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ABSTRACT

Dynamic functional connectivity (dFC) measured by func-
tional magnetic resonance imaging (fMRI) shows evidence of
large-scale networks with highly dynamic (re)configurations.

We propose a novel approach to extract traces of human
brain function by the construction of a trajectory in a mean-
ingful low-dimensional space. This allows studying dFC
in more detail and identify possible meaningful brain states
from the moment-to-moment fluctuations of the brain signals
during resting state or naturalistic conditions such as passive
movie watching. Specifically, we explored dynamic organiza-
tion of sub-networks derived from the time-dependent graph
Laplacian in combination with Riemannian manifold distance
to measure dissimilarity over time of dFC and to subsequently
build the trajectory of brain activity. As a proof-of-principle,
we show results for an fMRI dataset containing both rest and
movie epochs in 15 healthy participants. The movie condi-
tion varied (i.e., fearful, joyful, and neutral movie excerpts)
and clearly influenced the subsequent resting-state period in
terms of FC brain state.

Index Terms— Functional MRI, Riemannian distance,
Network modeling, Brain activity

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is widely
used to investigate brain function. Next to using evoked
activity, many studies focus on resting state or naturalistic
conditions to identify intrinsic functional networks [1]. One
predominant measure to characterize interactions in resting-
state fMRI (rs-fMRI) is Pearson correlation between the
entire timecourses of pairs of brain regions. This correlation
value is termed as functional connectivity (FC) and implicitly
assumes that the underlying processes are stationary. En-
coding FC as edge weights in graph models has been used
to explore functional brain networks in terms of modular-
ity/communities [2], which is indeed a property of functional
organization in the brain [3].
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However, recent evidence has started to acknowledge the
dynamic nature of FC [4]. The most common technique to
look into dynamic functional connectivity (dFC) is based on
a sliding-window approach; i.e., FC is computed only in a
limited-time window that slides over the data. Different meth-
ods such as k-means clustering, singular value decomposi-
tion, and dictionary learning have been proposed to extract
meaningful dFC patterns of brain states in healthy subjects or
in specific patient groups [5, 6, 7]. However, there is still no
method to explore changes in FC patterns during a full-length
fMRI acquisition.

Here, we propose a new concept to extract traces of
brain function by projecting dFC into a low-dimensional
space where the interpretation of dynamics becomes easier
to recognize. We leverage in particular the use of the graph
Laplacian, to be sensitive to changes in network organization,
and of Riemannian manifold properties, to define a rigorous
measure of distance between graphs. The graph Laplacian
matrix is often used to study modular organization [8, 9] and
it has recently been proposed to explore dynamical process
of network systems [10]. Moreover, the Laplacian matrix
is positive semi-definite (PSD) and it can be combined with
the Riemannian geometry [11]. Therefore, we characterize
dissimilarity between dFC patterns using Riemannian met-
rics. At the same time, we discount accumulated distance
over time to allow detection of recurrent patterns and obtain
a measure of geodesic distance on the brain-state manifold.
Finally, multi-dimensional scaling is used to project these dis-
tances into a lower-dimensional space allowing to visualize
the trajectories.

We applied the proposed method to existing fMRI dataset
of 15 healthy participants [12]. During fMRI scanning, rest-
ing states was alternated with different types of movie condi-
tions (i.e., fearful, joyful, and neutral). The emotional content
of the movies was shown to subtly influence the subsequent
resting-state periods.

While our method is completely blind to the rest-movie
paradigm and the movie conditions, the results show that (1)
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the extracted traces are consistent across subjects; (2) clear
differences can be distinguished between resting state follow-
ing different movie conditions. Our results further suggest
that both the graph Laplacian and Riemannian distance are
essential ingredients to let these meaningful traces emerge.

2. MATERIALS & METHODS

2.1. Dataset

The dataset is composed by fifteen healthy participants,
scanned with a Siemens 3T Trio TIM. Functional images
were acquired in 2 scanning runs (2598 volumes in total)
with the following parameters: repetition time (TR) 1100ms,
echo time (TE) 27ms, flip angle 90, 21 axial slices, in-plane
resolution of 3.75 x 3.75mm (64x 64 matrix), and slice
thickness 4.2mm with a 1.05mm gap. We also acquired
a field map and a high-resolution T1-weighted anatomical
scan. The paradigm consisted of showing short nine movie
excerpts (of three different types) interleaved with 90s resting
periods. For the following analysis we consider only one
scanning run using 1290 volumes. Further details on the
dataset can be found in [12].

2.2. Dynamic Functional Connectivity

After basic preprocessing steps including realignment, nor-
malization, and extracting regional timecourses using the
AAL atlas [13, 14], we estimated dFC using pairwise Pear-
son correlation in sliding windows of length At = 20 TR
(22s) and with step size s = 5 TR (5.5s) [15]. This led to
a connectivity matrix for each window denoted as W;. Con-
catenating all W, over the time results in a (N x N) x T
matrix for every subject, where 7" is the number of windows
and N the number of brain regions. We then transformed
and normalized all values in each window W, through Fisher
r-to-z transform.

Due to the fMRI acquisition protocol, we performed the
above dFC analysis only during the sequence of the resting-
movie paradigm, discarding the preparation sequence in be-
tween each resting-movie sequence as described in [12]. We
applied this procedure to all subjects, which resulted in 7" =
150 dFC frames per subjects.

2.3. Graph Laplacian and Modularity

Although there are several methods taking into account the
properties of the modularity matrix for graph partitioning [2,
16], we built our method upon the graph Laplacian. Spectral
properties of the graph Laplacian are often combined with -
means clustering for community detection as relaxation of the
Ncut problem [17]. In our method we computed the normal-
ized Graph Laplacian for each temporal window as follow:

L, = D;'*(D, — W,)D; /2, (1)

obtaining the dynamic Laplacian connectivity (dLC), where
D, is the degree matrix of W; at each time ¢.

The graph Laplacian is PSD and it can be easily reg-
ularized to a positive definite matrix by the modification
Ly =L, +~I,wherey >0 is a regularization parameter
and [ is the identity matrix [11]. In our settings we used
~ =107,

2.4. Traces of Moment-to-Moment Fluctuations

The key point to disentangle different brain states and to build
the trace is the choice of the dissimilarity metric. Euclidean
distance between dFC frames (after direct embedding of the
upper-triangular part in a vector space) does not guarantee
to correctly describe the dissimilarity between graphs, espe-
cially if a different modular organization has to be recognized.
Regularized Laplacians L instead allow using Riemannian
manifold properties.

We adopted the log-Euclidean distance between two pos-
itive definite matrices, which is geodesic and fast to compute
[18]. Specifically, the distance between two timepoints I:ti
and ﬁtj is obtained as

d(ﬁtivit]‘) = H log(f’ti) - log(f’t]‘)HF7 (2)

with log(+) denoting the principal matrix logarithm and || || ¢
denoting the Frobenius matrix norm.

Eq. 2 does not consider the temporal dependencies be-
tween each frame and indeed, it does not allow to recognize
recurring brain states since it implicitly models time linearly.
However, whenever the distance between dFC frames for two
timepoints is shorter than the average of the incremental dis-
tances for all successive timepoints in between them, we re-
vert to the minimal distance:

D(I/\/lf1 ) z/tj) = min (d(f/tl ) Ltj )7 dinc(i/ti 9 lA/tj )) ) (3)

where

max(¢,5)—1

~ ~ 1 ~ ~
(Lo L) = = > d(Luolu.,). @
Itj —ti

" k=min(s,5)

In other words, we propose a trade-off between dFC dissimi-
larity independent of time (Eq. (2)) and one that converges to
an average distance as a function of time distance (Eq. (4)).
These dissimilarities are computed for all pairwise com-
binations of timepoints (per subject) generating the distance
matrix D (dimension 7" x T'). Non-metric multidimensional
scaling (nMDS)! is applied to reduce the dissimilarity matrix
D into a lower dimensional space K and the procrustes analy-
sis is used to adapt the shapes (i.e. the traces in our setting) to
a reference space. We applied it to the traces of the dFC, aim-
ing at aligning all the trajectories so as to highlight the agree-
ment across the subjects. As a reference space we selected a

!Implementation in Matlab R2014a.
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random subject and we iterated the procrustes analysis till we
obtained a good fit based on the sum of squared errors (gener-
ally after few iterations). Finally, for visualization purposes,
we considered only the first 3 dimensions that were used to
plot the traces of brain activity.

3. RESULTS & CONCLUSION

Fig. 1 shows qualitative results of the trace obtained with
the entire pipeline for a representative single subject using
both our new distance (Eq. 3,4) and classical Euclidean dis-
tance. We replaced the geodesic distance with euclidean one
in (Eq. 3, 4) applying it both on the graph Laplacian and mod-
ularity matrix of the dFC frames. The projection of the dis-
tance matrix obtained with Euclidean distance does not lead
to a clear trace that is meaningful in terms of temporal rela-
tionships and/or clustering of brain states. In particular, the
point clouds do not show a separation between resting and
movie periods. The proposed method, on the contrary, let
us identify both clusters that represent resting state follow-
ing different movie conditions, as well as a clear trace that
respects time. We also performed a quantitative evaluation
of nMDS. Kruskal Stress [19] is commonly used to evaluate
the performance of multidimensional scaling algorithms. Val-
ues grater than 0.2 indicate a bad fit while values lower than
0.05 indicate a good fit of the original data in the lower di-
mensional space. We computed the Kruskal Stress for each
subject and we found an average stress of 0.009 4= 0.001 with
K = 97, where K is the dimension of the subspace which
better approximates the dFC. Also the analysis with the eu-
clidean distance gives similar results in term of Kruskal Stress
but more dimensions are needed to reach the best fitting of the
input data (K., = 123, K,,,q = 124). It denotes that our
proposed metric combined with graph Laplacian works better
than the euclidean one.

Fig. 2 shows the traces for four different subjects after
the procrustes analysis. We adopted the procrustes analy-
sis to realign different traces on a reference space, mostly
to ease the comprehension of rs-fMRI trajectory. The col-
oring of the points indicates the temporal sequence. It reveals
a significant level of resemblance between subjects: movie-
watching frames are almost always limited to points close to
the center, while resting-state points are much more spread
out in directions related to the preceding movie conditions.
We found that this behaviour of the traces is highly repro-
ducible across subjects, which shows that the resting-state
brain is functionally reorganized according to the emotional
state induced by the movies (fearful, joyful, neutral). It is also
surprising that the movie frames are projected close to the
center of the space, suggesting that passive movie-watching
has a less richer structure than the spontaneous (but emotion-
ally induced) resting-state periods that follow.

These results corroborate and further deepen the findings
reported in [12], where specific hypothesis-driven FC analy-

sis of short time segments and regions revealed already emo-
tional induction of resting state by the preceding movie con-
dition. Our method is blind to the structure of the experimen-
tal paradigm and considers whole-brain connectivity. More
detailed analysis should further investigate which brain con-
nectivity drives the traces to the distinct configurations that
we observe.

In summary, we proposed a novel concept to trace and
study dFC. The obtained results are a proof-of-principle for
the combined use of the graph Laplacian to measure modular
organization and of Riemannian distance to assess dissimi-
larity of dFC over time. This allowed us to distinguish and
characterize relevant brain states.
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Fig. 1. Traces in 3-D obtained for a single subject and dif-
ferent distance measures. a: Proposed Riemannian distance
on the graph Laplacian; b: Euclidean distance on the graph
Laplacian; ¢: Euclidean distance on the modularity matrix.
Each timepoint is indicated by a cross (movie) or a dot (rest).
Dots are colored according to time. Clusters in a) correspond
to different resting periods according to the preceding movie
conditions (i.e., labelled rsHappy, rsFear, rsNeutral).
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