Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells

Perovskite solar cells with variety of hole selective contacts such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl), poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine], 5,10,15-trihexyl-3,8,13-tris (4-methoxyphenyl) -10,15-dihydro-SH-diindolo [3,2-a:3',2'-c]carbazole (HMPDI), and 2',7'-bis(bis(4-methoxyphenyl)-amino)spiro [cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene] were employed to elucidate its role at the interface of perovskite and metallic cathode. Microscopy images revealed Spiro-OMeTAD and HMPDI produce smoother and intimate contact between perovskite/hole transporting materials (HTM) interfaces among others evaluated here. This morphological feature appears to be connected with three fiindamental facts: (1) hole injection to the HTM is much more efficient as evidenced by photoluminescence measurements, (2) recombination losses are less important as evidenced by intensity-modulated photovoltage spectroscopy and impedance spectroscopy measurements, and (3) fabricated solar cells are much more robust against degradation by moisture. Devices with higher open-circuit photovoltages are characterized by higher values of the recombination resistance extracted from the impedance data. The variation in device hysteresis behavior can be ascribed mainly due to the molecular interaction and the core of HTM employed. In all cases, this fact is related with a larger value of the low-frequency capacitance, which indicates that the HTM can induce specific slow processes of ion accumulation at the interface. Notably, these processes tend to slowly relax in time, as hysteresis is substantially reduced for aged devices.

Published in:
Acs Applied Materials & Interfaces, 8, 50, 34414-34421
Washington, Amer Chemical Soc

 Record created 2017-01-24, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)