Résumé

A new class of dye-sensitized solar cells (DSSCs) using the hemicage cobalt-based mediator [Co(ttb)](2+/3+) with the highly preorganized hexadentate ligand 5,5 '', 5 ''''-((2,4,6-triethyl benzene-1,3,5-triyl)tris(ethane-2,1-diyl))tri-2,2'-bipyridine (ttb) has been fully investigated. The performances of DSSCs sensitized with organic D-p-A dyes utilizing either [Co(ttb)](2+/3+) or the conventional [Co(bpy)(3)](2+/3+) (bpy = 2,2'-bipyridine) redox mediator are comparable under 1000 Wm(-2) AM 1.5 G illumination. However, the hemicage complexes exhibit exceptional stability under thermal and light stress. In particular, a 120-hour continuous light illumination stability test for DSSCs using [Co(ttb)](2+/3+) resulted in a 10% increase in the performance, whereas a 40% decrease in performance was found for [Co(bpy)(3)](2+/3+) electrolyte-based DSSCs under the same conditions. These results demonstrate the great promise of [Co(ttb)](2+/3+) complexes as redox mediators for efficient, cost-effective, large-scale DSSC devices.

Détails