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Chaire de Simulation à l’Echelle Atomique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

(Received 19 September 2016; revised manuscript received 8 November 2016; published 7 December 2016)

We present ab initio calculations of uniaxial absolute deformation potentials of the valence and the conduction
bands in monolayer MoS2, MoSe2, WS2, WSe2, h-BN, and phosphorene. Calculations are performed using both
semilocal and hybrid functionals. The absolute positions of the band edges in strained and unstrained materials
are determined using the vacuum level as reference. For WSe2, we compare the obtained results with measured
shifts of the valence band maximum (VBM) and the conduction band minimum (CBM) induced by uniaxial
strain and find a very good agreement. The parameters describing the shifts in the VBM and CBM positions
under strain can be used in the modeling of devices such as tunneling field-effect transistors.
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I. INTRODUCTION

Two-dimensional (2D) materials, such as graphene [1],
phosphorene [2,3], hexagonal boron nitride (h-BN) [4,5],
and transition-metal dichalcogenides (TMDs) [6,7], of which
MoS2, MoSe2, WS2, and WSe2 are among the most studied
ones [8–11], have gained significant interest due to their
potential applications in future electronics, photovoltaics, and
batteries. Recently, strain engineering has become a major
focus in the research of 2D materials [12].

Tunneling field-effect transistors (TFETs) [13,14] con-
sisting of vertically stacked graphene and monolayers of
hexagonal boron nitride or molybdenum disulphite (MoS2)
have been realized [15]. In these devices, quantum band-to-
band tunneling replaces thermal injection, with the tunneling
currents depending directly on the band-gap size. This effect
was found to be the reason behind the rapid on-off switching
capabilities of TFETs, which grants them superiority over
conventional FETs. Since the size of the band gap can be tuned
by the application of strain, strain engineering is a promising
way of adjusting the properties of such devices.

Another interesting example is the recently fabricated
2D phosphorene, which apart from demonstrating excellent
performance when applied in a transistor, also possesses a
direct band gap, as opposed to graphene, and can be used
in optoelectronics. It has recently been shown that a direct-
indirect band-gap transition can be induced by introducing
strain in an appropriate direction in this material, making it
possible to precisely tune its electronic properties [16].

Hexagonal boron nitride possesses many of the advan-
tageous properties of graphene, while also having a wide
direct band gap, making it a much better candidate for being
used as a semiconductor in spintronics, where precise control
over the magnetic states is necessary. It has been shown that
uniaxial strain can be used to finely tune band gaps in zigzag
h-BN nanoribbons, while also modifying the magnitude and
direction of their dipole moment [17].

Molybdenum disulphide in monolayer form has been
successfully applied in FETs, photodetectors, and photovoltaic
devices [18], due to its preferential physical properties and
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its band gap of 1.8 eV. It has recently been demonstrated
that by creating a strain profile in an atomically thin layer of
MoS2 one could produce a continuously varying band gap,
and simultaneously introduce a spatial variation of charge-
carrier energies [19]. This effect was proposed to have direct
application in photovoltaic devices capable of capturing a
broad range of the solar spectrum and to allow the tunneling
of energy along the strain gradient.

With the band structure of semiconductors having a direct
impact on their applicability and performance in different
domains, ways to adjust its properties according to specific
needs have been sought intensively. Strain engineering has
proven to be an effective way for achieving this goal, even more
so in the case of nanostructures, which exhibit a much better
tolerance to mechanical strain than their bulk counterparts.
Moreover, in devices based on vertical stacking of monolayer
materials, strain will be present due to lattice mismatches.
Thus, the way that strain affects the material properties
needs to be understood. The possibility of controlling device
characteristics through strain has led to extensive studies on the
way the electronic structure of monolayer materials is affected,
both theoretically [16,20–24] and experimentally [2,25–28].
However, most of these studies focused on the band gaps rather
than on the positions of the valence- and the conduction-band
edges, which are, for instance, necessary to define the band
offsets in heterostructures.

In the present study, we investigate uniaxial absolute
deformation potentials, which relate the uniaxial strain to
the shifts of individual band edges. We consider a set of
monolayer materials: MoS2, MoSe2, WS2, WSe2, h-BN,
and phosphorene. The deformation potentials are important
physical properties and are necessary in several applications.
For instance, they allow the determination of natural band
offsets between lattice mismatched material systems [29],
the description of electron-phonon interactions [30], and the
definition of pressures in ab initio calculations of charged
supercells [31].

This paper is organized as follows. In Sec. II we
present the definition of the uniaxial deformation potentials
and the computational methods. In Sec. III we describe
the calculated absolute deformation potentials and compare
them with previous studies. We conclude the paper in
Sec. IV.
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II. METHODS

A. Uniaxial absolute deformation potentials

The absolute deformation potentials can be defined
as [32,33]

ai = �Ei

�lnV
, (1)

where ai is the deformation potential of a given state i, �Ei

is the shift of its energy under strain, and �lnV = �V/V is
the relative change of volume. This change can be related to
strain through �V/V = εxx + εyy + εzz, where εxx , εyy , and
εzz are the normal strains in x, y, and z directions. In the
present study, we are interested in uniaxial strains. Therefore,
we define uniaxial absolute deformation potentials as

ai
xx = �Ei

εxx

and ai
yy = �Ei

εyy

. (2)

In our electronic structure calculations, we use the vacuum
level to align the energies of the electronic states. It is
worth noting that in the case of 2D materials, the vacuum
can be easily used as energy reference, as it is present in
the simulation cell, while in the case of three-dimensional
semiconductors strained superlattice calculations are usually
required to calculate absolute deformation potentials [32,33].
From the absolute deformation potentials of the valence and of
the conduction band (aVBM and aCBM), one can directly obtain
the band-gap deformation potential agap as follows:

agap = �Egap

�lnV
= aCBM − aVBM. (3)

B. Computational details

In the present work, we perform electronic structure calcu-
lations using DFT as implemented in the ABINIT code [34–36].
Two types of calculations are performed, one within the
semilocal Perdew-Burke-Ernzerhof (PBE) approximation [37]
and one using the Perdew-Burke-Ernzerhof (PBE0) hybrid
functional [38], in which 25% of PBE exchange is replaced
by nonlocal Fock exchange. Core-valence interactions in
all calculations are treated through norm-conserving pseu-
dopotentials [39]. In the calculations for TMDs, we include
spin-orbit coupling as calculated at the PBE level. For each
material, we use a plane-wave cutoff and a k-point sampling
that ensure the convergence of the total energy to less than
1 meV. This corresponds to cutoff energies of 24 Ha for
phosphorene; 38 Ha for MoS2, WS2, and h-BN; and 40 Ha
for MoSe2 and WSe2. We use 12 × 12 × 1 k-point meshes for
the TMDs and for h-BN and a 14 × 10 × 1 k-point mesh for
phosphorene. Before studying the effects of strain on the band
edges, we relax all structures at the PBE level. The equilibrium
lattice parameters are found to be a = 3.19 Å for MoS2,
a = 3.32 Å for MoSe2, a = 3.19 Å for WS2, a = 3.32 Å for
WSe2, a = 2.51 Å for h-BN, and a = 3.30 Å and b = 4.63 Å
for phosphorene. We then strain the geometries by setting the
lattice parameter in a given direction to a fixed value (1%
smaller and larger), while allowing the atomic positions and
the other lattice parameter to relax. Relaxation is continued
until the atomic forces become lower than 0.003 eV/Å. The
PBE0 calculations are performed using the PBE structures.

We check in the case of MoS2 that accounting for the
relaxations at the PBE0 level leads to changes in the absolute
deformation potentials of less than 0.1 eV. We introduce a vac-
uum layer of at least 20 Å between the layers in the simulation
cell. We check that this thickness of the vacuum layer allows
us to obtain the band-edge positions converged to less than
0.01 eV and absolute deformation potentials to less than 0.2 eV.

To verify the consistency of our calculations with previous
studies, we analyze the band gaps calculated for the unstrained
materials. Using the PBE functional, we obtain 1.60, 1.34,
1.54, 1.26, 4.70, and 0.90 eV for MoS2, MoSe2, WS2,
WSe2, h-BN, and phosphorene, respectively. These values
are consistent with previous electronic structure calculations
for 2D materials using semilocal functionals [16,40,41]. Our
PBE0 calculations predict band gaps of 2.71, 2.42, 2.64, 2.32,
6.35, and 2.22 eV for MoS2, MoSe2, WS2, WSe2, h-BN, and
phosphorene, respectively. These values are in good agreement
with values obtained using the many-body perturbation theory
in the GW approximation [41–43]. As in this work we focus on
the positions of the band edges and not only on the band gaps, it
is worth noting that when the PBE0 functional predicts correct
band gaps, it also yields ionization potentials in excellent
agreement with experiments [44]. This supports the use of
this method to study the effect of strain on the band energies.

The absolute deformation potentials are the first derivatives
of the band energy with respect to strain at equilibrium.
Therefore, they can only be used to predict the band energies
in a range of strains for which the relationship between them
is linear. We determine the linear regime of this dependence
in the case of MoS2. The energies of the VBM at the K and
� points and of the CBM at the K and � points (see Fig. 1
for the positions of these points in the Brillouin zone) as a
function of strain are presented in Fig. 2. The results indicate
that the relation can be assumed linear for strains between
−5% (compressive strain) and +5% (tensile strain).

III. RESULTS AND DISCUSSION

A. Transition-metal dichalcogenides

First, we study the absolute deformation potentials of
TMDs. In Table I, we present the absolute deformation po-
tentials for MoS2, MoSe2, WS2, and WSe2, calculated for the
local extrema in the valence band and in the conduction band,
and for the corresponding band gaps. For all the considered
TMDs, the strain induced shifts in the band positions are found
to be very similar for x and y directions. Therefore, in these
cases, we present PBE0 results only for εxx . For the TMDs,
we plot in Fig. 3 the energies (with respect to the vacuum
level) of the VBM at the K and � points and of the CBM
at the K and � points as a function of the uniaxial strain in
the x direction. The latter are calculated using the absolute
deformation potentials as obtained with the PBE and PBE0
functionals. The four TMDs, which share the same hexagonal
structure, allow us to compare the effect of strain on the their
band-edge positions. It can be observed that the band edges of
MoS2, MoSe2, WS2, and WSe2 shift under strain in a similar
way. For all these materials the VBM and CBM energies at the
K point decrease when the lattice parameter increases, while
the VBM energy at � and the CBM energy at � increase.

245411-2



ABSOLUTE DEFORMATION POTENTIALS OF TWO- . . . PHYSICAL REVIEW B 94, 245411 (2016)

FIG. 1. Top (a) and side (b) views of the structures of MoS2, h-BN, and phosphorene along with the representations of the Brillouin zones
(c) and of the band structures calculated with the PBE functional (d). In (d), the points for which the absolute deformation potentials are
calculated are indicated. Band structures are aligned to the vacuum level.

The absolute changes of the VBM and CBM energies
under strain are due to two effects. First, the kinetic energy
of the state, which is proportional to the reciprocal-lattice
vector, decreases when the lattice parameter of the material
is increased [45]. Second, the state can be either bonding

FIG. 2. Energies of the VBM at the K and � points and of the
CBM at the K and � points of MoS2 as a function of the uniaxial
strain in the x direction. Squares represent calculated values and solid
lines are linear fits using values calculated for strains of +1 and −1%.
The vacuum energy is used as reference.

or antibonding, which will result in a respective increase or
decrease of its energy level as the bond length is increased.
For antibonding states the two effects add up, resulting in
large negative absolute deformation potentials. In the case of
bonding states, the two effects lead to partial compensation,
resulting in lower values of the corresponding deformation
potentials. In TMDs, the CBM state at the K point is a
metal dz2 -like function showing antibonding character with the
chalcogen px + py orbitals. The energy of this state strongly
decreases when the material is expanded. The VBM state
at the � point consists of strongly bonded metal dz2 and
chalcogen pz orbitals. In this case we observe a positive
deformation potential, but with a lower value than for the
CBM at the K point state, since the bonding effect is
partially compensated by the kinetic-energy effect. The VBM
at the K point is a bonding state between metal dxy and
chalcogen px + py orbitals. The CBM at the � point is a
metal dx2-y2 -like wave function showing bonding character
with the chalcogen px + py orbitals. For these two states we
observe small deformation potentials due to the two competing
effects.

Our PBE results are in good agreement with results obtained
in the local density approximation by Huang et al. [27]. Even
though the absolute deformation potentials are not extracted
or discussed, we can estimate them from Fig. 5 of their
work [27]. For instance, for the VBM and the CBM at the
K point they obtain uniaxial absolute deformation potentials
in the x direction of about −2.5 and −7.5 eV, respectively.
These values are in qualitative agreement with the values of
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TABLE I. Absolute deformation potentials (in eV) of the VBM at the K and � points, of the CBM at the K and � points and of the various
band gaps of monolayer transition-metal dichalcogenides.

MoS2

aVBM
K aCBM

K aVBM
� aCBM

� a
gap
K−K a

gap
�−K a

gap
K−�

PBE xx −1.86 −6.08 3.13 0.61 −4.22 −9.21 2.48
PBE yy −1.93 −6.19 2.90 0.15 −4.26 −9.09 2.08
PBE0 xx −1.71 −7.16 3.12 0.63 −5.42 −10.29 2.34

MoSe2

aVBM
K aCBM

K aVBM
� aCBM

� a
gap
K−K a

gap
�−K a

gap
K−�

PBE xx −1.86 −5.62 2.55 0.71 −3.75 −8.16 2.57
PBE0 xx −1.27 −6.21 3.13 0.99 −4.95 −9.33 2.26

WS2

aVBM
K aCBM

K aVBM
� aCBM

� a
gap
K−K a

gap
�−K a

gap
K−�

PBE xx −1.59 −6.76 3.09 0.90 −5.17 −9.85 2.49
PBE0 xx −1.43 −7.73 3.68 1.01 −6.30 −11.40 2.44

WSe2

aVBM
K aCBM

K aVBM
� aCBM

� a
gap
K−K a

gap
�−K a

gap
K−�

PBE xx −1.43 −6.35 2.61 0.93 −4.92 −8.97 2.36
PBE0 xx −0.16 −6.03 4.06 1.13 −5.86 −10.08 1.30

−1.86 and −6.08 eV calculated within the PBE functional in
the present study. Differences amount to about 20–30%.

Next, we compare the results achieved with the PBE and
PBE0 functionals. The two methods predict similar absolute

deformation potentials in most of cases. The largest difference
is observed for the CBM at the K point. In the case of WSe2,
we also observe a significant difference for the VBM at the
K point. However, as for the positions of the band edges (see

FIG. 3. Energies of the VBM at the K and � points and of the CBM at the K and � points of the transition-metal dichalcogenides as a
function of the uniaxial strain in the x direction. Solid and dashed lines correspond to PBE0 and PBE results, respectively. The vacuum energy
is used as reference. The band energies result from a linear extrapolation of the values calculated at −1 and +1% strain, indicated with symbols.
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TABLE II. Absolute deformation potentials (in eV) of the VBM
at the K point, of the CBM at the K and � points, and of the band
gaps of monolayer hexagonal boron nitride.

h-BN
aVBM

K aCBM
K aCBM

� a
gap
K−K a

gap
K−�

PBE xx −1.63 −4.67 −0.51 −3.05 1.12
PBE yy −1.56 −4.62 −0.49 −3.06 1.07
PBE0 xx −1.52 −4.71 −0.35 −3.18 1.17

Fig. 3) PBE0 yields much larger regions in which the band gap
is direct. For instance, in the case of MoS2 the PBE functional
predicts a direct band gap for strains between −3.5 and +1.2%,
while the PBE0 functional yields such a result in the range from
−5 to +2.8%.

B. Hexagonal boron nitride

We consider here monolayer hexagonal boron nitride.
Table II presents the absolute deformation potentials of the
VBM at the K point and of the CBM at the K and � points of
this material. No significant differences are found between the
effects of strain in the x and y directions, nor between the PBE
and PBE0 results. However, similar to the case of TMDs, the
direct/indirect nature of the band gap differs between PBE and
PBE0 calculations, as can be seen in Fig. 4. While PBE predicts
a transition between an indirect and direct gap at a strain of
about −0.5%, an indirect gap is observed in PBE0 for all
strains between −5 and +5%. Using both the PBE and PBE0
functionals, we find that the energies of the three considered
states decrease when the lattice parameter increases. The
evolution of the band edges as a function of strain can be
related to the chemical bonding of the corresponding states.

FIG. 4. Energies of the VBM at the K and � points and of the
CBM at the K point of monolayer hexagonal boron nitride as a
function of the uniaxial strain in the x direction. Solid and dashed
lines correspond to PBE0 and PBE results, respectively. The vacuum
energy is used as reference. The band energies result from a linear
extrapolation of the values calculated at −1 and +1% strain, indicated
with symbols.

TABLE III. Absolute deformation potentials (in eV) of the VBM,
of the CBM, and of the band gap at the � point for phosphorene.

Phosphorene
aVBM

� aCBM
� a

gap
�−�

PBE xx 1.94 4.17 2.23
PBE yy −2.93 0.53 3.46
PBE0 xx 1.47 4.66 3.20
PBE0 yy −3.04 0.54 3.59

At the K point, the VBM and the CBM correspond to π

(bonding) and π∗ (antibonding) states, respectively [46]. For
the bonding state at the VBM, we observe a small negative
absolute deformation potential, because the increase of its
energy level with bond length is dominated by the decrease
of the kinetic energy. For the antibonding CBM state, the
energy decreases when the material is expanded. This adds up
to the kinetic energy decrease, resulting in a larger negative
deformation potential. At the � point, the energy level of
the CBM remains almost unchanged when strain is applied.
This is because this state displays a nearly-free-electron-like
character [47] and is thus almost unaffected by interatomic
distances. It is also interesting to notice that the indirect K − �

band gap of h-BN does not change significantly when strain is
applied, as both band edges move in the same direction.

C. Phosphorene

Finally, we study the strain effects in phosphorene. The
absolute deformation potentials of the VBM and of the CBM
at the � point of this material are presented in Table III. It
is worth noting that under strain, the VBM of phosphorene
continuously evolves from the � point towards the X point [16]
(see Fig. 1 for the representation of the Brillouin zone)
resulting in an indirect gap. However, in the range of strains
that we consider, the maximum of the valence band does not
differ from the energy at the � point by more than 0.02 eV.
Therefore, we only present results for the � point in Table III
and Fig. 5.

In phosphorene, the effect of strain is significantly different
between the x and the y direction, which is consistent with
the anisotropic nature of this material [2]. In this case, we
present the PBE0 results for both εxx and εyy . The energies
of the VBM and CBM at the � point as a function of strain
are shown in Fig. 5. When a tensile strain is applied in the x

direction, both the VBM and the CBM shift upwards in energy.
When the material is expanded in the y direction, the CBM
remains almost constant, while the VBM decreases. However,
while the changes in the individual band edges are different
for the strain applied along the x and y directions, the overall
effect on the band gap does not depend on the direction in
which the strain is applied. For phosphorene, the evolution of
the VBM and CBM levels with strain has already been studied
by Peng et al. [16]. In this study, the absolute deformation
potentials were not calculated. However, we can estimate them
from the shift in the VBM and the CBM presented there. For
uniaxial strain in the x direction, Peng et al. obtained aVBM

�

and aCBM
� of about 0.9 and 3.1 eV, respectively. Respective

values for the y direction amount to −1.0 and 2.8 eV. The
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FIG. 5. Energies of the VBM and of the CBM at the � point
of the phosphorene as a function of uniaxial strain in the x and
in the y direction. Solid and dashed lines correspond to PBE0 and
PBE results, respectively. The vacuum energy is used as reference.
The band energies result from a linear extrapolation of the values
calculated at −1 and +1% strain, indicated with symbols.

corresponding xx and yy band-gap deformation potentials are
2.2 and 3.8 eV. While the absolute deformation potentials of
the VBM and the CBM estimated from the study of Peng et al.
differ from the values reported here by about 1 eV, the general
trends in the shifts of the band edges and in the band-gap
deformation potentials are in good agreement. In Ref. [16],
the authors also analyzed the nature of the band-edge states
of phosphorene at the � point. They suggested that the VBM
state has a nonbonding and antibonding character in the x and
y direction, respectively, while the respective characters of the
CBM state are bonding and antibonding. This analysis explains
well the uniaxial absolute deformation potentials presented
here.

The shifts in the VBM and the CBM of phosphorene were
also studied by Sa et al. [48]. From their results, we extract a
deformation potential aVBM

� of about −0.4 and −3.7 eV in the
x and y directions, respectively. Respective values for aCBM

�

are 5.9 and 1.3 eV. Most of the deformation potentials are in
qualitative agreement with the ones presented here. However,
we notice that in the case of aVBM

� in the x direction Sa et al.
found a result with an opposite sign, with a value that differs
by more than 2 eV from the one reported here.

FIG. 6. Comparison between the energy shifts of the VBM and
CBM of WSe2, as a function of uniaxial strain, as extracted from
experiments [28] (red and blue squares, respectively) and calculated
with the PBE0 functional in the present study.

D. Comparison with experiments

The absolute deformation potentials presented in this work
can be compared with experimental data. Several photo-
luminescence spectroscopy measurements of the band-gap
evolution under uniaxial strain have been performed for
MoS2 [25,49,50]. In these studies, a decrease of the direct gap
energy of 45–70 meV/% strain was observed. Our band-gap
deformation potentials of −4.22 and −5.42 eV (corresponding
to −42.2 and −54.2 meV/% strain) calculated using the PBE
and PBE0 functional, respectively, are within the ranges of the
experimental values.

Recently, the strain effect on the band edges of WSe2 has
been studied experimentally through the realization of a three
terminal FET [28]. It was observed that under uniaxial tensile
strain the valence-band edge remains almost unchanged, while
the conduction-band edge moves down in energy. In Fig. 6, we
compare the shifts in the VBM and CBM, as calculated with
the PBE0 functional, with experimental data from Ref. [28]. A
good agreement is found between the calculated and measured
energy shifts. It is worth noting that in Ref. [28] the results
were compared to calculations performed for MoS2 under
strain [20], in which all band structures were aligned to the
VBM. This means that in Ref. [20] the energy of the valence
band was artificially set to zero for all strains. The agreement
invoked in Ref. [28] could thus only be achieved due to the
negligible shift of the VBM, as this becomes clear through the
calculations in this work.

For future applications of the absolute deformation poten-
tials presented here, it should be kept in mind that monolayer
materials are often placed on a substrate or embedded in
2D heterostructures. It is, therefore, worth discussing the
applicability of the absolute deformation potentials calculated
here in these conditions. It has been shown experimentally [51]
that when monolayer MoS2 is deposited directly on Si and
SiO2 substrates, it exhibits a warped surface morphology,
which deteriorates its optoelectronic properties. In this case,
the absolute deformation potentials presented in this study
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cannot be applied directly. However, in the same study, it
was shown that when MoS2 is placed on an atomically thin
buffer layer of h-BN, its electronic properties are recovered,
since the interaction with the substrate is weak. Similarly,
first-principles calculations of monolayer MoS2 on h-BN [52]
showed that the band structure of the heterostructure is
equivalent to the superposition of the band structures of the
isolated materials, when an appropriate strain is considered.
This suggests that when the interlayer interactions are weak,
the absolute deformation potentials calculated in this work
could be reliably used to predict band-edge positions in
strained heterostructures or in strained supported monolayers.

IV. CONCLUSIONS

We performed ab-initio density functional theory calcu-
lations of the absolute deformation potentials for a set of
monolayer materials: MoS2, MoSe2, WS2, WSe2, h-BN, and
phosphorene. The absolute deformation potentials allow one to
directly obtain the energy shifts of the individual band edges
upon application of strain. Absolute deformation potentials
are required to determine natural band offsets in lattice
mismatched material systems, to describe electron-phonon
interactions, and to define pressures in ab-initio calculations
of charged supercells. The calculations were performed using
both the semilocal PBE functional and the hybrid PBE0 func-
tional. The vacuum energy was used to align the energies of

the electronic states. For the transition-metal dichalcogenides,
we found that the hybrid functional yields much larger ranges
of strain with a direct band gap than the PBE functional does.
Also, the PBE0 functional predicts hexagonal boron nitride to
have an indirect gap for all strains between −5 and +5%, while
the PBE functional yields a transition between an indirect
and direct gap around −0.5% strain. We observed that for
h-BN the energies of both VBM and CBM decrease when the
lattice parameter increases, resulting in a very small variation
of the band gap under strain. In the case of phosphorene,
the PBE and PBE0 functionals give similar qualitative and
quantitative results. We compared our PBE0 results with a
recent experimental study of the strain effect on the band edges
of WSe2 [28], finding a very good agreement.

Our study demonstrates the capability of DFT calculations
to precisely determine the subtle changes induced by strain in
the band-edge positions of 2D materials. The obtained results
can be readily applied to device design and can facilitate the
development of strain engineering, which has become a major
focus in the materials science of 2D systems.
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