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Abstract—We consider a system where randomly generated erasure ratej, while using hybrid ARQ (HARQ) protocols
updates are to be transmitted to a monitor, but only a single to combat erasures. Two HARQ protocols, introduced in [7],
update can be in the transmission service at a time. Therefer, are studied(a) infinite incremental redundancy (IIR) arfé)

the source has to prioritize between the two possible transission fixed redund FR). In both ted
policies: preempting the current update or discarding the rew ixed redundancy (FR). In both cases we assume a generate

one. We consider Poisson arrivals and general service timand Update containd< information symbols. In IIR, encoding is
refer to this system as the M/G/1/1 queue. We start by studyim performed at the physical layer where tReinformation sym-

the average status update age and the optimal update arrivate  pols are encoded using a rateless code. Hence, the trai@miss
for these two schemes under general service time distributn. ;¢ 5 update continues until, = K unerased symbols are

We then apply these results on two practical scenarios in whh . N . .
updates are sent through an erasure channel usingz) an infinite received. As for the FR, coding is applied at the physical and

incremental redundancy (IIR) HARQ system and (b) a fixed Packet layer. This means that the update is divided igto
redundancy (FR) HARQ system. We show that in both schemes packets with each packet encoded usingran &, )-Maximum

the best strategy would be not to preempt. Moreover, we also Distance Separable (MDS) code. So, in this case, the total
prove that, from an age point of view, IIR is better than FR. number of information symbols i& = k,k,. At the packet
. INTRODUCTION level we apply a rateless code and thus the transmission of

Previous work on status update ( [1]-[6]) used an Age & update terminates whén unerased_ packets are rec_eived.
Information (Aol) metric in order to assess the freshness Bt Order to decode a packet, the receiver needs to wait for
randomly generated updates sent by one or multiple Sourgé‘goded symbols. Once received, a packet is declared erased

to a monitor through the network. In these papers, updates 4rfewer thank, symbols are successful. It is worth noting

assumed to be generated according to a Poisson process'aftin this setup we send one symbol per channel use and
the main metric used to quantify thegeis the time average thus the arrival rate\ is the number of updates generated per
age (which we will call average age) given by channel use. The effect of these schemes on the transmission

. time of data was studied in [7]. It was shown that FR leads
A = lim 1/ A(t)dt, (1) to a slower delivery than IIR. While the main aim of [7] is
T=o T Jo the successful delivery of every update, in this paper we are
where A(t) is the instantaneous age of the last successfuligady to sacrifice some updates for fresher information.
received update. If this update was generated at tithgthen
its ageat timet is A(t) = ¢t — u(t). When the system is idle
or an update is being transmitted then the instantaneous
increases linearly with time, as depicted in Fig. 1. Once
update generated at timg is received by the monitor af,
A(t) drops to the value — t,. This results in the sawtooth
sample path seen in Fig. 1. To solve the above problem, we first start by deriving in
In this paper, we assume updates are generated accordegtion Ill an expression for the average age under general
to a Poisson process with rate but the system can handleservice time distribution when we choose not to preempt.
only one update at a time without any buffer to store incominbhis model is called M/G/1/1 with blocking. In Section IV,
updates. This means that whenever a new update is generateduse the results in the previous Section to compute the
and the system is busy, the transmitter has to make a decisiaverage age when we consider the IIR and FR protocols.
does it give higher priority to the new update or to the ongections V and VI follow the same logic but in this case
being transmitted? In other words, does it preempt or not® choose to preempt. This model is called M/G/1/1 with
It has been shown that for exponential update service timgseemption. Finally, Section VII compares the performance
preemption ensures the lowest average age [2]. However, tieboth models for a given HARQ protocol as well as the
work in [5] suggests that under the assumption of gammpa&rformance of both protocols given a model. We show that
distributed service time, preemption might not be the besb matter the protocol, prioritizing the current updateastér
policy. than preempting it. Moreover, in the case of FR, we show that
This work answers the previous question when we assume matter the model and for a fixed arrival ratethere exists
updates are sent through a symbol erasure channel wathoptimal codeword length;.

The impact of transmission error on the age was also investi-
ated in [8]. In this paper, service time is assumed expdaient
88 another age metric is used: the peak age of information.

e authors conclude that, in this setup, preemption with

update retransmission achieves the lowest age.



40 A. Average age calculation
Lemma 1. For an M/G/1/1 blocking system we have,
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N @ Q; whereY, X and S are the steady-state counterparts of the

Q'_,.f's variables defined in Section II.
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by LG Gyl G ] Prda ] Proof. N, is a renewal process with inter-renewal time be-
— tween two renewals given by the random variableAs shown
in Fig. 1, the renewal period is the interval:

Y, —

-S,

Fig. 1. Variation of the instantaneous age for M/G/1/1 witbcking

Yi=Z;+ Sit1. (4)
Because each departure leaves the system empty and the
Il. PRELIMINARIES interarrival times are memoryless, then the inteial which

is the residual interarrival time until a new update is gate,

It is important to note that in both M/G/1/1 queues, somg independent of;_; and it has an exponential distribution.
updates might be dropped. Hence we call the updates that geg\ce, all they;’s are identically distributed and th&'s are
not dropped, and thus delivered to the receiver, as “succeggchastically equal to the interarrival time. This proves

fully received updates” or “successful updates”. In additi why N, is a renewal process. The claim follows [9]. O
to that, we also define{:) I; to be the true index of the S
it successfully received updat@;) V; = tﬁrm —t; to be Now we can compute the average age which is given by

the interdeparture time between two consecutive sucdassfine following theorem,

received updatesyii) X; = t;,+1 — {1, to be the interarrival Theorem 1. The average age of an M/G/1/1 system with
time between the successfully transmitted update and #gcking is

next generated one (which may or may not be successfully 3 1

transmitted), sofx (z) = Ae™**, (iV)) Sy, to be the service A =E(S) (—(Cs +1)+ —) , (5)
time of theIfh update with distributionFs(t), (v) T; to be 2 B

the system time, or the time spent by tie successful update where Cg = ;f:"’zréfg is the squared coefficient of variation and

in the queue andvi) N, = max{n;t;, <7}, the number ,_ , . __E(S) _

of successfully received updates in the interjalr]. In our B =iz with p = gix5 = AE(S).

models, we assume the service tirfig of the k" update Proof. From (2) we have,

is independent from the interarrival time random variables A = A\E(Q,).

{X1, X2, ..., Xj, ...} and that the sequende,, Ss, ...} forms

an i.i.d process. Ae IS given by Lemma 1, therefore we need to compute the

From (1), Fig. 1 and Fig. 3, the average age for bofivérage area of the trapezdiy. To do that, notice first that,
M/G/1/1 queues can be also expressed as the sum of #§¥9 @ similar argument as the one used in the proof of
geometric area€; under the instantaneous age curve. Authok€Mma 1, the service timg; andY; are independent. Thus,

in [2] show that Sii1+Y;1)2 57
(2] ]E(Qi):IE(( 1 s 1) _7)

N.
. N1 1
A= TILIlolo TN Zl Qi = XE(Q:), (2 = §E (V21) + E(Si—1)E(Yi—1). (6)
B Since we are interested in the steady-state behavior, we wil
where ), = lim,_,o 2= and the second equality is justifieddrop the subscript index on the random variables. Hence,
by the ergodicity of the system. 1
Y ihe ergodiely Y E(Q) = 3E (Y?) + E(S)E(Y)

Il. M/G/1/1 wiTH BLOCKING

%IE (X + 5)?) + E(S)E(S + X)
s

In this setup, a generated update is discarded if it finds _1 (E (X?) +E( )2) + lVar(S) + 2E(S)E(X)
the system busy. This means an update is served only if it I;S 5 2
arrives at an idle system. This concept is depicted in Fig. 1: +E(9)
for instapce, the update g.enerated at ttmis served since the 1 (E ()% + Var(S)) +E(X)? 4 2E(S)E(X)
system is empty at that time. However, the updates generated 2 )
at timest; andt, find the system busy and are thus discarded. +E(5)
One important note here is that the system tifhef the i*" o 2 1 2
successful update is equal to its service time. = (B(X) +E(5))" + 2 (E(S) +Var(S)) ’ )



where the third equality is obtained by adding and subtngctiMoreover, the minimum average age is achievedXor oo
%I[-E(S)2 to the second equality, and the fourth equality iand its value is given by,
obtained by noticing that for the exponential random vadeiab

X we haveE (X?) = 2E(X)2. Using (3) and (7), we get Afyr = ——m—— (10)
2(1 - 9)

(5). O

B. Finding the optimal arrival rate Proof. Since we are using IIR policy then the service tifie

of each update is distributed as a negative binofiall —4),

When the arrival rate of the updates is a parameter that we_ {ks, ks +1,...}. In this case the mean and variance of

can control, it is interesting to have an idea on its value thg, are given by:
minimizes the average age. '

ks ks
Theorem 2. For the M/G/1/1 blocking system, the minimum E(S) = T Var(S) = 17(;2 (11)
average age\* is achieved for: B (1-29)
e If Cg > 1, then\* = (1—5[5*7*)&5) with 8* = CS2+1 and Hence, we compute the quantitiesg andCyg present in (5):
Mk p Mg )
* = = = = =—. (12

* * __ 1
o If Cs <1, \* = 00 and A* = E(S5) (5(05 +1)+ 1) Using the above expression in (5) and performing some
Proof. Setting the derivative of (5) with respect tbto zero, simplifications we get (9).

we get: Moreover, sinced < 1 andk, > 1, Csg = ki < 1. By
B2 — 2 8) Theorem 2, the optimum average age is achieved as oo.
Cs+1’ Taking the limit on (9) gives (10). O

whereS* is the optimal value of. Since0 < g* = pfjrl <1,

Cs has to be strictly bigger thahfor 5* to exist. In this case, B. Fixed Redundancy

B* = ﬁ and solving for\ we get\* = (1—,6’,8*7*)]E(S)' In this policy,_we apply two levels of co_ding: a packet
Using 4* in (5) gives the value of the minimum ag¥". level and a phyS|caI level. Each updgte consistg,opackets _

If the service time distribution is such théts < 1, then encoded using a rateless code. This means that the monitor
%_A -1y % < 0. However,% _ )\]E]ES('S)l > 0. needs to receive, decodable packets in order to d_ecode
Tﬁ f 5% _ 9808 0 Thus th QE(S)+1) tictl the update. Moreover, each packet contaigsinformation

Ereloresx = ppoax < Y- NUSINE average age 1S a stric ysymbols and is encoded using&s, ks)-Maximum Distance

decreasing function of the arrival rate and the minimal ager

age is obtained a3 — co. Separable (MDS) code. Hence, a packet can be decoded if at

leastk, symbols are not erased. Since the packets are being
IV. M/G/1/1 BLOCKING HARQ SYSTEM transmitted through a symbol erasure channel with erasure
nprobabilityé than the probability for the receiver to be unable

Now, we study the effect of different HAR olicies o .
y QP decode a packet is:

the average age when considering an M/G/1/1 queue withdRit
preemption. We assume that the updates are sent through

) ¢, = P(less thank, symbols received
a symbol erasure channel with erasure rateMoreover,

two HARQ protocols are visited: the infinite incremental _ kil <n5>5nsi(1 — o) (13)

redundancy (IIR) and the fixed redundancy (FR). pard i '

A. Infinite Incremental Redundancy Theorem 4. The average age of the M/G/1/1 FR-HARQ
In this policy, an update consists bf information symbols blocking system is

and is encoded using a rateless code. This means that the )

monitor needs to receive at ledstsymbols in order to decode A, — 1 + nskp + Ak (p + €p) . (14)

the update. The transmission of an update finishes whenever A l-g  2(1-6)(Ansky +1—¢p)

ks symbols are successfully transmitted. All updates argivin Moreover, the minimum average age is achieved as
when the system is busy are discarded. Therefore, we def%‘lg]ed its valu’e is given by,

the service timeS of an update as the number of channe '

uses needed for the monitor to receluesymbols. HenceS . 3Sngky +ep
is distributed as a negative binomial with successes and NFR ™ 2(1 —¢)

success probability — 6.

(15)

) Proof. The numberM of packets needed to be transmitted to
Theorem 3. The average age of the M/G/1/1 blocking IIRgecode an update is distributed as a negative binafhjall —
HARQ system is: ¢p) random variable with, successes and success r@te-
ks Mg (ks + 6) €p), M € {kp,k, +1,...}. Since the transmission of each
Anir = 3 + 1—6  2(1—0)(Nes +1—0) 9) packet consumes, channel uses then the service tirfieof




each update i$ = nsM. Thus, the mean and variance 8f 1
are given by: - 1-p

ngk,

E(S) =E(nsM) =nE(M) = , (16)
1—¢ p
2
Var(S) = Var(nsM) = ngVar(M) = (7115k7p61;2' (17) Fig. 2. Semi-Markov chain representing the queue for LCRS mieemption
—6
Hence, we compute the quantities: 40
Ak, Ak €
= = - C = —p 18 o
P=1-¢ My +i-e 5T 18

Using the above expressions in (5) and performing some
simplifications we get (14).

Moreover, sinces, < 1 andk, > 1, Cs = = < 1. By |
Theorem 2, the optimum average age is achieved as co. e | i 1
From (14) this yields (15). O R LI Y

T Y, —
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Q

T, Y,

V. M/G/1/1WITH PREEMPTION

In the M/G/1/1 with preemption scenario, any packet being Fig. 3. Variation of the instantaneous age for LCFS with preon

served is preempted if a new packet arrives and the new

packet is served instead. In fact, while in the M/G/1/1 Wit'ﬂemma 2. The PDF of the system tinig is
blocking the priority is given to the update being served, in
this setup the priority goes to the newly generated update. fs(t) _y.

Moreover, the number of packets in the queue can be modeled frlt) = Py € (21)
as a continuous-time two-state semi-Markov chain depm:tedIts expected value is
Figure 2.

The O-state corresponds to empty queue and no packet is E(T) = _i@ 22)
being served while the 1-state corresponds to the stateewher N

the queue is full and is serving one packet. However, givcf:p
) . . . ._ Proof.
that the interarrival time between packets is exponentiall

distributed with rate\ then one spends an exponential amount P(S e [t,t+¢€|S < X)

fT (t) = lim

of time X in the O-state before jumping with probability 1 to €—0 €

the other state. Once in the 1-state, two independent chreks . P(Sett+e])

started: the service time clock of the packet being served an - lﬂ% ePy P(S < X[S € (t,t+¢))
the rateA memoryless clock of the interarrival time between fs(t) fs(t) s

the current packet and the next one to be generated. If the = Py P(X > 1) = Py e . (23)

memoryless clock ticks first, we stay in the 1-state, otheewi
we go back to the O-state. Hence, the jump from the 1-stdf§ing (21) we calculate the expected valuelof

to the O-state occurs with probabiliiy= P(S < X), where 1 [ y 1 0Py

S is a generic service time with distributiofis(t) and X E(T) = P_/ tfs(t)e™Mdt = —5-—=. (24)
is a generic ratex memoryless interarrival time which is A0 A
independent ofs. a

The quantityp will play an important role in our derivation,

. " Now we only need to calculate the first and second moments
so we will take a closer look at it:

of Y. For that we will derive its moment generating function.

p —/O fs(OP(X > 1) dt :/0 fs(t)e™™ dt = Px, (19) Lemma 3. The moment generating function of the interdepar-

) o _ ture timeY is given by
where P, is the Laplace transform of the service time distri-

bution. by (5) = APy _;
Using Fig. 3 it was shown in [5] that the average ayés: APy_s — s’

where Py_, = [° fs(t)e= =% dt.

(25)

1
A= \EQ) = A <§E (¥?) + E(T)E(Y)) o)
Proof. From Fig. 3 we can deduce thgtis the shortest time
where A, = AP, is the effective arrival rate]" and Y as to go from the O-state back to the O-state. This means that

defined in Section Il. We start with(T"). Vo X (26)
= + s



where X is exponentially distributed with rat® and W is Proof. Deriving (25) once and twice and settisg= 0 gives:

T with probability p EY) — - and E(V2 2 (112950 (33
X, +T with probability (1 — p)p ) AP, (¥7) = A2P2 A (33)
W =14 X!+ X,+T with probability (1 — p)%p .
_ 1 2 Using (22) and (33) we gét(Q) = )\2P2 This last expression
and the fact that. = APy give (32). O
_ i X 4T 27) In conclusion, for the M/G/1/1 with preemption, the average
T4 « J ’ age depends on the Laplace transform of the service time
J=

distribution.
where X§ = 0 and forj > 0, X7 is such that’(X} < a) =
P(X < a|X < S). M, which gives the number of discarded Yl' M/G_/lll WITH PREEMPTION ANDHARQ

packets before the first successful reception, is a gearfygtri N this Section we study the effect of different HARQ
random variable independent of/ and7'. We start first by policies on the average age when considering an M/G/1/1
deriving the moment generating functlonm’ gueue with preemption. Indeed, we assume that the updates

are sent through a symbol erasure channel with erasure rate
P(X € [t,t +¢€]|S > X)

fx:(t) = lim 0. Moreover, two HARQ models are visited: the infinite
=0 PX € [t.t € ) incremental redundancy (IIR) and the fixed redundancy (FR).
. clt,t+¢
- ll_ﬁ% e(1—Py) P(S > X|X € (.t +¢)) A. Infinite Incremental Redundancy
 fx(t) g In this setup, the transmission of an update finishes when-
- 1_pA]P)( > 1) ever one of these events happen firfstt k; symbols are
e successfully transmitted, dri:) a new update is generated.
fx(t) =[1 = Fs(t)] TP (28) Hence the following theorem.
where F(t) is the cdf of the service timé. Hence, Theorem 6. The average age of an M/G/1/1 with preemption
system when using the IIR policy is given by,
, oo )\67)\15 i
dx:(s) = E (e :/ e® (1 — Fs(t)) dt 1 /ed =6\
( ) 0 1— Py Apir = " <—1 5 > - (34)
(@) A 1 A P -
T A—s1—-Py, 1-P\A-—s Moreover,Apyr has a minimum and the arrival raté* that
A1 =Py) (29) achieves it should satisfy the condition
(A =9)(1= Py L1
A< —. (35)
where(a) is obtained by using integration by parts with= ks
1—Fs(t) and 4% = ¢~*(*=%), On the other hand, (21) impliesThe minimum ageé\s,; can be lower bounded using
ks
sT T fs() ae st Pr—s . 1 AR )
¢r(s) =E (™) , P e” e dt Py (30) PIR =\~ 1) (36)

Using (29) and (30), we deduce the moment generatirid of 1—kot+/(ks+1)2—4k, 5

* ~ J—
where\* ~ \r = T

dw(s) =E (GS(Z?L’ XHT)) Proof. Under the IIR policy, the service time of each update
M is distributed as a negative binomi@d, 1 —4), S € {ks, ks +
=E (") E <]E (eSX ) > 1,...}. In this case the moment generating functionSofs
- N ) . given by:
P)\fs ( 1- P)\fs )Z 4
= 1— PP s\ ks
Py ; (A—S)(l—PA) ( )\) A ¢S(S):E(€SS) — ﬂ ) (37)
es(1—19)
- (/\ - S)P)\,S 31
T APy, —s (31) Noting that P, = ¢s(—A) and using (32) and (37), we
. get (34). To prove condition (35) we differentiafe g with
Using (31) and thatx = E (e*¥) = 2=, we get (25) from respect to and equate it to zero. This yields
Oy (s) =E (e*¥) E (). H ! <eA _ 5) ke (38)
Theorem 5. The average age of an M/G/1/1 system with A\1-6 1-6
preemption is given by, Thus, to satisfy (38) we need
A=A\EWQ) = o (32) Ahd —1) = 5. (39)

APy



Since0 < § < 1, (39) implies thatt; A — 1 < 0. Hence (35) Using (32), the fact thatPy = ¢g(—A) and the above
holds. Moreover, sinca > 0, we have that* > 1+ \. This expression we obtain (42).

means that if\* minimizes Apr, then To prove condition (43) we differentiatd p g With respect
1 A\ B to A and equate it to zero, yielding
Bir = Aeir(A) > 57 (1 T 5) -0 1 (ek"s _ ep) L o™ (46)
Finally, in order to obtain\* one needs to solve equation _ AN 1-6 1-¢6
(39) which does not have a simple closed form expressious, to satisfy (46) we need
As an alternative, we can make the smallapproximation A (o mh — 1) = —e,. (47)

e ~ 1+ \*. In this case, (39) reduces to

Since0 < ¢, < 1, (47) implies thatk,n,A — 1 < 0. Hence
1+ A)(ksA—1) =—4. (41) 143) holds, p <1, (47) imp »

This is a quadratic equation whose only positive root isgive As in the proof for Theorem 6, here also we have:

by 1 naA*
1—ks+ (ks +1)2 — 4ks6 Appr = Appr(A\Y) > ot (1 + =2 ) ) (48)

AIIR = o, I—¢

To obtain (36), we replacg™ by \jr in (40).

Finally, also as in the proof for Theorem 6, we approximate
the real value of\* by solving the quadratic equation
Since \* < kl < 1, the lower bound in (36) becomes a

tight approximation of the average age for typical values of (14 Ang)(kpnad —1) = —¢p. (49)
ks. The only positive root is given by
B. Fixed Redundancy oo LRt V(kp +1)2 — dkpe,
In this case also the transmission of an update is terminated PR 2nsk, '
whenever one of these events happen firgtk, packets are 14 gptain (44), we replacd* by Arr in (48). 0

successfully transmitted, ¢#i) a new update is generated. As ) .
in the M/G/1/1 blocking system, we define the packet erasureSincensA* < ;= < 1, the lower bound in (44) becomes a

probability ¢, = Zfial ("Z.S)(S”s*i(l —b)L. tight approximatién for typical values df,.
Theorem 7. The average age of the information for an VII. NUMERICAL RESULTS
M/G/1/1 with preemption system using the FR policy is given|n this section, we first compare the two HARQ policies,
by, . IR and FR, for the M/G/1/1 with and without preemption.
Aprr = 1 ( 1 — e s, ) p. (42) Then, for each HARQ policy, we compare the perf_orman_ces
A\e (1 —¢p) of the two M/G/1/1 schemes. Moreover, for the simulation

results discussed in this section, we assume the following
setting: a symbol erasure channel with erasuredate).2 and
each update in IIR-HARQ and FR-HARQ contafti = 100
A< 1 . (43) information symbols. So for IIR-HARQ we havg = 100
~ ngky while for FR-HARQ, we assume each update is divided into
k, = K/k, packets where each packet is encoded using an
MDS-(ks,ns) code.
s 1 (1 n /\FRnS)]Cp (44) We first start analyzing the M/G/1/1 system with preemp-
PFR = \rr ’ tion. Fig. 4 shows the average age for different values of
around its minimum point. As we can notice, if we choose the
optimumn, for a fixed k; and range of\ then the average
age decreases as the number of packets per update decreases.
th fact, the black curve which correspondsip= 1 has the

Moreover, Apgr has a minimum and the arrival ratd* that
achieves it should satisfy the condition

The minimum ageé\},z can be lower bounded using

1—¢

1—kp++/(kp+1)2—4dkpep
2nskp .

Proof. The numberM of packets needed to be transmitted t
decode an updgte 'S dl_stnbuted as a negative binojall — lowest average age around its minimum, followed by the blue
¢p) random variable witfk, successes and SUCCEss e e associated with, = 5 and the worst performance is for
€), M € {kp, by +1,...}. Since the transmission of eachy,q system withk, = 10. Fig. 4 also confirms the results in
packet consumes channel uses, the service Fm‘jeof ea_ch heorem 6 and Theorem 7 saying thetir and Apgr achieve
UP_d‘?‘te i85 = n, M. Thus, the moment generating function o minimum at a small value of. This figure also suggests
Sis: that no matter how we choogg andng, IIR outperforms FR.
e (1 - ep))’Cp The values ofi, chosen in Fig. 4 are such that they minimize
1 enese. the average age for a givenand k. The existence of such
(45) optimum packet length in FR can be deduced from Fig. 5.

where \* =~ \gg =

¢s(s) =E (esnsM) = dpr(ngs) = (
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Fig. 4. Comparing the performance of the FR-HARQ for the M/G/with  Fig. 5. Average age with respect to codeword length for theésM/L
preemption scheme when varying the number of informationimls in each with preemption scheme with FR-HARQ. We assume the updaselb@a
packet. We assume the update ha$ information symbolsy = 0.2, k, =  information symbols\ = 0.0066, ks = 20 andk, = 100/ks.

100/ks. ns is chosen to minimize the average age.

Here we set = 0.0066, which minimizes the average age for
0 = 0.2, andk, = 20. Fig. 5 can be explained using the lower
bound (44): for a giver\, asn, gets largeg, — 0 and the
lower bound will be increasing with, sincegl + % > 1.
However, forn, close toks, €, — 1 which also increases this
lower bound. Thus, the packet length should be neither tc
small (equal toks) nor too large. As it is expected, Fig. 5
also shows that the optimal packet lengthincreases as the
erasure raté increases.

The above results concerning the M/G/1/1 system wit] OOL 002 005 00T 0% 006 00T 008 008 0
preemption apply also for the M/G/1/1 blocking system as it
can be seen in Fig. 6 and 7. However, some differences né@6. Comparing the performance of the FR-HARQ for the M/GAvithout
to be noted.(i) Fig. 6 confirms the results of Theorems @reemption scheme when varying the number of informatianksys in each

. . . . packet. We assume the update @8 information symbolsy = 0.2, kp =

and 4 that the average age is a decreasing function 6f) 100/k;. n, is chosen to minimize the average age.
Fig. 6 shows that for any value of, increasing the number
of packets per update increases the average (ag¢.Fig. 7
shows the existence of an optimal packet lengttor a given 2000 T Tz
0, A andk;. \ | =03

Finally, we compare the performance of the M/G/1/1 witk 21500 .
preemption and the M/G/1/1 blocking systems for each on
of the HARQ policies. In both cases, Fig. 8 shows that th
M/G/1/1 blocking system performs better than its countdrpa
for all values of\.

—— lIR-ARQ
—FR-ARQ, k =10,n =15 ||
— FR-ARQ, k =20,n =29
—FR-ARQ, k =25,n_=36
— FR-ARQ, k=100, n_=138| |
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VIIl. CONCLUSION T

In this paper we studied the M/G/1/1 system along with th: W 15 2 s . s 40 45 0 s 60
possible update management policies it presents: preegnpti s

the_current update or dlscardlng th,e newly generated O,ne‘ W& 7. Average age with respect to codeword length for thesMul
derived general expressions for their average age and hised ithout preemption scheme with FR-HARQ. We assume the epdas100
result to compute the average age when considering a phctigformation symbolsA = 1, ks = 20 andkp = 100/ks.

scenario; updates are sent over a symbol erasure channgl usi

tW.O _d_lff_erent HARQ protocols, ”.R and FR. In both Casefspacket (by using large codeword length) doesn’t achieve
prioritizing the current update being sent and not preemgptlthe optimal average age

it turned out to be the best strategy. Moreover, as it is edgoec '

the 1IR protocol gives better performance from an age point REFERENCES

of view than FR. Finally, we argued through simulations th@fj s kaul, R. D. Yates, and M. Gruteser, “Real-time stathsw often
for the FR protocol, ensuring reliable delivery of every afe should one update?” iRroc. INFOCOM 2012.
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