Files

Abstract

bstract A wide range of approximate methods has been historically proposed for performance-based assessment of frame buildings in the aftermath of an earthquake. Most of these methods typically require a detailed analytical model representation of the respective building in order to assess its seismic vulnerability and post-earthquake functionality. This paper proposes an approximate method for estimating story-based engineering demand parameters (EDPs) such as peak story drift ratios, peak floor absolute accelerations, and residual story drift ratios in steel frame buildings with steel moment-resisting frames (MRFs). The proposed method is based on concepts from structural health monitoring, which does not require the use of detailed analytical models for structural and non-structural damage diagnosis. The proposed method is able to compute story-based EDPs in steel frame buildings with MRFs with reasonable accuracy. Such EDPs can facilitate damage assessment/control as well as building-specific seismic loss assessment. The proposed method is utilized to assess the extent of structural damage in an instrumented steel frame building that experienced the 1994 Northridge earthquake.

Details

Actions

Preview