
Sphere-Meshes for Real-Time Hand Modeling and Tracking

Anastasia Tkach
EPFL

Mark Pauly
EPFL

Andrea Tagliasacchi
University of Victoria

Figure 1: Three side-by-side comparisons of tracking performance from the HANDY/TEASER sequence. Our model allows us to obtain much
higher tracking quality. Tracking at a finer scale is instrumental to prevent tracking failure. The whole sequence can be seen in Video [03:53].

Abstract

Modern systems for real-time hand tracking rely on a combination
of discriminative and generative approaches to robustly recover hand
poses. Generative approaches require the specification of a geomet-
ric model. In this paper, we propose a the use of sphere-meshes
as a novel geometric representation for real-time generative hand
tracking. How tightly this model fits a specific user heavily affects
tracking precision. We derive an optimization to non-rigidly deform
a template model to fit the user data in a number of poses. This
optimization jointly captures the user’s static and dynamic hand
geometry, thus facilitating high-precision registration. At the same
time, the limited number of primitives in the tracking template al-
lows us to retain excellent computational performance. We confirm
this by embedding our models in an open source real-time regis-
tration algorithm to obtain a tracker steadily running at 60Hz. We
demonstrate the effectiveness of our solution by qualitatively and
quantitatively evaluating tracking precision on a variety of complex
motions. We show that the improved tracking accuracy at high
frame-rate enables stable tracking of extended and complex motion
sequences without the need for per-frame re-initialization. To en-
able further research in the area of high-precision hand tracking, we
publicly release source code and evaluation datasets.

Keywords: non-rigid registration, hand tracking, sphere-meshes

Concepts: •Computing methodologies → Tracking; Motion
capture; Shape representations; Volumetric models;

1 Introduction

With the imminent advent of consumer-level virtual and augmented
reality technology, the ability to interact with the digital world in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org. c© 2016 Copyright held
by the owner/author(s). Publication rights licensed to ACM.
SA’16 Technical Papers, December 05 - 08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2980226

the most natural way, using our hands, becomes of paramount
importance. Over the past two decades a number of techniques
have been explored to address this problem, from expensive and
unwieldy marker-based mocap [Welch and Foxlin 2002] to instru-
mented gloves [Dipietro et al. 2008] as well as imaging systems [Erol
et al. 2007]. Multi-camera imaging systems can recover the hand
pose and hand-objects interactions with high accuracy [Ballan et al.
2012], but the only system capable to approach interactive applica-
tions is the 10Hz system of [Sridhar et al. 2013]. Conversely, in this
paper we focus on hand motion tracking with a single RGBD sensor
(e.g. Intel RealSense or Microsoft Kinect), commonly predicted to
be readily available in a typical AR/VR consumer experience.

Tracking: discriminative vs. generative. Modern systems for
real-time tracking from RGBD data [Sridhar et al. 2015; Sharp et al.
2015] rely on a combination of discriminative approaches like [Ke-
skin et al. 2012], and generative approaches such as [Oikonomidis
et al. 2011]. The per-frame re-initialization of discriminative meth-
ods prevents error propagation by offering a continuous recovery
from tracking failure. As these discriminative models are learnt
from data, they typically only estimate a coarse pose. Therefore,
generative models are used to refine the estimate by aligning a ge-
ometric template of the user hand to the measured point cloud as
well as to regularize its motion through time. It is not surprising
that the quality of the template directly affects the quality of pose
refinement; see Figure 1.

The main goal of this paper is to explore novel tracking models that
strike an optimal balance between accuracy and performance. More
specifically, we propose a geometric model that more accurately cap-

Figure 2: (left) Tracking when the model from [Tagliasacchi et al.
2015] is used without proper coarse scale calibration. (middle) A
roughly manually calibrated model can help increasing the fitting
fidelity, but tuning becomes increasingly difficult with more degrees
of freedom. (right) The proposed automatically calibrated model.

http://dx.doi.org/10.1145/2980179.2980226

S S
c1

r1

c2

r2

Figure 3: The sphere-mesh skeleton S identifies sphere positions
and radii. The surface of the object is obtained as the convex-hull of
the spheres on the vertices of the skeleton. Sphere-meshes can be
rendered through GPU ray-tracing, or by meshing the zero-crossing
of their implicit function; see Eq. 1.

tures the user’s hand geometry, while retaining the ability to answer
registration queries in closed form with very high efficiency. In Fig-
ure 2 and Video [03:53] we illustrate the importance of employing a
tracking template that strikes this delicate balance.

Implicit vs. explicit templates. In modern digital production the
de-facto standard is to represent objects by a surface mesh of their
boundary (e.g. triangle or quad meshes). Fast rendering and easy
direct manipulation make explicit surface representation attractive
for many applications. However, unlike implicit models [Bloomen-
thal et al. 1997], explicit representations cannot efficiently answer
queries such as the distance from a point to the object’s boundary,
or whether a point lies inside/outside the model [Botsch et al. 2010,
Ch.1]. In tracking applications these queries play a fundamental role,
as the optimization attempts to find configurations where the average
distance from model to data is minimized. Similarly, a tracker should
prevent the model from assuming implausible configurations, for ex-
ample by preventing self-intersections as measured by inside/outside
predicates. For all these reasons, and as demonstrated by compelling
results in rigid [Newcombe et al. 2011] and non-rigid [Newcombe
et al. 2015] reconstruction, implicit models are highly suitable for
registration applications. To address the challenges of real-time
registration, we propose to employ a hybrid model that combines
the advantages of explicit and implicit representations.

Hybrid sphere-mesh templates. The model we propose in this pa-
per is a variant of a convolution surface [Bloomenthal and Shoemake
1991]. Its fundamental building blocks are illustrated in Figure 3.
The surface is defined as the zero iso-level of the scalar function

φ(x) = min
c∈S
B(x|c, r(c)) (1)

where S is a skeletal control mesh (a segment or a triangle in the
simple examples of Figure 3), and B is the implicit function of a
sphere given its center c and radius r:

B(x|c, r) = ‖x− c‖2 − r2 (2)

The sphere centers c span the skeleton S, while the radii are a
function of the position c within an element, linearly interpolated
from values r∗ = r(c∗) specified on the skeletal mesh vertices c∗.
This is indeed a hybrid model, as Eq. 1 defines an implicit surface

Figure 4: (left) The skeleton S parametrizes the sphere-mesh
through vertex positions and radii. In our template, articulated
components are shown in dark green while flexible components in
purple. (right) Calibration instantiates our template by adjusting
the skeletal vertex positions and radii.

M = {x ∈ Rn|φ(x) = 0}, while the underlying skeleton S is an
explicit representation (i.e. a simplicial complex). We generalize this
construct to devise a model suitable to represent a human hand; see
Figure 4. Distances toM can conveniently be computed by querying
distances to the piecewise linear elements of S; see Figure 7.

Tracking and calibration with sphere-meshes. Our novel track-
ing model has two significant advantages. (1) Distance queries toM
can be executed by measuring the distance to the skeletal structure
S. The number of elements in S is significantly smaller (30 in our
model) than the number of polygons in a typical triangular mesh sur-
face representation [Thiery et al. 2013]. Therefore, distance queries
can be performed efficiently using a brute force approach, which
leads to a simple algorithm that is trivially parallelizable. (2) The
parameterization of our hand model is compact, as we can generate
a family of models by simply adjusting positions and radii of the
control skeleton vertices c∗ ∈ S . This allows adapting the model to
the hand geometry of a specific user.

Contributions. The core contribution of this paper is to demonstrate
that sphere-meshes provide superior hand tracking performance for
single-view depth sensors. We introduce an optimization approach
that allows adapting our tracking model to different human hands
with a high level of accuracy. The improved geometric fidelity
compared to existing representations leads to quantifiable reductions
in registration error and allows accurate tracking even for intricate
hand poses and complex motion sequences that previous methods
have difficulties with. At the same time, due to a very compact
model representation and closed-form correspondence queries, our
generative model retains high computational performance, leading
to sustained tracking at 60Hz.

Overview. The remainder of the paper is structured as follows: We
survey related work in Section 2. In Section 3 we describe our
generative real-time hand tracking technique, which details how
our novel formulation enables efficient correspondence computation.
Section 4 explains how we build our template model from 3D scans
acquired either through multi-view stereo or from depth maps. In
Section 5 we analyze the performance of our model for realtime
tracking and provide comparisons to the state-of-the-art. We con-
clude in Section 6 with a discussion of current limitations and ideas
for future work.

Figure 5: Several tracking templates employed by recent generative
(or hybrid) real-time hand-tracking methods. Images courtesy of
(a) [Oikonomidis et al. 2011], (b) [Sridhar et al. 2013], (c) [Taylor
et al. 2016], and (d) [Melax et al. 2013].

2 Related Work

The simplest way of tracking a hand in motion is by instrumentation.
We can place retro-reflective markers on the hand, wear a data
glove with embedded abduction and flexion sensors [Dipietro et al.
2008] or a colored glove [Wang and Popovic 2009]. While effective,
active instrumentation can be cumbersome as it requires lengthy
preparation and/or calibration. Systems solely relying on computer
vision (i.e. color cameras) are highly desirable, but pose estimation
relying on color information is extremely challenging [Erol et al.
2007]: the complexity of hand motion, the large number of self-
occlusions and rapidly changing backgrounds all contribute to their
limited success. Multiple-camera acquisition can mitigate these
challenges. In [Ballan et al. 2012], the authors demonstrate high-
quality tracking of two-hand and hand-object interactions. However,
due to the substantial increase in data bandwidth, these algorithms
do not scale to real-time performance. A notable exception is the
10Hz system of [Sridhar et al. 2013], but this acquisition setup also
considers data from a depth sensor. While providing accurate results,
multi-camera rigs are impractical for consumer-level applications.
Therefore, we limit our attention to techniques relying on data from
a single depth camera; with a slight abuse of wording we refer to
these systems as monocular acquisition setups.

Hybrid = discriminative + generative. Pose estimation tech-
niques can be grouped into discriminative and generative techniques,
also known respectively as appearance-based and model-based ap-
proaches. Generative approaches fit a template through a temporal
sequence of images [Oikonomidis et al. 2011; Melax et al. 2013;
Schroder et al. 2014; Tagliasacchi et al. 2015]. Given an accu-
rate template of the user being tracked, these methods can resolve
highly accurate motion. As the optimization is initialized from
the previous frame, tracking loss can occur, although simple geo-
metric reinitialization heuristics can be employed to overcome this
issue [Melax et al. 2013; Qian et al. 2014]. Conversely, discrimi-
native methods estimate the pose by extracting features from each
image independently by learning from a large dataset of annotated
exemplars [Keskin et al. 2012; Tang et al. 2013; Tejani et al. 2014;
Sun et al. 2015]. While discriminative methods avoid drift, they
lack the accuracy of generative methods, and joint estimates often
violate kinematic constraints, like consistent finger lengths and joint
limits. State-of-the-art tracking performance is achieved by hybrid
algorithms that combine the two approaches. These algorithms
estimate (potentially) multiple per-frame coarse poses leveraging
discriminative frameworks, and then refine the alignment with a
generative fitting [Tompson et al. 2014; Qian et al. 2014; Sharp
et al. 2015]. Another class of hybrid algorithms introduce corre-
spondences through a labeling obtained through a per-pixel forest
classifier [Sridhar et al. 2015; Fleishman et al. 2015]. Our literature
review focuses on generative approaches, while we refer the reader
to the very recent work by Taylor and colleagues [2016] for a review
of recent discriminative methods. Commercial systems for hand

Figure 6: (a) An artist creates a hand model by first sketching
its topological structure as a union of spheres (ZSphere). (b) The
model is then converted into a volumetric representation and meshed
(Unified Skinning) to be further refined (c,d).

tracking like the NimbleVR, the LeapMotion Orion and the Intel
Perceptual SDK also exist, but it is difficult to consider them as the
underlying technology is undisclosed.

Generative tracking models. The capsule model originally pro-
posed by [Rehg and Kanade 1994] has been adopted by a num-
ber of researchers [Oikonomidis et al. 2011; Schroder et al. 2014;
Fleishman et al. 2015; Tagliasacchi et al. 2015]; see Figure 5(a).
Such a coarse representation is suitable to the task given the low
signal-to-noise ratio in modern depth sensors, while its simplicity
enables the efficient closed-form computation of alignment queries.
Cylinders can also be approximated by a small set of disconnected
spheres [Qian et al. 2014], but this rough approximation is only
sufficient for coarse-scale tracking. An alternative to cylinders and
spheres is the use of isotropic [Sridhar et al. 2013; Sridhar et al.
2015], as well as anisotropic Gaussians [Sridhar et al. 2014]; see
Figure 5(b). The use of surface meshes, while widespread in other
domains (e.g. face tracking [Bouaziz et al. 2013] or offline registra-
tion [Loper and Black 2014]), has been limited to the visualization of
tracking performance through skinned model animations [Tompson
et al. 2014; Schroder et al. 2014]. Sharp et al. [2015] employed mesh
models for tracking in a render-and-compare framework, while the
very recent work of [Taylor et al. 2016] presents the first attempt
towards a continuous registration framework for tracking hands with
triangular meshes; see Figure 5(c). Other variants of tracking models
include the union of convex bodies from [Melax et al. 2013], a convo-
lutional neural network capable of directly synthesizing hand depth
images [Oberweger et al. 2015], and some initial attempts at tracking
with implicit templates [Plankers and Fua 2003]. Our sphere-mesh
model offers accuracy comparable to triangle meshes used in recent
hand trackers, while retaining a compact representation for efficient
correspondence queries and effective user adaptation.

Template calibration. Albrecht et al. [2003] pioneered the creation
of a realistic hand model (i.e. bones and muscles) by aligning
a template mesh to data acquired by a laser-scanned plaster cast.
Rhee et al. [2006] use a simpler setup consisting of a single color
image to identify approximate joint locations by localizing skin
creases, and adapt a mesh template to conform to its silhouette.
While these methods focus on a static template, in [de La Gorce
et al. 2011] a model is roughly adapted to the user through simple
bone scaling to produce the first animatable template. Calibration
of a cylinder model through particle swarm has been investigated
in [Makris and Argyros 2015]. Mesh calibration techniques were
proposed in [Taylor et al. 2014] and extended in [Khamis et al.
2015], which introduces compact and linear shape-spaces of human
hand geometry. The method in [Taylor et al. 2014] shares some
similarities with our work, where the model is adjusted to jointly
fit a set of depth frames, but with a fundamental difference in the
way in which geometry is represented. Our sphere-mesh model
is naturally compact, leading to straightforward calibration and
tracking algorithms.

c1

t1

c2

t2

s

q

n

p

c1

c2

c3
t1

t2

t3s

q

n

p

Figure 7: The computation of closest point correspondences on pill
(left) and wedge (right) elements can be performed by tracing a ray
along the normal of the line (resp. plane) tangent to the circles (resp.
spheres).

Implicit modeling. Implicit sculpting tools have recently become a
viable alternative to mesh or spline-based approaches for modeling
complex geometries. This paradigm lies at the basis of the success
of the PixoLogic ZBrush product line. For articulated geometry,
it is often convenient to first create a coarse geometric structure
analogous to the one described in Eq. 1, a process that PixoLogic
has re-branded as ZSphere modeling; see Figure 6. Editing the radii
and centers of the sphere-mesh offers a natural way of editing the
model, making it easy for both humans and algorithms to calibrate.
Note that any geometric model can be approximated, to any desired
precision, as a union of spheres [Tagliasacchi et al. 2016]. However,
by considering spheres that are linearly interpolated across edges,
we can heavily reduce the required number of primitives. Following
this principle, [Thiery et al. 2013] recently investigated a method
to automatically generate Sphere Meshes provided a (static) input
model. Extending this work, [Thiery et al. 2016] proposed a method
to fit a model to a sequence of dynamic meshes. While seemingly
related, our calibration optimization is solving a fundamentally dif-
ferent problem, as in our technique a template is fixed and provided
in input.

3 Tracking

Given a calibrated hand modelM, our real-time tracking algorithm
optimizes the 28 degrees of freedom θ (i.e. joint angles) so that our
hand model matches the sensor input data; the generation of a cali-
brated modelM for a user is detailed in Section 4. Directly extend-
ing the open source htrack framework of [Tagliasacchi et al. 2015],
we write our tracking optimization in Gauss-Newton/Levenberg-
Marquardt form:

θt = arg min
θ

∑
T ∈Ttrack

wT ET (Dt,θ,θt−1) (3)

where fitting energies are combined with a number of priors to
regularize the solution and ensure the estimation of plausible poses.

The energy terms Ttrack in our optimization are:

d2m each data point is explained by the model
m2d the model lies in the sensor visual-hull
pose hand poses sample a low-dimensional manifold
limits joint limits must be respected
collision fingers cannot interpenetrate
temporal the hand is moving smoothly in time

We limit our discussion to the computational elements that need to
be adapted to support sphere-meshes, while referring the reader to
[Tagliasacchi et al. 2015] for other details.

1 DOF
2 DOF
6 DOF

Figure 8: (a) A visualization of the posed kinematic frames T̄∗. (b)
The kinematic chain and number of degrees of freedom for posing
our tracking model. Tracking quality with (c) optimal and (d) non-
optimal kinematic transformation frames.

Hausdorff distance. The similarity of two geometric models can
be measured by the symmetric Hausdorff distance ϕX↔Y :

ϕX→Y = maxx∈X [miny∈Y ϕ(x, y)]

ϕY→X = maxy∈Y [minx∈X ϕ(x, y)]

ϕX↔Y = max{dX→Y , ϕY→X}

We therefore interpret our terms Ed2m and Em2d as approximations
to the asymmetric Hausdorff distances ϕX→Y and ϕY→X , where
the difficult to differentiate max operators are replaced by arithmetic
means, and a robust `1 distance is used [Tagliasacchi and Li 2016].

Data→Model. The first asymmetric distance minimizes the aver-
age closest point projection of each point p in the depth frame D:

Ed2m = |D|−1
∑
p∈D

‖p−ΠM(Θ)(p)‖12 (4)

Adapting this energy, as well as its derivatives, to sphere-meshes
requires the specification of the projection operator ΠM that is
described in Section 3.1.

Model → Data. The second asymmetric distance considers how
our monocular acquisition system does not have a complete view of
the model. While the 3D location is unknown, we can penalize the
model from lying outside the sensor’s visual hull:

Em2d = |M(Θ)|−1

∫
x∈M(Θ)

‖x−ΠD(x)‖12 (5)

In the equation above, the integral is discretized as a sum over the
set of pixels obtained through rasterization; see Section 3.2. The
rasterization renders the model to the image plane using the intrinsic
and extrinsic parameters of the sensor’s depth camera.

3.1 Correspondences

Our correspondence search leverages the structure of Eq. 1, by
decomposing the surface into several elementary elements Ee, where
e indexes the 30 elements of our template; see Video [00:58]. As
illustrated in Figure 7, elements are classified into pill and wedge
implicit primitives, with an associated implicit functions φe. Given
a point p in space, the implicit function of the whole surface can be
written by evaluating the expression:

φM(p) = arg min
e=1...E

φe(p) (6)

Given a query point p, we can first compute the closest-points
qe = ΠEe(p) to each element independently; within this set, the
closest-point projection to the full model q = ΠM(p) is the one
with the smallest associated implicit function value φe(p). In a track-
ing session with an average of 2500 points/frame the computation

p1

q1
p2

q2

p3

q3

p4
q4 p5

q5

p6q6

p7

q7

p8

q8

query point
front-facing correspondence
back-facing correspondence
camera view direction

Figure 9: In monocular acquisition only the front-facing part of
the model should be registered to the data. Here the camera is
observing (left to right) two elements and the occluded parts of the
model are marked. Correspondences whose normals point away
from the camera are discarded, and replaced by the closest amongst
silhouette correspondences or front-facing portions of wedges.

of closest-point correspondences takes 250 µs/iteration. We now
describe in detail how the projection is evaluated on each element in
closed form.

Pill correspondences: q = Πpill(p). A pill is defined by two
spheres B1(c1, r1) and B2(c2, r2). By construction the closest
point correspondence lies on the plane passing through the triplet
{c1, c2,p}, thus allowing us to solve the problem in 2D; see
Figure 7-(left). We compute the intersection point s of the ray
r(t) = p + tn with the segment c1c2 and parametrize its location
in barycentric coordinates as s = αc1 + (1 − α)c2. If α ∈ [0, 1],
our closest point correspondence is given by q = ΠL(p), that is, the
intersection of c1c2 and r(t). If α < 0 or α > 1, then the closest
point will be q = ΠB1(p) or q = ΠB2(p), respectively.

Wedge correspondences: q = Πwedge(p). A wedge is defined
by three spheres Bi = {ci, ri}. Figure 3 illustrates how a wedge
element can be decomposed in three parts: spherical, conical, and
planar elements, associated with vertices, edges, and faces of the
sphere-mesh skeleton. For the planar element P(t1,n) with normal
n and tangent t1 to B1 we compute the skewed projection s by
finding the intersection of the ray r(t) = p + tn with the triangle
T formed by c1, c2, c3. According to the position of s we have two
possible solutions: If s lies inside the triangle T , then our footpoint
is q = ΠP(p). Otherwise, we use the barycentric coordinates of s
in T to identify the closest pill element and compute q = Πpill(p).

Monocular Correspondences. In monocular acquisition (i.e. single
sensor), an oracle registration algorithm aligns the portion of the
model that is visible from the sensor viewpoint to the available data.
Hence, when computing ICP’s closest-point correspondences, only
the portion of the model currently visible by the camera should be
considered [Tagliasacchi et al. 2015]. Given the camera direction
v, we can test whether the retrieved footpoint q is back-facing
by testing the sign of v · NM(q), where the second term is the
object’s normal at q. As illustrated in 2D in Figure 9, whenever
this test fails, there are additional candidates for closest point that
must be checked: (1) the closest-point on the silhouette of the model
(e.g. p2,3,6,7), and (2) the front facing planar portions of elements
(e.g. p5). These additional correspondences for the query point
are computed, and the one closest to p becomes our front-facing
footpoint q. The additional computational cost caused by front-
facing correspondences with an average of 2500 points/frame is 100
µs/iteration.

Figure 10: The image-space silhouette of the model computed by
projecting the model in the camera plane (left). The 2D object-space
silhouette curves are computed separately for palm and fingers
and then composited back together (center). The 3D object-space
silhouette (pink) is re-projected in 3D (right).

Silhouette computation. The object-space silhouette ∂M is a
(3D) curve separating front-facing from back-facing portions of
a shape [Olson and Zhang 2006, Sec.1]. To simplify the silhouette
computation we approximate the perspective camera of the sensor
with an orthographic one. We then offset all elements on the 2D cam-
era plane, and perform a cross-section with this plane: spheres are
replaced with circles and planes/cylinders with segments; see Fig-
ure 10-(left). We then compute an arrangement, splitting curves
whenever intersection or tangency occurs; see Figure 10-(center).
We traverse this graph, starting from a point that is guaranteed to
be on the outline (e.g. a point on the bounding box). The traversal
selects the next element as the one whose tangent forms the smallest
counter-clockwise angle thus identifying the silhouette. Once the
2D silhouette has been computed, it can be re-projected to 3D; see
Figure 10-(right). Note the process described above would compute
the image-space silhouette of our model. Therefore, we apply the
process to palm and fingers separately, and merge them in a second
phase. The merge process simply checks whether vertices v ∈ ∂M
are contained within the model, which means it discards those where
φM(v) < 0. In our experiments the average computation of the
silhouette on the CPU takes 150 µs/iteration.

3.2 Rendering

Rendering the sphere-meshes in real time is not only employed for
visual verification of tracking performance; e.g. Figure 2. The real-
time tracking algorithm reviewed above performs a 2D registration
in the image plane that requires the computation of an (image-space)
silhouette. There are two alternatives for rendering a sphere-mesh
model like the one shown in Figure 4. One possibility is to explicitly
extract the surface of individual elements by computing the convex
hull of pairs or triplets of spheres; see Figure 3. While this process
would be suitable in applications where the model is fixed, it is
hardly appropriate in our scenario where we want to calibrate the
model to the user. Therefore, similarly to [Thiery et al. 2016], we
ray-trace the model on the GPU. We render a unit fullscreen quad
and in the fragment shader use the camera intrinsics to compute the
camera ray r(x) associated with each pixel x. Each ray is intersected
with each element of our model, and the closest intersection point is
retained. Tests are performed with the planar, conical, and spherical
primitives that compose each element. Rendering at a resolution
of 320 × 240 pixels provides the best trade-off between accuracy
and performance, leading to a total rendering time of ≈ 3ms for
visualization and ≈ 500µs/iteration for the evaluation of Em2d.

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

20

40

60

80

20

40

60

80

1.0 1.2 1.4 1.6 1.8 2.0 2.2

hmodel
no-silhouette
no-pca
no-limits
no-collision

%

%

E3D

E2D

Figure 11: Each plot visualizes on the y axis the portion of frames
with a mean error metric below the value reported on the x axis.
We employ the HANDY/TEASER sequence for this purpose. Curves
closer to the top-left quadrant indicate better performance.

4 Calibration

Our calibration procedure adapts our template model to a specific
user from a set of N 3D measurements {D1 . . .DN} of the user’s
hand in different poses. Multiple measurements are necessary, as it
is not possible to understand the kinematic behavior by analyzing
static geometry, and the redundancy of information improves fitting
precision. Further, in monocular acquisition this redundancy is es-
sential, as single-view data is highly incomplete, making the problem
ill-posed. In our research we have experimented with datasets {Dn}
acquired via multi-view stereo (e.g. Agisoft Photoscan), as well as a
single RGBD sensor. Our calibration formulation can be employed
for both acquisition modalities. Dynamic reconstruction frameworks
such as [Newcombe et al. 2015] or [Innmann et al. 2016] could also
be used to generate a dynamic template mesh over which sphere-
mesh decimation could be executed [Thiery et al. 2016]. However,
as no public implementation is currently available, it is currently
unclear how well these methods would cope with loop-closure for
features as small as human fingers.

Kinematics. The rest-pose geometry of our model is fully specified
by two matrices specifying the set of sphere positions C̄ and the
set of radii r̄. The geometry is then posed through the application
of kinematic chain transformations; see Figure 8a. Given a point
p̄ on the modelM at rest pose, its 3D position after posing can be
computed by evaluating the expression:

p =
[
Πk∈K(p̄)T̄kTkT̄−1

k

]
p̄ (7)

where T∗ are the pose transformations parameterized by θ and
Π left multiplies matrices by recursively traversing the kinematic
chain K of point p̄ towards the root [Buss 2004]. Each node k
of the kinematic chain is associated with an orthogonal frame T̄k

according to which local transformations are specified. In most
tracking systems, the frames T̄∗ are manually set by a 3D modeling
artist and kept fixed across users. However, incorrectly specified
kinematic frames can be highly detrimental to tracking quality; see
Figure 8(c,d) and Video [02:12]. Therefore, in our formulation, the
kinematic structure (i.e. the matrices T̄∗) is directly optimized from
acquired data.

Formulation. Let θn be the pose parameters optimally aligning
the rest-pose template to the data frame Dn, and δ̄ be the posture
parameters representing the transformations T̄∗ via Euler angles.

0.5 1.0 1.5 2.0 2.5 3.0

20

40

60

80

3.5 4.0 4.5 5.0 5.5 6.0 6.5

20

40

60

80
hmodel
calib4
calib3
calib2
calib1
htrack

E3D

E2D

%

%

Figure 12: Calibrating progressively improves the 2D/3D tracking
metrics, showing a remarkable improvement in tracking fidelity
from [Tagliasacchi et al. 2015] to [Proposed Method].

For notational brevity, we also define Θn = [θn, δ̄, C̄, r̄]. Our
calibration optimization can then be written as:

arg min
{Θn}

N∑
n=1

∑
T ∈Tcalib

wT ET (Dn,Θn) (8)

We employ a set of energies Tcalib to account for different require-
ments. On one hand we want a model that is a good fit to the data; on
the other, we seek a non-degenerate sphere-mesh template that has
been piecewise-rigidly posed. The following calibration energies
Tcalib encode these requirements:

d2m data to model distance
m2d model to data distance
rigid elements are posed rigidly
valid elements should not degenerate

To make this calibration more approachable numerically, we rewrite
Eq. 8 as an alternating optimization problem:

arg min
{Cn},C̄,̄r

∑N
n=1

∑
T ∈Tcalib

wT ET (Dn,Cn, C̄, r̄) (9)

arg min
{θn},δ̄

∑N
n=1

∑
T ∈Tcalib

wT ET (Cn,Θn) (10)

Our first step adjusts rest-pose sphere centers C̄ and radii r̄, by
allowing the model to fit to the data without any kinematic constraint
beyond rigidity, and returning as a side product a set of per-frame
posed centers {Cn}. Our second step takes the set {Cn} and
projects it onto the manifold of kinematically plausible template
deformations. This results in the optimization of the rotational
components of rest-pose transformations T̄∗, as their translational
components are simply derived from C̄.

Optimization. The energies above are non-linear and non-convex,
but can be optimized offline, as real-time tracking only necessitates
a pre-calibrated model. For this reason, we conveniently employ
the lsqnonlin Matlab routine, which requires the gradients of our
energies as well as an initialization point. The initialization of C̄
is performed automatically by anisotropically scaling the vertices
of a generic template to roughly fit the rest pose. The initial trans-
formation frame rotations δ̄ are retrieved from the default template,
while {θn} are obtained by either aligning the scaled template to
depth images, or by executing inverse kinematics on a few manually
selected keypoints (multi-view stereo). Our (unoptimized) Matlab
script calibrates the model within a few minutes for all our examples.

initialization intermediate converged initialization intermediate converged

Figure 13: A visualization of a few iterations of our calibration optimization procedure; see Video [01:30]. Each quadrant displays a data
frame Dn, n = 1 . . . 4. Within each quadrant we show three iterations of the optimization. The model being calibrated here is the one
employed for real-time tracking in Video [02:57].

4.1 Energies

Our fitting energies are analogous to the ones used in tracking.
They approximate the symmetric Hausdorff distance, but they are
evaluated on a collection of N frames:

Ed2m =

N∑
n=1

|Dn|−1
∑

p∈Dn

‖p−ΠM(Θn)(p)‖12 (11)

Em2d =

N∑
n=1

|M(Θn)|−1
∑

x∈M(Θn)

‖x−ΠDn(x)‖12 (12)

Note that the projection operator ΠDn changes according to the type
of input data. If a multi-view acquisition system is used to acquire a
complete point cloud, then the projection operator fetches the closest
point to p in the point cloud of frameDn. IfDn is acquired through
monocular acquisition, then ΠDn computes the 2D projection to the
image-space silhouette of the model.

Rigidity. It is essential to estimate a single user template that, once
articulated, jointly fits the set of data frames {Dn}. For this purpose
we require each posed model to be a piecewise-rigid articulation
of our rest pose. This can be achieved by constraining each seg-
ment {(cn,i, cn,j) | ij ∈ S} of Cn to have the same length as the
corresponding segment (c̄i, c̄j) of the rest pose configuration C̄:

Erigid =
∑
ij∈S

(‖cn,i − cn,j‖ − ‖c̄i − c̄j‖)2 (13)

Note that only a subset of the edges of our control skeleton, as
illustrated in Figure 4, are required to satisfy this rigidity condition.

Validity. The calibration optimization should avoid producing de-
generate configurations in our rest pose template C̄. For example, a
pill degenerates into a sphere when one of its balls is fully contained
within the volume of the other. Analogously, a wedge can degen-
erate into a pill or a sphere. We monitor validity by an indicator
function χ(B̄i) that evaluates to one if B̄i is degenerate and zero

otherwise. We make a conservative choice and use χ(B̄i), which
verifies whether c̄i is inside Ē \ B̄i, the element obtained by remov-
ing a vertex, as well as all its adjacent edges, from Ē . This leads to
the following conditional penalty function:

Evalid =
∑
Ē∈C̄

∑
B̄i∈Ē

χ(B̄i)‖c̄i −ΠĒ\B̄i(c̄i)‖22 (14)

5 Results

We evaluate our technique on a variety of sequences across a number
of users, and performe qualitative as well as quantitative comparisons
of our method to the state-of-the-art [Qian et al. 2014; Sridhar et al.
2015; Tagliasacchi et al. 2015; Sharp et al. 2015; Taylor et al. 2016].
We also propose new algorithm-agnostic metrics tailored to high-
precision tracking evaluation, and introduce the HANDY dataset.

Template Calibration. The calibration of our model to a collection
of 3D data frames is illustrated in Figure 13; note the same model
is rigidly articulated to fit to multiple poses. While for this user
we build a model from multi-view stereo data (omni-directional,
complete), it is important to notice that the use of multiple frames in
different poses is a necessity. Only in this situation can the centers
{Cn} be jointly adjusted to create an articulated model that consen-
sually fits the whole dataset. We refer the reader to Video [01:30] for
a visualization of our iterative calibration procedure. The calibration
from RGBD datasets can be seen at Video [01:45], and the resulting
models are illustrated in Figure 4.

Kinematic Calibration. The importance of adjusting kinematic
chain transformations is shown in Figure 8, as well as the first images
pair in Figure 1. With incorrect transformations, joint limits and the
articulation restrictions of the kinematic chain can prevent the model
from being posed correctly; see a dramatization in Video [02:12]. In
our experiments we discovered it was crucial to identify the typical
kinematic chain structure using the dataset in Figure 13; user-specific
calibration optimization used these transformations as initialization.

4

5

6

7

8

9

10

500 1000 1500 2000 2500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

500 1000 1500 2000 2500

E
3
D

E
2
D

Figure 14: The [Proposed Method] is quantitatively compared over
time to [Tagliasacchi et al. 2015], [Sharp et al. 2015] and [Taylor
et al. 2016] on the HANDY/TEASER sequence.

Comparison metrics. Taylor and colleagues [2016] have recently
reported how state-of-the-art hand tracking algorithms have reached
human precision in determining the location of key features (e.g.
fingertips and wrist position). Therefore, publicly available datasets
like [Tompson et al. 2014] and [Sridhar et al. 2013], often relying
on human labeling of data, are now unsuitable to quantitatively
evaluate the quality of high-precision tracking. We propose two
easy-to-compute metrics to evaluate the quality of generative track-
ing algorithms. A core element that makes these metrics appealing is
that, much like key feature positions, they are completely algorithm
agnostic: they can be evaluated as far as a depth map of the tracking
model can be synthesized. This is essential, as it will enable the
research community to validate and compare results through quan-
titative analysis. We achieve this goal by expressing these metrics
exclusively as a function of the acquired depth image Dn and of
the depth image Rn of the rendered model. Below we drop the
subscript n for notational brevity and only consider points p within
the RoI. The data-to-model metric is:

E3D = |D|−1
∑
p∈D

‖p−ΠR(p)‖12 (15)

Differently from before, ΠR computes the (kd-tree accelerated)
closest point correspondence to the rendered model point cloud,
rather than to the model itself. The model-to-data metric is:

E2D = |R \ ∂D|−1
∑

x∈R\∂D

‖x−Π∂D(x)‖12 (16)

Each summation term above can be evaluated efficiently by pre-
computing the 2D Euclidean distance transform of the RoI’s (image-
space) silhouette ∂D [Tagliasacchi et al. 2015], where the transform
evaluates to zero for a pixel inside the silhouette. Another algorithm
agnostic metric is the golden energy from Sharp et al. [2015], but
this distance does not encode a monocular Hausdorff like ours do.

80

60

40

20

0.8 1.2

4 5 6 7 8 9

1.0 1.4 1.6 1.8 2.0 2.2 2.2

80

60

40

20

%

%

E3D

E2D

Figure 15: Aggregated errors are reported for the tracking se-
quences in Figure 14. These aggregated measures reveal a sig-
nificant improvement in tracking precision; see legend in Figure 14.

Handy dataset. We create the new HANDY tracking dataset for the
evaluation of high-precision generative tracking algorithms. Our
dataset contains ≈ 30k depth and color images recorded with an
Intel RealSense SR300 sensor. The dataset is designed to cover the
entire range of motions that has been surveyed in recent techniques.
As detailed in Figure 16, we identified three main axes of complexity
in the hand tracking literature, and devised the TEASER dataset to
thoroughly sample this space; see Video [02:51].

Further, to enable qualitative comparisons to motions from state-of-
the-art papers we also devised an additional set of sequences:

Video [04:53] – TAYL1 rigid and clenching
Video [05:40] – SRID1 fingers extension
Video [05:56] – SRID2 fingers contact
Video [06:15] – SRID3 crossing fingers
Video [06:29] – SRID4 pinching
Video [07:33] – SHAR1 fast and complex
Video [08:07] – SHAR2 fast rigid
Video [08:37] – SHAR3 rotating fist

The sequences marked as tayl*, srid*, and shar* are respectively
designed to emulate the motions in [Taylor et al. 2016], [Sridhar
et al. 2015] and [Sharp et al. 2015]. We do not devise sequences
for [Qian et al. 2014] and [Tompson et al. 2014], as the previous
datasets already covered the motion space.

Self evaluation. In Figure 11, we adopt the self-evaluation visual-
ization proposed by [Taylor et al. 2016]. We study the changes in
algorithm performance as we disable the tracking energy terms in
Eq. 3 on the HANDY/TEASER sequence – in all tests, the d2m term
is never disabled, as otherwise immediate loss of tracking occurs.
Not surprisingly, we identify the m2d and pose terms to be the ones
dominating tracking performance. Similarly to [Taylor et al. 2016],
while the contribution of other terms is small, we found that it still
yields a visually noticeable improvement.

occlusionsprecision

sp
ee

dfast rigid
motion

fast articulated
motion

finger
extension

fist
clenching

side
motion

contact

back
motiontangling

rigid motion

unlikely
poses

finger
crossing

tangle

fist
rotatelimits

Figure 16: Our dataset contains a wide range of motions. We
identify three main axes of complexity by analyzing recent hand-
tracking papers; see Video [02:51]. The distance to the origin
indicates the level of tracking difficulty.

Quantitative comparison. Our algorithm has been tested with
the Intel RealSense SR300 (QVGA@60Hz). We have tailored the
method of [Tagliasacchi et al. 2015] to support this sensor to en-
able quantitative comparisons. In Figure 14, our two metrics are
plotted per-frame as multiple tracking algorithms are executed on
the HANDY/TEASER sequence, while Figure 15 reports aggregated
errors; see Video [03:53]. It is important to note our metrics are
designed to evaluate fitting precision; the method of [Sharp et al.
2015] still achieves good tracking robustness on the test sequences,
but the lack of user calibration heavily biases this metric. Aggre-
gated performance comparisons are also reported in Figure 17 for
each sequence in the HANDY dataset; see Video [04:50]. These
metrics reveal a consistent and significant increase in performance.
Figure 12 quantitatively illustrates the tracking benefits of template
calibration.

Qualitative comparison. We employ the HANDY sequences to
perform a qualitative comparison to [Qian et al. 2014; Sridhar et al.
2015; Sharp et al. 2015; Taylor et al. 2016]. As it can be observed
in Video [04:50], our calibrated tracker is capable to replicate any
of the motions benchmarked by state-of-the-art techniques with
excellent accuracy.

Further comparisons. Given a sufficiently rich annotated data sam-
ple, it is generally possible to adapt a discriminative tracker to a
different sensor from what it was originally designed for. However,
for generative algorithms the task requires some parameter tweaking,
a challenging task to achieve without direct access to each sensor
variant. For these reasons, comparisons to datasets developed on dif-
ferent sensors like DEXTER [Sridhar et al. 2013] or FINGERPAINT
[Sharp et al. 2015] would be misleading. Most importantly, these
datasets were acquired at 30Hz, while our generative algorithm is
specifically designed to execute at 60Hz. To enable a fair compari-
son, we would require the per-frame re-initializer employed by the
authors, but no source code for these algorithms is available.

6 Discussion

Our analysis demonstrates how sphere-meshes tracking templates
are particularly well suited for real-time hand-tracking. Our calibra-
tion and tracking algorithms are simple to implement, efficient to
optimize for, and allow for the geometry to be represented with high
fidelity. While the calibration algorithm is currently implemented
in Matlab, we are confident real-time performance can be achieved
with a simple C++ port of our code. The recently proposed system

tayl1 srid1 srid2 srid3 srid4 shar1 shar2 shar3

E2D
[Tagliasacchi et al. 2015]
[Proposed Method] E3D

[Tagliasacchi et al. 2015]
[Proposed Method]

tayl1 srid1 srid2 srid3 srid4 shar1 shar2 shar2

1

2

3

4

5

6

Figure 17: Average 2D/3D tracking performance metrics of the
proposed method compared to [Tagliasacchi et al. 2015]. In the
additional material we report error plots through time for the aggre-
gated data above.

of Taylor and colleagues [Taylor et al. 2016], has also demonstrated
excellent tracking quality. Their formulation employs a triangular
mesh model and optimizes it in a semi-continuous fashion. However,
as their model is articulated through linear blend skinning, joint col-
lapse artifacts can occur. Conversely, our model is volumetric and
naturally overcomes this shortcoming; see Video [01:18]. Although
it is difficult to predict whether surface or volumetric models will
eventually prevail, we believe the simplicity of our representation
will lead to extremely performant articulated tracking algorithms.

Generative tracker. In this paper we demonstrated a generative
algorithm that yields unprecedented levels of robustness to tracking
failure. We would like to stress that our real-time tracking algorithm
is (almost) purely generative: a discriminative technique [Qian et al.
2014] is only employed in the first frame for tracking initialization.
We believe our robustness is due to the quality of the calibrated
model, and to the ability to optimize at a constant 60Hz rate. Dis-
criminative algorithms could still be necessary to compensate for
situations where the hand re-appears from complete occlusions, but
their role in real-time tracking will diminish as RGBD sensors will
start offering imaging at frequencies above 60Hz. To highlight our
high frame-rate dependancy, in Video [11:02] we analyze the perfor-
mance on the tracker with varying frame-rates (60Hz, 30Hz, 15Hz
and 7.5Hz) while the additional material reports the corresponding
tracking metrics. In Video [10:30] we further investigate tracking
failures that include long phases of total occlusion; note how in these
scenarios the mean-pose (Probabilistic PCA) regularizer described
in [Tagliasacchi et al. 2015, Eq.6] helps tracking recovery.

Downsampling. Although the Intel RealSense sensor is a short
range camera, in this work we have downsampled the depth image
to QVGA format with a median filter, giving an average of 2500
pixels/frame; this is approximatively the number of samples found
on a hand in long-range cameras. The recent work of [Taylor et al.
2016] reports a total of 192 pixels/frame, therefore enabling CPU
optimization without significant loss of tracking precision. Inspired
by this work, we have experimented with further downsampling
and reached analogous conclusions. However, the computational
bottleneck of the htrack system lies in the overhead caused by ren-
der/compute context switching. While this is currently an issue,
it is possible to optimize the m2d energies without rasterizing the
model at each iteration. Instead, similarly to [Qian et al. 2014], we
could compute screen-space coordinates of sphere centers, and then
construct our m2d registration energies on this subset.

Reproducibility. The weights of energy terms used in tracking and
calibration optimizations have been identified by manually tweaking
the runtime until our tracker reached the desired performance level.
The parameters of our system are τd2m = 1, τm2d = .5, τrigid =
.3, τvalid = 1e2, τpose = 1e4, τlimits = 1e7 and τcollision =
1e3. We use 7 iterations for the tracking LM optimization, while
lsqnonlin automatically terminates in 5-15 iterations. Source code
and datasets are available at: http://github.com/OpenGP/hmodel.

7 Conclusion

In this paper we have introduced the use of sphere-meshes as a
novel geometric representation for articulated tracking. We have
demonstrated how this representation yields excellent results for
real-time registration of articulated geometry, and presented a cal-
ibration algorithm to estimate a per-user tracking template. We
have validated our results by demonstrating qualitative as well as
quantitative improvements over the state-of-the-art. Our volumetric
model can be thought of as a generalization of the spherical models
presented in [Sridhar et al. 2015; Qian et al. 2014], and the cylinder
models of [Oikonomidis et al. 2011; Tagliasacchi et al. 2015]. It is
also related to the convex body model from [Melax et al. 2013], with
the core advantage that its control skeleton compactly parameterizes
its geometry. Our calibration optimization is related to the works
in [Taylor et al. 2014; Khamis et al. 2015; Tan et al. 2016], with
a fundamental difference: the innate simplicity of sphere-meshes
substantially simplifies the algorithmic complexity of calibration
and tracking algorithms. This considered, we believe that with the
use of compute shaders, articulated tracking on the GPU can become
as effortless and efficient as simple mesh rasterization.

Limitations and future work. The topology of our template has
been defined in a manual trial-and-error process. A more suitable
topology could be estimated by optimization, possibly even adapting
the topology for specific users; For example, the work in [Thiery
et al. 2016] could be extended to space-time point clouds. Simi-
larly, one could think of a variant of [Newcombe et al. 2015] where
sphere-meshes are instantiated on-the-fly. The use of more advanced
re-initialization techniques than [Qian et al. 2014], like [Krupka et al.
2014] or [Oberweger et al. 2015], would be beneficial. Further, we
believe an interesting venue for future work is how to elegantly inte-
grate per-frame estimates into generative trackers. Model calibration
is currently done in pre-processing. For certain consumer applica-
tions, it would be desirable to calibrate the model online during
tracking, as recently proposed for face tracking systems [Bouaziz
et al. 2013]. Our sphere-mesh models are a first approximations
to the implicit functions lying at the core of the recently proposed
geometric skinning techniques [Vaillant et al. 2013; Vaillant et al.
2014]. Therefore, we believe the calibration of sphere-meshes to
be the first step towards photorealistic real-time hand modeling and
tracking.

8 Acknowledgements

We would like to thank the reviewers for their feedback, Andrii Mak-
sai, Sofien Bouaziz and Misha Kazhdan for insightful discussions,
Tom Cashman, Jonathan Taylor and Andrew Fitzgibbon for their
help generating the quantitative comparisons to [Taylor et al. 2016;
Sharp et al. 2015], Chris Wojtan for his help rendering Figure 3,
Merlin Nimier-David, Pei-I Chen and Thomas Joveniaux for their
help in creating calibration datasets, Matthew Murray, Laura Grond-
hal, Nicolas Guillemot for their help proofreading the paper. This
research is supported by the NSERC Discovery grant #2016-05786
and the Swiss NSF grant #200021-153567.

References

ALBRECHT, I., HABER, J., AND SEIDEL, H.-P. 2003. Construction
and animation of anatomically based human hand models. In
Proc. of the Symposium on Computer Animation (SCA).

BALLAN, L., TANEJA, A., GALL, J., VAN GOOL, L., AND POLLE-
FEYS, M. 2012. Motion capture of hands in action using discrimi-
native salient points. In Proc. of the European Conf. on Computer
Vision (ECCV).

BLOOMENTHAL, J., AND SHOEMAKE, K. 1991. Convolution
surfaces. In Computer Graphics (Proc. SIGGRAPH).

BLOOMENTHAL, J., BAJAJ, C., BLINN, J., CANI, M.-P., ROCK-
WOOD, A., WYVILL, B., AND WYVILL, G. 1997. Introduction
to Implicit Surfaces. Morgan Kaufmann.

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LÉVY,
B. 2010. Polygon Mesh Processing. A. K. Peters.

BOUAZIZ, S., WANG, Y., AND PAULY, M. 2013. Online modeling
for realtime facial animation. ACM Transactions on Graphics
(Proc. of SIGGRAPH).

BUSS, S. R. 2004. Introduction to inverse kinematics with jaco-
bian transpose, pseudoinverse and damped least squares methods.
IEEE Journal of Robotics and Automation.

DE LA GORCE, M., FLEET, D. J., AND PARAGIOS, N. 2011.
Model-based 3D hand pose estimation from monocular video.
Pattern Analysis and Machine Intelligence (PAMI).

DIPIETRO, L., SABATINI, A. M., AND DARIO, P. 2008. A survey
of glove-based systems and their applications. IEEE Transactions
on Systems, Man, and Cybernetics.

EROL, A., BEBIS, G., NICOLESCU, M., BOYLE, R. D., AND
TWOMBLY, X. 2007. Vision Based Hand Pose Estimation: A
Review. Computer Vision Image Understanding.

FLEISHMAN, S., KLIGER, M., LERNER, A., AND KUTLIROFF, G.
2015. Icpik: Inverse kinematics based articulated-icp. In Proc. of
the IEEE CVPR Workshops (HANDS).

INNMANN, M., ZOLLHÖFER, M., NIESSNER, M., THEOBALT,
C., AND STAMMINGER, M. 2016. Volumedeform: Real-time
volumetric non-rigid reconstruction. In Proc. of the European
Conf. on Computer Vision (ECCV).

KESKIN, C., KIRAÇ, F., KARA, Y. E., AND AKARUN, L. 2012.
Hand pose estimation and hand shape classification using multi-
layered randomized decision forests. In Proc. of the European
Conf. on Computer Vision (ECCV).

KHAMIS, S., TAYLOR, J., SHOTTON, J., KESKIN, C., IZADI, S.,
AND FITZGIBBON, A. 2015. Learning an efficient model of hand
shape variation from depth images. Proc. of Comp. Vision and
Pattern Recog. (CVPR).

KRUPKA, E., VINNIKOV, A., KLEIN, B., BAR HILLEL, A.,
FREEDMAN, D., AND STACHNIAK, S. 2014. Discriminative
ferns ensemble for hand pose recognition. In Proc. of Comp.
Vision and Pattern Recog. (CVPR).

LOPER, M. M., AND BLACK, M. J. 2014. OpenDR: An approxi-
mate differentiable renderer. In Proc. of the European Conf. on
Computer Vision (ECCV).

MAKRIS, A., AND ARGYROS, A. A. 2015. Model-based 3d
hand tracking with on-line shape adaptation. In Proc. of British
Machine Vision Conference (BMVC).

http://github.com/OpenGP/hmodel

MELAX, S., KESELMAN, L., AND ORSTEN, S. 2013. Dynamics
based 3d skeletal hand tracking. In Proc. of Graphics Interface.

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D.,
KIM, D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES,
S., AND FITZGIBBON, A. 2011. Kinectfusion: Real-time dense
surface mapping and tracking. In IEEE International Symposium
on Mixed and Augmented Reality (ISMAR).

NEWCOMBE, R. A., FOX, D., AND SEITZ, S. M. 2015. Dy-
namicfusion: Reconstruction and tracking of non-rigid scenes in
real-time. Proc. of Comp. Vision and Pattern Recog. (CVPR).

OBERWEGER, M., WOHLHART, P., AND LEPETIT, V. 2015. Train-
ing a Feedback Loop for Hand Pose Estimation. In Proc. of the
Intern. Conf. on Computer Vision (ICCV).

OIKONOMIDIS, I., KYRIAZIS, N., AND ARGYROS, A. A. 2011.
Efficient model-based 3D tracking of hand articulation using
kinect. In Proc. of British Machine Vision Conference (BMVC).

OLSON, M., AND ZHANG, H. 2006. Silhouette extraction in hough
space. Computer Graphics Forum (Proc. of EuroGraphics).

PLANKERS, R., AND FUA, P. 2003. Articulated soft objects
for multi-view shape and motion capture. Pattern Analysis and
Machine Intelligence (PAMI).

QIAN, C., SUN, X., WEI, Y., TANG, X., AND SUN, J. 2014.
Realtime and robust hand tracking from depth. In Proc. of Comp.
Vision and Pattern Recog. (CVPR).

REHG, J. M., AND KANADE, T. 1994. Visual tracking of high dof
articulated structures: An application to human hand tracking. In
Proc. of the European Conf. on Computer Vision (ECCV).

RHEE, T., NEUMANN, U., AND LEWIS, J. P. 2006. Human hand
modeling from surface anatomy. In Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (i3D).

SCHRODER, M., MAYCOCK, J., RITTER, H., AND BOTSCH, M.
2014. Real-time hand tracking using synergistic inverse kinemat-
ics. In Proc. of the Intern. Conf. on Robotics and Automation
(ICRA).

SHARP, T., KESKIN, C., ROBERTSON, D., TAYLOR, J., SHOTTON,
J., LEICHTER, D. K. C. R. I., WEI, A. V. Y., KRUPKA, D. F. P.
K. E., FITZGIBBON, A., AND IZADI, S. 2015. Accurate, robust,
and flexible real-time hand tracking. In Proc. of ACM Special
Interest Group on Computer-Human Interaction (CHI).

SRIDHAR, S., OULASVIRTA, A., AND THEOBALT, C. 2013. In-
teractive markerless articulated hand motion tracking using RGB
and depth data. In Proc. of the Intern. Conf. on Computer Vision
(ICCV).

SRIDHAR, S., RHODIN, H., SEIDEL, H.-P., OULASVIRTA, A.,
AND THEOBALT, C. 2014. Real-time hand tracking using a sum
of anisotropic gaussians model. In Proc. International Conference
on 3D Vision (3DV).

SRIDHAR, S., MUELLER, F., OULASVIRTA, A., AND THEOBALT,
C. 2015. Fast and robust hand tracking using detection-guided op-
timization. In Proc. of Comp. Vision and Pattern Recog. (CVPR).

SUN, X., WEI, Y., LIANG, S., TANG, X., AND SUN, J. 2015.
Cascaded hand pose regression. In Proc. of Comp. Vision and
Pattern Recog. (CVPR).

TAGLIASACCHI, A., AND LI, H. 2016. Modern techniques and ap-
plications for real-time non-rigid registration. Proc. SIGGRAPH
Asia (Technical Courses).

TAGLIASACCHI, A., SCHROEDER, M., TKACH, A., BOUAZIZ, S.,
BOTSCH, M., AND PAULY, M. 2015. Robust articulated-icp
for real-time hand tracking. Computer Graphics Forum (Proc.
Symposium on Geometry Processing, SGP).

TAGLIASACCHI, A., DELAME, T., SPAGNUOLO, M., AMENTA,
N., AND TELEA, A. 2016. 3d skeletons: A state-of-the-art report.
Computer Graphics Forum (Proc. of EuroGraphics).

TAN, D. J., CASHMAN, T., TAYLOR, J., FITZGIBBON, A., TAR-
LOW, D., KHAMIS, S., IZADI, S., AND SHOTTON, J. 2016. Fits
like a glove: Rapid and reliable hand shape personalization. In
Proc. of Comp. Vision and Pattern Recog. (CVPR).

TANG, D., YU, T.-H., AND KIM, T.-K. 2013. Real-time articu-
lated hand pose estimation using semi-supervised transductive
regression forests. In Proc. of the Intern. Conf. on Computer
Vision (ICCV).

TAYLOR, J., STEBBING, R., RAMAKRISHNA, V., KESKIN, C.,
SHOTTON, J., IZADI, S., HERTZMANN, A., AND FITZGIBBON,
A. 2014. User-specific hand modeling from monocular depth
sequences. In Proc. of Comp. Vision and Pattern Recog. (CVPR).

TAYLOR, J., BORDEAUX, L., CASHMAN, T., CORISH, B., KE-
SKIN, C., SOTO, E., SWEENEY, D., VALENTIN, J., LUFF, B.,
TOPALIAN, A., WOOD, E., KHAMIS, S., KOHLI, P., SHARP,
T., IZADI, S., BANKS, R., FITZGIBBON, A., AND SHOTTON,
J. 2016. Efficient and precise interactive hand tracking through
joint, continuous optimization of pose and correspondences. ACM
Transactions on Graphics (Proc. of SIGGRAPH).

TEJANI, A., TANG, D., KOUSKOURIDAS, R., AND KIM, T.-K.
2014. Latent-class hough forests for 3d object detection and pose
estimation. In Proc. of the European Conf. on Computer Vision
(ECCV).

THIERY, J.-M., GUY, E., AND BOUBEKEUR, T. 2013. Sphere-
meshes: Shape approximation using spherical quadric error met-
rics. ACM Transactions on Graphics (Proc. of SIGGRAPH).

THIERY, J.-M., GUY, E., BOUBEKEUR, T., AND EISEMANN, E.
2016. Animated mesh approximation with sphere-meshes. ACM
Transactions on Graphics (TOG).

TOMPSON, J., STEIN, M., LECUN, Y., AND PERLIN, K. 2014.
Real-time continuous pose recovery of human hands using con-
volutional networks. ACM Transactions on Graphics (TOG).

VAILLANT, R., BARTHE, L., GUENNEBAUD, G., CANI, M.-P.,
ROHMER, D., WYVILL, B., GOURMEL, O., AND PAULIN, M.
2013. Implicit skinning: Real-time skin deformation with contact
modeling. ACM Transactions on Graphics (Proc. of SIGGRAPH).

VAILLANT, R., GUENNEBAUD, G., BARTHE, L., WYVILL, B.,
AND CANI, M.-P. 2014. Robust iso-surface tracking for in-
teractive character skinning. ACM Transactions on Graphics
(TOG).

WANG, R. Y., AND POPOVIC, J. 2009. Real time hand tracking
with a colored glove. ACM Transactions on Graphics (Proc. of
SIGGRAPH).

WELCH, G., AND FOXLIN, E. 2002. Motion tracking: No silver
bullet, but a respectable arsenal. IEEE Comput. Graph. Appl..

