
Price-based Controller for Quality-Fair HTTP Adaptive

Streaming (Extended Version)

Stefano D’Aronco1, Laura Toni2, and Pascal Frossard1

1LTS4, Ecole Polytechnique Fédérale de Lausanne (EPFL)
2Electrical and Electronic Departement, University College London (UCL)

Abstract

HTTP adaptive streaming (HAS) has become the universal technology for video
streaming over the Internet. Many HAS system designs aim at sharing the network
bandwidth in a rate-fair manner. However, rate fairness is in general not equivalent
to quality fairness as different video sequences might have different characteristics and
resource requirements. In this work, we focus on this limitation and propose a novel
controller for HAS clients that is able to reach quality fairness while preserving the main
characteristics of HAS systems and with a limited support from the network devices.
In particular, we adopt a price-based mechanism in order to build a controller that
maximizes the aggregate video quality for a set of HAS clients that share a common
bottleneck. When network resources are scarce, the clients with simple video sequences
reduce the requested bitrate in favor of users that subscribe to more complex video
sequences, leading to a more efficient network usage. The proposed controller has been
implemented in a network simulator, and the simulation results demonstrate its ability
to share the available bandwidth among the HAS users in a quality-fair manner.

1 Introduction

HTTP adaptive streaming (HAS) has become the universal client-driven streaming solu-
tion for video distribution over the Internet, an example of this paradigm is given by the
Dynamic Adaptive Streaming over HTTP [1] (DASH) standard. In HAS, as it is shown in
Fig. 1, the video content is available at the main server in different coded versions, namely
representations, each one with a given bitrate and resolution. The representations are sub-
divided into chunks of few seconds typically, which are then downloaded by clients using
HTTP requests over TCP. Each HAS client selects the best representation to download
(i.e., the best encoding rate and resolution) independently from the other clients. Therefore
HAS systems are able to respond to the heterogeneous demands of several HAS clients in a
fully distributed and adaptive way. The bitrate to download is usually selected by taking
into account both the download rate of the previous chunks and the status of the playout
buffer, with the aim of maximizing the downloaded bitrate while minimizing the possibility
of rebuffering events.

One of the most challenging aspects in HAS systems is the proper design of the adapta-
tion logic (i.e., the selection of the bitrate to request) at the client side. An intense research

1

has focused on designing HAS client controllers that guarantee a stable and fair utilization
of the network resources among multiple clients sharing the same bottleneck. However,
most of this research aims at reaching rate fairness among clients rather than quality fair-
ness. Ideally, video distribution solutions should share the bandwidth in such a way that
the different users experience a similar video quality. Unfortunately, since video sequences
generally have different characteristics, equal rate allocation among clients (rate fairness)
does not necessarily translate into quality fairness. From this point of view, the complete
freedom left to HAS clients that selfishly maximizes their own download bitrate reveals its
drawback. To overcome this main limitation, the MPEG group is developing an extension
of the DASH standard called Server and Network Assisted DASH (SAND) [2]. SAND is
based on asynchronous client-to-network and network-to-network transmissions aimed at
improving the Quality of Service (QoS) without interfering with the delivery of the media
stream. In this spirit, we focus on the bitrate selection problem in order to increase the
overall QoS of the clients and therefore improve the quality fairness.

Inspired by the well known Network Utility Maximization (NUM) framework in conges-
tion controllers [3], we design a price-based distributed controller, that maximizes the overall
delivered QoS and improves the QoS fairness among users while respecting the guidelines of
the SAND extension. More in details, we consider a multi-users HAS system where clients
share a common bottleneck. We define an objective function to properly map the encoding
rate of the downloaded representations to the QoS delivered to clients. Typically, different
video characteristics lead to different objective functions. We then define the congestion
level of the network as a function of the downloading times of the chunks, which value can
easily be measured by the clients. We introduce a coordination node, which corresponds,
for example, to a DASH-Assisting Network Element (DANE) in the SAND terminology.
As shown in Fig. 2, this node does not have to lie on the media delivery path, which fa-
cilitates the deployability of the proposed solution. The coordination node gathers the the
downloading times of the chunks from the HAS clients and iteratively updates the price
value accordingly, the updated price is then sent back to the clients. By following an ap-
propriate price-based bitrate selection policy, users with simple video sequences, i.e., low
bandwidth requirements, do not increase the bitrate of the requested chunks in congested
periods in favor of users downloading more complex videos. This policy ultimately leads to
a higher overall QoS of the HAS system and to a quality-fair resource allocation. We test
the proposed solution in a network simulator (NS3) under different network conditions and
we compare it with other rate-fair controllers proposed in the literature. The simulation
results confirm that the achieved rate allocation leads to a better quality fairness among the
users with respect to the baseline rate-fair HAS controllers. Moreover, we show the ability
of our new algorithm to coexist with TCP cross-traffic and other HAS controllers.

In summary, the main contributions of the paper are the following: i) we propose a
distributed HAS controller that targets quality fairness among several HAS clients sharing
a common bottleneck; ii) we introduce a method for measuring the congestion level of
a bottleneck link for HAS that relies exclusively on client measurements; iii) we design
our controller such that it can be integrated in the SAND architecture; iv) we carry out
performance simulations with a realistic network simulator that shows the benefits of the
proposed solution.

The paper is structured as follows. In Section 2, we report some related works on the

2

1 2 3 4 … N

1 2 3 4 … N

1 2 3 4 … N

1 2 3 4 … N

1 2 3 4 … N

Rate 1

Rate 2

Rate 3

Rate L

Rate l

1

2

3

4

n

HTTP adaptive
Video Player

HTTP GET chunk 3

HTTP GET chunk 1

HTTP GET chunk 2

HTTP GET chunk 4

HTTP GET chunk 5

Video Web Server
Rate selection

time

Download
Time

Representations

(

Figure 1: General HAS system architecture.

Video
Server

Regular Network
Elements

Coordinator Node
(DANE Server)

Downloading Time

Price

Media Stream

HAS Clients

Figure 2: Proposed system architecture.

QoS enhancement in HAS systems. In Section 3, we provide a description of the considered
framework. In Section 4, we derive the theoretical foundation of the proposed bitrate
selection strategy using a simplified model. In Section 5, we describe in detail the practical
implementation of the controller. We present in Section 6 the simulations results. Finally,
conclusions are provided in Section 7.

2 Related Works

Since a complete description of the whole literature in adaptation algorithms for HAS would
not possible due to space limitations, with the following we discuss the works that focus on
quality-fairness in HAS.

In [4], the authors optimize the bitrate selection in order to maximize the Quality of
Experience (QoE) among a set of HAS users on a wireless link. In this case the base station
carries out the optimization according to the different video characteristics. Though this
system is able to effectively allocate the available bandwidth it has some drawbacks in terms
of deployability, it requires to modify a network element that lies on the delivery path, and
scalability, the base station has to collect all the information about the users’ videos and
solve the optimization problem. In our proposed system the coordinator is not responsible

3

for solving the optimization problem and it does not need to hold any per user information,
thus preserving system scalability.

Several works [5–7] have proposed solutions for improving DASH QoS based on Software
Defined Networking (SDN). The common feature of these solution is the presence of a central
network controller that controls the video flows that are currently active in the network.
While SDN is a promising technology to improve Internet performance, it is not currently
deployed on a wide scale, therefore solutions based on this technology are not suited for
many of the nowadays networks. In this work, we rather aim at improving the QoS in HAS
with an algorithm that exclusively works at the application level and does not assume any
particular technology about the inner network nodes.

In [8], the authors propose a Q-learning multi-agent system for HAS users sharing a
common bottleneck in order to maximize a global QoS metric. The problem is formulated
as a reinforcement learning problem where the HAS user represents the learning agents.
Although this method ultimately achieves the optimal bitrate selection, it requires a very
long training phase to learn the optimal solution, making the deployability of this system
in realistic environments problematic. In our case we use a model-based formulation there-
fore we do not require any learning phase and we quickly converge to the optimal bitrate
selection.

3 System Model

We describe in detail the framework studied in this paper. We consider a HAS system with
N users, or clients, sharing a bottleneck link with an unknown available capacity C. This
scenario though not general is quite common, think for example about the case where the N
users share the same access link or the case where the server access link is the bottleneck.
In the event that a heavy traffic load is detected on these links the group of users can
ostensibly be gathered.

Each client downloads video chunks of time duration Tck by sending HTTP requests to
the server. The client then stores the received video data in the playout buffer, which has
a maximum capacity of M chunks. After a chunk is downloaded the next one is requested
immediately if a free slot is available in the buffer, otherwise the client waits until a chunk
is played and a slot becomes free to request the next one. When the buffer is full, requests
therefore are made every Tck in stationary regime.

Let ri be the bitrate of the last chunk downloaded by user i, and r = [r1, r2, . . . , rN]
be the vector corresponding to the bitrates of all the recent clients requests. We denote
by τi(r) the downloading time for client i, defined as the time necessary for user i to
download a chunk encoded at rate ri. Note that τi(r) depend s on the entire vector r,
since the bottleneck is shared by all users. We denote the rate vector r as sustainable if
τi(r) ≤ Tck, ∀i. A sustainable rate vector implies that users download their chunks in an
amount of time that is sufficient to avoid buffer underflow.

Note that the downloading time τi(r) is an extremely complex function in reality, and
represents the network response to the client requests. It depends on the capacity C of the
bottleneck link, on the starting time of the downloads, as well as on the random fluctuations
of the TCP rate due to packet losses. For the sake of simplicity, we first assume an ideal TCP
behavior, which means that: i) the bandwidth is always equally shared among the active

4

connections, ii) the channel is fully utilized when at least one connection is active. Note
that these are the ideal characteristic of every rate-fair congestion control algorithms. We
then use a realistic TCP connection to evaluate our controller in the conducted experiments.

We define Ui(ri) to be a strictly increasing concave utility function that represents the
quality experienced by user i when the video is downloaded at bitrate ri. Utility functions
of different users have different shapes to model the different bandwidth requirements for
different video sequences. We finally define the overall QoS of the system as the sum of the
single utility functions experienced by each user, more formally, U(r) =

∑N
i=1 Ui(ri).

4 Quality-Fair HAS Congestion Controller

In this section we derive the theoretical foundation of the proposed controller. We focus
on the bitrate selection of the users at regime, which means that users need to experience
a stationary average downloading time smaller than or equal to Tck, in order to avoid
buffer underruns, and they request one video chunk every Tck. Rebuffering phases and
proper buffer management policies are considered later in the practical implementation of
the controller, which is described in the next section.

We formulate a utility maximization problem for the multi-user system at regime. The
goal is to find a rate vector r that is sustainable and that maximizes the aggregate utility.
This can be achieved by solving the classical NUM problem:

maximize
r

N∑

i=1

Ui(ri)

subject to

N∑

i=1

ri ≤ C.

(1)

The problem consists in maximizing a concave objective function of utilities subject to a
linear inequality constraint on the cumulative bitrate.

The optimization problem in (1) can be solved using a dual algorithm, see [3, 9]. The
Lagrangian of the problem in (1) corresponds to:

L(r, µ) =

N∑

i=1

Ui(ri) + λ

(
N∑

i=1

ri − C

)
, (2)

where λ is the dual variable, or price, associated to the bottleneck capacity constraint.
The optimal solution of the problem can be determined by solving iteratively the following
system of discrete dynamic equations:

rk+1
i =

[
U ′i(λ

k)
]−1

i = 1...N (3a)

λk+1 =

(
λk + β

(
N∑

i=1

rk+1
i − C

))

+

(3b)

where [U ′i(·)]−1 represents the inverse of the derivative of the utility function of user i,
()+ denotes the projection onto the positive orthant and β is a simple parameter to set the

5

speed of change of the dual variable. Note that users can compute the first step, Eq. (3a),
independently, if they know the value of the dual variable λ. For evaluating the second step,
Eq. (3b), the value of the capacity C needs to be known. However this quantity cannot
be determined handily since its value depends on protocols overheads and potential cross
traffic (which cannot be known in advance).

We need therefore to modify the second step of the iterative algorithm in order to avoid
the explicit the value of the capacity C. We thus propose to use the maximum downloading
time τMAX = maxi=1...N τi in place of the rate sum. According to the ideal TCP behavior
described in the previous section, when

∑N
i=1 ri ≤ C the rate vector r is sustainable since

the total amount of data can be downloaded in less than Tck, similarly when
∑N

i=1 ri > C
the rate vector is not sustainable1. We can therefore map the sum rate constraint into a
downloading time constraint, leading to the following equivalent conditions:

N∑

i=1

ri ≤ C ⇐⇒ τMAX(r) ≤ Tck (4)

By using the above equivalency we modify the dynamic system in (3) as follows:

rk+1
i =

[
U ′i(λ

k)
]−1

i = 1...N (5a)

λk+1 =
(
λk + β(τMAX(rk+1)− Tck)

)
+
. (5b)

The first step has not changed, but the second step of Eq. (5b) can now be easily computed
since every user knows the downloading time of the requested chunks, and the maximum
value can easily be extracted. The capacity value is not used explicitly anymore, however it
is implicitly included in the downloading time measurement τMAX(r). Since the constraints
in (4) are equivalent, (3) and (5) converge at equilibrium to the same rate vector r.

We give now a brief discussion of how the iterative steps of system (5) can be computed in
reality. The adaptation logic, i.e., the selection of the bitrate at the client side is represented
by Eq. (5a), while the price update of the coordinator node is given by Eq. (5b). In more
details, in the first step, Eq. (5a), all the users independently compute the optimal bitrate
and request the chunks to download at the next iteration accordingly. After the download
every user sends to the coordinator node the measured downloading time. The coordinator
then performs a maximum pooling operation on the received downloading times and updates
the dual variable λ using Eq. (5b). The value of λ is then sent to the users for the next
bitrate selection. By performing these steps iteratively, the system converges to the optimal
equilibrium point.

The iterative solution in (5) represents a modification of the solution of classical NUM
problems for the case of HAS system. By using the downloading time of the chunks we can
detect an overuse of the available bandwidth without requiring the knowledge of its actual
value. Finally, note that the equivalency of the two conditions in Eq. 4 is true only if the
ideal characteristic of the congestion control is verified. If this assumption does not hold,
the equivalency is only an approximation whose accuracy depends on the actual behavior

1This follows directly from the assumption that when a single TCP connection is active the channel is
fully utilized, and that users request at least one chunk every Tck to avoid buffer underruns.

6

LPF PI
Controller

Q()Scaling

MAX

Q()Scaling

Q()Scaling

-

Coordinator Node

⌧i

�Tck

�

U 0�1
(�)

U 0�1
(�)

U 0�1
(�)

user 1

user 2

user 3

ê e

⌧MAX

H
TT

P/
TC

P

q

q

q

br(l)

br(l)

br(l)

Figure 3: Simplified block diagram of the overall system.

of the congestion control. As a result in the real world we need to consider the usage
of the downloading time condition instead of the original rate condition as an heuristic
approximation suggested by ideal assumption on the congestion control used. Nevertheless
the update rules in (5) are extremely important as to derive a cooperative adaptation
strategy for HAS users.

5 Controller Implementation

From the theoretical study of the previous section, we now show how to adjust the iterative
solution in (5) for it to be used in HAS system in practice. In particular we consider a
discrete rather than continuous set of bitrates, as well as the actual playout buffer manage-
ment. The overall HAS multi-user system, depicted in Fig. 3, can be seen as a control loop
composed of two main entities: the coordinator node, which receives the downloading time
measurements from the users and updates the price λ accordingly; and the users, which
receive the price from the coordinator node and perform the chunk requests based on the
video characteristic and the updated price.

5.1 Coordinator Node

In Algorithm 1, we present the operations that are executed by the coordinator node to
update the price λ at every iteration step. The key point is to have a coordinator node that
stays as simple as possible without any need for a per user state information, such that the
scalability of the system is preserved.

Since users are not synchronized the coordinator node processes one user transmission
per time. For each downloading time measurement τi, received from client i, the coordinator
updates the current maximum downloading time (line 2) and returns the last updated value
of the price to user i.

The second part of the algorithm is executed every Tck and corresponds to the price
update. In order to compute the error signal, ê, the coordinator node needs a reference

7

Algorithm 1 Coordinator Algorithm

1: if New downloading time received from user then
2: τMAX ← max(τMAX , τi)
3: Send most recent λ to the user
4:

5: loop . executed every Tck
6: ê := τMAX − γTck
7: e← αee+ (1− αe)ê . LPF
8: eI ← max(0, eI + e)
9: λ← max(0,KP e+KIeI) . Update price

10: τMAX ← 0 . Reset τMAX

signal γTck, which expresses the value of the maximum downloading time that the users
must have at equilibrium, with γ ∈ [0, 1] being a multiplicative factor2. The error between
the maximum downloading time and the reference downloading time is evaluated (line 6)
and filtered by a Low Pass Filter (LPF), implemented as an Exponential Weighted Moving
Average (EWMA) with a coefficient equal to αe, (line 7). The filter is necessary since the
maximum downloading time is a noisy measure in realistic settings, due to the random
behavior of multiple coexisting TCP flows. Finally, the error is integrated according to
Eq. (5b) (line 8). Since the complete control loop is composed also by non-linear blocks,
e.g., the utility functions, we limit the value of the integral error to zero in order to avoid
integral windup effects [10].

The value of the final price λ is then calculated by combining the integral error and the
proportional error (line 9), where KP and KI represent the proportional and integral gain
respectively. Compared to Eq. (5b) we add in the practical implementation a proportional
error to improve the stability of the system without affecting the equilibrium point. The
values of KP and KI must be set in order to guarantee the stability of the system, i.e.,
ensuring that the loop return ratio of the control loop has a positive phase margin at the
cross frequency. Note that λ, as in Eq. (5b), is restricted to be positive since negative prices
have no meaning.

5.2 Client Controller

We now describe the main steps of the HAS client controller. The behavior of the controller
is strongly based on Eq. (5a). However, we cannot simply use the aforementioned equation
since buffer level variations as well as discrete sets of available bitrates need to be taken into
account in practice. The full client algorithm, provided in Algorithm 2, is executed every
time a chunk can be downloaded, i.e., anytime a download is finished and the playback
buffer is not full (see downloading conditions – line 1,2).

As a first step, the client controller calculates the value of the ideal bitrate rcoord from
the last received price value λ according to Eq. (5a). The coefficient κ is necessary to
normalize the value of the price accordingly to the shape of the utility function and to

2Ideally the value of γ should be set to 1 to fully utilize the channel. In practical systems, however, we
observed that γ = 0.9 − 0.95 provides less noisy results at the cost of marginal channel under-utilization.

8

Algorithm 2 Client Controller Algorithm

1: if Buffer full or download active then
2: return
3:

4: rcoord := [U ′(λ/κ)]−1

5: r̂TCP := last chunk TCP throughput
6: α̂TCP := αTCP (now - last TCP throughput update)/Tck
7: rTCP ← α̂TCP rTCP + (1− α̂TCP)r̂TCP . LPF
8: r := rcoord
9: if (rTCP < rcoord) and (B < Tck(0.6M)) then

10: r ← rTCP
11: B := BufferLevel()

12: δ := max
(

1.0,min
(

0.25, B
Tck(0.7M)

))

13: l← arg maxb(l′)<rδ b(l
′)

14: if l < lold then
15: l← max(lold − 1, lmin)

16: if l > lold then
17: l← min(lold + 1, lMAX)

18: τ̂ := min(last downloading time, 1.25Tck)
19: τ ← αττ + (1− ατ)τ̂ . LPF
20: q̂ := max(1.0, rcoord,old/b(lold))
21: q ← αqq + (1− αq)q̂ . LPF
22: send the chunk request for bitrate b(l)
23: send the corrected downloading time to coordinator qτ

assure the stability of the system. In a theoretical model, the controller would request a
chunk of rate rcoord. However, we cannot fully neglect the experienced TCP throughput as
well as the client buffer status in realistic implementations. For example, if the buffer level
is very low and the rate suggested by the coordinator system is remarkably high compared
to the measured TCP throughput, it might be a good idea to ignore rcoord and select the
chunk according to the measured bandwidth only. This situation can occur during the
startup phase or after a sudden drop of the available bandwidth. Therefore, the controller
estimates the TCP throughput as described in [11] (lines 5-7) and selects which rate to use
between the TCP throughput, rTCP , and the ideal rate, rcoord. Basically, it selects the TCP
throughput estimation only if rTCP < rcoord and if the video buffer level is below a certain
threshold (we set this threshold to be equal to 60% of the maximum buffer occupancy
since it offers a good tradeoff between avoiding buffer underruns and trusting generally the
coordinator price) (lines 9-10).

Next, rather than selecting exactly r, the controller will search for a discounted value
rδ, with the discount factor δ defined in line 12, depends on the buffer level occupancy
B. The discount factor is usually 1 at regime, but it reduces during re-buffering phases in
order to decrease the rate of the requested chunks and refill the buffer faster. The discount
factor takes values between 0.25 in low buffer conditions, and 1 when the buffer occupancy

9

is higher than 70%. Finally, the controller selects the chunk with the encoded bitrate that
is closest to rδ. In order to select the bitrate level l we first select the maximum bitrate
lower than rδ (line 13) (b(l) is the encoding bitrate for the representation l). Secondly,
since large quality variations can be badly perceived by the user, we limit the variation
of the representation index with respect to the previous selection lold (lines 14-17). We
then consider the downloading time of the previous chunk τold and we filter this variable
using a LPF implemented as an EWMA with a coefficient equal to ατ (line 18-19). The
clipping and filtering of the downloading time is necessary to improve the coexistence with
TCP in practice. When users compete against TCP flows, they can experience episodic
downloading times that are remarkably larger then the average one, which may cause an
unjustified price increase.

The last step of this practical implementation takes into account the quantization of
the selected chunk rates, which affects the granularity of the downloading time values. Due
to the rate discretization we cannot always guarantee an average maximum downloading
time that matches exactly γTck. This can lead the controller to frequent oscillations in
the price that then translate into annoying oscillations in the users bitrates selection. To
overcome this problem, we introduce a new variable q, which keeps track of the ratio between
the ideal rate and the actual requested bitrate (line 20-21). The value αq corresponds to
the coefficient of the EWMA, and rcoord,old/b(lold) is the ratio between the previous ideal
request, rcoord,old, and the previous chunk request, b(lold). The key point is to perform an
upscaling of the measured downloading time based on the experienced quantization step.
In this way we are able to decrease the difference between the average downloading time of
the most demanding user and the reference signal γTck, reducing the variations of the price.
Note that the main drawback of the downloading time correction technique is an under-
utilization of the channel (at regime rcoord,old ≥ b(lold)), which is however balanced with the
reduction of the frequent oscillations of the video quality. An alternative way to solve the
bitrate discretization problem is to select the chunks in such a way that the average bitrate
is equal to the coordinator rate. This method might be useful if we consider dynamic video
complexity, i.e. dynamic utility functions. This is however beyond the scope of this work.
As last step the controller sends to the video server the request for a chunk of bitrate equal
to b(l) and sends to the coordinator the scaled downloading time measurement equal to qτ .

Finally, note that all the clipping operations implemented in the client algorithm are
active exclusively during transitory phases, e.g., rebuffering events, therefore they do not
affect the bitrate selection at regime.

5.3 Summary of the Proposed Controller

We conclude this section by listing some benefits of the proposed system.

• The coordinator node is extremely simple as it does not require any per user state
information. The coordinator uses measurement collected from the users to compute
a unique global signal that is then sent back to the users. Each user uses then this
signal in the bitrate selection in order to increase the overall QoS. The bitrate selection
is done in a fully distributed way to meet the HAS paradigm.

• The algorithm requires every user to send the downloading time of every chunk to the

10

coordinator node and to receive the price. However, the size of both measurement
and price messages is very small (few bytes). Moreover the communication overhead
grows only linearly with both the number of users and the number of chunks. As a
result, the proposed system has a limited overhead also for large multi-user systems.

• The coordinator node can be located anywhere in the network as long as it is able to
communicate with the HAS users that share the bottleneck link.

• In case of broken communication link between the client controller and the coordinator
node, the client can simply fall back to a classical rate/buffer-based HAS controller.
Users that are not able to communicate with the coordinator node will be perceived
as cross-traffic by the other HAS users, which can still perform the optimal selection
strategy.

6 System Evaluation

We now provide simulation results to evaluate the performance of the proposed system. We
implement the algorithm described in Section 5 in the NS3 network simulator and evaluate
it in different representative scenarios.

6.1 Experimental Setup

In order to evaluate the proposed algorithm we use the well-known Structural Similarity
(SSIM) metric [12] as a utility function. We consider four types of videos with different
properties: a high motion sport video, two medium complexity videos, a cartoon and a
documentary, and a low complexity lecture video. The original videos have been downscaled
to smaller resolutions and every resolution has been encoded at different bitrates using h264
codec [13]. We have then extracted the average SSIM of the encoded sequences at different
bitrates. We have derived the following continuous model of the SSIM:

Ui(r) = ai · rbi + ci, (6)

where the coefficients ai, bi and ci for the encoded sequence i are derived by curve fitting
with the SSIM experimental points. The experimental SSIM data points and the fitting
curves are depicted in Fig. 4. Note that a visually pleasant video usually has a SSIM score
above 0.8 and a gain in SSIM of 0.05 might correspond to an increase of one point in Mean
Opinion Score (MOS) [14].

In our simulations we identify each user with a single video at a given resolution, there-
fore with a single constant utility curve that is then used to execute the adaptation logic
described in Subsection 5.2. We assume that each user knows the utility function of the
requested video. In reality, this is possible by including this information in the Media Pre-
sentation Description (MPD) file of the video, or alternatively, the service provider can
make it available on the server as secondary information. Another possibility is that the
users implement a no-reference distortion model to assess the quality of the displayed video
sequence.

We compare our algorithm with three HAS controllers proposed in the literature, namely
a conventional HAS controller as described and implemented in [11], the Probe and Adapt

11

0 2000 4000 6000
bitrate [kbps]

0.6

0.8

1

s
s
im

Sport

0 2000 4000 6000
bitrate [kbps]

0.8

0.9

1

s
s
im

Cartoon

0 2000 4000 6000
bitrate [kbps]

0.8

0.9

1
s
s
im

Documentary

0 2000 4000 6000
bitrate [kbps]

0.9

0.95

1

s
s
im

Lecture

0 5000
0.60.81

s
s
im

ssim 1920x1080 (1080)
ssim 1280x720 (720)
ssim 960x540 (540)
ssim 640x360 (360)

0 5000
0.80.91

s
s
im

fit ssim 1920x1080 (1080)
fit ssim 1280x720 (720)
fit ssim 960x540 (540)
fit ssim 640x360 (360)

Figure 4: Quality-rate utility functions for the video sequences under consideration. Solid
lines represent the continuous model of Eq. (6) while symbols are experimental measure-
ments.

(PANDA) algorithm also proposed in [11], and the ELASTIC algorithm proposed in [15].
These three algorithms represent well the different behavior that rate-fair controllers can
exhibit: PANDA is more conservative since it prefers to slightly underutilize the channel
at the benefit of having a more constant bitrate selection. ELASTIC, on the other hand,
strives to fully utilize the channel at the cost of more frequent quality variations. The
conventional controller offers somehow an average behavior compared to the other two. To
have a fair comparison among the different controllers, we fix the maximum buffer size of
all the algorithms to M chunks, and we modify accordingly the parameters that control
the buffer size in the baseline algorithms. In particular, the parameters Bmin of PANDA
and qT of ELASTIC are both set to 6Tck. The other parameters of the baseline algorithms
are set accordingly to the cited works. Note that in our work we do not consider freezing
events as metric of comparison, therefore reducing the size of the buffer does not penalize
any of the algorithms. For the proposed quality-fair algorithm, the value of the parameters
are listed in Table 1. We set the values of these parameters in order to have: i) a good
reactivity, thus good speed to convergence, ii) and clean signals, thus reducing the noise
introduced by the network measurements.

Finally, the proposed controller as well as the baseline algorithms are tested over the
network topology depicted in Fig. 5, where all users share the same bottleneck link. The
links that connect the HAS users to the bottleneck link are local high-speed links. Lastly,
the cross-traffic, if present, shares only the bottleneck link with the other HAS users.

6.2 Simulation Results

We now provide the simulation results carried out in the settings described above. We
show first in detail how the proposed algorithm behaves. Then, we show the gain of our
controller with respect to rate-fair controllers when the bottleneck is shared by many HAS

12

Table 1: Parameters used in the implementation
Parameter value

All algorithms

Tck 2 s

M (Max buffer size) 10

Bitrates available
[400 640 880 1200 1680 2240

2800 3600 4400 6000] kbps

Proposed algorithm

γ 0.95

αe 0.75

Kp 1

Ki 0.25

κ 1e6

αTCP , αq, ατ 0.75

Cross -traffic

Bottleneck C

DASH
clients

Coordinator
Node

Video Server

Figure 5: Topology used in the different simulated scenarios.

users. In a last set of simulations we evaluate the performance of the proposed algorithm
when competing with cross-traffic.

In the first test case three HAS clients share a common bottleneck link that has a
capacity of 5 Mbps. The Users 2 and 3, download the cartoon video at resolution 1080
and the lecture video at resolution 720, respectively, from the beginning of the simulation
and stay always active, while user 1 downloads the sport video at resolution 540, between
the timestamps 250s and 600s. The results are depicted in Fig. 6. In Fig. 6a, we provide
both the video bitrate selected by the users and the ideal bitrates (rcoord) as described in
Subsection 5.2. This plot shows the ability of the algorithm to fairly allocate the available
bandwidth when client have different utility functions. Since user 1 is the one consuming the
most complex video sequence, it is also the one that gets a larger portion of the channel link.
From the SSIM curves, we know that for a bitrate of about 2.2 Mbps, user 1 experiences a
SSIM value of approximately 0.94, while user 3 already achieves a SSIM value above 0.98
at 0.4 Mbps. Thus, the proposed controller is clearly able to improve the quality fairness
among the users with respect to a rate-fair controller, which would allocate approximately

13

0 100 200 300 400 500 600 700

video time [s]

400
640
880

1200

1680

2240

2800

3600

b
it
ra

te
 [
k
b
p
s
]

ideal rate user 1

selected bitrate user 1

ideal rate user 2

selected bitrate user 2

ideal rate user 3

selected bitrate user 3

0 100 200 300 400 500 600 700

time [s]

0

5

10

15

20

b
u
ff
e
re

d
 v

id
e
o
 t
im

e
 [
s
]

user 1

user 2

user 3

a)

b)

0 100 200 300 400 500 600 700 800

time [s]

0

1000

2000

3000

4000

5000

d
o
w

n
la

o
d
 r

a
te

 [
k
b
p
s
]

total download rate

total capacity

c)

Figure 6: Performance of the proposed algorithm when three HAS users implementing our
algorithm compete for the same bottleneck channel. The three plots respectively show the
selected and ideal bitrates, the buffer occupancy and the channel utilization.

1.5 Mbps per user, making user 1 suffer of poor video quality while only slightly increasing
the quality of user 3. Fig. 6b further shows the buffer level of the users. The playout buffers
of all the three users have an occupancy level close to the maximum value, and no underruns
are experienced during the simulation. The channel utilization, depicted in Fig. 6c, is also
satisfactory. In fact the total download rate, given by the sum of the bitrates requested by
all users, settles to a value that is close to the channel capacity. Note that the reported
channel capacity corresponds to the physical bandwidth, which does not take into account
the TCP/IP protocols overhead, thus it is not possible to exactly match its value.

We now consider N users, and we randomly assign to each of them a video at a given
resolution and thus a corresponding utility curve. We then set the bottleneck capacity C
to NCusr, where Cusr is the average per user capacity. We consider 10 different realizations
of the utility-user random selection, every metric shown in the final plots is the result of
the average operation among the different realization. For each realization, we simulate the
video streaming session where all users are simultaneously active for 460 seconds and we
evaluate the average SSIM experienced at regime, i.e., after 60 seconds of video. Beyond the
average SSIM, we also compute for each user the average SSIM variation per downloaded
chunk as follows:

∆SSIMck =
1

L− 1

L∑

l=2

|SSIM(l)− SSIM(l − 1)|, (7)

where L is the total number of chunks downloaded by the user and SSIM(l) is the SSIM
value for chunk l. After we compute the average SSIM variation for every user, we average
this value among the user population of the simulation. This metric quantifies the average

14

variation of quality level among consecutive chunks and captures possible SSIM oscillations
rather than the simple heterogeneity of the SSIM over the all video sequence. Since it
has been shown that frequent quality switches result in QoE degradation [16], the lower
the ∆SSIMck the better the QoE. The last metric that we compute is the capacity usage,
which is the time average cumulative downloaded bitrate of the users divided by the total
capacity. A capacity usage close to 1 means an efficient use of the available resources.
The three metrics above are evaluated in scenarios with different numbers of users, i.e.,
N = [2 4 8 12 25 50 100], and different per user capacities, i.e., Cusr = [0.75 1.25 2.0] Mbps.
The corresponding results are depicted in Fig. 7. Every element of the box-plot is composed
of i) a rectangle, which represents the first and third quartile divided by the median value
ii) the whiskers, which delimit the minimum and the maximum value of the time-average
SSIM among the user population and iii) the black dot which corresponds to the mean
value over the population. We can notice that our algorithm is in general able to achieve
better average quality compared with the rate-fair controllers. In particular the proposed
algorithm is able to allocate more rate to the users that are watching high demanding
videos. The minimum average SSIM of the proposed algorithm is remarkably higher than
the one of the rate-fair controllers. By looking at the numerical values, it can be seen that
our method can achieve a gain up to 0.05 points of SSIM for large values of N , and a gain
of around 0.01 points of SSIM for small values of N . In general, the SSIM gain is larger
for larger value of Cusr, since there is a larger margin of optimization in this case thanks to
the larger amount of total bandwidth that can be re-allocated among the users. It is also
worth noting that all the baseline algorithms show comparable performance among each
other since they all target a rate-fair allocation. Beyond increasing the average SSIM, the
proposed algorithm also reduced the average SSIM variations. As it is shown in the second
column of Fig. 7, this value is substantially smaller than the variations experienced by the
rate-fair controllers. The PANDA algorithm, since it is the most conservative, is the one
behaving best among the three controllers used for comparison, as expected. From the third
column of Fig 7, we can notice that the proposed algorithm is the one achieving the lowest
bandwidth utilization. Nevertheless, the efficient usage of the bandwidth permits to the
proposed algorithm to have better performances in the other metrics. The low bandwidth
utilization is caused by the policy of selecting always a bitrate that is lower than the ideal
bitrate. By applying a selection policy that targets a bitrate selection that is on average
equal to the ideal rate the capacity usage can be increased, at the cost of more quality
variations. Finally, note that we vary the number of users from a simple 2 users scenario to
a scenario with 100 users, the proposed algorithm always achieves a better quality fairness
with respect to rate-fair controllers, showing that our system scales well to large population
of clients.

We further analyze the performance of our algorithm when the bottleneck capacity
is shared with TCP cross-traffic for different amounts of TCP connections. We set the
number of HAS users to N = 16 and then add different numbers of TCP connections,
i.e., NTCP = [2 4 8 16]; in percentage the amount of TCP cross-traffic varies accordingly
from 11% to 50% of the total connections. We also vary the amount of the total capacity:
C = (N + NTCP)Cusr, and the per user capacity is set to Cusr = [0.75 1.25 2.0] Mbps
in different simulations. We then compute the same metrics of the previous tests and the
results are shown in Fig. 8. The average SSIM shows that the different algorithms are able to

15

2 4 8 12 25 50 100

Total number of users

0.8

0.85

0.9

0.95

1
S

S
IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

0.005

0.01

0.015

∆
 S

S
IM

c
k

2 4 8 12 25 50 100

Total number of users

0.6

0.7

0.8

0.9

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 12 25 50 100

Total number of users

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

0.005

0.01

∆
 S

S
IM

c
k

2 4 8 12 25 50 100

Total number of users

0.7

0.8

0.9

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 12 25 50 100

Total number of users

0.9

0.95

1

S
S

IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

2

4

6

8

∆
 S

S
IM

c
k

×10
-3

2 4 8 12 25 50 100

Total number of users

0.7

0.8

0.9

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 16

0

0.5

1

Proposed algorithm

Conventional

PANDA

ELASTIC

Figure 7: SSIM statistics, SSIM variations and channel utilization for the four implemented
controllers for different numbers of users N . The per user capacity Cusr has been set to
0.75, 1.25 and 2.0 Mbps for the first, second and third row of plots respectively.

achieve approximatively the same performance. However, the proposed algorithm achieves
higher values of minimum SSIM with respect to the rate-fair controllers. From the second
column in Fig. 8, we see that the proposed method achieves the lowest SSIM variations
in most of the cases, confirming the behavior of Fig. 7. In terms of channel utilization,
ELASTIC is the algorithm that achieves the highest utilization ratio. Our algorithm instead
has the lowest channel utilization together with the PANDA algorithm. We further notice
that the sum of the HAS users utilization plus TCP utilization (in dashed lines) is close
to one, as expected. We finally point out that our algorithm achieves approximatively the
same average quality as the other algorithms using less bandwidth.

Finally, in the last set of simulations, we consider the scenario where only HAS users
share the bottleneck channels, but with different controllers implemented at the client side.
More in details, we have 4 HAS users, two with the proposed algorithm, two with one of
the other baseline controllers. The users 1 and 2, which implement the proposed algorithm,
download a high complexity video and a low complexity one respectively. The baseline
controllers (users 3 and 4) are content agnostic, thus their behavior does not depend on the
utility curve of the videos. The bottleneck capacity is set to 8Mbps, and all the users are
simultaneously active during the simulation. The results are shown in Fig. 9. The green
and blue bars correspond to the average bitrate requested by the clients implementing the
proposed algorithm, while the two red bars correspond to the average bitrate requested
by clients implementing one of the other controllers. The least fair scenario is the one in
which the proposed algorithm competes with PANDA. This is expected since, as we have
observed in the previous results PANDA is a very conservative algorithm. On the other
hand ELASTIC, which is the most aggressive controller, achieves a larger downloading rate
when competing with the proposed controller. The goal of this final tests is to show that the

16

2 4 8 16

TCP cross-traffic users

0.8

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

0.005

0.01

∆
 S

S
IM

c
k

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 16

TCP cross-traffic users

0.8

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

2

4

6

8

∆
 S

S
IM

c
k

×10
-3

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 16

TCP cross-traffic users

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

2

4

6

8

∆
 S

S
IM

c
k

×10
-3

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
c
it
y
 u

s
a
g
e

2 4 8 16

0

0.5

1

Proposed algorithm

Conventional

PANDA

ELASTIC

Total TCP vs

Proposed algorithm
Total TCP vs

Conventional

Total TCP vs PANDA

Total TCP vs ELASTIC

Figure 8: SSIM statistics, SSIM variations and channel utilization for the four implemented
controllers for a set 16 HAS users sharing the bottleneck with a varying number of TCP
flows . The per user capacity Cusr has been set to 0.75, 1.25 and 2.0 Mbps for the first,
second and third row of plots respectively.

rate-fair HAS controllers neither dominate,nor are dominated by the proposed algorithm
and that they can effectively coexist. Consequently we expect that in a scenario with a
large number of rate-fair HAS controllers the performance achieved by our controller are
comparable to the TCP cross-traffic results of Fig. 8.

vs Conventional vs Panda vs Elastic
0

500

1000

1500

2000

2500

3000

b
it
ra

te
 [

k
b

p
s
]

User 1 (proposed algorithm)
User 2 (proposed algorithm)
User 3 (baseline algorithm)
User 4 (baseline algorithm)

Figure 9: Average equilibrium bitrate achieved by the proposed controller when competing
with the other rate-fair HAS controllers.

7 Conclusions

In this paper, we have proposed a price-based HAS controller that is able to enhance the
overall QoS and improve quality fairness among HAS clients sharing a common bottleneck

17

link. Based on the experienced downloading times, a coordinator node evaluates the bot-
tleneck price that reflects the congestion level of the network. The users then perform a
quality-fair bitrate selection based on this price information. The ideal controller is adapted
to work in realistic settings and tested in the network simulator NS3. The proposed algo-
rithm is extremely scalable in terms of both computation and communication requirements.
The simulation results show the ability of the proposed algorithm to work under different
network conditions, and to improve the quality fairness of the users when compared to clas-
sical rate-fair controllers. The proposed controller is also able to work properly in scenarios
where the bottleneck link is shared with TCP and other HAS cross-traffic. As future work,
we plan to extend the proposed algorithm to multiple bottlenecks scenarios and to the case
of dynamic utility functions, e.g., time varying video complexity.

References

[1] T. Stockhammer, “Dynamic adaptive streaming over HTTP–: standards and design
principles,” in Second annual ACM conference on Multimedia systems. ACM, 2011.

[2] E. Thomas, M. van Deventer, T. Stockhammer, A. Begen, and J. Famaey, “Enhancing
MPEG DASH performance via server and network assistance,” The Best of IET and
IBC, 2015.

[3] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for communication networks:
shadow prices, proportional fairness and stability,” Springer Journal of the Operational
Research society, vol. 49, no. 3, 1998.

[4] A. El Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada, “QoE-based
traffic and resource management for adaptive HTTP video delivery in LTE,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 25, no. 6, 2015.

[5] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards network-
wide QoE fairness using openflow-assisted adaptive video streaming,” in ACM SIG-
COMM workshop on Future human-centric multimedia networking. ACM, 2013.

[6] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo,
“Design and experimental evaluation of network-assisted strategies for HTTP adaptive
streaming,” in 7th International ACM Conference on Multimedia Systems. ACM,
2016.

[7] J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-quality video:
An SDN architecture with dash assisting network elements,” in 7th International ACM
Conference on Multimedia Systems. ACM, 2016.

[8] S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. De Turck, “A multi-agent Q-
learning-based framework for achieving fairness in HTTP adaptive streaming,” in IEEE
Network Operations and Management Symposium. IEEE, 2014.

18

[9] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network
utility maximization,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 8, 2006.

[10] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design. Prentice
Hall New Jersey, 2001.

[11] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe and adapt:
Rate adaptation for HTTP video streaming at scale,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 4, 2014.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, 2004.

[13] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.
264/AVC video coding standard,” Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, 2003.

[14] L. K. Choi, Y. Liao, and A. C. Bovik, “Video QoE models for the compute continuum,”
Multimedia Communications Technical Committee E-Letters, 2013.

[15] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC: a client-side
controller for dynamic adaptive streaming over HTTP (DASH),” in 20th IEEE Inter-
national Packet Video Workshop. IEEE, 2013.

[16] D. Z. Rodŕıguez, Z. Wang, R. L. Rosa, and G. Bressan, “The impact of video-quality-
level switching on user quality of experience in dynamic adaptive streaming over
HTTP,” EURASIP Journal on Wireless Communications and Networking, vol. 2014,
no. 1, 2014.

19

