Résumé

Nanoscale chiral skyrmions in noncentrosymmetric helimagnets are promising binary state variables in high-density, low-energy nonvolatile memory. Skyrmions are ubiquitous as an ordered, single-domain lattice phase, which makes it difficult to write information unless they are spatially broken up into smaller units, each representing a bit. Thus, the formation and manipulation of skyrmion lattice domains is a prerequisite for memory applications. Here, using an imaging technique based on resonant magnetic x-ray diffraction, we demonstrate the mapping and manipulation of skyrmion lattice domains in Cu2OSeO3. The material is particularly interesting for applications owing to its insulating nature, allowing for electric field-driven domain manipulation. (C) 2016 Author(s).

Détails

Actions