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Foreword 
The thesis of Marie-Rose Backes investigates on the application of the stress field 

method for analysis and design of concrete planar members subjected to in-plane and out-
of-plane actions. This topic is very relevant for practice as many structural elements carry-
ing large in-plane shear forces (such as the webs of box-girder bridges) are also subjected to 
non-negligible transverse bending and shear (for instance due to asymmetric loading cases 
in the deck slab). Despite the fact that the presence of the out-of-plane actions may reduce 
the resistance to carry in-plane actions, this interaction has been scanty investigated in the 
past and not much detailed design guidelines can be found in codes of practice.  

The work of Marie-Rose Backes approaches this issue from the perspective of the stress 
field method. This technique was shown in the past to be a consistent tool for design of 
such members, although solutions were mostly developed on the basis of rigid-plastic ma-
terial behaviour, with the need to assume some level of simplification on the modelling. 
The present work is a step forward in this field by introducing the considerations of the 
elastic-plastic stress field method developed at the Structural Concrete Laboratory of EPFL. 
Such approach allows overcoming most previous difficulties and provides a detailed read-
ing of the state of stresses and strains developed. In addition, it is also shown that under 
some reasonable assumptions, the procedure can eventually be simplified and used in a 
practical manner for common design cases. 

Lausanne, December 2016. 

 

 

Prof. Dr Aurelio Muttoni   Dr Miguel Fernández Ruiz 
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Abstract  
Plane reinforced concrete (RC) elements are used in a large variety of structures. 

Their principal function is to carry forces that act in the plane of the element, but external 
actions and connections to other structural elements generally introduce additional out-of-
plane forces. In practice, the design of such elements is often performed in a simplified 
manner, neglecting the interaction between these different internal forces. However, espe-
cially for existing structures the need for more precise and kinematically consistent analysis 
tools arises. This thesis provides novel tools based on the elastic-plastic stress field (EPSF) 
method to investigate the interaction between in-plane and out-of-plane forces in plane RC 
elements in general and the effect of transverse bending on the longitudinal shear re-
sistance of beams in particular. 

A general multi-layered (ML) EPSF approach is developed. Applied to a unitary web seg-
ment, in-plane shear-transverse bending interaction diagrams are established and com-
pared to existing rigid-plastic (RP) interaction models. In general, it is found that the influ-
ence on the shear resistance is less pronounced, especially in case of small transverse mo-
ments. The shear transfer actions admitted in RP models that consist in a shift of the com-
pression field to the bending compression side and a rearrangement of the stirrup forces 
are confirmed. However, it is shown that the stress field is highly non-linear in the trans-
verse directions (stress/strain distribution and inclination) and strongly depends on the 
intensity of the applied transverse moment. The concrete strength reduction factor  is 
generally higher and high shear reinforcement ratios or asymmetric layouts allow equili-
brating small moments without disturbing the stress field in the concrete. This increases the 
predicted shear resistance. The longitudinal deformation is shown to have a non-negligible 
effect on the overall interaction and ultimate resistance. 

A simplified verification method for beams in practice is proposed. Based on the EPSF fi-
nite element method (FEM), it considers the influence of the transverse moment by means 
of a reduced web width and an effective shear reinforcement ratio. Validation with tests 
from the literature gave safe but not overly conservative results and consistent predictions 
of the failure modes. The method provides enhanced lower-bound solutions. 

Plane EPSF analyses of experimental tests suggest that the influence of the transverse bend-
ing moment in beams is less pronounced than predicted by interaction models, especially if 
ductile failure modes occur. However, more experimental data is required to validate this 
observation. 
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A non-linear FEM based on the ML-EPSF is developed. It aims to extend the field of appli-
cation of the EPSF FEM by accounting for in-plane (normal and shear) and out-of-plane 
(bending and shear) actions in plane RC elements. Concrete is modelled by ML in-plane 
elements that are combined with out-of-plane shear elements. Reinforcing steel is modelled 
separately by bar elements. Benchmark tests and validation with experimental data show 
that the proposed FEM is a promising tool for the design and assessment of plane rein-
forced concrete elements primarily subjected to combinations of in-plane forces and out-of-
plane bending moments. 

Keywords 

Reinforced concrete flat shell elements, elastic-plastic stress fields, multi-layered stress 
fields, shear resistance, interaction of in-plane shear and transverse bending, non-linear 
finite element method. 
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Résumé  
Les éléments structuraux plans en béton armé se retrouvent dans une grande va-

riété d’ouvrages. Leur fonction principale est de transférer des efforts agissants dans le 
plan de l’élément, mais des actions externes et la connexion à d’autres éléments structuraux 
engendrent aussi des efforts hors du plan. Dans la pratique, le dimensionnement est sou-
vent fait de manière simplifiée, en négligeant toute interaction entre ces différents efforts. 
Pour les structures existantes, souvent des outils d’analyse plus précis sont requis afin de 
valider la sécurité structurale dans un contexte de plus en plus exigeant. Cette thèse pré-
sente plusieurs outils permettant d’étudier l’interaction entre les efforts en plan et hors du 
plan. Une attention particulière est portée sur l’influence du moment transversal sur la 
résistance à l’effort tranchant d’éléments poutres. 

Une méthode multicouche générale, basée sur les champs de contraintes élastiques-
plastiques (EPSF) est développée. Elle est appliquée aux âmes de poutres pour établir des 
diagrammes d’interaction effort tranchant – flexion transversale qui sont comparés à des 
modèles rigides-plastiques existants et dont le principe consistant à excentrer le champ de 
compression et à réarranger les efforts dans les étriers a pu être validé. Par contre, il est 
montré que le champ de contraintes est hautement non-linéaire dans la direction transver-
sale (intensité et inclinaison des déformations/contraintes) et fortement dépendant de 
l’intensité du moment transversal. Les facteurs obtenus pour la résistance du béton  sont 
généralement plus élevés et la déformation axiale a une influence significative sur l’effet du 
moment. En cas de taux d’armature d’effort tranchant élevés ou d’étriers asymétriques, un 
faible moment n’influence guère les contraintes dans le béton. Ces effets contribuent à une 
interaction moins prononcée et une résistance à l’effort tranchant plus élevée. 

Pour la pratique, une méthode de vérification simplifiée pour les poutres avec flexion 
transversale est proposée. Combinant la méthode aux éléments finis (FEM) pour les EPSF 
avec des considérations basées uniquement sur l’équilibre des moments, la méthode four-
nit une borne inférieure améliorée de la résistance. L’effet du moment est pris en compte 
par une réduction de l’épaisseur de l’âme et un taux d’armature effectif. La méthode est 
validée par des essais de la littérature, les prédictions sont du côté de la sécurité et les 
modes ruptures sont correctement représentés.  

Des analyses par la EPSF-FEM suggèrent que dans les poutres l’influence du moment 
transversal est moins importante que prédite par les modèles d’interactions, mais plus de 
résultats expérimentaux sont nécessaires pour confirmer ceci. 
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Dans le but d’étendre le champ d’application des EPSF, une méthode aux éléments finis 
non-linéaire basée sur la nouvelle approche multicouche des EPSF est développée. Elle 
permet d’étudier le comportement d’éléments plans en béton armé soumis à des charges en 
plan et hors du plan (moments et forces). Le béton est modélisé par des éléments multi-
couches dans le plan, qui sont combinés à des éléments de cisaillement hors du plan. 
L’armature est modélisée séparément par des éléments barre à excentricité hors du plan. La 
validation avec des tests de référence et des essais expérimentaux a montré qu’il s’agit d’un 
outil prometteur pour le dimensionnement et la validation d’éléments soumis primaire-
ment à des efforts membranaires et flexionnels. 

Mots-clés  

Panneaux en béton armés, champs de contraintes élastiques-plastiques, champ de con-
traintes multicouche, résistance à l’effort tranchant, interaction entre effort tranchant et 
flexion transversale, méthode aux éléments finis non-linéaire. 
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Zusammenfassung  
Stahlbetonscheiben stellen einen wesentlichen Bestandteil vieler Bauwerke dar. 

Ihre Hauptaufgabe ist die Aufnahme von in der Scheibenebene wirkenden Kräften. Äusse-
re Einwirkungen und der Verbund mit dem restlichen Bauwerk erzeugen jedoch zusätzli-
che Querkräfte. In der Praxis erfolgt die Bemessung meist in vereinfachter Weise oder die 
Interaktion von Membran- und Querkräften wird ganz vernachlässigt. Der Tragsicher-
heitsnachweis bestehender Tragwerksteile benötigt jedoch meist präzisere Verfahren. 
Diesbezüglich beschreibt die vorliegende Arbeit neuartige, auf der Methode der elastisch-
plastischen Spannungsfelder (EPSF) beruhende, Verfahren zur Berechnung von scheibenar-
tigen Stahlbetonbauteilen unter kombinierter Membran- und Querkraftbeanspruchung. 
Insbesondere wird die Auswirkung von Querbiegung auf den Schubkraftwiderstand von 
Stahlbetonträgern untersucht. 

Zur Untersuchung der Interaktion von Längsschub und Querbiegung im Trägersteg wurde 
ein allgemeines, auf der EPSF Methode beruhendes, Schichtmodell (ML) wurde entwickelt. 
Die Ergebnisse werden mit starr-plastischen Interaktionsmodellen verglichen, bei welchen 
die Aufnahme des Querbiegemoments durch eine Verlagerung des Schubdruckfeldes zur 
Biegungsdruckzone hin und durch ungleiche Kräfte in den Bügelstegen erfolgt. Dieser An-
satz kann als korrekt bestätigt werden. Die neue Methode jedoch zeigt, dass das Span-
nungsfeld in der Querrichtung eine stark nichtlineare Verteilung aufweist und signifikant 
von der Intensität des Quermoments abhängt. Des Weiteren, sind die berechneten Beton-
druckfestigkeitsfaktoren  im Schnitt höher und hohe Schubbewehrungsgrade bzw. 
asymmetrische Bügelanordnungen ermöglichen den Ausgleich kleiner Momente ohne 
grössere Beeinträchtigung das Betondruckfelds. Dies führt zu einem höheren rechnerischen 
Querkraftwiderstand. Ausserdem wird gezeigt, dass die Verformung in Längsrichtung 
einen signifikanten Einfluss auf die Interaktion und somit auf den allgemeinen Tragwider-
stand hat. 

Ein vereinfachtes Nachweisverfahren für Träger wird vorgeschlagen. Es basiert auf der 
Finite-Elemente-Methode (FEM) zur automatischen Erstellung elastisch-plastischer Span-
nungsfelder und berücksichtigt den Einfluss des Quermomentes anhand einer reduzierten 
Stegbreite und eines effektiven Schubbewehrungsanteils. Vergleiche mit Testergebnissen, 
dass die so ermittelte Schubtragfähigkeit einen sicheren und für die Praxis dennoch nicht 
zu konservativen Wert darstellt. Im Vergleich zu starr-plastischen Interaktionsmodellen 
führt dieses Verfahren zu einem verbesserten unteren Grenzwert der Traglast. 
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Nachrechnungen anhand der ebenen EPSF suggerieren, dass der Einfluss des Quermo-
ments in Trägern einen kleineren Einfluss hat als von Interaktionsmodellen vorausgesagt, 
insbesondere bei duktilem Versagen. Zusätzliche Tests sind jedoch nötig um diese Be-
obachtung zu bestätigen. 

Mit dem Ziel, den Anwendungsbereich der EPSF-FEM zu erweitern, wurde ein nichtlinea-
res FEM-Programm, basierend auf der ML-EPSF Methode, entwickelt, welches sowohl 
Membran- als auch Querkräfte berücksichtigt. Der Beton wird mit ebenen ML Elementen 
modelliert, die mit Querelementen zur Aufnahme der Querkraft kombiniert werden. Die 
Stahlbewehrung wird getrennt hiervon mit Stabelementen modelliert. Die Validierung mit 
Testergebnissen zeigt, dass die vorgeschlagene FEM ein vielversprechendes Werkzeug zur 
Bemessung ebener Stahlbetonelemente, die hauptsächlich durch Kombinationen von 
Membrankräften und Querbiegemomenten belastet sind, ist. 

Stichwörter  

Stahlbetonscheiben, elastisch-plastische Spannungsfelder, Mehrlagige Spannungsfelder, 
Querkraftwiderstand, Interaktion von Längsschub und Querbiegung, nichtlineare Finite-
Elemente-Methode. 
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Riassunto 
Elementi bidimensionali in calcestruzzo armato sono adottati in una vasta gamma 

di strutture. La loro funzione principale è trasmettere sforzi che agiscono nel piano medio 
dell’elemento; tuttavia azioni esterne o connessioni ad altri elementi strutturali possono 
introdurre sforzi addizionali fuori piano. Nella pratica progettuale, il dimensionamento di 
tali elementi è spesso svolto in maniera semplificata, trascurando l’interazione tra questi 
differenti sforzi. Nonostante tali assunzioni, specialmente per strutture esistenti, il bisogno 
di uno strumento di analisi piu’ preciso è necessario. Questa tesi fornisce nuovi strumenti 
di analisi basati sul metodo dei campi di tensione elasto-plastici (EPSF) al fine di 
investigare l’interazione tra sforzi nel piano e fuori piano per elementi in calcestruzzo 
armato bidimensionali e, in particolare, l’effetto del momento trasversale sulla resistenza a 
taglio longitudinale di travi. 

Un approccio ad elementi finiti shell multi-layered secondo il metodo dei campi di tensione 
elasto-plastici (EPSF) è stato sviluppato. Tale approccio è applicato ad elementi di travi di 
lunghezza unitaria al fine di stimare i diagrammi di interazione taglio-momento che sono 
confrontati a modelli rigidi-plastici esistenti. In generale, è stato rilevato che l’influenza 
sulla resistenza a taglio è meno marcata, specialmente nei casi di bassi valori di momenti 
trasversali agenti. La trasmissione delle azioni di taglio ammessa nei modelli rigidi 
infinatamente plastici è confermata sia per quanto riguarda lo spostamento della zona 
compressa che per quanto riguarda il riordinamento degli sforzi nell’armatura verticale. 
Tuttavia, è stato mostrato che i campi di tensione sono decisamente nonlineari in direzione 
trasversale (distribuzione sforzo/deformazione e inclinazione del campo di sforzi) e 
dipendono dall’intensità del momento trasversale applicato. Il fattore di riduzione della 
resistenza del calcestruzzo   è, generalmente, piu’ elevato e alti tassi di armatura a taglio o 
disposizioni asimmetriche permettono di equilibrare leggeri momenti senza disturbare i 
campi di tensione. Ciò incrementa la resistenza a taglio predetta. La deformazione 
longitudinale sembra avere un effetto non trascurabile sull’interazione globale e sulla 
resistenza ultima.  

Un metodo semplificato per la verifica di travi è stato proposto. Tale metodo considera 
l’influenza del momento trasversale attraverso la riduzione di spessore della sezione e un 
tasso d’armatura a taglio effettivo. La validazione di tale modello con tests di letteratura 
fornisce risultati prudenti ma non del tutto conservativi e predizioni coerenti con i modi di 
rottura.  
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Un approccio ad elementi finiti multi-layered non lineari basato su un approccio EPSF è 
stato, successivamente, sviluppato. Tale metodologia mira ad estendere il campo di 
applicazione dell’ approccio FEM, precedentemente proposto, tenendo conto di azioni nel 
piano e fuori piano (taglio e sforzo normale e momento) cui sono soggetti pannelli in 
calcestruzzo armato. Il calcestruzzo è modellato con elementi piani multilayered combinati 
con elementi a taglio fuoripiano. Tests di riferimento e validazioni con risultati 
sperimentali mostrano che il modello FEM proposto è uno strumento promettente per il 
dimensionamento e la verifica di pannelli in calcestruzzo armato soggetti a una 
combinazione di sforzi nel piano e momenti. 

Parole chiave 

Pannelli in calcestruzzo armato, campi di tensione elasto-plastici, campi di tensione multi-
layered, resistenza a taglio, interazione di taglio nel piano e momento trasversale, metodo 
ad elementi finiti non lineari. 
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Notations  
Latin upper case: 

 FE triangle area measured from node  

 reinforcing bar cross section of the rebar FE 

 shear reinforcement cross section area 

 area of the triangular finite element 

 reduced area for shear 

 modulus of elasticity of concrete 

,  secant modulus of elasticity for concrete in the principal stress direction (1, 2) 
in layer  

 modulus of elasticity of steel  

  secant modulus of elasticity for steel 

 hardening modulus of steel 

 vertical component of the resultant of the inclined compression field in the 
concrete due to shear, per unit length 

 vertical compressive force due to transverse bending, per unit length 

 force in the shear reinforcement, per unit length / nodal force is  direction 

,  force in the shear reinforcement on the bending compression (c) and bend-
ing tension side (s) of the web, per unit length 

 force in the shear reinforcement  

, ,  nodal forces in ,  and  direction 

 shear modulus 

 span, distance between supports 

 quadratic shape function at  

 mesh fineness 

 quadratic shape function at  
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 nodal moment about the  axis (local coordinate system) 

,  nodal moment about the  and  axis 

 linear shape function at node  

 quadratic shape function at node  

 resultant of stirrup forces  and , force per unit length 

 concentrated load 

 failure load according to elastic-plastic stress field calculation 

 failure load according to elastic-plastic stress field calculation with simpli-
fied approach for the transverse bending moment 

 failure load according to multi-layered elastic-plastic stress field calculation 

 experimental failure load 

, ,  in-plane (x, y) or out-of-plane (z) nodal load acting on the FE model 

 shear force, in-plane shear force 

 shear force, limit between predominant shear and predominant transverse 
bending 

, ,  shear resistance of the element, of the concrete (c), of the reinforcement (s) 

 shear resistance in case of simultaneous concrete and shear reinforcement 
failure,  

Latin lower case: 

 distance between loads / element size 

, ,  parameter of the linear shape function  at node  

 reinforcement cross section area, per unit length 

 shear reinforcement cross section area, per unit length 

 width of the OP FE 

 minimum web width required to resist the shear force 

, ,  parameter of the linear shape function  at node  

 web width required to resist the transverse bending moment 

 web width 

 effective web width, for the simplified verification method 

 width between the legs of a stirrup ( ) 
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 position of shear reinforcement in the width of the web, measured from 
surface 

, ,  parameter of the linear shape function  at node  

 shear strain increment in the  plane 

 shear strain increment in the element mid-plane 

,  strain increment in  or  direction 

,  strain increment in  or  direction in the element mid-plane 

,  increment of first and second principal strain ( ) 

, ,  curvature increment in  and  direction, torsion curvature increment 

 eccentricity of the stress field resultant in the concrete 

,  FEM error regarding nodal forces (F) and nodal moments (M)   

 average compressive strength of concrete (cylinder) 

 design value of the concrete compressive strength 

 reduced concrete compressive strength according to Swiss Code 
SIA162:1989 [SIA89] (  in SIA262:2013) 

 equivalent plastic concrete compressive strength 

 effective concrete compressive strength 

 yield stress of reinforcing steel 

 design value of the reinforcing steel strength 

 height of the OP FE 

 layer number in ML-EPSF model / node number in the FE model 

 analytical variable / iteration step 

 concrete strength reduction factor for transverse tensile strain 

 analytical variable / layer number in the ML-IP FE / length of OP and rebar 
FE 

 length of the element side between nodes  and  

,  panel size in  and  direction 
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Introduction Chapter 1

1.1 Problem statement 

Plane reinforced concrete structural elements like flat shells or panels are used in a large 
variety of structures. Although their principal static function is mostly to carry forces that 
act in the plane of the element, boundary conditions, external actions and connections to 
other structural elements can introduce additional out-of-plane actions. Spatial structures 
composed of multiple flat elements like folded shells or box-girder bridges are typical ex-
amples to this.  

 
Figure 1.1  Spatial structures composed of plane structural elements: (a) long span 
barrel vault with edge beam; (b) Folded plat shell structure; (c)-(d) box-girder struc-
tures subjected to in-plane shear and transverse bending in the webs. 

The design of structural concrete elements subjected to in-plane loads like longitudinal 
shear and bending has been extensively studied over the past century. Several equilibrium 
based methods, from strut-and-tie models to stress fields and non-linear finite element 
analyses, exist and can be consistently used when stirrups are arranged. A topic where less 

(a) (b)

(c) (d)

Qd1 Qd2

m mV



Chapter 1  Introduction 

2 

research effort has been devoted to is the interaction between in-plane (longitudinal) shear 
and out-of-plane (transverse) bending that is though present in numerous structures and in 
particular in box-girder bridges.  

Girder elements are mainly subjected to membrane actions resulting from longitudinal 
shear, bending and torsion. However, various out-of-plane actions can lead to additional 
transverse bending moments in the girder webs. In box-girder elements these moments are 
typically introduced by the connection of the web with the top and bottom slabs. Depend-
ing on the bending stiffness of that connection, loads on the cantilever or in the middle 
span of the deck slab lead to more or less significant transverse bending moments. In case 
of none or insufficient transverse stiffeners, introduction of longitudinal torsion additional-
ly increases the out-of-plane moment. In principle, box girder webs are thus always sub-
jected to a combination of in-plane shear and out-of-plane bending moments.  

Out-of-plane actions in beam webs and in reinforced concrete elements in general question 
the applicability and thus the safety of design methods for plane elements that neglect 
these actions. Indeed, the very few experiments that had been conducted on plates and 
beam elements with combinations of in-plane and out-of-plane loads, such as by Kirschner 
[Kir86] and Kaufmann [Kau76], have suggested that the actual in-plane resistance might be 
more or less significantly affected by the out-of-plane actions.  

However, due to a lack of experimental data and knowledge on the actual behaviour under 
the combined action of in-plane and out-of-plane loads, especially in beam-like elements, 
the interaction is typically not accounted for as such, or treated in a simplified manner, in 
practice. A commonly used method for box-girder webs for instance, is to neglect the inter-
action and to perform independent analyses for longitudinal shear and transverse bending 
and then summing the required shear reinforcement for both actions. Although mostly 
conservative, this approach is not consistent with the actual behaviour of the web at failure. 
Additionally, it potentially leads to excessive amounts of shear reinforcement and to incon-
sistent and unsafe superposition of concrete compressive stresses.  

Furthermore, higher traffic loads, deck slab enlargements, redeployment of traffic lanes 
and many other modifications that are to be expected in the near future will lead to a sig-
nificant increase of the proportion of the transverse bending actions in girder elements. The 
topic on in-plane shear transverse bending interactions will thus considerably rise in im-
portance, especially with regard to the maintenance of existing structures. 

A better understanding of the interaction between in-plane and out-of-plane forces and the 
subsequent influence on the in-plane resistance is therefore needed in order to develop 
more precise and kinematically consistent design and verification methods. 
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1.2 Objectives 

The objective of this research is to provide tools that help improving the knowledge about 
the phenomenon of the interaction between in-plane and out-of-plane forces in plane rein-
forced concrete elements in general and about the effect of transverse bending on the longi-
tudinal shear resistance of beam-like elements in particular. A novel approach based on 
plane elastic-plastic stress fields is developed to this purpose. Applied to a unitary web 
segment it allows for a detailed insight into the behaviour of the stress field under the ac-
tion of transverse bending as well as to identify parameters that play a major role in the 
overall interaction mechanism.  

Several simplified equilibrium based models for the assessment of the effect of transverse 
bending in beam webs exist. They generally provide lower bound solutions according to 
the theory of plasticity, but simultaneous predict a very strong influence of the transverse 
moment on the shear resistance.  These models are believed to give highly conservative 
predictions in some cases and to be non-representative of the actual behaviour of the web 
at failure. While safe estimates of the bearing capacity can be considered to be acceptable 
for the design of new structures, the assessment of existing structures may require more 
precise estimations of the actual resistance in order to avoid potentially unnecessary and 
costly reinforcement. This thesis investigates these models with respect to the proposed 
elastic-plastic stress field method which leads to the proposition of an enhanced simplified 
verification method for beam elements in practice.  

As observed in the experiments on beams by Kaufmann and Menn [Kau76], the actual be-
haviour of the entire structural element cannot always be accurately predicted by simpli-
fied models that provide a local prediction of the shear resistance of a web segment. First of 
all, because in most real structural elements stress fields are not uniform and secondly, 
because other structural components (e.g. flanges) as well as other failure modes (e.g. yield-
ing of longitudinal reinforcement) that are not considered in the simplified models might 
have a significant influence on the actual bearing capacity. Thus, to get a better understand-
ing of the influence of out-of-plane actions on the in-plane resistance of more complex 
structural elements than panels, a general tool that is able to accurately assess the longitu-
dinal (i.e. in-plane) as well as the out-of-plane behaviour of entire structural elements is 
required. To this purpose, a non-linear finite element program for the investigation of in-
plane and out-of-plane actions on plane reinforced concrete elements is developed in this 
thesis. 

1.3 Methodology and personal contributions 

A literature review on the effect of out-of-plane actions on the in-plane resistance of plane 
reinforced concrete elements is performed in order to become familiar with the subject. 
Relevant models and experimental data are presented in Chapter 2. A particular attention 
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is payed to the shear transfer mechanism admitted in several rigid-plastic stress field 
(RPSF) interaction models for beam webs. Therefore the equilibrium based methods by 
Thürlimann [Thü77] and Menn [Men86] are investigated in detail and followed by a critical 
review on the main assumptions, in particular the stress field inclination and the concrete 
strength reduction factor. The analysis allowed as well illustrating that the rigid-plastic 
(RP) models predict a very strong in-plane shear transverse bending interaction leading 
thereby in theory to substantial losses in the shear resistance, already for small transverse 
bending moments. A kinematic and static compatible model presented by Marti [Mar80] 
(exact solution according to the theory of plasticity) however shows that the influence is 
less pronounced. Chapter 2 also introduces the theoretical basis of the elastic-plastic stress 
field (EPSF) method [Fer07] that is later used to develop enhanced analysis tools. 

Chapter 3 presents a novel multi-layered elastic-plastic stress field approach (ML-EPSF) in 
order to overcome certain limitations of the existing interaction models. The multi-layered 
stress fields are not only in equilibrium with the in-plane forces and transverse bending 
moments but they result as well from a kinematically consistent model for in-plane and 
out-of-plane behaviour. While simultaneously respecting the plastic strength of the materi-
al, they eventually lead to an exact solution at failure (according to the theory of plasticity). 
The ML-EPSF approach is applied to the case of beam webs in order to analyse the phe-
nomenological behaviour of the stress field that develops under the action of transverse 
bending. This analysis has been presented and rewarded at the fib International PhD Sym-
posium in Canada [Bac14]. The predictions are later compared to the existing interaction 
models and the out-come of these observations is used to propose an enhanced simplified 
verification method for beam elements, published in [Mut16]. The ML-EPSF approach is as 
well the basis of the proposed non-linear finite element program. The main personal con-
tributions regarding the topic of combined membrane and bending actions in plane rein-
forced concrete elements are enlisted hereafter: 

• Development of a general ML-EPSF approach to establish stress fields that are stat-
ically as well as kinematically compatible with in-plane actions (membrane and 
shear) and transverse bending in plane reinforced concrete elements.  

• Development of a ML-EPSF panel element to analysis the in-plane shear transverse 
bending interaction in a web segment and of a procedure to establish explicit inter-
action diagrams for the ultimate limit state resistance (exact solution according to 
the theory of plasticity). Compared to existing models, it provides a continuous 
transition between pure in-plane shear and pure transverse bending behaviour and 
it does not require assumptions regarding the stress field inclination and the con-
crete strength reduction factor because they are determined automatically from the 
kinematic compatibility conditions of the ML-EPSF approach.  
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• Validation of the main principles of the shear transfer mechanisms admitted in the 
rigid-plastic stress field interaction models by comparison to the kinematic compat-
ible ML-EPSF predictions. The model proposed by Menn [Men86] was found to be 
the most consistent with the actual behaviour of the web segment. 

• Confirmation that the effect of transverse bending on the in-plane shear resistance 
is less pronounced than predicted with RP interaction models, especially in the 
range of small transverse bending moments. 

• It is pointed out that the RP models are very strong simplifications of the actual 
stress fields that develop under transverse bending, which are highly non-uniform 
in the transverse direction of the web (inclination, distribution of stresses, concrete 
strength reduction factor) and additionally strongly depend on the intensity of the 
acting transverse bending moment. 

Figure 1.2  Application of the elastic-plastic stress field method to the reinforced 
concrete elements under in-plane and out-of-plane actions: (a) multi-layered elastic-
plastic stress field approach; (b) in-plane shear transverse bending interaction in a 
beam web segment according to the ML-EPSF panel element; (c) simplified verifica-
tion method for beams with transverse bending in the web and (d) non-linear finite 
element method for plane reinforced concrete elements subjected to in-plane actions 
and out-of-plane actions (forces and moments).      
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• It is shown that moderate compression due to bending has a favourable effect on 
the stress field and thereby reduces the loss of shear resistance caused by the trans-
verse bending moment (average stress field inclination and effective concrete com-
pressive strength increase). 

• It is found that the longitudinal deformation of the web, not accounted for in for-
mer interaction models, has a substantial influence on the ultimate resistance under 
combined action of in-plane shear and transverse bending. 

• Proposition of a simplified method for the verification of beam-like elements in 
practice. The plane EPSF finite element method is used to predict the actual longi-
tudinal behaviour of a beam element under in-plane actions (shear and longitudi-
nal bending), meanwhile the effect of the transverse bending moment is accounted 
for in a simplified manner. The simplified verification method is validated with the 
experiments on beam elements by Kaufmann and Menn [Kau76]. 

• It is shown that the influence of the transverse bending moment on the bearing ca-
pacity of beams is probably significantly smaller than predicted by sectional analy-
sis tools like the proposed ML-EPSF panel element or the RP interaction models 
from the literature. But more experimental data on beam elements is required to 
corroborate this observation and to quantify the actual effect of the transverse 
bending moment in these elements. 

The analyses have shown that in order to advance in the knowledge about the effect of 
transverse bending on the shear resistance of beams, it is necessary to account for the be-
haviour of the entire structural element and in particular internal force redistributions. To 
this purpose and to provide as well a tool with a wider field of application, a non-linear 
finite element method based on the ML-EPSF approach is proposed in Chapter 4. The de-
velopment of the finite element program included the conception and formulation of three 
novel finite elements for modelling the behaviour of concrete and reinforcing steel; the im-
plementation of an appropriate solution procedure and convergence criteria for the non-
linear problem, as well as the development of pre-processing and post-processing tools for 
modelling and analysis of the results. The finite element program is validated by means of 
benchmark tests and comparisons to experiential test data from the literature. Sensitivity 
analyses regarding modelling parameters such as the number of concrete layers, mesh 
fineness and element slenderness have also been performed. The personal contribution 
thus consists in the following: 

• Proposition of non-linear finite element method for the assessment of reinforcement 
concrete structural elements subjected to in-plane (normal and shear) and out-of-
plane (bending and shear) actions. 
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State of the art Chapter 2

Experimental tests on beams [Kup73, Kau76, Ewa77 and Gas03] and shell ele-
ments [Kir86, Pol94] have shown that the membrane state-of-stress resulting from in-plane 
shear can be significantly disturbed by the presence of out-of-plane bending moments. This 
led to a reduced shear resistance, especially in cases where brittle failure due to crushing of 
concrete was expected. Consequently, neglecting the interaction and performing independ-
ent analyses for longitudinal shear and transverse bending, and then summing the re-
quired shear reinforcement, is not consistent with the actual behaviour of the web at fail-
ure. Furthermore, it potentially leads to excessive amounts of reinforcement and to incon-
sistent and unsafe superposition of concrete compressive stresses.  

For the assessment of beam webs under the combined action of in-plane shear and trans-
verse bending a number of consistent design approaches that are grounded on the lower 
bound theorem of the theory of plasticity are proposed in the literature [Thü77, Men86, 
Stu90 and Gas03]. In the latter, the shear-transverse bending interaction is investigated by 
means of equilibrium based models that assume rigid-perfectly plastic behaviour for con-
crete and steel. The models are based on the classical rigid-plastic stress field (RPSF) ap-
proach (basis of the Swiss code SIA262 [SIA13] and illustrated in [Mut97]) that is then 
adapted to account for transverse bending. The principle consists essentially in shifting the 
resultant of the inclined compression field in the web towards the bending compression 
side of the web width and by this equilibrating a transverse bending moment. This ap-
proach leads to an additional equilibrium condition (for the transverse bending moment) 
that then allows formulating a rigid-plastic (RP) interaction model for in-plane shear and 
transverse bending. Section 2.1 gives an overview on different RP interaction models and 
investigates two of them in detail. 

Alternatively, the design of reinforced concrete members subjected to membrane and bend-
ing actions can be performed using sandwich models, as for instance indicated in the 
fib Model Code 2010 [FIB13] and Eurocode 2 [CEN05]. Sandwich models, as for example 
proposed by Marti [Mar90], Mancini et al. [Fan95], Figueiras [Lou95] and Seelhofer [See09] 
are useful tools for the ultimate limit state design of reinforced concrete slabs or elements 
with predominant out-of-plane loading. They are however less adapted for the analysis of 
beam webs where high membrane loads (due to in-plane shear) are expected. Sandwich 
models normally neglect the contribution of the sandwich core in the load transfer of 
membrane actions, which leads to safe but conservative estimates of the combined re-
sistance for in-plane shear and transverse bending (see Mancini et al. [Gio99] and Seelhofer 
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[See09]). Furthermore, the sandwich model approach assumes that the stresses that result 
from in-plane shear and normal forces are carried by the two outer layers of the sandwich 
model. This is however not consistent with the behaviour observed in experimental tests, 
where the stress field in the concrete only acts on one side in the element thickness, in order 
to a counterbalance the transverse moment. The sandwich models are not appropriate to 
represent this behaviour accurately; consequently they are not further investigated in this 
research project.  

The RPSF approaches provide lower bound estimates of the strength of a member [Mut97]. 
An approach to investigate the in-plane shear – transverse bending interaction on the basis 
of a kinematically compatible stress field has been proposed by Marti [Mar80]. Marti’s 
model that lead to an exact solution according to the theory of plasticity is presented in 
section 2.3. A more general procedure for automatic development of stress fields that is 
based on the elastic-plastic stress field (EPSF) method proposed by Fernández Ruiz and 
Muttoni [Fer07] and that is the basis of the proposed advanced interaction model as well as 
the finite element method developed in this thesis is presented section 2.4.  

2.1 Rigid-plastic stress field interaction models 

The issue of longitudinal shear and transverse bending in beam webs was early addressed 
by Kupfer in 1969 (as cited in [Ewa77]). Kupfer assumed that under the action of a trans-
verse bending moment the compression field in the web inclines towards the bending 
compression side. For a given shear load Kupfer computed a maximum admissible con-
crete compressive stress at the web-flange section which allowed him to formulate a limita-
tion for the transverse bending moment (in the uncracked state). In 1973 (as cited in 
[Ewa77]), Jungwirth and Baumann adopted his principle, i.e. that the transverse bending 
moment can be resisted by the vertical component of the inclined compression forces (due 
to longitudinal shear) that is eccentric relative to the web axis. They additionally proposed 
a formulation for supplementary vertical bending reinforcement. Although the equilibrium 
of forces and moments is fulfilled at the considered web section, the assumptions are not, 
or only poorly, consistent with the actual behaviour of web at failure. Additionally, no ef-
fect of the transverse bending moment on the actual shear strength is considered. 

In engineering practice, the design of reinforced and prestressed concrete members is gen-
erally performed using a stress field approach and in particular the rigid-plastic stress field 
(RPSF) method, which constitutes the basis of the Swiss code SIA 262:2013 [SIA13]. In 1977, 
Thürlimann [Thü77] extended the classical RPSF approach for longitudinal shear, bending 
and torsion to the case of additional transverse (out-of-plane) bending and deduced from 
this an interaction relationship between the in-plane shear resistance and the acting trans-
verse bending moment. In Thürlimann’s model, similarly to Kupfer’s idea, the inclined 
compression field for shear is shifted towards the exterior face of the web such that the 
transverse bending moment is resisted by the vertical component of the eccentric concrete 
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compressive stress resultant (figure 2.1). Thürlimann’s model allows carrying supplemen-
tary transverse bending moments by rearranging the tensile forces between the stirrups on 
both sides of the web. This approach that is grounded on the lower bound theorem of the 
theory of plasticity (static theorem) was later adopted and extended by several authors. In 
the following, the basic principle of the rigid-plastic (RP) interaction model as well as vari-
ous extensions developed different authors such as Thürlimann [Thü77], Menn [Men86], 
Stucchi [Stu90] and Gaspar [Gas03] will be developed in particular. 

2.1.1 The main principle 

The rigid-plastic interaction models for in-plane shear and transverse bending are direct 
applications of the RPSF method, thus they have to satisfy the equilibrium of forces and the 
yield conditions of the materials. According to the usual approach for beam design, the 
beam is split into a tension chord, a web and a compression chord. The analysis of the in-
plane shear transverse bending interaction is then performed on a shear panel representing 
the web of a reinforced concrete beam or box girder element failing in shear due to yielding 
of the shear reinforcement. 

The rigid-plastic stress field that develops in the web at failure is shown in figure 2.1a. It is 
in equilibrium with the internal forces: the in-plane shear force  and the out-of-plane 
bending moment . The stress field that is composed of an inclined compression field in 
the concrete and the stirrup forces  is a licit solution according to the theory of plasticity 
(together with the top and bottom tension cord, not represented in this figure). The state-of-
stress is defined as follows. 

The compressive stresses in the concrete  due to shear are inclined at an angle  and are 
assumed to be constant in the depth of the web (uniform stress block). 

Figure 2.1  The RPSF method for in-plane shear and transverse bending [Thü77]: (a) 
web elevation with inclined compression field and web cross section with internal 
forces; equilibrium of forces in a web segment cross section (b) in pure shear and (c) 
with a moderate transverse bending moment. 
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  (2.1) 

  (2.2) 

The stirrups forces due to shear are determined along a section  parallel to the com-
pression field (see figure 2.1a). The stirrup force  per unit length of the beam is expressed 
as follows, where  is the force per stirrup and  the stirrup spacing. 

  (2.3) 

The stirrup force  is always in equilibrium with vertical component of the compression 
field  (per unit length), see equilibrium of a web section in the figures 2.1b-c, where  
and  are the stirrup forces on each side of the web. 

  (2.4) 

In pure shear condition, figure 2.1b, the vertical components  of the compressive stresses 
 are uniformly distributed over the entire web width  and the stress resultant  is cen-

tred. 

  (2.5) 

A transverse bending moment  can then be resisted by shifting the resultant  towards 
the bending compression side of the web, figure 2.1c. The inclined compression field is 
acting on a reduced section of the web width ( ). The compressive stress distribution 

, respectively , is again approximated by a uniform stress block over the width . No 
changes in the stirrup forces are required (compared to the state-of-stress for , figure 
2.1b). The equilibrium of vertical forces, equation 2.4, is still verified and the equilibrium of 
moment is expressed as follows: 

  (2.6) 

The maximum moment  that can be equilibrated by this procedure is limited by the min-
imum web width  required to resist the shear force , i.e. when the stresses in the shear 
strut reach the maximal allowable stress for concrete in shear. At limit state, the two equi-
librium conditions for vertical forces (eq. 2.4) and transverse moments (eq. 2.6) thereby 
allow for the establishment of an explicit interaction model for in-plane shear and trans-
verse bending . 

It should be noted that in such RP interaction models, the eccentricity relative to the web 
axis of the inclined compression due to shear generates additional torsion and bending 
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moments in the longitudinal direction of the web (about the vertical axis). They are consid-
ered as generalized reaction forces and they potentially lead to a slight modification of the 
stress distribution in the upper and lower flanges of the beam before being transferred to 
the transverse supports of the structural element. 

2.1.2 Various equilibrium based solutions 

In the rigid-plastic stress field solution presented in the previous section (figure 2.1) the 
transverse bending resistance is exclusively provided by the eccentricity of the compres-
sion field. Some authors propose different modifications of this model in order to increase 
the predicted resistance in case of higher levels of transverse bending moments . 

Thürlimann [Thü77] assumes that the supplementary transverse moment  
can be resisted by changing the stirrup forces by  while preserving the equilibrium of 
forces, figure 2.2a. Stucchi [Stu90] recommends increasing the force in the stirrups on the 
flexural tension side by . The equilibrium of forces is maintained by applying an equiva-
lent compression force  on the shear strut, figure 2.2b. The tensile force  in stirrups on 
the bending compression side remains unchanged. 

In order to account for a more realistic kinematic bending behaviour of the web cross sec-
tion, Gaspar [Gas03] combines the previous ideas by Thürlimann and Stucchi, figure 2.2c. 
Gaspar’s model equilibrates the addition tensile force , due to , at the same time by 
an increase of the concrete compression force on the shear strut  and a reduction of the 
stirrup force  on the bending compression side.  

Menn [Men86] proposes to distinguish between two different regimes: (i) predominant 
shear and (ii) predominant transverse bending. In the first situation, the additional moment 

 is balanced by variations in the stirrup forces, figure 2.2d. This is equivalent to Thürli-
mann’s proposal, but it is only applicable as long as the stirrups on the bending compres-
sion side are still in tension, . For higher transverse bending moments (situation 

Figure 2.2  Schematics of the transverse equilibrium of a web segment subjected to 
a high transverse bending moments. RPSF models according to: (a) Thürlmann 
[Thü77]; (b) Stucchi [Stu90]; (c) Gaspar [Gas03] and (d-e) Menn [Men86].  

(a) Thürlimann (b) Stucchi (c) Gaspar (d) Menn (i) (e) Menn (ii)
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(ii)), the tensile force  vanishes and is replaced by a compressive force  acting on the 
outer layer of the flexural compression faces of the web. As a consequence, the resultant of 
the concrete compressive force due to shear  shifts towards the centre of the web, fig-
ure 2.2e. 

A comparison of the different rigid-plastic interaction models by means of a shear-
transverse bending  diagram is shown in figure 2.3. The overall behaviour of the 
models is very similar; with increasing transverse bending moment the predicted shear 
resistance of the web decreases rapidly. Stucchi’s model is the most conservative, whereas 
Thürlimann’s and Menn’s models are more favourable, especially for larger bending mo-
ments. Gaspar’s model, that is a combination of Thürlimann’s and Stucchi’s model, is con-
sequently predicting a behaviour mid-way between the previous models. 

In general, the effect of the transverse bending moment  on the in-plane shear strength  
is significant. For example, in case of a transverse moment of 30% of the pure flexural 
strength  of the web, the models predict a loss of up to 20% of the initial in-plane shear 
strength .  

A more detailed examination of this phenomenon, presented later in this report on the ba-
sis of a multi-layered elastic-plastic (ML-EP) panel element, will show that RP approaches 
potentially have a high level of conservatism and that the actual interaction is less pro-
nounced. Out of all the lower bound solutions, the models by Thürlimann and Menn pre-
dict the highest combined resistance, therefore these models are chosen for further investi-
gations of the RP interaction models. An elaborate description of these two models and the 
corresponding design procedures is presented in section 2.1.3 and 2.1.4. They are followed 
by a detailed discussion on the main hypotheses leading to the previously mentioned ex-

Figure 2.3  Rigid-plastic in-plane shear  - transverse bending  interaction models 
according to Thürlimann [Thü77], Menn [Men86], Stucchi [Stu90] and Gas-
par [Gas03], evaluated for a typical case: , , , 
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tremely safe  interaction predicted by the RPSF approaches, section 2.2.4. Later, 
the methodology of the ML-EP approach will be presented and discussed in chapter 2.3. 
Comparisons between the ML-EP approach and the RPSF approaches are presented in sec-
tion 2.3.4. 

2.1.3 Interaction model by Thürlimann 

The work presented by Thürlimann in 1977 [Thü77] was a supplement to the new Recom-
mendation 34 of the SIA162:1976 [SIA76] at the time. The SIA162, as well as the CEB Model 
Code (1976) [CEB76], had introduced new design rules based on the RPSF method for rein-
forced concrete beams under longitudinal shear, bending and torsion. Thürlimann pro-
posed to extend the analysis to cases with out-of-plane, i.e. transverse, bending in order to 
obtain a consistent RP design procedure that is conforming to the new recommendations. 

In his work, Thürlimann focuses on the interaction of in-plane shear and transverse bend-
ing in the web of reinforced concrete beams failing in shear due to yielding of the shear 
reinforcement. He does not consider other failure mechanisms that could lead to an early 
failure of the beam. In 1980 Marti [Mar80] extends Thürlimann’s model for general cases in 
order to account for potential failure due to yielding of the longitudinal reinforcement (not 
developed in this report). 

In a first approach, Thürlimann studied the effect of the location of the compression field in 
the width of the web on the transverse bending resistance. Later, he formulated a more 
general expression allowing for changes in the stirrup forces and asymmetric shear rein-
forcement layouts. He validates his model by comparing it to a series of tests performed by 
Kaufmann and Menn [Kau76].  

Figure 2.4  Equilibrium of a web segment at ultimate limit state according to Thür-
limann: (a) in pure shear condition; (b) with a transverse bending moment in case of 
symmetrical reinforcement and (c) the general case: for higher levels of transverse 
bending and/or asymmetrical reinforcement layout. 
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The eccentricity of the compression field 

The presence of an out-of-plane bending moment  in the shear wall requires a modifica-
tion of the initial state-of-stress in order to ensure the equilibrium between external and 
internal forces. A possible solution that is proposed by Thürlimann [Thü77], as already 
illustrated in section 2.1.1, consists in shifting the inclined compression field and thus also 
its vertical resultant  towards the bending compression side within the web width, fig-
ure 2.4a to figure 2.4b. 

In order to determine the maximum eccentricity of  relative to the web axis and by this 
the capacity of the web to resist a transverse bending moment , the minimum width  
required to resist the shear force has to be determined first. At this point, it must be 
stressed that Thürlimann established his model according to the recommendation at the 
time, i.e. SIA162:1976 [SIA76]. According to SIA162:1976, the concrete shear resistance of a 
beam is expressed in terms of nominal tangential stresses ( ) that should not exceed the 
maximal allowable stress . In comparison to recent codes (SIA262:2013 [SIA13]), the 
value of  is approximately equivalent to the shear strength of concrete ( ) when the 
inclination of the compression field is set to . Thürlimann then computes the mini-
mum width  while referring to the stress field in figure 2.4a-b, where 

 and with  (from eq. 2.5). 

   (2.7) 

   

At ultimate limit state the shear reinforcement is assumed to be yielding, thus the stirrup 
forces are known. In the case of a symmetrical reinforcement layout , 
the tension forces on each side of the web are identical . 

The equilibrium equations for vertical forces (eq. 2.4) and transverse bending moments 
(eq. 2.6) can then be expressed as follows, with  according to equation 2.7. 

  (2.8) 

The equation 2.8-2 constitutes an explicit expression of the  interaction in a beam 
webs at ultimate limit state. It is however not very general since it assumes that the shear 
reinforcement layout is symmetrical ( ) which is often not the case in existing 
structures. Additionally, only the contribution of the compression field in the transverse 
bending resistance ( ) is accounted for, although the tensile forces in the shear rein-
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forcement could greatly contribute to equilibrate  and thus to the combined ( ) re-
sistance. 

General shear-transverse bending interaction model 

The ( ) relation presented in equation 2.8-2 allows to get a first impression of the effect 
of transverse bending on the in-plane shear strength. However, as pointed out by Thürli-
mann in [Thü77], this relation does not cover the general case where the shear reinforce-
ment of the web cross section is not symmetrical ( ).  

Furthermore, in particular if  is high, the model should consider the possibility that only 
the shear reinforcement on the bending tension side reaches its yielding strength, while the 
reinforcement on the bending compression side only carries the remaining shear load. 
Based on these reflections, Thürlimann [Thü77] proposes a more general formulation for 
the rigid-plastic stress field, figure 2.4c. The new stress field respects the equilibrium of 
forces and the plastic strength of material (static theorem of the theory of plasticity) and 
can hence be used to determine a lower-bound value of the failure load.  

The equilibrium of Thürlimann’s general rigid-plastic stress field are defined as follows, 
where  designates the resultant of both stirrup forces.  

  (2.9) 

In the present model, the bars on the bending tension side are assumed to be yielding 
whereas those on the compression side carry the remaining load in order to ensure the 
equilibrium of forces (eq. 2.9-1). 

  (2.10) 

  (2.11) 

The parameter  that designates the percentage of the total vertical load carried on the ten-
sion side, allows to control the ratio between the tension forces  and  and by this the 
contribution of the shear reinforcement to transverse bending resistance (eq. 2.9-2). Thürli-
mann allows to vary  between . The lower bound ( ) represents the symmet-
rical case, where the stirrups on the bending tension and bending compression side carry 
the same amount of load, . When , the entire shear load is carried by 
the reinforcement on the bending tension side,  and . This configuration will 
lead to the highest transverse bending moment resistance. Thürlimann does not account for 
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the cases where , since he considers that the contribution of the compression force 
 to the transverse bending moment resistance is negligible. 

The ( ) interaction can then be expressed as a function of the parameter  by substitut-
ing  and  (eq. 2.10),  (eq. 2.11) and  (eq. 2.7) into the equilibrium equation 2.9-2. 

 
 

(2.12) 

The model is limited to  in case of very small shear forces 
( ) and  [Thü77].  

The general expression for the ( ) interaction in equation 2.12 (see also eq. 2.9-2) shows 
two main components in the equilibrium of moments. The second term in the brackets de-
notes , the transverse bending moment generated by the eccentricity of the compression 
field. The first term in the brackets is , the contribution of the shear reinforcement to the 
transverse bending moment. This term shows the beneficial effect of higher tensile forces 
on the bending tension side than on the bending compression side. The transverse bending 
resistance can thus be considerably increased by rearranging a symmetrical reinforcement 
layout (where  i.e. ) into a asymmetrical layout, or by adding reinforce-
ment on the bending tension side, such that  ( ). 

The ( ) interaction diagrams resulting from equation 2.12 are represented in figure 2.5  
(solid lines). The linear relation between  and  indicates a rapid reduction of the shear 
resistance due to the presence of a transverse bending moment. An asymmetrical rein-
forcement layout ( ) allows increasing the shear resistance for a given moment, but 
the interaction itself will be even stronger (steeper slop). 

Design and assessment procedures 

Thürlimann [Thü77] also proposes design and assessment procedures. 

In a first step, symmetrical shear reinforcement is designed to carry the design shear load. 
The inclination of the compression field is selected according to general shear design rec-
ommendations (SIA162 [SIA76] ; SIA262 [SIA13] ). The 
width of the web  should be selected larger than the minimum width , especially if the 
transverse bending moment is important. The transverse bending resistance of the web is 
then verified by computing the bending resistance according to equation 2.12, or by read-
ing it directly from the interaction diagram along the curve . If the bending strength 
is insufficient, Thürlimann proposes to redesign the shear reinforcement for a one-sided 
reinforcement layout. The stirrups on the bending tension side carry the entire shear load 
and the required amount of shear reinforcement on the tension side,  is doubled com-
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pared to the previous situation. If the bending strength with  is still insufficient, the 
cross section of the web has to be increased. If the required bending strength lays between 
the two previous values (for  and ), the reinforcement on the tension side only 
needs to be partially increased (compared to  for ). In the next iterations the pa-
rameter  is progressively increased (from ), the reinforcement  increases while 

 decreases, until the computed bending strength corresponds to the design moment.  

For the assessment of existing structures, the web cross section, the shear reinforcement 
and the loads are known. First the total reinforcement force  have to be determined from 

 and  (eq. 2.9-1). Next, it is assumed that the reinforcement on the tension side is yield-
ing. The parameter  is then computed from equation 2.11. The transverse bending strength 
of the cross section can thus be read from the interaction diagram, respectively computed 
from equation 2.12. 

Thürlimann’s model according to today’s standards 

Thürlimann’s original formulation (eq. 2.12) derives the required web width  by assum-
ing that the nominal tangential stress in the strut has reached the maximum tangential 
stress according to SIA162:1976 [SIA76],  (eq. 2.7). This potentially leads to unsafe 
estimates of the combined shear resistance, since the shear strength of the concrete strut is 
independent of the actual inclination of the compression field (

). Figure 2.5 also indicates the maximum shear strength according to SIA262 [SIA13], 
which shows that the overestimation of the strength is especially pronounced for low rein-
forcement ratios ( ). 

The author adapted the original formulation by Thürlimann to the SIA262 [SIA13] recom-
mendations by replacing the expression for the required web width . The adapted (

) interaction (see development and explicit expression in Appendix A) is shown in figure 
2.5 (dashed curves). In the range of small transverse bending moments, it is similar to 

 
Figure 2.5  Original interaction diagrams by Thürlimann [Thü77] (solid lines) and 
adaptation to the SIA262:2013 [SIA13] (dashed lines) for , , 
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Thürlimann’s original formulation. However, for high transverse bending moments, this 
formulation leads to an even more pronounced reduction of the shear strength.  

In general, with both formulations (original and adapted) it is not possible to reach the 
plastic bending strength  when no shear force is applied. This shows that the underly-
ing RPSF is not appropriate for high transverse bending moments. Menn [Men86] has tak-
en into account this issue when developing his interaction model (section 2.1.4). 

2.1.4 Interaction model by Menn 

Menn [Men86] clarifies again the fact that the superposition of the required reinforcement 
to resist each load (shear and transverse bending) separately is not consistent with the ac-
tual behaviour of the web at failure. The required reinforcement should be determined by a 
model that accounts for the effect of a combined load situation.  

Menn grounds this statement on the results of an experimental campaign performed by 
Kaufmann and Menn [Kau76] on a series of beams subjected to a longitudinal shear load 
and a transverse bending moment in the beam web (see section 2.3). The tests clearly re-
vealed a modification of the shear transfer action under the effect of transverse bending. In 
particular, it was observed that the resultant of the compressive force due to shear shifts 
towards the flexural compression side of the web and that the stresses in the two stirrup 
branches are not identical under the action of the transverse moment. The bending tension 
side usually had higher tensile stresses than the compression side of the shear reinforce-
ment. For the beams that failed in shear with yielding of the shear reinforcement, it was 
observed that the stirrups on the bending tension side started yielding first, but at failure 
the stirrups on both sides had reached the yield strength. In beams that failed due to con-
crete crushing, the stirrups on the bending compression side did not yield.  

Based on these observations, Menn [Men86] proposed a rigid-plastic stress field model that 
takes simultaneously advantage of the excess capacity of the web ( ) and the re-
sistance provided by varying the stirrup forces (figure 2.6b). Additional resistance can be 
provided by an increase of the total concrete compressive force in the web, in case of high 
transverse bending moments, figure 2.6c. Menn separates these two situations by formulat-
ing two distinct equilibrium expressions, one for predominant shear (case i) and one for 
predominant transverse bending (case ii). 

The internal state-of-stress for the different equilibrium conditions is shown in figure 2.6. 
The stress field and the principle of equilibrating the transverse moment is very similar to 
Thürlimann’s approach, except for case (ii). However, at the ultimate limit, the expression 
of the ( ) interaction models differe because Menn assumes, contrary to Thürlimann, 
that the inclination  of the compression strut is known and that the forces in the stirrups 
on the tension and compression side adjust accordingly. 
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Case (i) – Predominant shear 

The equilibrium of a web segment subjected to a shear load  and a small transverse bend-
ing moment is established by shifting the resultant of the compression field in the concrete 
towards the bending compression side and by increasing the stirrup forces on the tension 
side and decreasing the tensile forces in the stirrups on the compression side (fig. 2.6b).  

The equilibrium equations are identical to those of Thürlimann’s model (eq. 2.9) and allow 
computing the stirrup forces as a function of  and . 

  (2.13) 

The minimum web width required to resist the shear force is computed hereafter. Menn’s 
formulation, taken from the second edition (1990) of [Men86], used the reduced concrete 
compressive strength  (SIA162 [SIA89]) which is replaced in the following by , 
consistent to the notation of the SIA262 [SIA13]. 

  (2.14) 

The present state of equilibrium is only applicable if a net tensile force remains in the stir-
rups on the compression side ( ). If  is negative, due to a high transverse bending 
moment or a small shear load, the internal forces have to be computed according to the 
rigid-plastic stress field for predominant transverse bending (case ii).  

Figure 2.6  Equilibrium of a web segment at ultimate limit state according to Menn 
[Men86]: (a) in pure shear; (b) in case of predominant shear (case i) and (c) in case of 
predominant transverse bending (case ii).   
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Case (ii) – Predominant transverse bending 

In case of predominant transverse bending, it is assumed that the forces in the reinforce-
ment on the compression side is equal to zero ( ) and instead an additional compres-
sive force  is applied to the web cross section.  represents a pure bending compres-
sion force and is acting in the vertical direction at the outermost position of the web width. 
Therefore, the resultant of the inclined compression field due to shear ( ) shifts towards 
the centre of the web cross section (no superposition of the bending compression and the 
stress field for shear). The equilibrium conditions can thus be established as follows: 

  (2.15) 

The unknown compressive force  and the tension force in the shear reinforcement  
are then given by: 

  (2.16) 

The width required to resist the compressive force  is given by . Note that 
in this case no concrete strength reduction factor  intervenes (respectively ). 

Explicit expression for the in-plane shear transverse bending interaction 

At ultimate limit state, the ( ) interaction can be expressed explicitly for a given 
amount of shear reinforcement ( ) and a given inclination of the compression field 

. The transverse bending resistance is highest when the reinforcement on the tension side 
is yielding. In case of predominant in-plane shear,  can thus be expressed as function of  
by substituting  and  (eq. 2.14) into equation 2.9-2 . In a similar way the 
( ) relation for predominant transverse bending can be derived from equation 2.15-2. 
The explicit expressions are shown hereafter. 

Case (i) – predominant shear, if : 

  (2.17) 
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Case (ii) – predominant transverse bending, if : 

  (2.18) 

The condition associated to the situation of predominant in-plane shear ( ) permits to 
define the limit state (  and ) between the two cases. They are obtained from the 
equilibrium equations 2.9 when . 

 (2.19) 

 

 

 

Figure 2.7  Rigid-plastic interaction diagrams by Menn [Men86] for symmetrical 
and unsymmetrical reinforcement layouts and different stress field inclinations, with 
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Design procedure 

The design of the shear reinforcement for the combined action of in-plane shear and trans-
verse bending can be performed by using pre-established ( ) interaction diagrams 
(example in fig. 2.7 obtained from eqs. 2.17-2.19) or by directly applying the expressions for 

 and . In this case, the tensile forces in the reinforcement are first computed for the 
case of predominant shear. If the stirrups on the bending compression side are in compres-
sion ( ), the reinforcement has to be designed according to the case for predominant 
transverse bending. The latter requires some interactions in order to determine the neces-
sary width  for the bending compression force . 

2.1.5 Main observations and conclusions 

All the models proposed in the literature are RP equilibrium solutions that tailor the stress 
field in the transverse direction in order to account for the out-of-plane bending moment. 
They are ground on the same basic principle that consists in arranging the compression 
field on a minimum web width and then shifting it to the bending compression side. Dif-
ferences in the models are observed when regarding the forces in the stirrups and for high 
levels of transverse bending. 

The investigations performed on the basis of the models by Thürlimann and Menn show 
that the RPSF approach is an elegant method to illustrate the shear transfer action under 
transverse bending and to identify the key factors in the assessment of the maximum com-
bined shear-transverse bending resistance, which are the reserve capacity of the web width 
( ) and the potential difference between the forces in the stirrups on the bending 
compression and the bending tension side ( , resp. ). 

Further advantages of the RP interaction models are that they can be easily adapted for any 
specific case (shear reinforcement and location, web geometry etc.) and that simple to use 
in practice, due to the explicit interaction formulas or diagrams. 

However, the previously presented models predict a very strong interaction between in-
plane shear and transverse bending which leads to a substantial loss in shear strength. Par-
ticularly in the range of small transverse moments, the effect on the in-plane shear strength 
is surprisingly high. For some models, a bending moment of 30% of  (pure bending 
resistance) leads to a loss of up to 20% of the initial shear strength (fig. 2.3). While this safe 
estimate of the shear strength could be acceptable for the design of new structures, it might 
be too penalizing when assessing the shear strength of existing structures and consequently 
leading to costly and probably unnecessary strengthening. 

It should be kept in mind that the rigid-plastic interaction models by Menn [Men86] and 
Thürlimann [Thü77], as any other models based on the RPSF approach, make a number of 
hypotheses that affect the shear strength prediction of the web. In the present context the 
most arguable assumptions are made regarding the inclination of the compression field  
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and the concrete strength reduction factor . Firstly, from simple extrapolation of the clas-
sical rigid-plastic stress field approach, it is assumed that the inclination  and the factor  
are constant over the entire web width. Secondly, the values for  and  are chosen ac-
cording to recommendations for reinforced concrete members subjected to in-plane shear 
only. 

Although, as shown in the previous sections, the stress field is subjected to significant mod-
ifications, the stress field parameters ( , ) have not been revised in order to account for 
the mostly beneficial effect of the transverse bending moment (i.e. due to bending com-
pression ). The RP interaction models could thus potentially be improved, but this 
raises the questions on how to correctly assess the superposition of the bending compres-
sion with the inclined shear field and to what extent the value of  and  should be 
adapted. Some effort in this direction has been made by Menn [Men86] (additional bending 
compression zone) and Stucchi [Stu90] (bending compression partially added to vertical 
component of the shear force) but the effect on the overall resistance was not significant, 
see figure 2.3. 
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2.2 An exact solution according to the theory of plasticity 

The theory of plasticity is a widely spread tool to investigate the behaviour of reinforced 
concrete structures. Cookson [Coo79] and Marti [Mar80] both studied the case of in-plane 
shear and transverse bending on the basis of plane reinforced concrete panel elements sub-
jected to membrane and bending actions. The derived yield criterions are exact solutions 
according to the theory of plasticity and illustrate that the previous RP interaction models, 
which correspond to lower bound solutions, provide strongly conservative estimates of the 
ultimate resistance. Figure 2.8b shows a schematic representation of the static solution by 
Thürlimann (dashed line) and the exact solution proposed by Marti (solid line). In the fol-
lowing, Marti’s model is presented in detail. It is identical to the one proposed by Cookson. 

Interaction model by Marti  

To develop the exact solution, Marti starts from the kinematic theorem of the theory of 
plasticity which he applies to the general case of plates subjected to membrane and bend-
ing actions. In order to determine the yield condition for the reinforced panel, Marti uses 
the Jacob-Bernoulli hypothesis of plane sections to determine the in-plane deformations 
that result from out-of-plane bending. The in-plane strain increments { , , } are 
thus varying linearly over the element thickness and are entirely defined by the general-
ized strain increments { , , , , , } (at the element mid-plane, similar 
to fig. 3.1b). Using Mohr’s circle of strains, the principal strain increments { , }, as well 
as their orientation, are known for every point in the element thickness. 

By using the Mohr-Coulomb yield criterion for concrete in a plane stress state (tensile 
strength neglected, fig. 2.13c), Marti can then determine a consistent stress state for every 
non-zero strain increment at every position in the element thickness (  if , 

 if , with ). The reinforcement in the plane of the element is ad-
mitted to be yielding in compression or tension, depending if the deformation increment in 
the plane of the reinforcement is positive or negative. The energy dissipated by the rein-
forced concrete plate is thus uniquely defined by the generalized deformation increments 
{ , … , , …} and can be derived to define the yield surface in the six-dimensional 
space of the generalized stress { , , , , , }.  

In [Mar80], Marti reduces the problem of the general panel element to the case of in-plane 
shear and transverse bending by assuming that the generalized deformations , , 

 and the membrane force  are zero. The in-plane shear force  and the transverse 
bending moment  are the remaining unknown forces of the problem, which allows de-
riving the yield condition and thus as well the exact solution for the in-plane shear trans-
verse bending interaction. To establish the interaction curve in figure 2.8b, Marti addition-
ally assumes the stress field illustrated in figure 2.8a in which the concrete is in an uniaxial 
stress state (point F in fig. 2.13c: ,  thus  and ) and the 
(shear) reinforcement is vertical. Contrary to the RP interaction models, the stress field de-
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velops over the entire element thickness and its inclination varies from the bending com-
pression side (index “c”) to the bending tension side (index “t”). The forces ,  and  
that result from the restrained deformations are considered as internal reactions forces.    

The equilibrium of forces for ,  and  can thus be expressed as a function of the 
inclination of the compression field  and the forces  and  in the shear reinforcement:  

Figure 2.8  An exact solution according to the theory of plasticity by Marti [Mar80]: 
(a) assumed stress field with variable inclination; (b) in-plane shear transverse bend-
ing interaction diagram: static solution (dashed) and exact solution (solid); kinemati-
cal relationships: (c) in case the stirrups on both sides are yielding and (d) in case the 
stirrups on the bending compression side are not yielding.     
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with    and  . 

(2.20) 

Following the application of the static theorem of the theory of plasticity, Marti maximises 
the expression for the shear for , while taking ,  and  as constant parameters. 
In the general upper bound solution (kinematic theorem) Marti [Mar80] derived that 

. In the present application this means that  varies line-
arly over the element thickness, which allows eliminating the unknown stress field inclina-
tion  from the previous equilibrium equations. Eventually, Marti obtains the following 
transcendental expression for the in-plane shear transverse bending interaction: 

 

 

(2.21) 

with, 

   

Equation 2.21 still has to be optimized for the forces in the stirrups  and . Marti dis-
tinguishes different cases as illustrated in figure 2.8b. Provided that the stirrups are yield-
ing on both sides, the yield limits  and  are inserted into equation 2.21. The corre-
sponding kinematic relationships are illustrated in figure 2.8c. In case the reinforcement on 
the bending compression side is not yielding, which occurs for a pure shear state of strain 
at the position of the reinforcement (fig. 2.8d,  at ), the state of stress in the 
reinforcement is not fully defined and can thus take any value respecting . The 
interaction equation has to be evaluated for various levels of the stirrup force , while 
maintaining . The envelope of all the interaction curves then provides the in-
plane shear transverse bending interaction diagram as shown in figure 2.8b. The kinematic 
compatibility conditions allow determining as well the corresponding stress field inclina-
tions as illustrated in figure 2.8b. Detailed information regarding these developments can 
be found in [Mar80].  

Figure 2.8b gives an example of an interaction curve for unsymmetrical shear reinforce-
ment ( ). The curve is symmetrical about the axes  and 

. The stress field inclination  is shown for three characteristic points A, B and C. In 
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point C, the stirrups on both sides are yielding and the stress field due to shear is uniformly 
distributed over the element width. At this point, the transverse bending resistance is pro-
vided only by the unsymmetrical shear reinforcement. In point B, the deformation incre-
ment  varnishes at  (fig. 2.8d), such that the reinforcement on the bending 
compression side is not yielding ( ). The inclination of the stress field has in-
creased towards the bending compression side, which significantly augments the contribu-
tion of the compression field in the concrete to the transverse bending resistance (compare 
to the static solution by Thürlimann, dashed line). The situation of pure transverse bend-
ing, point C, leads to a singularity in the model. Indeed, for  the state of stress in the 
concrete is not uniquely defined by the theory of plasticity. Marti thus chooses the statically 
consistent stress field as illustrated in figure 2.8b point A, with  
and .  

The exact solution proposed by Marti shows that contrary to the assumptions made in 
Thürlimann’s and Menn’s interaction models, the stress field inclination is not uniform 
over the element width and significantly differs from the conventionally admitted inclina-
tion angles for pure shear. The kinematic consistent model predicts as well a noticeable less 
strong interaction, especially in the range of small transverse bending moments, which 
leads to higher shear resistance and thus potentially less penalizing predictions for the de-
sign of new and the assessment of existing structures. However, as in Thürlimann’s and 
Menn’s model, the question regarding the appropriate choice for the concrete strength re-
duction factor  still remains unanswered and becomes even more uncertain due to the 
very different inclinations that the stress field adopts over the element width. 

2.3 Experiments for in-plane shear and transverse bending inter-

actions 

This section presents some experiments that have been conducted on beams and panels 
under combined in-plane and transverse bending actions. Most of these tests had been per-
formed to validate proposals for design recommendations. Only a few, in particular Kauf-
mann [Kau76] and Kirschner [Kir86], performed tests that aimed to investigate the actual 
interaction mechanism that develops under the combined membrane and bending actions. 
The following section presents a brief overview of the most important tests and their main 
outcomes. The experiments by Kaufmann and Menn that provide thorough and conclusive 
information about the observed behaviour are presented more in detail.  

Test by Kupfer and Ewald  

Kupfer and Ewald [Kup73] were interested in the behaviour of the webs of continuous box-
girder bridges that are subjected to the combined action of in-plane shear and transverse 
bending. They considered that the most unfavourable combination of internal forces in the 
web is located above the intermediate support at the connection to the deck slab. To inves-
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tigate the behaviour of the web in that region they conducted an experimental test on a 
prestressed concrete beam in a scale 1:4 to a representative box-girder element. The test 
was conceived such that the transverse bending moment was varying linearly over the web 
height, with its maximum at the connection with the tension chord. Shear was introduced 
by a concentrated load at mid-span of the simply supported beam and the transverse mo-
ment was applied nearly uniformly over the entire beam length.  

The test specimen was 8 meters long, 80 cm high and the web was 8 cm thick. The total 
amount of shear reinforcement was , with . The longitudinal 
reinforcement in the tension chord was composed of six prestressed tendons of 18.6 mm 
diameter ( MPa) and a passive reinforcement of ten bars of diameter 6 mm. The 
measured average concrete cylinder strength was  MPa and the yield limit of the 
reinforcing steel was  MPa.  

During the testing procedure the shear load and transverse bending moment were progres-
sively increased until a certain load level. This was performed by means of loading and 
unloading cycles in order to simulate the actual loading conditions in the bridge and to 
consolidate the crack pattern. Once the longitudinal reinforcement started yielding, the 
shear load was maintained constant and only the transverse bending moment was in-
creased until eventually the yielding of the stirrups on the bending tension side was ob-
served. Spalling of the concrete at the height of the web-flange connection on the bending 
compression side along the entire beam length indicated that the failure was imminent. 
Thereupon the beam was unloaded and then reloaded in pure shear (no transverse mo-
ment) until failure occurred. The latter was caused by a concrete compression failure in the 
web near the tension flange and led to a relative displacement (shear) between the web and 
the flange of three centimetres. The observed failure load (  kN) was lower than 
the load of the previous load step (  kN with  kNm/m). The authors thus 
concluded that the prior damage caused by the combined action of in-plane shear and 
transverses bending led to the reduction of the ultimate longitudinal bearing capacity. 

Figure 2.9  Experimental beam V I/68 tested by Kupfer and Ewald [Kup73]. 
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Tests by Kaufmann and Menn 

Kaufmann and Menn [Kau76] conducted a detailed study on the behaviour of beams which 
are subjected to the combined action of in-plane shear and transverse bending. The aim of 
the research project was to analyse questions regarding the design of the shear reinforce-
ment and the upper limit of the admissible shear stresses in the concrete.  

The test series comprised six I-shaped reinforced concrete beams with a span of 6 m (re-
spectively 4 m), a height of 62 cm and a web width of 10 cm. The transverse bending was 
applied such that a constant moment developed over the entire web height and beam 
length, see figure 2.10. The experimental parameters were in particular the total amount of 
shear reinforcement, the relation between the shear reinforcement ratio on the bending 
compression and the bending tension side, the inclination of the compression strut and the 
intensity of the acting transverse bending moment, which was varied between 50% and 
85% of the pure transverse bending resistance. More details are provided in table 2.1.  

The beams were tested in two different load configurations, LS I and LS II. To this purpose, 
each beam had a very different reinforcement design in the two investigated shear spans. 
In the load configuration LS I, the beams were conceived for a ductile failure mode with 
yielding of the shear reinforcement. In the subsequent test, in load configuration LS II, a 
brittle failure with crushing of the concrete strut was expected. In order that the shear fail-
ure mechanisms can develop over the entire length, the longitudinal reinforcement was 
adjusted to follow the tensile force diagram of the tension chord. 

The load was step-wisely applied (shear then transverse bending) until the serviceability 
load level was reached. Several load cycles were performed at this load level before the 
transverse bending moment was increased to the predefined test value, meanwhile the 
shear load was kept constant. Then only the shear load was increased until failure oc-
curred. Contrary to beams S1 to S5, beam S6 (LS II) was subjected to a constant shear load 
and the transverse bending moment was increased until failure of the element. 

The overall behaviour of the beams in load configuration LS I can be described as follows. 
At 70% to 90% of the failure load, yielding of the shear reinforcement on the tension side 
was observed. After this onset of yielding, further load increments had to be carried by 
other mechanisms which led to an overall softer response of the beams. The rearrangement 
of the internal force equilibrium was especially well visible in beam S1, where the meas-
ured stirrup strains clearly showed that after the onset of yielding on the tension side, the 
stirrups on the compression side carried the entire load increase. The load could be in-
creased until the shear reinforcement reached the yield limit on both sides, see figure 2.10c. 
Eventually, a local rupture of the longitudinal reinforcement occurred in all the beams of 
load configuration LS I (except beam S4, failure of the compression flange).  
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The specimens S1 to S5 in load configuration LS II showed no significant loss in rigidity 
during the loading process. At failure, substantial cracking and concrete spalling were ob-
served. These signs, that are typical for a concrete strut failure, were especially visible in 
beams S1, S2 and S4. Simultaneously to the concrete failure in the web, yielding of the lon-
gitudinal reinforcement along the entire shear span was observed in all the beams, such 
that a longitudinal bending-shear failure mechanism developed. Regarding the shear rein-

Figure 2.10  Experimental test campaign by Kaufmann and Menn [Kau76]: (a) Longi-
tudinal load configuration LS I, LS II and application of the transverse moment; (b) 
shear reinforcement and material properties (c) average measured stirrup strains in 
load configuration LS I.  
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forcement at failure, the tension side was fully yielding but not all the stirrups on the com-
pression side. The authors thus concluded that for these beams, the shear reinforcement 
was not governing for the bearing capacity, especially for beams S1, S2 and S4 that were 
highly reinforced.  

In the serviceability state, the measured reinforcement deformations on the tension side 
were lower than what would be expected by the superposition of the transverse bending 
moment and the in-plane shear force. The authors explained this by the fact that the shear 
strut in the concrete shifts towards the uncracked zone on the compression side and there-
by counterbalances part of the applied transverse moment, which then reduces the tensile 
forces in the stirrups on the tension side. They suggested that the contribution provided by 
eccentric shear strut to the transverse bending resistance can be significant. It reduces the 
solicitation of the shear reinforcement due to bending and consequently as well the effect 
on the longitudinal bearing capacity. This behaviour was especially well visible in beam S6 
LS II (loaded until bending failure), where the measured ultimate transverse bending re-
sistance was about 30% higher than the theoretical pure transverse bending strength.  

Under shear load, cracks are first inclined by 45° and the transverse bending moment 
caused additional horizontal cracks over the entire web height on the bending tension side. 
The progressive increase of the shear load (constant transverse bending) led to the for-
mation of new cracks on the tension side with significantly lower inclination. The horizon-
tal cracks did not further open and no substantial changes were overserved on the com-
pression side. Only at the onset of yielding of the stirrups on the compression side, the 

Table 2.1 Investigated parameters and measured failure loads of Kaufmann and 
Menn’s beams [Kau76].   

Beam LS 
Parameters Failure load 

     
 

  
[kN] 

   
[kNm/m] 

S1 
I 0.75 1.0 0.5 1.0 0.5 162.8 8.3 
II 0.56 0.6 1.29 1.0 0.785 334.5 9.4 

S2 
I 0.85 1.0 0.5 1.0 0.5 164.8 8.8 
II 0.56 1.5 1.03 1.0 1.57 290.4 17.4 

S3 
I 0.85 0.6 0.82 1.0 0.5 242.3 9.4 
II 0.85 0.6 1.29 1.0 0.785 332.6 14.3 

S4 
I 0.85 1.0 0.63 0.64 0.643 214.8 14.2 
II 0.56 0.6 1.05 0.64 0.643 297.7 10.9 

S5 
I 0.85 1.0 0.74 0.50 0.75 241.3 17.7 
II 0.56 0.6 1.24 0.50 0.75 316.4 13.5 

S6 
I 0.5 1.0 0.5 1.0 0.5 159.4 5.4 
II 1.0 0.6 0.82 1.0 0.5 124.6 15.8 (**) 

(*)    nominal shear stress due to design shear load;  
       maximal nominal shear stress according to recommendation SIA162/34 [SIA76]; 
(**)    increase of the transverse bending moment till failure. 
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number and width of the shear cracks increased significantly. 

The authors concluded that the transverse bending moment has no influence on the ulti-
mate shear resistance of beams sufficient ductile behaviour, i.e. if the resultant of the shear 
stresses can shift towards the bending compression side in order to maintain the equilibri-
um of internal forces in the web cross section. The authors say that in this case, a full inter-
action between shear and transverse bending takes place and that it is sufficient to design 
the shear reinforcement for the governing of the two actions. Additionally, the cracking 
behaviour in the serviceability limit state can be improved by using asymmetric shear rein-
forcement or by admitting an inclination of 45° (or higher) of the concrete strut. 

Regarding the brittle failure modes (as for LS II), the authors claim that a significant loss of 
the shear resistance is to be expected as far as the transverse bending moment exceeds the 
cracking moment. They assumed that the reduction of the shear resistance is caused by the 
superposition of the compressive stresses resulting from the compression strut and the 
transverse bending moment in the compression zone of the web. The authors thus suggest 
that in these cases the maximum admissible shear stress in the concrete has to be reduced. 
They propose that the shear stress should not exceed 60% of the upper limit for pure shear 
given by design recommendation at the time (SIA 162/34 [SIA76]). 

The design proposals provided by Kaufmann and Menn on the basis of this experimental 
campaign may however be questionable. First, because no reference test under pure shear 
load had been conducted and second, because for most of the brittle failures no pure shear 
failure mechanism was observed, since simultaneously the longitudinal reinforcement was 
yielding over the entire shear span. 

Tests by Swann 

Swann [Swa75] tested four post-tensioned I-shaped beams of micro-concrete. The small 
scale elements (span 1.34-2.11 m, height 25 cm, web thickness 3.8 cm) were tested similarly 
to Kaufmann and Menn’s beams, with a concentrated load at mid-span and a constant 
transverse bending moment over the web height. The shear reinforcement consisted in 
3.25 mm half-stirrups (one branch on the bending tension side) that were spaced by 12.5 to 
100 mm.  

Each beam was loaded simultaneously in longitudinal bending and transverse bending so 
that, at any load stage, all three internal forces were at the same percentage of their ex-
pected ultimate value. All four beams failed due to longitudinal bending and crushing of 
the compression flange could be observed in all cases. The failure load thus corresponded 
to the expected pure longitudinal bearing capacity. However, no meaningful conclusion 
can be drawn because the tests are very poorly documented (e.g. no reinforcement strains) 
and are furthermore not very representative of actual reinforced concrete box-girder ele-
ments. 
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Tests by Gaspar and Stucchi 

Gaspar and Stucchi [Gas03, Gas13] conducted tests on two I-shaped reinforced concrete 
beams in order to validate their proposition for a rigid-plastic interaction model (presented 
in section 2.1.2). They tested two simplify supported beams subjected to a concentrated 
load in the mid-span and self-balancing load acting on one side of the flanges in order to 
introduce a constant moment over the height of the web. The geometry of the beams and a 
schematic presentation of the load introduction system are presented in figure 2.11. The 
two beams had very different amounts of shear reinforcement in order to investigate a brit-
tle failure mode by crushing of the concrete shear struts in beam Nr°1 ( ) and a 
ductile failure mode with high levels of plastic deformation in the reinforcement in beam 
Nr°2 ( ). For both tests, first the shear load is introduced to a predefined level 
and then the transverse bending moment is applied and increased until failure of the ele-
ment.  

In beam Nr°1, the failure occurred for a transverse moment of  kNm/m (with 
 kN). The authors observed that the concrete was close to failure and that the shear 

reinforcement on the bending compression side had entered into compression (probably 
the tension side was yielding, not clear in the documentation). The authors suggested that 
the transverse bending moment was mainly resisted by the shear reinforcement since the 
shear strut in the concrete could not shift towards the compression side because the whole 
web width was required to resist the longitudinal shear force.  

Figure 2.11  Schematic representation of the experimental beams by Gaspar and 
Stucchi [Gas03]. 
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In beam Nr°2 the transverse moment was increased until excessive stirrup deformation and 
cracking on the tension side was observed, for  kNm/m (with  kN). 
Thereupon the authors increased the shear load until concrete crushing occurred which 
caused the element to fail (no significant increase of the load ~10 kN, exact value not doc-
umented). Strain measurements on the stirrups indicated that the initial transverse moment 
was mainly carried by the compression strut that shifts towards the bending compression 
side (only little deformation of the stirrups on the tension side). For a higher transverse 
moment the reinforcement strain on the tension side then started increasing rapidly 
(  at ultimate load). At the ultimate load, only the stirrups on the tension side were 
yielding. 

It should be noted that the way the transverse bending moment was applied induced a 
non-negligible vertical compression force in the web, which has an influence on the overall 
behaviour of the elements and most likely as well as on the interpretation of the observa-
tions. A more profound analysis of these tests is though difficult because of a very poor 
documentation of the test results. 

Tests by Kirschner 

Kirschner [Kir86] performed an experimental campaign on six reinforced concrete panel 
elements in order to verify the performance of the new Shell Element Tester built at the Uni-
versity of Toronto. Kirschner additionally used these tests to validate a numerical model of 
the modified compression field theory that he had extended for tri-axial stress states in the 
concrete.  

The test series that comprised six panel elements of 1.524 x 1.524 x 0.285 m subjected to 
combinations of in-plane shear  and transverse bending  are the first experiments 
conducted on shell elements involving this kind of loading, figure 2.12. The investigated 
parameters are the amount of reinforcement in the -direction and the ratio between in-
plane shear and transverse bending. Regarding the in-plane shear transverse bending in-
teraction, only the specimens SE1, SE7, SE4 and SE3 are considered in the following, be-
cause they were tested for increasing moment-shear ratios ( , [m]) 
and had the same amount of reinforcement ( , ). Figure 
2.12a-b provides a summary of the main panel characteristics. 

During testing procedure, the load was applied such that the predefined moment-shear 
ratio was respected at every load level and that all other stress resultants ( , , , ) 
were zero. Since the transverse moment  was inclined by 45° to the horizontal axis of the 
test setup, it has been applied by a combination of bending moments in the horizontal and 
vertical direction and a torsion moment. The latter was produced by eight of the Shell Ele-
ment Tester’s out-of-plane cylinders. The in-plane shear force  was introduced by hori-
zontal membrane tension and vertical membrane compression. For the investigated cases, 
Kirschner found that the coexistence of a transverse bending moment has a significant in-
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fluence on the shear response of the panel. In panel SE4, that was subjected to the com-
bined actions, a reorientation of the crack direction on the tension face was observed after 
the -reinforcement started yielding. For a smaller moment, as in panel SE7, this was less 
pronounced. The representation of the measured failure loads in figure 2.12c suggests as 
well that there is a strong interaction between these two types of loads. The author did 
though no further investigations regarding this phenomenon.   

Tests by Polak and Vecchio 

Polak and Vecchio [Pol94] conducted four tests on reinforced concrete panel elements by 
means of the Shell Element Tester at the University of Toronto. The goal was to validate ten-
sion stiffening models for membrane elements and to provide additional experimental data 
regarding the bending behaviour of shell elements that are subjected to a combination of 
membrane and bending loads. The test campaign mainly focused on the influence on the 
reinforcement orientation and the amount of membrane action on the out-of-plane bending 
behaviour and resistance. The authors observed a significant influence of the membrane 
action on the bending behaviour, especially if the principal stress directions were not in-
line with the reinforcing directions. However, because of the chosen experimental parame-
ters (load configuration, bending-shear ratios), the experiments provide only little infor-
mation regarding the actual in-plane shear transverse bending interaction that develops in 
beam-like elements, where shear is predominant. These experiments are thus not further 
investigated in this section, but they are later used to validate the proposed finite element 
method (Chapter 4), where more information is presented.  

Figure 2.12  Panel tests by Kirschner [Kir86]: (a) specimens with load configuration; 
(b) specimen and material characteristics and (c) measured yielding and failure loads 
represented in a transverse bending  - in-plane shear  diagram.    
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2.4 Elastic-plastic stress field method 

The stress field method is widely used for the design, assessment and detailing of structur-
al concrete in practice. Stress fields result from a direct application of the theory of plastici-
ty to reinforced concrete elements and are based on its static (lower bound) theorem. The 
first application proposed by Drucker [Dru61] as well as following developments of the 
stress field method (e.g. Marti [Mar80], Muttoni [Mut90]) rely on the assumption of rigid-
plastic material laws and neglect the concrete tensile strength. This provides a great free-
dom for the choice of the load-bearing actions that develop in the cracked concrete, but 
may lead to inappropriate behaviour for some solutions. A general method for developing 
stress fields in a systematic way and thereby considering also the behaviour in the service-
ability state has been proposed by Muttoni [Mut97] (choice of load-bearing action + control 
of critical crack). Although this method is completely general, selecting the most suitable 
load-carrying actions still remains a trial and error process and requires a certain level of 
experience. Other difficulties that arise from the rigid-plastic assumption are the evaluation 
of the effective concrete compressive strength (affected by cracking) as well as the appraisal 
of the actual ductility of the reinforced concrete member. 

The automatic method for developing stress fields proposed by Fernández Ruiz and Mut-
toni [Fer07] overcomes the aforementioned limitations of the rigid-plastic stress field meth-
od. Concrete and steel are modelled by elastic-plastic constitutive relationships (bi-linear), 
which allows considering the actual state of deformation in the process of determining a 
statically consistent stress field. This approach called elastic-plastic stress field (EPSF) 
method is implemented into a finite element (FE) procedure in order to establish stress 
fields that respect the equilibrium condition as well as the compatibility of deformations 
inside a structural element. Contrary to RPSF, where the stress field inclination is chosen to 
respect equilibrium with external loads and to avoid concrete crushing, the EPSF derive the 
principal stress directions directly from the local deformations and additionally account for 
the effect of cracking on the effective concrete compressive strength by knowing the acting 
transvers strains.  

The EPSF-FE thus consistently accounts for the actual kinematic behaviour of the entire 
structural element in which the state-of-strain may be variable over the element height and 
length and thereby seizes the influence of kinematically dependent actions or phenomena 
(e.g. effect of prestressing, variable stiffness or variable cross sections, internal forces redis-
tribution in the non-linear regime and/or in hyperstatic structures etc.). Due to the respect-
ed kinematic compatibility condition, the EPSF-FE method leads to a licit failure mecha-
nism when the load approaches the ultimate bearing capacity of the element. It can thus be 
considered that the EPSF method yields exact solutions according to the theory of plastici-
ty, for which a statically consistent stress field that respects the plastic condition of materi-
als (lower bound) simultaneously corresponds to a kinematically consistent failure mecha-
nism (upper bound), [Mut15, Nie11].   
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The EPSF method is a practical and reliable tool to investigate the behaviour of reinforced 
concrete elements [Fer07, Fer08, Kos09, Mut15]. This is particularly true if the basic as-
sumptions of the stress field method are respected of which the most important is the pres-
ence of a minimal reinforcement for crack control that allows the elements to reach the 
plastic behaviour [Mut97, Fer07]. The method has been thoroughly tested by comparing 
EPSF predictions to experimental test results of various types of structural elements. On the 
overall, EPSF provide excellent predictions of the failure loads as well as the failure mecha-
nisms [Mut16]. The EPSF allows as well to investigate prestressed elements with low 
amount of shear reinforcement [Rup14] and critical details of existing structures such as 
dapped-end beams, Gerber-joints, crossed walls, insufficient anchorage and concrete cover 
spalling [Arg14, Mut16]. Campana [Cam13] showed that ESPF method can even provide 
good results in cases without minimum transverse reinforcement, if no localisation of the 
deformations occurs.   

2.4.1 Constitutive laws 

In contrast to other finite element methods for the non-linear analysis of reinforced con-
crete elements, the EPSF method [Fer07] is characterized by the fact that concrete and rein-
forcing steel behaviour are modelled by only two material parameters that have a clear 
physical meaning and are relatively well defined: the uniaxial compressive strength and 
the modulus of elasticity.  

The reinforcement is modelled using an elastic-plastic material law for tension and com-
pression, figure 2.13a. The material law is defined by the yield strength  and the elastic 
modulus  of steel. If necessary, strain hardening can be considered by introducing an 
appropriate hardening modulus . 

The constitutive relationship for concrete is admitted to be elastic-perfectly plastic in com-
pression. The tensile strength is completely neglected, see figure 2.13b. The effective con-
crete compressive strength  is determined from the equivalent plastic strength  
that is corrected by the factor  to account for transverse strain: 

 (2.22) 

The factor  (see following subsection and eq. 2.25) depends on the acting state-of-strain 
such that the effective compressive strength has to be evaluated individually for each con-
crete finite element. The equivalent plastic strength of concrete is defined according to Mut-
toni [Mut90]: 

 (2.23) 

where  is the cylinder compressive strength of concrete and  a correction factor to ac-
count for brittle behaviour of higher strength concrete (see following subsection and 
eq. 2.24). 
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In accordance with works by Vecchio et al. [Vec94] and Belarbi and Hsu [Bel95], the EPSF 
method admits a constant secant modulus  for concrete in compression. It should be not-
ed that a consequence of this assumption is that the deformation for which the concrete 
reaches the effective compressive strength  is not always the same, since the latter is 
influenced by the acting transverse strain.   

Regarding the behaviour of concrete in a biaxial stress state, the EPSF method [Fer07] as-
sums that the principal stress directions are parallel to the principal strain directions (Wag-
ner’s tension field assumption [Wag29])  and that the principal stresses are directly ob-
tained from the principal strains by means of the previously presented constitutive law. 
This behaviour corresponds to a Mohr-Coulomb yield surface with a tension cut-off as 
shown in figure 2.13c. The influence of the transverse strains on the concrete compressive 
strength ( ) can be interpreted as shrinkage of the yield surface with respected to a 
positive transverse strain increase. 

Influence of brittle behaviour of higher strength concrete 

The assumption of a plastic resistance for steel agrees relatively well with the actual mate-
rial behaviour, this is however not the case for concrete that shows a non-negligible soften-
ing behaviour after reaching the peak strength. Furthermore, it has been shown (e.g. 
[Pop73]) that with increasing compressive strength, concrete develops a pronounced brittle 
behaviour that leads to an important and rapid loss of the resistance once the peak strength 
is reached. In order to still be able to model the behaviour of concrete by means of a plastic 
(resp. elastic-plastic) constitutive law (fig. 2.13b), the concrete compressive strength  is 
reduced by the factor  to account for the brittle behaviour of higher strength concrete. 

Figure 2.13  Elastic-plastic stress fields [Fer07]: constitutive laws for (a) steel; (b) con-
crete and (c) Mohr-Coulomb yield surface for concrete in plane stress state with ne-
glected tensile strength; (d) finite element for reinforcing bars and (e) constant strain 
triangle for modelling concrete. 
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The EPSF method [Fer07, Mut16] generally adopts the formulation of  according to the 
development by Muttoni [Mut90] (as well adopted in design recommendations [SIA13, 
FIB13]): 

  (2.24) 

where the uniaxial cylinder compressive strength  is introduced in [MPa].  It should be 
noted that in the FE method, the reduction factor  has to be introduced manually by set-
ting the concrete compressive strength in the material properties equal to the correspond-
ing plastic strength . 

Influence of transverse strain 

Another factor that influences the effective concrete compressive strength is the tensile 
strain ( ) that acts perpendicular to the principal compressive stress direction. Such strains 
are naturally present during the cylinder test and eventually cause failure of the concrete. 
In structural elements transverse tensile strains can have several origins and can be higher, 
such that the measured cylinder compressive strength can generally not be reached. In 
structural concrete, significant tensile strains are typically introduced by the elongation of 
reinforcing bars that are inclined compared to principal compressive stress directions in the 
concrete. The imposed tensile deformations induce cracking and lead to a similar concrete 
strain softening behaviour as observed in the post-peak behaviour under uniaxial compres-
sion. The concrete compressive strength has thus to be reduced in order to account for the 
influence of transverse strains. Regarding this subject, several studies have been conducted 
and led to various models but are generally providing similar results [Vec86, Bel95, Kau98]. 
A commonly used formulation is the one proposed by Vecchio and Collins [Vec86] that has 
been developed in the context of the modified compression field theory. The empirical 
formulation of concrete strength reduction factor  is a function of the first principal strain 

: 

  (2.25) 

In order to estimate the effect of cracking on the compressive strength of concrete, a repre-
sentative tensile strain has to be determined, which requires a strain-based analysis tool. 
The EPSF-FE is thus able to evaluate the effective concrete compressive strength based on 
the realistic and kinematically compatible deformation of the entire structural element, 
whereas in RPSF approach, the reduction factor that accounts for cracking can only be es-
timated based on experimental observations and experience, as proposed in [Mut97].   
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2.4.2 Finite element implementation 

The following section present a brief description of the finite element concept of the EPSF 
method proposed in [Fer07]. Detailed information regarding the FE formulations is pre-
sented in the Chapter 4 where the proposed ML-EPSF is developed. 

Starting from the displacement field over a continuum, the EPSF-FE method determines 
the deformation in the concrete and of the reinforcement. To this purpose, the two materi-
als are modelled by distinct finite elements: constant strain triangles (fig. 2.13e) and bar 
elements (fig. 2.13d). It is assumed that reinforcement and the surrounding concrete are 
perfectly bonded (no relative displacement), such that the two elements have identical de-
formations in the direction of the bar element.  

The behaviour of concrete is modelled by constant strain triangles. The displacement of the 
three nodes allows determining the state-of-strain of the concrete ( , , ). Using Mohr’s 
circle of strains, the principal strains ( , ) and the principal strain direction are obtained. 
Due to the assumption that principal stresses are parallel to the principal strains, concrete 
stresses can be directly computed by means of the elastic-plastic constitutive law. The con-
stant stresses are then integrated over the element surface in order to obtain the corre-
sponding nodal forces.  

The behaviour of the reinforcing steel is modelled by bar elements. The strains are deter-
mined in the direction of the element axis, the corresponding stresses are obtained from the 
constitutive relationship. The element nodal forces are eventually computed from the stress 
by multiplying with the rebar cross-section surface of the analysed element. An additional 
assumption of the EPSF method is that the rebar elements only carry axial forces, i.e. dowel 
action is neglected. If required, the bar elements allow as well to implement prestressing by 
imposing an initial self-induced strain in the element.  

The nodal forces of each concrete and steel finite element are assembled according to classi-
cal finite element technique. If the nodal forces of the FE model are in equilibrium with the 
applied forces, a static and kinematic valid solution has been found. If residual forces exist 
in the model, the FE program implemented by [Fer07] applies an iterative solution proce-
dure based on a tangent stiffness matrix and a full Newton-Raphson algorithm to solve the 
non-linear problem. The basic principal is to determine an improved displacement field by 
means of the residual forces and the tangent stiffness matrix. This displacement field is 
again applied to the FE model and the nodal forces are re-evaluated. The iterative proce-
dure is repeated until the equilibrium condition is satisfied.  
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Elastic-plastic stress field models Chapter 3

for membrane and bending in-
teractions 

The present chapter introduces a novel multi-layered elastic-plastic stress field 
(ML-EPSF) approach to investigate plan reinforced concrete element subjected to mem-
brane and transverse bending actions. The ML-EPSF approach is applied to the case of a 
web segment in order to study the in-plane shear and transverse bending interaction 
mechanism. For the application in practice, an enhanced simplified verification method for 
beams elements with transverse bending is proposed and validated by a comparison to 
experimental test results from the literature. 

3.1 Multi-layered elastic-plastic stress field approach 

This section presents a method to establish stress fields that are in equilibrium with the 
external loads and that simultaneously accounts for the actual kinematics of a reinforced 
concrete element subjected to a combination of in-plane forces and out-of-plane bending 
moments. 

To this purpose, the EPSF method by Fernández Ruiz and Muttoni [Fer07], that has proven 
to be a powerful tool for the assessment and design of reinforced concrete members in a 
plane stress-state, is extended to a multi-layered model by assuming appropriate kinematic 
relationships for out-of-plane deformations.  

The advantage of using the EPSF method is that it provides detailed information about the 
internal state-of-stress in the concrete and the reinforcement, which makes it a valuable tool 
to investigate the in-plane shear transverse bending interaction mechanism. Additionally, 
at failure, the EPSF method yields exact solutions according to the theory of plasticity by 
bringing together the upper and lower bound theorem. This leads to a more accurate and 
thus less conservative estimation of the actual combined in-plane shear transverse bending 
resistance of reinforced concrete segments.  

The present section introduces the general formulation of the proposed multi-layered elas-
tic-plastic stress field method. In section 3.2 it is then applied to the practical case of in-
plane shear and transverse bending in beam webs.  
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3.1.1 Concept and kinematics of the layered model 

The ML-EPSF, as the EPSF, is a displacement-based procedure, where the stresses are de-
rived from the strains by means of material laws and then integrated to obtain the internal 
forces. 

The deformation of the layered model is entirely defined by a set of six generalized strains: 
the three in-plane strains at the mid-plane of the element ( ) and the three out-
of-plane curvatures ( ). The state-of-strain in a plane located at a distance  from 
the mid-plane is obtained by assuming the Bernoulli-Navier hypothesis of plane sections: 

  (3.1) 

The reinforced concrete element is divided over its width into a finite number of concrete 
layers ( ) which each behave according to the EPSF method, figure 3.1a. Additional layers 
are introduced for steel at the location of the reinforcement. The deformation of each layer  
is defined by a separate strain field ( ), figures 3.1d-e. In the concrete layers the 
principal strains ( ) and their orientation ( ) are determined using Mohr’s circle of 
strains. The concrete principal stresses are then computed from the principal strains assum-
ing that the principal strain directions coincide with the principal stress directions and it is 
admitted that concrete and steel behave according to elastic-plastic material laws [Fer07]. 
Additionally, the plastic strength of concrete is reduced individually in each layer using 
the reduction factor  (of that layer) to account for the effect of cracking. The 
resulting stresses in the concrete and reinforcement layers (figures 3.1f-g) are then integrat-
ed over the element width to obtain the stress resultants, figure 3.1c. 

3.1.2 Concrete and reinforcement layers 

The ML-EPSF model distinguishes between two layer types: concrete layers and reinforce-
ment layers. Their definition and behaviour, i.e. state-of-strain, constitutive models and 
state-of-stress, are presented in the present section. As in the ESPF method, it is assumed 
that concrete and steel behave according to elastic-perfectly plastic constitutive laws as 
presented in section 2.4.1. 

Concrete layers 

The element width is divided into  concrete layers of equal width ( ). The location 
of the -th layer relative to the element mid-plane is indicated by  (centre of the layer). 
The state-of-strain in each concrete layer ( ) is then obtained from the kinematic 
relationships (eq. 3.1) when . The principal strains  and  (with ) of the 
layer are computed using Mohr’s circle of strains. The angle  indicates the inclination of 
the principal compressive strain  relative to the -axis, see figure 3.2a. 
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(3.2) 

(3.3) 

It is assumed that the directions of principal stresses are parallel to the directions of princi-
pal strains [Fer07]. Thus the concrete principal stresses  and  (with ) are 
computed directly from the principal strains using the elastic-plastic constitutive law for 
concrete. The compressive stress in each layer is limited to the effective compressive 
strength , where the concrete strength reduction factor  is evaluated 
separately for each layer based on the acting transverse strain  (eq. 2.25).   

  (3.4) 

Figure 3.1  Concept of the ML-EPSF model: (a) concrete and reinforcement layers; 
(b) generalized in-plane and out-of-plane deformations; (c) generalized internal forc-
es; (d) deformation of the cross section; (e) state-of-strain of a layer; (f) state-of-stress 
of a layer and (g) example of a stress profile across the element width.       
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The concrete strength reduction factor is only applied to the compressive strength of the 
second principal direction (eq. 3.4-2) and doesn’t affect the concrete’s Young modulus . 
In fact, two distinct factors could be computed, one for each principal direction: 

 and  that define respectively  and . However,  
is never governing for . Indeed, if  the stress  (tensile strength neglected) 
independently of the value of  and if  the second strain  is negative too 
( ) which leads to  and . Consequently, only the reduction for 
the second principal direction needs to be computed, .  

The concrete principal stresses are expressed in the global  coordinate system, where 
 and  are the concrete compressive stresses and  are the concrete tangential 

stresses in each layer (figure 3.1f). 

  (3.5) 

Reinforcement layers 

The reinforcement layers (figure 3.2b) are placed at the actual position  of the reinforce-
ment in the width of the element (independently of position of the concrete layers). The 
state-of-strain ( ) in the -th reinforcement layer is given by equation 3.1 when 

. It is assumed that the reinforcement bars carry only axial forces (dowel action is 
neglected [Fer07]). The rebar strains  are thus expressed in the direction of the rebar axis 
that is indicated by  (measured from the -axis, fig. 3.2b). 

 (3.6) 

The rebar stresses  are computed using the elastic-plastic constitutive law for steel pre-
sented earlier: 

Figure 3.2 State-of-strain in the layers: (a) principle strains in a concrete layer and 
(b) axial strains in a reinforcement layer.    

(a)

z

y

x

ε2,i

ε1,i

θi

concrete 
layer i

zi

(b)

z

y

x
zi

βi

As,i

as,i=As,i/si

si

reinforcement
layer i

εs,i



Multi-layered elastic-plastic stress field approach 

45 

 (3.7) 

The state-of-stress of each reinforcement layer in  coordinates according to figure 3.1f 
is finally given by: 

  (3.8) 

3.1.3 Generalized internal forces 

The generalized internal forces ( , , , , , ) in figure 3.1c that result from the 
imposed set of generalized deformations ( , , , , , ) are obtained by inte-
grating the layer stresses (fig. 3.1g) over the element thickness. Since the stresses are con-
stant over the width of each layer, the integration is performed by summation over the  
concrete layers and the  steel layers. The stress resultants are expressed per unit length. 

The in-plane forces in  and  direction,  and , and the in-plane shear force : 

  (3.9) 

The out-of-plane moments,  and , and the torsional moment, , are given by: 

  (3.10) 
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3.2 Assessment of the in-plane shear transverse bending interac-

tion in beam webs 

The objective of the present section is to investigate the phenomenological behaviour of a 
beam web segment subjected to the combined action of in-plane shear and out-of-plane 
bending and to propose an enhanced model for the evaluation of the web resistance.  

To this purpose a multi-layered panel element, based on the previous ML-EPSF approach, 
is developed. It allows a detailed investigation of the stress field and its parameters (incli-
nation, concrete strength reduction factor) under combined action of in-plane and out-of-
plane moment. Additionally, the panel element, that actually represents a small segment of 
the beam web, is used to establish enhanced in-plane shear transverse bending interaction 
diagrams for the assessment of the web resistance. 

The observations on the ML-EPSF panel element are compared to the previously investi-
gated RP interaction models. In particular the assumption on the stress distribution, the 
concrete strength reduction factor and the inclination of the compression field are exam-
ined. A comparison of the resulting interaction diagrams shows that the ML-EPSF panel 
element leads to a potentially more accurate and thus less conservative estimation of the 
combined resistance than rigid-plastic interaction models. 

3.2.1 ML-EPSF panel element 

The multi-layered elastic-plastic stress field panel presented in this section is an application 
of the previously presented general ML-EPSF approach to the practical case shown in fig-
ure 3.3. The panel element represents a unitary segment of a beam web subjected mainly to 
in-plane shear  and out-of-plane bending . Transverse shear forces are neglected. 

The panel element, of unit size ( ) and width , is divided into  concrete 
layers and has two reinforcement layers ( ) that are placed at the location of the actual 
shear reinforcement (on each face of the web), figure 3.3c. It is assumed that the orientation 
of the shear reinforcement is vertical ( ). The panel deformation (fig. 3.3b) is 
defined by the following equations: 

 (3.11) 

The shear deformation  and the transverse curvature  will allow computing the in-
plane shear force  and the transverse bending moment . The longitudinal deformation 
of the web  is assumed to be constant over the width ( ). The vertical deformation at 
the mid-plane of the web  defines, together with , the strain profile across the web 
width.  

In the present case, no external vertical forces (as for example vertical prestressing) are act-
ing on the web cross section, thus the vertical component of the concrete compression field 
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has to be in equilibrium with the reinforcement forces. This leads to the following equilib-
rium condition: 

  (3.12) 

The shear force  and the transverse bending moment  that result from  and  are 
computed according to the iterative procedure illustrated in figure 3.4 (light grey shaded 
area). For given panel characteristics (geometry, material, longitudinal deformation) and 
the imposed deformations ( , ), the state-of-stress fulfilling the equilibrium of forces 
has to be determined. To do this, the initially unknown vertical deformation  is varied 
until the condition  (eq. 3.12) is fulfilled.  

Figure 3.3  Multi-layered panel element and ( ) interaction diagram for beam 
webs: (a) investigated forces; (b) assumed panel kinematics; (c) layered web cross 
section with vertical deformation; (d) example of constructing the interaction dia-
gram for , , , ,  and 

: and (e) transverse bending moment and in-plane shear force as a func-
tion of the imposed transverse curvature along the  ( ) interaction diagram.   
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During the iterative procedure, the state-of-strain in each layer given by equation 3.11 al-
lows computing the concrete and reinforcement stresses according to the ML-EPSF ap-
proach presented earlier. Once  satisfying the equilibrium condition of vertical forces is 
found, the resulting stress field is in equilibrium and the internal forces  and  are given 
by: 

  (3.13) 

Longitudinal deformation   

The panel deformation  that is representing the longitudinal deformation of the web is 
assumed to be a property of the web. It allows considering the actual boundary conditions 
of the web as well as the effect of a possible longitudinal prestressing. Typical values for 
the average longitudinal strain are for example:  for normal beams and 

 for prestressed beams.  

Number of layers   

The web width is divided into a finite number of concrete layers . This number that has 
to be chosen by the user in advance of the computations has a certain influence on the pre-
cision of the predicted results. A smaller number of layers will speed up the computational 
time but will lead to less precise results; the obtained interaction curve will not be smooth 
and the predicted resistance slightly more conservative. In order to consider a representa-
tive stress distribution in the concrete cross section and to obtain meaningful predictions 
for the combined resistance, a minimum number of twenty layers should be used. In the 
following examples, the web width is divided into hundred layers in order to avoid that 
the interpretation of the results could be affected by numerical issues.  

Establishing the ( ) interaction diagram  

The objective of the ( ) interaction curve for the assessment of beam webs is to provide 
an estimation of the ultimate load carrying capacity under the combined action of in-plane 
shear and transverse bending. In the ML-EPSF approach, this curve is given by the enve-
lope of all possible combinations of the internal forces  and  that respect the static and 
kinematic compatibility conditions, see figure 3.3d.  

The interaction curve is obtained in an iterative procedure that is detailed in the flowchart 
in figure 3.4. The procedure consists in three main parts: 

Part 1:  Compute  and  for different curvatures  while the shear deformation 
 is maintained constant (fig. 3.3d and fig. 3.3e thin lines); 
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Part 2:  Increase the shear deformation and repeat Part 1; 
Part 3: Determine the envelope curve of the previous results (fig. 3.3d bold line). 

In Part 1, the ML-EPSF panel element is solved for different transverse curvatures (
) and a constant shear deformation ( ). After each computation, the curvature 

is increased and the shear force and transverse moment corresponding to the new panel 

Figure 3.4  Flowchart for the development of the ( ) interaction diagram ac-
cording to the ML-EPSF panel element.   
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deformation are computed. This operation is repeated until the increase of the transverse 
moment between two iterations is negligible or the deformation in a reinforcement or con-
crete layer reaches the ultimate deformation of the material (  or 

).  

Part 2 consists in a loop over the shear deformation with . When the maximum 
curvature is reached the shear deformation is increased and Part 1 is repeated. The itera-
tions are stopped when , where  is defined as the shear deformation that leads to 
the highest initial shear force  (i.e. when ). For higher shear deformations no signif-
icant improvement of the final ( ) interaction curve (envelope) was observed. 

From figure 3.3e it can be seen that the shear force increases with increasing shear defor-
mation and decreases with increasing curvature. The transverse moment however shows 
the opposite behaviour. Thus, in order to determine the ultimate resistance of the web both 
diagrams are combined in the shear transverse bending diagram in figure 3.3d. The enve-
lope of all the curves for constant shear deformation is the ( ) interaction curve defin-
ing the ultimate resistance of the investigated web section (bold line in fig. 3.3d). 

Figure 3.3e shows that the envelope curve (in bold) intercepts multiple curves, for small 
curvatures  is governing, but with increasing curvature the envelope is obtained for 
smaller shear deformations. In general, it has been found that the curve for  is a 
good approximation of the envelope curve. However, it is not covering the entire range of 
interaction diagram (fig. 3.3d), since it is limited by the ultimate deformation of the materi-
al. For higher transverse bending moments (approximately ) the envelope 
curve has to be used. 

3.2.2 Investigation of the interaction 

The following section investigates the in-plane shear transverse bending interaction as pre-
dicted by the ML-EPSF panel element. The overall behaviour is analysed based on the 
( ) interaction diagrams of various web cross sections, the multi-layered stress field 
and its parameters are discussed. 

Overall ( ) interaction relationship 

The ( ) interaction curves for various shear reinforcement ratios ( ) and different 
longitudinal deformations ( ) are shown in figure 3.5. In general, it can be observed that 
the transverse bending moment leads to a significant reduction of the initial in-plane shear 
strength. However, the results show as well that the interaction is much weaker in the 
range of small transverse moments where the shear strength is only slightly reduced. For 
example, a transverse bending moment  of 30% of  causes a reduction of the initial 
shear strength by 10% (at most) which is significantly less than what has been predicted 
with the RP interaction models for comparable cross sections (see detailed comparison be-
tween the RPSF and ML-ESPF interaction models in section 3.2.3). 
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For high shear reinforcement ratios, the ( ) interaction curves presented in figure 3.5a 
show a horizontal plateau in the range of small transverse bending moments. In this re-
gion, the shear resistance is limited by the concrete strength ( ); the shear rein-
forcement is not yet yielding (see fig. 3.6c for ), which allows the cross section to  
carry a transverse bending moment by changes in the stirrup forces with no or only little 
loss of shear resistance. This phenomenon is more pronounced for reduced longitudinal 
strain ( ). 

When the in-plane shear force goes to zero, the transverse bending resistance computed 
with the ML-EPSF panel element is equal to the bending strength  calculated using a 
stress bloc with strength  (Appendix A.2.2). 

The effect of longitudinal strain  

The interaction diagrams in figure 3.5 show, that the longitudinal strain  has a non-
negligible effect on the overall resistance of the element. In elements with no or only lim-
ited longitudinal deformation (for example prestressed beams ) the predicted initial 
shear strength (when ) is significantly higher than for normal beams ( ). 
This is mainly due to the fact that a restrained deformation  can lead to a significant in-
crease of the concrete strength reduction factor  (up to 1.0), whereas in the RP approach 
this factor is assumed constant (SIA262 [SIA13]: , or  in case of a refined 
analysis). Besides its effect on the initial shear strength,  also positively influences the 
overall shape of the interaction curves making thereby the in-plane shear strength less sen-
sitive to the transverse bending moment, compare the curves in figure 3.5b. 

Figure 3.5  In-plane shear transverse bending interaction diagrams according to the 
ML-EPSF panel element ( ,  , ) for (a) 
different reinforcement ratios and (b) normalized diagrams for  and 
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Steel ( ) and concrete ( ) contribution to the transverse bending resistance 

The transverse bending moment is resisted by the combination of two mechanisms: the 
eccentric compression field in the concrete and the asymmetrical forces in the shear rein-
forcement. The share of the moment that is resisted by each of them depends on the me-
chanical properties of the web cross section (especially the  and ) and the pro-
portion between shear load and transverse bending moment. 

In case of predominant shear load with small transverse bending moments, the stirrups on 
both sides are generally yielding (fig. 3.6c left). The transverse moment is then resisted en-
tirely by the stress field in the concrete that shifts towards the bending compression side of 
the web (see figure 3.6a left:  and  in figure 3.6b left). For higher levels 
of transverse bending, the stirrup stresses on the compression side ( ) decrease 
(fig. 3.6c left) and thereby contribute to equilibrate the transverse bending moment (see 

 in figure 3.6a left).  

Figure 3.6  Contribution of the concrete and of the shear reinforcement to the trans-
verse bending moment resistance: (a) shares of the moment equilibrated by compres-
sion field in the concrete  and the stirrup forces ; (b) eccentricity  of the com-
pression field resultant  and (c) stresses in the stirrups on both sides of the web.   
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The web behaviour is slightly different in case of high shear reinforcement ratios where the 
reinforcement is initially not yielding because the concrete strength of the web is governing 
(fig. 3.6c right). Thus small transverse moments are first mainly resisted by changes in the 
stirrup forces ( ) and an only small contribution of the compression field in 
the concrete (  in fig. 3.6b right increases much slower). Once the yield limit is reached on 
the tension side the behaviour is similar to the previous case. This initial reserve capacity of 
the shear reinforcement leads to a plateau in the ( ) interaction diagrams and thereby 
significantly increases the combined resistance of the web. A similar behaviour is observed 
for unsymmetrical shear reinforcement layouts ( ). 

The state-of-stress in the concrete under the influence of  

The ( ) interaction diagrams are compact representations of the highly non-linear be-
haviour a web segment subjected to a combination of in-plane and out-of-plane loads. The 
analysis of the multi-layered elastic-plastic stress field that governs them helps to interpret 
correctly such diagrams. Figure 3.7 shows the state-of-stresses in the web cross section of 
the previously investigated interaction curve for  and  (fig. 3.5a). Since 
the stress field in the concrete varies significantly along the interaction curve, it is repre-
sented for different levels of transverse bending ( ), which 
allows illustrating several particularities of the ML-EPSF and the interaction phenomenon 
in general.   

For small transverse bending moments (for example to ) the behaviour of the 
element is still close to a pure shear behaviour (fig. 3.7); the shear stresses  are relatively 
uniformly distributed over the entire web width and the stress field inclinations  are al-
most constant. 

The ML-EPSF panel elements show that for higher transverse bending moments, the stress 
distribution on the cross section is not uniform anymore; the concrete compressive stresses 
(  and ) and the shear stresses ( ) increase towards the bending compression side. 
At the same time, the width for the compression field diminishes. Indeed, some of the lay-
ers on the bending tension side are subjected to a pure tensile state-of-strain ( ) 
for which no concrete stresses can develop (concrete tensile strength being neglected in the 
EPSF method). Additionally, the multi-layered panel element confirmations that the incli-
nation of the compression field  in the outer layers increases significantly for higher trans-
verse moments, reaching up to 90° (vertical) in some layers. 

Finally, for very high levels of transverse bending (see fig. 3.7 for to ), the 
results of the ML-EPSF panel show that the web stress profile resembles more and more a 
typical plastic bending stress distribution. The outer concrete layers on the compression 
side, together with the stirrups on the tension side, behave as in pure flexion: the compres-
sion field is concentrated in a narrow segment and it’s inclination approaches 90° (vertical), 
the compressive stresses  reach the plastic strength of concrete  ( ) and the rein-
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forcement on the bending tension side is yielding (  in fig. 3.6c left). At the same 
time, only a small shear force  is still resisted by the web, of which most is carried by in-
ner concrete layers, see  for  in figure 3.7. The outermost layers mostly 
only contribute to resist the transverse bending moment; their compression field inclination 
exceeds 45° such that they can only carry a very small amount of the shear force but signifi-
cant bending compression forces. When the transverse moment eventually reaches the 
plastic bending strength  the entire compression field is vertical and no shear stresses 
are transferred by the concrete layers. 

Concrete strength reduction factor   

A particular attention should be paid to the concrete strength reduction factor . It plays a 
significant role in the evaluation of the shear strength in general [Fer07] and thus as well in 
the assessment of the combined in-plane shear transverse bending resistance of the web 
cross sections. 

In the ML-EPSF approach the factor  is computed as a function of the state-of-strain in 
each layer, the latter is derived directly from the panel kinematic compatibility conditions. 
Figure 3.7 shows that the reduction factor decreases rapidly towards the bending tension 
side (where the principal tensile strains  increase due to ) and increases towards the 

 
Figure 3.7  State-of-stress in the concrete layers of the web cross section for different 
levels of transverse bending moment of the ( ) interaction curve for  
and  , with MPa, MPa, , . 
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bending compression side (where the  decrease due to ) when the transverse moment 
becomes higher. Close to the pure bending strength (meaning  high and thus  very 
small) the reduction factor  in the outermost layers on the compression side.  

The effect of  on the concrete compressive stress  ( ) and consequently as 
well on the entire stress field ( , ) is clearly visible in the graphs of  in figure 3.7. 
The sudden change in the stress profile indicates in which layers the compressive stress is 
limited to the local effective compressive strength  (towards the bending 
tension side). The non-uniform distribution of  and the stress field inclination  thus 
largely contributes to the non-linear distribution of shear stresses and the vertical compres-
sive stresses on the web cross section. 

Due to the variable nature of the reduction factor and the kinematic compatibility condi-
tions (especially the variable stress field inclination) it is possible to establish a continuous 
transition between pure in-plane shear behaviour (  and  uniform over the web width) 
and pure bending behaviour (  and  on a limited web width segment), which 
is one of the major issues encountered by most rigid-plastic interaction models. 

Additionally, the reduction factor is generally higher than what is typically assumed for 
conventional rigid-plastic stress fields where no out-of-plane moment is considered (in the 
present example  compared to  [SIA13]). This stays true for predominant 
shear load cases with small transverse bending moments. Consequently, the ML-EPSF 
leads to higher in-plane shear strength as conventional RPSF methods (see also comparison 
to RPSF in fig. 3.8a where ), which is consistent with observations made 
with the classical elastic-plastic stress field method (for in-plane loading) by Fernández 
Ruiz and Muttoni [Fer07]. 

3.2.3 Comparison to the rigid-plastic interaction models 

Shear transfer action under out-of-plane bending 

The observations made on the basis of the proposed multi-layered elastic-plastic stress field 
panel element allow validating the basic principles and ideas of the rigid-plastic interaction 
models presented earlier: 

• The out-of-plane bending moment that is acting on the transverse web cross section 
causes the shear force resultant to shift towards the flexural compression side in 
order to maintain the equilibrium of moments (  in fig. 2.2c and  in fig. 3.6b).  

• Additional transverse bending resistance is obtained by changes in the stirrups 
forces between the bending compression and the bending tension side (  in fig. 
2.3,  and  in fig. 3.6a,c).  
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• Furthermore, the ML-EPSF approach confirms Menn’s model for predominant 
transverse bending (fig. 2.3e) that assumes the presence of a pure compression zone 
(where  and ) in the outermost layers of the web (compare to  and 

 in fig. 3.7).  

Although the ML-EPSF approach leads to very similar in-plane shear transverse bending 
interaction mechanisms, the actual stress fields, as well as the predicted strength, differ 
significantly. These differences result naturally from the different types of stress fields 
used: equilibrium based rigid-plastic stress fields that lead to a lower bound solutions; stat-
ic and kinematic compatible elastic-plastic stress fields that lead to an exact solution at fail-
ure, according to the theory of plasticity.  

Stress fields and assumptions  

In the RPSF interaction models, the transverse stress distribution is tailored to equilibrate  
and concrete stresses are admitted to act as a uniform stress bloc with  (effective 
compressive strength of concrete). The stress field parameters ( , ) are chosen based on 
recommendations for RPSF that had been established for in-plane shear loads only, typical-
ly  and  [SIA13]. They are assumed constant over the width of the 
web and their value does not depend on the intensity of the transverse bending moment. 
These hypotheses are however very different from what is observed when computing the 
stress field with respect to kinematic compatibility conditions.  

The ML-EPSF panel element shows that the inclination of the compression field is variable 
over the web width and changes with the intensity of the acting transverse moment (see  
in fig. 3.7). The inclination can reach up to 90° in the outer layers in case of important 
transverse bending. For close to pure shear behaviour, the ML-EPSF method (as EPSF in 
general) yields inclinations that are lower than the code recommendations. Similar observa-
tions are made for the concrete strength reduction factor  (i.e. ) that varies strongly, 
depending on the intensity of the moment and the position in the web width (see  in fig. 
3.7).  

The most significant difference in the overall stress field profile between the models is ob-
served for small transverse bending moments. The compression field of the RPSF is already 
concentrated on a minimum web width and shifted until the web face on the bending 
compression side. Whereas, in the ML-EPSF approach, the compression field is still devel-
oped over the entire width of the web and the stress distribution is only slightly effected by 
the transverse bending moment (  and  close to uniform for  in fig. 3.7). 
With increasing transverse bending the ML-EPSF approaches the uniform stress distribu-
tion of the RPSF, but with different maximum stresses (due to the different values for  
resp. ).  
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These differences in the stress fields of the RPSF and the ML-EPSF approaches affect the 
predictions of the combined in-plane shear transverse bending resistance of webs, which is 
clearly visible in the resulting ( ) interaction diagrams presented in figure 3.8. The 
predictions differ especially in the range of small transverse moments because of the 
aforementioned reasons.  

Predicted shear transverse bending interactions 

The interaction diagrams in figure 3.8 show the predicted in-plane shear transverse bend-
ing resistance according to the RPSP approach by Menn [Men86] and the proposed ML-
EPSF panel element.   

The normalized diagrams in figure 3.8a show, that the ML-EPSF model predicts a substan-
tially higher combined in-plane shear transverse bending resistance than the RPSF model. 
The two main reasons for this are:  

• The overall interaction is weaker (weaker slope and higher curvature of the ( ) 
curve), especially in the range of small transverse bending moments. 

• The initial shear strength (when ) is remarkably higher. 

As already mentioned earlier, the differences between these two interaction curves is a 
direct consequence of the different kinds of stress fields used and their respective hypothe-
ses regarding the stress distribution, the concrete strength reduction factor and the stress 

Figure 3.8  Comparison of ( ) interaction diagrams according to the RP model 
by Menn [Men86] and the proposed ML-EPSF panel element for MPa, 
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field inclination. Whereas these factors are chosen to be constant and on the safe side for 
the RPSF model, the ML-EPSF method computes them on the basis of a more realistic kin-
ematical approach. This not only predicts more exactly the shear resistance due to a refined 
analysis tool, but the latter also accounts for the positive effect of the bending compression 
on the stress field and in particular on the strut inclination and the concrete strength reduc-
tion factor.  Indeed, the latter increase due to the bending compression which slows down 
the loss of shear resistance caused by the transverse bending moment. 

Besides the generally more favourable shape of the ML-EPSF interaction curve, the initial 
in-plane shear strength (when ) also plays a major role for the overall resistance. The 
ML-EPSF method predicts substantially higher initial shear strength (+12% for , 
fig. 3.8a), which leads to a general increase of the shear strength under transverse bending 
(curve shifts upwards). This difference is again mostly due to the concrete strength reduc-
tion factor which is less penalizing in an EPSF approach (for example  for  
in fig. 3.8a) than for a RPSF method ( ). This effect becomes even more pronounced 
for high shear reinforcement ratios (  for  and  in fig. 3.8b). For 
very low shear reinforcement ratios the concrete strength reduction factor for both methods 
(RP and EP) is very similar (~0.55), nevertheless the EPSF predicts higher initial shear 
strength (see fig. 3.8b ) because, in these cases, the computed inclination of the 
compression field decreases below 25°, the inferior limit recommended by SIA262 [SIA13] 
for the rigid-plastic stress fields. 

In the range of small transverse moments, which is probably the most important for most 
practical cases, the predicted shear strength shows thus little sensitivity to the transverse 
moment. As shown in the previous section, small transverse moments only slightly disturb 
the stress field distribution over the web cross section, which then causes just a little loss in 
shear resistance. The fact that the computed concrete strength reduction factor is still high 
contributes to the positive behaviour. 

3.2.4 Synopsis 

The sectional analysis performed with the ML-EPSF panel element leads to the following 
findings regarding the interaction of in-plane shear and transverse bending in beam webs: 

• The ML-EPSF panel approach covers effectively the entire range of combined solici-
tations, from pure shear to pure transverse bending. 

• The analysis confirms the existence of the in-plane shear transverse bending inter-
action, but indicates that is less pronounced than predicted by RP models. 

• The model confirms the force transfer mechanism assumed in the RP models: shift-
ing of the compression field to the bending compression sided; increase of the 
transverse bending resistance by changes in the stirrup forces. 
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• The stress field is highly non-linear in the transverse direction (inclination, distribu-
tion of stresses and concrete strength reduction factor) and strongly depends on the 
intensity of the transverse bending moment. 

• The longitudinal deformation, not accounted for in the RP mode, has a substantial 
influence on the overall resistance. 

• The effect of bending compression on the shear resistance is significant: it locally 
increases the compression field inclination and the effective concrete compressive 
strength, which has a favourable effect on the shear resistance. 

• The interaction curve provided by the ML-EPSF approach is an exact solution ac-
cording to the theory of plasticity, leading thereby to less conservative estimates of 
the combined in-plane shear transverse bending resistance than RP interaction 
models (lower bound solutions). 

Compared to the RP interaction models, the ML-EPSF panel element is a refined analysis 
tool that provides more accurate estimates of the actual combined in-plane shear transverse 
bending resistance of beam webs. Nonetheless, it should be noted that the RP and ML-
EPSF interaction models are both sectional analysis tools that inform about the resistance of 
small web segments. This is however only useful if the most critical section and the corre-
sponding internal forces are known, but in case of more complex structural elements this 
might not be straight forward. It becomes even more complicated if redistributions of in-
ternal forces are to be expected, as for instance between different components of one ele-
ment (e.g. between the web and the flanges of a beam) or in hyperstatic structural elements 
like for example multi-span beams. 

In such cases a global analysis of the entire structural element is required, which is general-
ly performed by a finite element analysis. To this purpose, a simplified method based on 
the well-established elastic-plastic stress field finite element method by [Fer07] for plane 
reinforced concrete elements is proposed (section 3.3). This tool is conceived for practical 
applications and provides a rapid and safe estimation of the shear resistance under the 
influence of transverse bending, while simultaneously accounting for the actual non-linear 
behaviour of the reinforced concrete element in the longitudinal direction. 
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3.3 Simplified plane EPSF verification method for beams with 

transverse bending moments 

This section presents a simplified verification tool for reinforcement concrete elements sub-
jected to in-plane shear and out-of-plane bending. The approach provides safe estimates of 
the actual longitudinal shear resistance of beams by using the plane elastic-plastic stress 
field method for in-plane loads in which the geometric beam properties are modified to 
simulate the effect of the transverse bending moment. The proposed method is validated 
by a comparison to a series of experimental test results. 

The Swiss code SIA262 [SIA13] recommends assessing the shear strength of beams with 
stress field approaches. The elastic-plastic stress field method, which is implemented into a 
finite element method [Fer07], allows obtaining a more precise estimation of the ultimate 
strength of reinforced concrete members than the classical rigid-plastic stress field ap-
proach. Thus this method has been chosen as the basis for a simplified verification method 
that allows investigating the in-plane shear strength of beams and box girder beams sub-
jected to out-of-plane bending moments in addition to the in-plane shear loading. 

The EPSF method [Fer07] is conceived for plane stress fields, i.e. reinforced concrete mem-
bers subjected to forces acting in the element plane, the transverse bending moment  can 
thus not be introduced explicitly in the FE model. The simplified approach for transverse 
bending makes use of the principles of the RP interaction models in order to account for the 
effect of  on the in-plane shear strength. Based on a pure equilibrium approach the fol-
lowing considerations are made: 

• Reduction of the web thickness. 

• Reduction of the shear reinforcement cross section. Only applied in case of very 
high transverse bending moments. 

These two aspects are discussed in the following sections. 

3.3.1 Reduction of the web width 

From the previous analyses performed on the basis of the RPSF and the ML-EPSF panel 
elements it was found that the transverse bending moment leads the compression field to 
concentrate on a limited area on the bending compression side of the web cross section 
(  in fig. 2.5 and  in fig. 3.7). Thus, only a part of the web width  is available to 
transfer the shear force when a transverse bending moment is acting at the same time. In 
order to account for this in the finite element model, the web width is reduced to an effec-
tive web width . The reduction of the web width  is computed as 
follows: 
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  (3.14) 

where  is the lever arm,  the average inclination of the compression field in the concerned 
region (obtained, by iteration, from the previous computation with the EPSF method),  is 
the transverse bending moment acting on the web,  the transverse bending resistance 
provided by the shear reinforcement and  the shear force acting in the plane of the web 
(accounting for the longitudinal shear force and the torsional moment in box girder cross 
sections, for instance according to SIA262 [SIA13]). 

The equation 3.14 is derived from the equilibrium of a web segment subjected to a shear 
load and a transverse bending moment (fig. 3.9): the compression field is only acting on a 
limited width  on the bending compression side of the web width and its inclination 

 is assumed constant over the width; the vertical component of the resultant of the com-
pression field is acting at  from the web centre and 
consequently contributes to the transverse bending resistance by . 
At this point, it is assumed that the shear reinforcement on both sides of the web is yielding 
and the resisting moment is computed by . Knowing the 
acting transverse moment  and the resistance provided by the shear reinforcement , 
the required resistance  can be derived (eq. 3.14) and by this the necessary eccentricity  
of the compression field resultant. Consequently, the required effective width  and 
eventually the width reduction  are obtained according to equation 3.14. 

Note that in this simplified verification approach, the required web width is computed 
based on equilibrium considerations only, whereas in the previous RP interaction models, 
the required width is determined on the basis of the shear resistance of the compression 
strut. In order to emphasize this difference, a different notation for the required web width 
was chosen, namely , compared to  in the RP models.  

Figure 3.9 Simplified approach: (a) web elevation with in-plane shear and RP stress 
field with average inclination  taken from the EPSF computation; (b) vertical com-
ponent of the shear force per unit length; (c) transverse cross section of the web with 
equilibrium between the stirrup forces and the eccentric compression field.   
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3.3.2 Reduction of the effective shear reinforcement 

The width reduction  is reasonable for transverse bending moments up to the magni-
tude of , but it is very conservative for higher transverse moments. 

The RP interaction models presented in the literature (in particular Thürlimann [Thü77] 
and Menn [Men86]) suggest that, in case of high transverse bending moments, additional 
resistance is obtained when reducing the tensile force in the shear reinforcement on the 
bending compression side (if , ). This behaviour is confirmed by the proposed 
ML-EPSF panel element, where the internal state-of-stress is computed with respect to the 
panel kinematics, see  in figure 3.6c. The reinforcement stress reduces with an increas-
ing moment, which leads to a higher contribution of the shear reinforcement to the trans-
verse bending resistance, see figure 3.6a:  increases with .  

The behaviour of the web is significantly improved when this additional bending re-
sistance provided the shear reinforcement is taken into account. In the present simplified 
verification method this leads to a less penalizing reduction of the web width, but requires 
at the same time a reduction of the effective shear reinforcement area on the bending com-
pression side. This is considered by the factors  which represent the amount of reinforce-
ment that is actually used (activated), relative to the available amount of shear reinforce-
ment: 

  (3.15) 

where  and  are the effective amount of shear reinforcement and  and 
 the available reinforcement area per unit length on the bending compression and ten-

sion side of the web. Thus the effective amount of shear reinforcement in the FE model is 
given by , where the reduction factor  is given by :  

  (3.16) 

If the factor  is selected smaller than 1.0, the transverse bending resistance provided by 
the shear reinforcement increases, . Consequently, 
the moment that has to be resisted by the compression field  (eq. 3.14) decreases and 
with it the reduction of the web width . However, since reducing  means reducing 
the allowable tensile forces in the stirrups on the bending compression side, the available 
amount of reinforcement for the transmission of the shear force in the FE model has to be 
adjusted accordingly by applying the factor . 

This procedure (with ) leads to a more moderate reduction of the web width (i.e. 
higher concrete shear strength, ), but simultaneously reduces the effective shear rein-
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forcement ( ). The optimal value for  can be found by iteration in order to maximise 
the failure load (see example in figure 3.10b). 

3.3.3 The simplified method relative to other methods 

Effective web width 

The stress field layout on the web cross section and the principle used to equilibrate the 
transverse moment in the simplified verification method is identical to the principles of the 
RP interaction models proposed by Thürlimann [Thü77] and Menn [Men86]. The ap-
proaches differ however in the way the required web width is computed, hence the use of 
different notations:  and . In the RPSF the width  is obtained based on resistance 
considerations, whereas  in the simplified verification method is obtained by equilib-
rium conditions only.  

In the RPSF models,  is the minimum web width necessary to resist the in-plane shear 
force and thus is computed directly according to the shear strength of concrete (

). This procedure however requires knowing the effective strength of con-
crete (i.e. ) and choosing an inclination  for the compression field.  

In the proposed simplified design procedure the width  is computed based on equi-
librium considerations only that do not require hypotheses on the effective concrete 
strength and the inclination of the compression field (because taken from the EPSF calcula-
tion). The resistance of the element with the reduced web width  is then verified in a 
separate step using the EPSF finite element method, where the concrete strength reduction 
factors  (equivalent to  in RPSF) and the inclinations of the compression field  are 
computed automatically from the local state-of-strain at each point in web of the beam. 

An enhanced lower bound solution 

The simplified EPSF method, as the EPSF method [Fer07], generally leads to higher failure 
loads than the classical RP interaction models because the stress field parameters  and  
are determined on the basis of a kinematically compatible strain field. However, in the pre-
sent context, where both, the in-plane and out-of-plane actions, are considered, the EPSF 
method cannot yield an exact solution according to the theory of plasticity, since only in-
plane kinematics are taken into account. Nonetheless, the simplified approach provides an 
enhanced lower bound solution compared to the RP interaction models, thereby leading to 
more realistic predictions for the actual shear resistance under the effect of out-of-plane 
bending.  

Possible improvement of the simplified method 

The web width reduction, as well as the amount of effective shear reinforcement, is derived 
from a RPSF, i.e. an equilibrium based, approach for which the stress field inclination and 
the concrete strength reduction factor are admitted constant over the web thickness. How-
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ever, the experimental campaign by Kaufmann and Menn [Kau76] and the sectional analy-
sis with the ML-EPSF panel element have shown that these parameters vary significantly 
over the web cross section and, additionally, are highly sensitive to the intensity of the ap-
plied transverse bending moment.  

In order to account for this, the proposed simplified verification method could be used in 
combination with the ML-EPSF panel element, instead of the proposed RP approach. For a 
given shear force and transverse moment, the eccentricity  of the vertical stress resultant 
in the concrete ( ) and the stress in the reinforcement on the bending compression side 

 can be obtained from the ML-EPSF panel element. Knowing , the web width reduc-
tion is then determined according to figure 3.9c, such that . The amount of 
effective reinforcement on the compression side is given by  and the reduction 
factor  to apply in the FE model is computed according to equation 3.16. The longitudi-
nal deformation  in the ML-EPSF panel is given by the average deformation in the con-
cerned region, which is obtained, by iteration, from the previous computation with the 
EPSF method. 

Using the ML-EPSF panel element could be particularly interesting in situations with very 
high levels of transverse bending for which the ML-EPSF showed that the stress field incli-
nation is significantly influenced by the bending compression effect (  locally reaching up 
to 90°). With the ML-EPSF approach a more accurate estimation of the web width reduction 
and the effective shear reinforcement ratio could be obtained.  

Nevertheless, this verification method would remain a simplified approach leading to a 
lower bound solution of the shear strength under transverse bending, since the real kine-
matics of the web in the transverse direction cannot be represented with the plane EPSF 
method. An exact solution can only be obtained with a model that simultaneously respects 
the static and kinematic compatibility conditions of the theory of plasticity for both, in-
plane and out-of-plane, actions. To this purpose, the ML-EPSF finite element method pre-
sent in Chapter 4 has been developed. 

3.4 Validation of the simplified verification method 

The simplified verification method is compared to a test series by Kaufmann and Menn 
[Kau76] (described in section 2.3) performed on simply supported beams with concentrated 
vertical loads and a constant transverse bending moment in the web. Two categories of 
specimens were tested: LSI and LSII. Specimens LSI were designed to fail by yielding of the 
shear reinforcement (ductile failure) and specimens LSII by crushing of the concrete in the 
web due to shear (non-ductile failure). 
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3.4.1 Model assumptions and optimisation process 

A summary of the modelling parameters is given in table 3.1. The indicated shear rein-
forcement ( , ) and web width ( ) are the original values, later they are reduced ( , 

) to account for the effect of the transverse moment in the simplified EPSF approach. 
The amount of longitudinal reinforcement is the same as in the test specimens (step-wisely 
reducing towards the supports).  

The model geometry is presented in figure 3.10a. In the shear span, the beam web is divid-

Table 3.1 Modelling parameters for the tests by Kaufmann and Menn [Kau76].         

Tests 
        

[%] [-] [mm2] [mm] [MPa] [MPa] [m] [-] 

S1 - LS I 

0.5 1.0 100 200 540 

31 
32 
32 
24 

0.1 

5.10 
S2 - LS I 5.34 
S3 - LS I 3.88 
S6 - LS I 3.39 
S1 - LS II 0.785 

1.0 157 
200 

531 
31 

0.1 
2.81 

S3 - LS II 0.785 200 32 4.30 
S2 - LS II 1.57 100 32 5.99 
S4 - LS I 

0.643 0.64 129 200 535 26 0.1 
6.61 

S4 - LS II 3.66 
S5 - LS I 

0.75 0.50 75 100 540 26 0.1 
7.33 

S5 - LS II 4.27 
 

Figure 3.10  (a) Geometry of the finite element model for Kaufmann’s beams [Kau76], 
with web regions for the determination of the width reduction factors  and (b) 
optimization of the reduction  factor  to maximize the failure load, example for 
beams S3 LSI and S3 LSII.          
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ed into four regions, for each of them an individual web width reduction ( ) and effec-
tive amount of shear reinforcement ( ) will be determined.  

In the two central regions, the stress field is relatively uniform and the average inclination 
could be easily measured. However, in the support and load introduction regions, the 
stress fields develop in the shape of a fan. It has thus been chosen to take the numerical 
average of the inclination at each FE in these regions.  

In a first step the ultimate failure load of the beams is determined without considering the 
transverse bending moment ( ). The obtained EPSF allows determining the 
average inclination of the stress field and shear force  in each web region. The web width 
reductions are then computed for the amount of effective shear reinforcement ( ) that had 
been chosen beforehand. The web regions in the FE model are updated with the new val-
ues for the effective web width and the failure load is re-evaluated. This procedure is re-
peated until the failure load stabilises. 

In the present example it was assumed that the ratio between the applied transverse bend-
ing moment and the shear force remains constant during the iterations. The ratio  was 
chosen identical to the experimental values  (  applied transverse moment,  
measured failure load). Additionally, the amount of effective shear reinforcement  is 
assumed to be the same in all the web regions. 

Each beam has been computed for several values of effective shear reinforcement. The re-
searched failure load is then given by the calculation with the highest failure load, see ex-
ample in figure 3.10b.  

3.4.2 Comparison to experimental results 

A resume of the failure load prediction with the simplified EPSF for transverse bending 
moments in beam webs is presented in table 3.2 and figure 3.11a. 

In general, it can be observed that the simplified method gives stable and safe estimates of 
the failure load, without being overly conservative (  with ). 
Furthermore, the prediction of the failure mode of most beams is consistent with the exper-
imental observations (except for the beam S3-LSI, see explanation below). 

Table 3.2 also separates the results according to the observed failure modes: ductile (yield-
ing) and non-ductile (concrete crushing). The simplified EPSF method seems to be more 
conservative for beams where a non-ductile failure (crushing of concrete) is to be expected, 

. In case of ductile failure, the predictions are significantly better 

. Probably, the EPSF method itself adds a little to this difference, be-
cause it generally tends to give a little more conservative predictions when the failure is not 
governed by yielding of the reinforcement [Mut16]. 
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The predictions for specimens LSI show a very similar behaviour to the experimental ob-
servations (except for beam S3-LSI): close to failure the shear reinforcement is yielding and 
at ultimate load a longitudinal bending-shear failure mechanism develops, with local yield-
ing of longitudinal reinforcement. For beam S3-LSI an early failure occurred that is caused 
by a combination of crushing of concrete in the web and yielding of the stirrups (longitudi-
nal reinforcement is not yielded). This leads to a more conservative estimation of the actual 
failure load ( ) as for the other specimens LSI.  

The failure modes of the specimens LSII correspond to the experimental observations. They 
show a very high level of concrete solicitation (high concrete stresses, ) lead-
ing to a shear failure by crushing of concrete in the web. Additionally, it is observed that at 
ultimate load the shear reinforcement is partially yielding. This is due to the artificially 
reduced amount of reinforcement in FE model (effective reinforcement, ) to ac-
count for the effect of the transverse moment. This does however not contradict with the 
experiments, where yielding of the stirrups on the bending tension side and partial yield-
ing on the bending compression side was observed. Only beam S2-LSII failed in longitudi-
nal bending, which led to a rather ductile behaviour at failure that could be very precisely 
predicted with the simplified EPSF method ( ). 

Table 3.2 Resume of the failure load predictions of Kaufmann’s beams [Kau76] 
according to: the simplified EPSF method for transverse bending ( ) with the 
effective shear reinforcement ratio ( ), web width reduction ( ) and failure 
mode; the plane EPSF method without considering the transverse bending moment 
( ).     

Test  
[-] 

(*) 
[mm] 

failure 
mode 

   

S1 - LS I 0.90 63 d 1.13 1.07 1.06 
S2 - LS I 0.85 54 d 1.15 1.08 1.07 
S3 - LS I 0.70 45 n-d (**) 1.21 1.01 1.20 
S6 - LS I 1.00 47 d 1.06 1.05 1.01 
S1 - LS II 0.80 58 n-d 1.20 0.97 1.24 
S3 - LS II 0.65 34 n-d 1.32 0.94 1.41 
S2 - LS II 0.80 30 d 1.01 0.92 1.10 
S4 - LS I 0.69 49 d 1.18 1.07 1.10 
S4 - LS II 0.81 28 n-d 1.22 1.00 1.22 
S5 - LS I 0.70 46 d 1.16 1.03 1.12 
S5 - LS II 0.77 20 n-d 1.20 1.00 1.19 

  mean (all) 1.17 1.01 1.16 
  COV 0.06 0.04 0.09 
  mean (d) 1.11 1.04 1.07 
  COV 0.05 0.04 0.03 
  mean (n-d) 1.23 0.98 1.25 
  COV 0.04 0.02 0.06 

(*)  - mean of the two span regions; 
(**) - not consistent with test result; 

d     - ductile failure mode; 
n-d - non-ductile failure mode. 
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Figure 3.11a shows the predicted failure loads with respect to the amount of shear rein-
forcement, reinforcement layout and intensity of the transverse bending moment. No sig-
nificant trend is observed regarding the amount of shear reinforcement  in the beam. The 
small tendency that could be observed if beam S2-LSII is neglected is rather linked to the 
failure mode (ductile vs. non-ductile) than to the amount of shear reinforcement. The rein-
forcement layout ( ) has no visible influence on the results; the simplified verifica-
tion methods leads to equally good predictions of the failure loads for symmetrical and 
unsymmetrical shear reinforcement layouts. The proposed method shows a light tendency 
to be more conservative for higher transverse bending moments.  

3.4.3 Influence of the transverse bending moment 

The previous section investigated to what extent the proposed simplified verification 
method is able to predict the experimental failure loads. In the present section, the actual 
and predicted influence of the transverse moment on the shear resistance of beam elements 
is investigated. To this purpose, the experimental test results are first compared to EPSF 
predictions where the influence of the moment is neglected. This allows getting an idea of 
the real influence of the transverse moment. In a second analysis the EPSF prediction 
(without transverse moment) are compared to the prediction of the proposed simplified 
verification method (with transverse moment) in order to quantify the predicted effect of 
the transverse bending moment.  

Shear failure loads according to EPSF without transverse bending moment 

This section investigates Kaufmann’s beams [Kau76] with the plane EPSF without consid-
ering the transverse bending moment in the FE model. The subsequent comparison to the 
experimental failure loads allows observing the influence of the transverse moments on the 
ultimate failure load. 

The plane EPSF ultimate load predictions are shown in table 3.2 ( ) and figure 
3.11b. The average ratio of measure failure load to estimate failure load  is 1.01 
with a coefficient of variation of 0.04, which indicates a rather weak influence of the trans-
verse moment on the ultimate shear resistance.  

By separating the results according to the type of failure mode (apart for beam S2-LSII the 
failure modes are identical to those observed in the simplified EPSF method, column four 
in table 3.2) we can see that the specimens with ductile failure modes give safe results 
( ), whereas in case of non-ductile failure the predictions are a little un-
safe ( ). 

Indeed, in the experimental campaign on the specimens LSI (ductile failure), it was ob-
served that, due to the transverse bending moment, the stirrups on the bending tension 
side started yielding first, but at failure both stirrups (on the bending compression and 
bending tension side) had reached their yielding strength. The ultimate load thus corre-



Validation of the simplified verification method 

69 

sponded to the expected conventional longitudinal shear resistance for beams. This ex-
plains why the EPSF predictions, where the transverse moment is neglected, give very 
good predictions of the experimental failure loads. 

The EPSF predictions for the specimens LSII (designed for brittle failure by crushing of the 
concrete in the web) slightly overestimate the experimental failure load, which is not con-
tradictory to the experimental observations. As in the experimental campaign, the EPSF 
predictions show that the concrete in the web is highly damaged (  ). But con-
trary to the test observations, at failure, the EPSF models can be loaded until the yield limit 
of the stirrups on both sides and consequently the full shear resistance of the beam is 
reached. However, in the experimental campaign, the transverse bending moment led to an 
earlier failure caused by concrete crushing in the web. At ultimate load, the stirrups on the 
bending tension side were fully yielding, whereas on the bending compression side only 
part of the reinforcement had reached the yield limit. Consequently the ultimate failure 
load was reduced compared to pure longitudinal shear resistance, which is confirmed by 
the EPSF prediction ( ). 

In figure 3.11b the results are plotted against different parameters: the intensity of the ap-
plied transverse moment ( ), the total amount of shear reinforcement ( ) and the 
ratio between the amount of shear reinforcement on the both web faces ( ). No sig-
nificant trend can be observed in the predictions with the plane EPSF method. 

On the overall, the previous observations would lead to suggest that the influence of the 
transverse bending moment on the longitudinal shear resistance is very small. However, no 
definitive conclusion can be drawn because these observations are only based on a single 
series of test data. Additionally, during the testing, yielding of the longitudinal reinforce-
ment was observed in several elements which might interfere with the interpretations re-
garding the in-plane shear transverse bending interaction. Nonetheless, some remarks re-
garding the overall behaviour can be made and allow thereby identifying some general 
tendencies. 

Elements, as specimens LSII, that have only little reserve capacity in the concrete of the 
web, i.e. in pure shear the compressive stresses in the concrete are already high, the trans-
verse bending moment seems to affect the ultimate shear resistance. Indeed, in these ele-
ments the compression field cannot shift efficiently towards the bending compression side 
to counterbalance the moment because almost the entire web width is already required to 
resist the longitudinal shear force. The additional transverse bending compression then 
eventually leads to the failure.  

In elements that are conceived for ductile failure by yielding of the shear reinforcement, the 
compressive stresses in the concrete are generally not governing for the longitudinal shear 
resistance. The reserve capacity of the concrete web thus allows that at failure, the stress 
field in the concrete can concentrate on the bending compression side of the web (shift of 
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the shear stress resultant) in order to counterbalance the acting transverse bending mo-
ment, while the shear reinforcement on both sides is yielding. Thus, in agreement with the 
observations performed by Kaufmann and Menn [Kau76], it can be concluded that if the 
shear resistance of the concrete  is higher than the shear resistance of the reinforcement 

, a certain amount of transverse bending (depending on the ratio  to ) can be re-
sisted without affecting the bearing capacity of the beam.     

Predicted effect of the transverse bending moment 

The comparison between the predictions provided by the plane EPSF method (  neglect-
ed) and the predictions of the simplified EPSF method (  not neglected) is shown in table 
3.2 column . On average, the simplified method predicts a reduction of 16% 
of the initial shear resistance due to transverse bending, which is conservative but accepta-
ble considering the fact that it is a simplified approach.  

In case of ductile failure the predicted reduction is smaller (7%) than for beams failing by 
crushing of the concrete in the web (25%). This allows concluding that the overall behav-
iour of the simplified method is in agreement with the expectations. However the differ-

 
Figure 3.11  Ultimate load predictions for Kaufmann’s beams [Kau76] according to: 
(a) the simplified EPSF method for transverse bending and (b) the plane EPSF meth-
od without considering the transverse bending moment.   

(a)

ρw  [%] ρw,c / ρw,t  [-]

Q
ex

p /
 Q

EP
SF

,m
  [

-]

mexp / mR0  [-]
0 0.5 1 1.5
 

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

0 0.2 0.4 0.6 0.8 1 1.2
 

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

0 0.2 0.4 0.6 0.8 1
0

1

2

3

 

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

0 0.2 0.4 0.6 0.8 1
0

1

2

3

 

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

0 0.2 0.4 0.6 0.8 1 1.2
 

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

0 0.5 1 1.5

 

S1/I

S2/I

S3/I

S4/I

S5/I

S6/I

S1/II

S2/II

S3/II

S4/II

S5/II

ρw  [%] ρw,c / ρw,t  [-]

Q
ex

p /
 Q

EP
SF

  [
-]

mexp / mR0  [-]

(b)



Validation of the simplified verification method 

71 

ence between the two failure modes is significantly higher than what has been observed in 
the previous analyses ( : ductile 1.04, non-ductile 0.98), which leads to the con-
clusion that simplified verification method might be overly conservative if concrete crush-
ing is to be expected at failure.  

This behaviour is probably caused by the fact that the simplified method does not account 
for the positive effect of bending compression on the inclination of the stress field and the 
concrete strength reduction factor (as observed with the ML-EPSF panel element). On the 
contrary, only the unfavourable effect of additional concrete solicitation due to the bending 
compression is considered by reducing the effective web width. Consequently, as already 
observed in section 3.4.2, the simplified method thus leads to more conservative estimates 
of the actual shear resistance in case of higher transverse bending moments.  

3.4.4 Synopsis 

A simplified verification method for reinforced concrete beam elements subjected to longi-
tudinal shear loads and transverse bending in the web is introduced. The method bases on 
the EPSF method and accounts for the effect of the transverse bending moment by reducing 
the available amount of concrete and shear reinforcement in the beam web. It is explained 
that this is done by means of an equilibrium based approach inspired from RP interaction 
models. The method is compared to experimental test data and some general observations 
on the effect of transverse bending in beam elements are made. The main findings and con-
clusions are:  

• The simplified verification method for the longitudinal shear resistance in case of 
transverse bending in the beam web is an efficient tool for practical applications. It 
provides an enhanced lower-bound solution on the basis of the well-established 
EPSF method.   

• Compared to RP plastic interaction models, it does not require choosing a stress 
field inclination and concrete strength reduction factor. The latter are determined 
automatically based on the kinematic and static compatibility condition of the EPSF 
method. 

• It permits to consider the actual longitudinal behaviour of beam elements during 
the verification of the in-plane shear – transverse bending interaction. Internal force 
redistribution as well as other failure modes (longitudinal bending) that could af-
fect the overall resistance can thus be accounted for directly.  

• A comparison to experimental test data showed that it yields safe but not overly 
conservation estimations of the actual shear resistance. This is especially true for 
ductile failure modes. In case of non-ductile failure modes caused by crushing of 
the concrete in the web, the predictions are a little more conservative.  
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• The predicted failure modes are in general consistent with the experimental obser-
vations. 

• Comparisons of the experimental failure loads to predictions neglecting the influ-
ence of the transverse bending moment lead to suggest that the influence of the 
transverse bending moment on the shear resistance of beam elements is very small, 
especially in case of a ductile failure governed by yielding of the shear reinforce-
ment. 

3.5 Discussion and conclusion 

The present chapter introduced a novel ML-EPSF approach for the establishment of con-
sistent stress fields under combined membrane and bending actions. Additionally two 
methods that allow accounting for the effect of transverse bending on the longitudinal 
shear resistance of beam elements are proposed: a sectional analysis tool for the investiga-
tion of the phenomenological behaviour of the stress field under the influence of an out-of-
plane moment and a simplified verification method for beam elements in practice. A de-
tailed summary of the main findings and outcomes regarding these two methods was al-
ready presented in the respective sections (section 3.2.4 and section 3.4.4). 

One of the important observations made by means of the ML-EPSF panel element is that 
the in-plane shear – transverse bending interaction is less pronounced than predicted by 
former models. Nonetheless, the model clearly indicates that the transverse moment has a 
negative influence on the shear resistance. However, an investigation on the experimental 
failure loads of beams with respect to EPSF predictions suggests that the effect of the trans-
verse bending moment on the actual bearing capacity is almost negligible.  

Even if these results seem somewhat contradicting, this mainly indicates that the shear 
transfer action under transverse bending in beam elements is more complex than what is 
considered in panel elements, like the proposed ML-EPSF panel element. Structural ele-
ments like beams have a higher potential for redistribution of internal forces and therefore, 
a stress field perturbation, as caused by the transverse bending moment, has less influence 
on the ultimate bearing capacity. An important factor in this may be the contribution of the 
girder flanges in the shear transfer action that develops in the cracked concrete. Even 
though the ML-EPSF panel element is a precious tool to understand the non-linear depend-
encies between transverse bending and longitudinal shear on a local level, it cannot (auto-
matically) account for redistribution effects that develop at the structural level. Therefore, if 
it is used to evaluate the shear resistance of beams, it may overestimate the effect of the 
transverse bending moment on the actual bearing capacity of the element in some cases. 

Nonetheless, the observations on the experimental beams predict an unexpected weak in-
fluence of the moment. Further comparisons and more experimental data on beam ele-
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ments with transverse moments are required in order to confirm if and under which condi-
tions the influence of the transverse bending moment is indeed almost negligible. 

It can thus be concluded that the ML-EPSF panel provides valid information at a local level, 
this is however not always representative of the overall behaviour of a structural element. 
The proposed simplified verification method for beam elements in practice is able to ac-
count for redistributions at the structural level (the entire beam is modelled), but the effect 
of the transverse bending moment is considered on a similar basis and thus provides rather 
conservative predictions. 

To represent the actual interactions, which develop in a structural element under in-plane 
and out-of-plane actions and the resulting consequences on the bearing capacity, internal 
forces redistributions in and out of the element plane, as well as along the entire element 
length must be considered simultaneously. This can only be achieved by an advanced 
analysis tool capable of representing the actual in-plane and out-of-plane kinematics of the 
entire structural element. To this purpose, the ML-EPSF approach is implemented into the 
non-linear finite element procedure presented in Chapter 4. 
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Non-linear finite element meth-Chapter 4

od for in-plane and out-of-plane 
actions 

This chapter presents a non-linear finite element method that has been developed 
on the basis of the multi-layered elastic-plastic stress field approach presented earlier and 
that allows investigating reinforced concrete elements under in-plane and out-of-plane 
actions. First, a summary of the proposed finite element concept is presented, followed by 
the formulations of the different finite elements, the adopted solution procedure and the 
validation and sensitivity analysis of the method. 

4.1 Outline of the proposed finite element method 

The objective of the proposed finite element method is to provide a tool to investigate the 
behaviour of reinforced concrete shell elements that are primarily subjected to a combina-
tion of in-plane forces and out-of-plane bending moments. In many cases, out-of-plane 
bending is caused by actions normal to the element plane. The method accounts for this by 
means of appropriate equilibrium formulations. Consequently, the proposed finite element 
method allows studying the effect of out-of-plane forces and moments on the in-plane re-
sistance as well as the influence of in-plane forces on the transverse bending resistance. 
Out-of-plane shear failure modes can however not be represented with this method. 

The finite element method is based on the multi-layered elastic-plastic stress-field (ML-
EPSF) approach presented earlier. It can be considered as an enhancement of the numerical 
implementation of the plane elastic-plastic stress field (EPSF) method by Fernández Ruiz 
and Muttoni [Fer07], extending thereby the range of structural elements and load combina-
tions that can be studied with the stress field approach.   

Similarly to the plane EPSF method, the ML-EPSF finite element method yields stress fields 
that are in equilibrium with the external actions and that respect the plastic condition of the 
material in every point. Since they are derived from kinematically compatible displacement 
fields, the resulting stress fields at failure are in agreement with a licit failure mechanism. 
Thus, they simultaneously fulfil the static and kinematic theorem of the theory of plasticity 
and consequently represent exact solutions according to the theory of plasticity. This clause 
is nevertheless limited to in-plane failure and out-of-plane bending failure modes. 
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Reinforced concrete members are modelled with different finite elements for concrete and 
steel, figure 4.1a. The concrete is modelled by two types of finite elements: the multi-
layered in-plane (ML-IP) concrete element and the out-of-plane (OP) concrete shear ele-
ment. Together, the two concrete elements ensure the transmission of in-plane forces (nor-
mal and shear), out-of-plane shear and out-of-plane bending moments.  

The ML-IP element, in which each layer respects the conditions of the EPSF, carries the in-
plane forces and the average out-of-plane bending moments (constant). It is completed at 
each face by an OP shear element that carries the out-of-plane shear force and the moment 
variation, figure 4.1b-c. The reinforcement is modelled with rebar elements which are 
placed with an eccentricity relative to the mid-plane of the concrete elements in order to 
account for the actual location of the rebars in the element thickness. As in the EPSF meth-
od [Fer07], the rebar element carries only axial forces (dowel action is neglected) and the 
bond with the concrete is assumed to be perfect (no slip). 

The concrete ML-IP element is a degenerated flat shell element with three nodes and fifteen 
degrees of freedom: three translations { } and two rotations { } at each node (fig. 
4.2a). Out-of-plane, the element deforms with a constant curvature and undergoes shear 
deformations in order to ensure C0 continuity of displacements between elements (dis-
placements are continuous across the boundary of elements but not necessarily its deriva-
tives (slopes), [Ona13]). Consequently, each layer behaves like a constant strain triangle. 

 
Figure 4.1  Finite elements of the FEM: (a) FEs for concrete and steel; (b) the com-
bined element for concrete and (c) concept of the combined concrete element (sche-
matic representation).  
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The constant curvature, figure 4.2b, is a fundamental hypothesis of ML-IP element that 
allows computing a constant strain field in each layer (no need for numerical integration 
points), which is the necessary condition for computing the plane stress states of each layer 
according to the EPSF method by [Fer07].  

The ML-IP concrete element accounts for shear deformations according to the Reissner - 
Mindlin plate bending theory (plane sections remain plane but not necessarily normal to 
the mid-plane after deformations) [Rei45, Min51]. The shear deformation is an additional 
degree of freedom that is necessary to approximate the out-of-plane displacement by a con-
stant curvature displacement field defined by the three displacements ( ) of 
each node. The shear deformation decouples the rotations from the out-of-plane translation 
which means that the displacement fields for rotations  and  are not only 
dependent on the translational displacement field , i.e   derivative of .    

Since Mindlin-type elements only require C0 continuity for the displacement fields (see 
[Ona13]), the element membrane displacement fields and rotation fields are described us-
ing linear shape functions. Additionally, it is assumed that the shear deformation is con-
stant along the element border. The out-of-plane displacement is then discretized by a 
quadratic polynomial function respecting the condition of constant curvature.  

The strain fields defining the state-of-strain at any point inside the element are obtained 
from the previously described displacement fields and Mindlin plate kinematics. The in-
plane strains that result from the membrane (elongation) and bending (curvature) effects 
are constant in each layer and concrete stresses (plane stress state) are obtained according 
to the ML-EPSF method presented earlier. Eventually, the stress resultants are integrated 
similarly to the method used in [Fer07] in order to obtain the element nodal forces 

. 

Figure 4.2 (a) Nodal membrane ( ) and flexural ( ) degrees of freedom; (b)  
deformed ML-IP element with constant curvature, derivation of layer strains and 
constant strain triangle; (c) OP shear element with shear deformation.  
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As a consequence of the aforementioned kinematic hypotheses, the ML-IP element does not 
carry out-of-plane forces ( , figure 4.1a), this is why the element is completed by three 
OP shear elements. The latter deform identically to the ML-IP element border to which they 
are connected to, thus their out-of-plane deformation is a polynomial function of the sec-
ond order with constant curvature and constant shear deformation, see figure 4.2c. This 
shear deformation is used to compute the out-of-plane shear force according to a Timo-
shenko beam approach [Ona13] and nodal moments are applied in order to ensure the 
equilibrium of forces. 

The non-linear finite element problem is solved by applying an iterative secant stiffness 
procedure. The entire finite element method, as well as pre-processor and post-processor, 
have been coded in the MATLAB computing environment [MAT13].  

4.2 Element formulations 

Following sections present the formulations of the three finite elements: the multi-layered 
in-plane (ML-IP) concrete element; the out-of-plane (OP) concrete shear element and the 
rebar element for steel reinforcement. 

4.2.1 Displacement fields and strain fields 

The element formulations are based on the Reissner-Mindlin flat shell theory, an extension 
of the Reissner-Mindlin plate theory that combines flexural (bending and shear) and mem-
brane behaviour. Flat shell elements are typically used to study folded plate structures such 
as box-girder or slab-beam bridges.  

In plate theory, the 3D displacement fields are expressed in terms of displacements and 
rotations at the middle plane: ( ) are the in-plane displacements,  the out-of-plane 
(transverse) displacement and ( ) the rotations of the normal vector. The element mid-
dle plane is equidistant from the upper and lower faces and is the reference plane for the 
transverse direction ( ).  

  (4.1) 

Equation 4.1 expresses the displacement fields according to the Reissner-Mindlin theory 
[Rei45, Min51] that assumes that the thickness of the plate does not change during defor-
mation (eq. 4.1-3) and that a straight line normal to the middle plane before deformation 
remains straight but not necessarily normal to the deformed middle plane (eq. 4.1-1-2). 

The rotation of the normal vector is expressed as a sum of two terms: the slope of the mid-
dle plane and an additional rotation  accounting for the lack of orthogonality, see 
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figure 4.3. In reality the plate normals are distorted during deformations, the rotations thus 
represent an average deformation of the normal. 

  (4.2) 

The expressions for the strain fields are obtained from the displacement fields. Note that 
, besides it does not contribute to the internal work due to the plane stress assump-

tions of Reissner-Mindlin theory. 

  (4.3) 

The strain vector  is composed of in-plane strains  due to membrane-bending effects 
and transverse shear strains . Both are expressed in terms of generalized strain vectors for 
membrane deformations at the middle plane  (elongation), for bending effects  (curva-
ture) and shear effects  (average shear deformations).  

  (4.4) 

The generalized strain vectors for membrane , bending  and shear  effects are : 

Figure 4.3  Reissner-Mindlin flat shell theory: (a) sign convention and (b) transverse 
displacement and rotations.   
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(4.5) 

(4.6) 

(4.7) 

where  are the membrane strains in the reference plane ( ),  the curvatures and 
 the average transverse shear deformation. 

4.2.2 In-plane concrete finite element 

Discretized displacement fields 

The ML-IP element is a Mindlin-type flat shell element with three nodes and five degrees 
of freedom per node (fig. 4.4a). The following section presents the interpolations functions 
used for the five displacement fields ( ). All displacements fields satisfy the C0 
continuity condition at the element borders that are required for the formulation of a 
Mindlin-type element.  

The element will be divided into a finite number of layers, each of them governed by a 
plane EPSF. Each layer thus requires constant in-plane strains  over the layer area. In 
order to fulfil this, linear interpolations functions for the in-plane displacements ( , ) and 
the rotations ( , ) are used.  

  
(4.8) 

(4.9) 

where  and  are the in-plane displacements and  and  the rotations at node . The 
linear shape functions  are given by area coordinates of a triangle (  with 

, see fig. 4.4b), in Cartesian coordinates they are expressed as follows: 

  (4.10) 

with , ,  ( ) and the ele-
ment area . 

A mandatory condition for the interpolation function of the deflections  is that the trans-
verse shear strains  along the element sides are constant and defined by the rotations 
and transverse displacements at the end side nodes only. This condition is important for 
the OP shear elements (section 4.2.3) that deform identically to the borders of the ML-IP 
element and that allow computing the out-of-plane shear forces.  
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The following interpolation satisfies this requirement. It is based on the “linked interpola-
tions” technique [Ona13, Tes85] that enriches the deflection field with higher order poly-
nomial terms involving the nodal rotations. The quadratic interpolation function of the 
deflection  is of one order higher than for the rotations which reduces shear locking prob-
lems of the Mindlin-type element.  

  (4.11) 

 are the linear shape functions according to equation 4.10,  is the length of the side , 
 and  are the rotations along the tangential direction of the -th side with nodes  and 

 (  where  is the angle between side  and the  axis) and  
are quadratic shape functions vanishing at the corners.   

 (4.12) 

The deflection field can be rearranged in terms of the Cartesian nodal rotations  and : 

  (4.13) 

where  and  , . 

The expression in equation 4.11 (resp. 4.13) ensures C0 continuity of the deflections between 
elements because the deflection along the common element border is entirely defined by 
the degrees of freedom of the two edge nodes, for instance 

.  

As well, it can be verified that the transverse shear deformation along an element edge is 
constant and defined by the degrees of freedom of the two edge nodes (see following sec-
tion).  

Figure 4.4  The three node Mindlin-type finite element: (a) nodal degrees of freedom 
and (b) area coordinates of the triangular element.   
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For faster computation and programming convenience, the interpolated displacement 

fields  are expressed in matrix format: 

  (4.14) 

  (4.15) 

where  is the displacement vector and  the shape function matrix at node . 

Discretized generalized strains 

Substituting the previous displacement fields (eq. 4.8, 4.9, 4.13) into the equations 4.5-4.7 
yields the generalized strains for membrane , bending  and shear deformations. In 
the following expressions, the indices ( ; ) indicate the first order derivatives according to 

 and . 

 

 

(4.16) 

where  and  are the element and nodal generalized strain matrices. The later can be 
expressed in terms of membrane, bending and shear contributions  

  (4.17) 
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(4.18) 

The explicit expressions for the generalized strain matrices can be found in Appendix B.  

The resulting generalized membrane and bending strains (eq. 4.19 to 4.20) are constant, 
which is consistent with the condition of a constant in-plane state of strain for the layered 
EPSF approach.   

 

 

(4.19)

(4.20)

(4.21) 

The shear deformations  and  are linear functions on  and  respectively, see Ap-
pendix B for the explicit expressions. For the OP element (section 4.2.3), the shear defor-
mation must be expressed along the element border, which leads to the following expres-
sion: 

  (4.22) 

where  is the tangential direction of the -th element side with nodes  and ,  and  
are the tangential rotations and  and  the transverse displacements at the edge nodes. 
The entire derivation of the expression for  can be found in Appendix B. 

The shear deformation along the element border  is constant and entirely defined by the 
degrees of freedom of the two edge nodes. The chosen interpolation function for the trans-
verse displacement field thus respects the condition of constant shear deformation at the 
element borders and continuous shear deformation between elements.  

Layer strains 

The ML-EP finite element is divided into  concrete layers of constant thickness. Each lay-
er  is defined by the planes  and  with . The state-of-strain in the 
layer is evaluated at the layer centre .  
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The in-plane state-of-strain in each layer  is then computed from the generalized mem-
brane strains and the element curvatures: 

  (4.23) 

Due to the generalized bending strains (curvatures), the in-plane strains vary throughout 
the element thickness and with it the principal strain directions. Consequently, the princi-
pal strains and directions are computed individually for each layer: 

 

 

(4.24) 
 

(4.25) 

where  is the direction of the first principal strain  relative to the -axis and  is the 
second principal strains with .  The principal strain vector  is obtained from the 
in-plane strains by means of the transformation matrix  of the concerned layer, where 

 and . 

Constitutive relationship and layer stresses 

The constant state of strain in each layer allows determining the corresponding plane state-
of-stress according to EPSF method by [Fer07] in which it is assumed that the principal 
strain directions coincide with the principal stress directions.  

The principal stresses in the layers are thus computed directly from the principal strains 
using the elastic-plastic material law for concrete as defined in section 2.4.1. The concrete 
compressive stresses are limited to the effective concrete compressive strength 

 of the layer and the tensile strength is neglected. The concrete strength reduction 
factor  is evaluated separately for each layer and each principal direction. The formula-
tion by Vecchio and Collin [Vec86] presented in equation 2.25 is used.    

  (4.26) 

The in-plane concrete stresses  in the global -  axes are obtained by using the previous-
ly defined transformation matrix  (eq. 4.25). 

  (4.27) 
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Element nodal forces 

The nodal forces that result from the stress fields in the concrete layers are determined in a 
similar way as in the plane EPSF method by Fernández Ruiz and Muttoni [Fer07]. The con-
tribution of each layer to the nodal forces is evaluated in the principal stress directions and 
then transformed to the global -  axes (fig. 4.5a-c). In a second step, this layer forces are 
integrated (by summation) over the element thickness in order to compute the element 
nodal forces (in-plane) and moments (fig. 4.5d-e). 

The forces in a layer  at a node  are computed in the principal stress direction of the layer 
( ) and are designated by  and . Since it has been assumed that the stresses are con-
stant over the layer height, the forces are directly obtained from the stresses as follows: 

 

 

(4.28)
 

where  is the thickness of layer ,  and  are the lengths of the element sides 
adjacent to node  and the angles  and  are the orientation of the element sides  and 

 relative to the x-axis., see figure 4.5a-c.  

Figure 4.5  Computation of nodal forces in the ML-IP element: (a) first principal 
stress in a layer , (b) projection of the element side lengths in the principal stress di-
rection; (c) nodal force contributions of layer , (d) layer forces in global coordinates 
and (e) resulting element nodal forces and moments.       
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The layer forces at each node are then expressed in the global coordinates (fig. 4.5d): 

  (4.29) 

where  is the second transformation matrix of the layer  with  and 
. 

The in-plane nodal forces  and  and the out-of-plane nodal moments  and  are 
obtained by summating the in-plane layer forces  over the element thickness (fig. 4.5d-
e). Note that due to plane stress state in the layers, the ML-EPSF element does not allow 
computing out-of-plane nodal forces with this procedure, .   

 

 

 
(4.30) 

 
 
 
 

(4.31) 

The element nodal forces  that result from the element nodal displacements  are 
assembled in the global force vector . 

Element stress resultants 

The stress resultants of the concrete ML-EPSF finite element can be computed directly from 
the plane state-of-stress in the layers . The membrane forces  and bending forces  
are defined by: 

 

 

(4.32) 
 
 

(4.33) 

4.2.3 Out-of-plane concrete element 

The out-of-plan (OP) concrete element (fig. 4.1) is thought to be a complement to the ML-IP 
element. The ML-IP element, due to the plane stress condition, transfers only in-plane forc-
es and constant moments. However, in order to be able to model structural elements sub-
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jected to out-of-plane shear forces and varying bending moments, the ML-IP element needs 
an "extension" which is the OP element. The role of the out-of-plane element is thus to 
complete the set of internal forces of the ML-IP element by out-of-plane shear forces. 

Principle  

The OP element is designed to be used together with the ML-IP element in order to model 
a typical membrane and bending behaviour with moderate out-of-plane shear load (non-
governing for the failure mode). Figure 4.1c schematically illustrated the principle.  

The basic idea is that the bending moment is computed using the ML-IP element and that 
the out-of-plane shear force is obtained from the OP elements. The transverse bending 
moment computed from the ML-IP element can be considered as the average moment of a 
linear moment diagram. The OP element provides the transverse shear force resulting from 
the shear deformation. In order to equilibrate the element and to obtain consistent internal 
force diagrams for bending and shear, the OP element additionally carries a linearly vary-
ing bending moment whose gradient counterbalances the out-of-plane shear force and 
whose average is equal to zero. 

The OP elements are beam-like elements that are placed along each border of the triangular 
ML-IP element, figure 4.1b. They deform identically to the ML-IP element border they are 
connected to, which means that they develop a constant curvature and a constant trans-
verse shear deformation. The element constitutive relationships eventually lead to longitu-
dinal bending moments (in the element axis) and vertical shear forces (transverse to the 
ML-IP element plane) at each element node, figure 4.1a. 

Displacement field and discretization 

The out-of-plane shear element is a beam element with two nodes and two degrees of free-
dom per node: out-of-plane displacement  and rotation , see figure 4.2c. The element 
formulation is based on the Timoshenko theory, which is the equivalent of the Reissner-
Mindlin plate theory (section 5.2.1) for beam elements.  

In the present development, the shear deformations provided by the Timoshenko beam 
theory is considered as an auxiliary degree of freedom for the interpolations of the dis-
placement fields. It decouples the slope of the element axis from the rotation of the axis 
normal (figure 4.3b), which then allows to impose a constant curvature to the transverse 
displacement field (condition of the ML-IP element) for any combination of nodal dis-
placements ( ) as represented in figure 4.2c. 

The formulation of the out-of-plane element bases on the following assumptions:  
• The shear deformation is constant along the element axis. 
• The curvature is constant along the element axis. 
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• The element deformation is identical to the deformation of the ML-IP element bor-
der it is connected to. 

The condition of constant curvature  leads to a linear variation of the rotation of the nor-
mal along the element axis. It can be expressed as a function of the nodal rotations  and 
the element length . 

  (4.34) 

The definition of the element slope ( ) and the condition of constant shear 
deformation  along the element axis thus allows expressing the transverse displacement 
field as follows: 

  

 

(4.35) 

The displacement fields according to the previous equations ensure the continuity between 
the OP element and ML-IP element because they are identical to the displacement of the 
ML-IP element borders. Indeed, the interpolations functions of the ML-IP had been chosen 
to fulfil the same conditions (constant curvature and constant shear deformation along the 
element border that are entirely defined by the degrees of freedom of the two edge nodes).  

The OP element displacement fields can thus be expressed in a similar format as for the 
ML-IP element (eq. 5.8 to 5.15) by replacing the shape function of the triangular element in 
area coordinates by the linear shape function of a beam element in natural coordinates , 
figure 4.6a.  

  (4.36) 

In the local element axes the discretized displacement fields are given by: 

  (4.37) 

Similarly to the equations 5.13, the interpolations function can be expressed as a function of 
the nodal rotations  and  in the global coordinate system by substituting 

, where  is the angle between the OP element axis  and the  axis, 
figure 4.6b.  
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  (4.38) 

  (4.39) 

with ; ; ;  for . 

Generalized strains 

The shear deformation and the curvature of the OP element are computed according to the 
Timoshenko beam theory (  and ). In the local coordinate sys-
tem, the values can be read directly from the displacement functions in equations 4.34 and 
4.35.  

  (4.40) 

The shear deformations and the curvature are identical to ML-IP element deformations 
along the borders, see for instance in equation 4.22. 

For convenience reasons, the finite element method computes the curvature and shear de-
formation directly from the nodal displacement vector expressed in the global coordinate 

system . From equations 4.38 and 4.39, the following generalized 
strain vector for the OP element is obtained, where  is the generalized strain matrix at 
node : 

Figure 4.6  Two node out-of-plane element: (a) linear shape functions; (b) local and 
global coordinate system (c) equilibrium of internal forces; (d) assumed internal force 
diagrams and (e) nodal forces of the finite element.     
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  (4.41) 

  (4.42) 

Constitutive relationship for transverse shear 

The shear force is computed according to the Timoshenko beam theory using the shear 
deformation from equation 4.40 respectively 4.41. 

 (4.43) 

In the present work, it is assumed that the OP finite element behaves elastically. This hy-
pothesis is a strong simplification of the actual behaviour of concrete elements, but it is 
acceptable in the context of the proposed finite element method that focuses on the mem-
brane transverse bending interaction (ML-IP element). The OP element is used to represent 
variations of the transverse bending moment along a structural element but not to model 
out-of-plane shear failures. Nonetheless, the constitutive relationship of the OP element 
might be enhanced in a future research project to account for such failure modes. 

The shear modulus  and the reduced area  of the OP element are thus determined ac-
cording to the theory of elasticity: 

 

 

(4.44) 
 

(4.45) 

The height  of the OP element is equal to the average thickness of the neighbouring ML-IP 
elements. The width  represents the contribution of the connected ML-IP elements to the 
transverse shear stiffness in the direction of the OP element axis. It is estimated as follows: 

  (4.46) 

where  is the area and  the perimeter of the -th connected triangular ML-IP ele-
ment. The OP element is either connected to one ( ) or two ( ) ML-IP elements 
depending if it is located on the border (free edge of a structure) or in the FE model. 

Equilibrium condition 

In order to satisfy the equilibrium of internal forces, the OP element must carry a linearly 
varying bending moment. The total moment variation  over the element length  is 
computed on the basis of the moment equilibrium condition (fig. 4.6.c):  
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 (4.47) 

It is assumed that the average moment of the element is zero which leads to a moment of 
 on both ends of the OP element (fig. 4.6d).  This choice is justified by the fact that 

the OP element is not supposed to contribute to the average bending moment of the com-
posed elements (ML-IP + OP), but only to equilibrate the internal forces. The average bend-
ing moment of the composed elements is computed by the non-linear ML-IP elements. 

Figure 4.7 illustrates the behaviour of the OP element and the resulting internal forces dia-
grams for three cases of nodal displacements: a general case leading to a combination of 
shear and bending deformations ( ) and the two extreme situations of pure 
shear ( ) and pure bending deformation ( ). 

In case of pure shear deformation, the curvature is zero which leads to no internal forces in 
ML-IP element. The overall internal forces diagrams are thus entirely defined by the OP 
element. In case of pure bending deformation, the OP element does not contribute because 
the shear deformation is zero. The shear forces and the moment variation is equal to zero, 
the constant moment is thus directly obtained from the ML-IP. If both, shear and bending 
deformations exist, the resulting internal forces are a combination of the two elements: the 
average bending moment is provided by the non-linear ML-IP element, the out-of-plane 
shear forces and the moment variation by the OP element.  

The combination of these two finite elements is thus able to account for situations with 
constant out-of-plane shear and linearly varying bending moments as well as pure bending 
behaviours.  

Figure 4.7  Schematically illustration of the behaviour of the OP element and the re-
sulting internal forces in case of pure shear deformation (left), pure bending defor-
mation (centre) and a general case of bending and shear deformation (right). 
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Stiffness matrix and nodal force vector 

The previous developments allow expressing the local force vector  of the OP element 
(fig. 4.6e): 

  (4.48) 

In order to assemble the global force vector of the finite element model, the element forces 
have to be expressed in the global coordinate system. Instead of first computing local ele-
ment forces and then transforming them, they can be obtained directly from nodal dis-

placement  using the stiffness matrix in  which is obtained as 
follows: 

  (4.49) 

where  (eq. 4.42) is the generalized strain matrix for the shear deformation. The latter is 
already expressed in the global coordinate system.  

The element nodal force vector  of the OP element is then given by: 

  
 

(4.50) 

During the solution procedure, the element nodal forces in  are assembled into the 
global force vector. 

4.2.4 Rebar element  

The reinforcing bars of the reinforced concrete are modelled with separate finite elements 
than for concrete. The reinforcement is modelled using bar elements with two nodes and 
two degrees of freedom per node (see figure 4.1a and 4.8a). The two element nodes lie in 
the same plane as the nodes of the ML-IP element (middle plane). In order to represent the 
rebars with their actual position inside the reinforced concrete section and to account for 
their contribution to the bending resistance, the finite bar element includes an additional 
parameter for the eccentricity of the rebar relative to the middle plane. Consequently, the 
bar element carries axial forces and bending moments. As in [Fer07] the dowel action that 
can develop in reinforcing bars is neglected, thus the finite element carries no transverse 
shear forces.  
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The behaviour of the bar element is governed by an elastic-plastic material law for steel. 

Displacement field and discretization 

In the local element axes the discretized displacement fields are given by: 

  (4.51) 

where  are linear shape function for beam elements (eq. 4.36),  the nodal displacement 
and  the nodal rotations in the element axis direction ( ). The interpolation functions can 
be expressed in terms of the nodal displacements ( , ) and rotations ( , ) in the glob-
al coordinate system. 

  (4.52) 

  (4.53) 

with  and , where  is the element length and  
the angle between the element axis  and the global  axis (same definition as for the OP 
element fig.4.6b). 

Axial deformation and generalized strains 

The axial deformation of the rebar element  is directly obtained from the nodal displace-
ments in the local reference systems, figure 4.8: 

  (4.54) 

where  is the element length and  is the eccentricity of the bar relative to the element axis 
defined by the two element nodes. The eccentricity allows to position the bar element so 
that it represents a reinforcing bar with its actual position in the thickness of the reinforced 
concrete element.  

Figure 4.8  Finite bar element for reinforcing bars in concrete: (a) two-node element 
with four degrees of freedom (in local coordinate system) and (b) element defor-
mation with constant axial strain.    
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The element deformation can as well be expressed in terms of the element longitudinal 
deformation at the reference plane  and the bending deformation . These generalized 
strains can be obtained directly as a function of the nodal displacement in global coordi-
nates  by derivation of the displacement fields  and  in equation 4.52.  

  (4.55) 

  (4.56) 

with  and  for . 

The transformation between the axial deformation  and the generalized strain matrix  is 
performed using the transformation matrix  such that: 

  (4.57) 

Constitutive relationship 

The rebar element is governed by an elastic-plastic material law as in [Fer07] and has al-
ready been presented in section 2.1.4. The element stress  is thus obtained from the ele-
ment axial deformation as follows: 

  (4.58) 

where  is the yield strength,  and  the modulus of elasticity and the hardening modu-
lus for steel. If no hardening modulus is specified by the user, it is set to the default value 

 in order to improve the convergence of the non-linear computation.  

Nodal forces 

The element nodal forces are composed of the axial forces  and  and the bending 
moments  and , figure 4.1a. It is assumed that the stress is constant over the bar area 

 and the element length such that the element force vector in local coordinates is given 
by: 

  (4.59) 
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The element force vector in the global -  coordinate system  is obtained directly from 
the element stress using the following expression: 

 
 

 

(4.60) 

where  is the generalized strain matrix from equation 4.55 and  the transformation ma-
trix defined in equation 4.57. 

4.3 Modelling 

Model geometry and materials 

The proposed finite element method allows investigation plane reinforced concrete ele-
ments using flat shell elements for the concrete (ML-IP + OP element) and separate bar el-
ements for the reinforcement. In order to build the finite element model, the middle plane 
of the structural element is first discretized using of a triangle mesh. The geometry of the 
mesh has to account for the in-plane position of the reinforcement and varying material 
and/or geometrical (thickness) properties of the structural element. Additionally, in order 
to reduce the effect discretization on the final results, the mesh should be as regular and 
homogeneous as possible (element size and shape) and avoid preferential directions for the 
triangle orientations. This is especially important for cases where out-of-plane loads are 
applied. Section 4.5.2 presents further details on the mesh sensitivity of the proposed FE 
method.  

The mesh is then used to determine the nodes and the elements of the finite element model. 
Each mesh triangle is converted into a three-node concrete ML-IP finite element for which 
the thickness ( ), the number of layers ( ) and the material properties ( , ) have to be 
defined. The out-of-plane (OP) concrete elements are added automatically along the ML-IP 
element borders. Their geometric and material properties are computed from the neigh-
bouring ML-IP elements as presented earlier. The reinforcement is introduced in a separate 
step using two-node rebar elements that are added into the existing FE model of concrete 
elements (no additional nodes are created). For each rebar element the reinforcement area 
( ) and the material properties have to be defined ( ,  and possibly ).  

Before the computation, the nodes and elements of the finite element model are numbered 
and stored in matrices. Each node is defined with a unique node number and its global -  
coordinates (all nodes lie in the plane ) that are stored in the nodal matrix. For each 
type of finite elements (ML-IP, OP, Rebar), a separate element matrix is created that con-
tains the element number, the number of the nodes defining the element as well as the ge-
ometrical and material properties.  
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The number of nodes in the FE model ( ) defines the total number of global degrees of 
freedom ( ) of the model. Each node having five degrees of freedom ( , , , , ), 
the total number of global degrees of freedom is given by , which defines the 
size of the FE problem to solve. Each nodal degree of freedom has an individual 

number that is required to assemble the global force vector , the global displacement 
vector  and the stiffness matrix of the equilibrium condition .  

External loads and boundary conditions 

The external loads acting on the structural element are introduced into the FE model by 
means of nodal forces. In-plane forces  and , out-of-plane forces  and bending mo-
ments  and  can be applied to every node . Theses external loads are stored in the 
load vector  as follows:  

  (4.61) 

The kinematic boundary conditions, as for example supports and symmetry axes, are ap-
plied by imposing zero translation and/or rotations at the concerned nodes.  

4.4 Method of solution 

Owing to the nonlinear nature of the problem, the unknown nodal displacement values  
are required for the determination of the material stiffness matrixes. Consequently, a direct 
solution of the finite element problem in form of  is not possible. As such, an itera-
tive secant stiffness procedure is adopted. The full load is applied to the model and the 
iterative procedure is repeated until the solution has converged within a predefined toler-
ance or a maximum number of iterations has been performed. Convergence is evaluated 
using the difference between the applied and the computed nodal forces (residual forces) of 
the current iteration step. 

4.4.1 Solution algorithm 

The solution of the non-linear FE problem is based on a secant stiffness approach with up-
dated stiffness matrix at every iteration. The different steps of the algorithm are illustrated 
in the flowchart of figure 4.9. 

For a given displacement  at iteration step , the global nodal force vector  is comput-
ed. The nodal force vector is established by evaluating the nodal forces of each finite ele-
ment using the formulations presented earlier (section 5.2). The element deformations are 
determined from the element nodal displacement vector  and then introduced into the 
non-linear constitutive models for concrete or steel. The resulting internal stresses are inte-
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grated to obtain the element nodal forces , which are then assemble into the global for 
vector  of the current iteration.  

In order to determine if an acceptable solution of the problem has been found, the comput-
ed nodal forces  are compared to the applied external forces . The residual forces 

 are used to estimate the error of the current solution, which is then checked 
against the convergence criterion (see section 4.4.3 for the definition of the error and the 
convergence criterion). If the convergence criterion is fulfilled, the iterative procedure has 
converged and no further iterations are required. In this case, the reaction forces and the 
stress resultants of each element are evaluated based on the current (last) displacement 
field. However, if the convergence is not yet reached, the current displacement vector  
has to be adjusted in order to improve the solution and the model has to be re-evaluated. 

The displacement vector for the next iteration is given by . The displacement 
increments for each degree of freedom are computed as follows: 

 (4.62) 

where  is the force increment that is required to approach the exact solution 
( ) within the next iteration and  is the global secant stiffness matrix of the mod-
el. Due to the non-linear constitutive models for concrete and steel, the coefficients of the 
secant stiffness matrix depend on the current state-of-strain (i.e. the displacement vector 

) in the elements and are thus updated at every iteration.  

Figure 4.9  Adopted iterative solution procedure for the non-linear finite element 
problem: (a) schematic representation of the secant stiffness approach and (b) 
flowchart of the numerical steps.  
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The non-linear FE model is then evaluated for the new displacement vector. The resulting 
nodal forces  are again compared to the applied forces  and the convergence criterion 
is examined. This procedure is repeated until convergence is reached or the maximum 
number of iterations has been performed. 

4.4.2 Global stiffness matrix 

The global secant stiffness matrix is evaluated based on the current deformation of the 
model, which allows thus to consider the actual state (elastic or plastic) of the different con-
crete and steel elements. 

Due to the non-linear nature of the problem, the secant stiffness matrix is determined col-
umn by column. For this, one degree of freedom ( ) of the current displacement vector  is 
increased by a very small displacement  and the FE model is re-evaluated for the new 
increment nodal displacements .  

 (4.63) 

The resulting nodal forces  are then compared to the current nodal forces  (not incre-
mented) to determine the coefficients of the secant stiffness matrix of the -th degree of 
freedom (column  of ).  This procedure is repeated for every degree of freedom in the 
model until the entire secant stiffness matrix is defined. 

 (4.64) 

 (4.65) 

The incremented nodal forces  are computed assuming elastic secant stiffness constitu-
tive relationships for the materials. The secant moduli of elasticity of each concrete layer 
and every rebar element are determined from the current deformations and stresses (at 
iteration ): 

 (4.66) 

It was observed that this assumption leads to a little slower (more iterations required) but 
generally more stable convergence than in the plane EPSF method of [Fer07].  At the same 
time, it reduces the computation time of the secant stiffness matrix that requires evaluating 
the entire FE model  times at every iteration. 

4.4.3 Error measurement and convergence criteria 

Error of the finite element model 

The proposed iterative non-linear finite element method might lead to solutions that are 
not in equilibrium with applied nodal forces (insufficient iterations, load higher than the 
resistance of the reinforced concrete element etc.). In order to estimate the error of the solu-
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tion the residual forces of the model are normalized by the external forces. This procedure 
is similar to the method used in the plane EPSF method [Fer07] which has shown satisfying 
results in the past.   

To avoid normalizing values with different units (for instance MN/MNm), two distinct 
error measures for nodal forces  and nodal moments  are computed: 

  (4.67) 

where  are the nodal forces predicted with FE method, R the predicted reactions forces 
and  the loads acting on the model. For each error measure, only the corresponding 
terms, moments  or forces , of these vectors are used. 

Convergence criteria 

The previous error measurements are used to establish a convergence criterion for the iter-
ative the Newton-Raphson solution procedure. 

The implement convergence criterion has two separate conditions: the error of the current 
iteration  has to be smaller than a predefined tolerance (for instance ) and it has 
to be decreasing (or be stable) during the last iterations. These conditions have to be ful-
filled by the two error measurements  and . 

     and     (4.68) 

The reason for the first criterion is obvious. The second criterion however is not strictly 
necessary if the first one is already satisfied; nonetheless it is implemented to increase the 
confidence in the obtained solution (stable solution). Indeed, with plane EPSF method it 
had been observed that the error does not always decrease monotonically and is highly 
varying from one iteration to another (oscillating), such that it is not obvious to decide if it 
decreasing or increasing (see [Mut16]). In most cases, the second criterion will not be de-
terminant, since the convergence of the proposed method is significantly more stable than 
for the plane EPSF method (see example in figure 4.10b).  

Additionally, a divergence criterion is implemented that interrupts the computation if the 
error is such that no solution fulfilling the global equilibrium condition can be found. It is 
assumed that if the error exceeds the value of 2.0 during the last 20 iterations, the computa-
tion has diverged.  

Depending on the number of iterations chosen to evaluate the stability of the convergence 
(for instance the 30 last iterations) a high number of computations might by necessary be-
fore the convergence criterion. In order to avoid an infinite loop, a maximum number of 
iterations is predefined by the user, typically . 
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The proposed number of iteration for convergence (30 last iterations) and divergence (20 
last iterations) have led to stable and satisfying results for the investigated cases but might 
need to be adjusted depending on the complexity of the model or the computational speed. 
Nonetheless, the value of the final error, its evolution during the iterations and the global 
equilibrium of the model (reactions versus loads), should always be examined at the end of 
a computation. 

Apart of the previous convergence criteria that is based on the residual forces, many other 
methods can be found in the literature. A common method is to examine the change in 
deformation (nodal displacements and rotations) from one iterations to the other, as for 
instance used by M.-A. Polak in [Pol93]. It has been tested with the proposed finite element 
method but it did not lead to substantial improvements in the results or in the convergence 
of the finite element problem. 

4.5 Benchmark and validation 

The verification of the proposed finite element method is performed in several steps: in-
plane behaviour, out-of-plane behaviour in case of constant moment and in case of out-of-
plane force and eventually a comparison to experimental results of reinforced concrete 
elements subjected to in-plane and out-of-plane loads.  

Since the proposed multi-layered finite element method resides on the plane EPSF method, 
the in-plane behaviour of the two methods is identical. Thus to verify the implementation 
of the finite element code and to examine the solution algorithm, the numerical results of 
several reinforced concrete elements subjected to in-plane loads are compared to the plane 
EPSF predictions. No additional benchmark tests are performed to validate the in-plane 
behaviour because it has already been extensively investigated in the past ([Fer07, Mut16]). 

The out-of-plane behaviour, under constant transverse bending and under out-of-plane 
shear load, is first verified by comparing the numerical results to simple benchmark prob-
lems for which analytical solutions are known. This study shows that the proposed method 
can be a little sensitive to modelling parameters such as the number of concrete layers, the 
element size and the meshing pattern. Some general recommendations for appropriate 
modelling are provided. 

Eventually the behaviour of the proposed FEM is compared to experimental tests on the 
panel elements subjected to a combination of in-plane and out-of-plane loads.  

4.5.1 Convergence and code verification 

The code implementation and the solution procedure of the non-linear finite element 
method are validated by comparing the behaviour under in-plane load to the predictions 
provided by the plane EPSF method.  
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The validation is performed on reinforced concrete elements from the literature: six panel 
elements subjected to uniform in-plane load (pure shear, shear and compression, shear and 
tension) by Vecchio and Collins [Vec82] and two beams tested in three-point bending 
(beam A1 by Vecchio and Shim [Vec04] and beam N1-N by Yoon et al. [Yoo96]). These el-
ements have been chosen to test the behaviour of FEM in case of uniform (panels) and non-
uniform (beam) stress fields, as well as under different failure modes: ductile failures with 
yielding of reinforcement and non-ductile failure governed by crushing of concrete.  

The main characteristics of the models are shown in figure 4.10a and table 4.1. In order to 
compare the results, the finite element models of the beams and panels are exactly identical 
(mesh, material, geometry) for both methods. In the multi-layer FEM, the ML-IP elements 
are modelled with 20 layers and the reinforcement is represented with its actual position in 
the element thickness. These are the only differences to FE models of the plane EPSF meth-
od.  

The summary of the results in the table 4.1 shows that the predicted failure loads for the 
panel and beam elements are quasi identical and that the failure modes are consistent with 
the test observations. Only minor differences between the two methods are observed when 
comparing stresses and strains. They mainly result from the residual error in the model. 
Indeed, the proposed solution method generally leads to smaller residual errors (see fol-
lowing paragraph). But on the overall, the predicted stress fields are identical, thus the im-
plemented FE code is working properly.  

Since identical solutions are obtained with both methods, it can as well be concluded that 
the implemented solution algorithm for the non-linear FE problem is working correctly. 
The evolution of the error during the solution procedure confirms this. Indeed, in the case 
of uniform stress fields (panel elements) or for small loads (significantly smaller than the 
failure load) the FEM converges rapidly to a solution (error  within less than 50 iter-
ations). When the load approaches the failure load, crushing of concrete or yielding of rein-
forcement yields larger deformations in the model and a higher number of iterations is 
required. It was as well observed that the method converges in a more stable manner as the 
plane EPSF method (see fig. 4.10b). This generally leads to smaller residual errors and 
greatly helps to predict whether a computation is diverging or converging, since the trend 
is clearly visible. The difference between the two methods mainly results from the way the 
stiffness matrix is computed and in particular from the assumption to use a secant stiffness 
approach for the force increments. 

From the previous observation it can thus be concluded that the finite element code is im-
plemented correctly and that the solutions procedure is efficient.   
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Figure 4.10  Validation of the ML-EPSF method for plane stress fields: (a) FE model 
and stress field for beam A1 [Vec04] at , beam N1-N [Yoo96] at 

 and panel elements PV [Vec82]; (b) convergence of the computation 
according to the plane EPSF and ML-EPSF method for beam N1-N for . 

Table 4.1 Resume of the failure load predictions according to the plane EPSF 
method  and the proposed multi-layer EPSF  for panels and beam sub-
jected to in-plane loads and three-point bending.   

Ref. Specimen Loading Reinforcement   failure mode 

 Panel ( )  [%]  [%]    

[Vec82] 

PV4 (1:0:0) 1.06 1.11 1.11 Y 
PV10 (1:0:0) 1.79 1.00 1.07 1.07 Y (y-dir.) + CS 
PV12 (1:0:0) 1.79 0.45 1.25 1.25 Y (y-dir.) + CS 
PV23 (1:-0.39:-0.39) 1.79 1.18 1.18 CS 
PV25 (1:-0.69:-0.69) 1.79 1.11 1.11 CS 
PV28 (1:0.32:0.32) 1.79 1.00 1.00 CS 

 Beam   [%]  [%]    
[Vec04] A1 3-pt. bending 0.1 1.94 0.94 0.95 SF 
[Yoo96] N1-N 3-pt. bending 0.08 2.8 1.06 1.07 DT 
 Y    - yielding of reinforcement; 

CS  - concrete shear failure; 
SF   - shear flexural failure; 
DT  - diagonal tension. 
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4.5.2 Benchmark for out-of-plane behaviour 

Since the proposed finite element method uses two types of finite elements to model the 
out-of-plane behaviour, the ML-IP element for bending and the OP element for shear, two 
distinct benchmark tests are performed to validate the behaviour of each of them. The ML-
IP element is validated on an element with a constant moment and the OP element on an 
element with constant shear force and linearly varying moment.   

Pure bending behaviour 

The bending behaviour of the proposed finite element method is tested on a cantilever el-
ement with a concentrated moment at the end, figure 4.11. The sensitivity of the method to 
the element size, the number of layers in the concrete ML-IP elements and the element 
slenderness are examined by comparing the results to the analytical elastic solution. 

The element size (mesh fineness  to ) does not influence the results (fig. 4.11a-
b), which is consistent with the expectations since the ML-IP element can exactly represent 
constant curvature deformations. Thus even a single row of elements ( ) would be 
sufficient in this case. Additionally, it is observed that the element thickness does not affect 
the results. Computations performed for a thick ( ) and a thin ( ) element 
lead to the exact same results, figure 4.11b. 

Figure 4.11b shows the deflection at the cantilever end for different number of layers . It 
can be seen that already for a small number ( ) the elastic prediction is very close to 
the analytical solution ( ). The numerical result converges rapidly to the 
exact solution when the number of layers is increased. In most situations the proposed fi-
nite element method will be used for reinforced concrete elements, in this case the influ-
ence of the number of concrete layers is even less important, see fig. 4.11b for . 

The moment curvature diagram in figure 4.11c illustrates the non-linear behaviour of the 
cantilever. It can be overserved that the two regimes for uncracked behaviour and crack 
development, as typically observed for reinforced concrete elements, are not predicted by 
the finite element method. Instead, the initial bending stiffness is identical to the cracked 
stiffness. This behaviour results from the hypothesis that the concrete tensile strength is 
neglected, which leads to cracking of the cross section as soon as tensile strains appear. 
Another consequence of this hypothesis is that the tension stiffening effect can as well not 
be taken into account. 

Close to the plastic bending strength, the moment-curvature diagram becomes non-linear 
as a consequence of the non-linear stress distribution in the concrete (upper layer start plas-
tifying). With increasing curvature and eventual plastification of the reinforcement the ex-
pected plastic bending strength is reached. 
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The finite element method is thus validated for cases of pure bending; the elastic and elas-
tic-plastic behaviour of reinforced cantilever are correctly predicted. The element size does 
not affect the results and the number of concrete layers has only little influence. Nonethe-
less a minimum number of concrete layers should be used in order to obtain a representa-
tive stress distribution in concrete, especially for non-linear computations. In general, it 
was observed that for most cases 20 layers already lead to satisfying results. 

Behaviour under out-of-plane loads and mesh sensitivity 

The behaviour of the FEM under out-of-plane load is tested on a cantilever element with a 
uniform vertical load along the cantilever end as illustrated in figure 4.13. First, the global 
equilibrium and the reaction forces are investigated for different meshing patterns and 
element sizes. Then the element deformations are examined. 

The global equilibrium of all the investigated cantilever elements is fulfilled, i.e. the com-
puted nodal reaction forces and moments are in equilibrium with the applied vertical forc-
es. Thus the combination of the multi-layer in-plane (ML-IP) element with the out-of-plane 
shear element (OP element) is behaving as expected and allows carrying out-of-plane loads 
by developing a bending-shear behaviour. 

Figure 4.11  Behaviour of a reinforced concrete cantilever element subjected to a con-
stant moment: (a) numerical and analytical solution for the elastic deflection; (b) 
convergence of maximum deflection as a function of the number of concrete layers 
and (c) moment-curvature diagram from non-linear FE analysis. 
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The distribution of the reaction forces along the support of the cantilever is however de-
pendent on the chosen meshing pattern, figure 4.12. Indeed, the meshing pattern directly 
influences the way the shear force is carried towards the support, because the OP shear 
elements that are placed along each segment of the triangular mesh can only carry the 
shear force in the direction of their axis. Thus, if the mesh has for instance diagonals with a 
preferential direction a certain amount of shear force will be deviated in this direction, 
which leads to a non-uniform distribution of the reactions forces (and stress resultants). 
This can for instance be seen in figure 4.12 (second column), where the reaction forces and 
moments increase in the direction indicated by the meshing pattern. 

In case of meshes with converging or alternating diagonals, as for instance in figure 4.12 
(third and fourth column), the distribution of the reaction force is significantly disturbed 
and not compliant with the expected results. These types of meshing patterns should be 
avoided in case of significant out-of-plane forces because the shear force is concentrated 
along certain axes, which could lead to unwanted and/or unpredictable behaviour, espe-
cially in case of non-linear computations.   

The most reliable results are obtained for cross shaped meshes (square or rectangular mesh 
with two diagonals) as in figure 4.12 (first column). The mesh does not provide a preferen-
tial direction for the shear forces, thus the reaction forces  and reaction moments  are 
uniformly distributed along the support.  

Figure 4.12  Distribution of the reaction forces along the support of cantilever ele-
ment subjected to a uniform vertical load at the end. Influence of the meshing pat-
tern, from left to right: cross shaped mesh, mesh with constant diagonals, mesh with 
converging and alternating diagonals.   
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At the two corner nodes of the support, a transverse moment  appears. This moment is 
the projection of the axial moments  of the OP elements that are not perpendicular to the 
support. At the remaining nodes along the support  because two OP elements with 
opposition orientation are connected to each node such that the projections of their axial 
moments  compensate. Consequently, for non-symmetric meshes, the transvers mo-
ments  appears along the entire support line.  

Figure 4.13a shows the influence of the mesh fineness (i.e. the element size) on the nodal 
reaction forces. The predicted nodal forces are normalized by the expected nodal forces 
assuming a uniform distribution. First, it can be seen that the reaction moments  are 
predicted very accurately, independently of the mesh fineness ( ). The pre-
diction for the vertical reaction forces  is a little less precise, but on the overall the error is 
small (very coarse mesh M=2: ) and the results rapidly tend to the expected 
values when the number of elements increases.  

All the cantilever models predict a slight concentration of the reaction forces at the two 
corner nodes (fig. 4.13a). The error is of similar magnitude then for the central nodes and 
rapidly decreases with the element size (  for M=10) so that the overall be-
haviour is not affected by this phenomenon. A similar observation can be made for the 
transverse moment  that localizes at the corner node;  is small compared to the main 
bending moment  and decreases rapidly with the element size. 

In many practical cases it is not possible to create a regular mesh with symmetrical ele-
ments in both directions (complex formwork, reinforcement etc.). If the mesh is for instance 
refined in one direction, such that the width to height ratio of all the triangular finite ele-
ments in the model increases or decreased by a similar amount, the results are generally 
not affected by the distorted shape of the triangles. The precision can even increase since a 
mesh refinement usually leads to smaller elements size and higher number of elements and 
thus more exact estimates of the out-of-plane reactions forces. Nonetheless, as for the plane 
EPSF method, aspect ratios higher than 1:3 should possibly be avoided in order to ensure 
good behaviour of the FE model in non-linear computations [Mut16]. Furthermore, abrupt 
changes of the element aspect ratio between different regions should be avoided because 
this disturbs the distribution of the transverse shear force and by this the overall behaviour 
of the element. Especially in case of non-linear computations with out-of-plane shear forces 
sudden changes in the meshing pattern should be avoided. 

As for the reaction forces, the precision of the predicted deflections and the deformations 
(curvature) improve with a finer mesh, figure 4.13b. The overall shape of deformed cantile-
ver is well predicted if sufficient elements are used, see figure 4.13c. However, depending 
on the plate thickness , the absolute value of the deformation can differ more or less 
significantly from the analytical value. Indeed, in the present example, the numerical de-
flection of a thin plate ( ) coincides well with the analytical value (
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), which shows that the proposed FEM has no shear-locking problems (artificial stiff-
ening of C0-type elements when ). However, for a thick plate ( ) the maxi-
mum deflection at the cantilever end is overestimated by 5% compared to the analytical 
estimation.  

Indeed, it is observed that the total shear deformation of the cantilever is significantly 
higher than analytically expected. Independently of the plate thickness, the shear defor-
mation converges to  (sufficient mesh fineness), which leads to the conclusion that 
the approximated shear stiffness of the OP elements (  in eqs. 4.44-4.45) is too small,  
thereby predicting higher deflections in thick elements (shear stiffness does not increase in 
the same proportion as bending stiffness when thickness increases). A more researched 
estimation of the shear stiffness could probably improve the predictions of the out-of-plane 
displacement. In the context of the present research it is however neglected since it has only 

Figure 4.13  Influence of the mesh fineness M (element size  1/M) and the element 
thickness ( ) in case of a cantilever element subjected to a vertical load at the end: 
(a) vertical reaction forces , main reaction moment  and transverse moment ; 
(b) maximum deflection and maximum curvature; (c) deflection and curvature along 
the cantilever axis.   
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little influence on the investigated behaviour that is governed by in-plane and bending 
deformations mainly. 

The overestimated deflection for thick elements does not compromise the convergence of 
the curvature. As it can be seen in figure 4.13b, the element thickness has no influence of 
the predicted curvature that converges to the analytical value when the mesh fineness in-
creases. For coarse meshes (M small) the maximum curvature is underestimated, which is 
normal because the ML-IP elements are constant curvature elements and can thus only 
represent the average deformation over the element length. In the present example the 
maximum analytical curvature, measured at the support ( ), is compared to the nu-
merical curvature measured in the ML-IP element closest to the support, but which repre-
sents the average deformation of a segment of size ( ). Consequently, the curvature 
obtained with FEM is smaller. But if the curvature is compared to the analytical value in 
the centre of the finite element ( ) both curvatures coincides, as it can be observed 
in figure 4.13c showing the numerical and analytical curvature along the element axis. This 
shows that the FEM precisely predicts the average analytical curvature and that the preci-
sion of the finite element result only depends on the number of discretization points used 
to represent the actual behaviour. The fact that a good precision of the predicted curvature 
is obtained with the proposed FEM is essential to ensure adequate behaviour for non-linear 
computations (bending stiffness depends on the curvature).  

The non-linear behaviour under out-of-plane forces is tested on the same cantilever ele-
ment with a reinforcement ratio of . Failure occurred by yielding of the bending 
reinforcement (fig. 4.14b, dark red) and crushing of concrete (fig. 4.14a, black) close to the 
support. The failure load corresponding to the plastic bending strength of the cross section 
at the support is very well predicted:  at the onset of yielding and 

 at ultimate state (with steel hardening), the corresponding moment curva-

Figure 4.14  Reinforced cantilever element subjected to vertical load at the end: (a) 
EPSF with concrete crushing in the top layer and (b) yielding of the bottom rein-
forcement at ultimate failure load ; (c) moment-curvature dia-
gram at the support. 
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ture diagram is shown in figure 4.14c. It seems as if the FEM predicts a slightly stiffer be-
haviour, but this is rather a matter of representation. In fact, the curvature that is used is 
measured at the element centre, whereas the moment is measured at the support. If the 
curvature is linearly extrapolated from the element centre to the support ( ), 
the predicted bending stiffness is quasi identical to the analytical cracked bending stiffness 
( ).  

To sum up, it can be said that the proposed finite element method is as well validated for 
elements subjected to out-of-plane loads. On the overall, the elastic and elastic-plastic be-
haviour is well predicted. However, in case out-of-plane forces, the method is sensitive to 
the mesh pattern and element size, but gives goods results if a regular cross shape mesh 
and a sufficient number of finite elements is used. The element thickness (slenderness) af-
fects the predictions for the out-of-plane deflections, but not the bending deformation (cur-
vature) such that bending failure modes can be correctly assessed.  

4.5.3 Validation with experimental tests 

Previous benchmark tests showed that for simple elements the proposed FEM predicts the 
plastic bending strength as it is typically used in the plastic design approach. However, to 
further corroborate the FEM, its ability to represent the non-linear behaviour of real rein-
forcement concrete elements is investigated by comparison to experimental data from the 
literature.  

To this purpose reinforced concrete shell elements subjected to combinations of biaxial 
bending and in-plane normal forces are investigated. At this state of the validation process-
es only elements without out-of-plane shear force are investigated. This load case, that is 
typical for shell structures, has however only be scarcely investigated in the past so that the 
number of available experimental data is very limited.  

A test series of four large-scale panel elements performed by Polak and Vecchio [Pol94] to 
study the effect of the reinforcement orientation and the presence of in-plane forces on the 
out-of-plane flexural behaviour is chosen to test the ML-EPSF method. A schematic repre-
sentation of the orthogonally reinforced concrete elements is given in figure  4.15a. In pan-
els SM1 to SM3, the reinforcement was placed parallel to the panel edges, whereas in panel 
SM4 it was placed with an angle of 45° to the edges. The loading cases were such that forc-
es were uniform throughout the panels and the in-plane and bending loads where applied 
in a constant ratio, see figure  4.15b,d. Specimen SM1 was tested in pure uniaxial bending, 
specimens SM2 and SM4 in uniaxial bending coupled with biaxial in-plane forces and spec-
imen SM3 in pure biaxial bending. The bending and tension forces are applied in-line with 
strong reinforcement direction ( -direction), except for panel SM4. For specimens SM1, 
SM2 and SM4 at the ultimate moment, the loading was terminated due to excessively large 
deformations but without any apparent signs of concrete crushing. In case of specimen 
SM3 a bending failure with yielding and concrete crushing in the direction of the higher 
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moment appeared. The skewed reinforcement layout of the specimen SM4 led to an appre-
ciably more non-linear behaviour as for the specimens with in-line reinforcement. Addi-
tionally significant force redistributions and crack reorientations were observed throughout 
the loading. 

The geometrical and material properties of the finite element models are summarized in 
figure  4.15a-d. The concrete is modelled with ML-IP elements of 25 layers and the elastic-
plastic constitutive law for concrete in compression uses the effective compressive strength 

 

Specimen 
  ( ) 

[MPa] 

(*) 
[%] 

 
[MPa] 

(*) 
[%] 

 
[MPa] Loading  

SM1 40 (47) 1.25 

425 

0.42 

430 

 
SM2 49 (62) 1.25 0.42  m 
SM3 45 (56) 1.25 0.42  
SM4 50 (64) 1.32 0.44  m 

(*)  - reinforcement ratio per layer  

 

Figure 4.15  Modelling of Polak’s [Pol94] four shell elements under combined biaxial 
in-plane loads and bending: (a) ML-EPSF finite element model; (b) loading patterns; 
(c) modelled boundary conditions and (d) material and loading parameters.  
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 (eq. 2.23, where  is the measured compressive cylinder strength) in order to 
ensure ductile behaviour of the high strength concrete. The reinforcement is modelled with 
its respective yielding strength and actual position in the depth of the element (four layers). 
The non-linear finite element analyses are performed for several loads levels until the ulti-
mate load is reached.  

Table 4.2 compares the predicted and observed moments at the onset of yielding of the 
reinforcement in  and  direction and the ultimate bending moments. Generally the yield-
ing moments correlate very well, with a mean experimental-to-numerical value of 1.02 and 
a coefficient of variation of 0.01. The corresponding stress fields are shown in figure 4.17. 
The ultimate moment capacities are somewhat underestimated (average: 1.12), especially 
for the two specimens with in-plane forces (SM2 and SM4). Note that in most cases the 
maximum deformation of the concrete in compression ( ) is governing the ultimate mo-
ment predictions. However, only for element SM3 (biaxial bending) concrete crushing was 
actually observed during testing.  

The limitation of the deformation of concrete is a choice that has been made to identify 
failure modes due to crushing of concrete. Indeed, in the proposed FEM excessively high 
concrete deformations can appear without that the computation diverges. This situation 
appears especially in cases of uniaxial or biaxial compression where the transverse strains 
are zero or negative. In this cases the concrete strength reduction factor is always equal to 
one so that the effective concrete compressive strength does not decrease ( ), 
even for very high axial deformations (elastic-perfectly plastic constative law, no concrete 
softening). Thus, in order to exclude solutions that might be in equilibrium with the ap-
plied loads but that have unrealistically high deformations, a maximum allowable concrete 
compressive deformation was fixed. In the present case it is set to , which is pro-
posed by code recommendations for concrete in bending (SIA262 [SIA13]) and is in agree-
ment with the concrete compressive tests performed during the experimental campaign by 

Table 4.2 Resume and comparison of predicted and experimental yielding and 
failure loads for panel tests performed by Polak and Vecchio [Pol94].      

Specimen 
Experimental  

[kNm/m] 
Predicted 
[kNm/m] 

Exp. / Pred. Ratio 
[-] 

         
SM1 437 477 429 465(*) 1.02 1.03 
SM2 302 421 284 337(*) 1.06 1.25 
SM3-X 435 488 429 478(*) 1.01 1.02 
SM3-Y 138 151 137 149 1.01 1.01 
SM4-X 160 

205 
160 

160 
1.00 

1.28 
SM4-Y 116 115 1.01 

   mean 1.02 1.12 
   COV 0.01 0.12 

(*)  - failure when outermost concrete layer reached ultimate deformation   
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Polak and Vecchio [Pol94].  

Consequently, loading was stopped when the ultimate deformation was reached in one of 
the concrete layers (generally the outermost layer on the bending compression side). In the 
case of panels SM1 to SM3 this condition was the determining factor. If higher concrete 
deformation were accepted, the finite element model can be loaded up to the experimental 
failure load. Compared to the experimental observations, where no concrete crushing was 
observed (SM1 and SM2), this assumption is maybe a little too unfavourable, but it leads to 
safe estimates of the ultimate bending moment for all of the investigated cases. 

Other factors might be contributing to the difference observed at the ultimate load. Ex-
tremely large deformations levels were applied in the test (several times greater than the 
yield limit) such that affects from strain hardening and the testing facility on the experi-
mental results cannot be excluded. Furthermore, it is difficult to simulate the same bounda-
ry condition in the finite element model as those of the shell element tester. In some cases 
(especially for SM4) this leads to perturbations of the stress field in the regions of the load 
introduction and the supports, see figure 4.17. These local perturbations of the stress field 

Figure 4.16  Comparison of experimental and numerical moment-curvature re-
sponses of four shell elements under combined biaxial in-plane loads and bending 
moments by Polak and Vecchio [Pol94]: (a) panel SM1, pure uniaxial bending; (b) 
panel SM2, uniaxial bending with biaxial in-plane forces; (c) panel SM3, pure biaxial 
bending and (d) panel SM4, uniaxial bending with biaxial in-plane forces  and skew-
directional reinforcement.       
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might induce an anticipated failure when the panel element enters a highly non-linear re-
gime caused by biaxial yielding of the reinforcement on the bending tension side. Especial-
ly in the case of the panel SM4, this seems to be the main reason why the element cannot be 
loaded beyond the point where yielding of the second reinforcement occurs. 

A more representative comparison of the numerical and experimental responses is made in 
the moment-curvature diagrams in figure 4.16. On the overall a very good correlation can 
be seen in the post-cracking and post-yielding phases. The actual behaviour in the pre-
cracking phase cannot be predicted with the proposed method since the tensile strength of 
concrete is neglected. Consequently, the bending stiffness in this phase already corre-
sponds to the cracked bending stiffness.  

For all the panel elements, the predicted cracked bending stiffness is very close to the ex-
perimental stiffness. Note that even for the panel SM4, where significant tension stiffening 
and load redistribution where measured, the overall behaviour is very well predicted by 
the FEM. Of course the tension stiffening effect cannot be accounted for in the model be-
cause the tensile strength of concrete is neglected. This leads to higher deformations in the 
crack formation phase, but once yielding of the reinforcement occurs, the actual behaviour 
is well predicted. 

Due to the reinforcement that is rotated by 45° to the loading direction in panel SM4, signif-
icant crack rotations were observed during the loading procedure. Just prior to yielding of 
the weak reinforcement ( -direction), the cracks were rotated by 8° from the direction of 
the applied tensile force. After yielding, the crack rotations became much more prominent. 
A very similar observation is made with the ML-EPSF method, if we assume that the crack 
direction can be approximated by the direction of the first principal strain (tensile strength 
being neglected and assuming that principal strain directions coincide with the principal 
stress directions, the crack direction is normal to the direction of the first principal strain). 
On average the predicted principal strain direction was rotated by 9° prior to yield and 
then increased up to 17° at the onset of yielding of the stronger reinforcement ( -direction), 
which correlates very well with the experimental observations. 

On the overall, it is found that the proposed non-linear finite element method models accu-
rately the response of shell elements subjected to a combination of biaxial in-plane and 
bending loads. The yielding moments are predicted with good accuracy and safe estimates 
were obtained for the ultimate moments.  
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Figure 4.17 ML-EPSF predictions for Polak’s panels [Pol94] at the onset of yielding 
of the strong reinforcement direction ( ): Stress field in the concrete for top, middle 
and bottom layers as well as top and bottom reinforcement layers. 
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4.5.4 Synopsis 

A summary of the main observations and findings made during the testing of the proposed 
multi-layered elastic-plastic stress field finite element method is presented hereafter: 

• The finite element code and the solution procedure are correctly implemented and 
the convergence of the non-linear computations is stable. 

• The non-linear behaviour of structural elements subjected to only in-plane loads is 
correctly assessed and sensitively identical to the plane EPSF predictions. 

• The non-linear behaviour of shell elements under combined biaxial in-plane and 
bending loads is predicted with high accuracy, capturing load redistributions and 
crack rotations. Excellent estimates of the yielding moments and safe estimates of 
the ultimate moments are obtained. 

• A simple benchmark test on a cantilever element with an out-of-plane load 
showed that the combination of the ML-IP elements with the OP elements suc-
cessfully transfers the internal shear and bending forces to the support. On the 
overall, the elastic and elastic-plastic behaviour was consistent with the analytical 
solutions.  

• For out-of-plane loads, the deflection is slightly influenced by the slenderness of 
the finite elements. However, no effect on the bending deformation (curvature) is 
observed, such that bending failure modes can be correctly assessed. 

• In case of out-of-plane shear loads the method is sensitive to the mesh pattern and 
element size but provides good results if a regular cross shape mesh and a suffi-
cient number of finite elements are used. 

• Little influence of the number of concrete layers on the overall behaviour is ob-
served. A minimum of 20 layers should though be used to obtain a representative 
stress profile in the concrete, especially in case of non-linear computations. 

On the overall it can be said that the proposed non-linear finite element method gives good 
predictions for the behaviour of reinforced elements subjected to in-plane loads and com-
binations of in-plane and out-of-plane bending loads. Acceptable predictions are obtained 
in case of out-of-plane loads on simple elements, if an appropriate meshing pattern is cho-
sen and the ultimate load is governed by a bending failure.  

More extensive testing of the FEM is required to validate its correct behaviour in case of 
more complex structural elements and load configurations. In particular, the behaviour 
under non-uniform stress fields, as in beams with transverse bending in the web, and ele-
ments with out-of-plane shear loads (slabs) has to be analysed.  
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Nonetheless, the fact that precise and safe estimates of the yield and ultimate moments can 
be obtained while making conservative assumptions for the concrete compressive strength 
and the admissible deformations (according to code recommendations) shows that the 
proposed ML-EPSF finite element method is a promising tool for the design of reinforced 
concrete elements subjected to the combined action of in-plane forces and out-of-plane 
bending moments. 
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Conclusion Chapter 5

In the present thesis several applications of the elastic-plastic stress field (EPSF) 
method to investigate plane reinforced concrete elements subjected to in-plane and out-of-
plane actions are developed and special attention was payed to the interaction of in-plane 
shear and transverse bending in beam webs.   

5.1 Summary and conclusions 

To establish consistent stress fields for combined membrane and transverse bending ac-
tions, a multi-layered EPSF (ML-EPSF) approach is established. It allows overcoming cer-
tain limitations of former models by providing static and kinematic compatible solutions 
that respect the plastic condition of the material and that lead to a licit mechanism at fail-
ure. Simultaneously it provides a detailed insight into the stress field that develops under 
the influence of a transverse bending moment, such as the distribution of concrete stresses, 
their inclination and the effective concrete compressive strength over the element thick-
ness. Additionally it accounts for the non-linear dependencies between concrete and rein-
forcement in the forces transfer action.  

1) Based on the ML-EPSF approach a sectional analysis tool to investigate the in-plane 
shear transverse bending interaction in beam webs has been developed. The ML-
EPSF panel element allowed for a detailed analysis of the phenomenological behav-
iour of the stress field, to identify parameters that play a major role in the overall 
interaction mechanism as well as to establish explicit interaction diagrams for the 
assessment of the ultimate resistance. 

2) Observations on the interaction mechanism that develops in a web segment led to 
propose a simplified verification method for beam elements in practice. The pro-
posed method uses the plane EPSF finite element method by Fernández Ruiz and 
Muttoni [Fer07] that predicts well the actual in-plane (longitudinal) behaviour of 
structural elements. The influence of transverse bending moment is considered in a 
simplified manner. 

3) The need for a consistent representation of the in-plane and out-of-plane static and 
kinematic behaviour of entire structural elements (internal forces redistributions 
between web and flanges, along the longitudinal axis) led to develop a more gen-
eral tool. The proposed non-linear finite element method (NL-FEM) for plane rein-
forcement concrete elements is based on the ML-EPSF approach and accounts for 
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in-plane (normal and shear) and out-of-plane (bending and shear) actions. The NL-
FEM allows studying the in-plane shear transverse bending interaction mechanism 
on the structural element level and provides exact solutions according to the theory 
of plasticity for in-plane and out-of-plane bending failure modes.  

The following paragraphs present a brief summary of the achieved results and main con-
clusions of the work.  

In-plane shear transverse bending interaction in beam webs 

By means of the ML-EPSF it could be shown that the actual effect of transverse bending 
moment on the in-plane shear resistance of beam webs is less pronounced than predicted 
by rigid-plastic (RP) models. Especially in the range of small transverse moments, which is 
probably the most important range in practical applications, it was observed that the shear 
resistance is significantly less affected. The model confirmed as well the general concept of 
the force transfer actions assumed in former models, which are that the compression field 
in the web shifts towards the bending compression side and that additional bending re-
sistance is activated by rearranging stirrup forces from the bending compression side to 
tension side. Additionally, Menn’s assumption [Men86] of a pure bending compression 
zone on the outermost face of the web in case of predominant transverse bending actions 
could be confirmed. However, the multi-layered analysis also points out that the assump-
tion of a constant stress field is a strong simplification of the actual behaviour. Indeed, it 
could be shown that the stress field is highly non-linear in the transverse direction (stress 
distribution, inclination, concrete strength reduction factor) and that it strongly depends on 
the intensity of the applied transverse moment, which is not considered in the RP models. 
In particular, it could be observed that the bending compression, apart from causing addi-
tional compression in the concrete, has as well a positive effect on the stress field inclina-
tion ( ) and the effective concrete compressive strength ( ) which reduces the loss of shear 
resistance caused by the transverse moment. 

In general, the ML-EPSF analysis allowed observing that the concrete strength reduction 
factor  plays a major role for the combined in-plane shear transverse bending resistance 
and that the RP interaction models make very conservative assumptions regarding this 
parameter. Indeed, the predicted reduction factors are generally higher, for pure shear but 
as well for moderate transverse bending moments, which sensitively increases the predict-
ed shear resistance in these cases. Furthermore, the variable nature of the reduction factor 
(a function of the transverse strain) and the kinematic compatibility conditions of the ML-
EPSF model allow establishing a continuous transition between pure in-plane shear and 
pure transverse bending behaviour, an issue encountered in most former models.  

Parameters that are found to have a decisive influence on the overall interaction mecha-
nism are the amount of shear reinforcement and the longitudinal deformation. High shear 
reinforcement ratios, such that , lead to a plateau in the interaction diagram indi-
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cating that small transverse bending moments have almost no influence on the shear re-
sistance. Indeed, it could be shown that in these situations, due to the reserve capacity of 
the shear reinforcement, small moments can be carried by changes in the stirrup forces 
only, while the stress field in the concrete is barely disturbed. Similar observations are 
made for asymmetric shear reinforcement layouts ( ). The longitudinal defor-
mation , which is an input parameter for the ML-EPSF analysis (not considered in RP 
models), has a non-negligible effect on the overall interaction. It is observed that a smaller 
axial deformation, like for instance in prestressed elements, reduces the sensitivity of the 
shear resistance to the transverse bending moment.  

Simplified plane EPSF verification method for beam elements with transverse bending 

moments 

The proposed simplified verification method provides safe estimates of the bearing capaci-
ty of beams subjected to transverse bending moments in the web and is conceived for engi-
neers in practice that are already familiar with EPSF finite element analysis. The advantage 
of this method, compared to the previous sectional analysis tool is that it directly accounts 
for the actual non-linear in-plane behaviour of the element, including redistribution of in-
ternal forces, local yielding etc. Additionally, the method does not require making assump-
tions on the stress field inclination and the concrete strength reduction factor, which are 
obtained automatically. The method combines kinematic and static consistent stress fields 
for in-plane actions with an equilibrium based approach to consider the effect of a trans-
verse bending moment in the web. The obtained predictions can thus be considered as en-
hanced lower bound solutions of the longitudinal bearing capacity.  

The validation by means of a comparison to experimental tests performed by Kaufmann 
and Menn [Kau76] showed that the method leads to safe but not overly conservative esti-
mates of the failure loads ( ). Failure modes are as well consistently predicted. 
The simplified verification method tends to be more conservative when failure due to con-
crete crushing is to be expected, as well as for higher transverse bending moments (light 
tendency). For the investigated beams ([Kau76]) the method predicts an average reduction 
of the bearing capacity of 7% in case of ductile failure modes (yielding of shear reinforce-
ment) and 25% when the concrete is governing. This indicates that the method might re-
quire some improvement, but more comparisons to experimental data are required to con-
firm the these observations. 

Influence of transverse bending moments in beam elements 

Investigations of the failure load of experimental beam elements ([Kau76]) by means of the 
plane EPSF lead to suggest that the effect of the transverse moment on the longitudinal 
bearing capacity of beams is almost negligible. This seems to be especially true for elements 
with ductile failure modes and sufficient redistribution capacity in the transverse direction 
of web (shift of the compression field and rearrangement of the stirrup forces), where an 
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average ratio of  was observed. Elements for which concrete failure is to 
be expected showed a small influence of the transverse moment on the bearing capacity, 

. The analysis led to suggest that there are internal force redistributions 
that develop in the non-linear regime (between web and flanges, along the element axis) 
which significantly contribute to counterbalance the effect of the transverse bending mo-
ment on the stress field and thereby reduce the influence on the longitudinal bearing capac-
ity.  

It can thus be concluded that in beam elements the effect of the transverse bending moment 
is less pronounced than what would be expected according sectional analysis tools. It must 
however be noted that previous observations are based on a very small number of experi-
ments and that more comparisons and test data are required in order to confirm if and un-
der which conditions the influence of a transverse bending moment in beams could indeed 
be almost neglected. 

Regarding the proposed analysis tools, it can thus be said that the ML-EPSF panel element 
provides valid and valuable information at a local level, this is however not always repre-
sentative of the overall behaviour of the entire structural element. The simplified verifica-
tion method in return is able to account for redistributions at the structural level (the entire 
beam is modelled), but the effect of the transverse bending moment is considered on a 
similar basis as in sectional analysis tools and thus the method provides rather conserva-
tive predictions.   

Non-linear finite element method 

The aim to extend the field of application of the elastic-plastic stress fields and the need for 
an appropriate tool to investigate the actual effect of transverse bending on the bearing 
capacity of beams led to develop a non-linear finite element method for in-plane and out-
of-plane actions on reinforced concrete elements. This includes the development of three 
new finite elements, the finite element program with pre- and post-processing tools as well 
as a solution procedure for the non-linear problem. As in the plane EPSF FEM, concrete 
and steel are modelled by separate finite elements. The multi-layered in-plane (ML-IP) el-
ement for concrete is based on the ML-EPSF approach and is used in combination with out-
of-plane (OP) shear elements in order to account for transverse shear forces. Reinforcing 
steel is modelled by special bar elements that account for the actual position of the rebar in 
the element width.   

The validation of the proposed NL-FEM with respect to experimental test data showed that 
the non-linear behaviour of shell elements under in-plane loads and combinations of in-
plane loads and out-of-plane bending moments is predicted with high accuracy, capturing 
load redistributions and crack rotations. Excellent estimates of yielding moments and ulti-
mate loads are obtained. Regarding the behaviour in case of out-of-plane loads, elastic and 
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elastic-plastic analyses of a simple structural element provided good predictions, if an ap-
propriate meshing pattern is chosen and the ultimate load is governed by a bending failure. 

It can be concluded that the proposed non-linear ML-EPSF finite element method is a 
promising tool for the design as well as for the assessment of plane reinforced concrete 
elements that are primarily subjected to combinations of in-plane forces and out-of-plane 
bending moments. More extensive testing of the FEM is though required to validate the 
behaviour in case of more complex structural elements and load configurations. 

5.2 Outlook for future research 

To further develop the stress field methods in general and the proposed EPSF approaches 
in particular, as well as to improve the knowledge about the behaviour of beam-like ele-
ments subjected to out-of-plane actions the following topics could be of interest for future 
researches: 

• The analysis of experimental tests on beams with transverse bending moments 
showed that panel elements (numerical or experimental) are not always suitable for 
modelling the actual behaviour of the structural element. However, test on entire 
structural elements or beam-like elements with combined in-plane and out-of-plane 
actions are extremely scarce in the literature. More experimental data on structural 
elements are needed to assess the level of safety of the presently used and the pro-
posed assessment approaches as well as to get a clearer picture of the actual interac-
tion. The influence of following parameters should be studied more in detail: 
amount of shear reinforcement , asymmetric shear reinforcement , 
transverse moment ratio , varying transverse moment over the web height, 
web slenderness, influence of flanges, influence of prestressing and ducts.  

• Analyses performed on Kaufmann’s beams ([Kau76]) showed that elements with 
brittle failure modes are probably more sensitive to the influence of the transverse 
bending moment. Such situations are frequently encountered in the verification of 
older existing structures, in particular box-girder bridges, that have high levels of 
longitudinal prestressing and low shear reinforcement ratios. The longitudinal 
bearing capacity of such elements can often only be verified by means of refined 
analysis tools such as the EPSF method that yields stress fields with very low incli-
nations, but which simultaneously leads to potential brittle failure modes. It thus 
might be useful to study if such elements still have sufficient deformation capacity 
to account for the influence of the transverse bending moment and to what extent 
their longitudinal bearing capacity is affected by the latter.  

• The proposed simplified verification method for beams with transverse bending 
moments in the web leads to conservative estimates, especially in case of high con-
crete solicitations due to shear. The method could be improved by accounting for 
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the mostly beneficially effect of the transverse bending compression. It would in-
crease the average stress field inclination and the effective concrete compressive 
strength, which would lead to a less severe web width reduction  and thereby 
increase the predicted bearing capacity of the elements. This could for instance be 
achieved by applying, in the finite element model, vertical compression forces that 
represent the bending compression on the top and the bottom of the web.   

• Interaction of in-plane shear and transverse bending moments does not only occur 
in beam webs, but for instance as well in the deck slab of box-girder bridges. In the 
vicinity to the connection with the web, the slab is simultaneously subjected to a 
significant out-of-plane bending moment resulting from the external loads and to 
in-plane shear induced by bearing function of the web. Tests on panel elements by 
Polak [Pol94] showed that membrane actions can have significant influence on the 
bending resistances. Experiments on compression and tension flanges ([Bad77, 
Bac79, Eib88, Sch85]) showed as well non-negligible influence of the transverse 
bending moment on the in-plane shear resistance of these elements. It would thus 
be of interest to study the in-plane shear transverse bending interaction in these el-
ements by means of the proposed refined analysis tool. The ML-EPSF finite element 
method provides large flexibility for the element geometries and model parameters 
and has shown to provide good results, especially in case of combined in-plane and 
out-of-plane bending actions. 

• Further validations of the proposed ML-EPSF finite element method in case of out-
of-plane actions (especially shear) are still required and might lead to enhance the 
assumptions on the out-of-plane concrete finite element. This could be particularly 
interesting for ongoing research on the behaviour of flat slabs on linear or punctual 
supports subjected out-of-plane loads, for which an accurate estimation of the 
cracked bending and shear stiffness is important to correctly assess internal force 
redistributions that influence on the bearing capacity. 

• The proposed ML-EPSF finite element has been developed to investigate reinforced 
concrete elements by means of a two-dimensional representation of the geometry 
(in-plane). It could also be considered to extend the method to model the actual 
three-dimensional geometry of structural elements that are composed of several 
plane elements with different orientations in space.   
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Appendix A Rigid-plastic stress fields 
This appendix presents the formulas used for the calculation of the shear strength 

of beams by means of rigid-plastic stress fields with and without transverse bending mo-
ments presented in Chapter 2.  

A.1 Shear strength according to SIA262 

In SIA262 [SIA13] the shear strength of reinforced concrete beams is determined based on 
the rigid-plastic stress field presented above. The shear strength of the concrete strut  
and the strength of the shear reinforcement  are defined as follows: 

 (A.26) 

 (A.27) 

The inclination of the compression field  is recommended to be chosen between 
. The concrete strength reduction factor  accounts for the effect of 

transverse strain (cracking) on the compressive strength of the concrete strut. Generally, 
 can be assumed, if no yielding of the longitudinal reinforcement is expected in 

the investigated section. In case of a refined analysis,  can as well be determined on the 
basis of the web deformation [SIA13]. 

A.2 Normalization factors 

A.2.1 Shear resistance  

The plastic strength of the compression strut and the yielding strength of the reinforcement 
are reached simultaneously for a compression field inclination of .  is the 
corresponding shear resistance.  

  (A.28) 

  (A.29) 

For conventional reinforcement ratios,  is the maximum shear resistance of the beam.  
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A.2.2 Plastic transverse bending strength  

The transverse bending strength  of the web cross section is defined as follows: 

  (A.30) 

Where  is the shear reinforcement ratio on the bending tension side of 
the web and  the position of the reinforcement in the width of the web. 

A.3 Shear transverse bending interaction by Thürlimann, 

adapted according to SIA262:2013 

This section shows how the author adapted the original interaction formula for in-plane 
shear and transverse bending by Thürlimann [Thü77] (presented in section 2.1.3) in order 
to conform the definition of the shear resistance according to SIA262 [SIA13]. 

The minimum web width  required to resist the shear force  can be expressed as fol-
lows:  

  (A.31) 

The inclination of the compression field can be expressed as a function of the stirrup force 
per unit length that is defined by  in Thürlimann’s model. 

  (A.32) 

Using the trigonometric relationship , the equation A.32 can 
be substituted in equation A.31 such that: 

  (A.33) 

The adapted ( ) interaction model is then obtained by replacing the expression for 
 in Thürlimann’s orginial formulation. 

 (A.34) 
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Appendix B Multi-layered in-plane finite 
element 

The appendix presents some additional information and explicit expressions re-
garding the finite element formulation of the multi-layered in-plane concrete element pre-
sented in Chapter 4.   

B.1 Discretized displacement field 

This section presents the explicit expressions and matrix formulations of the generalised 
membrane, bending and shear strains. 

 
Figure B.1  The three node Mindlin-type finite element: (a) nodal degrees of free-
dom and (b) area coordinates of the triangular element.   

The interpolated displacement fields defined 
in Chapter 4 are expressed in matrix format: 

  (B.1) 

  (B.2) 

where  is the displacement vector and  the shape function matrix at node . 

1
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are linear shape functions defined by the area coordinates of a triangle (  with 
, see fig. B.1) and  are quadratic shape functions vanishing at the corners: 

  (B.3) 

  (B.4) 

with  for  and the 
element area . 

B.2 Explicit expression for the generalized strains 

Substituting the previous displacement fields into the expression for the generalized strains 
yields 

 

 

(B.5) 

Where  and  are the element and nodal generalized strain matrices. The later can be 
expressed in terms of membrane, bending and shear contributions: 

  (B.6) 

 

 

(B.7) 

Explicit expressions for the generalized strain matrices are obtained when substituting the 
shape functions according to equations B.3 and B.4: 
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where 

 

 

 

 

(B.8)

 

If  and  are expressed in terms of the nodal coordinates , expression  and 
 yield linear functions on  and  respectively. Thus the shear deformation  is 

constant in  direction and the transverse shear deformation  is constant in  
direction. 

B.3 Derivation of the tangential transverse shear deformation  

The transverse shear deformation  along the borders of the ML-EP element is required to 
compute the transverse shear force in the OP element. It is derived from the transverse 
displacement field  and the rotation fields  and  that are first evaluated along the -th 
element side with the nodes  and  ( ) and then expressed as function of the tangen-
tial directions  of -th element side. 

From ;  ;   we get: 
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where  is the length of the -th element side and  the tangential coordinate such that 
and .   

The tangential shear deformation along the element border  is then computed as follows 

  (B.9) 
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