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Abstract—We consider a system where randomly generated
updates are to be transmitted to a monitor, but only a single
update can be in the transmission service at a time. Therefore,
the source has to prioritize between the two possible transmission
policies: preempting the current update or discarding the new
one. We consider Poisson arrivals and general service time,and
refer to this system as the M/G/1/1 queue. We start by studying
the average status update age and the optimal update arrivalrate
for these two schemes under general service time distribution.
We then apply these results on two practical scenarios in which
updates are sent through an erasure channel using(a) an infinite
incremental redundancy (IIR) HARQ system and (b) a fixed
redundancy (FR) HARQ system. We show that in both schemes
the best strategy would be not to preempt. Moreover, we also
prove that, from an age point of view, IIR is better than FR.

I. I NTRODUCTION

Previous work on status update ( [1]–[6]) used an Age of
Information (AoI) metric in order to assess the freshness of
randomly generated updates sent by one or multiple sources
to a monitor through the network. In these papers, updates are
assumed to be generated according to a Poisson process and
the main metric used to quantify theage is the time average
age (which we will call average age) given by

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (1)

where∆(t) is the instantaneous age of the last successfully
received update. If this update was generated at timeu(t) then
its ageat time t is ∆(t) = t− u(t). When the system is idle
or an update is being transmitted then the instantaneous age
increases linearly with time, as depicted in Fig. 1. Once an
update generated at timeti is received by the monitor att′i,
∆(t) drops to the valuet′i − ti. This results in the sawtooth
sample path seen in Fig. 1.

In this paper, we assume updates are generated according
to a Poisson process with rateλ, but the system can handle
only one update at a time without any buffer to store incoming
updates. This means that whenever a new update is generated
and the system is busy, the transmitter has to make a decision:
does it give higher priority to the new update or to the one
being transmitted? In other words, does it preempt or not?
It has been shown that for exponential update service times,
preemption ensures the lowest average age [2]. However, the
work in [5] suggests that under the assumption of gamma
distributed service time, preemption might not be the best
policy.

This work answers the previous question when we assume
updates are sent through a symbol erasure channel with

erasure rateδ, while using hybrid ARQ (HARQ) protocols
to combat erasures. Two HARQ protocols, introduced in [7],
are studied:(a) infinite incremental redundancy (IIR) and(b)
fixed redundancy (FR). In both cases we assume a generated
update containsK information symbols. In IIR, encoding is
performed at the physical layer where theK information sym-
bols are encoded using a rateless code. Hence, the transmission
of an update continues untilks = K unerased symbols are
received. As for the FR, coding is applied at the physical and
packet layer. This means that the update is divided intokp
packets with each packet encoded using an(ns, ks)-Maximum
Distance Separable (MDS) code. So, in this case, the total
number of information symbols isK = kpks. At the packet
level we apply a rateless code and thus the transmission of
an update terminates whenkp unerased packets are received.
In order to decode a packet, the receiver needs to wait forns

encoded symbols. Once received, a packet is declared erased
if fewer than ks symbols are successful. It is worth noting
that in this setup we send one symbol per channel use and
thus the arrival rateλ is the number of updates generated per
channel use. The effect of these schemes on the transmission
time of data was studied in [7]. It was shown that FR leads
to a slower delivery than IIR. While the main aim of [7] is
the successful delivery of every update, in this paper we are
ready to sacrifice some updates for fresher information.

The impact of transmission error on the age was also investi-
gated in [8]. In this paper, service time is assumed exponential
and another age metric is used: the peak age of information.
The authors conclude that, in this setup, preemption with
update retransmission achieves the lowest age.

To solve the above problem, we first start by deriving in
Section III an expression for the average age under general
service time distribution when we choose not to preempt.
This model is called M/G/1/1 with blocking. In Section IV,
we use the results in the previous Section to compute the
average age when we consider the IIR and FR protocols.
Sections V and VI follow the same logic but in this case
we choose to preempt. This model is called M/G/1/1 with
preemption. Finally, Section VII compares the performances
of both models for a given HARQ protocol as well as the
performance of both protocols given a model. We show that
no matter the protocol, prioritizing the current update is better
than preempting it. Moreover, in the case of FR, we show that
no matter the model and for a fixed arrival rateλ, there exists
an optimal codeword lengthns.
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Fig. 1. Variation of the instantaneous age for M/G/1/1 with blocking

II. PRELIMINARIES

It is important to note that in both M/G/1/1 queues, some
updates might be dropped. Hence we call the updates that are
not dropped, and thus delivered to the receiver, as “success-
fully received updates” or “successful updates”. In addition
to that, we also define:(i) Ii to be the true index of the
ith successfully received update,(ii) Yi = t′Ii+1

− t′Ii to be
the interdeparture time between two consecutive successfully
received updates,(iii) Xi = tIi+1 − tIi to be the interarrival
time between the successfully transmitted update and the
next generated one (which may or may not be successfully
transmitted), sofX(x) = λe−λx, (iV ) SIi to be the service
time of theIthi update with distributionFS(t), (v) Ti to be
the system time, or the time spent by theith successful update
in the queue and(vi) Nτ = max {n; tIn ≤ τ}, the number
of successfully received updates in the interval[0, τ ]. In our
models, we assume the service timeSk of the kth update
is independent from the interarrival time random variables
{X1, X2, ..., Xk, ...} and that the sequence{S1, S2, ...} forms
an i.i.d process.

From (1), Fig. 1 and Fig. 3, the average age for both
M/G/1/1 queues can be also expressed as the sum of the
geometric areasQi under the instantaneous age curve. Authors
in [2] show that

∆ = lim
τ→∞

Nτ

τ

1

Nτ

Nτ
∑

i=1

Qi = λeE(Qi), (2)

whereλe = limτ→∞

Nτ

τ
and the second equality is justified

by the ergodicity of the system.

III. M/G/1/1 WITH BLOCKING

In this setup, a generated update is discarded if it finds
the system busy. This means an update is served only if it
arrives at an idle system. This concept is depicted in Fig. 1:
for instance, the update generated at timet2 is served since the
system is empty at that time. However, the updates generated
at timest3 andt4 find the system busy and are thus discarded.
One important note here is that the system timeTi of the ith

successful update is equal to its service time.

A. Average age calculation

Lemma 1. For an M/G/1/1 blocking system we have,

λe =
1

E(Y )
=

1

E(X) + E(S)
, (3)

whereY , X and S are the steady-state counterparts of the
variables defined in Section II.

Proof. Nτ is a renewal process with inter-renewal time be-
tween two renewals given by the random variableY . As shown
in Fig. 1, the renewal period is the interval:

Yi = Zi + Si+1. (4)

Because each departure leaves the system empty and the
interarrival times are memoryless, then the intervalZi, which
is the residual interarrival time until a new update is generated,
is independent ofYi−1 and it has an exponential distribution.
Hence, all theYi’s are identically distributed and theZi’s are
stochastically equal to the interarrival timeX . This proves
why Nτ is a renewal process. The claim follows [9].

Now we can compute the average age which is given by
the following theorem,

Theorem 1. The average age of an M/G/1/1 system with
blocking is

∆ = E(S)

(

β

2
(CS + 1) +

1

β

)

, (5)

whereCS = Var(S)
E(S)2 is the squared coefficient of variation and

β = ρ
ρ+1 with ρ = E(S)

E(X) = λE(S).

Proof. From (2) we have,

∆ = λeE(Qi).

λe is given by Lemma 1, therefore we need to compute the
average area of the trapezoidQi. To do that, notice first that,
using a similar argument as the one used in the proof of
Lemma 1, the service timeSi andYi are independent. Thus,

E(Qi) = E

(

(Si−1 + Yi−1)
2

2
− S2

i

2

)

=
1

2
E
(

Y 2
i−1

)

+ E(Si−1)E(Yi−1). (6)

Since we are interested in the steady-state behavior, we will
drop the subscript index on the random variables. Hence,

E(Q) =
1

2
E
(

Y 2
)

+ E(S)E(Y )

=
1

2
E
(

(X + S)2
)

+ E(S)E(S +X)

=
1

2

(

E
(

X2
)

+ E (S)2
)

+
1

2
Var(S) + 2E(S)E(X)

+ E(S)2

=
1

2

(

E (S)2 +Var(S)
)

+ E (X)2 + 2E(S)E(X)

+ E(S)2

= (E(X) + E(S))2 +
1

2

(

E(S)2 + Var(S)
)

, (7)



where the third equality is obtained by adding and subtracting
1
2E(S)

2 to the second equality, and the fourth equality is
obtained by noticing that for the exponential random variable
X we haveE

(

X2
)

= 2E(X)2. Using (3) and (7), we get
(5).

B. Finding the optimal arrival rate

When the arrival rate of the updates is a parameter that we
can control, it is interesting to have an idea on its value that
minimizes the average age.

Theorem 2. For the M/G/1/1 blocking system, the minimum
average age∆∗ is achieved for:

• If CS > 1, thenλ∗ = β∗

(1−β∗)E(S) with β∗ =
√

2
CS+1 and

∆∗ = E(S)
√

2(CS + 1)

• If CS ≤ 1, λ∗ → ∞ and∆∗ = E(S)
(

1
2 (CS + 1) + 1

)

Proof. Setting the derivative of (5) with respect toβ to zero,
we get:

β∗2 =
2

CS + 1
, (8)

whereβ∗ is the optimal value ofβ. Since0 ≤ β∗ = ρ∗

ρ∗+1 < 1,
CS has to be strictly bigger than1 for β∗ to exist. In this case,

β∗ =
√

2
CS+1 and solving forλ we getλ∗ = β∗

(1−β∗)E(S) .
Using β∗ in (5) gives the value of the minimum age∆∗.

If the service time distribution is such thatCS ≤ 1, then
∂∆
∂β

= − 1
β2 + CS+1

2 < 0. However, ∂β
∂λ

= E(S)
(λE(S)+1)2 ≥ 0.

Therefore,∂∆
∂λ

= ∂∆
∂β

∂β
∂λ

< 0. Thus the average age is a strictly
decreasing function of the arrival rate and the minimal average
age is obtained asλ → ∞.

IV. M/G/1/1 BLOCKING HARQ SYSTEM

Now, we study the effect of different HARQ policies on
the average age when considering an M/G/1/1 queue without
preemption. We assume that the updates are sent through
a symbol erasure channel with erasure rateδ. Moreover,
two HARQ protocols are visited: the infinite incremental
redundancy (IIR) and the fixed redundancy (FR).

A. Infinite Incremental Redundancy

In this policy, an update consists ofks information symbols
and is encoded using a rateless code. This means that the
monitor needs to receive at leastks symbols in order to decode
the update. The transmission of an update finishes whenever
ks symbols are successfully transmitted. All updates arriving
when the system is busy are discarded. Therefore, we define
the service timeS of an update as the number of channel
uses needed for the monitor to receiveks symbols. Hence,S
is distributed as a negative binomial withks successes and
success probability1− δ.

Theorem 3. The average age of the M/G/1/1 blocking IIR-
HARQ system is:

∆NIIR =
1

λ
+

ks
1− δ

+
λks(ks + δ)

2(1− δ)(λks + 1− δ)
. (9)

Moreover, the minimum average age is achieved forλ → ∞
and its value is given by,

∆∗

NIIR =
3ks + δ

2(1− δ)
(10)

Proof. Since we are using IIR policy then the service timeS
of each update is distributed as a negative binomial(ks, 1−δ),
S ∈ {ks, ks + 1, . . . }. In this case the mean and variance of
S are given by:

E(S) =
ks

1− δ
, Var(S) =

ksδ

(1− δ)2
. (11)

Hence, we compute the quantitiesρ, β andCS present in (5):

ρ =
λks
1− δ

, β =
ρ

ρ+ 1
=

λks
λks + 1− δ

, CS =
δ

ks
. (12)

Using the above expression in (5) and performing some
simplifications we get (9).

Moreover, sinceδ ≤ 1 and ks ≥ 1, CS = δ
ks

≤ 1. By
Theorem 2, the optimum average age is achieved asλ → ∞.
Taking the limit on (9) gives (10).

B. Fixed Redundancy

In this policy, we apply two levels of coding: a packet
level and a physical level. Each update consists ofkp packets
encoded using a rateless code. This means that the monitor
needs to receivekp decodable packets in order to decode
the update. Moreover, each packet containsks information
symbols and is encoded using a(ns, ks)-Maximum Distance
Separable (MDS) code. Hence, a packet can be decoded if at
leastks symbols are not erased. Since the packets are being
transmitted through a symbol erasure channel with erasure
probabilityδ than the probability for the receiver to be unable
to decode a packet is:

ǫp = P(less thanks symbols received)

=

ks−1
∑

i=0

(

ns

i

)

δns−i(1 − δ)i. (13)

Theorem 4. The average age of the M/G/1/1 FR-HARQ
blocking system is

∆NFR =
1

λ
+

nskp
1− ǫp

+
λn2

skp(kp + ǫp)

2(1− ǫp)(λnskp + 1− ǫp)
. (14)

Moreover, the minimum average age is achieved asλ → ∞
and its value is given by,

∆∗

NFR =
3nskp + ǫp
2(1− ǫp)

(15)

Proof. The numberM of packets needed to be transmitted to
decode an update is distributed as a negative binomial(kp, 1−
ǫp) random variable withkp successes and success rate(1 −
ǫp), M ∈ {kp, kp + 1, . . . }. Since the transmission of each
packet consumesns channel uses then the service timeS of



each update isS = nsM . Thus, the mean and variance ofS
are given by:

E(S) = E(nsM) = nsE(M) =
nskp
1− ǫp

, (16)

Var(S) = Var(nsM) = n2
sVar(M) =

n2
skpǫp

(1− ǫp)2
. (17)

Hence, we compute the quantities:

ρ =
λkp

1− ǫp
, β =

λkp
λkp + 1− ǫp

, CS =
ǫp
kp

. (18)

Using the above expressions in (5) and performing some
simplifications we get (14).

Moreover, sinceǫp ≤ 1 and kp ≥ 1, CS =
ǫp
kp

≤ 1. By
Theorem 2, the optimum average age is achieved asλ → ∞.
From (14) this yields (15).

V. M/G/1/1 WITH PREEMPTION

In the M/G/1/1 with preemption scenario, any packet being
served is preempted if a new packet arrives and the new
packet is served instead. In fact, while in the M/G/1/1 with
blocking the priority is given to the update being served, in
this setup the priority goes to the newly generated update.
Moreover, the number of packets in the queue can be modeled
as a continuous-time two-state semi-Markov chain depictedin
Figure 2.

The 0-state corresponds to empty queue and no packet is
being served while the 1-state corresponds to the state where
the queue is full and is serving one packet. However, given
that the interarrival time between packets is exponentially
distributed with rateλ then one spends an exponential amount
of time X in the 0-state before jumping with probability 1 to
the other state. Once in the 1-state, two independent clocksare
started: the service time clock of the packet being served and
the rateλ memoryless clock of the interarrival time between
the current packet and the next one to be generated. If the
memoryless clock ticks first, we stay in the 1-state, otherwise
we go back to the 0-state. Hence, the jump from the 1-state
to the 0-state occurs with probabilityp = P(S < X), where
S is a generic service time with distributionfS(t) and X
is a generic rateλ memoryless interarrival time which is
independent ofS.

The quantityp will play an important role in our derivation,
so we will take a closer look at it:

p =

∫

∞

0

fS(t)P(X > t) dt =

∫

∞

0

fS(t)e
−λt dt = Pλ, (19)

wherePλ is the Laplace transform of the service time distri-
bution.

Using Fig. 3 it was shown in [5] that the average age∆ is:

∆ = λeE(Q) = λe

(

1

2
E
(

Y 2
)

+ E(T )E(Y )

)

, (20)

where λe = λPλ is the effective arrival rate,T and Y as
defined in Section II. We start withE(T ).

1
0,� 1

p

1-p

Fig. 2. Semi-Markov chain representing the queue for LCFS with preemption
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Fig. 3. Variation of the instantaneous age for LCFS with preemption

Lemma 2. The PDF of the system timeT is

fT (t) =
fS(t)

Pλ

e−λt. (21)

Its expected value is

E(T ) = − 1

Pλ

∂Pλ

∂λ
. (22)

Proof.

fT (t) = lim
ǫ→0

P(S ∈ [t, t+ ǫ]|S < X)

ǫ

= lim
ǫ→0

P(S ∈ [t, t+ ǫ])

ǫPλ

P(S < X |S ∈ (t, t+ ǫ))

=
fS(t)

Pλ

P(X > t) =
fS(t)

Pλ

e−λt. (23)

Using (21) we calculate the expected value ofT :

E(T ) =
1

Pλ

∫

∞

0

tfS(t)e
−λtdt = − 1

Pλ

∂Pλ

∂λ
. (24)

Now we only need to calculate the first and second moments
of Y . For that we will derive its moment generating function.

Lemma 3. The moment generating function of the interdepar-
ture timeY is given by

φY (s) =
λPλ−s

λPλ−s − s
, (25)

wherePλ−s =
∫

∞

0
fS(t)e

−(λ−s) dt.

Proof. From Fig. 3 we can deduce thatY is the shortest time
to go from the 0-state back to the 0-state. This means that

Y = X +W, (26)



whereX is exponentially distributed with rateλ andW is

W =



















T with probabilityp
X ′

1 + T with probability (1 − p)p
X ′

1 +X ′

2 + T with probability (1 − p)2p
...

=

M
∑

j=0

X ′

j + T, (27)

whereX ′

0 = 0 and for j > 0, X ′

j is such thatP(X ′

j < α) =
P(X < α|X < S). M , which gives the number of discarded
packets before the first successful reception, is a geometric(p)
random variable independent ofX ′

j andT . We start first by
deriving the moment generating function ofX ′.

fX′(t) = lim
ǫ→0

P(X ∈ [t, t+ ǫ]|S > X)

ǫ

= lim
ǫ→0

PX ∈ [t, t+ ǫ])

ǫ(1− Pλ)
P(S > X |X ∈ (t, t+ ǫ))

=
fX(t)

1− Pλ

P(S > t)

fX′(t) = [1− FS(t)]
λe−λt

1− Pλ

, (28)

whereFS(t) is the cdf of the service timeS. Hence,

φX′(s) = E

(

esX
′

)

=

∫

∞

0

est (1− FS(t))
λe−λt

1− Pλ

dt

(a)
=

λ

λ− s

1

1− Pλ

− λ

1− Pλ

Pλ−s

λ− s

=
λ(1 − Pλ−s)

(λ− s)(1 − Pλ)
, (29)

where(a) is obtained by using integration by parts withu =
1−FS(t) and dv

dt = e−t(λ−s). On the other hand, (21) implies

φT (s) = E
(

esT
)

=

∫

∞

0

fS(t)

Pλ

e−λtest dt =
Pλ−s

Pλ

. (30)

Using (29) and (30), we deduce the moment generating ofW ,

φW (s) = E

(

es(
∑M

i=0
X′

i+T)
)

= E
(

esT
)

E

(

E

(

esX
′

)M
)

=
Pλ−s

Pλ

∞
∑

i=0

(

λ(1 − Pλ−s)

(λ − s)(1− Pλ)

)i

(1− Pλ)
iPλ

=
(λ− s)Pλ−s

λPλ−s − s
. (31)

Using (31) and thatφX = E
(

esX
)

= λ
λ−s

, we get (25) from
φY (s) = E

(

esX
)

E
(

esW
)

.

Theorem 5. The average age of an M/G/1/1 system with
preemption is given by,

∆ = λeE(Q) =
1

λPλ

. (32)

Proof. Deriving (25) once and twice and settings = 0 gives:

E(Y ) =
1

λPλ

and E(Y 2) =
2

λ2P 2
λ

(

1 + λ
∂Pλ

∂λ

)

(33)

Using (22) and (33) we getE(Q) = 1
λ2P 2

λ

. This last expression
and the fact thatλe = λPλ give (32).

In conclusion, for the M/G/1/1 with preemption, the average
age depends on the Laplace transform of the service time
distribution.

VI. M/G/1/1 WITH PREEMPTION ANDHARQ

In this Section we study the effect of different HARQ
policies on the average age when considering an M/G/1/1
queue with preemption. Indeed, we assume that the updates
are sent through a symbol erasure channel with erasure rate
δ. Moreover, two HARQ models are visited: the infinite
incremental redundancy (IIR) and the fixed redundancy (FR).

A. Infinite Incremental Redundancy

In this setup, the transmission of an update finishes when-
ever one of these events happen first:(i) ks symbols are
successfully transmitted, or(ii) a new update is generated.
Hence the following theorem.

Theorem 6. The average age of an M/G/1/1 with preemption
system when using the IIR policy is given by,

∆PIIR =
1

λ

(

eλ − δ

1− δ

)ks

. (34)

Moreover,∆PIIR has a minimum and the arrival rateλ∗ that
achieves it should satisfy the condition

λ∗ ≤ 1

ks
. (35)

The minimum age∆∗

PIIR can be lower bounded using

∆∗

PIIR ≥ 1

λIIR

(

1 +
λIIR

1− δ

)ks

, (36)

whereλ∗ ≈ λIIR =
1−ks+

√
(ks+1)2−4ksδ

2ks
.

Proof. Under the IIR policy, the service timeS of each update
is distributed as a negative binomial(ks, 1−δ), S ∈ {ks, ks+
1, . . . }. In this case the moment generating function ofS is
given by:

φS(s) = E
(

esS
)

=

(

1− esδ

es(1− δ)

)

−ks

. (37)

Noting that Pλ = φS(−λ) and using (32) and (37), we
get (34). To prove condition (35) we differentiate∆PIIR with
respect toλ and equate it to zero. This yields

− 1

λ

(

eλ − δ

1− δ

)

+
kse

λ

1− δ
= 0. (38)

Thus, to satisfy (38) we need

eλ(ksλ− 1) = −δ. (39)



Since0 ≤ δ ≤ 1, (39) implies thatksλ − 1 ≤ 0. Hence (35)
holds. Moreover, sinceλ > 0, we have thateλ > 1 + λ. This
means that ifλ∗ minimizes∆PIIR, then

∆∗

PIIR = ∆PIIR(λ
∗) >

1

λ∗

(

1 +
λ∗

1− δ

)ks

. (40)

Finally, in order to obtainλ∗ one needs to solve equation
(39) which does not have a simple closed form expression.
As an alternative, we can make the smallλ approximation
eλ

∗ ≈ 1 + λ∗. In this case, (39) reduces to

(1 + λ)(ksλ− 1) = −δ. (41)

This is a quadratic equation whose only positive root is given
by

λIIR =
1− ks +

√

(ks + 1)2 − 4ksδ

2ks
.

To obtain (36), we replaceλ∗ by λIIR in (40).

Sinceλ∗ ≤ 1
ks

≤ 1, the lower bound in (36) becomes a
tight approximation of the average age for typical values of
ks.

B. Fixed Redundancy

In this case also the transmission of an update is terminated
whenever one of these events happen first:(i) kp packets are
successfully transmitted, or(ii) a new update is generated. As
in the M/G/1/1 blocking system, we define the packet erasure
probability ǫp =

∑ks−1
i=0

(

ns

i

)

δns−i(1− δ)i.

Theorem 7. The average age of the information for an
M/G/1/1 with preemption system using the FR policy is given
by,

∆PFR =
1

λ

(

1− e−λnsǫp
e−λns(1− ǫp)

)kp

. (42)

Moreover,∆PFR has a minimum and the arrival rateλ∗ that
achieves it should satisfy the condition

λ∗ ≤ 1

nskp
. (43)

The minimum age∆∗

PIIR can be lower bounded using

∆∗

PFR ≥ 1

λFR

(

1 +
λFRns

1− ǫp

)kp

, (44)

whereλ∗ ≈ λFR =
1−kp+

√
(kp+1)2−4kpǫp

2nskp
.

Proof. The numberM of packets needed to be transmitted to
decode an update is distributed as a negative binomial(kp, 1−
ǫp) random variable withkp successes and success rate(1 −
ǫp), M ∈ {kp, kp + 1, . . . }. Since the transmission of each
packet consumesns channel uses, the service timeS of each
update isS = nsM . Thus, the moment generating function of
S is:

φS(s) = E
(

esnsM
)

= φM (nss) =

(

enss(1− ǫp)

1− enssǫp

)kp

.

(45)

Using (32), the fact thatPλ = φS(−λ) and the above
expression we obtain (42).

To prove condition (43) we differentiate∆PFR with respect
to λ and equate it to zero, yielding

− 1

λ

(

eλns − ǫp
1− ǫp

)

+
kpnse

λns

1− ǫp
= 0. (46)

Thus, to satisfy (46) we need

eλns(kpnsλ− 1) = −ǫp. (47)

Since0 ≤ ǫp ≤ 1, (47) implies thatkpnsλ − 1 ≤ 0. Hence
(43) holds.

As in the proof for Theorem 6, here also we have:

∆∗

PFR = ∆PFR(λ
∗) >

1

λ∗

(

1 +
nsλ

∗

1− ǫp

)kp

. (48)

Finally, also as in the proof for Theorem 6, we approximate
the real value ofλ∗ by solving the quadratic equation

(1 + λns)(kpnsλ− 1) = −ǫp. (49)

The only positive root is given by

λFR =
1− kp +

√

(kp + 1)2 − 4kpǫp

2nskp
.

To obtain (44), we replaceλ∗ by λFR in (48).

Sincensλ
∗ ≤ 1

kp
≤ 1, the lower bound in (44) becomes a

tight approximation for typical values ofkp.

VII. N UMERICAL RESULTS

In this section, we first compare the two HARQ policies,
IIR and FR, for the M/G/1/1 with and without preemption.
Then, for each HARQ policy, we compare the performances
of the two M/G/1/1 schemes. Moreover, for the simulation
results discussed in this section, we assume the following
setting: a symbol erasure channel with erasure rateδ = 0.2 and
each update in IIR-HARQ and FR-HARQ containK = 100
information symbols. So for IIR-HARQ we havefs = 100
while for FR-HARQ, we assume each update is divided into
kp = K/ks packets where each packet is encoded using an
MDS-(ks, ns) code.

We first start analyzing the M/G/1/1 system with preemp-
tion. Fig. 4 shows the average age for different values ofks
around its minimum point. As we can notice, if we choose the
optimumns for a fixed ks and range ofλ then the average
age decreases as the number of packets per update decreases.
In fact, the black curve which corresponds tokp = 1 has the
lowest average age around its minimum, followed by the blue
curve associated withkp = 5 and the worst performance is for
the system withkp = 10. Fig. 4 also confirms the results in
Theorem 6 and Theorem 7 saying that∆PIIR and∆PFR achieve
a minimum at a small value ofλ. This figure also suggests
that no matter how we chooseks andns, IIR outperforms FR.
The values ofns chosen in Fig. 4 are such that they minimize
the average age for a givenδ andks. The existence of such
optimum packet length in FR can be deduced from Fig. 5.
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Fig. 4. Comparing the performance of the FR-HARQ for the M/G/1/1 with
preemption scheme when varying the number of information symbols in each
packet. We assume the update has100 information symbols,δ = 0.2, kp =

100/ks. ns is chosen to minimize the average age.

Here we setλ = 0.0066, which minimizes the average age for
δ = 0.2, andks = 20. Fig. 5 can be explained using the lower
bound (44): for a givenλ, asns gets large,ǫp → 0 and the

lower bound will be increasing withns since
(

1 + nsλ
∗

1−ǫp

)

> 1.
However, forns close toks, ǫp → 1 which also increases this
lower bound. Thus, the packet length should be neither too
small (equal toks) nor too large. As it is expected, Fig. 5
also shows that the optimal packet lengthns increases as the
erasure rateδ increases.

The above results concerning the M/G/1/1 system with
preemption apply also for the M/G/1/1 blocking system as it
can be seen in Fig. 6 and 7. However, some differences need
to be noted.(i) Fig. 6 confirms the results of Theorems 3
and 4 that the average age is a decreasing function ofλ. (ii)
Fig. 6 shows that for any value ofλ, increasing the number
of packets per update increases the average age.(iii) Fig. 7
shows the existence of an optimal packet lengthns for a given
δ, λ andks.

Finally, we compare the performance of the M/G/1/1 with
preemption and the M/G/1/1 blocking systems for each one
of the HARQ policies. In both cases, Fig. 8 shows that the
M/G/1/1 blocking system performs better than its counterpart
for all values ofλ.

VIII. C ONCLUSION

In this paper we studied the M/G/1/1 system along with the
possible update management policies it presents: preempting
the current update or discarding the newly generated one. We
derived general expressions for their average age and used this
result to compute the average age when considering a practical
scenario: updates are sent over a symbol erasure channel using
two different HARQ protocols, IIR and FR. In both cases,
prioritizing the current update being sent and not preempting
it turned out to be the best strategy. Moreover, as it is expected,
the IIR protocol gives better performance from an age point
of view than FR. Finally, we argued through simulations that
for the FR protocol, ensuring reliable delivery of every update
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Fig. 5. Average age with respect to codeword length for the M/G/1/1
with preemption scheme with FR-HARQ. We assume the update has 100

information symbols,λ = 0.0066, ks = 20 andkp = 100/ks.
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packet (by using large codeword lengthns) doesn’t achieve
the optimal average age.
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