 (d, C-2); 104.3 (d, C-9); 61.7 (t, C-18); 51.2 (t, C-19); 50.4 (s, C-7); 31.5 (q, 

C-13); 27.8 (q, C-12); 18.4 (q, C-17). 

HMBC correlations: H-2 → C-(4, 6); H-3 → C-(1, 2w, 5); H-4 → C-(2, 6); H-5 → C-(1, 3, 7); H-9 

→ C-(7, 8w, 10w, 11, 12w); H-10 → C-(8, 9, 10); H-11 → C-(9, 10); H-12 → C-(5, 7, 8, 12); H-13 

→ C-(1, 8); H-16 → C-(14, 15, 17); H-17 → C-(14, 15, 16); H-18 → C-(14, 19); H-19 → C-(18). 

DQF-COSY correlations: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-9 → H-

(10); H-10 → H-(9, 11); H-11 → H-(10); H-16 → H-(17); H-17 → H-(16); H-18 → H-(19); H-19 → 

H-(18). 
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Figure 2-46: 1H NMR spectrum of Cy5-MES (methanol-d4). 

 
Figure 2-47: 13C{1H} NMR spectrum of Cy5-MES (methanol-d4). 
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Figure 2-48: HSQC, HMBC and DQF-COSY NMR spectra of Cy5-MES (methanol-d4). 

 
1H NMR (methanol-d4, 400.13 MHz): δ 8.55 (t, J = 13.5, 1H, H-10); 7.55 (m, 2H, H-5); 7.45 (m, 

2H, H-3); 7.36 (m, 2H, H-2); 7.31 (m, 2H, H-4); 6.48 (d, J = 13.5, 2H, H-9); 6.11&5.60 (m, 2H, H-
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16); 4.49 (t, J = 7.1, 2H, H-18); 4.22 (q, J = 7.3, 4H, H-12); 3.17 (t, J = 7.1, 2H, H-19); 1.92 (m, 3H, 

H-17); 1.77 (s, 12H, H-11); 1.42 (t, J = 7.3, 6H, H-13). 

13C NMR (methanol-d4, 100.61 MHz): δ 175.3 (s, C-8); 168.5 (s, C-14); 152.3 (d, C-10); 142.9 (s, 

C-1); 142.3 (s, C-6); 137.5 (s, C-15); 130.0 (d, C-3); 126.7 (d, C-4); 126.5 (t, C-16); 123.6 (d, C-5); 

112.2 (d, C-2); 103.4 (d, C-9); 61.7 (t, C-18); 51.2 (t, C-19); 50.6 (s, C-7); 40.3 (t, C-12); 28.2 (q, 

C-11); 18.4 (q, C-17); 12.6 (q, C-13). 

HMBC correlations: H-2 → C-(4, 6); H-3 → C-(1, 5); H-4 → C-(2, 5, 6); H-5 → C-(1, 3, 7); H-9 → 

C-(7, 8w, 9, 10w, 11w); H-10 → C-(8, 9w); H-11 → C-(6, 7, 8, 11); H-12 → C-(1, 8, 13); H-13 → 

C-(12); H-16 → C-(14, 15, 17); H-17 → C-(14, 15, 16); H-18 → C-(14, 19); H-19 → C-(18). 

DQF-COSY correlations: H-2 → H-(3); H-3 → H-(2, 4); H-4 → H-(3, 5); H-5 → H-(4); H-9 → H-

(10); H-10 → H-(9); H-12 → H-(13); H-13 → H-(12); H-16 → H-(17); H-17 → H-(16); H-18 → H-

(19); H-19 → H-(18). 

 
Figure 2-49: 1H NMR spectrum of Cy3-MES (methanol-d4). 
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Figure 2-50: 13C{1H} NMR spectrum of Cy3-MES (methanol-d4). 

 
Figure 2-51: HSQC, HMBC and DQF-COSY NMR spectra of Cy3-MES (methanol-d4). 
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2.6.5 NMR characterization for Cy-PF6 

 

Identification of dye part for bCy3-PF6 

1H NMR (DMSO-d6, 400.13 MHz): δ 8.30 (t, J = 13.3, 1H, H-9); 7.75 (m, 2H, H-5); 7.68 (m, 2H, 

H-3); 7.46 (m, 2H, H-2); 7.40 (m, 2H, H-4); 6.06 (d, J = 13.3, 2H, H-8); 4.25 (q, J =7.2, 4H, H-10); 

1.36 (t, J = 7.2, 6H, H-11). 

19F NMR (DMSO-d6, 376.54 MHz): δ -69.40&-70.91 (6F, F-PF6). 

 
Figure 2-52: 1H NMR spectrum of bCy3-PF6 (with TFP) (DMSO-d6). 
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Figure 2-53: 19F NMR spectrum of bCy3-PF6 (with TFP) (DMSO-d6). 

 

Identification of dye part for STCy3-PF6 

1H NMR (DMSO-d6, 400.13 MHz): δ 8.04&7.85&7.78&7.70&7.52&7.43 (H-2, 4, 5, 8, 9, 10, 11, 

12); 5.87 (t, 2H, H-14); 4.39 (br, 4H, H-18); 2.98 (br, 2H, H-16); 1.44 (br, 6H, H-19); 1.36 (t, 3H, 

H-17). 

19F NMR (DMSO-d6, 376.54 MHz): δ -69.20&-71.09 (6F, F-PF6). 

 
Figure 2-54: 1H NMR spectrum of STCy3-PF6 (with TFP) (DMSO-d6). 
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Figure 2-55: 19F NMR spectrum of STCy3-PF6 (with TFP) (DMSO-d6). 

 

Identification of dye part for Cy1-PF6 

1H NMR (DMSO-d6, 400.13 MHz): δ 8.22 (m, 2H, H-5); 7.90 (m, 2H, H-3); 7.70 (m, 2H, H-2); 

7.51 (m, 2H, H-3); 6.75 (s, 1H, H-8); 4.71 (q, J = 7.1, 4H, H-9); 1.38 (t, J = 7.1, 6H, H-10). 

19F NMR (DMSO-d6, 376.54 MHz): δ -69.20&-71.09 (6F, F-PF6). 

 
Figure 2-56: 1H NMR spectrum of Cy1-PF6 (with TFP) (DMSO-d6). 
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Figure 2-57: 19F NMR spectrum of Cy1-PF6 (with TFP) (DMSO-d6). 
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Chapter 3:  Cyanine Dye Light-emitting Electrochemical 
Cells 

3.1 Introduction 

In 1995, Pei and coworkers introduced the concept of polymer light-emitting electrochemical 

cells (LECs).1 The simple device architecture of such LECs consists of two metal electrodes in 

between an active layer based on a luminescent conjugated polymer, a salt and an ion-

transporting poly(ethylene glycol) (PEG) is sandwiched. The addition of a salt considerably 

modified the properties of organic light-emitting diodes (OLEDs) that are based on a multi-

stack geometry. The mobile ions redistribute within the active layer upon an external bias, 

facilitating the charge injection from respective electrodes by lowering the injection barriers. 

Therefore, the use of additional charge injection and transport layers and air-sensitive 

electrodes is not required for fabrication of LECs. A rigorous encapsulation after fabrication 

can be potentially eliminated. Compared to OLEDs, more advantages of LECs have been 

demonstrated including low operation voltage, solution processability of the emissive layer, 

insensitivity to the active layer thickness, etc.2-8 

The operating mechanism of LECs has been intensively under debate. Recently, the 

electrochemical doping model was found to best describe the working principle of LECs. This 

model involves the initial formation of electric double layers (EDLs) at the electrodes, 

followed by the growth of p-type and n-type doping regions adjacent to the electrodes, 

consequently leading to a shrinking intrinsic layer where the emission of light takes place.2,3,9 

During the operation of LECs, an ionic junction is established due to the redistribution of the 

mobile ions, thereby inducing a potential energy shift and an internal electric field across the 

intrinsic region. This built-in potential allows for the control of electronic current flow 

preferentially in one direction, thereby resulting in a high rectification and diode 

characteristics. Photovoltaic response can also be achieved in such ionic junctions upon 

exposure to light.10,11  

Cyanine dyes are charged organic semiconducting salts with inherently built-in ionic and 

electronic charge conductivity. Typically, cationic cyanine chromophores are accompanied by 

a mobile counter anion such as perchlorate or hexafluorophosphate. Therefore, no 
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additionally admixed salts are required for cyanine dye based LECs. Besides, cyanine dyes are 

soluble in a wide variety of organic solvents, yielding homogeneous films via solution 

process. Tunable absorption/emission spectra and energy bandgap can be achieved by 

modifying the polymethine chain and other functional groups during synthesis. All these 

interesting properties of cyanines make them promising candidates as active components for 

LECs. However, it was demonstrated that cyanines exhibit a self-quenching mechanism of 

their fluorescence.12 A low PL quantum yield of < 1% in solid films was determined, resulting 

in a poor-performing LEC with an external quantum efficiency of only 0.001%.13 Considerably 

improved LECs employing a host-guest system were proposed by dispersing a cyanine 

emitter with smaller bandgap into a matrix material.13,14  

Here, we demonstrate a method to determine the junction position and width in an operated 

LEC using a trimethine cyanine/hexafluorophosphate as active material. This method involves 

a combination of electroluminescence (EL), photoluminescence (PL), incident photo-to-

current conversion efficiency (IPCE) and optical simulation. At the point of maximum current 

during operation of the LEC, the intrinsic region was determined to have a width of ~19.8 nm 

and to be situated at ~37% of the total active layer thickness away from the anode. LEC 

devices containing cyanine dyes with different thickness were investigated and optimization 

of such LECs in terms of their photovoltaic effects during the operation is presented. 

Preliminary attempts of host-guest LECs based on cyanine binary blends were also studied 

and the results are discussed.  

In this chapter, part of the data for determination of junction position and width in cyanine 

dye LECs are taken from the following publication: ”Doping evolution and junction formation 

in stacked cyanine dye light-emitting electrochemical cells” by Sandra Jenatsch, Lei Wang, 

Matia Bulloni, Anna C. Véron, Beat Ruhstaller, Stéphane Altazin, Frank Nüesch, Roland Hany, 

ACS Appl. Mater. Interfaces 2016, 8, 6554-6562. Fabrication of all devices and characterization 

regarding transient current and luminance measurements, absorbance spectra, PL spectra for 

Cy3-PF6 films, IPCE and J-V characteristics were performed by the author. PL measurements 

for host-guest blend films and optical modelling were carried out by Sandra Jenatsch (Empa).  
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3.2 Experimental 

3.2.1 Materials and methods 

STCy3-PF6, Cy1-PF6 and bCy3-PF6 were synthesized in our laboratory (Figure 3-1, for 

synthesis, see Chapter 2), 1-ethyl-2[3-(1-ethyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-

propenyl]-3,3-dimethyl-3H-indolium hexafluorophosphate (Cy3-PF6, FEW Chemicals), silver 

(Ag, Cerac), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT, Clevios P VP Al 

4083), tris-(8-hydroxyquinoline)aluminum (Alq3, Aldrich), molybdenum (VI) oxide (MoO3, 

Aldrich), acetonitrile (ACN, Sigma-Aldrich). 

 

 
Figure 3-1: Chemical structures of Cy-PF6. 

Absorbance spectra were measured on a Varian Cary 50 UV-Vis spectrophotometer. Film 

thicknesses were measured by profilometry (Ambios XP1). The thickness of very thin cyanine 

film (below 50 nm) was calculated by comparing with the maximum absorbance of thick films 

with a known thickness. Optical simulations were carried out using the commercially available 

simulation software SETFOS, version 4.1 (Fluxim). 

3.2.2 Device fabrication and characterization 

ITO coated glass substrates were successively cleaned by sonication in acetone, ethanol, 

detergent and de-ionized water. PEDOT films (~80 nm) were spin-coated and heated at 

120 °C for 15 min before further use. The hole transporting layer MoO3 (10 nm) and cathode 
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buffer layer Alq3 (2 nm) was deposited by thermal evaporation at a pressure below 5 ∙ 10-6 

mbar. Cyanine films (~30 – 155 nm) were spin coated from ACN solutions with different 

concentrations inside a nitrogen-filled glove box (< 1 ppm H2O, < 6 ppm O2). Devices were 

completed by evaporating Ag (80 nm or 12 nm) through a shadow mask to define eight cells 

on each substrate with areas of 0.031 cm2 or 0.071 cm2.  

Light-emitting electrochemical cells (LECs) and solar cells were mounted under N2 into an air-

tight homemade transfer box and operated or measured outside the glovebox. LEC were 

operated under a constant voltage driven by a Keithley 2400. Transient luminance and 

current were monitored using a Konica Minolta luminance meter LS-110 equipped with a 

close-up lens No. 110 and the Keithley 2400, respectively. IPCE was measured using a 300 W 

Xe light source equipped with an AM1.5G filter and a monochromator. The light intensity was 

determined using a calibrated Si diode. PL spectra for biased devices were measured on a 

Horiba Jobin Yvon Fluorolog spectrometer. For these measurements, the voltage was 

switched off during the scan of PL spectra and re-applied immediately afterwards. Current-

voltage (J-V) characteristics were measured using 100 mW cm-2 simulated AM1.5G solar 

irradiation on a calibrated solar simulator from spectra Nova.  

3.3 Results and Discussion 

3.3.1 Determination of junction position and width 

 
Figure 3-2: Schematic of device architecture for Cy3-PF6 LECs. 
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LECs with Cy3-PF6 as active component were fabricated, employing PEDOT and Alq3 as 

anode and cathode buffer layer, respectively (Figure 3-2). The thickness of Cy3-PF6 film is 

~30 nm.  

The LEC was operated under constant voltage at 3 V. A characteristic transient current and 

luminance behavior of an operating Cy3-PF6 LEC is shown in Figure 3-3a, it can be clearly 

seen that the current decreased during the initial ~10 min and no detectable luminance was 

observed. In this stage, the ions redistribute within the active layer and drift to the respective 

electrode interfaces, leading to the formation of EDLs. These layers facilitate the hole and 

electron injection from the electrodes, allowing for the subsequent electrochemical oxidation 

and reduction to generate p-type doped region adjacent to the anode and n-type doped 

region adjacent to the cathode, respectively.1-3,9,15,16 

After ~10 min operation, both current and luminance increased with time, yielding a switch-

on of the LEC at ~20 min. We define the switch-on time of the LECs when the detected 

luminance reaches 0.1 cd m-2. Here, the doped zones propagate toward each other, 

generating a narrowing intrinsic region where light emission takes place. The growing doped 

zones result in the formation of highly conductive regions adjacent to both electrodes, 

thereby transporting electronic charge carriers that recombine in the intrinsic region. The 

formed excitons relax radiatively and the emission of light is detected. As the doped zones 

widen and the intrinsic zone shrinks over time, more and more holes and electrons are 

injected into the device and meet in the narrowing intrinsic region with an increasing 

potential drop. Consequently, an increase of both current and luminance are observed during 

the operation of the LEC.1-3  

The luminance reached a maximum value of ~20 cd m-2 after ~3 h and then started to drop. 

It has been demonstrated that the doping quenches the PL in both p-type and n-type 

zones.16-20 Here, the drop of luminance indicates that excitons start to be quenched by 

approaching the doped species, leading to more non-radiative relaxation and a substantial 

reduction of exciton-to-photon conversion efficiency. Extensive doping results in a narrow 

junction, thereby allowing for an efficient quenching of excitons due to their close proximity 

to the doped zones.  
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Eventually, current density of the LEC reduced as well after reaching a maximal value of ~500 

mA cm-2. This suggests that permanent device degradation occurs in this stage, induced by 

irreversible chemical changes in the active layer and at electrode/active layer interfaces.19,21 

 
Figure 3-3: (a) Transient current density (open squares) and luminance (filled circles) in 

ITO/PEDOT/Cy3-PF6(30 nm)/Alq3/Ag LECs operated under constant bias at 3 V, (b) PL spectra 

recorded after biasing for different time. 

As discussed above, dynamic doping evolution takes place in an operating LEC, leading to 

the formation of a p-i-n junction. Generally, both p- and n-doped regions grow with time, 

while leaving a shrinking intrinsic region. Therefore, it is of interest to investigate the junction 

formation process in terms of its width and position during the LEC operation. Many 

attempts have been performed for planar LECs based on a direct visualization of the junction 

using optical microscopy and fluorescence imaging.15-17,22,23 However, stacked LECs possess a 

much higher potential for practical applications compared with planar LECs. Direct imaging of 

the junction with a digital camera is not possible for a stacked LEC since the interelectrode 

distance is typically very small (< 200 nm).24-26 Further, due to the large  difference of active 

layer thicknesses, the electrochemical doping model cannot be simply translated from the 

lateral to the sandwiched structured LECs by scaling down the thickness of different 

zones.27,28 It was found that the transient current response and junction width is sensitively 

dependent on the applied bias. Therefore, LECs with large difference of thickness cannot be 

directly compared in terms of their electrochemical doping and ionic junction formation 

process since the intensity of the electric field, depending on the thickness and the bias 

voltage, may consequently affect the field-dependent electron and hole mobilities.27,29,30  

Here, we monitored the PL spectra of the active layer in a stacked Cy3-PF6 LEC during 

constant voltage operation. As can be seen in Figure 3-3b, PL intensities at ~594 nm 
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decreased continuously for an operation period of 330 min except for the initial 30 min 

where no PL quenching was observed. This implies that doping-induced PL quenching is 

present in the device. Since EL and PL spectra of the Cy3-PF6 LEC overlap, PL measurements 

were carried out when the external bias was switched off. This resulted in a partial relaxation 

and redistribution of the ions and eventually a longer time (~5.5 h) was required to drive the 

LEC to the point of maximum current.21,31,32 We assume that the remaining PL signals stem 

solely from the undoped intrinsic region and the PL in both p- and n-doped zones is 

completely quenched. Then the ratio between the remaining and the initial PL intensity 

directly indicates the width of the junction. For instance, at maximum current (330 min), 66% 

PL intensities remained, suggesting that the width of the intrinsic region is 66% of the total 

active layer and 34% of the layer was doped.  

 
Figure 3-4: (a) Experimental IPCE spectra for pristine (black squares) and biased device at maximum 

current under light irradiated through ITO (blue circles) or Ag (red triangles) and simulated intrinsic 

layer absorbance spectra for light irradiated through ITO (blue dotted) or Ag (red dotted), (b) simulated 

ratio of the absorbance for light irradiated through ITO and Ag for different junction thicknesses and 

positions, the vertical lines indicate the active layer thickness, experimental results of three different 

cells are marked by orange stars. 

Migration of the ions affects the internal electric field and the potential drops primarily across 

the intrinsic region. It was demonstrated that the high electric field across the ionic junction 

assists the splitting of excitons into free charge carriers.10,11 Therefore, when illuminated with 

light, a LEC device with an established p-i-n junction can also be operated as a solar cell. A 

permanent photovoltaic response can be obtained if the ionic junctions are stabilized by 

immobilizing the ions.33,34  

Semitransparent LECs were fabricated by depositing 12 nm Ag layer as top electrode, which 

allowed for the illumination of light through both ITO and Ag contacts. The photovoltaic 
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response of such LECs was investigated by IPCE measurements. For a pristine device without 

bias, almost no current generation was observed since no p-i-n junction that facilitates 

charge separation was present (Figure 3-4a). For devices biased to the maximum current, 

different IPCE spectra were obtained upon light illumination through ITO or Ag electrode. It 

can be clearly seen that both IPCE spectra of biased devices follow the simulated absorbance 

of the intrinsic layer (Figure 3-4a, dotted lines), suggesting that the charge generation takes 

place within the Cy3-PF6 layer. Further, the charge extraction efficiency of a biased and 

illuminated LEC from different directions is proportional to the light that is absorbed in the 

intrinsic region. Therefore, the IPCE values sensitively depend on the junction position within 

the active layer. Optical modelling was performed by considering the full cell stack and 

dividing the active layer into three regions (p-i-n) with a constant total thickness. Results 

demonstrate that the ratio of absorbance of the junction when light is illuminated from ITO 

or Ag is sensitively dependent on the junction position but independent on the junction 

width (Figure 3-4b). The experimental ratios of the IPCE intensity at the point of maximum 

absorbance (~580 nm) for three individual cells were 3.52, 3.29 and 3.47. From simulated 

results, these values are situated at 37 ± 5% of the total active layer thickness away from the 

ITO, thereby indicating the position of the junction.  

 
Figure 3-5: Schematic of p-doped, intrinsic and n-doped zones of active layer in a Cy3-PF6 LEC at 

maximum current situation. 

Taking the PL measurements into account, which estimated the junction width to be ~66% at 

the point of maximum current, a picture of the whole active layer regarding three different 

zones can be depicted (Figure 3-5), yielding the thicknesses of p-doped, intrinsic and n-

doped regions for 1.2 nm, 19.8 nm and 9 nm, respectively.  
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3.3.2 Photovoltaic effect of the p-i-n junction 

 
Figure 3-6: White light (solid lines) and dark (dotted lines) J-V characteristics of ITO/PEDOT/Cy3-

PF6(30 nm)/Alq3/Ag devices measured before bias (pristine), after bias at 3 V for ~3 h to the maximum 

current and relaxation for 17 h after the bias is switched off.  

In a pristine Cy3-PF6 LEC, J-V characteristics showed that no photovoltaic performance was 

obtained. No current was generated upon illumination with white light, which is in agreement 

with the IPCE measurements. In a second step, an external voltage of 3 V was applied to the 

device and the maximum current was reached after ~3 h. The bias was then switched off and 

J-V curves were measured immediately afterwards. As can be seen from Figure 3-6, the 

device demonstrates high rectification and diode-like dark current behavior, resulting from 

the p-i-n junction in the active layer, which controls the flow of electronic current.34 A high 

open-circuit voltage (Voc) of ~1.2 V and a short-circuit current density (Jsc) of ~0.3 mA cm-2 

were achieved. However, the junction established in such LECs was not stable, both diode 

feature in the dark and photovoltaic effect upon light irradiation disappeared after device 

idling for 17 h (Figure 3-6). This is attributed to the dynamic and reversible electrochemical 

doping process, leading to redistribution and relaxation of ions when the external bias is no 

longer applied.4,20,33,35-37  

Notably, the pristine Cy3-PF6 LEC before bias exhibited a high dark current, which 

permanently disappeared after bias. For instance, a high current density of ~0.3 mA cm-2 was 

present at -1 V in the pristine device, which substantially decreased to < 0.005 mA cm-2 after 

bias for ~3 h. The pristine dark current was largely reduced if thicker cyanine films (≥ 90 nm) 

were used in LECs (see Figure 3-7 and 3.6 Supporting Information). Besides, the use of MoO3 

instead of PEDOT as anode buffer layer leads to much less pristine current in the dark J-V 
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characteristics (see 3.6 Supporting Information). We speculate that the Cy3-PF6 layers 

deposited on PEDOT yield poor film morphology with pinholes. This results in numerous 

microshunts in the active layer and the apparent leakage current in the dark. It was reported 

that postproduction thermal and electrical annealing leads to morphology modification and 

burning of shunts, which considerably improves the efficiency of organic light-emitting 

diodes and solar cells.38-40 It is therefore anticipated that the microshunts in the Cy3-PF6 LEC 

were mostly burned during the external bias, thereby presenting a pronounced reduction of 

dark current. In Figure 3-6, after relaxation of 17 h, the dark current is low, this is good 

because it can be expected that the microshunts – when they are burned – remained burned. 

If the pristine dark current resulted from a hole-only current, the situation would be different.  

  
Figure 3-7: White light (solid lines) and dark (dotted lines) J-V characteristics of ITO/PEDOT/Cy3-

PF6((a) 30 nm, (b) 90 nm)/Alq3/Ag devices measured before bias (pristine), after bias at (a) 4 V, (b) 6 

V for 10 – 20 min to the maximum current. 

Photovoltaic performance of LECs after bias was optimized by varying the thickness of Cy3-

PF6 films (see 3.6 Supporting Information). Devices were biased at different voltages to the 

point of maximum current. From Figure 3-7a, we found that a Voc of only ~0.8 V was 

obtained and the leakage current in the dark after bias at 4 V for 10 – 20 min was still 

partially present. This may result from the insufficient biasing time that did not enable a 

complete removal of microshunts by electrical annealing. It is known from the literature that 

shunts in the device can largely deteriorate the solar cell performance, leading to poor 

rectification and a lowered Voc.40 This observation further supports our speculation that 

burning of shunts takes place during bias, occurring simultaneously with the junction 

establishment.  
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Obviously, the device employing 90 nm Cy3-PF6 as active layer performed the best after bias 

to the maximum current, giving a high Voc of ~1.4 V (Figure 3-7b and 3.6 Supporting 

Information). Similar fill factor (FF) of ~23% was obtained for all devices with a Cy3-PF6 layer 

of different thicknesses. LECs with thinner Cy3-PF6 films (≤ 60 nm) exhibited a higher pristine 

current in the dark J-V curves. In addition, low Jsc values (< 0.2 mA cm-2) were obtained in the 

device with thicker Cy3-PF6 films (≥ 130 nm), which consequently led to a low power 

conversion efficiency (PCE). This may be attributed to the extensive absorption of light in the 

p-type doped region in such thick cyanine films, which largely reduces the amount of 

photons that can reach the p-i-n junction. Generally, the active layer of LECs has a thickness 

between 100 nm and 200 nm.1,2,41 Cyanine based LECs with a light-emitting layer of ~80 nm 

was reported.13 Besides, we found that devices with a Cy3-PF6 film below 60 nm did not work 

if MoO3 was deposited as buffer layer. Very thin active layers resulted in direct contact 

between the anode and cathode and therefore only short-circuited devices were obtained in 

such LECs. Thus, we conclude that the optimized thickness of active layer in the Cy3-PF6 

device is determined to be ~90 nm where an optimal photovoltaic performance after bias is 

obtained.  

  
Figure 3-8: Evolution of Voc and Jsc in ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag device after biasing at 5 V 

(a) to different current or (b) for different time after maximum current is reached. 

To investigate the evolution of photovoltaic performance in the LEC during operation, a 

device employing a Cy3-PF6 film with the optimized thickness of 90 nm was fabricated and 

biased with a constant external voltage at 5 V. J-V characteristics under light were recorded 

after the device was biased to different current (Figure 3-8a). It can be seen that higher 

currents resulted in a higher Voc, which increased from ~0.5 V to ~1.3 V at the point of 

maximum current. Similar behavior was found for the increase of Jsc. Differently, the maximal 
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Jsc value was achieved before the maximum current was reached in the device and a drop of 

Jsc was observed at the point of maximum current. As shown in Figure 3-3a, the transient 

luminance in an operated LEC already starts to decay after reaching a maximum value before 

the maximum current is reached, indicating that a remarkable exciton quenching effect is 

present due to overdoping at the maximum current situation. We therefore speculate that 

the best photovoltaic performance may correspond to the point at which the maximum 

luminance is situated. Continuous bias was applied to the device after the maximum current. 

From Figure 3-8b, we observe that both Voc and Jsc drop substantially, which is attributed to 

the permanent device degradation due to excessive electrochemical doping processes.20,37,42  

A reverse electrochemical doping was also achieved when a negative bias was applied to the 

LECs (see 3.6 Supporting Information). Namely, p-type doping occurs adjacent to the Ag and 

n-type doping to the ITO electrode. Light emission was observed when the device was 

operated under a constant bias of -5 V. J-V characteristics of a Cy3-PF6 LEC biased at -6.5 V 

for ~20 min demonstrated a minus Voc, suggesting that a reverse p-i-n junction was 

established in the active layer.43  

 
Figure 3-9: Photovoltaic performance of ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag LECs before bias 

(pristine) and after bias at 5 V to the maximum current, after white light illumination for 65 min and 

storage at -20 °C for 12 days. 

Due to the reversible electrochemical process as discussed above, the photovoltaic behavior 

of a biased LEC is also not stable (Figure 3-9). Cell performance decreased rapidly upon 

exposure to white light. 65 min illumination of light resulted in a drop of ~40% for Voc and Jsc. 
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FF stayed unchanged at ~24%. Furthermore, it can be observed that the relaxation of ions 

was considerably slowed down by storing a biased device at -20 °C, leading to a decrease of 

only ~10% for Voc and ~20% for Jsc after storage for 12 days. It was proposed that the p-i-n 

junction in polymer LECs can be frozen at 100 K or at RT, yielding a stable diode rectification 

and light emission with a fast response.11,42 To redistribute the ions and rebuild the p-i-n 

junction, partially relaxed devices after light illumination or storage at -20 °C were rebiased at 

5 V to the maximum current point and photovoltaic parameters, particularly Voc (~1.2 V), 

were restored.  

3.3.3 Host-guest light-emitting electrochemical cells 

Three different cyanine dyes were successfully synthesized and were used for the 

investigation of host-guest cyanine LECs. The host-guest approach has been successfully 

employed in OLEDs and LECs to improve the quantum efficiency of 

electroluminescence.13,14,44-48 This approach involves the addition of a dye emitter into an 

organic semiconductor matrix, yielding a homogeneous binary blend film. In this film, the 

emitting dye is present in a small content and well-dispersed within a host material. During 

device operation, the guest emitter is excited via either Föster energy transfer from singlet 

excitons generated in the host, or sequential capture of electrons and holes transferred from 

the host. Therefore, the charge carrier transport and the light emission processes are 

separated into different materials, which potentially prevent the self-quenching behavior of 

the emitter and lead to high quantum efficiency in the organic electroluminescent devices.  

Cyanine dyes are promising organic semiconducting molecules with strong 

electroluminescence. However, it is known that cyanines suffer from a severe self-quenching 

effect in solid films, which considerably limits the PL quantum yield (typically < 1%). LECs 

using cyanine dyes as guest emitting materials in a host-guest system were 

demonstrated.13,14 In such devices, emission of light arises solely from the cyanines, exhibiting 

a significantly enhanced external quantum efficiency compared to the single-component 

LECs.  

Here, we study the potential application of the synthesized cyanine dyes as either matrix 

material or emitter in host-guest LECs. Firstly, the thermal stability of bCy3-PF6 and STCy3-

PF6 films was investigated. We observed that bCy3-PF6 films were unstable when stored in 
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the dark in N2 atmosphere at RT (Figure 3-10). This indicates that this dye is 

thermodynamically unstable when coated as thin films. The freshly deposited films showed 

two clear absorbance signals corresponding to the monomer and dimer species of the dye. 

Within the first day storage, remarkable change of the absorbance spectra was observed, 

showing a decrease in dimer absorption and a pronounced increase in monomer absorption. 

No further change in the absorbance spectra occurred after 1 day storage.  Comparatively, 

STCy3-PF6 thin films were stable during storage under the same conditions. No variation in 

the absorbance spectra was found within 6 days.  

 
Figure 3-10: Variation of absorbance spectra of (a) bCy3-PF6 and (b) STCy3-PF6 thin films during 

storage in the dark in N2 at RT. 

Next, a binary cyanine blend employing the monomethine cyanine dye Cy1-PF6 as matrix 

material and the stable STCy3-PF6 as emitter was studied. It was found that the PL intensity 

of pure Cy1-PF6 films is very low, suggesting that an extensive self-quenching effect is 

present in the thin films and therefore a low fluorescence quantum yield is obtained. By 

adding different amount of STCy3-PF6 into the blends, considerable change in the PL spectra 

was observed. The emission signal of Cy1-PF6 almost disappeared and the emission of 

STCy3-PF6 at ~540 nm with a much stronger signal appeared. The optimal content of STCy3-

PF6 admixed in the blend was determined to be 1%, which exhibited the highest PL intensity 

(Figure 3-11). This experiment confirmed the preliminary concept of improving quantum 

efficiencies with LECs bearing a host-guest system.  
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Figure 3-11: PL spectra of host-guest blend films in different ratio. 

3.4 Conclusions 

LECs using cyanine dyes as active materials were studied. To better understand the functional 

principle of LECs, we proposed a method based on the combination of EL and PL 

measurements, which were performed during the operation under a constant external bias. 

This method enabled a rough estimation of the junction width at every transient situation 

during the operation. The junction position at the point of maximum current was determined 

by measuring photocurrent spectral response in a semitransparent LEC and optical simulation. 

Hence, a clear picture of the p-i-n junction regarding the three zones in a working LEC was 

obtained. In a second step, the photovoltaic effect of a biased device was investigated and 

optimized by altering the thickness of active layer. Results demonstrate that a LEC with a ~90 

nm thick Cy3-PF6 film yields the best photovoltaic performance after bias. Besides, 

microshunts that result in leakage dark current were eliminated and reversely established p-i-

n junction was achieved in such optimized LECs. Photovoltaic performance was recorded by 

measuring white light J-V characteristics during the operation. It was speculated that the best 

photovoltaic behavior appears at the point where the maximum luminance is situated. Due to 

the dynamic electrochemical doping process, light illumination on a biased device led to a 

rapid decrease of photovoltaic parameters. This decrease can be largely slowed down by 

freezing the ion motion at -20 °C. Rebiasing the partially relaxed devices allowed for a 

restoration of photovoltaic performance. Host-guest system was established with Cy1-PF6 as 

host material and STCy3-PF6 as guest material. Pronounced improvements of PL in the blend 

films were achieved, demonstrating the potential of being employed in host-guest LECs with 

high quantum efficiencies.  
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3.6 Supporting Information 

3.6.1 LECs with different Cy3-PF6 film thickness 

 

  

 
Figure 3-12: White light (solid lines) and dark (dotted lines) J-V characteristics of ITO/PEDOT/Cy3-

PF6((a) 45 nm, (b) 60 nm, (c) 130 nm, (d) 155 nm)/Alq3/Ag and (e) ITO/MoO3/Cy3-PF6(60 

nm)/Alq3/Ag devices measured before bias (pristine) and after bias at (a) 4 V, (b) 5 V, (c) 9 V, (d) 10 V, 

(e) 6 V for 10 – 20 min to the maximum current. 
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Figure 3-13: Photovoltaic performance of ITO/PEDOT/Cy3-PF6/Alq3/Ag LECs with different Cy3-PF6 

thickness after biasing to the maximum current. 

3.6.2 Reversely biased Cy3-PF6 LECs 

 
Figure 3-14: (a) White light (solid lines) and dark (dotted lines) J-V characteristics of ITO/PEDOT/Cy3-

PF6(90 nm)/Alq3/Ag LECs before and after bias at -6.5 V for ~20 min, (b) transient current and 

luminance in ITO/PEDOT/Cy3-PF6(90 nm)/Alq3/Ag LECs operated under constant bias at -5 V. 
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Chapter 4:  Photoconductivity in Ionic Cyanine Films 

4.1 Introduction 

Since the early 1950, production of carrier pairs in organic semiconductors has been very 

thoroughly studied in single crystals of polyacene.1 High energy radiation ionization, thermal 

production, single and multi-photon processes as well as reactions between excitons have 

been shown to operate in charge generation. The photoconductivity of thin organic films 

triggered a lot of interest due to its application in xerographic photoreceptors.2 More 

recently, photogeneration of charge carriers, also known as photoconductivity, has been 

addressed in organic thin film diodes. Here one particular interest is to use low energy 

photons close to the absorption band edge of the organic semiconductor to produce charge 

carriers. Quite different mechanisms for photo-induced charge carriers have been proposed 

which can grossly be classified by the way they operate. The first mechanism relies on 

lowering the charge injection barrier at the electrodes, which can be achieved by trapping 

charges of opposite sign to the bias applied at the electrode. This strategy generally leads to 

exponential dependence of photoconductivity on light intensity and produces photo 

multiplication factors of up to 103. The other mechanism relies on intrinsic generation of 

charge carriers, which can be induced easily in donor–acceptor blends.3 Photocarrier 

production by low energy photons in the bulk of pristine materials is however quite rare and 

difficult to separate from electrode processes.  

First studies in early 1960s already provide evidence of photoconductivity in trimethine 

cyanine films.4 Apart from this pioneering study, cyanines have only marginally been studied 

as solid semiconducting films. Most of the works have dealt with solar cells, photodiodes, and 

light-emitting electrochemical cells. As has been shown in other systems, creation of photo-

shunts by photoconductivity in a particular material component can have detrimental effects 

on device performance.5 Photoconductivity in cyanine single crystals of CTIP6 has revealed 

some kind of autoionization process which may proceed via vibronic excitations.  

Here we present photoconductivity investigations of a typical pentamethine cyanine dye salt 

in a thin film. It allowed investigating current-voltage characteristics under various conditions 

of light irradiation and electric fields. In addition, electrodes and poling conditions were 
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varied in order to scrutinize possible injections effects leading to the efficient 

photoconductivity yield which we found to exceed 40%. Also, we were able to perform 

photo-induced charge carrier extraction by a linearly increasing voltage (photon-CELIV) 

measurements on films with different thicknesses, which allowed us to extract the photo-

induced charge carrier density and infer the recombination kinetics. The investigations bring 

evidence for a bulk photogeneration mechanism rather than an electrode induced effect. 

In this chapter, all samples and devices were prepared by the author. All experiments 

regarding absorbance, fluorescence, profilometry, IPCE, current-voltage characteristic, 

transient current (poling) and luminance response were performed by the author. Photo-

CELIV and optical simulation was performed by Sandra Jenatsch (Empa). Ellipsometry 

measurements were carried out by Erwin Hack (Empa).  

4.2 Experimental 

4.2.1 Device fabrication 

Single layer cyanine diodes were fabricated and stored in a glove box under nitrogen (H2O < 

1 ppm, O2 < 10 ppm). Indium tin oxide-coated glass substrates (ITO, Thin Film Devices, 140 

nm, sheet resistance 20 Ohm/square) were sequentially cleaned in acetone, ethanol, 

detergent and de-ionized water. Anode buffer MoO3 (Sigma Aldrich, 99.99%), Al (Kurt J. 

Lesker, 99.999%) and Ag (Cerac, 99.99%) as well as cathode buffer tris(8-

hydroxyquinolinato)aluminium (Alq3, Sigma-Aldrich, 99.995%) were deposited by thermal 

evaporation under high vacuum (< 5×10-6 mbar). Semiconducting films consisting of 

pentamethine cyanine dye 1,3,3-trimethyl-2-3H-indolium hexafluorophosphate (Cy5-PF6, 

FEW Chemicals, Figure 4-1) were spin coated from filtered acetonitrile. In some cases PEDOT 

(Clevios P VP Al 4083) was used as anode buffer layer instead of MoO3 and was spin-coated 

from aqueous solutions. The top silver or aluminum electrode was evaporated through a 

shadow mask to define devices with active areas of 3.1 mm2 or 7.1 mm2.  

Single layer devices with architecture ITO/MoO3 (10 nm) or PEDOT (80 nm)/Cy5-PF6 (x 

nm)/Alq3 (2 nm)/Ag (80 nm) or Al (40nm) were fabricated by subsequent deposition steps on 

cleaned ITO substrates. The layer thicknesses x = 40 nm, 50 nm, 65 nm, 100 nm and 130 nm 

were achieved by varying the concentration and spin-coating speed from 1000 rpm to 6000 



Chapter 4: Photoconductivity in Ionic Cyanine Films 

128 
 

rpm and from 16 mg/ml to 40 mg/ml, respectively. Semitransparent devices were fabricated 

by replacing the thick metal electrode by a thin semitransparent of Ag (12 nm) and Al (8 nm).  

4.2.2 Methods 

For photocurrent characterization, the substrates were sealed in a vacuum tight box with 

current feedthroughs and an optical window. Current-voltage characteristics of the solar cells 

were measured using a Keithley 2400 source/measure unit in the dark and under simulated 

AM1.5G solar irradiation of 100 mW cm-2 from a calibrated solar simulator (Spectra-Nova). 

Increased irradiation intensity was achieved by placing two glass lenses into the diffuse white 

light beam in order to achieve a maximum irradiation intensity of 283 mW/cm2. For reduced 

irradiation conditions, the white light intensity Pin was passed through neutral density filters 

(Andover Corporation Optical Filter). A Cornerstone 130 monochromator (Oriel) was used 

together with a 300 W Xe lamp to measure the incident photon-to-current conversion 

efficiencies (IPCE). They were calculated as Eq. 4-1 

          (Eq. 4-1) 

where h is Planck’s constant, e is the elementary charge and λ is the monochromatic 

irradiation wavelength. The monochromatic light intensity was determined using a calibrated 

Si-diode. Reflection losses (10%) at the window of the inert gas measurement chamber were 

not considered in the calculation.  

Photo-CELIV transients were measured using the PAIOS system7 in a nitrogen-filled glovebox. 

Samples were illuminated by a 300 s white LED (Cree® XLamp® XP-G) pulse with a nominal 

intensity of 72 mW/cm2. To determine recombination kinetics, the photogenerated charges 

were extracted after a variable delay time delay using a voltage sweep rate A of 10 and 100 

V/ms. Prior to the voltage ramp, the applied voltage was iteratively set to Voc (open circuit 

condition) during the light pulse in order to avoid preliminary charge extraction. In order to 

assess the mobility of Cy5-PF6 films, the sweep rate was varied from 1 to 100 V/ms. The 

simulations were performed using the SETFOS software that has previously been used to 

extract organic solar cell parameters by combining steady-state and transient techniques8,9. 

The charge carrier mobility and the density of photo-generated charge carriers were 

calculated from the time taken to reach the photocurrent maximum and by integrating the 

area under the photo-induced transients. 
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Poling experiments were performed using constant positive or negative bias to the cell and 

monitoring the current density. Characteristic poling times were determined at the maximum 

current density peak.  

Fluorescence measurements were performed in a vacuum tight chamber using the optical 

fiber accessory of a Fluorolog-3 spectrofluorometer (Jobin Yvon Horiba) for emission 

detection and excitation. For high intensity excitation, a 532 nm emission wavelength solid 

state laser (Thorlabs) with an intensity of 4.5 mW was employed. Fluorescence quantum 

yields were determined in an integrating sphere mounted into the sample compartment of 

the fluorimeter.  

Absorption spectra were measured on a Varian Cary 50 UV-vis spectrophotometer. Film 

thicknesses were determined by profilometry (Ambios XP1). The absorptance of the films was 

determined by optics simulation software Setfos 3.3 which is based on the transfer matrix 

formalism for fast calculation of the photon flux across multilayer stacks. The absorptance of 

some films was double checked with the help of difference time domain (FDTD) simulations 

using Lumerical FDTD Solution software (Lumerical Inc. Canada). Both calculations utilize the 

optical constants n( ) and k( ) as obtained by variable angle spectral ellipsometry.  

4.3 Results 

Pristine single layer cyanine Cy5-PF6 devices can be fabricated with various thicknesses 

ranging from 40 nm to 130 nm. Single layer devices were made with PEDOT and MoO3 anode 

buffer layers as well as different metal cathodes, both using a 2nm thin Alq3 cathode buffer 

layer (Figure 4-1). In terms of rectifying properties as well as open-circuit voltage under 

white light irradiation, diodes with structure ITO/MoO3/Cy5-PF6/Alq3/Al perform clearly best. 

In reverse bias, there is a striking linear behavior of the photocurrent under irradiation. The 

diode breakthrough voltage is as high as -5 V for 40 nm thick films (corresponding to an 

external applied electric field of 1.25 · 108 V/m). 
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Figure 4-1: (a) Chemical structure of Cy5-PF6 and energy level diagram of the layers used in the thin 

film diodes. (b) Current-voltage curves of single layer Cy5-PF6 (40 nm) devices using MoO3 as anode 

buffer layer in the dark and under 1 or 3 sun irradiation. 

Devices using PEDOT anode buffer layers and a silver cathode exhibit higher dark current in 

reverse bias and present non-rectifying J-V characteristics. We have attributed this behavior 

to insufficient wetting of the dye solution on PEDOT leading to a rough morphology with 

numerous pinholes. Upon evaporation, Ag can penetrate into the cyanine layer and form 

micro shunts. Due to the lower diffusion of vapor deposited Al into the organic layer J-V 

curves are more rectifying, but still present large dark currents in reverse direction. Obviously, 

MoO3 presents high hole selectivity and allows excellent rectification.  
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Figure 4-2: Current-voltage curves of single layer Cy5-PF6 (40 nm) devices using (a) MoO3 or (b) 

PEDOT anode buffer layers. The cathode (Al or Ag) are indicated in the figure legend. Curves 

monitored in the dark are marked by dashed lines while curves measured under AM1.5 simulated 

solar light are drawn as full lines. Dotted lines correspond to the difference between current-voltage 

curves in the dark and under irradiation. 

Disregarding rectifying behavior, all devices present a linear photocurrent response in reverse 

bias. For non-rectifying devices the dark current was subtracted from the current under 

irradiation (see dotted lines in Figure 4-2b). Under simulated solar irradiation these single 

layer diodes show an open circuit voltage of 0.7 V which depends logarithmically on 

irradiation intensity (see 4.7 Supporting Information, Figure 4-8).  

The linear part of the photocurrent in reverse direction allows for determination of the 

conductivity from the slope of the current-voltage curve:  

          (Eq. 4-2) 

where is the conductivity, e the elementary electronic charge and  the charge carrier 

mobility. From Figure 4-2 we see that conductivity is not dependent on the type of electrode 

or anode buffer layer we apply to the device, although Voc clearly changes according to the 

effective work function of the electrode. Furthermore conductivity depends linearly on light 

intensity (Figure 4-3a) with a slight sub-linear response above an intensity of 1.5 suns.  
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Figure 4-3: (a) Conductivity  extracted from the linear slope of the current-voltage characteristics of 

an ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al device measured at different light intensities (full curves are 

shown in 4.7 Supporting Information, Figure 4-9). (b) Absorbance spectra of glass/MoO3 (10 nm)/Cy5-

PF6 (40 nm) and IPCE spectra of the same device as in (a) at different bias voltages under 1 sun 

irradiation. (c) Relative conductivity  extracted from the linear slope of the current-voltage 

characteristics of ITO/PEDOT/Cy5-PF6 (x nm)/Alq3/Ag as a function of device thickness x. (d) 

Simulated absorptance spectra of the devices in (c). 

IPCE spectra do not vary notably with the electrical field in forward or reverse direction 

(Figure 4-3b) indicating that charge generation mechanism is the same within the range of 

fields measured. The spectrum does not follow the absorptance obtained by Setfos transfer 

matrix calculation but has a saturated shape. As we will show below this feature is attributed 

to the fact that photocurrent generation at the absorption band edges is enhanced with 

respect to the maximum absorption wavelength, due to inhomogeneous photogeneration of 

charge carriers. This is also the reason why the photoconductivity of the cyanine film achieves 

a maximum at a thickness of about 70 nm, even though its white light absorption increases 

slightly (Figure 4-3d). At the highest possible applied reverse field of 1.1 · 108 V/m before 

diode breakdown occurs (i.e. before the photocurrent signal becomes non-linear), an IPCE 
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above 30% is obtained by extrapolating the IPCE signal at 700 nm. Considering the 

absorptance of about 80% at 700 nm for a thickness of 40 nm and subtracting the reflection 

losses at the window of the sealing chamber of 10%, we arrive at an estimate of the internal 

quantum efficiency (IQE) of 42%. Performing this calculation at different wavelengths gives 

the same order of magnitude with a maximum IQE of 84% at 500 nm. We do not exceed 100% 

and unfortunately the injection onset in the reverse bias does not permit to drive the devices 

into saturation. Nevertheless, the linear electric field dependence at field strengths > 106 V/m 

is already a strong indication that charge generation is intrinsic to the cyanine film. Injection 

of charges from the electrodes other than to collect photo-induced charges seems very 

unlikely at reverse bias, since we would expect non-linear light intensity behavior and a 

certain sensitivity on the electrode work function.  

In order to further investigate possible electrode effects on the photocurrent, devices with 

semitransparent silver electrodes of 12 nm thickness were fabricated (Figure 4-4). 

  

 
Figure 4-4: (a) IPCE spectra of ITO/MoO3 (10 nm)/Cy5-PF6 (130 nm)/Alq3 (2 nm)/Ag(12 nm) devices 

at  (a) 0 V or (b) -3 V bias under 1 sun irradiation from the front (ITO) and back side (Ag). (c) Current 

density-voltage curves in the dark and under illumination. 
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We clearly observe an increased IPCE at the band edges of the absorption spectrum and a 

dip where the film most strongly absorbs. At short circuit condition, there is not much 

difference between light impinging from the ITO or from the semitransparent silver electrode. 

This feature remains also when using semitransparent aluminum electrodes with a thickness 

of 8 nm (see 4.7 Supporting Information, Figure 4-10). At higher reverse bias the difference 

between band edge and the spectral region of maximum absorption diminishes. Interestingly 

also the difference in the IPCE measured at the central absorption region differs by a factor of 

two when irradiation from front and back side, respectively.  

Modifying the electrode interfaces would be another way to scrutinize electrode effects on 

charge generation. This can be done by poling the devices in forward bias (Figure 4-5). As 

we have shown recently, cyanine films can be poled, if the counterions such as PF6
- are 

mobile enough.10 As in conventional electrochemical light-emitting devices, p- and n-doped 

zones are formed after a sufficient poling time during which negative counterions move to 

the positively biased anode. In such poled devices the slope of the current-voltage 

characteristics is almost identical to the one of unpoled devices. The field dependence is 

perfectly linear which again indicates that charges are likely generated in the bulk of the film 

and not at specific interfaces. The higher Voc indicates that better Ohmic contacts are reached 

between the intrinsic and doped regions and also show that recombination losses are small. 

Also a week LEC emission can be observed (Figure 4-5a). 

 
Figure 4-5: (a) Poling curve of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices in forward direction at +3V. 

The luminescence emission is indicated in the graph. (b) Corresponding current-voltage 

characteristics of the same device after a poling time of 25 minutes in forward direction. Dashed and 

solid lines stand for dark and light J-V characteristics, respectively. 
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4.4 Discussion 

We first discuss the photoconductivity observed in pristine Cy5-PF6 single layer devices 

measured just after fabrication. Anode (ITO/MoO3) and cathode (Alq3/Al) contacts were 

chosen in order to obtain efficient injection into the organic semiconductor. We reach a 

maximum open circuit voltage of 0.7-0.8 V at saturation at a high light intensity of 

approximately 3 suns. This open circuit voltage is also achieved for thicker dye layers using 

PEDOT as buffer layer. However, after bias, an increased open circuit voltage of 0.94 V is 

observed. Since poling induces n- and p-doped layers at the cathode and anode, respectively, 

the open circuit voltage of the device corresponds to the maximum achievable photovoltage 

in these single layer devices. Given that the open circuit voltage of 0.7 eV can be achieved 

either with PEDOT or MoO3 anode buffer layers, but only with Alq3/Al cathodes, we judge 

that most of all electron injection is ameliorated in poled devices.  

Intrinsic charge generation in an organic semiconductor usually requires either strong electric 

fields, or photon energies well above the optical bandgap of the semiconductor. We 

measured the electric field quenching of Cy5-PF6 photoluminescence by varying the reverse 

and forward bias applied to the single layer devices (Figure 4-6b). 

  
Figure 4-6: (a) Absorbance and luminescence spectra of a 40 nm thick Cy5-PF6 layer sandwiched 

between ITO/MoO3 and Alq3/Al electrodes. The film was excited with a 4.5 mW laser emitting at 532 

nm. (b) Field induced quenching efficiency QPL(E) of Cy5-PF6 luminescence monitored at 730 nm. 

QPL(E) was calculated from equation (Eq. 4-3). 

The field induced photoluminescence quenching efficiency QPL(E) can be written as  

  (Eq. 4-3) 
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and has been analyzed by various continuum theories such as the Onsager theory11 or its 

extension by Noolandi and Hong12. In both theories, photoluminescence quenching is 

accompanied by charge carrier generation. A simple model allows relating the exciton 

binding energy to the onset field of luminescence quenching13:  

   (Eq. 4-4) 

Using Eonset=107 V/m and a dielectric constant of 3.6 from ellipsometry measurements (see 4.7 

Supporting Information, Figure 4-11), a binding energy of 0.45 eV is calculated. This is of the 

same order of magnitude as experimentally determined exciton binding energy of 0.2 for 

other cyanine dyes.14 The weak emission observed from Cy5-PF6 films also has a rather 

narrow band width (Figure 4-6a) indicating that it originates from non-relaxed excitonic 

states that have not been able to diffuse substantially before recombining radiatively or 

being quenched by other processes. In particular the generation of charge carriers with a 

quantum efficiency of more than 40 % was found to be very efficient. In the present work, the 

photoluminescence quantum yield was below the detection limit of our apparatus (< 10-4) at 

zero field and therefore carrier generation observed in the present case must occur in the 

absence of an electric field. Further mechanisms could be related to exciton-exciton reactions, 

such as exciton fusion giving rise to a higher excited state which would be able to be ionized. 

Indeed, rather low photon fluxes of 1016 to 1018 s-1cm-2 are required to trigger exciton-exciton 

fusion in aggregated cyanine films at low temperature15. In our devices under simulated solar 

irradiation the calculated flux density Nphot of absorbed photons is 6.64 · 1016 s-1cm-2 (this is 

calculated from the simulated absorptance A(l) by convolution with the AM1.5 solar spectrum 

S(L) according to Eq. 4-5. 

          (Eq. 4-5) 

Such processes typically depend quadratically on light intensity, which we do not observe in 

the devices studied in this work. We therefore conclude that photogeneration is a direct 

process (also called “self-ionization”). Indeed, our previous pulsed laser spectroscopy study 

using the perchlorate salt of Cy5,16 revealed fast generation of oxidized species within the 10 

ns laser pulse in the absence of an applied electric field.  

Direct photogeneration can be due to structural inhomogeneity creating energetic disorder 

in the film. This is especially important for Cy5-PF6 films that show a very broad spectrum 

with clear H-aggregate features. Aggregates indeed induce quite important variations of 
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orbital energy levels up to 0.2-0.3 eV17. This would allow for large enough driving forces to 

have spontaneous charge carrier generation induced by electron transfer, from a monomer 

species to an aggregate. At the same time, the transport gap would be reduced due to the 

heterogeneous structure of the film. There have been numerous investigations on the 

relationship between the open-circuit voltage (Voc) and the transport gap of organic 

semiconductors.18 Apart from structural disorder, Voc is mainly affected by the electrode wave 

functions, exciton binding energy, recombination or charge transfer states. For poled devices, 

we can exclude electrode effects on Voc since highly n- and p-doped interface layers form at 

the respective electrodes. The difference of 0.7 eV between the open circuit voltage of Cy5-

PF6 of 0.94 V and the optical bandgap of 1.64 eV is rather low, which may be related to the 

lower exciton binding energy reported in cyanine semiconductors14 as well as reduced 

recombination. We note that the same difference is obtained in single layer devices using 

trimethine cyanine dye Cy3-PF6 with an optical gap of 2.1 eV and an open circuit voltage of 

poled devices at 1.4 V (see 4.7 Supporting Information, Figure 4-12).  

In order to further understand photogeneration and recombination of charges in disordered 

Cy5-PF6 films, we carried out photo-CELIV measurements on films of 40 nm and 130 nm 

thickness. Figure 6a displays extracted charge density taken at different delay times after the 

light pulse. Extraction proceeded typically at a rate of 10 V s-1 and did not follow an 

exponential law. Strikingly, recombination kinetics in Cy5-PF6 films turn out to be extremely 

slow with about 50% of the charge still being extracted at a delay of 1 ms. Such long 

recombination times have already been observed for polymer-fullerene blends with phase 

separated domains19 but is unusual in pristine small molecular materials. On the double 

logarithmic plot, the thin cyanine layer follows a linear behavior with a slope of -1/7 which 

would correspond to a kinetic law of order 8. This contrasts to the bimolecular behavior of 

Langevin recombination rate R: 

  with             (Eq. 4-6) 

where  is the bimolecular recombination coefficient. Such second order kinetics would 

correspond to a slope of -1 and contrasts to the measured ultraslow recombination kinetics 

in Cy5-PF6 (Figure 4-7a).  
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Figure 4-7: Photo-CELIV measurements of ITO/MoO3/Cy5-PF6 (40 nm or 130 nm)/Alq3/Al devices (a) 

Recombination kinetics measured by time delayed charge carrier extraction. (b) Extracted charge 

carrier mobility at different sweep rates (film thicknesses indicated in the graph).  

Figure 4-7b displays extracted charge carrier mobilities as a function of sweep rate and 

cyanine layer thickness. In all cases voltage sweeps start at Voc and proceed to -3V. The RC 

constant of the electronic circuit was 0.1 s and thus did not interfere with the analysis of the 

transient curve. The apparent mobility of the charge carriers shows a clear dependence of the 

voltage sweep rate and the layer thickness. The decrease of apparent mobility at low sweep 

rates has already been predicted to occur in systems with trap states.20,21 The average 

mobility measured is 5 · 10-7 cm2 V-1 s-1 and includes both holes and electrons. The low carrier 

mobilities are indicative of charge carrier trapping, but are not able to explain non Langevin 

behavior. Therefore there must be another mechanism present to screen the charge carriers 

from attracting each other. Such a mechanism could come from the fact that cyanine are 

cationic dyes. When reduced by an electron the chromophore becomes neutral. While the 

chromophore site with its surrounding would still appear negatively charged seen from a far 

distance, the local fields may mask the negative charge carrier. Additionally, if small 

displacements of the ions in the film are possible, negative as well as positive charge carriers 

will be screened.  

Slow recombination would also explain the rather large quantum efficiency of photo-induced 

charge carrier production in the bulk material. We are now able to compare the charge 

carrier density ncond obtained from the conductivity with the charge carrier density nCELIV 

extracted from CELIV data. The former can be obtained from ncond = /e  . Using  = 6.5 · 10-

9 -1 cm-1 (Figure 4-2) and the average mobility of 5 · 10-7 cm2 V-1 s-1 a charge carrier density 

ncond = 8 · 1016 cm-3. This compares very well with the density nCELIV = 6.4 · 1016 cm-3.  
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So far we have assumed identical mobility for electron and hole. If this is true we must indeed 

obtain similar behavior for irradiation through the front electrode (ITO/MoO3) and back 

(semitransparent Ag). As shown in Figure 4-4, EQE measured in the central absorption band 

is almost identical for front and back side irradiation. This is surprising since the two 

electrodes have an important difference in reflection. Using Setfos, we calculated the 

absorptance of light in the central absorption region to be 30% for Ag side irradiation and 75% 

for ITO irradiation. Since most of the radiation is absorbed close to the interface at the 

maximum absorption wavelength, the current obtained is limited by those carriers traveling 

farthest. Photogeneration of charge carriers from the ITO side (front side) would mean that 

electrons travel a larger distance than holes. Even though twice as many electrons are 

produced by front side irradiation as compared to back side irradiation, the two currents are 

comparable. This means that electrons are less mobile approximately by a factor of two. The 

enhanced EQE at the edges of the absorption band is similar for back and front irradiation. 

This phenomenon is related to charge density dependent mobility of carriers (see 4.7 

Supporting Information, Figure 4-10). At the maximum absorption wavelength charge 

density will be very asymmetric leaving regions with very low carrier density and therefore 

lower mobility. Light with wavelength at the edges of the absorption band will more 

homogeneously irradiate the films and therefore provide a higher EQE.  In thick devices this 

feature is observed in the IV characteristics where front face illumination has clear field 

dependence on conductivity while back illumination shows a linear character. At higher 

reverse bias mobility is enhanced by the electric field and the marked wavelength 

dependence of EQE reduces. 

Finally we discuss Cy5-PF6 films biased in the opposite direction. In the ideal case, we would 

induce p-type doping at the Al cathode and n-type doping at the ITO electrode. As a matter 

of fact the J-V characteristics rather look like a short-circuited device, meaning that it is fully 

doped by one type of charge carrier and that there is no junction formation between p- and 

n-zones. This is indeed supported by the fact that we do not observe an open circuit voltage 

in this type of poled device. The inverse poling effect is reversible and not due to device 

deterioration. (see 4.7 Supporting Information, Figure 4-13). The question regarding which 

type of charge carrier is doping the film arises. It is not easy to be answered, but given the 

high work function of MoO3, we suspect that electron injection from MoO3 is more difficult 

than hole injection from the aluminum contact. Due to this asymmetry in charge carrier 
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injection, a p-doped film grows with time and in the eventually both electrodes equilibrate 

with the Fermi level of the p-doped cyanine film. However, at the Al electrode, a Schottky 

junction builds up blocking electron injection and building a barrier for hole transfer at the Al 

side. Upon irradiation, this Schottky barrier will be lowered, increasing photocurrent 

generation substantially. We indeed observe photomultiplication with an EQE larger than 

100%.  

4.5 Conclusions 

We demonstrate efficient photo-induced charge carrier generation in the bulk of pristine 

pentamethine cyanine dye films with internal quantum efficiency exceeding 40%. The 

mechanism of charge generation is found to be independent of the electrodes and 

compatible with bulk generation. As revealed by CELIV investigations, charges are created in 

the absence of an electric field. Under reverse bias, charges generated under continuous 

irradiation lead to a linear dependence of the current-voltage curve. The conductivity 

extracted from the slope of the latter linearly depends on light intensity and allows inferring 

the charge carrier density which perfectly matches the one obtained from CELIV 

measurements. Other mechanisms that would yield similar photoconductivity characteristics 

can be discarded. Field induced fluorescence quenching does not contribute significantly to 

the photocurrent due to the very low fluorescence yield. Electrode effects were shown not to 

be effective based on the photosensitivity spectrum, the independence on the type of 

electrodes and the perfectly linear current-voltage dependence. The high order 

recombination rate in these cyanine films with a typical half time of milliseconds points 

towards a charge screening mechanism in these cationic dye salts.  
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4.7 Supporting Information 

 
Figure 4-8: Voc and Jsc values of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices irradiated at different 

light intensities.  
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Figure 4-9: J-V characteristics of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices irradiated at different 

light intensities.  

 
Figure 4-10: IPCE spectra of ITO/MoO3/Cy5-PF6 (130 nm)/Alq3 (2 nm)/Al (8 nm) devices at 0 V under 

1 sun irradiation from the front (ITO) and back side (Al). 

 
Figure 4-11: Ellipsometry measurements of Cy5-PF6. 
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Figure 4-12: J-V characteristics of ITO/PEDOT/Cy3-PF6 (130 nm)/Alq3/Ag before and after bias at 

+3V to maximum current.  

  
Figure 4-13: (a) Poling curve of ITO/MoO3/Cy5-PF6 (40 nm)/Alq3/Al devices in reverse direction at 

different voltages. (b) White light (solid lines) and dark (dotted lines) J-V characteristics before and 

after biasing at -3 V to maximum current. 
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Chapter 5:  Visible-Light Induced Azide Decomposition in 
Trimethine Cyanine/Azido-Benzoate Films 

5.1 Introduction 

The aim of this work was the development of a light-triggered nitrene-mediated chemical 

fixation method for mobile anions in organic thin films. Significant progress is being made 

with organic materials that feature mixed ionic/electronic conduction for new applications in 

the fields of optoelectronic, sensors and smart materials.1 Cyanine dyes are ionic 

semiconducting organic salts that are accompanied by a counter ion. When applying a 

voltage bias the ions can be displaced in a thin cyanine film. Ionic interfacial space charge 

builds up and this has been exploited in bilayer cyanine/acceptor-C60 and cyanine/donor-

polymer solar cells.2,3 

More recently, cyanine light-emitting electrochemical cells (LECs) have been demonstrated.4,5 

When a voltage larger than the energy gap of the semiconductor is applied between the two 

electrodes, the ions in the active materials redistribute in a complex manner to facilitate the 

injection and transport of electrons and holes. The organic material is p-type (at the anode) 

and n-type (at the cathode) doped and the conductivity increases strongly. These regions 

grow into the film and form a p-n junction where they meet. Further injected charges travel 

along the doped material and recombine generating light emission at the junction. 

The p-n junction formation process followed by light-emission is dependent on the ionic 

redistribution; therefore, the turn-on time to light emission of a LEC is dependent on the 

ionic conductivity as well as on the driving voltage and the active material thickness. 

Characteristics of a LEC are a low turn-on voltage and the independence of the device 

operation on the electrode materials. Importantly, all processes in a LEC are reversible, and 

removal of the external voltage leads to device discharge and redistribution of the ions. The 

device is not rectifying and slow turn-on times are often observed. Similarly in an ionic 

organic solar cells, the ions relax back when the driving voltage is turned off, which prevents 

the continuous operation of the device.  

Therefore, it is clear that the dynamic p-n junction should be stabilized by immobilisation of 

the ions, thereby attaining quick LEC response time and continuous solar cell operation. 



Chapter 5: Visible-Light Induced Azide Decomposition in Trimethine Cyanine/Azido-Benzoate Films 

146 
 

Various attempts have been reported to permanently fix a desired ion distribution, thereby 

decoupling device operation from the slow ionic motion. Originally, ions were physically 

immobilized by attempting to freeze out ionic mobility.6 A cationically and anionically 

functionalized polyacetylene bilayer was fabricated. The bilayer was then electrochemically 

doped by applying a voltage. The liberated salt was washed away with a solvent, effectively 

trapping a p-n polymer junction.7 A chemically fixed junction was demonstrated with ion pair 

monomers that can be polymerized. The ions were locked during device charging, probably 

via radical-induced reactions with the radical anions and radical cations that are formed when 

electrical charge is injected into the organic material.8,9 This approach was extended by 

studying crosslinking reactions of polymerizable counter ions and polymerizable ion-

transporting material using a radical initiator compound.10 A permanently fixed p-n junction 

was prepared by using an organic bilayer consisting of a cationic polyelectrolyte containing 

fluoride counter anions and a neutral conjugated polymer containing anion-trapping groups. 

Application of a voltage lead to migration of the fluoride anions into the neutral polymer 

where they were trapped, establishing a stable junction with fast turn-on time for light 

emission.11 For photovoltaic applications, single-component and blended donor-acceptor 

devices were fabricated by adding a polymerizable salt. Charging with an external voltage 

established a chemically fixed p-i-n junction. These solar cells showed a promising increase in 

the open-circuit voltage, but the measured currents and fill factors were rather low.12  

As an alternative to immobilizing ions after device charging, we tested here anions containing 

a reactive azide group. Azides form highly reactive nitrene intermediates when irradiated with 

light in the UV wavelength range which rapidly react with nearby covalent bonds. Organic 

azides have found widespread use as photoaffinity markers for biomolecules, crosslinking 

reagents in photoresists, as reagents for the light-induced modification and functionalization 

of surfaces or as organic synthetic intermediates.13-15 In organic solar cells, small molecule 

bis-azides have been recently used to induce UV-photo or thermal crosslinking reactions in 

organic films composed of blends of polymers and fullerenes.16-18 The general idea here is to 

improve the cell long-term stability by fixing favourable blend microstructures after film 

coating, thereby suppressing the tendency for progressing phase separation on thermal 

ageing. 

As reactive anions we used azido-benzoate and azido-perfluorobenzoate and synthesized in 

a first step tri- (Cy3), penta- (Cy5) and hepta- (Cy7) cyanine salts via ion-exchange reactions. 
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However, the concept of displacing the anions in a first step (device charging) followed by 

photochemical stabilization of the operating device was not successful in our hand. This was 

due to a distinct tendency of the azido-benzoates towards decomposition during device 

fabrication already, triggered by light, temperature or electrical charges. Surprisingly, we 

observed that Cy3/azido-benzoate films also decomposed effectively already when exposed 

to visible light, and we ascribe this to an endothermic triplet-energy transfer reaction from 

excited cyanines to the azide group. Detrimental to LEC and solar cell performance, 

spontaneous azide decomposition resulted in severe quenching of the photoluminescence 

(PL) and functional devices could not be fabricated. We conclude that performing a selective 

and electronically non-disruptive chemical reaction between a cyanine chromophore and the 

accompanying counter anion remains an interesting but challenging task.  

In this chapter, all synthesis of Cy-FN3 and Cy-N3 were performed by the author (see Chapter 

2). Synthesis of Cy3-T was carried out by Anna Véron (Empa). All experiments regarding 

absorbance, fluorescence, infrared (IR) and cyclic voltammetry (CV) were carried out by the 

author. All device fabrication and characterization regarding absorbance variation during 

device operation, photovoltaic behavior, transient current and luminance measurements were 

performed by the author. NMR measurements and spectra analysis were performed by the 

author and Daniel Rentsch (Empa).  

5.2 Experimental 

5.2.1 Materials 

Cy-FN3 (Cy3-FN3, Cy5-FN3 and Cy7-FN3), Cy-N3 (Cy3-N3 and Cy5-N3) and Cy3-T (Cy3 with 

∆-TRISPHAT as a counter anion) were prepared in our laboratory (Figure 5-1), 1-ethyl-2-[3-

(1-ethyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene)-propenyl]-3,3-dimethyl-3H-indolium 

hexafluorophosphate (Cy3-PF6, FEW Chemicals), 2,2,3,3-tetrafluoro-1-propanol (TFP, Aldrich), 

acetonitrile (ACN, Sigma-Aldrich), silver (Ag, Cerac), poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT, Clevios P VP Al 4083), tris-(8-

hydroxyquinoline)aluminum (Alq3, Aldrich), poly(ethylene oxide) (PEG, Mv~400000, Aldrich), 

gallium-indium eutectic (EGaIn, Aldrich). 
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Figure 5-1: Chemical structures of Cy-FN3, Cy-N3 and Cy3-T. 

5.2.2 Methods 

NMR spectra were recorded on a Bruker 400 MHz spectrometer. Absorbance spectra were 

measured on a Varian Cary 50 UV-Vis spectrophotometer. PL spectra were measured on a 

Horiba Jobin Yvon Fluorolog spectrometer. Cyanine films were coated from ACN or TFP 

solutions on cleaned glass substrates and were then stored in inert atmosphere in the dark. 

Na-N3 films were coated from PEG/water solution since pure Na-N3 aqueous solution did 

not form homogeneous films. Absorbance and PL spectra were recorded for freshly coated 

films, stored films for different time at RT or elevated temperatures, or for irradiated films 

using UV or visible light. Both absorbance and PL measurements were carried out in air. Each 

sample was taken out of the inert atmosphere and measured only once. A new film was used 

for subsequent measurements. To study the effect of thermal metal evaporation on cyanine 

films, absorbance and PL spectra were recorded before and after 1 h irradiation from a 

glowing evaporation boat in the vacuum chamber. Attenuated total reflection IR (ATR-IR) 

spectra were recorded on a Bruker TENSOR 27 FT-IR spectrometer. To investigate IR spectra´s 

variations in the films during storage or upon light irradiation, thick cyanine films (> 200 nm) 

coated on glass substrates were used as samples and measured before and after treatment. 

UV irradiation was performed using a medium-pressure Hg lamp (Heraeus Noblelight) with 

an efficient spectral range between 200 nm to 300 nm and a power density of ~100 W/cm2. 

White light irradiation was performed using a 300 W Xe light source. Optical filters were used 

to block light below 400 nm or 610 nm, resulting in visible light irradiation without UV 
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content. Monochromic light irradiation was performed using a 150 W Xe lamp equipped with 

a monochromator. The monochromatic light intensities were measured using a calibrated Si-

diode: 3.32 W/m2 (at 580 nm), 2.54 W/m2 (at 680 nm) and 0.53 W/m2 (at 880 nm). Elemental 

analysis was carried out by the micro-laboratory of ETH Zürich. Ion chromatography analysis 

was carried out on a Metrohm 883 Basic IC plus. Electrospray ionization mass spectroscopy 

(ESI-MS) was carried out on a Waters Xevo TQD. CV measurements were performed on a 

PGSTAT 30 potentiostat (Autolab) using a standard three electrodes system with Au as 

working electrode, Pt as counter electrode and Ag/AgCl as reference electrode. 0.1 M DMF 

solution of tetrabutyl ammonium chloride and tetrabutyl ammonium perchlorate was used 

for inner and outer chamber, respectively. The concentration of dyes was ~0.4 mM for Cy3-

N3 and ~0.6 mM for Cy3-PF6. The ferrocene/ferrocenium (Fc/Fc+) redox couple was used as 

internal reference.  

5.3 Results 

5.3.1 Decarboxylation of fluorobenzoate anion 

As observed from 19F NMR spectra (see 5.7 Supporting Information), 4-azido-2,3,5,6-

tetrafluorobenzoate anions degraded partially (1-5%) already during synthesis.  

 
Figure 5-2: (a) 1H and (b) 19F NMR spectra of Na-FN3 in DMSO-d6 measured freshly, 2 hours or 7 

hours after sample preparation. 
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From Figure 5-2, it can be clearly seen that Na-FN3 is not stable when dissolved in DMSO. In 
1H NMR spectra, a proton signal appeared at 7.7 ppm and increased with time. 

Simultaneously, fluorine signals at -152.9 and -144.8 ppm decreased and increased at -152.0 

and -139.7 ppm, respectively. These results suggest that the carboxylate group was 

substituted by a proton, yielding 3-azido-1,2,4,5-tetrafluorobenzene as the main product. A 

similar decarboxylation reaction was reported for perfluorobenzoate ions.19,20  

We note that 13% perfluorobenzoate anions were degraded already in a freshly prepared 

sample. Since the initial 1-5% degradation of anions originated from synthesis, it can be 

concluded that ~10% benzoate anions decarboxylated rapidly within the first ~10 min (time 

for NMR sample preparation). Apparently, this reaction became slower over time, generating 

36% and 56% decarboxylated product after storage in DMSO for 2 and 7 hours, respectively.  

Decarboxylation was also observed for Cy3-FN3 and Cy5 associated with 

pentafluorobenzoate in DMSO solutions. In these cases, 1H NMR spectra showed that both 

the polymethine chain and side groups of cyanines were chemically attacked. From this, we 

can conclude that the proton required for decarboxylation was partially abstracted from 

cyanine chromophores. However, Cy-FN3 were stable in MeOH solution and NMR spectra did 

not change over 14 days. 

5.3.2 Thermal stability of Cy-FN3 and Cy-N3 films 
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Figure 5-3: Absorbance and PL spectra of (a, b) Cy3-FN3 and (c, d) Cy3-N3 thin films coated from 

ACN and stored in the dark at RT in N2. 

Cy3-FN3 films showed a continuous absorbance decrease and PL quenching over time 

(Figure 5-3a and 3b). Over a period of 13 days, the maximum absorbance at 576 nm 

dropped by ~17% and PL was completely quenched. Similar trends were observed for Cy3-

FN3 films coated from TFP. However, 19F NMR spectra of stored and re-dissolved films were 

superimposable with the original spectra. ATR-IR spectra of Cy3-FN3 films also remained 

unchanged after 21 days storage (see 5.7 Supporting Information). From this we conclude 

that decomposition of Cy3-FN3 films is occurring, however, only to a small extent. 

Degradation cannot be followed with NMR or IR spectroscopy, but can be tracked with 

optical spectroscopy. These are very sensitive methods, and small amounts of impurities can 

quench the PL already substantially.  

On the other hand, no trends in absorbance and PL were observed for Cy3-N3 films (Figure 

5-3c and 3d), which means that Cy3-N3 films are stable at RT. Also, no change was found in 
1H NMR spectra for Cy3-N3 compounds stored at -25 °C for 2 months. We therefore 

conclude that no decarboxylation occurred during storage.  

Absorbance and PL spectra of Cy3-N3 films stored at elevated temperatures in the dark in N2 

were investigated. At 50 °C, no change was observed in absorbance spectra. However, PL was 

continuously quenched over time and ~70% PL quenching was detected after storage for 8 h. 

When heated at 70 °C, both absorbance decrease and PL quenching was found for Cy3-N3 

films. We observed that a complete PL quenching occurred after 5 h, accompanied with a 

~16% drop of the maximum absorbance at 576 nm (see 5.7 Supporting Information).  
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5.3.3 Visible light induced decomposition of phenyl azide 

 
Figure 5-4: (a) Absorbance spectra of pristine Na-N3, Cy3-PF6, Cy3-N3 films and irradiated Cy3-N3 

film using UV light and (b) PL spectra of Cy-N3 films before and after UV light irradiation. 

Phenyl azides absorb UV light and decompose by expelling N2. This generates reactive 

nitrene intermediates, which can undergo a wide variety of chemical reactions.13,21,22,23-25 The 

maximum UV absorption of phenyl azides is usually in the range of 250 nm to 280 nm, 

depending on the exact chemical structure.21,26 As can be seen from Figure 5-4a, the azide 

signal of Na-N3 film appears at ~265 nm and Cy3-PF6 absorbs predominately between 450 – 

600 nm.  Besides, a second absorbance band in Cy3-PF6 film is observed at ~285 nm. 

Therefore, the broad absorbance between 250 nm and 300 nm in Cy3-N3 film comprises two 

apparently overlapping signals, which are attributed to the presence of both 4-azido 

benzoate anions and Cy3 chromophores. Clearly, the azide signal at ~265 nm Cy3-N3 

samples disappeared upon UV light irradiation. A full PL quenching was observed in UV light 

irradiated Cy3-N3 film (Figure 5-4b).  

We found that the azide partially decomposed already during the process of thermal 

evaporation of the top electrode (Ag or Al) onto Cy3-N3 films. Small absorbance changes (~3% 

at 576 nm) and pronounced PL quenching (~50%) was observed for Cy3-N3 films after 

thermal evaporation (see 5.7 Supporting Information). The temperature at the position of the 
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film substrate was below 40 °C, and therefore the decomposition cannot be thermally 

induced. We speculated that the light emission from the glowing evaporation boat induced 

photodecomposition of the azide. The effect of light with different wavelengths on the azide 

photolysis was investigated. Surprisingly, illumination in the wavelength range (400 – 610 nm) 

where the Cy3 chromophore absorbs induced a decomposition of the 4-azido benzoate 

anion. ATR-IR measurements showed that the intensity of azide signal13 at ~2114 cm-1 

reduced considerably during visible light irradiation of Cy3-N3 films (Figure 5-5). Since a very 

thick film was required for ATR-IR measurement to obtain well-resolved signals, the bottom 

part of the film was not irradiated efficiently, but was detected by the ATR crystal during the 

measurement. This explains the remaining azide singal after irradiation. We note that Cy3-N3 

only decomposed during visible irradiation when coated as a film. In Cy3-N3/ACN solutions, 

the azide group was stable (see 5.7 Supporting Information).  

 
Figure 5-5: ATR-IR spectra of Cy3-N3 films before and after 2 h visible light (> 400 nm) irradiation. 

For light-emitting electrochemical cells (LECs) of the structure ITO/PEDOT/Cy5-N3/Alq3/Ag, 

however, we observed a pronounced decrease of absorbance induced by the flowing current 

during biasing. Although not studied in further detail, this can indicate that both the 

oxidation and reduction leads also to the dissociation of the azide group.27 

5.4 Discussion 

5.4.1 Decarboxylation of 4-azido-2,3,5,6-tetrafluoro benzoate 

In contrast to the statement that “perfluorophenyl azides can be stored under ambient 

conditions in the dark until use”14, our results demonstrate a distinct instability of a trimethine 
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cyanine (Cy3) associated with the 4-azido-2,3,5,6-tetrafluoro benzoate counter anion. The 

fluorinated anion can be stabilized in protic solvents, but decomposes rapidly over 1 day in 

aprotic solvents via a decarboxylation reaction to yield 3-azido-1,2,4,5-tetrafluorobenzene. 

When stored as a powder or coated as a film, the decarboxylation of Cy3-FN3 still occurs. The 

decomposition reaction is thermally activated and ~3% anions degraded during a storage 

period of 5 months at 4 °C. It was reported19 that unless stabilized by an excess of free acid, 

pentafluorobenzoate anions undergo decarboxylation in aprotic solvents, e.g. CHCl3, ACN 

and DMSO. This may explain the initial degradation of Cy-FN3 during synthesis since DCM or 

CHCl3 was used for the solvent extraction step. In DMSO, decarboxylation was also observed 

for Cy5 combined with pentafluorobenzoate, which indicates that the azide group is not 

required for this reaction. ATR-IR measurements demonstrated that the azide group was still 

present in fully decarboxylated Cy7-FN3 after storage in ACN for 23 h (see 5.7 Supporting 

Information). As a detrimental additional effect we observed a full PL quenching already in 

films with less than 20% degraded cyanine dye (Figure 5-3a and 3b).  

It has been found20 that decarboxylation of pentafluorobenzoic acid is much faster than of 

tetrafluorobenzoic acid. In our case, the non-fluorinated azido benzoate anion was more 

stable than the fluorinated benzoate anion. The decarboxylation reaction did not occur and 

films could be stored under inert atmosphere at ambient temperature over 12 days without 

chemical degradation.  

5.4.2 Visible light sensitization of 4-azido benzoate 

The long wavelength absorption edge of the 4-azido benzoate anion is at ~300 nm in 

solution and at ~320 nm in the film. Photoirradiation with UV light expels N2 and yields the 

singlet nitrene as the key intermediate.28 In our case, we measured the decrease of the IR 

absorption of the azide group13 at ~2114 cm-1 and observed the complete azide 

decomposition when irradiating a 30 nm thick Cy3-N3 film for 3 min by UV light. Irradiation 

induced a ~40% decrease of the absorbance of the Cy3 chromophore. This means that the 

nitrene does not selectively react via insertion reactions at the cyanine side groups (the 

desired reaction) but to a considerable extent reacts at chemical sites of the cyanine core that 

form the conjugated electron system. The PL of UV irradiated films was completely quenched 

(Figure 5-4b), suggesting that efficient exciton quenchers were generated from the nitrene-

cyanine reactions. This is different from Ref. [18] where the nitrene-mediated 
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photocrosslinking of semiconducting polymers was dominated by alkyl side chain reactions, 

which did not degrade the semiconductor properties and consequently did not quench the 

PL. 

A ~400 nm thick Cy3-N3 film was irradiated with UV light for 5 min and was then re-

dissolved in methanol-d4. 1H NMR measurements were carried out to determine possible 

reaction products resulting from the azide decomposition. Results indicated that protons 

belonging to polymethine, phenyl and alkyl groups were converted to a similar extent (~3% - 

5%), suggesting that reactive nitrene intermediates underwent reactions in a very non-

selective manner. However, the azide decomposition was not accompanied by 

decarboxylation since the splitting of proton signals belonging to benzoate anions did not 

change.  

Unexpectedly, we observed that the 4-azido benzoate anion in Cy3-N3 films could also be 

photosensitized in the presence of visible light only. Visible photosensitization was not 

effective for Na-N3 or Cy3-N3 dissolved in water and ACN, respectively. Also no 

decomposition was observed when a film of Na-N3 dispersed in PEG was irradiated with 

visible light (see 5.7 Supporting Information). From this we conclude that Cy3 photoexcitation 

by visible light sensitizes the azide decomposition, enabled due to the close proximity of the 

dye and the counter anion in the film.  

Several possible mechanisms were considered whereby the azide anion could quench 

photoexcited Cy3. First, there is no overlap between the Cy3 fluorescence (at ~590 nm) and 

the 4-azido benzoate anion absorption and therefore a long-range Förster transfer can be 

ruled out. Although azides can quench donor singlet states32, we also rule out an Cy3* (S1 at 

~2.1 eV) → N3* (S1 at ~4.1 eV) exchange energy transfer in our case because this reaction is 

strongly endothermic.  

The possibility of an electron transfer reaction must be considered. This could occur either 

from excited Cy3* to the lowest unoccupied molecular orbital (LUMO) of 4-azido benzoate, 

or via an electron transfer from the highest occupied molecular orbital (HOMO) of 4-azido 

benzoate to the lowest singly occupied orbital of Cy3*. We measured cyclic voltammetry to 

access the relevant redox levels (Figure 5-6).  
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Figure 5-6: (a) CV spectra of Cy3-N3, Cy3-PF6 and Fc/Fc+, (b) frontier energy levels of Cy3 and 4-

azido benzoate anion. 

As an approximation of the formal potential of the redox couples, half-wave potentials E½ = 

½(Epc + Epa) were evaluated, with the cathodic and anodic peak potentials, Epc and Epa. E½ for 

Fc/Fc+ was 0.98 V against the Ag/AgCl reference electrode. The first half-wave reduction 

potential for both Cy3-N3 and Cy3-PF6 was E½,red = -1.39 V against Fc/Fc+ (Figure 5-6). 

Assuming that E½,red corresponds to the LUMO level of Cy3, and with an energy level of -5.10 

eV vs. vacuum for Fc/Fc+ 30, the redox level of Cy3 (LUMO) vs. vacuum can be calculated to be 

3.71 eV. For Cy3-PF6 we measure a second half-wave reduction potential at E½,red = -2.33 V 

against Fc/Fc+ (-2.77 eV vs. vacuum). For Cy3-N3 this second apparent half-wave reduction 

potential is slightly shifted (by -0.07 V) and probably presents the overlap between cyanine 

and the LUMO energy of 4-azido benzoate. To estimate the HOMO energy level we 

subtracted the optical bandgap for Cy3 and 4-azido benzoate from the corresponding LUMO 

levels (Figure 5-6). 

From data shown in Ref. [18] for ethylene bis(4-azido-2,3,5-trifluoro-6-isopropylbenzoate), 

the HOMO can be estimated at ~7.7 eV and the LUMO at ~2.2 eV below vacuum. Using cyclic 

voltammetry, for phenyl azide an oxidation potential of 1.74 V relative to a saturated calomel 

electrode was reported.27 From this value the HOMO level of phenyl azide at ~6.48 eV below 

vacuum can be obtained, assuming that the energy level of SCE is situated at -4.74 eV below 

vacuum.18 These values are in good agreement with our values for 4-azido benzoate. 

Importantly, the azide redox energy levels are outside those of Cy3, and both a reductive and 

oxidative electron transfer reaction between photoexcited Cy3* and 4-azido benzoate can be 

ruled out.  
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Based on the above discussion we rule out singlet energy transfer and electron transfer 

reactions to be the reason for the observed visible photosensitization of 4-azido benzoate by 

Cy3. We propose that azide decomposition is triggered via a triplet energy transfer process; 

this involves intersystem crossing of Cy3S1* → Cy3T1*, followed by energy transfer to the azide 

N3S0 → N3T1*. In a following step, N3T1* expels N2 and produces a chemically reactive triplet 

nitrene. The proposed mechanism is summarized in Figure 5-7.  

 
Figure 5-7: Schematic mechanism of sensitized azide photodecomposition via triplet energy transfer. 

Conclusive evidence for a triplet energy transfer mechanism would involve, for example, first 

measuring the triplet energy levels of Cy3T1* and N3T1*, and in a second step correlating the 

quenching rate of Cy3T1* with the formation rate of N3T1* in Cy3-N3 films under visible 

irradiation. The problem with this approach is that both triplet states are not easily accessible 

by spectroscopy. In the following we summarize the main processes occurring after 

photoexcitation of cyanines and azides.  

5.4.3 Photorelaxation of cyanine dyes 

The photophysics and photochemistry of cyanine dyes has been intensively studied. Despite 

the large structural variety of cyanines, a simplified general picture of the photorelaxation can 

be formulated. Excited all-trans cyanines can be deactivated via fluorescence, internal 

conversion, intersystem crossing to the triplet state and trans-cis photoisomerization. In 

solution of low viscosity and for non-hindered monomers of cyanines with no heavy atoms – 

either directly attached to the dye chromophore, present as counter anion or as part of the 
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solvent – the quantum yield of fluorescence is small and often negligibly small for 

intersystem crossing, and the trans-cis photoisomerization presents a major deactivation 

pathway. When the temperature is lowered, the isomerization is hindered and the yields of 

fluorescence and triplet formation increase.31-33  

Due to the low quantum yield of intersystem crossing, the cyanine triplet state energy has 

been measured in only a few cases. For a series of monomers and singly covalently linked 

trimethine indo- and thiacarbocyanines, the S1-T1 gap is ~0.5 eV.32 From the onset of the 

phosphorescence spectra at ~720 nm, a T1 energy of 1.72 eV is obtained.32 For a structurally 

related trimethine cyanine, the S1-T1 gap was ~0.4 eV and the T1 energy is at ~1.77 eV.34  

Of relevance to this work is the photorelaxation of cyanines in thin films and in the presence 

of non-inert counter anions. First, the fluorescence of a pristine trimethine cyanine film 

decayed on the order of tens of ps35 with a quantum yield below 1%.5 This poor yield means 

that cyanines present an efficient self-quenching mechanism of their fluorescence, because 

the fluorescence increased strongly as cyanines were diluted into a polymer matrix.36 It was 

speculated that cyanine dimer/aggregate formation possibly acted as non-radiative 

quenching centers.36 In cyanine films, the photoisomerization seems to be inhibited.37,38 

Likewise, the intersystem crossing yield in the film is low and was at most 0.02 for a 

monomethine cyanine in thin films of polyvinyl alcohol.39 By chemically bonding iodine to the 

chromophore, the maximum triplet yield could be increased to 0.25.39 A similar heavy-atom 

effect was observed for benzene solution of cyanine with I- as the counter anion; irradiation 

generated the triplet state and the heavy-atom-induced intersystem crossing was possible, 

because the dye iodide in benzene exists almost exclusively as an ion pair.40 

Another deactivation channel for excited cyanines can be opened via an intra-ion pair 

electron transfer. In one example the photoexcitation of cyanines was followed by an electron 

transfer from the iodide anion to the excited cyanine leading to the formation of a radical.41 

In several examples, a similar electron transfer has been studied for borate anions. Borate 

anions can reduce excited cyanines in the film37,42 or in non-polar solvents, where the cyanine 

borate exists predominantly as an ion pair.38,43 Alkyl-substituted borates undergo further 

carbon-boron cleavage upon oxidation. The free alkyl radicals thus formed may be used for 

the initiation of polymerization reactions, noteworthy triggered by light absorption of the 

cyanine in the visible range. 
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5.4.4 Photolysis of azides 

Directly photoexcited azides expel rapidly N2 and the singlet nitrene is formed. Singlet 

nitrenes chemically react by ring expansion, insertion and cycloaddition reactions. For 

aromatic azides, it has been found that the introduction of halogen atoms on the phenyl ring 

suppresses the ring expansion reactions of singlet nitrenes and favours the insertion 

reactions.14,21,44 

Alternatively, singlet nitrenes can intersystem cross to the triplet nitrenes, which react 

predominantly via H-abstraction reactions or dimerize to the azo compounds. Intersystem 

crossing from the singlet to the triplet nitrene is a barrier-less process.15,45 Therefore, 

thermally activated chemical reactions of the singlet nitrene at lower temperature are 

relatively suppressed and intersystem crossing is favoured.  

The triplet state of arylazides, Ph-N3T1*, can efficiently be populated by energy transfer. This 

occurs, for example in phenacylazides, where photoexcitation produces the triplet state of the 

keto group, that via an intramolecular energy transfer populates the excited azide triplet state 

that splits off N2 to yield Ph-NT1 as reactive intermediate.13,15 Triplet-sensitized photoreactivity 

was also demonstrated for a vinylazide containing an acetophenone group.46 

Alternatively, azide triplet states can be populated by intermolecular energy transfer via 

triplet sensitizers.27,28,47-49 Triplet-triplet energy transfer was typically achieved by irradiation of 

a sensitizer with UV light. Recently, useful photosensitizers that absorb in the visible range of 

the spectrum have been demonstrated. Visible sensitizing light is attractive because often 

more complex organic molecules are prone to decomposition when irradiated with UV light. 

The most commonly used visible light photocatalysts are polypyridyl complexes of ruthenium 

and iridium. For example, the complex tris(2,2’-bipyridine)ruthenium(II) (Ru(bpy)3
2+) absorbs 

light in the visible and undergoes rapid intersystem crossing to the triplet state with a long 

lifetime of 1.1 μs. Ru(bpy)3
2+* emits at λmax = 615 nm from its lowest triplet energy level at 

2.03 eV.50 The long lifetime of the excited state is a prerequisite for energy transfer reactions 

in solution because too short lifetimes do not allow an efficient diffusive encounter between 

the sensitizer and quencher at experimentally achievable concentrations. Transition-metal 

complexes have been used for the visible light triplet sensitization of vinyl azides.51 Benzoyl 

azides were used for the direct C-H amidation of heteroarenes in the presence of acid, 



Chapter 5: Visible-Light Induced Azide Decomposition in Trimethine Cyanine/Azido-Benzoate Films 

160 
 

Ru(bpy)3
2+ and visible light.52 Triplet energy transfer was possible because of the favourable 

T1 energy (~1.78 eV) of benzoyl azides.  

Azide triplet energy levels have been calculated in a number of cases. Alternatively, the triplet 

energy can be estimated from sensitization experiments; as long as the triplet energy of the 

sensitizer is greater than that of the acceptor, the energy transfer should occur at the 

diffusion-controlled rate. When the energy transfer is endothermic a rapid fall off is expected. 

For alkyl azides, T1 is between 3.25 – 3.47 eV;49,53 for two vinyl azides, T1 = 1.97 eV and 2.25 

eV, respectively;51 for an azidonaphthalene, T1 = 2.69 eV;51 for phenyl azide, T1 = 2.95 eV.27  

Interestingly, it has been observed that sensitizers with lower triplet energies were 

considerably more effective than expected for a classical endothermic energy 

transfer.27,29,48,49,53 It has been suggested that the molecules are more stable with a bent than 

a linear configuration of the azide group in the first excited state. The effective energy 

transfer was then best explained by vertical excitation of a vibrationally excited bent azide 

ground state to a low-energy bent excited state.   

5.4.5 Quenching of cyanine triplets by 4-azido benzoate 

From the published data discussed above, we can estimate the triplet energy levels to Cy3T1* 

≈ 1.75 eV, and 4-azido benzoateT1* ≈ 2.5 – 3 eV. This means that also in our case energy 

transfer is taking place despite that the process is endothermic. We performed two 

experiments to support our explanation of the visible-light induced azide decomposition in 

Cy3-N3 films.  

Although the individual efficiencies of the processes shown in Figure 5-7 are not precisely 

known, it is clear that the overall efficiency of the reaction sequence “Cy3S1* → NT1 → chemical 

reactions” must be small. This is because of the low intersystem crossing efficiency Cy3S1* → 

Cy3T1* (Φisc < 0.01); in addition the quantum yield for the dinitrogen loss from triplet excited 

phenyl azide is only ~0.5.49 We irradiated 50 nm thick Cy3-N3 films with monochromatic light 

of 3.32 W/m2 at 580 nm and measured the decrease of the cyanine film absorbance over time. 

As we have explained above the full azide decomposition induced a decrease of the cyanine 

absorbance by ~40%; therefore, this spectral change is a measure for the number of 

produced triplet nitrenes.  From the known number of absorbed photons and the number of 

converted molecules we could calculate the overall efficiency of the photodecomposition 
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reaction sequence to be in the range of 1-5 x 10-4. This number is considerably smaller than 

the combined efficiencies of the cyanine intersystem crossing and triplet nitrene production 

and therefore not inconsistent with the proposed reaction mechanism. 

Overall, the endothermic triplet energy transfer process Cy3T1* → N3T1* is rather inefficient. 

We figured that the process can be suppressed completely for increased cyanine-azide 

triplet-triplet energy gaps. Therefore, we synthesized penta- (Cy5) and heptamethine (Cy7) 

cyanines with the anions 4-azido benzoate and 2,3,5,6-tetrafluoro-4-azido benzoate, 

respectively. Cy5 and Cy7 absorb at longer wavelengths than Cy3 (Figure 5-8). For a 

pentamethine cyanine delayed fluorescence and phosphorescence was observed.54 The 

delayed fluorescence was emitted from the S1 state of trans-cyanine via a thermally activated 

reverse intersystem crossing from the cis-triplet state to the trans-S1 state. The energy 

difference between the S1 and T1 states of trans-cyanine was about 0.24 eV (T1 = 1.60 eV).54  

Thin films of Cy3-N3, Cy5-N3 and Cy7-FN3 were irradiated with monochromatic light at the 

maxima of the absorbance spectra for 1h (Figure 5-8). Absorbance spectra taken before and 

after irradiation showed the decomposition of Cy3 but films of Cy5 and Cy7 remained 

unaffected. This shows that for penta- and heptamethine cyanine the proposed triplet energy 

transfer reaction is suppressed. 

 
Figure 5-8: Absorbance spectra for Cy3-N3, Cy5-N3 and Cy7-FN3 films before (solid lines) and after 

(dotted lines) monochromatic light irradiation for 1 h. 

5.5 Conclusions 

Our results demonstrate the pronounced degradation tendency of cyanine/4-azido benzoate 

films that is triggered by heat, electric charges and light, both in the UV and visible range. 

The concept of displacing the anions first in a thin film, followed by nitrene-mediated 
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chemical fixation by a UV light trigger was therefore not applicable and all our attempts to 

fabricate functional LECs and organic photovoltaic (OPV) cells failed. Regardless of the azide 

reactivity, decarboxylation of the fluorinated benzoate anion resulted in considerable PL 

quenching in the film. The devices employing Cy-FN3 as active materials were therefore not 

successful. Further, we demonstrated that the nitrene intermediate upon azide 

decomposition in the films reacted quite non-selectively with cyanine dye chromophores, 

destroying the polymethine group and forming very effective exciton quencher. For LECs, no 

luminance was detected in a device based on Cy3-N3. The most detrimental effect is the 

finding that already small amounts of azide decomposition resulted in a pronounced PL 

quenching. If the azides could have been selectively fixed in the p-doped region after device 

turn-on, light-emission from the intrinsic region could still take place. Devices containing 

trimethine cyanines with a bulky ∆-TRISPHAT ion as counter anion (Cy3-T) and Cy3-N3 

blends were fabricated and operated, aiming at moving the relatively small and mobile 4-

azido benzoate anion prior to its decomposition in the intrinsic region. The PL quenching, 

however, was severe and occurred already during evaporation of the metal top electrode in 

the vacuum chamber, induced by the light emitted by the glowing metal evaporation boat. 

Hence, several attempts focusing on deposition of a back electrode without light irradiation 

were carried out. Ag/polydimethylsiloxane (PDMS) or ITO/PEDOT was applied as alternative 

electrodes via lamination process, which resulted in poor contact between the laminated 

electrodes and the active materials and consequently irreproducible device performance in 

LECs. Another attempt was given to spray-coating of silver nanowires (AgNWs) in the dark. 

However, it was found that the sprayed organic solvents dissolved the cyanine active layers. 

The use of eutectic gallium-indium (EGaIn) as metal electrode was investigated. LEC devices 

exhibited a typical transient current response during operation under a constant voltage, but 

no luminance was observed. As found before, this might be attributed to the decomposition 

of phenyl azides induced by the flowing current during biasing.  

To chemically fix ionic junctions in organic electronic devices, an important prerequisite is 

that the chemical reaction proceeds in a desired manner, which produces harmless products 

that do not degrade the semiconducting properties. Besides, no degradation of materials 

should occur during storage under ambient conditions and the chemical fixation should take 

place solely by specific triggers, which do not include ambient light and temperature. Ideally, 
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chemical reactions for immobilizing the ions are performed in a highly selective way, which 

generates a characteristic product and does not yield side products. 
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5.7 Supporting Information 

5.7.1 NMR measurements of stored Cy3-FN3 film 

 
Figure 5-9: 1H NMR spectrum of freshly coated Cy3-FN3 film from TFP (redissolved in methanol-d4). 
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Figure 5-10: 19F NMR spectrum of freshly coated Cy3-FN3 film from TFP (redissolved in methanol-d4). 

 
Figure 5-11: 1H NMR spectrum of 21 days stored Cy3-FN3 film (redissolved in methanol-d4). 

 
Figure 5-12: 19F NMR spectrum of 21 days stored Cy3-FN3 film (redissolved in methanol-d4). 
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5.7.2 ATR-IR measurements 

 
Figure 5-13: ATR-IR spectra of Cy3-FN3 films before and after 21 days storage in the dark at RT in N2. 

 
Figure 5-14: ATR-IR spectra of Cy7-FN3 before and after storage in ACN for 23 hours (ACN removed 

before measure). 

5.7.3 Thermal stability of Cy3-N3 films at elevated temperatures 

 
Figure 5-15: (a) Absorbance and (b) PL spectra of Cy3-N3 films after different time of heating at 50 °C 

in the dark in N2. 
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Figure 5-16: (a) Absorbance and (b) PL spectra of Cy3-N3 films after different time of heating at 70 °C 

in the dark in N2. 

5.7.4 Effect of thermal evaporation 

  
Figure 5-17: (a) Absorbance and (b) PL spectra of Cy3-N3 films before and after 1 h thermal 

evaporation. 
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5.7.5 White light irradiation on Na-N3 and Cy3-N3 

 
Figure 5-18: Absorbance spectra of Na-N3 aqueous solution over time for (a) white light or (b) visible 

light (> 400 nm) irradiation. 

 
Figure 5-19: Absorbance spectra of Cy3-N3/ACN solution over time for (a) white light or (b) visible 

light (> 400 nm) irradiation. 

 
Figure 5-20: Absorbance spectra of Na-N3 films over time for (a) white light or (b) visible light (> 400 

nm) irradiation. 
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Figure 5-21: Absorbance spectra of Cy3-N3 films over time for (a) white light, (b) visible light (> 400 

nm) or (c) visible light (> 610 nm) irradiation. 
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Chapter 6:  Cyanine Dye Polyelectrolytes for Organic Bilayer 
Heterojunction Solar Cells 

6.1 Introduction 

Polyelectrolytes contain a backbone with pendant groups capable of ionizing in high 

dielectric media. Their solubility in polar solvent allows fabrication of multilayer organic 

electronic devices by solution coating techniques in combination with neutral 

semiconducting materials that are soluble in orthogonal nonpolar solvents.1 

The best-known polyelectrolyte for organic electronic device applications is probably 

poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT), that is coated as a thin 

film from a water suspension. PEDOT has widely been used as buffer layer on transparent 

conducting oxide electrodes in organic devices in which light enters or exits.2  

Polyelectrolytes (and other highly polar polymers3,4) have been successfully used as interfacial 

layer materials in thin-film transistors,5 organic light-emitting devices6 and organic solar 

cells.7,8 Polyelectrolytes as active layers have been applied in single-component light-emitting 

electrochemical cells9 and light-emitting devices.10  

A double-layer structure was fabricated by using a cationic polyelectrolyte with fluoride 

anions coated on top of a neutral polymer containing anion-trapping groups. Application of 

a bias leads to charge injection and fluoride displacement into the neutral layer, where 

covalent bond formation takes place. Thereby, a stable p-n rectifying heterojunction and fast-

responding light-emitting electrochemical behavior was obtained.11  

In a similar manner, ionic charge was exploited in cyanine dye organic solar cells. Cyanine 

dyes are charged semiconducting molecules that are accompanied by a counter anion. 

Therefore, cyanines have intrinsic built-in ionic and electronic charge conductivity. It has been 

demonstrated that the counter anions are relatively mobile and could be displaced within the 

cyanine layer and into adjacent layers. Thereby, ionic charge could be used to control the 

flow of electronic current.12,13  

Cyanine dyes have a number of interesting property characteristics for organic solar cell 

applications, such as tunable redox levels and wavelengths of absorption,14 very high light 
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extinction coefficients, aggregate formation that facilitates exciton transport and good film 

forming properties from organic solvents.15  

Due to excessive phase separation resulting in coarse film morphology, efficient bulk 

heterojunction devices using blends of cyanines and soluble fullerenes could not be 

fabricated so far.14 Regular bilayer electron donor cyanine/acceptor C60 solar cells with power 

conversion efficiencies (PCE) of 2.9-3.6% have been demonstrated.16,17 In these cases, the C60 

film was deposited by evaporation, because no orthogonal solvent for the soluble fullerene 

derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exists that would leave the 

cyanine layer unaffected during the coating step.  

Clean bilayer C60 or PCBM/cyanine solar cells in the inverted geometry with PCE = 3.7% were 

also fabricated.18,19 In contrast to the regular device architecture, in these cases the cyanines 

could be coated onto the underlying acceptor from polar alcohols, where the fullerenes are 

completely insoluble. 

Here we demonstrate the first solution processed bilayer cyanine/PCBM regular solar cells. To 

this end, cyanine polyelectrolytes (Cy-Poly) were synthesized where the cationic dyes are 

electrostatically bound to an anionic polymer backbone. This is a different synthetic approach 

from the concept where the light-absorbing dye core constituted the polyelectrolyte 

backbone.20 We describe the synthesis of the anionic polyelectrolyte backbone, followed by 

incorporation of the cyanine.  The Cy-Poly showed a strongly decreased solubility in 

chlorinated solvents, which allowed the fabrication of solution-processed regular 

cyanine/PCBM solar cells. The optimization of solar cells is described and the low hole 

mobility in Cy-Poly films is identified as the main reason that currently limits the performance 

of these devices. 

In this chapter, the results are mainly based on the following publication: “Cyanine dye 

polyelectrolytes for organic bilayer solar cells” by Lei Wang, Christian Hinderling, Sandra 

Jenatsch, Frank Nüesch, Daniel Rentsch, Roland Steim, Hui Zhang, Roland Hany, Polymer, 

2014, 55, 3195-3201. Characterization of Cy-Poly thin films, e.g. morphology, absorption and 

solubility study, were carried out by the author. Fabrication of all solar cell devices and 

characterization regarding J-V characteristics and IPCE measurements were performed by the 

author.  Photo-CELIV measurements were carried out by Sandra Jenatsch (Empa).  
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6.2 Experimental 

6.2.1 Materials and methods 

All Cy-Poly (Cy5-Poly20, Cy5-Poly30, Cy5-Poly50, Cy5PEG25Poly50, Cy5-PEG50Poly50, Cy3-

Poly20, Cy3-Poly30 and Cy3-Poly50) and Cy-MES (Cy5-MES and Cy5-MES) were synthesized 

in our laboratory (Figure 6-1, for Cy-Poly and Cy-MES synthesis, see Chapter 2). 2,2,3,3-

tetrafluoro-1-propanol (TFP, Aldrich), chlorobenzene (CB, Sigma-Aldrich), molybdenum (VI) 

oxide (MoO3, Aldrich), aluminum (Al, Lesker), calcium (Ca, CERAC), PCBM (Solenne, Figure 6-

1). 

 

 
Figure 6-1: Chemical structures of Cy-Poly, Cy-MES and PCBM. 

UV-Vis spectra were measured on a Varian Cary 50 Scan or using an integrating sphere on a 

Horiba Jobin Yvon Fluorolog. Charge mobilities were measured using the technique of 

photo-induced charge carrier extraction by a linearly increasing voltage (photo-CELIV). 

Measurements were carried out under N2 in a glove box with the commercial Paios system, 

Fluxim AG. Cy5-Poly/PCBM solar cells were illuminated for 30 μs using a blue LED (430-510 

nm) and generated charge carriers were extracted by applying voltage ramps A ranging 

between 100 and 300 V ms-1. Hole mobilites μCy5 were calculated using the modified 

formula21 (Eq. 6-1) 
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          (Eq. 6-1) 

where dCy5 and dPCBM are the layer thicknesses of Cy5-Poly and PCBM respectively, tmax is the 

peak position of the current, Δj is the peak height and j0 is the capacitive displacement 

current. We assumed equal dielectric constants for Cy5-Poly and PCBM, and the formula 

accounts for the fact that the voltage is applied over the whole organic layer thickness, but 

that holes are formed at the heterojunction and have to travel only through the Cy5-Poly 

layer. 

6.2.2 Solar cell fabrication and characterization 

 
Figure 6-2: Schematic of device architecture for Cy-Poly/PCBM bilayer solar cells. 

Solar cells were fabricated using a layer stack of ITO/MoO3/Cy-Poly/PCBM/(Ca)/Al (Figure 6-

2). ITO coated glass substrates were successively cleaned by sonication in acetone, ethanol, 

detergent and de-ionized water. The hole transporting layer MoO3 (10 nm) was deposited by 

thermal evaporation at a pressure below 5 ∙ 10-6 mbar. Cy-Poly layers were spin coated from 

TFP solutions (1-5 mg/mL) inside a nitrogen-filled glove box (˂1 ppm H2O, ˂6 ppm O2), 

followed by spin coating of PCBM on top from CB solutions (20-50 mg/mL). Devices were 

then completed by evaporating Al (35 nm) or Ca(8 nm)/Al cathodes through a shadow mask 

to define eight cells on each substrate with areas of 0.031 cm2 or 0.071 cm2.  

For characterization, solar cells were mounted under N2 into an air-tight homemade transfer 

box and measured outside the glove box. Current-voltage (J-V) characteristics were measured 

using 100 mW cm-2 simulated AM1.5G solar irradiation on a calibrated solar simulator from 

Spectra Nova. The incident photon-to-current conversion efficiency (IPCE) was measured 

using a monochromator and the light from a 300 W Xe lamp together with an AM1.5G filter 

set. The monochromatic light intensity was determined using a calibrated Si-diode. The 
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thickness of PCBM layers was measured by profilometry (Ambios XP1).  ~40 nm thick Cy-Poly 

films were measured by profilometry and UV-Vis spectroscopy. The thickness of thinner Cy-

Poly films as used in solar cells was then determined by comparing the absorptions at the 

wavelength maxima between thick and thin films. Surface morphology of Cy-Poly and PCBM 

films was investigated via AFM measurements on a Nanosurf Mobile S in tapping mode at a 

resonance frequency of 170 kHz using silicon cantilevers. 

6.3 Results and Discussion 

6.3.1 Characterization of Cy-Poly thin films 

Cy-Poly with 20-50% cyanine content were soluble in polar solvents such as MeOH or TFP. 

For the non-polar solvent CB, we found a pronounced solubility dependence on the cyanine 

and PEG content in the polyelectrolytes. Thin films of Cy-Poly were spin coated from TFP 

solutions on glass substrates. In a next step, pure CB solvent was spin coated (4000 rpm, 60 s) 

onto these films. Film absorption spectra were measured before and after CB coating. The 

decrease of the maximum absorption is a measure of the Cy-Poly solubility in CB for 

experimental conditions that mimic the actual solar cell fabrication process, where a CB 

solution containing PCBM is coated onto the Cy-Poly films.  

 
Figure 6-3: (a) Decrease of film absorption maxima after CB washing. (b) Absorption spectra of Cy5-

Poly50 and Cy3-Poly50 films before (solid lines) and after (dotted lines) CB washing. 

Results are shown in Figure 6-3. The solubility of the Cy-MES dye monomers in CB is high, 

and more than 80% of the film was removed during the spin coating process. With increasing 

cyanine content, the polyelectrolytes solubility decreased strongly, with Cy5-Poly being less 

soluble than Cy3-Poly. For Cy3-Poly50, 14% was dissolved during CB spin coating, and 2.3% 
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for Cy5-Poly50. Further, it was found that Cy5-Poly containing polyethylene glycol (PEG) 

segments and 50% cyanine content have an increased CB solubility with increasing PEG 

content. ~15% of Cy5-PEG25Poly50 or Cy5-PEG50Poly50 films were removed during the CB 

washing step.  

For a solution-processed bilayer solar cell, the existence of an orthogonal second solvent that 

does not dissolve the underlying first active layer is essential. Excessive material removal 

eventually results in the formation of cracks and pinholes. The overlying material then 

penetrates and contacts both electrodes at the same time. These direct paths between anode 

and cathode act as a shunt resistance in parallel with the active part, resulting in a lowered 

open circuit voltage (Voc) and eroding the device efficiency partly. 

The quality of spin coated Cy5-Poly30 (15 nm thick, from TFP) and Cy5-Poly30 (15 nm)/PCBM 

(40 nm, from CB) bilayer films was examined with optical microscopy, and both films 

appeared homogeneous and defect-free. The film surface topography was characterized with 

AFM. Again, both films were smooth and pinhole-free. For Cy5-Poly30, the root mean square 

(rms) roughness was 3.2 nm, for PCBM the rms roughness was 0.4 nm. Apparently, PCBM 

flattened the initial roughness of the polyelectrolyte film considerably, thereby providing a 

plane surface for deposition of the top electrode in organic solar cells.  

Finally, the pure non-solvent CB was spin coated onto Cy5-Poly30 films to examine possible 

changes in the polyelectrolyte film topography during the actual solar cell fabrication process. 

AFM images revealed a slightly decreased rms roughness (2.1 nm) but no changes in the 

surface topography were observed. 

6.3.2 Cy-Poly/PCBM bilayer solar cells 

Cy-Poly/PCBM bilayer organic solar cells were fabricated with the architecture shown in 

Figure 6-2. MoO3 was used as the hole extracting buffer layer,14,16 and Al or Ca/Al was the 

top electrode.22,23 Using a 15 nm thick Cy5-Poly20 layer, the PCBM thickness (20 nm-50 nm) 

was optimized in a first step (Figure 6-4).  
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Figure 6-4: Effect of PCBM thickness on ITO/MoO3/Cy5-Poly20(15 nm)/PCBM/Al solar cells 

performance characteristics. 

Open-circuit voltages (Voc = 0.81 ± 0.1 V) were independent of the fullerene thickness, while 

fill factors (FF = 31 – 24%) decreased linearly when increasing the thickness from 20 nm to 50 

nm. Short-circuit currents (Jsc = 1 – 1.7 mA cm-2) and power conversion efficiencies (PCE = 

0.25 – 0.34%) increased strongly with increasing PCBM thickness and reached maximum 

values for an acceptor thickness of 40 nm. This value corresponds to the exciton diffusion 

length of the structurally closely related C60 molecule.24 For small molecule cyanine dye/C60 

solar cells it has recently been shown that a C60 thickness of 40 nm results in highest PCE 

values.16,18 

For a PCBM film thickness fixed at 40 nm, the thickness of Cy5-Poly50 was optimized in a 

second step (Figure 6-5).  

 
Figure 6-5: (a) J-V characteristics of ITO/MoO3/Cy5-Poly50/PCBM(40 nm)/Al solar cells with different 

Cy5-Poly50 thicknesses. (b) Fill factor (FF) and short circuit current (Jsc) variation as function as Cy5-

Poly50 thickness. 
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Donor layer thickness above ~10 nm resulted in poor FF (< 35%). FF and Jsc increased for 

thinner cyanine films, and when using an ultrathin Cy-Poly50 film of ~5 nm, FF = 52%, Jsc = 

2.4 mA cm-2, Voc = 0.74 V were measured, resulting in a PCE of 0.9%.  

Cy5-Poly (without PEG segments) and Cy3-Poly solar cells with cyanine contents of 20%, 30% 

and 50% were then fabricated by spin coating thin donor layers from 2 mg mL-1 TFP solutions. 

This resulted in film thicknesses between ~5 nm and 7.5 nm. For Cy5-Poly, Voc = (0.72 ± 0.03) 

V was nearly independent of the cyanine content. In contrast, Jsc and FF clearly increased with 

increasing cyanine content. For Cy3-Poly cells, similar trends for Jsc and FF were observed. In 

addition, also higher Voc values were measured with increasing cyanine content. Due to low 

Jsc values, Cy3-Poly cells performed considerably less than Cy5-Poly cells (Table 6-1 and 

Figure 6-6).  

Table 6-1: Device performance of ITO/MoO3/Cy-Poly/PCBM(40 nm)/Al solar cells. 

Active layer material Thickness (nm) Voc (V) Jsc (mA cm-2) FF (%) PCE (%) 

Cy5-Poly20 7.5 0.74 1.6 42 0.50 

Cy5-Poly30 6.4 0.78 1.8 53 0.74 

Cy5-Poly50 4.9 0.74 2.4 52 0.92 

Cy5-Poly50a 4.9 0.70-0.76 2.2-2.4 51-52 0.81-0.92 

Cy3-Poly20 6.6 0.37 0.51 37 0.07 

Cy3-Poly30 6.0 0.56 0.57 50 0.16 

Cy3-Poly50 5.5 0.63 0.84 51 0.27 

a Ranges of values from 8 solar cells. 
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Figure 6-6: White light (solid lines) and dark (dotted lines) J-V characteristics of (a) ITO/MoO3/Cy5-

Poly/PCBM(40 nm)/Al and (b) ITO/MoO3/Cy3-Poly/PCBM(40 nm)/Al solar cells. 

For Cy5-Poly, absorbances of pure films at λmax (673 nm) with thicknesses from Table 6-1 

were 0.078 ± 0.002, for Cy3-Poly at 572 nm 0.073 ± 0.007. Assuming in a simple model that 

incident light is reflected by the aluminium cathode and penetrates the active layers twice, 

only a small (< 30%) fraction of the sunlight is absorbed by the cyanines. Inevitably, this 

results in small photocurrents, as we observed. IPCE curves of Cy5-Poly and Cy3-Poly cells are 

shown in Figure 6-7. In agreement with Jsc values from Table 6-1, IPCE values increase 

strongly for cyanine contents > 20% in the polyelectrolytes. This trend indicates that the 

charge generation and/or hole charge extraction yield is sensitively dependent on the 

cyanine content, since the amount of light absorption is rather similar amongst the Cy5-Poly 

and Cy3-Poly layers.  

 
Figure 6-7: IPCE and absorption spectra for (a) ITO/MoO3/Cy5-Poly/PCBM(40 nm)/Al and (b) 

ITO/MoO3/Cy3-Poly/PCBM(40 nm)/Al solar cells. 
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In Figure 6-7a, we note that between ~750 nm and 800 nm the IPCE is very small despite the 

PCBM absorption spectrum that shows a weak tail in this wavelength region. This spectral 

feature is discussed in 6.6 Supporting Information.  

The S-shape in J-V characteristics for Cy5-Poly50 solar cells could be improved by inserting a 

Ca layer (8 nm) between the PCBM and Al, yielding an enhancement of FF (Table 6-2). 

Further, Cy5-Poly containing 50% cyanines and different content of PEG segments (Cy5-

Poly50, Cy5-PEG25Poly50 and Cy5-PEG50Poly50) were employed as active layer materials 

and the solar cells ITO/MoO3/Cy5-Poly (~5-15 nm)/PCBM (40 nm)/Ca (8 nm)/Al were 

fabricated (Figure 6-8).  

Table 6-2: Device performance of ITO/MoO3/Cy5-Poly/PCBM(40 nm)/Ca (8 nm)/Al solar cells. 

Active layer material Thickness (nm) Voc (V) Jsc (mA cm-2) FF (%) PCE (%) 

Cy5-Poly50 ~5 0.74-0.82 2.4-2.9 57-62 1.1-1.4 

Cy5-PEG25Poly50 ~5 0.71-0.76 2.7-3.3 61-68 1.2-1.6 

Cy5-PEG50Poly50 ~5 0.55-0.65 2.6-3.0 70-75 1.1-1.4 

Cy5-PEG50Poly50 ~10 0.57-0.66 2.7-3.2 63-69 1.1-1.4 

Cy5-PEG50Poly50 ~15 0.76-0.81 2.7-3.0 47-54 1.1-1.2 

 
Figure 6-8: White light (solid lines) and dark (dotted lines) J-V characteristics of (a) ITO/MoO3/Cy5-

Poly(~5 nm)/PCBM(40 nm)/Ca (8 nm)/Al and (b) ITO/MoO3/Cy5-PEG50Poly50(~5-15 nm)/PCBM(40 

nm)/Ca(8 nm)/Al solar cells. 

Clearly, the insertion of Ca layer improved the device performance by increasing FF, thereby 

resulting in a higher PCE of > 1%. However, as can be seen in Figure 6-8b and Table 6-2, FF 
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dropped from 75% to ~50% with increasing Cy5-PEG50Poly50 film thickness, similar as 

observed for Cy5-Poly50 solar cells (Figure 6-5). The higher Voc obtained in Cy5-

PEG50Poly50 solar cells with thicker Cy-Poly layer compensated the drop in FF, consequently 

leading to a relatively unchanged PCE of ~1.2%.  

6.3.3 Hole mobility measurement 

Hole mobility values of ITO/MoO3/Cy5-Poly(15 nm)/PCBM(40 nm)/Al solar cells were 

measured using the photo-CELIV technique (Figure 6-9). Initially, a light pulse is applied to 

the cell (t < 0 μs). The charge carriers created are forced to recombine in the device by 

adjusting an offset bias to compensate the Voc of the solar cell. Under these flat-band 

conditions, no charges are extracted and the measured current density is negligibly small. At 

t = 0 μs, the remaining charges are extracted by a linearly increasing voltage ramp A. In 

principle, the ionic charge carriers present in cyanine dyes can also be displaced when an 

external electrical field is applied.12,13 This is unlikely here, however, because the small anions 

are chemically fixed into a polymer and ionic mobility could only be caused by displacement 

of the bulky cyanine cations. We indeed found no evidence for ionic mobility that influences 

CELIV results (see 6.6 Supporting Information).  

 

 
Figure 6-9: Photo-current transients of Cy5-Poly/PCBM solar cells for different contents and voltage 

ramps. 

The current transients in Figure 6-9 for t > 0 μs are characterized by a capacitance induced 

displacement current j0 to which an extraction current with peak height ∆j at time tmax is 
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superimposed. The current offset due to j0 is proportional to A and the current peak shifts to 

shorter times with higher voltage ramps.25  

Hole mobility was calculated using Eq. 6-1 with values for A, tmax and ∆j from Figure 6-9. We 

found a small (~30%) increase of μh,Cy5-Poly with increasing voltage slope, indicative of an 

electric field dependence of the mobility.21 Average mobility values for Cy5-Poly are shown in 

Table 6-3. These mobility values almost matched the individual mobility values when using a 

voltage ramp of 200 V ms-1. 

Table 6-3: Average mobility values for Cy5-Poly. 

Active material Mobility (cm2 V-1 s-1) 

Cy5-Poly20 (4.6 ± 0.6) ∙ 10-6 

Cy5-Poly30 (5.4 ± 0.5) ∙ 10-6 

Cy5-Poly50 (5.1 ± 0.7) ∙ 10-6 

 

Usually, photo-CELIV measurements cannot identify the sign of the carrier detected in the 

current transient. If both charge carriers are mobile and their mobility is significantly different, 

two extraction peaks may be measured.26 In our case, only one peak was detected 

corresponding to charges with mobility values of ~5 ∙ 10-6 cm2 V-1 s-1.  

We assign this value to the hole mobility in the polyelectrolytes layers since the electron 

mobility in PCBM is known to be much higher. For polymer/PCBM blends, electron mobility 

values measured with photo-CELIV were in the range of (1–9) ∙ 10-4 cm2 V-1 s-1.21,25-27 For pure 

PCBM films, the electron mobility is > 10-3 cm-2 V-1 s-1.28 For such high mobility values and 

thin films as used in our bilayer solar cells, the extraction peak is expected to be at tmax < 0.5 

μs. This short extraction time is comparable to the RC time of our setup (~0.15 μs) and 

cannot be resolved as a single peak.  

The low hole mobility values and the large mobility mismatch (> 100) between the hole and 

electron mobility explain the observed J-V trends using different donor layer thicknesses 

(Figure 6-5). The mobility lifetime product μ∙Ƭ will determine the average distance charges 

can travel before recombination.27 Therefore, holes with a low mobility value will not be 

efficiently extracted through thicker polyelectrolyte layers, resulting in reduced photocurrents. 
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In addition, the S-shaped J-V characteristic for thicker donor films (Figure 6-5) is probably 

caused by the strong imbalance between the mobility values for holes and electrons. For 

planar bilayer organic solar cells, it has been shown that for a mobility mismatch factor larger 

than ~100, the S-kink and lowering of FF is caused by the active material itself and is not due 

to a barrier at the contacts.29 The S-kink is predicted to get more pronounced with increasing 

layer thickness of the low mobility material, in agreement with J-V curves shown in Figure 6-

5. We finally confirmed these results for Cy5-PEG50Poly50 cells where a Ca layer was inserted 

between PCBM and Al. For a thin (~5 nm) polyelectrolyte layer, FF was 75% indicating Ohmic 

contacts for hole and electron extraction (Table 6-2). When increasing the polyelectrolyte 

thickness to ~15 nm, FF decreased to ~50%. This confirms that the observed S-shape trends 

are caused by the charge transport properties of the active materials and not by a barrier at 

the interface to the electrodes.  

6.4 Conclusions 

In this chapter, we investigated the solubility and morphology of Cy-Poly thin films and 

confirmed that the considerably reduced solubility of Cy-Poly in CB allowed for the 

fabrication of bilayer solution-processed organic heterojunction solar cells. Device 

optimization regarding the thickness of PCBM and Cy-Poly was discussed. Results suggested 

that an ultrathin layer (~5 nm) of polyelectrolytes with the highest cyanine loading (50%) and 

40 nm PCBM layer yielded the best performing solar cells. Furthermore, higher FF up to 75% 

could be achieved by inserting a Ca layer between PCBM and Al, resulting in a higher PCE up 

to 1.6%. Finally, photo-CELIV technique was applied to identify the low hole mobility in 

polyelectrolyte layer as the main reason that currently limit solar cell performance.  
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6.6 Supporting Information 

6.6.1 Absorption spectra and IPCE in the near-infrared wavelength region 

The absorption spectra shown in Figure 6-7a are meant to show the individual contributions 

from the cyanine and PCBM to the photocurrent. These spectra were measured on a 

commercial UV-Vis spectrophotometer and are, therefore, influenced by light scattering. 

Light scattering causes an apparent absorbance because less light reaches the detector. To 

capture scattered light, we have measured the PCBM absorption using an integrating 

sphereS1. A comparison (Figure 6-10) shows that there is indeed considerable light scattering 

from a PCBM film. For Cy5-Poly50/PCBM solar cells (Figure 6-7a) the IPCE trend at higher 

wavelengths agrees with the absorption spectrum of Cy5-Poly50 and drops off at ~750 nm. 

The remaining absorbance between ~750 and 800 nm is due to PCBM. PCBM films show a 

weak tail in their absorption spectra extending as far as 1000 nmS2,S3. The HOMO-LUMO gap 

of PCBM is at around 1.8 eV (~700 nm). A literature survey confirms that the generated 

photocurrent is negligibly small after excitation of PCBM with wavelengths energies below 

the bandgapS4,S5. 
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Figure 6-10: Absorption spectra of a ~40 nm thick PCBM film on glass measured on a UV-Vis Cary 50 

spectrometer or using an integrating sphere. We demonstrate the accuracy of the baseline in the inte-

grating sphere in wavelength regions without absorption with the spectrum of an uncoated glass 

substrate. 

6.6.2 Electronic and ionic charges in cyanine dyes 

Cyanine dyes are charged cationic molecules that are accompanied by a counter anion. It has 

been demonstrated that small anions (such as Cl-, PF6
- or ClO4

-) are relatively mobile and are 

displaced within the cyanine layer and into adjacent layers, either by diffusion due to 

concentration gradients or by internal or applied external electrical fields. The build-up of 

ionic space charge creates electric fields and induces potential energy shifts at junctions 

similar to conventional p-n junctions. These processes can have a distinct influence on the 

mode of operation of cyanine organic solar cells, resulting in time-dependent current-voltage 

and spectral response characteristicsS6,S7. 

In this work we find no evidence for ionic mobility that influences solar cell performance and 

CELIV results. In contrast to Ref. [S6,S7], the anions are here chemically fixed into a polymer 

and ionic mobility could only be caused by displacement of the bulky cyanine cations. In 

addition, bias voltages of typically a few volts over a time of several minutes were necessary 

to detect the influence of small migrating cyanine counter anions. We note that these are 

also typical operating conditions and turn-on times for light-emitting electrochemical cells 

whose function rely on the separation of ionic chargesS8. 

300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

 

 

Ab
so

rb
an

ce

Wavelength (nm)

 PCBM UV-Vis Cary 50
 PCBM Integrating Sphere
 Glass substrate Integrating Sphere



Chapter 6: Cyanine Dye Polyelectrolytes for Organic Bilayer Heterojunction Solar Cells 

190 
 

 
Figure 6-11: (a) Dark-CELIV transients of Cy5-Poly/PCBM solar cells for different cyanine contents 

and voltage ramps. (b) Photo-CELIV transients taken before and after a measurement cycle. (c) J-V 

characteristics measured before and directly (less than 1 minute) after the CELIV experiments. Both 

measurements could be carried out on the commercial Paios system (Fluxim AG) without changing 

the electrical wiring. 

Dark-CELIV transients of Cy5-Poly/PCBM solar cells are shown in Figure 6-11a. For these 

conditions no current overshoot is observed which confirms that the extraction current 

during photo-CELIV (Figure 6-9) is due to photo-generated charge carriers. The voltage 

ramp is applied during 8 μs only, and substantial ionic displacement during that period that 

influences the photo-CELIV results can be excluded. We verified this by repeatedly measuring 
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the same cell and found stable current transients (Figure 6-11b). Also J-V characteristics 

recorded before and after the CELIV measurement cycle were identical (Figure 6-11c) and 

showed no indication of mobile ionic charge. 

We finally verified that also the J-V characteristics under white light illumination are not 

influenced by mobile cyanine cations. Figure 6-12 shows unchanged J-V curves for a cell 

biased consecutively at +0.5 V, -0.5 V, +1 V and -1 V, for 10 min in each case. J-V curves did 

not change and Voc = 0.71 – 0.72 V, Jsc = 2.21 – 2.24 mA cm-2 and FF = 58 -59% were 

measured. 

 
Figure 6-12: J-V characteristics of ITO/MoO3/Cy5-Poly50/PCBM/Ca/Al solar cells as a function of bias 

voltage. 

[S1] J. C. de Mello, H. F. Wittmann, R. H. Friend, an improved experimental determination of 

external photoluminescence quantum efficiency, Adv. Mater. 1997, 9, 230-232. 

[S2] S. Cook, R. Katoh, A. Furube, ultrafast studies of charge generation in PCBM:P3HT blend 

films following excitation of the fullerene PCBM, J. Phys. Chem. C 2009, 113, 2547-2552. 

[S3] S. Cook, H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D. C. Bradley, J. R. Durrant, a 

photophysical study of PCBM thin films, Chem. Phys. Lett. 2007, 445, 276-280. 

[S4] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, 2.5% 

efficient organic plastic solar cells, Appl. Phys. Lett. 2001, 78, 841-843. 

[S5] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. 

Giles, I. Mcculloch, C. Ha, M. Ree, a strong regioregularity effect in self-organizing conjugated 

polymer films and high-efficiency polythiophene:fullerene solar cells, Nature Mater. 2006, 5, 

197-203. 

-1.0 -0.5 0.0 0.5 1.0

-2

0

2

 

 

C
ur

re
nt

 D
en

si
ty

 (m
A 

cm
-2
)

Voltage (V)

 as-prepared
 +0.5 V, 10 min
 - 0.5 V, 10 min
 +1.0 V, 10 min
 - 1.0 V, 10 min



Chapter 6: Cyanine Dye Polyelectrolytes for Organic Bilayer Heterojunction Solar Cells 

192 
 

[S6] H. Benmansour, F. A. Castro, M. Nagel, J. Heier, R. Hany, F. Nüesch, ionic space charge 

driven organic photovoltaic devices, Chimia 2007, 61, 787-791. 

[S7] M. Lenes, H. J. Bolink, ionic space-charge effects in solid state organic photovoltaics, ACS 

Appl. Mater. Interfaces 2010, 2, 3664-3668. 

[S8] M. Lenes, G. Garcia-Belmonte, D. Tordera, A. Pertegás, J. Bisquert, H. J. Bolink, operating 

modes of sandwiched light-emitting electrochemical cells, Adv. Funct. Mater. 2011, 21, 1581-

1586. 

 



Chapter 7: Conclusions and Outlook 

193 
 

Chapter 7:  Conclusions and Outlook 

7.1 Conclusions 

Different strategies to alter the cyanine counterions during chemical synthesis were 

presented and the potential applications of the synthesized cyanines with novel counter 

anions as active components in organic electronic devices were investigated.  

Cyanine polyelectrolytes (Cy-Poly) consisting of an anionic methacrylate backbone and 

cationic cyanine dye chromophores in the pendant groups were successfully synthesized. The 

synthetic approach involved the copolymerization of (methyl)methacrylate monomer units 

containing sulfonic acids or poly(ethylene glycol) (PEG) segments in a different ratio, followed 

by deprotonation of the sulfonic acids and a salt metathesis reaction to incorporate the dye 

with elimination of silver halides as side products. Cy-Poly exhibited a considerably reduced 

solubility in non-polar organic solvents, e.g. chlorobenzene, which made the deposition via 

solution casting of another film on top of the polyelectrolyte layer possible. The bilayer 

solution-processed Cy-Poly/PCBM solar cells were fabricated, which possessed a high fill 

factor (FF) up to 75% and power conversion efficiency (PCE) up to 1.6%. Finally, it was found 

that the proposed synthetic approach via salt metathesis to incorporate cationic cyanine dyes 

is quite versatile. Apart from the achieved trimethine (Cy3) and pentamethine (Cy5) 

polyelectrolytes, other cationic dyes such as heptamethine (Cy7) cyanines or different dye 

cations could be incorporated into the same anionic backbone. 

4-azido (tetrafluoro)benzoate anions were introduced as immobilizable counterions for Cy3, 

Cy5 and Cy7 dyes during chemical synthesis. For the fluorinated counter anions, we observed 

a pronounced decarboxylation process of the benzoate groups which occurred during 

storage of the dyes as solid compounds at 4 °C or as thin films at room temperature. No 

decarboxylation reaction was detected for non-fluorinated benzoate anions, suggesting that 

4-azido benzoate was thermally more stable. Remarkable exciton quenching behavior was 

observed if the azide anions were stabilized in the films. This resulted from the fact that 

phenyl nitrenes generated upon UV light exposure reacted with the cyanine dye 

chromophores, leading to the formation of efficient exciton quenchers. The light-induced 

exciton quenching effect in the films was already observed during device fabrication, which 
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was attributed to the sensitized photolysis of phenyl azides enabled by a triplet-triplet energy 

transfer from the visible light absorbed Cy3 dyes. It could be shown that the undesired 

triplet-triplet sensitization can be inhibited if cyanine dyes with lower triplet energy are used. 

This is the case for Cy5 and Cy7. However, the unspecific reactivity of phenyl nitrenes formed 

upon UV irradiation of the azido-benzoates still presents a major problem. One idea to avoid 

detrimental reactions with the chromophore would be to provide preferential reaction sites. 

Unfortunately, our attempts to add PEG chains to the cyanine films were unsuccessful. Other 

strategies would therefore be required. 

Ion exchange reactions were performed for different cyanine dyes, generating Cy3 and 

monomethine (Cy1) dyes with hexafluorophosphate (PF6
-) as counter anions and the 

potential applications of these dyes in host-guest light-emitting electrochemical cells (LECs) 

were explored. A largely enhanced photoluminescence (PL) was observed in a binary cyanine 

blend film containing a Cy1 dye as matrix material and a Cy3 dye as emitter, demonstrating 

that extensive self-quenching effect was prevented.  

LECs using commercially available cyanine dyes as the single active component were 

demonstrated. A method based on the combination of electroluminescence (EL) and PL, 

incident photon-to-current conversion efficiency (IPCE) measurements and optical modelling 

was proposed to study the evolution of p-i-n junction and electrochemical doping process 

during device operation under a constant voltage. Photovoltaic effect of the cyanine dye LECs 

after bias was investigated and the optimization was carried out by varying the thickness of 

active layer. Results suggested that LECs with a ~90 nm cyanine layer after bias to the 

maximum current yielded the optimal photovoltaic performance upon white light 

illumination.  

The mechanism of photocurrent generation in Cy5 films was studied. Single layer devices 

containing Cy5 with PF6
- as counterions (Cy5-PF6) exhibited a linear current-voltage (J-V) 

characteristics under white light illumination. The linearity of the J-V curves did not vary by 

employing different electrode buffer layers in the devices, which indicated that the photo-

induced charge carriers were generated in the bulk Cy5-PF6 films.  Photoconductivity values 

in such cyanine films were successfully extracted from the slope of J-V characteristics and the 

photocurrent generation was proposed to be partially due to the structural inhomogeneity in 

a highly aggregated film. The electric field induced exciton quenching was confirmed to be 

only a minor contribution to photocurrent. This study showed that important 
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photogeneration of charge carriers is occurring in certain cyanine films. While this effect will 

create losses in the fill factor of photovoltaic devices, it could be interesting in photodiodes 

working under reversed bias. Photocurrent could thus be generated without the need of an 

electron acceptor. 

7.2 Outlook 

The present thesis could develop a few solid concepts towards the goal of permanent ionic 

space charge distributions in thin organic semiconducting films. Unfortunately, the 

nonspecific reactivity of azides always leads to the formation of exciton quenching sites due 

to the reaction with the cyanine chromophore. If this approach shall be used in the future, 

free volume sites with specific reaction targets for such anions have to be present in the film. 

This could perhaps be engineered by suitable chemical functionalization of the dye molecules 

or by a blend approach. 

Generally, to achieve a chemically fixed ionic junction in cyanine based organic electronic 

devices, chemical reactions that do not degrade the semiconducting properties of cyanines 

are required. This implies that fixation of anions should not occur at the π-electron 

conjugated polymethine chains. A system containing cyanine dyes with polymerizable anions, 

crosslinkable ionic conductors and photoinitiators could be promising. After biasing, UV light 

exposure would induce crosslinking reaction between the polymerizable anions and the ionic 

conductors, yielding a bulky and immobile anionic polymer network. The stabilization of the 

ionic carriers with desired distribution would thus be achieved. 

Dye-polymer electrolytes proved to yield smooth films that allow for subsequent coating of 

further layers using orthogonal solvents. In particular, the layers showed to be refractory 

against poling, meaning that the ions constituting the polyelectrolyte have a very low 

mobility. Additionally, copolymerization with ion conducting moieties was shown to be 

feasible thus allowing for foreign ions to travel into the polyelectrolyte. This system could 

therefore be exploited in to study ion motion across an interface and if reactive ions were 

chosen, a permanent fixation of space charge could be foreseen. 

So far, ion mobility in cyanine films was shown to be directly related to the size of the 

counterions. In ionically conductive devices, it may be interesting to increase ion mobility, e.g. 

for faster switch-on times in light-emitting electrochemical devices. The way to such new 
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functionalities in cyanine dyes can also be performed via chemical modification on the dye 

chromophores during synthesis. This can be achieved by functionalizing the indole precursors 

in advance with interesting organic groups that are linked to the aromatic rings or the 

nitrogen atom. Besides, the chloro-substituent on the polymethine chain of heptamethine 

cyanine dyes provides also possibilities to modify the dye with different functional groups via 

nucleophilic substitution reactions. In order to promote ionic mobility in these 

semiconducting salts, incorporation of ethylene glycol moieties would be of particular 

interest. 

Finally, the efficiency of LECs ultimately depends on the light-emission efficiency of the 

emitting layer. Further investigation of cyanine dye host-guest LECs could be carried out to 

improve the quantum efficiency of the electroluminescent devices. This involves the chemical 

synthesis of new cyanine dyes with different bandgaps and the exploration of the best host-

guest system employing the most compatible and appropriate matrix and emitter materials. 

If the self-quenching behavior of the emitting dyes is significantly reduced or disappears, 

external quantum efficiency (EQE) of the devices that approaches the theoretical maximum 

could be expected.  
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Abbreviations and Symbols 

A  simulated absorptance 

ACN  acetonitrile 

AFM  atomic force microscopy 

Ag  silver 

AgCl  silver chloride 

AgI  silver iodide 

AgNO3  silver nitrate 

AgNWs silver nanowires 

Ag2O   silver(I) oxide 

AIBN  2,2´-azobis(2-methylpropionitrile) 

Al  aluminum 

Alq3  tris-(8-hydroxyquinoline)aluminum 

ATR-IR  attenuated total reflection infrared 

BABP  4,4´-bis(azidomethyl)-1,1´-biphenyl 

BCP  bathocuproine 

BHJ  bulk heterojunction 

bis(PFBA) bis(perfluorophenyl) azide 

c  speed of light in vacuum 

C60  fullerene 

Ca   calcium 

CB  chlorobenzene 

CHCl3  chloroform 

Cl-  chloride anion 

ClO4
-  perchlorate anion 

CPEs  conjugated polyelectrolytes 

CV  cyclic voltammetry 
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Cy1  monomethine cyanine 

Cy3  trimethine cyanine 

Cy5  pentamethine cyanine 

Cy7  heptamethine cyanine 

Cy-Cl  cyanine dye with chloride anion 

Cy-FN3 cyanine dye with 4-azido-2,3,5,6-tetrafluorobenzoate anion 

Cy-I  cyanine dye with iodide anion 

Cy-MES cyanine dye with 2-sulfoethyl methacrylate anion 

Cy-N3  cyanine dye with 4-azido benzoate anion 

Cy-NO3 cyanine dye with nitrate anion 

Cy-PF6  cyanine dye with hexafluorophosphate anion 

Cy-Poly cyanine polyelectrolytes, Cyaninpolyelektrolyten 

Cy-T  cyanine dye with ∆-TRISPHAT anion 

d  layer thickness 

DAZH  1,6-diazidohexane 

DCM  dichloromethane  

DMF  dimethylformamide 

DMSO  dimethyl sulfoxide 

DQF-COSY  double quantum filtered homonuclear correlation spectroscopy 

DSC  differential scanning calorimetry 

e  elementary charge 

E½  half-wave potential 

E½,red  first half-wave reduction potential 

Epa  anodic peak potential 

Epc  cathodic peak potential 

EDLs  electric double layers 

EDMA  ethylene glycol dimethacrylate 

EGaIn  eutectic gallium-indium 
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EL  electroluminescence 

EPR  electron paramagnetic resonance 

EQE  external quantum efficiency 

ESI-MS  electrospray ionization mass spectroscopy 

EtOH   ethanol 

Fc/Fc+  ferrocene/ferrocenium  

FDTD  finite difference time domain 

FF  fill factor, Füllfaktor 

gHMBC  gradient selected heteronuclear multiple bond coherence  

gHSQC  gradient selected heteronuclear single quantum coherence 

GPC  gel permeation chromatography 

h  Planck’s constant 

HCl  hydrochloric acid 

HMBC  heteronuclear multiple bond coherence 

H-MES  2-sulfoethyl methacrylate 

HOMO  highest occupied molecular orbital 

HSQC  heteronuclear single quantum coherence 

IPCE  incident photon-to-current conversion efficiency 

IQE  internal quantum efficiency 

ISC  intersystem crossing 

iTMCs   ionic transition metal complexes 

ITO  indium tin oxide 

j0   capacitive displacement current 

Jmax  current density at maximum power output 

Jsc  short circuit current density 

J-V  current density-voltage 

k  extinction coefficient 

LED  light-emitting diode 
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LEC  light-emitting electrochemical cell 

LECs  light-emitting electrochemical cells 

LEZ  lichtemittierende elektrochemische Zellen 

Li+  lithium cation 

LiCF3SO3 lithium trifluoromethanesulfonate 

LUMO  lowest unoccupied molecular orbital 

MeOH   methanol 

MePc   metal phthalocyanine 

MMA  methyl methacrylate  

Mn   number average molecular weights  

MoO3  molybdenum (VI) oxide 

n  refractive index, charge carrier density 

N2  nitrogen gas 

Na-FN3 sodium with  4-azido-2,3,5,6-tetrafluorobenzoate anion 

NaHCO3 sodium bicarbonate 

Na-N3  sodium with 4-azido benzoate anion 

NaN3  sodium azide 

NaOH  sodium hydroxide 

NaPF6  sodium hexafluorophosphate 

Na2SO4 sodium sulfate 

NIR  near infrared 

NMR  nuclear magnetic resonance 

Nphot  flux density of absorbed photons 

OFET  organic field-effect transistor 

OFETs  organic field-effect transistors 

OLED  organic light-emitting diode 

OLEDs  organic light-emitting diodes 

OPV  organic photovoltaic 
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OSC  organic solar cell 

OSCs  organic solar cells 

PAL  photoaffinity labelling 

PANI  polyaniline 

PCBM  [6,6]-phenyl-C61-butyric acid methyl ester 

PCE  power conversion efficiency 

PDMS  polydimethylsiloxane 

PEDOT  poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) 

PEG  poly(ethylene glycol), poly(ethyl oxide) 

PEGMA poly(ethylene glycol) methyl ether methacrylate 

PF6
-  hexafluorophosphate anion 

PFPAs  perfluorophenyl azides 

photo-CELIV  photo-induced charge carrier extraction by a linearly increasing voltage 

Pin  incident light power density 

PL  photoluminescence 

Pmax  maximum power output 

PPP  poly(p-phenylene) 

PPV  polyphenylene vinylene 

PT  polythiophene 

QPL(E)  field induced photoluminescence quenching efficiency  

rms   root mean square 

RT  room temperature 

Ru(bpy)3
2+ tris(2,2’-bipyridine)ruthenium(II) 

sFPA   sterically hindered fluoro-phenyl-azides 

SIMS  secondary ion mass spectrometry 

SKPM  scanning Kelvin probe microscopy 

TFP  2,2,3,3-tetrafluoro-1-propanol 

Tg   glass transition temperature 
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TGA  thermogravimetric analysis 

THF  tetrahydrofuran 

TLC  thin layer chromatography 

tmax   peak position of the current 

TS  triplet sensitizer 

UV  ultraviolet 

UV-Vis  ultraviolet-visible 

Vmax  voltage at maximum power output 

Voc  open circuit voltage 

XRF  X-ray fluorescence 

Δj   peak height 

δ   chemical shifts in ppm 

ηint  internal electroluminescence quantum efficiency 

λ  wavelength 

μ  mobility 

Ƭ  lifetime 

delay  delay time 

Φisc   intersystem crossing efficiency 

σ  conductivity 

ϒL  bimolecular recombination coefficient 
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