
Optional Project Report

EPFL - IC FACULTY

RIGOROUS SYSTEMS DESIGN LAB

OPTIONAL PROJECT REPORT

Definition and Implementation of Validation
Strategies for a Nanosatellite Flight Control

Software Model

Author:
Alexandre SIKIARIDIS

Supervised by:
Joseph SIFAKIS

Simon BLIUDZE

Anton IVANOV

January 2016

1

Optional Project Report

Contents

1 Introduction 3

2 Validation Strategies 4

3 A Practical Case: Memory Overflow 5
3.1 Adapting the Model to nuSMV . 5
3.2 Verification by Construction . 6

3.2.1 Modelling Memory Overflow Handling . 6
3.2.2 Generalising the Process . 8

4 Reducing Complexity 9
4.1 Motivation . 9
4.2 Design of the Mode Control Model . 9
4.3 Implementation . 12
4.4 Handling Errors . 15
4.5 Properties of the Mode Control Model . 16
4.6 Relation to the Original Model . 18

5 Future Work 20

6 Conclusion 20

2

Optional Project Report

1 Introduction

Based on an existing model for the flight control software of cubETH previously developed [1]
using the BIP framework [2], the goal of this project was to determine some essential properties
the satellite was expected to have, and to review the model so as to verify that those properties
were respected.

In order to do so, translations and simplifications of the model were first attempted - those
are described in section 3.1. The model was then adjusted such that some properties were
exhibited by construction. We describe this in section 3.2.1. Thirdly, an abstraction of the
model was developed, which reduces the system’s complexity by clearly differentiating modes
of behaviour the satellite is expected to adopt; formal verification of properties based on those
modes can then be achieved. Explanations regarding design and implementation in BIP are
given in section 4.

This project builds upon a model programmed with BIP2 (RC5 version) [3], in an attempt to
provide a verifiable flight control system for the SwissCube project [4]. Most important for this
project is the structure of the system, which is described in Figure 1.1.

Figure 1.1: Architecture of the flight control system.

3

Optional Project Report

2 Validation Strategies

Several validation strategies were considered and explored. The first one described in this
report attempted to apply verification tools to the model, as several ones supporting BIP
code exist. Those have the advantage of allowing validation of complex properties through
computational power.
Properties discussed in section 4 make use in particular of bipchecker [5], a tool which looks
for execution paths leading to a given combination of component states. One advantage of
bipchecker is its support of current BIP syntax, which makes it possible to run tests on BIP
code with minimal modifications.
Another tool which we hoped to use is nuSMV, which, given a model, attempts to validate
temporal logic rules[6]. While it does not support BIP code, a translator called bip2smv has
been developed at RiSD. Unfortunately, it only handles old BIP syntax, therefore the SwissCube
model had to first be adapted to the old BIP syntax, as is described in section 3.1.

Another validation strategy considered was the modification of the model, such that it
would exhibit execution paths that were otherwise left to the implementation, and thus giving
the means to verify properties by construction. One example in particular is discussed in
section 3.2.1, and the process is then generalised to properties of a similar nature.

Finally, an abstraction of the SwissCube model was developed in BIP. In this new model, all
components are simplified, so as to draw focus on interactions between them. This gives us a
better view of the way they communicate, and how failures are handled. This is particularly
useful given the I2C communication bus used on the satellite, which is considered to be
fault-prone.
The abstraction also introduces a new functionality, which enables and disables certain sub-
systems of the satellite according to modes of operation. This in turn provides a higher-level
control on the behaviour of the satellite, and allows us to verify properties based on those
modes, related for instance to power consumption and scheduling of operations.

4

Optional Project Report

3 A Practical Case: Memory Overflow

In this section, we describe two attempts at at verifying the following property:

"When the memory is full, any write operation is interrupted while the error is
logged and older data erased. The write operation then resumes."

This property is crucial to the model, because memory content will often be pictures
taken by the satellite which can individually fill up the non-volatile memory. Having cases of
memory overflow alert ground control allows for an appropriate reaction. Of course, ensuring
the property is respected also means we are certain of the consequences of memory overflows
(i.e. older memory will be overwritten; the system will not, for example, overwrite recent data
instead, or worse, crash).

In order to verify the property, two different strategies were followed: first, translating the
BIP model to nuSMV syntax in the hope of applying the verification tool to it is discussed in
section 3.1. The second strategy consisted in modifying the model to exhibit the property by
construction; this is discussed in section 3.2

3.1 Adapting the Model to nuSMV

In order to run the BIP model in nuSMV, two steps had to be achieved: first a simplification of
the model - which would be too broad in its complete form for any non-trivial property to be
verified; and secondly a translation to the old BIP syntax, which is supported by the bip2smv
tool.

Simplification

The model was simplified by removing any component unrelated to the memory overflow
property described above. The components that were retained are listed here:

• All CDMS components: Flash_mem, I2C_sat, I2C_sens, and Error_log

• Minimal TC components to generate data reads and writes to the memory: CCSDS,
tcReceiver, service 13, and service 15_9

• All housekeeping components - kept so as to minimise modification of the behaviour,
those could likely be removed as well if necessary.

• Payload and sensor-related components (I2C_sens, sens1 and sens2) to generate heavy
data writes to the memory.

Translation

The translation process from new syntax to old syntax is described here point by point:

1. Replace keyword atom by atomic.

2. Remove empty parentheses ("()") at the end of atom and compound declarations.

5

Optional Project Report

3. Replace package keyword at beginning of BIP file by model.

4. Add declaration of root compound component C at end of file as "component C start".

5. Inline all imported files - keyword use is not supported.

6. Flatten the model - hierarchical connectors are not supported.

7. Remove all use of C code and includes at beginning of file.

A short shell script was written to automate points 1 to 4. Point 5 can easily be achieved by
hand. Points 6 and 7 are more complicated to automate, and are non-trivial to apply without
modifying the behaviour of the model. A tool for flattening BIP files does exist - it was not
however necessary in this project as the simplified model had a low enough complexity to
allow for flattening by hand. Removal of C code however proved much more complicated, and
was never fully completed due to lack of time - in particular, validating maintenance of the
model’s original behaviour is a significant challenge.

Because of this last point, complete translation of the model to old BIP syntax proved
extremely time costly and error-prone. Instead, exhibition of the property upon the model
itself was therefore undertaken.

3.2 Verification by Construction

Given properties the system is expected to exhibit, having the model present those properties
directly allows for a verification by construction, rather than going through tools such as
nuSMV or bipchecker, that would require modifications to the model’s underlying BIP code
such as those discussed previously.

3.2.1 Modelling Memory Overflow Handling

In the SwissCube model, all write operations are handled through the flash_mem component.
Its interface allows other components to send write requests, which are then handled as per
the left-hand side of the FSM described in Fig. 3.1.

Given the writing process modelled here, the point at which writing might have to be
interrupted due to a memory overflow is in state STATUS_WRITE. Indeed, at that point, the
current state of the memory is evaluated, and we can expect the previous ‘write();‘ statement
to have set the status to FULL if such was the case. The solution we wish to implement, is to
verify the state of the memory, attempt to correct the issue - in this case, to free some memory
-, and then to repeat the write operation by returning to the WRITE_BUFFER state.

This is first done by modifying the model as is depicted in orange on Fig. 3.1. From STA-
TUS_WRITE we add a transition - activated when the memory is detected to be full (encoded
as ‘status == FULL‘) - which leads to the FULL state. From there, three transitions can be
followed, activated according to the status variable. An internal transition attempts to free
memory, and updates the status variable. One transition named free_failure is available if the
status variable indicates a permanent failure to free memory, and leads to the original FAIL

6

Optional Project Report

state. Finally, an internal transition internal_not_full can be fired once the status variable
indicates the memory has been freed, and returns to the WRITE_BUFFER state from which the
write operation can be resumed.

As will be explained in section 4 - dedicated to the mode control model -, we guarantee the
error will be reported by synchronising the full transition with the error log on the CDMS. The
model then guarantees that the log will eventually be reported back to ground control.

Figure 3.1: FSM for the volatile memory component. Modifications to support detection of
memory overflow are drawn in orange.

While these modifications ensure memory overflows are detected and logged, an important
part of the write process is still left to the implementation. Indeed, consequences of such
failures are unclear: returning to the WRITE_BUFFER state does not ensure that the failed
write operation will be repeated. If the data had been separated in batches fitting the I2C bus,
this might just continue writing the next batch; or even worse, if this was the last batch, the
current implementation might lead to unexpected errors.
We can summarise the current handling of a write request in four steps:

1. Receive the write request

2. Separate the data in batches

3. Handle the next batch (or fail). Atomicity is ensured here by the WAIT state.

4. Repeat step 2 or complete the write request.

The issue we have is linked to the fact that the second point is not modelled. Because of that,
the internal_not_full transition breaks the order of operations, going from step 3 to something
in between steps 2 and 3.

7

Optional Project Report

We fix this by making the batch process explicit as well; the internal_not_full transition now
goes to a new state, immediately after the current batch has been selected. This is shown on
figure 3.2, and ensures that the same batch write will be attempted by staying in step 3.

Figure 3.2: Final FSM for the volatile memory component, with modifications ensuring failed
writes are repeated after memory overflows are detected.

3.2.2 Generalising the Process

The sequence of operation described in section 3.2.1 is entirely possible in the original model;
the STATUS_WRITE state has a failure transition which should detect memory overflows and
handle them. However, modifying the model and making the whole process a separate path in
the FSM ensure the property is respected directly upon the model itself, without any regard to
the underlying software. In particular, this avoids issues such as unhandled exceptions going
unnoticed because the model assumes the software will take care of it.

This process can be generalised to any property relying on values that can be encoded in
variables. Indeed, the link between a model and its underlying software can be represented by
status variables; if all possible consequences of an action are identified, they can be encoded
into a variable, and a test (i.e. a transition) can be dedicated to each possible outcome. This
guarantees that none of the identified properties are ignored by the model.
In this precise case, the handled outcomes of the write operation - that is, the values the
STATUS variable could take - were WAIT, FAIL, and OK. Separating the new FULL value from
the FAIL value means the model now detects memory overflows. Adding the BATCH_BUFFER
state then allows us to store the current batch in the buffer variable, which allows us to refine
the exact way overflow failures are handled by providing more details regarding the write()
operation in the original model.

8

Optional Project Report

4 Reducing Complexity

In order to reduce the system’s complexity, an abstract version of the model was designed,
which controls each of the main subsystems on the satellite in terms of individual modes of
operation. The motivations behind the abstraction are described in this section, as well as the
design process and assumptions made while implementing it. Some core properties of the
system are then established, before a link back to the original model is made.

4.1 Motivation

In order to provide a high level representation of the behaviour of the satellite, it was desirable
to think of the system as operating in one of several modes, namely: ON, SCIENCE, COM-
MUNICATION, and SAFE. In each mode, all four subsystems - power (EPS), communications
(COM), payload operations (PLD) and attitude determination and control (ADCS) - act in a
given way.

This results in an autonomous system, upon which we will verify the following properties in
section 4.4. Those properties give us assurances regarding power consumption management
and operations scheduling.

Property 1. COM is never operating at the same time as PLD and ADCS.

Property 2. I2C_mode_c always eventually returns to one of its base states: ACTIVE
and IDLE.

Property 3. If an error occurs and triggers a switch to SAFE mode, the system can
always eventually come out of it and resume normal operations.

(Note: refer to section 4.3 for explanations on I2C_mode_c.)
With those properties established on the high-level model, we will outline a mapping to the

original mode, ensuring those properties are valid for it too.

4.2 Design of the Mode Control Model

Subsystems Separation

First of all, the components in the original model were separated into subsystems, according
to the diagram in Figure 4.1 upon which relies the original design in [1]. In the absence of a
formal specification to rely on, this ensures the abstraction is as close as possible to the original
mission statement, and provides better assurance that the original model is a refinement of
the abstraction.

Essentially, we can distinguish:

1. The COM subsystem, which comprises the CCSDS, the tcReceiver, and all services.
Additionally, the abstraction needs a way of receiving mode switch orders from ground
control - this is a functionality assumed by COM.

2. The PLD subsystem which directly maps the Payload component.

9

Optional Project Report

Figure 4.1: A diagram representing the separation of components from the original model into
the different subsystems.

10

Optional Project Report

3. The ADCS subsystem which directly maps the ADCS component.

4. The EPS subsystem which interacts with the CDMS watchdog (a heartbeat signal al-
lowing EPS to detect failures of the CDMS subsystem, and perform power cycles if
necessary.)

5. The CDMS subsystem which is further broken down into I2C_sat bus, non-volatile
memory, error log, and housekeeping activities. Additionally, an abstraction named
I2C_mode_c controls the modes of operation of each of the above subsystems, and
coordinates transitions with orders received through COM.

Sensors have been omitted from the initial model for simplicity. However, adding them
should be straightforward.

Modes of Operation

The various modes of operation are defined as follows:

1. ON: All components are activated, but prevented from operating (i.e. firing transitions).

2. SCIENCE: Payload and ADCS are operating. Only essential communications are allowed
- e.g. mode switches and reset orders.

3. COMMUNICATION: All communications are allowed. Payload and ADCS are disabled.

4. SAFE: Payload and ADCS are disabled, and only essential communications are allowed.

Additionally, EPS is always active.
In order to achieve that behaviour, subsystems independently switch amongst several main

states:

1. PLD: Switched off (OFF), activated (ON), operating (OPER)

2. ADCS: Switched off (OFF), activated (ON), operating (OPER)

3. COM: Limited communications (LISTENING), operating (OPER)

4. EPS: Activated (ON)

Table 4.1 combines these information, and describes, for each mode of operation, the
corresponding state of each subsystem.

In other words, EPS must always remain active, and COM is always at least alert to vital
communications (low power state). PLD and ADCS act in parallel, operating only in Science
mode and switching off in Communication mode.

11

Optional Project Report

Subsystem ON SCIENCE COMMUNICATION SAFE

PLD ON OPER OFF OFF
ADCS ON OPER OFF OFF
COM LISTENING LISTENING OPER LISTENING
EPS ON ON ON ON

Table 4.1: States of subsystems in each mode.

4.3 Implementation

Diagrams of all the components are listed in figure 4.3, and synchronisations between compo-
nents are represented in figure 4.2.

Some explanations are given here, while more details as to the way the model behaves are
given in the next sections.

• In the COM, PLD and ADCS state machines, transitions named On, Saf, Sci and Com rep-
resent transitions to modes ON, SAFE, SCIENCE and COMMUNICATION respectively.

• Transitions with several names separated by commas represent several transitions in the
actual BIP code. This is true for both the individual state machines and the interaction
diagram.

• Transitions in I2C_mode_c and HK containing an X in their name represent several
transitions, with X ∈ {ON ,S AF E ,SC I ,COM } if not otherwise specified. This is again
true for state machines and the interaction diagram.

• generic transitions are further explained in section 4.6, where they are referred to as
generic_x_y. They represent interactions between components in the original model.

I2C Mode Controller

As mentioned in section 4.2, the model uses an additional component named I2C_mode_c,
which is in charge of coordinating mode changes of the various subsystems. It has two basic
states, from which it handles its different tasks: IDLE when the components are in SAFE mode,
and ACTIVE otherwise. From both of these states, a mode switch process can be started.
I2C_mode_c will then ask EPS to standby (to avoid conflicts with concurrent resets), while the
subsystems are notified to switch modes.

All reset orders from ground control go from COM to I2C_mode_c, which can allow them if
it is ACTIVE (through a synchronised transition reset_order). Reset orders are disabled when
the satellite is in SAFE mode - mode switches to ON replace them.

New Functionality

The mode control abstraction adds new functionality through the handling of the various
modes of operation.

12

Optional Project Report

Figure 4.2: Diagram representing BIP synchronisations between the different components.

Mode changes occur in four ways - described below - and involve the I2C_mode_c compo-
nent.

1. An order to switch modes is received by COM from ground control. In such a case,
COM will forward the order to the I2C_mode_c component on the CDMS, which will
transmit the order to PLD and ADCS, before notifying COM back that the order has been
applied; COM may then switch its mode as well. Additionally, throughout these events,
EPS is put in a standby mode, to avoid overlapping resets.
This process is shown in purple on figure 4.4.

2. A reset order on PLD and ADCS is received by COM from ground control. COM will
once again forward the order to I2C_mode_c, which will notify EPS of the reset order. EPS
will then restart PLD and ADCS, before notifying I2C_mode_c. Additionally, throughout
these events, I2C_mode_c is put in a waiting state, making any overlapping mode switch
impossible.
This process is shown in green on figure 4.4.
Note that a reset order on COM cannot be sent by ground control (how would it be

13

Optional Project Report

(a) COM (b) PLD

(c) ADCS (d) EPS

(e) I2C_mode_c (f) Other CDMS components

Figure 4.3: Model of the Mode Control Abstraction

14

Optional Project Report

received?). Instead, EPS autonomously performs a power cycle on COM when errors are
detected.

3. An I2C communication error occurs. This case is described in detail in section 4.4
under "I2C Communication Error". The general idea is that the system detecting the
buggy I2C bus will autonomously move to SAFE mode.

4. A subsystem failure occurs. This case is described in detail in section 4.4 under "Non-
Responsive Subsystem". The general idea is that the housekeeping component dedi-
cated to the subsystem in question will detect the failure, and ask EPS to shut it down.

Figure 4.4: I2C_mode_c component with reset and mode switch loops indicated.

4.4 Handling Errors

We define some expected errors in the table below, and show both how they are detected by
the model, and that the system responds correctly to each of them.

Error Type Reaction

I2C Communication Error critical Involved subsystem goes to SAFE mode.
Non-responsive Subsystem non-critical Command subsystem to OFF position.
Memory Overflow non-critical Allow information to be overwritten.

15

Optional Project Report

I2C Communication Errors

I2C communication errors consist of all communications between a subsystem and the CDMS
(therefore going through the I2C_sat bus) that result in a failure. Those are represented in
the model by the X_I2C_sat_failure transitions (where X is the subsystem interacting with
the I2C_sat bus), and are synchronised with I2C_sat’s fail transition - that synchronisation
being an event which both sides of the communication realise and react to. I2C_sat will
react by transitioning into the ERROR state, from which it can only leave by calling the log
transition itself, which is synchronised with the ERROR_LOG and will report the error.The
other subsystem involved will transition into a CRIT_ERROR state, from which it will only be
able to call an internal transition crit_err that transitions it to SAFE mode.

Non-responsive Subsystem

Non-responsive subsystems are detected by their dedicated housekeeping component on the
CDMS - i.e. HK_X for subsystem X. In such cases, the housekeeping component will fire a
HK_X_error transition, synchronised with an X_failure transition in EPS (only available when
EPS is in ON state.) As a result, HK_X will enter its ERROR state, from which it must fire its
log transition synchronised to the ERROR_LOG to resume operations. In parallel, EPS will
enter a state from which it must command subsystem X to the OFF position (via the transition
shutdown_X), before returning to its ON state.
The subsystem that is put into OFF state can resume operations through a reset. The reset
is sent from ground control for PLD and ADCS. In the case of COM, EPS can autonomously
restart it.

Memory Overflow

This case is the one discussed in section 3.2.1, for which a custom failure transition was added
to the flash_mem component in the original model. In the mode control model, that failure
transition is summarised within MEM’s fail transition, which synchronises to the ERROR_LOG
component, ensuring memory overflows are always reported.

4.5 Properties of the Mode Control Model

As mentioned at the beginning of section 4, we wish to verify the following properties:

Property 1. COM is never operating (i.e. in OPER state) at the same time as PLD
and ADCS.

Property 2. I2C_mode_c always eventually returns to one of its base states: ACTIVE
and IDLE.

Property 3. If an error occurs and triggers a switch to SAFE mode, the system can
always eventually come out of it and resume normal operations.

Property 1 is essential to ensure power consumption remains under control. In order
to prove it, the model was run through bipchecker, a tool which verifies whether certain

16

Optional Project Report

combinations of states are reachable. In this case, the state COM.OPER cannot be active
simultaneously to either of or both PLD.OPER and ADCS.OPER. Running bipchecker on all
three combinations proves indeed that the model is correct, with a complete search of the
state space yielding no contradictory execution path.

A previous version of the model failed to pass the bipchecker test. In cause was the fact
that COM would only transition to its new mode after PLD and ADCS had done so. Therefore,
when going from COMMUNICATION mode to SCIENCE mode, PLD and ADCS would enter
their OPER mode before COM left its own. The behaviour of COM was thus changed to the
current one, where it always transitions to LISTENING mode after having forwarded a mode
switch order. This is described by the diagrams in Figure 4.5.

(a) Old model of COM (b) Current model of COM.

Figure 4.5: A comparison of COM and on older version. Solid orange transitions represent
modifications.

Property 2 is useful to prove property 3. We demonstrate it by construction: I2C_mode_c
is composed of two loops - a reset loop, which can trivially be seen to always loop back to
the ACTIVE state - and a mode switch loop, which also loops back to the base states, with no
possible loop in between. Hence, if all transitions are assured to terminate, both execution
paths will eventually reach back to the base states.
Because all of I2C_mode_c’s transitions represent communications over the I2C bus, a non-
terminating transition could result from permanent I2C failure, or a synchronisation in the
BIP model that never fires.
In the first case, the watchdogs would detect the failure, prompting EPS to reset the system,
effectively returning I2C_mode_c to its IDLE state.
On the other hand, the second case occurs only if the other synchronised component (COM,
PLD, ADCS or EPS) never reaches the appropriate state, i.e. it is blocked. It is trivial to see that
there are no deadlocks in the state machines, so this could only happen if the component is
waiting for the I2C bus to be freed. In such a case however, EPS would again not receive the
heartbeats, and consequently would trigger a power cycle.
Taking this all into account, property 2 must be true.

17

Optional Project Report

Property 3 is crucial to the functionality of the system - without it, the first error triggering
the SAFE mode would render the satellite useless. It can be proved true by construction: in
SAFE mode, COM is in LISTENING state, while PLD and ADCS are in OFF state. The former
means COM can trigger mode switches, if I2C_mode_c is either in ACTIVE or IDLE state.
By property 2, we know that must always happen eventually. Therefore, it will always be
eventually possible to trigger a mode switch, and thus leave SAFE mode. Property 3 is valid.

4.6 Relation to the Original Model

With properties of the abstract model established, we now want to make the link back to the
original model. Indeed, if we can prove that the abstract model can simulate the original
model, those properties would be valid in both cases.

The abstraction simulates all subsystem interactions in the original model through two
types of connections - successful and failing interactions. Those can only be executed when
the involved subsystems are both in their operational modes (or a mode authorised to execute
the underlying actions, such as critical services when COM is in LISTENING mode).

Successful interactions between two subsystems x and y are summarised in two synchro-
nised transitions: generic_x_y for subsystem X, and generic_y_x for subsystem Y. Such interac-
tions can occur between:

1. COM and I2C_sat, MEM, PLD or ADCS. Those include the various services under the
control of the COM subsystem, that interact with the whole system.

2. PLD and I2C_sat, MEM or COM.

3. ADCS and MEM or COM.

4. HK and I2C_sat or MEM.

5. EPS and I2C_sat. This corresponds to heartbeats sent to the EPS which allow it to
monitor critical system failures and reset the CDMS.

While communications between subsystems always go through the CDMS, the original
model includes some instances of direct communications between COM and PLD, and COM
and ADCS. Those are kept for the sake of staying as close as possible to the original model.

Similarly to the successful ones, failing interactions are summarised by transitions x_y_failure
and y_x_failure, which are also synchronised. We have three possible failing interactions:

1. Between PLD and I2C_sat. Those are always critical.

2. Between COM and I2C_sat. Those are always critical.

3. Between COM and MEM. Those are never critical.

18

Optional Project Report

The failures involving I2C_sat mirror only failures synchronised to the fail transition of the
original component. The error1, error2, and error3 transitions are not immediately critical
(though they may lead to the fail transition), and therefore are grouped under the "successful"
transitions instead.

Similarly, failures involving MEM correspond only to failures synchronised with the fail
transition of the original flash_mem component. The failure and bad_crc transitions are
grouped under the successful transitions for the same reasons.

It should be noted that, due to the grouping of all services into the COM subsystem, and
given this scheme of modelling interactions, only one service at a time can interact with the
I2C_sat. This is coherent with the original model in which "once the request transition is
executed, no other user will be able to access the resource until it has returned in its IDLE
state; the request transition is not enabled anymore." ([1], p.46)
The consequence of this, however, is that errors resulting from a buggy I2C_sat allowing
simultaneous requests would not be detected by this abstraction.

19

Optional Project Report

5 Future Work

Future steps related to this project can be taken in different directions. The mode control
model now provides an interesting framework to define more properties and validate them.
Adapting the original model to support the same mode-based behaviour would likely make a
lot of sense.
Modifications to be made to the abstract model would include the support of multiple services
(as mentionned in section 4.6), and most importantly of the sensors and the I2C_sens bus.
Referring back to the translation attempts in section 3.1, the development of a translator tool
from new to old BIP syntax would be extremely helpful, and allow for simpler verification of
complex properties through nuSMV. Applying other verification tools such as bipchecker to
the (simplified version of the) original model might also yield interesting results.

6 Conclusion

Different validation strategies were considered at the beginning of the project, with each
yielding different results. Application of verification tools proved too complex on the very
detailed satellite model. One reason was that software supporting BIP code does not always
support the current BIP2 syntax, and the translation process can be made very difficult by
some particular issues such as the need to remove C code. Another reason was simply the
model’s high complexity, though simplifications articulated around specific properties could
help solve this.
While still working with the original model, but by altering it in a precise way, we were also
able to demonstrate a useful property by construction.
Finally, much of the complexity was abstracted away by designing a new model, in which
a high-level control of the satellite was provided through the mode-based behaviour; that
allowed us to verify, using the bipchecker tool, more general results based on those modes,
and provides a framework to prove additional properties. Those results were then linked back
to the original model by establishing a relation between both models.

20

Bibliography Optional Project Report

References

[1] M. Pagnamenta. Rigorous Software Design for Nano and Micro-Satellites Using BIP
Framework. 2014.

[2] New BIP tools, . URL http://www-verimag.imag.fr/New-BIP-tools.html. Visited in
December 2015.

[3] BIP2 (RC5) documentation, April 2015. URL
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
72ADCD0BEEEED5FA94953FE24CB51007?doi=10.1.1.368.7593&rep=rep1&type=pdf.

[4] Swisscube project homepage. URL http://swisscube.epfl.ch/. Visited in January
2016.

[5] Bipchecker download page, . URL http://risd.epfl.ch/bipchecker. Visited in
January 2016.

[6] nuSMV homepage. URL http://nusmv.fbk.eu/. Visited in January 2016.

21

