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Abstract5

We investigate theoretically and numerically the impact of the transition from lam-

inar to turbulent flow on the propagation of a height contained hydraulic fracture (i.e.

PKN geometry). We account for the inertial terms in the balance of momentum and

express the viscous wall shear stress via Fanning friction. The evolution of the fric-

tion factor with Reynolds number and the fracture relative roughness is obtained for10

a PKN fracture geometry from known relations for circular pipes using the concept of

an equivalent laminar hydraulic diameter. From dimensional analysis, we show that

inertial forces are always negligible. We also obtain the transition time scale between

the turbulent rough propagation regime -valid at early time- to the turbulent smooth

regime. This transition time-scale appears much larger than typical injection duration15

which confirms the dominant effect of fracture roughness in the turbulent regime. We
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derive a number of limiting solutions for hydraulic fracture propagation assuming that

the flow occurs in a given regime over all the fracture extent: turbulent smooth or

turbulent rough. We then solve numerically the complete laminar to turbulent transi-

tion as function of the Reynolds number at the fracture entrance. The fraction of the20

fracture exhibiting laminar flow shrinks to a boundary layer at the fracture tip as the

entrance Reynolds number increases. Our numerical results notably indicate that the

entrance Reynolds number must be at least equal to 10,000 for the fully turbulent rough

solution to be valid. In practical applications, the entrance Reynolds number is typi-

cally lower than 5,000 such that the fracture propagation is influenced by the complete25

transition from laminar to turbulent flow. Using our numerical scheme, we tabulate the

evolution of the fracture length and width at the fracture entrance for different values

of the entrance Reynolds number covering the transition from the fully laminar to the

fully turbulent rough regime. The effect of polymer friction reducing agents, which

drastically modify the transition to turbulence, is also investigated semi-analytically30

and numerically. The height contained hydraulic fracture propagation (assuming max-

imum drag reduction) is only about 15% different from the fully laminar solution in

the range of relevant practical entrance Reynolds number, compared to up to 40%

difference without the addition of polymer friction reducers.

1 Introduction35

The use of high injection rate water-based hydraulic fracturing has been highly successful

in unlocking gas production from extremely low permeability unconventional reservoirs. A

given pumping operation (a “stage”) usually aims at propagating simultaneously several

hydraulic fractures along a well interval - the preferred initiation point being controlled via

perforations. In order to compensate the negative effect of the low viscosity of water on40

the settling of proppant, very large injection rate are typically used: up to 120 barrels per

minute (0.318m3/s) in the case where multiple fractures (from four to eight typically) are

2



driven simultaneously. It is now recognized that not all fractures are successfully propagated

during a pumping operation (Lecampion et al., 2015; Lecampion and Desroches, 2015). As a

result, the injection rate entering a given fracture can be as large as 40 Barrels per minutes.45

Such a large fluid injection rate clearly questions the classical hypothesis of laminar flow in a

propagating hydraulic fracture (Economides and Nolte, 2000; Detournay, 2016). Neglecting

the occurence of turbulent flow in part of the fracture may result in a wrong estimation

of the evolution of fracture length, width and pressure with time. In order to investigate

the deviation from the fully laminar flow assumption, we focus our discussion on the simple50

yet practically relevant geometry of a bi-wing height contained hydraulic fracture (see Fig.

1). Such a fracture geometry develops when a reservoir layer of height h is bounded (top

and bottom) by higher stressed layers. In that case, the average velocity of the fluid is

v̄ = Qo/(2h w̄) where w̄ is the average fracture width, Qo/2 is the rate entering one wing of

the fracture and h is the reservoir height. Taking the average width as the flow dimension, the55

Reynolds number defined as ρv̄w̄/µ for flow in the fracture becomes R = ρQo/(2hµ), with

ρ and µ the fracturing fluid density and viscosity. Taking realistic values for the reservoir

properties (see Table 1), the Reynolds number can exceed the critical value above which

turbulent flow occurs for large - but realistic- value of the injection rate entering the fracture

(see Table 2). In fact, varying the reservoir parameters and injection rate in a realistic range,60

we observe that for a height contained hydraulic fracture, the Reynolds number R falls in

the range 103 − 104.

Investigations of the effect of turbulent flow on hydraulic fracture propagation can be

traced back to the work of Nilson (1981) for the case of a plane-strain fracture driven by gas

injection. Limiting turbulent flow regimes were also explored for the problem of buoyancy-65

driven propagation of magmatic dikes (Spence and Turcotte, 1990; Lister and Kerr, 1991).

More recently, a solution for hydraulic fracture propagation at glacier beds in the fully rough

turbulent regime was obtained for a plane-strain fracture (Tsai and Rice, 2010). For the type

of conditions encountered at glacier beds, the Reynolds numbers are above 105 for which the
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Figure 1: Sketch of a bi-wing height-contained (PKN) hydraulic fracture of half-length ℓ,
width w and constant height h.

flow is completely governed by the fracture relative roughness, i.e. the rough turbulent70

regime governed by the Gauckler-Manning-Strickler formula (see Fig.2). Ames and Bunger

(2015) have derived scaling laws for the propagation of a height contained fracture in the

same fully turbulent rough regime. Rough turbulent flow appears to result in shorter fracture

length and larger fracture width compared to the laminar flow case. How accurate is the

approximation of a fully rough turbulent flow in all the fracture remains however unclear for75

practical cases where R ∈ [103 − 104]. All of these contributions have assumed a single flow

regime (e.g. turbulent rough) over the entire fracture extent. However, as noted by Nilson

(1981), the flow remains laminar close to the fracture tip as the fracture width goes to zero

(and so is the local value of Reynolds number). In other words, a transition from turbulent

to laminar flow will occur as one moves close to the fracture tip - even for large value of the80

entrance Reynolds number R for which the laminar region will shrink to a boundary layer

near the fracture tip.

In this paper, focusing on the height contained fracture geometry (Fig.1), we investigate

the complete transition from laminar to turbulent flow accounting for both the effects of
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Parameter Value

ρ 1000kg/m3

µ 1.3× 10−3Pa s
h 10m
E ′ 32 GPa
k 1 mm

Table 1: Fracturing fluid properties (density, viscosity) for water, and realistic values of rock
properties (plane strain Young’s modulus E ′, fracture roughness lengthscale k which is order
of the rock grain size) and fracture height h (see e.g. Economides and Nolte (2000)). The
fracture heigth typically corresponds to the height of the reservoir layer.

the Reynolds number and relative roughness on the friction factor. We review the available85

experimental data and models for the evolution of the friction factor covering the different

flow conditions from laminar to fully turbulent. A dimensional analysis of the governing

equations of hydraulic fracture propagation provides a useful understanding of the structure

of the solution in different flow regimes as well as the transition between these regimes.

We also derive a number of semi-analytical solutions for limiting flow regimes: e.g. fully90

turbulent rough or fully turbulent smooth. The complete transition between the laminar and

turbulent regimes is investigated numerically using a model for the friction factor properly

reproducing the available experimental data over the full range of Reynolds numbers and

relative roughness (Yang and Dou, 2010). Comparisons of our numerical results with the

solutions for the different limiting flow regimes notably enable to quantify the range of95

these limiting solutions. We finally explore the effect of the addition of friction reducers

in the injected water. These polymer additives are well known to significantly change the

transition to turbulence even at small concentrations (Virk, 1975). Here again, we derive a

semi-analytical solution in the limiting regime of full maximum drag reduction and explore

the complete transition from laminar flow numerically.100
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Q0 (bbl/min) Q0 (m
3/s) R =

ρQo

2hµ

10 0.026 1000
20 0.053 2038
30 0.079 3038
40 0.106 4077

Table 2: Inlet Reynolds number R in a height contained fracture evaluated with the parame-
ters listed in Table 1 for different values of injection rate. Transition to turbulent flow starts
at Rc ≈ 1380 for such a fracture geometry (see section 2.2.2).

2 Problem formulation

We focus on the case of a height contained hydraulic fracture of half-length ℓ growing under

the injection of a Newtonian fluid of viscosity µ and density ρ at a constant rate Qo. The

fracture is assumed to grow symmetrically from the line source of fluid injection. We thus

perform the analysis only on one-half (i.e. one wing) of the fracture. Such a geometry105

-often called the PKN geometry in reference to the original work of Perkins, Kern and

Nordgren (Perkins et al., 1961; Nordgren, 1972)- corresponds to the case of a hydraulic

fracture propagating in a rock layer of height h whose in-situ minimum compressive stress σo

is lower than the stress of the top and bottom adjacent layers σo +∆σ (∆σ > 0). Assuming

an infinite stress contrast (∆σ → ∞) between the middle and adjacent layers, the hydraulic110

fracture is strictly contained in the middle layer (see Fig. 1). The PKN model assumes a

one dimensional growth horizontally (along the x axis in Fig. 1). As a result, the fracture

height h is constant (equal to the layer height) and the fluid flow is unidimensional (the fluid

pressure is uniform vertically at a given cross-section along the x axis).

2.1 Elasticity115

The PKN model assumes that the fracture length is much greater than its height, ℓ ≫ h, and

simplify the elastic deformation of the fracture by assuming an independent state of plane-

strain at each cross section along x-axis: i.e. the fluid pressure at x = xa does not influence

the fracture shape at x = xb. Such a “local elasticity” hypothesis is valid away from the
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fracture tip when ℓ ≫ h/2 (see Adachi and Peirce (2008) for more details). At a given x, the120

fracture is in a state of plane-strain under a uniform net pressure p(x, t) = pf (x, t)−σo which

is equal to the excess of fluid pressure pf above the minimum in-situ stress σo. Assuming

that the rock is homogeneous and isotropic, the width of the fracture is given by the solution

of a uniformly pressurized crack under plane-strain conditions (Sneddon and Elliot, 1946):

w(x, z, t) =
2h p(x, t)

E ′

√
1− 4z2

h2
, (1)

where E ′ = E/(1 − ν2) is the plane-strain modulus of the rock, E and ν are the Young’s125

modulus and Poisson’s ratio respectively. The fracture width has an elliptical profile at a

given x along the fracture propagation axis. The model assumes uni-dimensional flow and

we will thus make use of the averaged fracture width w for a given cross section (Sarvaramini

and Garagash, 2015):

w(x, t) =
1

h

ˆ h/2

−h/2

w(x, z, t)dz =
π

4

2hp(x, t)

E ′ =
π

4
w(x, 0, t) . (2)

The fluid pressure is directly related to the averaged width (local elasticity). In the original130

PKNmodel, the energy required to fracture the rock is essentially neglected. The net pressure

and fracture width are set to zero at the fracture tip:

w(x = ℓ, t) = p(ℓ, t) = 0 (3)

The effect of fracture toughness can be included in the model keeping the one-dimensional

character of the geometrical configuration as discussed in Sarvaramini and Garagash (2015)

(see also Dontsov and Peirce (2015) for a discussion on the incorporation of fracture toughness135

in such a model). In the following, we neglect fracture energy in line with the original

hypothesis of the PKN model.

7



2.2 Fluid flow

As already mentioned, the fluid flow is uni-dimensional and we denote vx = v as the only non-

zero component of the fluid velocity vector. Neglecting the fracturing fluid compressibility140

compared to the fracture compliance (a hypothesis verified for any fracturing liquid), the

local mass conservation reduces to the following continuity equation at a given cross section

located at x:

∂A(x, t)

∂t
+

∂Q(x, t)

∂x
= 0, (4)

where A(x, t) = w(x, t)h is the cross-sectional area of the fracture in the y-z plane at x and

Q(x, t) = A(x, t)v is the fluid flow rate equals to the cross section area times the average145

fluid velocity v in the x-direction. For clarity of our discussion on the effect of turbulent

flow, we assume an impermeable rock and thus neglect any leak off of the fracturing fluid

into the surrounding rock.

The fluid is injected at x = 0 into the bi-wing fracture under a constant flow rate Q0.

The flow rate entering one wing of the fracture is thus simply:150

Q(x = 0, t) =
Q0

2
(5)

The fluid flow rate is zero at the fracture tip (x = ℓ) which provides the following boundary

condition (in addition to Eq. (3)):

Q(x = ℓ, t) = 0 (6)

2.2.1 Balance of Momentum

Similarly than for mass conservation, we write the cross-sectional average of the fluid mo-

mentum equation:155
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ρ

(
∂Q

∂t
+

∂Qv

∂x

)
= −A

∂p

∂x
− Þτw,

where Þ is the perimeter of the cross-section of area A and τw is the average wall shear stress

typically expressed as:

τw = f
ρv2

2
.

Here, f is the Fanning friction factor which depends on the Reynolds number, the relative

roughness of the flow geometry and the shape of the cross-section perpendicular to the flow

direction. Strictly speaking, the model / experimental results for the friction factor are160

all based on the assumption of a unidirectional steady developed flow. They are therefore

inadequate for un-steady flow. However, as we shall see when performing the dimensional

analysis of the problem, the inertial terms appearing on the left hand side of the balance

of momentum are always negligible in our case, justifying the use of a local steady wall-

shear stress model at any cross section along the fracture. The friction factor f will evolve165

spatially along the fracture as the local Reynolds number and relative roughness of the

fracture depends on the local values of mean width w and mean velocity v.

Using the continuity equation (4), the balance of momentum can be re-written as:

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x
− Þ

A
f
ρv2

2
. (7)

The solution of the problem entails to obtain the time evolution of the fracture half-length,

mean fracture width, net pressure and mean fluid velocity as fluid is injected continuously170

at the origin. This problem is governed by the elastic relation (2), the fluid continuity (4)

and balance of momentum equations (7), boundary conditions (3) and (5)-(6) together with

an expression for the variation of the friction factor f with the local value of the Reynolds
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number and relative fracture roughness.

2.2.2 Evolution of the friction factor175

The evolution of the friction factor as function of the Reynolds number and relative roughness

is well known for circular pipes. The classical experiments of Nikuradse (1950) in smooth

and rough circular pipes have notably provided the basis for a number of relations for the

evolution of the friction factor (see Fig. 2). In order to use these relations for a non-circular

flow section, the hydraulic diameter Dh = 4A/Þ is often taken to replace the pipe diameter in180

the definition of the Reynolds number. However, experimental studies have shown that the

obtained predictions are inaccurate (Sadatomi et al., 1982; Carlson and Irvine, 1961; Jones,

1976). In place of the hydraulic diameter, Jones (1976) suggests to obtain the characteristic

dimension of the flow Deq by matching the laminar friction of the non-circular cross section

(which can be obtained analytically for most cross-section as function of its dimensions) with185

the expression for a circular pipe in the laminar flow regime f = 16/ReDeq . The predictions of

friction in the turbulent regime using ReDeq instead of ReDh
in the expressions for a circular

pipe then agrees well with experimental data for rectangular ducts (Jones, 1976).

In our case, the cross-section of the flow has an elliptical shape due to the elastic relation

(1). The uni-dimensional pressure-driven laminar flow across an ellipse of semi-axes h/2 and190

w(0)/2 = 2w/π is well-known (see e.g. Lamb (1895)). In the case of a fracture of height h

much larger than its mean width w̄, the mean laminar velocity reduces to:

v = − 1

π2

w2

µ

∂p

∂x

Writing f = 16/ReDeq = 16µ/(ρDeqv) in the laminar regime where inertial terms are negli-

gible, the balance of momentum combined with the previous solution for the mean velocity

gives the following “laminar pipe equivalent” characteristic scale for a thin elliptical cross-195
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Figure 2: Evolution of the friction factor f in circular pipe as function of the Reynolds
number ReDeq = ρvD/µ and relative roughness ϵ = (2k/D), where k is the characteristic
roughness scale (and D/2 the pipe radius). The experimental data of Nikuradse (1950)
for pipes of different roughness are plotted together with the expressions for the laminar
friction f = 16/ReDeq valid for ReDeq < 2300, the smooth turbulent Blasius friction 4f =
0.316Re−1/4 (dash-dotted black line) and the turbulent rough Glaucker-Manning-Strickler
4f = 0.143(2k/D)1/3 (solid black line). The predictions of the model of Yang and Dou
(2010) are also plotted as thin dashed lines and follow the experimental data closely.
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section:

Deq =
5

π
w

We will therefore use the expressions of the friction factor for circular pipes with Deq as an

equivalent pipe diameter. In other words, following Jones (1976), we will use the following

definition for the equivalent laminar pipe Reynolds number ReDeq :

ReDeq =
5

π
Re, (8)

where Re = ρw v/µ corresponds to the Reynolds number defined with the mean fracture200

width as the characteristic flow dimension. Such a choice allows to use the different friction

models derived for circular pipe for the case of an elliptical cross-section while ensuring

that we recover the same friction in the laminar regime. As can be seen in Fig. 2, the

transition to turbulent flow occurs at ReD ≈ 2200 in pipe, which gives a critical number

Rc ≈ 2200 × π/5 ≈ 1380 for our flat elliptical cross-section - a value consistent with the205

order of magnitude for a plane Poiseuille flow. It is however important to realize that the

transition to turbulence can occur over a large range of Reynolds number. One should use the

estimate of this critical Reynolds number with care, especially knowing the spatio-temporal

effects associated with the transition to turbulence (Manneville, 2016).

In the following, we aim to model the effect of the complete dependence of the friction210

factor on Reynolds number and relative roughness on fracture propagation. A large number

of empirical and theoretical formulae have been proposed over the years to model the data

represented in Fig. 2. Notably, the turbulent regime for smooth pipes is well captured by

the Blasius (1913) scaling (see Fig. 2) :

f = f ′
BRe

−1/4
Deq

, f ′
B = 0.316/4 (9)

which is an empirical formula with a response similar to the Prandtl-Karman theoretical215
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predictions for smooth pipe. Note that the factor 4 in f ′
B stems from our use of the Fanning

definition of the friction factor compared to the Darcy-Weisbach definition.

At very large Reynolds number (Re ≳ 105), friction is governed solely by the relative

roughness of the pipe ϵ = k/R = 2k/D where k is the roughness lengthscale (and R =

D/2 the pipe radius). In that rough turbulent limiting regime, the friction factor evolves220

according to the Gauckler-Manning-Strickler (G-M-S) scaling f =
0.143

4
ϵ1/3. For our case

where the flow occurs through a thin elliptical cross-section, different value of the relative

roughness could be used. In line with the use of an equivalent laminar diameterDeq to capture

the dependence of f with Re, one could use the same scale to define a relative roughness

ϵ = 2k/Deq = 2πk/(5w) as suggested by Jones (1976). On the other hand, another choice225

is to simply use the mean fracture width to define the relative roughness as ϵ = 2k/w.

Unfortunately, we have not found any good experimental data set for turbulent flow in

rough rectangular duct that could help deciphering between these two choices. We settle

for the definition of the relative roughness as ϵ = 2k/w. Note that the relative roughness is

sometimes written as κ/w (e.g. Tsai and Rice (2010); Ames and Bunger (2015)), however, in230

order to match Nikuradse data with the prefactor 0.143/4, κ must then be defined as twice

the roughness lengthscale. In what follow, we write the friction factor as:

f = f ′
R ×

(
k

w

)1/3

f ′
R = 21/3 × 0.143/4 (10)

in that fully rough turbulent regime (see Fig.2). One can note that when introduced in the

previous relation (10) for friction, the relative difference between the two choice of relative

roughness (2k/Deq vs 2k/w) is of approximately 1− (π/5)1/3 = 14%.235

A number of empirical or semi-theoretical models have been proposed to capture the

dependence of the friction factor on both Reynolds number and relative roughness over the

full range of Re and ϵ. In the following, we use the semi-theoretical modef proposed by Yang

and Dou (2010) although similar results would be obtained with any other model properly
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reproducing Nikuradse data (e.g. Yang and Joseph (2009); Li and Huai (2016)). We will240

also obtain semi-analytical solutions for some limiting cases by assuming that friction can

be modeled via the Blasius (9) or the rough turbulent (10) scaling over the entire range of

ReDeq . We will refer to these limiting solutions as turbulent smooth and turbulent rough

respectively.

3 Dimensional analysis and scaling245

The propagation of a PKN fracture is known to be self-similar in the case of laminar flow

(Perkins et al. (1961); Nordgren (1972)). The solution can then be obtained semi-analytically

(Kemp et al., 1990). Our aim is to investigate departure from such a laminar case. In order to

grasp the structure of the solution of the problem, let us introduce some characteristics scales

W∗, P∗, V∗ and L∗ (possibly time-dependent) for the fracture width, pressure, propagation250

velocity and length respectively. Scaling the spatial coordinate x by the fracture length

ℓ(t), ξ = x/ℓ(t), we write the following scaling for fracture length, mean fracture width, net

pressure and fluid velocity respectively:

ℓ = L∗γ(G1, G2...),

w = W∗Ω(ξ;G1, G2...),

p = P∗Π(ξ;G1, G2...),

v = V∗Υ(ξ,G1, G2...). (11)

The dimensionless fracture length γ, opening Ω, net pressure Π and mean fluid velocity Υ

may depend on a number of dimensionless parameters G1, G2 etc. besides the dimensionless255

spatial coordinate ξ = x/ℓ(t). Introducing the previous scaling in the governing equations

will allow to define the different characteristic scales and dimensionless parameters. First,
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the ”laminar-equivalent” Reynolds number ReDeq (8) takes the following form:

ReDeq =
5

π

ρW∗V∗

µ︸ ︷︷ ︸
R

ΩΥ.

where R = ρW∗V∗/µ is a characteristic Reynolds number. The elastic relation (2) for the

mean width now gives:260

Ω =
π

2

hP∗

E ′W∗︸ ︷︷ ︸
Ge

Π (12)

while the inlet (ξ = 0) (5) and tip (ξ = 1) (3)-(6) boundary conditions reduce to:

Ω(ξ = 0)Υ(ξ = 0) =
Qo

2hW∗V∗︸ ︷︷ ︸
Gq

(13)

Ω(ξ = 1) = Π(ξ = 1) = 0

Ω(ξ = 1)Υ(ξ = 1) = 0

The dimensionless form of the continuity equation is obtained as1:

t∂tΩ +
Ẇ∗

W∗
tΩ− ξ

(
L̇∗t

L∗
+

γ̇

γ
t

)
∂ξΩ +

V∗t

L∗︸︷︷︸
Gv

1

γ
∂ξ (ΩΥ) = 0. (14)

Similarly, noting that A/Þ = 8w/5π for the PKN fracture geometry, the momentum equation

(7) can be re-written as

ρW∗V∗

µ

(
t∂tΥ−

(
L̇∗t

L∗
+

γ̇t

γ

)
ξ∂ξΥ+

V∗t

L∗

Υ

γ
∂ξΥ

)
=

1With the changes of variable ξ = x/ℓ(t), the temporal and spatial derivatives are given by:

∂t|x = ∂t|ξ −
ℓ̇

ℓ
ξ∂ξ ∂x =

1

ℓ
∂ξ.

15



−W∗P∗t

µL∗

1

γ
∂ξΠ− 5π

16

ρV 2
∗ t

µ
× f(ReDeq ,

k

W∗Ω
)× Υ2

Ω
,

which after multiplication by Gϵ =
W∗
V∗t

and division by 5πR/16 can be further re-written as:265

16

5π
Gϵ

(
t∂tΥ−

(
L̇∗t

L∗
+

γ̇t

γ

)
ξ∂ξΥ+ Gv

Υ

γ
∂ξΥ

)
=

− 16

5πR
W 2

∗P∗

µL∗V∗︸ ︷︷ ︸
Gp

1

γ
∂ξΠ− f(

5

π
R× ΩΥ,

k

W∗︸︷︷︸
Gr

1

Ω
)× Υ2

Ω
, (15)

where we have highlighted the dependence of the friction factor f on ReDeq =
5

π
RΩΥ and

the relative roughness ϵ = k/(W∗Ω) = Gr/Ω.

In summary, the following dimensionless groups appears in the dimensionless system of

equations:

Ge =
π

2

hP∗

E ′W∗
, Gv =

V∗t

L∗
, Gϵ =

W∗

V∗t
, Gq =

Qo

2hW∗V∗
,

Gp =
16

5πR
W 2

∗P∗

µL∗V∗
, Gr =

k

W∗
R =

ρW∗V∗

µ

In order to obtain dimensionless quantities (e.g. Ω, Π, Υ) of order one, it is natural to set270

the dimensionless groups Ge, Gq appearing in the elastic relation (12) and inlet flux boundary

condition (13) to unity respectively. Similarly, the fracture lengthscale L∗ should scale with

respect to the characteristic velocity, i.e. L∗ = V∗t ( Gv = 1). In doing so, we can express

the characteristic velocity, opening and pressure scales solely as function of L∗

V∗ = L∗/t W∗ =
Qot

2hL∗
P∗ =

2E ′W∗

πh
=

E ′

π h2

Qot

L∗
(16)
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and the remaining non-zero dimensionless numbers are275

Gϵ =
W∗

L∗
=

Qot

2hL2
∗

Gp =
8

5π2

E ′Q2
ot

4

ρh3L5
∗

Gr =
2khL∗

Qot
R =

ρQo

2hµ

The fracture characteristic lengthscale L∗ remains to be defined in order to complete

the definition of the scaling. Before doing so, a number of interesting points can already

be made. Due to the inlet flux boundary conditions, the characteristic Reynolds number

R (times the geometrical factor 5/π) corresponds to the entrance value of ReDeq , i.e. the

maximum value of the Reynolds number encountered inside the fracture. It corresponds280

exactly to the expression obtained from simplified considerations in the Introduction. The

characteristic width W∗ of a fracture is always much smaller than its characteristic length

L∗, i.e. Gϵ ≪ 1. The inertial terms (left-hand side of the balance of momentum) are factored

by Gϵ , and are thus always negligible compared to the friction and pressure gradient terms

for such type of flow.285

3.1 Scalings

In order to define the characteristic fracture lengthscale L∗, one needs to balance the order of

magnitude of the pressure gradient and friction terms in the balance of momentum. We thus

need to introduce the dependence of the friction factor as function of the Reynolds number

and the relative roughness. Different scalings relevant for different flow regimes (laminar vs290

turbulent smooth or turbulent rough) can thus be obtained. In fact, two distinct scalings

emerge.

Laminar - turbulent smooth scalings In the first type of scalings, the friction factor

is assumed to be independent of relative roughness and decays as a power law of Reynolds

number i.e f = f ′Re−β. This is the case for the laminar regime (f ′ = 16, β = 1) as295

well as the turbulent smooth Blasius-type scaling (f ′ = f ′
B, β = 1/4) - and in fact other

scalings for the case of polymer drag reducing agents as we shall see later. Introducing
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L∗ W∗ Gϵ = W∗/L∗

Laminar
E′1/5Q3/5

0 t4/5

22/5π3/5h4/5µ1/5

π3/5µ1/5Q
2/5
0 t1/5

23/5E′1/5h1/5

π6/5h3/5µ2/5

21/5E′2/5Q1/5
o t3/5

Turbulent

smooth

211/20

53/20π9/20

E′1/5Q9/20
o t4/5

f
′1/5
B h13/20µ1/20ρ3/20

53/20π9/20

2× 211/20
f
′1/5
B µ1/20Q

11/20
o ρ3/20t1/5

E′1/5h7/20
π9/1053/10

4×21/10
h3/10µ1/10ρ3/10Q

1/10
o

E′2/5t3/5

Turbulent

rough

√
2E′3/16Q7/16

0 t13/16

53/16π3/8f
′ 3/16
R h5/8k1/16ρ3/16

53/16f
′ 3/16
R k1/16π3/8Q

9/16
0 ρ3/16t3/16

2
√
2E′3/16h3/8

53/8π3/4f
′3/8
R h1/4k1/8Q

1/8
o ρ3/8

4E′3/8t5/8

Table 3: Characteristic fracture length and width in the different scalings (the characteristic
pressure and velocity can be easily obtained from Eq. (16)). The dimensionless number
Gϵ = W∗/L∗ controls the (negligible) intensity of inertia. In the general case, where friction
is function of both roughness and Reynolds number, the dimensionless solution depends
on the fracture entrance Reynolds number R = (Qoρ)/(2hµ) and dimensionless roughness
Gr = k/W∗ .

f = f ′Re−β
Deq

= f ′ ×
(
5
π
RΩΥ

)−β
in (15), balancing Gp with f ′ ×

(
5
π
R
)−β

, we obtain

Lβ =
2(3−β)/5

5(1−β)/5π(β+2)/5

E ′1/5Q
(β+2)/5
o ρ(β−1)/5t4/5

f ′1/5µβh(3+β)/5

Table 3 lists the different characteristic scales as well as the remaining dimensionless number

Gϵ for the laminar and turbulent smooth Blasius regime. As expected, we exactly recover300

the scaling of the original PKN solution for the laminar case (Nordgren, 1972).

Turbulent rough scaling The second type of scaling corresponds to the rough turbulent

regime where friction only depends on the relative roughness: f = f ′
R × (k/w)1/3 . Again

after introduction in the dimensionless balance of momentum and balancing the pressure305

gradient and friction terms, we obtain:

LR =

√
2E ′3/16Q

7/16
0 t13/16

53/16π3/8f
′ 3/16
R h5/8k1/16ρ3/16

Such a scaling also listed in Table 3 corresponds to the one derived in Ames and Bunger

(2015) (pending a numerical factor 21/3 associated with the definition of the G-M-S pre-factor
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f ′
R in that reference).

Discussion It is worth re-iterating that the inertial terms which are factored by Gϵ in the310

balance of momentum equation are always negligible. In fact, as can be seen from Table 3,

Gϵ decays with time. Inertial effects may thus only be relevant at very short time-scales. To

illustrate this point, in the turbulent rough case, we can easily obtain the time for which

Gϵ = 10−3 ≪ 1 for a given set of problem parameters. Using the values listed in Table 1,

an injection rate of 0.079m3/s (30bbl/min) and the expression of Gϵ for the rough scaling315

(see Table 3), we obtain a value of 0.13 seconds. For injection time larger than this value,

inertial effects will have a negligible role. The dimensionless solution of the problem then

only depends on the characteristic Reynolds number R and the relative roughness Gr. From

now on, we will only focus on the case of negligible inertia (Gϵ = 0). Note that in the case

of gas fracturing, the time at which inertial effects vanishes may be much larger (see e.g.320

Nilson (1981)).

The scalings in Table 3 also confirm the physical intuition that the relative roughness

decreases with time as it scales as k/W∗ and the characteristic width increases with time.

Therefore, referring to Fig. 2 displaying the evolution of the friction factor with Re and ϵ,

we see that - if in the turbulent regime - the flow inside the fracture will be governed by325

roughness at early time and will transition -as the fracture width increases and the relative

roughness decreases - toward the smooth turbulent regime governed by Blasius scaling. We

can obtain an estimate of the time-scale of such a transition by finding the time t at which

the characteristic lengthscale L∗ of the turbulent rough and turbulent smooth scalings are

equal. Dropping the numerical constants of order one, we obtain from Table 3:330

tR→S =
E ′f ′15

R k5ρ2

f ′16
B hµ3

R. (17)

Using an injection rate of rate of 0.079m3/s (30bbl/min) and parameters from Table 1 realistic

for a high rate water fracturing treatment, we obtain tR→S ≈ 1.22 × 1010 seconds. This
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indicates that if turbulent, the flow will not reach the limiting regime of turbulent smooth

propagation during the typical duration of an injection (between one to three hours).

3.2 Solutions for limiting regimes335

If one assumes that the friction factor evolves as f = f ′Re−β
Deq

or alternatively as f = f ′
R ×

(k/w)1/3, the dimensionless system of equations do not depend on any other dimensionless

parameters (neglecting inertia) in the corresponding scalings. The solutions are therefore

self-similar: the evolution of length, width etc. are given by the power-law scalings in Table

3. It is possible to obtain a semi-analytical solution for the dimensionless fracture width340

profile Ω(ξ) and dimensionless fracture length γ in these different limiting cases. The details

of these solutions can be found in appendix A. The dimensionless opening and fluid fluxes

profiles are similar for the different limiting flow regimes as can be seen in Fig. 7. The

dimensionless fracture length and opening at the fracture inlet are listed in Table 5.

The range of validity of these limiting regimes which assume a given form of friction over345

the whole fracture extent can be established by comparing them to a numerical solution

accounting for the complete evolution of the friction factor.

4 Complete numerical solution

In order investigate the transition from laminar to the turbulent regime, we need to account

for the combined dependence of the friction factor on both Reynolds number and relative350

roughness. As previously mentioned, we use the model proposed by Yang and Dou (2010)

which reproduces published experimental results for friction in pipes very well. In accounting

for the complete dependence of friction on the Reynolds number and relative roughness, we

resort to a numerical solution of the system of equations (2)-(7). We solve the system

with a second order, non-oscillatory central (NOC) scheme introduced by Nessyahu and355

Tadmor (1990). The scheme is Riemann-solver free, which makes it fairly straightforward to
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implement for the problem under consideration. A potential drawback is that the scheme

is known to suffer numerical dissipation (see e.g. Kurganov and Tadmor (2000); Kurganov

and Lin (2007)), especially for highly non linear problems such as the set of equations being

solved here. We are using this scheme with an anti-diffusive correction recently introduced360

by Zia (2015). The numerical solver is validated in the laminar flow regime and a relative

error of about 1 and 0.3 percent compared to the analytical solution of the fracture length

and inlet opening evolution over close to four decades of time is obtained respectively (see

Appendix B for details). With this numerical solver in hand, where the dependence of

friction is computed using Yang and Dou (2010) model, we now explore deviation from the365

laminar flow regime when the inlet value R of the Reynolds number exceeds the critical value

Rc ≈ 1380.

4.1 Smooth fracture case

The smooth fracture case corresponds to large time (t ≫ tR→S) where the fracture relative

roughness has negligible effect on turbulent flow (i.e. when the width is sufficiently large).370

Despite the fact that the smooth turbulent regime is most likely never reached in practice as

tR→S is very large (see section 3.1 for discussion), it is nevertheless enlightening to first discuss

how the solution evolves in the zero roughness case (setting the characteristic roughness

lengthscale k to zero in Yang and Dou (2010) model).
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Figure 3: Fracture length ℓ(t) (left) and inlet width w̄(0, t) (right) relative to the fully laminar
regime solution (ℓL, w̄L) as a function of the inlet Reynolds number R: numerical results
using Yang & Dou friction model (dots), fully turbulent smooth (continuous black line) and
laminar (dashed dotted lines) limiting solutions. The relative difference with respect to the
laminar solution as function of R can be directly seen in this plot.

In particular, from the scalings (Table 3), we can see that the solution (e.g. length, width)375

evolves with same power law of time as in the laminar case. We can therefore directly grasp

the deviation from the fully laminar case by normalizing the numerical solution with the

semi-analytical laminar solution. We have performed a series of simulations for different

values of R in that smooth case. In Fig. 3, we display these numerical results of fracture

length and inlet width normalized by the laminar solution for different values of R. We have380

also displayed the semi-analytical solution obtained in the fully turbulent smooth regime

(similarly scaled by the laminar solution). We observe that the numerical results tends to

the fully smooth turbulent solution for R ≳ 5000. In other words, the fully smooth turbulent

solution is valid forR larger than 5000. The differences with the laminar solution can become

very significant for large R > 104, e.g. up to 40% for R = 104.385

The transition to the fully turbulent smooth regime can also be grasped by plotting

the relative fraction of the fracture in the laminar regime, i.e. for which the local value

of the Reynolds number (ReDeq = 5
π
RΩΥ) remains below the critical value. This laminar

region is located near the fracture tip and shrinks to a boundary layer as R increases. This
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can be clearly seen on Fig. 4. As soon as R goes above Rc ≈ 1380, the laminar fraction390

decreases fast until it falls below the spatial resolution of the simulation. It is important

to note here that these simulations were performed with a grid of N = 150 cells which

gives a dimensionless spatial resolution (ξ = x/ℓ) of 1/N = 1/150 ≈ 0.0066. It is not a

surprise that the numerical solution can not resolve the boundary layer below the grid size.

From Fig. 4, we see that the laminar fraction is below 5 percent of the fracture length for395

R ≈ 5000. Our numerical results clearly demonstrate that the smooth turbulent regime is

valid for R ≳ 5000.
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Figure 4: Sketch of the flow regimes along the fracture (plotting the dimensionless flux ΩΥ

along the fracture) for an entrance Reynolds number R =
ρQo

2hµ
above the critical value Rc

(left). The relative extent (1− ξT ) of the laminar region at the tip of the fracture decreases
with increasing R above the transition to turbulent flow Rc (right).

4.2 Rough fracture

As previously discussed, in practice, fracture roughness will be dominant in the turbulent

regime. The transition time scale to the turbulent smooth solution tR→S is typically much400

larger than the injection duration in practice. It is therefore relevant to focus on the case

of small time compared to tR→S. We perform a number of simulations for different R, now

also accounting for roughness in Yang and Dou (2010) model for injection duration much
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smaller than tR→S. In these simulations, the domain is descretized with 150 cells and the

parameters used are the same as in Table 1.405

It is important to note that contrary to the smooth turbulent case, in the limit of rough

turbulent flow (large R) the solution evolves with a different power-law of time compared

to the laminar case (see Table 3): 13/16 compared to 4/5 for fracture length, and 3/16

compared to 1/5 for fracture width respectively. In both the fully laminar (R < Rc) and

fully turbulent rough (R ≫ Rc) cases, the solution is self-similar. The propagation solution410

between these two limiting cases (away from the smooth limit) depends only on the value

of the entrance Reynolds number R. As R does not depend on time, it thus does not

introduce any other time scale in the problem. For a given value of R within this transition,

the corresponding numerical results exhibit a power-law dependence of time in-between the

laminar and fully rough exponents.415

In order to grasp the evolution of the propagation solution from the laminar to the rough

turbulent regime, we write the fracture length and inlet width using the laminar solution at

time t = tR→S as characteristic scales:

ℓ(t) = LL(tR→S)γL︸ ︷︷ ︸
ℓL(tR→S)

×σℓτ
αℓ , w̄(0, t) = WL(tR→S)ΩL(0)︸ ︷︷ ︸

wL(ξ=0,tR→S)

×σwτ
αw . (18)

where the dimensionless time τ = t/tR→S is defined with respect to the transition time-scale

tR→S from rough to smooth turbulent regime (the only time-scale appearing in the problem).420

LL(tR→S) and WL(tR→S) are the laminar characteristic length and width taken at t = tR→S

(see Table 3), and γL and ΩL are the dimensionless fracture length and width in the laminar

solution (see Tables 3,5 and appendix A). In equation (18), σℓ, σw and αℓ, αw are the pre-

factors and power-law exponents of the fracture length (subscript ℓ) and width (subscript w)

evolution respectively. For an entrance Reynolds number R below the critical one, the prop-425

agation is fully laminar such that σℓ = σw = 1, αℓ = 4/5 and αw = 1/5. For large R where

the propagation is in the fully turbulent rough regime, from the solution in that limiting
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regime (see the scaling in Table 3 and dimensionless solution Table 5) we obtain the corre-

sponding limiting values: αℓ = 13/16, αw = 3/16 and σℓ = LR(tR→S)γR/(LL(tR→S)γL) =

2.65R−3/20γR/γL ≈ 2.85R−3/20, σw = WR(tR→S)ΩR(0)/(WL(tR→S)ΩL(0)) = 0.377R3/20ΩR(0)/ΩL(0) ≈430

0.363R3/20. One should also note that to tabulate the complete width profile w̄(x, t), one

would have to introduce a dependence of σw with position (i.e. σw(ξ) ). We only tabulate

the inlet width in the following.

For a simulation with a given value of inlet Reynolds number R, we obtain αl, αw and

σℓ, σw as the slope and intercept at the origin of the time evolution of fracture length/inlet435

width in log-log respectively. The results are listed in Table 4. These results provide values

of σ and α as function of R. The fracture length and inlet width can thus be conveniently

evaluated using Eq. (18) for any value of R. It is important to bare in mind that such a

“tabulated” solution is valid only for time much smaller compared to the transition time-

scale tR→S to the turbulent smooth regime. The results tabulated in Table 4 are obtained440

by curve fitting of numerical data on at least two order of magnitude of dimensionless time

(τ = t/tR→S) in the range τ ≈ 5× 10−9 and τ ≈ 5× 10−7, a range of time relevant for most

practical applications.

Table 4 shows that the parameters σℓ, σw and αℓ, αw attain values that are very close to

the limiting rough turbulent solution for Reynold’s numbers close to 104. This indicates that445

the limiting rough turbulent solution is valid for Reynolds number larger than 104. In the

range R ∈[2000− 5000] relevant for hydraulic fracturing treatment, the solution is always in

between the laminar and fully rough regime.

From these results, the departure of the complete solution from the laminar case can be

grasped by dividing it by the laminar solution, i.e. σℓτ
αℓ−4/5 for the fracture length and450

σwτ
αw−1/5 for the inlet racture width respectively. These ratio indicates that the difference

evolves with time, i.e. the two solutions scale with different power laws of time. To illustrate

such difference, considering a hydraulic fracturing operation with an injection rate of 30

bbl/min (R ≈ 3000) with the parameters listed in Table 1, we observe that after two hours
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R σℓ αℓ σw αw αl + αw

Laminar 1 4/5 1 1/5 1

1200 1.0212 0.8012 0.9955 0.1998 1.0011
2000 0.9743 0.8041 1.1237 0.1898 0.9939
3000 0.9067 0.8074 1.2060 0.1883 0.9958
4000 0.8690 0.8099 1.2611 0.1880 0.9979
6000 0.8220 0.8129 1.3392 0.1877 1.0006
10000 0.7491 0.8131 1.4491 0.1878 1.0009
30000 0.6021 0.8103 1.6800 0.1868 0.9971

Rough 2.85R−3/20 13/16 = 0.8125 0.363R3/20 3/16 = 0.1875 1
10000 0.7158 0.8125 1.445 0.1875 1

Table 4: Laminar-turbulent rough transition: pre-factors (σℓ, σw) and exponents of the
power-law (αℓ, αw ) for the fracture length and inlet width (Eq. (18)) for different value
of the Reynold’s number (R). Note that in the absence of leak-off, for a constant injection
rate, the fracture volume evolves linearly with time and scale as ℓ × w̄ × h, such that we
must always have αℓ+αw = 1, i.e. differences indicate the level of accuracy of our numerical
scheme. The values for the limiting solutions in both the laminar and rough regimes are also
listed. The numerical solution agrees with the rough turbulent solution for R ≳ 10, 000.

of injection the fracture length and the inlet width would be respectively 81 and 142 percents455

of the laminar solution.

As already discussed, the transition from the turbulent rough (small τ) to the turbulent

smooth regime (large τ) takes an extremely long time for any realistic value of the charac-

teristic roughness. It is of limited practical interest. We leave the numerical investigation

of this transition to future work, and now focus on the more practically interesting effect of460

the addition of friction reducers in the fluid.

5 Effect of friction reducers

Polymer drag reducing agents are widely used in the hydraulic fracturing industry in order

to reduce the friction in the wellbore caused by turbulence of the injected fluid. Without

the addition of such friction reducers, the power required on-site for a slick-water treatment465

would be up to 80% larger. The molecules of these polymer additives consist of long chains of

atoms which align themselves with the flow direction, suppressing eddies and thus reducing
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turbulence. A small amount of such heavy-weight polymers is sufficient to completely change

the transition to turbulence.

Starting from the pioneering work of Toms (1948), there have been numerous studies470

to estimate the reduction of drag by addition of heavy molecular weight polymers (see e.g.

Lumley (1969); Virk (1975); Yang (2009); White and Mungal (2008)). This reduction can be

quantified by estimating the decrease in the friction factor as the concentration of the friction

reducing agent is increased. As discussed earlier, most of the data regarding friction factor is

obtained from experiments performed on circular pipes. To the best of our knowledge, there475

is no experimental data available in non-circular pipes for different level of drag reducing

agents and relative roughness. We use experimental data obtained on circular pipes with

different relative roughness provided by Virk (1971). Virk notably showed that the effect

of drag reducing agents saturate above a given concentration. In other words, there is

a maximum drag reduction asymptote which is reached for a finite (and relatively low)480

concentration of the polymer. The experimental results of Virk (1971) are displayed on Fig.

5 for different relative roughness at maximum drag reduction together with the pure water

results of Nikuradse (1950). The effect of friction reducer is striking. For smooth pipe, the

transition to turbulence is completely different and the value of friction is much lower. The

effect of pipe roughness is also much less significant, especially in the range of Reynolds485

number of interest for hydraulic fracturing applications (R ∈ [103 − 104]). Focusing on this

range of inlet Reynolds number, we can neglect any effect of relative roughness (see Fig. 5).

For smooth pipes, Virk (1971) gives the maximum drag reduction (MDR) asymptote in the

form of the following implicit function:

1√
f
= 19 log10

(
ReDeq√

f

)
− 32.4. (19)

In our case, the preceding formula can be used in combination with the equivalent Reynolds490

number (8) to accommodate the flow geometry. Moreover, in the range R ∈ [103 − 104], the
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MDR asymptote can be conveniently approximated by the following explicit relation:

f = 1.78Re−0.7
Deq

. (20)

It is interesting to note that it takes the form f = f ′Re−β for which we have obtained a

semi-analytical solution (assuming that friction follow this law over the entire fracture). To

span the transition from laminar to the MDR asymptote (20), in our numerical simulations,495

we use a piece wise evolution of friction below (laminar) and above (MDR asymptote) the

critical Reynolds number. Note that a slight jump in friction occur between these two regimes

when using the approximation (20).

Similarly to the turbulent smooth case, since friction always evolve as Re−β, the fracture

length, width etc. evolves with the same power-law of time than the laminar case. The500

numerical results, for a given R, when normalized by the laminar solution are thus constant

in time. For a given value of R, we run the simulation for several decades of time in order

to check the self-similarity of the numerical results (i.e. the fact that the ratios ℓ(t)/ℓL(t),

w̄(x, t)/w̄L(x, t) are constant for a given R). For a given R, this normalized solution is

constant up to numerical noise (10−3) over the duration of the simulation (run typically505

for over three decades of time). The fracture length and width normalized by the laminar

solution for different values of R are shown in Fig. 6, left and right respectively. It is

interesting to note that the transition to the full maximum drag reduction solution happens

fast. For R > 2000, the numerical results are exactly similar to the semi-analytical MDR

limiting solution. These results allow to directly grasp the relative difference between the510

propagation with friction reducer at maximum drag reduction concentration with the laminar

solution. For R = 104, the difference is about 10% and 15% for fracture length and inlet

width respectively. A difference much smaller than the case without friction reducing agents

(see e.g. Fig. 3 and 6 ). Neglecting the effect of drag reducing agents definitely results in

very different results.515
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Figure 5: Friction factor as function of Reynolds number and relative roughness in pipes
when friction reducing agents are added to water: data from Virk (1971), Virk’s maximum
drag reduction asymptote for smooth pipes (Eq. (19), continuous black line), and its ap-
proximation in the range 103 − 104 (Eq. (20) in dashed dotted lines).
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6 Conclusions

We have investigated the effect of turbulent flow on the propagation of height contained

(PKN) hydraulic fractures. The concept of equivalent laminar hydraulic radius (Jones, 1976)

allows to use the friction factor relations f(Re, w/k) obtained from experiments performed on

circular pipes. A dimensional analysis of the problem has allowed to obtain a clear picture of520

the structure of the solution. First, we have seen that inertial effects will always be negligible

in practice (confirming the a-posterio check of Tsai and Rice (2010) in plane-strain). We

have also seen that when in the turbulent regime (pending the addition of friction reducing

agents) the effect of the relative roughness governs friction and therefore fracture propagation

for time smaller to a rough to smooth transition time-scale tR→S (see Eq. (17)). For time525

larger than tR→S, the friction transition to the smooth turbulent regime (Blasius scaling

Eq. (9)). For any practical cases and realistic value of the roughness lengthscale, such a

transition time-scale will always exceed the injection duration.

For small time (compared to tR→S), our numerical results of hydraulic fracture propaga-

tion have shown that the semi-analytical solution for the limiting regime of turbulent rough530

friction (over the whole fracture) is valid for R ≳ 10000. For lower value of the entrance

Reynolds number R, a tabulation of our numerical results allow to easily estimate the evo-

lution of fracture length and inlet width according to Eq. (18) and Table 4, spanning the

complete transition from laminar (R ≲ 1380) to turbulent rough (R ≳ 10000). For large

time (compared to this rough to smooth transition time-scale tR→S) roughness become negli-535

gible and turbulent flow is governed by Blasius scaling (i.e. smooth friction). Our numerical

results indicate that the semi-analytical solution for the fully turbulent smooth friction is

valid for R ≳ 5000. In all cases (turbulent rough or smooth), the relative fraction of the frac-

ture exhibiting laminar flow conditions is located at the fracture tip and its extent decreases

with increasing R eventually reducing to a boundary layer (see Fig. 4). With respect to540

industrial applications where R < 5000, we clearly see that the entrance Reynolds number is

not sufficiently high for the fully turbulent solutions to be valid. Although our results have
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been obtained for a height contained (PKN) hydraulic fracture, one can anticipate a similar

trend for other fracture geometries: i) if turbulent, the flow inside the fracture will be in

the turbulent rough regime for any realistic pumping duration and ii) the entrance Reynolds545

number R needs to be sufficiently large in order to approximate the flow as turbulent rough

along the whole fracture and thus neglect the transition between fully rough turbulent flow

at the fracture entrance to laminar flow near the fracture tip. A proper analysis for more

complex fracture geometries would be needed in order to quantitatively confirm this. Com-

parison of the results presented in this paper with experimental data would be welcome to550

better assess the validity of the friction model used to describe the transition from laminar

to turbulent flow in a fracture. It is however clear that achieving large Reynolds number in

a fracture in the laboratory would be extremely difficult. A dedicated field experiment with

a precise monitoring of the fracture length with time may be the best approach to test the

solutions presented here.555

We have also investigated the addition of friction reducing agents in sufficient concentra-

tion to be at the so-called maximum drag reduction asymptote (Virk, 1975). These friction

reducers have obviously a first-order impact on the transition to turbulence and as a result on

the propagation of height contained hydraulic fractures. We have obtained a semi-analytical

solution in the limiting regime of maximum drag reduction over the entire fracture. Our nu-560

merical results accounting for the transition of friction from laminar to the MDR asymptote

with R indicate that the limiting MDR regime solution is valid for R ≳ 2000. The difference

with the solely laminar solution remains below 10-15% for entrance Reynolds number R

under 104. This directly indicates the error that one will make when designing a hydraulic

fracturing treatment with the classical laminar solution (Nordgren, 1972) for a height con-565

tained (PKN) fracture. An error which has to be compared with the level of uncertainties

on the rock and reservoir properties.
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A Limiting regimes solutions650

A.1 Laminar - turbulent smooth

When the friction factor is a sole function of Reynolds number of the type f = f ′R−β
Deq

,

under negligible inertia, either in the laminar or turbulent smooth scalings (see Table 3) the

dimensionless form of the governing equations (1)-(7) reduces to the following.

• Elasticity:655

Ω = Π,

• Continuity:

tΩ̇ +
1

5
Ω−

(
4

5
+

γ̇

γ

)
ξ
∂Ω

∂ξ
+

1

γ

∂ΩΥ

∂ξ
= 0,

• Balance of momentum (neglecting the inertial term, Gϵ = 0)

0 = −1

γ

∂Π

∂ξ
− (ΩΥ)−β Υ2

Ω

• Boundary conditions

Ω(ξ = 0)Υ(ξ = 0) = 1 Ω(ξ = 1) = 0 Ω(ξ = 1)Υ(ξ = 1) = 0.

We therefore see that in such limiting regimes (f = f ′Re−β
Deq

), the dimensionless solution

expressed in the proposed scalings does not depend on any dimensionless number indicating660

self-similarity of the solution. We conclude that the dimensionless functions γ, Π = Ω and

Υ only depends on ξ: the time derivatives disappears, γ̇ = Ω̇ = 0. First, we can rewrite the

balance of momentum as:

ΩΥ = − Ω
3

2−β

γ1/(2−β)

∣∣∣∣dΩdξ
∣∣∣∣ 1
2−β

−1
dΩ

dξ
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The continuity equation combined with the balance of momentum thus simplifies to:

Ω

5
− 4

5
ξ
dΩ

dξ
+

1

γ

d

dξ

(
− Ω

3
2−β

γ1/(2−β)

∣∣∣∣dΩdξ
∣∣∣∣ 1
2−β

−1
dΩ

dξ

)
= 0.

Integrating the continuity equation from ξ to 1 and using the boundary conditions, we obtain665

the following non-linear ODE:

ˆ 1

ξ

Ω(ξ′) dξ′ +
4

5
ξΩ +

Ω
3

2−β

γ1+1/(2−β)

∣∣∣∣dΩdξ
∣∣∣∣ 1
2−β

−1
dΩ

dξ
= 0. (21)

The dimensionless global volume balance (i.e. obtained when ξ = 0) using the inlet flux

boundary conditions gives:

γ

ˆ 1

0

Ω(ξ′)dξ′ = 1. (22)

Assuming Ω = (1− ξ)α, close to the fracture tip (when ξ → 1) and introducing such form in

the previous equation (21), we can obtain the following exponent for the width tip asymptote:670

α =
1

2 + β
.

Such an asymptotic behavior of the fracture width notably gives a finite fluid velocity at the

tip.

Solution: Following Adachi and Detournay (2002), we write the fracture width as the

following series expansion:

Ω =
∞∑
j=1

AjΩ
∗
j +BΩ∗∗, (23)

where Ω∗
j are the following basis function:675

Ω∗
j = (1− ξ2)αC

(α+1/2)
2j−2 (ξ).
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Figure 7: Dimensionless fracture width (Ω) and fluid flux (Ω×Υ) for the laminar, turbulent
smooth (Blasius) and turbulent rough (Gauckler-Manning-Strickler) limiting regimes.

Ca
b denotes the Gegenbauer polynomial of degree b and order a. Ω∗∗ is a particular function

chosen to reproduce the inlet behavior. Indeed,

dΩ∗
j

dξ
= 2(

1

2
+ α)(1− ξ2)αC

α+3/2
2j−3 (ξ)− 2αξ(1− ξ2)α−1C

α+1/2
2j−2 (ξ)

is equal to zero at the inlet ( ξ = 0). For simplicity, we choose:

Ω∗∗ = 1− ξ,

to reproduce the inlet behavior. We truncate the series at j = Nk to discretize the di-

mensionless continuity equation (21) together with the global volume balance (22). We use680

Nc > Nk + 1 collocations points regularly spaced in the interval ξ ∈ [0, 1] to obtain Nc

equations. We minimize the L2 norm of the residuals ∥R∥2 of these Nc equations using

Mathematica built-in optimizing algorithm (NMinimize function) with the constraints that

Aj+1 < Aj < 0. The corresponding dimensionless opening and fluid flux are shown in Fig.

(7). The complete series coefficients, fracture length and inlet width are listed on Table 5.685
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Laminar Turbulent smooth Turbulent rough MDR

B 0.4288 0.513 0.477 0.4599
A1 0.934 0.812 0.829 0.887
A2 0.0434 4.24 10−2 3.56 10−2 4.34 10−2

A3 3.28 10−3 4.0 10−3 8.97 10−3 3.61 10−3

A4 1.96 10−3 2.0 10−3 8.97 10−3 2.0 10−3

A5 4.68 10−4 5.1 10−4 6.29 10−3 4.88 10−4

A6 3.34 10−4 3.09 10−4 4.51 10−3 3.26 10−4

A7 8.08 10−5 7.49 10−5 2.74 10−3 7.83 10−5

A8 6.44 10−5 5.21 10−5 1.54 10−3 5.97 10−5

A9 - - 6.85 10−4 -
A10 - - 2.22 10−4 -

Residuals ∥R∥2 1.3 10−6 3.5 10−7 2.8 10−6 7.32 10−7

γ 1.001 1.099 1.082 1.036
Ω(0) 1.326 1.288 1.276 1.31

Table 5: Numerical coefficients of the dimensionless opening series (23) for the different
limiting flow regimes. The corresponding dimensionless fracture length and inlet opening
are also listed. The residuals obtained after numerical minimization are below 10−5 for all
cases.

A.2 Rough turbulent regime - Gauckler-Manning-Strickler

In that limiting regime, friction is governed by the Gauckler-Manning-Strickler scaling f =

f ′
M

(
k
w

)1/3
. Neglecting inertia again (Gϵ ≪ 1) in the corresponding rough turbulent scaling

(see Table 3), the dimensionless equations of the problem reduce to:

• Elasticity:690

Ω = Π,

• Continuity:

tΩ̇ +
3

16
Ω−

(
13

16
+

γ̇

γ

)
ξ
∂Ω

∂ξ
+

1

γ

∂ΩΥ

∂ξ
= 0,

• Momentum:

ΩΥ = −Ω5/3

γ1/2

∣∣∣∣∂Π∂ξ
∣∣∣∣−1/2

∂Π

∂ξ
,
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• and boundary conditions:

Ω(ξ = 0)Υ(ξ = 0) = 1 Ω(ξ = 1) = 0 Ω(ξ = 1)Υ(ξ = 1) = 0

Similarly than for the laminar and smooth turbulent limiting regimes, we see that the di-

mensionless solution only depends on ξ in that limiting regime: the solution is self-similar.695

The continuity equation combined with the balance of momentum simplifies to:

3Ω

16
− 13

16
ξ
dΩ

dξ
+

1

γ

d

dξ

(
−Ω5/3

γ1/2

∣∣∣∣dΠdξ
∣∣∣∣−1/2

dΩ

dξ

)
= 0.

Integrating the continuity equation from ξ to 1 and using the boundary conditions, we obtain

the following non-linear ODE:

ˆ 1

ξ

Ω(ξ′) dξ′ +
13

16
ξΩ +

Ω5/3

γ3/2

∣∣∣∣dΩdξ
∣∣∣∣−1/2

dΩ

dξ
= 0. (24)

Assuming Ω = (1 − ξ)α when ξ → 1 and introducing such form in the previous equation

(24), we obtain here α = 3/8 for the exponent of the opening tip asymptote. The solution is700

obtained using the same numerical method than for the previous cases. The dimensionless

opening and flux profiles can be seen in Fig.7, all the numerical values of the series coefficient

in Table 5.
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B Verification of the numerical solver
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Figure 8: Fully Laminar Case (f = 16/ReDeq): Evolution with scaled time of the fracture
length (right) and fracture width at the fracture inlet (left).

In order to demonstrate the accuracy of the numerical scheme, we compare our numerical705

results to the fully laminar analytical solution (Kemp et al., 1990) using only the laminar

expression of the friction factor (f = 16/ReDeq) in our scheme. The numerical solution is

obtained by discretizing the domain with a fixed Cartesian mesh of 150 cells. A re-meshing

is performed as soon as the fracture tip reaches the end of the computational domain. The

time step is evaluated with the following CFL (Courant-Friedrich-Lewy) condition:710

△t = Cn
∆x

max{λ} ,

where Cn = 0.01 is the courant number, λ = v(x)±
√
p/ρ is the ”wave speed” given by the

eigenvalues of the Jacobian of the set of Equations (4) and (7), and ∆x is the cell size. To

locate the fracture tip, we characterize the fracture as open at the point along the fracture

length where the opening goes above a small threshold value (taken here as 4 percent of the

fracture width at the inlet). The fracture tip is assumed to be propagating with a constant715

velocity while the tip remains in a cell, i.e. the fracture width in the adjacent cell is increasing

with the time but is below the threshold. The velocity is re-evaluated each time the width
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Figure 9: Fully Laminar Case (f = 16/ReDeq): Evolution with scaled time of the Relative
error in percentage of the numerical solution for fracture-length (right) and fracture-width
(left).

goes above the threshold and the tip enters the adjacent cell. To mitigate the numerical

diffusion of the scheme, a large value of 0.999 for the correction factor ϵ (see Zia (2015) for

description of this correction parameter) is used. Other parameters used for this numerical720

run are the one listed in Table 1 with an injection rate of Q0 = 0.015 m3/s.

The simulation is started with the Initial conditions prescribed as the exact laminar

solutions (w0(x) = w(x, t0) and ℓ0 = ℓ(t0)) at a given initial time t0 (2 seconds in this test

case) and the solution is allowed to evolve with time. Figure 8 shows the evolution of the

scaled fracture-length ℓ(t)/ℓ0 vs scaled time (t/t0) and the scaled fracture-width at the inlet725

w(0, t)/w0 vs scaled time (t/t0) on right and left respectively. A very good match with the

analytical solutions can be observed. Furthermore, the relative error of the fracture-length

and the fracture-width are shown in Fig. 9 on the right and left respectively. The sharp jumps

in the time evolution of the error are due to re-meshing which is performed as the fracture tip

reaches the end of the computational domain. This introduces a small error due to the loss730

of data caused by interpolations. However, as Fig. 9 shows, this error accumulation is not

significant. The relative errors for the fracture width and fracture length remain close to 0.3

and 2 percent respectively over more than three decades of time. Note that Figures 8 and 9

42



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

analytical
τ = 8.5

 Ω 

ξ

τ = 48
τ = 273

Figure 10: Fully laminar case (f = 16/ReDeq): Analytical and numerical solutions for di-
mensionless fracture width at different scaled times τ = t/t0. The small numerical diffusion
observed at the fracture tip does not grow in time and is intrinsically related to the corrected
adNOC scheme used here. It can be seen that the numerical solutions matches very close to
the analytical solution and are indistinguishable from each other. (color online)

show the width at the fracture inlet only. The complete profile of the dimensionless fracture

width (Ω) against the dimensionless fracture length (ξ) at different values of the scaled time735

(τ = t/t0) is shown in Fig. 10. The numerical solution matches the analytical solution very

well, apart from a small diffusive region at the fracture tip which does not appear to “grow”

in time.
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