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Abstract

The plastic deformation in hcp metals is complex, with the associated disloca-
tion core structures and properties not well understood on many slip planes in most
hcp metals. A first step in establishing the dislocation properties is to examine the
stable stacking fault energy and its structure on relevant slip planes. However,
this has been perplexing in the hcp structure due to additional in-plane displace-
ments on both side of the slip plane. Here, density functional theory guided by
crystal symmetry analysis is used to study all relevant stable stacking faults in 6
hcp metals (Mg, Ti, Zr, Re, Zn, Cd). Specially, the stable stacking fault energy,
position, and structure on the Basal, Prism I and II, Pyramidal I and II planes are
determined using all-periodic supercells with full atomic relaxation. All metals
show similar stacking fault position and structure as dictated by crystal symmetry,
but the associated stacking fault energy, being governed by the atomic bonding,
differs significantly among them. Stacking faults on all the slip planes except the
Basal plane show substantial out-of-plane displacements while stacking faults on
the Prism II, Pyramidal I and II planes show additional in-plane displacements, all
extending to multiple atom layers. The in-plane displacements are not captured
in the standard computational approach for stacking faults, and significant differ-
ences are shown in the energies of such stacking faults between the standard ap-
proach and fully-relaxed case. The existence of well-defined stable stacking fault
on the Pyramidal planes suggests zonal dislocations are unlikely. Calculations on
the equilibrium partial separation further suggests (c + a) dissociation into three
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partials on the Pyramidal I plane is unlikely and (c) dissociation on Prism planes
is unlikely to be stable against climb-dissociation onto the Basal planes in these
metals.

Keywords: HCP, Stacking Fault, ab initio Calculations, Dislocation Dissociation

1. Introduction

The generalized stacking fault energy (GSFE) ~y-surface is one of the most fun-
damental properties in crystalline materials. Since first introduced by Vitek [1],
it has achieved impressive success in both explaining and predicting dislocation
core structures and associated behavior on close-packed planes of face-centered
cubic (fcc), body-centered cubic (bcc) and hexagonal close-packed (hcp) met-
als [2]. The standard ~y-surface, (t), is defined as the excess energy of the crystal
when atoms on one side of a crystallographic plane are displaced by a rigid-in-
plane shift t relative to the atoms on the other side, followed by relaxation of
displacements in the out-of-plane direction. On the y-surface, the absolute energy
minima correspond to shifts by the lattice translation vectors a; or as of the crys-
tallographic plane, which re-establish the perfect lattice structure. The y-surface
is thus periodic with periodicity defined by a; and a,. Plastic deformation gen-
erally occurs by relative slip over one of the lattice translation vectors, which are
equal to the Burgers vector b of the associated dislocations. The microscopic slip
process occurs along a minimum energy path (MEP) between the absolute min-
ima. The energy profile along the MEP, the -line, thus measures the relative ease
of the slip, and determines key parameters dictating fundamental plastic proper-
ties of crystalline materials. The maximum slope along the +-line gives the ideal
shear strength, the maximum energy 7, governs dislocation nucleation at stress
concentrations such as crack tips [3], and metastable points (local minima) corre-
spond to stable stacking faults (SFs) with energies ¢ that control dislocation core
dissociation, Peierls stress, dislocation energy, and primary slip planes [4, 5]. The
general shape of the ~y-surface is strongly dictated by crystal symmetry, and thus
should be similar in materials of the same crystal structure. Given its importance
and general applicability, the y-surface has been calculated in many metals and al-
loys using a wide range of computational models ranging from pair, many-body,
bond-order, and tight-binding [6] potentials to ab initio density functional theory
(DFT) calculations.

The standard approach for computing 7(t), involving deviations from the per-
fect crystalline structure only in the out-of-plane direction, is less accurate when
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applied to corrugated faults, such as occurs for SFs on Pyramidal planes of the
hep structure. Previous studies reported inconsistencies between the stable SF
predicted by the standard ~y-lines and the SF and dislocation dissociations found
by direct atomistic calculations [7, 8]. A recent DFT study on (c + a) dislocation
core structures in Mg also shows a significant difference in partial core separation
between the direct simulations and the predictions of elasticity theory using the
stable SF energy computed by the standard approach [9]. Morris et al. [10] pro-
posed a new procedure, allowing in-plane relaxation of atoms, to calculate the -
line of the hcp Pyramidal planes. Applying the new method to systems described
by empirical potentials, the new ~-lines showed both qualitative and quantitative
differences with those of the standard approach. The necessity of in-plane relax-
ation was also recognized in a few recent DFT calculations of the SF energy on
some slip planes in Mg [11], Ti [12, 13] and Zr [14, 15, 16, 17], again showing
strong effects of full relaxation on the predicted SF. While SF energy calculations
with full relaxations are emerging, there has been no complete examination of the
true stable SF energies, positions, and structures on all relevant slip planes across
the family of hcp metals. Accurate SF energies and structures on Prism and Pyra-
midal planes are particularly important for understanding/prediction of the core
structure, dissociation, and stability of (c) and (c + a) dislocations, for which di-
rect DFT simulations remain challenging although not impossible [16, 9, 18, 19].
In this work, we perform DFT calculations with full atomic (ionic) relaxation to
find all the stable SFs on all the slip planes relevant to plastic deformation of
hcp metals. In particular, we provide a systematic examination of Basal, Prism
I and II, and Pyr. I and II planes (shown in Fig. 1) in 6 hcp metals (Mg, Ti, Zr,
Re, Zn, Cd). Our results show that all 6 metals show similar stable SF positions
and structures, despite the differences in their electronic structures. At the stable
SFs, out-of-plane displacements are substantial in all cases except on the Basal
plane, while in-plane displacements are substantial on the Prism II and Pyr. I and
IT planes. The atomic displacements decay quickly within a few layers of atoms
on either side of the slip plane and the displacements in the slip direction are lo-
calized to the slip plane. The existence of clear stable SF and well-defined SF
structures suggest that zonal dislocations [20, 21] are unlikely on any of these slip
planes. Furthermore, atomic displacements on the Prism and Pyramidal planes
correspond to some form of atomic shuffling, making slip on these planes rela-
tively difficult as compared to slip on the Basal plane; i.e. the critical resolved
shear stresses for dislocation glide on these Prism and Pyramidal planes is ex-
pected to be rather larger than that for Basal slip, in materials where Basal screw
dislocations are stable. Using the obtained SF information combined with elastic-
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ity theory, we further determine the equilibrium partial separations of all relevant
dislocations. Our results show that dissociation of (c + a) dislocations into three
partials on the Pyr. I plane and glide dissociations of (c) dislocations on the Prism
planes are highly unlikely in these metals.

The remainder of this paper is organized as follows. We first establish the
possible stable SF vectors on all the relevant hcp slip planes based on symmetry
and a hard sphere model. The DFT methods are then described in detail in Sec-
tion 3. The results for SF energies, actual SF fault vectors, and SF structures are
presented in Section 4. Section 5 discusses implications of our results, including
dislocation dissociations.

Figure 1: Schematic showing the Basal, Prism I and II, and Pyramidal I and II planes in the hcp
unit cell.

2. Stacking faults based on symmetry in hep crystals

For computations, the initial choice of the in-plane shift t’ is important. If
the choice is not close to the true metastable fault vector, the initial structure can
relax back to a uniformly-strained perfect crystal. Since DFT computations are
very costly, a good initial choice for t’ is essential. We therefore first determine
possible t’ based on energy extrema on the y-surface using crystal symmetry and
a hard sphere model(see Ref. [8, 2] on similar analysis on some planes in hcp
structure). Figure 2 and Fig. 3 show the atomic structure and the corresponding
slip vectors for the 5 slip planes considered in the current analysis.

On the Basal plane (Fig. 2a), an energy minimum must exist at the intersection
of the three mirror planes (indicated by the m; lines), i.e. at t = 1/3[1100] or
(a1/2, (ag - e2)ey/3), where the definitions of a; and e; are shown in Fig. 2. This
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Figure 2: Atomic structure and stacking fault energy extrema on (a) Basal, (b) Prism I, (c) Prism
II, (d) Pyramidal I and (e) Pyramidal II planes. In (b) and (d), the wide and narrow planes are
marked by the solid and dashed lines. The white dotted lines denoted by m; and s; are the mirror
symmetry plane and glide plane, respectively. In the third row, a; and ay are the primitive vectors

in the respective crystallographic plane, e; and ey are the unit vectors of the Cartesian coordinate
system.
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minimum is the so-called I, SF relevant to (a) dislocation dissociations on the
Basal plane. Slip to the /5 SF should be accompanied by out-of-plane atomic
movement only, as shown in Fig. 3a.

The Prism I plane has two layers of atoms and thus two slip planes of different
structure and interplanar spacing [22, 17], as shown in Fig. 2b. The narrowly
and widely spaced slip planes are referred to as the “narrow” and “wide” planes
and are denoted by “-N” and “-W?”, respectively. On both the narrow and wide
planes, at least three energy extrema must exist at the intersection of the mirror
planes, i.e. at SF1 (a;/2, 0), SF2 (a;/2,a5/2) and SF3 (0, ay/2), respectively.
SF1 and SF2 are relevant to (a) and (c) dislocation dissociations. SF3 should
be a maximum and thus not relevant to dislocation dissociations, and so is not
considered in the current study [2, 23]. Slip on the narrow plane to SF1 or SF2
should not be energetically favorable, as both cases bring near-neighbor atoms
(green and blue atoms) into close proximity. In contrast, SF1 along the wide
plane, as shown in Fig. 3b, can be stable if multibody (angular, second-neighbor,
etc.) forces exist (the blue/green atoms could be stabilized by the yellow/purple
atoms below). Slip to SF1 should also be accompanied by out-of-plane atomic
movement only. SF2 on the wide plane should also be stable, but both in-plane
and out-of-plane atomic movements are expected along the slip path (see Fig. 3c).
On the Prism II plane (Fig. 2¢), energy extrema must exist along (maj, as/2),
which is relevant to the (c) dissociation on that plane. Slips on the Prism II plane
to SF1 or SF2 are equivalent, as shown in Fig. 3d and e, and should involve both
in-plane and out-of-plane atomic movements.

The Pyr. I plane also has two layers of atoms and slip can thus take place on
either the “wide” or “narrow” planes (see Fig. 2d). On both slip planes, there are at
least three possible energy extrema. SF1 at (a; /2, m(as - e2)ey) is relevant to (a)
dislocation dissociation. SF2 and SF3 at (0, n(a; - es)ey) and (a1 /2, m(as - es)es)
are relevant to (c + a) dissociation. SF1 on the narrow plane should be stable
and energetically more favorable than on the wide plane (see Fig. 3f). Slip to SF1
should be accompanied by both in-plane and out-of-plane atomic movements. Slip
to SF2 or SF3 is associated to (c + a) dislocations and should be accompanied by
out-of-plane and in-plane atomic movement in the slip direction only (Fig. 3g and
h). The slip process is energetically more favorable on the wide plane and is highly
unfavorable on the narrow plane due to the close proximity of near-neighbor atoms
(green and blue atoms). On the Pyr. II plane, at least one energy extremum must
exist at SF1(0, may). This fault is relevant to (c + a) dissociations. Slip to
SF1 should be accompanied by both in-plane and out-of-plane atomic movements
and involves close interaction between the nearest-neighbor atoms (Fig. 31 and
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Figure 3: Slip vector for (a) Basal I5, (b) Prism I SF1, (c) Prism I SF2, (d) Prism II SF1, (e) Prism
II SF2, (f) Pyr. I SF1, (g) Pyr. I SF2, (h) Pyr. I SF3, (i) Pyr. II SF1 and (j) Pyr. II SF1 in opposite
direction.
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j). Furthermore, on both Pyr. I and II planes, slip associated with (c + a) is
direction-dependent (see Fig. 3g-j) and the associated y-line is thus unsymmetric
in general.

We note that the above analysis only uses crystal symmetry and can only pro-
vide qualitative assessment on stacking fault position and atomic movement along
the slip path. The details of the electronic structure can strongly influence the en-
ergetics and kinetics along the slip path, and have to be taken into account for
quantitative analysis. This is pursued in the DFT calculations presented below.

3. DFT methodology and simulation geometries

The SF positions determined above are used as the initial in-plane shifts t’
for DFT calculations. DFT calculations are performed using the Vienna Ab ini-
tio Simulation Package (VASP) [24, 25] with a plane-wave spin-free basis set. The
generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)
parametrization [26] is used for the exchange and correlation functionals. The
core electrons are replaced by the projector augmented wave (PAW) pseudopo-
tentials [27] with the valence states shown in Table 1. A second-order Methfessel-
Paxton method [28] with smearing parameter 0.2 eV is used to smoothen the par-
tial electron occupancies. lonic positions are relaxed toward local equilibrium
states, with convergence deemed achieved when the maximum ionic force is less
than 1 meV/A. For each element, the appropriate plane-wave cutoff energy and
I'-centered Monkhorst-Pack [29] k-point sampling mesh are carefully established
through convergence tests on the basal I, SF energy and bulk stress state of the
2-atoms hcp primitive cell; the values used here are shown in Table. 1. The k-
point mesh for larger supercells is adjusted to give a very close k-point density.
Using the above parameters, the predicted lattice constants and elastic constants
(calculated by fitting computed total energies versus strain) are in good agreement
with experiments, as shown in Table 2.

Table 1: Valence states, plane wave energy cutoffs, and k-mesh densities used in the DFT calcu-

lations.
Mg Ti Zr Re Zn Cd
valence states 3s 4s, 3d Ss, 4d 6s, 5d 4s, 3d Ss, 4d
FEeutorr (€V) 350 350 350 650 500 500

k-mesh (primitive cell) 36x36x19 39x39x22 36x36x19 37x37x20 39x39x18 38x38x17

The simulation supercells for SF energy calculations are constructed using the
above determined lattice constants. To avoid spurious effects due to free surfaces
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Table 2: Lattice parameter, c¢/a ratio and elastic constants calculated by DFT and comparison with
experimental values.

Mg Ti Zr Re Zn Cd

DFT Exp DFT Exp DFT Exp DFT Exp DFT Exp DFT Exp

a(A) 3.189 3.186% 2.924 2.947* 3.235 3.228* 2774 2.760* 2.655 2.647*° 3.031 2.957°
c/a 1.627 1.624* 1.582 1.586* 1.598 1.593* 1.616 1.615* 1.891 1.856* 1911 1.886%

Ci1 (GPa) 61  63° 177 176° 147 155 616 634> 190 179* 83  29°
Ci2(GPa) 26 26° 90 87 70 67° 278 266° 49 38 43 40P
Ci3(GPa) 20 22 84 68 71  65° 226 202° 52 55 30 4l
Cs3 (GPa) 63 66> 189 [91° 164 173 671 702> 70 69° 41 57
Cu (GPa) 18 18 40  51° 25  36° 161 169° 47  46° 13 24

2 Lattice constants calculated based on material density at 4 K and room temperature ¢/a ratio [30, 31].
b Elastic constants measured at 4 K in experiments [31].

a Bulk (o;; = 0) b Initial SF ¢ Stable SF (o3; = 0)

Figure 4: (a) Periodic supercell of a perfect lattice with the lattice translation vectors a; and as
of the crystallographic slip plane in the 1 — x2 plane. (b) The initial (ideal) stacking fault created
by tilting the supercell repeat vector N3as to N3az + t’ while keeping Nya;, Noas and all the
atoms fixed. (c) Fully relaxed stacking fault in the periodic supercell. The dotted and solid circles
represent atom positions before and after relaxation.
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(e.g., Friedel oscillations [32]) and to reduce computational cost, supercells peri-
odic in all directions are used. Two types of supercells are necessary: one for the
intrinsic /; and extrinsic £ faults on the Basal plane, which can not be formed
through a single shear operation; the other for the basal /> and SFs on the Prism
and Pyramidal planes, which can be formed through a single shear operation. The
supercells used for the /; and F faults have 40 atom layers in the x5 (out-of-plane)
direction arranged as (AB)19-(AC)1o and (AB)1o-C-(AB)y-C, respectively, where
A, B, and C denote the relative stacking sequence of (111) planes in fcc crystals
(ABCABC...) and basal planes in hcp crystals (ABAB...) [5]. Because periodic
boundary conditions are used, two identical stacking faults are formed within each
supercell. For all other SFs, the tilted-cell method [33, 34, 35] is used. We start
with a primitive cell of the perfect lattice with slip plane lattice vectors a; and a,
in the (1 — x5) plane and a3 out of the SF plane, as shown in Fig. 4a (a;, a; and
a3 are not orthogonal in general). The primitive cell is repeated in a;, a; and a3
directions to obtain a parallelepiped supercell with periodic repeat vectors (N;ay,
Nyay, N3az). To create a SF, the supercell repeat vector N3ag is tilted to Nzaz +t
while keeping Nia;, Nyas and all the atoms fixed. This tilt procedure does not
move any atoms, but effectively shifts the periodic image in the N3as direction
by +t’, thus creating a preliminary (ideal) single-layer SF at the top and bottom
boundary of the supercell (see Fig. 4b). The entire system is then relaxed to a
local equilibrium configuration through a combination of ionic displacements and
changes in the third supercell repeat vector Nzaz +t’ so that all stress components
o3; are zero (see Fig. 4¢). During the relaxation, the in-plane lattices (V,a;, Noag)
are fixed to the bulk values, in order to achieve results that are independent of V3
(otherwise, the intrinsic stresses of the SF would be balanced by opposite stresses
distributed through the remainder of the cell, and the associated elastic energy
would depend on the cell size). After full relaxation, the relaxed supercell repeat
vector in the third direction is N3as + t 4 r,, where t is the in-plane stable SF
vector and r,, is the net relaxation perpendicular to the SF plane. This procedure
results in the true stable SF structure, vector, and energy relevant to dislocation
behavior. Since the SF can possibly have substantial relaxations away from the
slip plane, it is important to use large /N3 to avoid spurious interactions between
the periodic images of the SF. In the current study and unless otherwise stated,
N; = Ny = 1 and N3 = 10 is used for each case.
The atomic displacement u is calculated as

u=X-—-x (1)

where X is atom position after full relaxation (Fig. 4c) and x is atom position at
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the ideal stacking fault configuration before relaxation (Fig. 4b), i.e. the perfect
lattice position in the tilted-cell method. It is the displacement in addition to t
required to form the ideal stacking fault in the standard method. u thus measures
atomic displacement from the ideal stacking fault. If the ideal stacking fault con-
figuration is stable, u = 0. In the standard stacking fault calculation method, the
in-plane displacement is constrained, i.e. u; = us = 0 and only ug is allowed to
vary.

4. DFT-calculated stacking fault vectors, energies, and structures

Table 3 shows the results for SF energy and fault vector as calculated here by
DFT, along with the SF energies reported in previous DFT studies. On the Basal
plane, all these hcp metals have an I, SF at (a; /2, (as-e2)ey/3), as expected from
crystal symmetry. The ratio of the /;, /o and Extrinsic SF energies is approxi-
mately equal to the ratio of atoms with second nearest-neighbor symmetry broken
in the respective faults, i.e., 1 : 2 : 3. The results here using full atomic relaxation
are also in good agreement with available DFT data calculated using the standard
procedure. This indicates that in-plane relaxation has small effects on SF on the
Basal plane, i.e. negligible in-plane relaxations are expected, consistent with the
crystal symmetry analysis.

On the Prism I plane, only Ti, Zr and Re show a stable SF at (a;/2,0). For
Mg, Zn, and Cd, we therefore compute the unstable SF energy at (a;/2,0) by
symmetry-constrained relaxation, which prevents the system from moving away
from the extremal symmetry point. The unstable SF in these metals can serve as a
proxy for possible stable SFs that may exist but that are not resolved in the current
DFT calculations [38]. The Basal /5 energy is substantially lower than the SF1
energy on the Prism plane in Mg, Re, Zn and Cd. In contrast, the SF1 energy on
the Prism plane is lower than the energy of the [, fault on the Basal plane in Ti
and Zr. This suggests that (a) slip is dominant on the Basal plane in Mg, Re, Zn
and Cd and on the Prism I plane in Ti and Zr, consistent with broad experimental
observations. In addition, all metals except Cd have a stable SF (with a relatively
high energy) at or close to (a;/2, as/2), suggesting a possible (c) dissociation
on this plane. On the Prism II plane, all metals show a stable SF with relatively
low energy, indicating favorable (c) dissociation on this plane. In addition, the
SF1 energy on the Prism I plane calculated using full relaxation is again in good
agreement with available DFT data computed using the standard method, suggest-
ing small in-plane relaxation at this SF. In contrast, large differences are seen for
the SF1 energy on the Prism II plane, indicating substantial in-plane relaxation.
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Table 3: Stacking fault energies and positions as calculated by DFT. 4 and t are in the units of mJ/m? and (a; - ey,
as - ey, see Fig. 2), respectively. Results from related literature calculations are shown below the present results in each
case, with results in plain font calculated using full relaxation and results in italic font calculated using the standard
method. Number followed by [u] indicates unstable stacking fault in DFT calculations and the quoted energy is obtained
using symmetry-constrained relaxation. In Cd, the structure of SF2 on Prism I-W (denoted by [x]) is not stable with
N3 = 10 in the current DFT calculations.

Mg Ti Zr Re Zn Cd
; 18 172 149 54 48 17
1 149 180 168
B oy 424 284 351 150 41
s 35324330 300
Basal , t (-0.501,0334) (0.500,0.333) (:0.499,0333) (-0.500,0334) (:0.493,0.329) (-0.481,032D)
2 34 306 224 206 109 29
Vst 340 21¢ 2598 336b 287¢ 213 223¢ 227% 102¢
307" 3202 2920 213! 200
306 2971
gpy ¢ (0.500,0.000) (0500,0.000) (0.499,0.000) (0.500,0.000) (0.500,0.000) (0.500,0.000)
212[u] 214 183 933 502[u] 238[u]
Prism LW TSt 182189 2060 2200 203! 166 197% 211!
256™ 174 1451
gpy © (0492,0498) (0500,0.500) (0.500,0.500) (0.500,0.500) (0.507,0519) [x]
Yer 383 1034 719 2111 305 [x]
gp t (0301,0502) (0451,0500) (0.446,0.500) (0.500,0.500) (0.498,0.497) (0.499,0.497)
Prism II 183 395 331 1361 120 71
st 606° 534b
gp t (0303,-0.116) (0.500,-0.089) (0.500,-0.106) (0.500,-0.112) (0.506,0.025) (0.489,0.034)
Pyr. I-N 165 200 161 653 328 171
st 2051, 227™ 163"
gpp © (0.000,0.403) (0.000,0.435) (0.000,0.430) (0.000,0.421) (0.005,0.487) (0.000,0.572)
161 134 103 721 341 181[u]
Pyr. I-W Vst 148!
gp3 © (0.500,0496) (0500,0.470) (0.500,0479) (0.500,0.539) (0.497,0487) (0.504,0.499)
Yt 203 634 511 1421 169 54
pyr11 spi b (0:000,0.480) (0.000,0446) (0.000,0.455) (0.000,0.434) (0.000,0535) (0.000,0.541)
., 163 321 282 1022 119 47

236°

4 Ref. [36], DFT, SIESTA, GGA-PBE, Norm-conserving.
b Ref. [23], DFT, VASP, GGA-PWO1, US.

° Ref. [37], DFT, VASP, GGA-PW91, US.
dRef. [38], DFT, VASP, GGA-PW91, PAW.

° Ref. [39], DFT, VASP, [SIGGA-PW91, PAW.
fRef. [40], DFT, VASP, GGA-PBE, PAW.

¢ Ref. [41], DFT, VASP, GGA-PWO1, US.

h Ref. [14], DFT, VASP, GGA-PW91, PAW.

i Ref. [13], DFT, VASP, GGA-PBE, PAW.
iRef. [42], DFT, VASP, GGA-PW91, US.

K Ref. [43], DFT, VASP, GGA-PBE, PAW.
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I Ref. [15], DFT, PWSCF, GGA-PBE, US.
m Ref. [18], DFT, PWSCF, GGA-PBE, US.
n Ref. [17], DFT, PWSCF, GGA-PBE, US.
° Ref. [44], DFT, VASP, GGA-PW91, US.
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On the Pyr. I plane, all metals show three stable SFs. One is relevant to (a)
slip on the narrow plane and two are relevant to (c + a) slip on the wide plane.
The position of the SF varies among different metals and cannot be determined
solely by crystal symmetry. Specially, in Zn and Cd, where the ¢/a ratio (~1.9)
is very far from the ideal hcp value (1.633), SF3 has a much lower energy than
SF2, while in the other metals SF2 has a lower energy than SF3. On the Pyr. II
plane, all metals show a single stable SF that is relevant to (c + a) dissociation.
The positions of the SFs again vary among the metals, but all are along the (c+ a)
direction. Our results on the Pyr. I plane are also in good agreement with a few
recently available DFT calculations using full relaxation.

Overall, the existence and approximate positions of the stable SFs found in the
DFT calculations are consistent with the expectations based on crystal symmetry.
The position of these stable SFs are also in qualitative agreement with some full
~-surface calculation using the standard method [23]. Therefore, we expect these
are likely to be all of the stable SFs on the five slip planes examined in this study.

Figure 5 shows the SF structure and the atomic displacements on one side of
the SF plane. Figure 6 shows the atomic displacements as a function of atomic
layer away from the slip plane (in x3 direction). Here, we focus on Mg, Ti and Zr,
which are the important hcp structural metals. On the Basal plane, the in-plane
displacements are negligible while small out-of-plane displacements extending to
2-3 atomic layers are seen in Ti and Zr, as shown in Fig. 5a and Fig. 6a. On
the Prism I plane, the in-plane displacements are negligible but the out-of-plane
displacements are substantial over many atomic layers for both SF1 and SF2 (see
Fig. 5b, f and k, and Fig 6b and c). This is consistent with the fact that full relax-
ation does not affect the SF energy on the Basal and Prism I planes. Furthermore,
the direction of the out-of-plane displacement alternates between atom layers, in-
dicating some atomic shuffling process along the slip path. In contrast, for the
SF1 on the Prism II plane, significant out-of-plane displacements are seen in Ti
and Zr and significant in-plane displacements are seen over many atomic layers
in all three metals (see Fig. 5c, g and 1, and Fig. 6d). This explains the large
differences in SF energy calculated using full atom relaxation and the standard
approach (out-of-plane relaxation only) [23].

On the Pyr. I and II planes, all SFs have both in-plane and out-of-plane dis-
placements extending 3-6 atomic layers into the surrounding material, as shown
in Fig. 5d and e for Mg, h, i and j for Ti, m, n and o for Zr. The corresponding dis-
placement plots are shown in Fig. 6e-h. The SF1 on the Pyr. I plane, as shown in
Fig. 5 h, m and Fig. 6e, shows substantial out-of-plane displacements and in-plane
displacements perpendicular to the slip direction. This SF is close to a two-layer
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Figure 5: Atomic structure and displacements on one side of the stacking fault plane. (a-e) Mg,
(f-j) Ti, (k-o0) Zr. In each subpanel, the upper and lower pictures show structure and displacement
viewed in the direction of the slip plane and perpendicular to the slip plane, respectively. The
green arrows show the atomic displacements magnified by the respective value (ux) shown in
each figure.
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twin on the Pyr. I plane [45, 16]. However, the DFT-calculated SF position shows
some deviation from the twin vector based on crystal symmetry [45, 16, 17], pre-
sumably since this structure is a nascent two-layer twin and not a full twin. For
the SF2 and SF3 on Pyr. 1, the in-plane displacements are all in the slip direction,
while SF1 on the Pyr. II plane has in-plane displacements in both the slip and
perpendicular-to-slip directions. Overall, the directions of the displacements are
similar, but the magnitudes vary among the three different metals. For example,
the in-plane displacements of SF2 on the Pyr. I plane are small in Mg as compared
to Ti and Zr, while the opposite is true for SF1 on the Pyr. II planes. In addition,
the in-plane displacements are relatively small with respective to the slip vector
in the slip direction and decay quickly from the slip plane. This suggests that the
slip is localized on the SF plane. The clear existence of the SF with well-defined
structure suggests that dislocation dissociation into zonal dislocations is unlikely.
On the Pyr. II plane, the direction of the in-plane displacement perpendicular to
the slip direction alternates between atom rows on each atomic plane, as expected
from examination of the hard-sphere model. This suggests atomic shuffling along
the slip path of the (c + a) Burgers vector on the Pyr. II plane.

Overall, the stable SF structures on all planes except the Basal have substantial
out-of-plane atomic displacements and some have additional in-plane atomic dis-
placements. These displacements are the minimum required for slip on the respec-
tive planes and additional atomic displacements are expected along the slip path.
This suggests slip on these planes as mediated by dislocations will likely have a
relatively high Peierls stress and low mobility. At low resolved shear stresses, slip
will also involve some thermal activations, thus being temperature-dependent and
more difficult than slip on Basal planes in materials where the Basal (a) is stable.
The out-of-plane displacements and in-plane displacements perpendicular to the
slip direction also suggests that applied non-Schmid stresses will also have some
effects on dislocation slip behavior, such as the Peierls stress.

The varying degree of in-plane displacements on the Basal, Prism and Pyra-
midal planes should have different effects on the accuracy of the local energy
minimum, i.e. stable SF energy, calculated by the standard method. Figure 7
shows the 7-line calculated by the standard method and the single-point stable
SF determined using full atomic relaxation. On the Basal and Prism I planes,
both the position and energy of the stable SF are identical in both methods, as
expected from the absence of in-plane atomic displacements on these two planes.
However, on the Pyr. I and II planes, both the position and energy of SF differ,
with the effects of full atomic relaxation varying among the different metals. On
the Pyr. I plane, the differences between the two methods are small in Mg but
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Figure 7: DFT-calculated v-line of (a) Mg, (b) Ti and (c) Zr using the standard method (out-of-
plane relaxation only), along with the fully-relaxed stacking fault energy (filled dot). No stable
stacking fault is found at (a) /2 on the Prism plane in Mg.
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substantial (~45%) in Ti and Zr. On the Pyr. II plane, the position and ener-
gies are substantially different (~35%) in Mg and moderately different Ti and Zr.
These results are fully consistent with the relative magnitude of the in-plane dis-
placements shown in Fig. 5 and Fig. 6. For Mg, use of the standard ~y-line would
suggest that Pyr. I (c + a) might be more stable than Pyr. II (c + a) , which is
not supported by the full results for which the two SF energies are very similar.
In Ti and Zr, conclusions about relative stability of Pyr. I and Pyr. II are not
different from those drawn from the full results, although the actual energy differ-
ences, and the partial dislocation dissociation distances, would not be determined
accurately when using the energies from the standard approach. Furthermore, on
the Pyramidal planes, the entire y-line calculated using the standard approach is
not accurate in predicting properties such as dislocation nucleation and material
theoretical shear strength. New approaches, as discussed below, should be used to
obtain more accurate y-lines in future studies.

5. Implications for dislocation structures and slip in hcp metals

5.1. {(c + a) dissociation on the Pyr. I plane

The current work and a previous study [23] show that there exist two SFs
associated with (c + a) slip on the Pyr. I plane. The corresponding (c + a) dis-
locations can thus have two different dissociations, one into two partials and the
other into three partials, as shown in Fig. 8a and b. The energetically favorable
one is of practical importance. However, energetic comparisons based only on
elasticity cannot reliably determine the energetically favorable dissociation be-
cause one case has two partial dislocation cores while the other has three [4].
Nevertheless, for most metals examined in this study, SF2 and SF3 on the Pyr. I
plane have quite different energies. We thus expect that, in the three-dislocation-
dissociation case, one of the dislocation separations, either 115 or ry3, will be quite
small. We therefore compute the equilibrium partial separation for the possible
three-dislocation-dissociation case, and draw general conclusions based on the
calculated partial separation. The stacking fault energy and partial Burgers vector
(stacking fault vector) shown in Table. 3 combine to determine the equilibrium
partial dislocation dissociation distance within anisotropic linear elasticity theory.
For glide dissociation of various dislocations, the interaction force between two
dislocations b; and b, in the radial direction is f;; = K;;/r;;, where K;; is a
interaction energy prefactor determined by the elastic constants and the Burgers
vectors of the two partial dislocations (see, for example, Ref [4, 46]). This inter-
action force, if repulsive, is balanced by the attractive configurational SF force ¢
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and an equilibrium partial separation distance is established. Using such a force
balance argument, we can determine all the equilibrium partial separations. For
the case of three partial dislocations, the Burgers vectors are by, b, and b3 and
partial separations are 715 and o3, as shown in Fig 8b. At equilibrium, the total
radial force on b, is

K12 KIS

Jor = fi2 + f13 — fsra = — - + Ysr2 =0 )
T12 T12 + 723

where f;; is the elastic interaction force between dislocation pair b; and b;. fgro
is the configurational force due to the stacking fault SF2 between dislocation by
and by, which is simply the stacking fault energy density ysg2. Similarly, the total
radial force on bj is

K13 K23

Jos = fis + fos — fsra = + —vsr3 =0 (3)
12 + 793 723

In the above Egs. (2) and (3), the only unknowns are 715 and 753, which can be
found by solving the pair of equations simultaneously.
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Figure 8: Schematic and partial separation of (c + a) dislocation dissociations on the Pyr. I
plane. (a) Dissociation into two partials. (b) Dissociation into three partials. (c,d) Smaller of the
two possible partial separations, min(ry2, r23), normalized by the (c + a) Burgers vector for the
dissociation into three partials for the mixed and screw (c + a) dislocation.

Figure 8c and d show the smaller of the two equilibrium partial separations
for the three partial dissociation case, using the experimental material elastic con-
stants and lattice parameters shown in Table 2. For all metals and both the mixed
and screw (c + a) dislocations, the smallest separation is quite small. For Ti, Zr
and Zn, the smallest separation is less than the a lattice parameter. For Mg, which
has the largest of the smaller separations among all the 6 metals, recent direct DFT
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simulations show that the (c + a) dissociates into only two partials on the Pyr. I
plane [19]. Therefore, dissociation into three partials is highly unlikely in these
metals and dissociation into two partials as shown in Fig. 8a is expected.

5.2. (c) dissociation on the Prism planes

a b Edge c Screw Edge
Mgh : -Mgh : : Mg
g | Vi — 1 Tigm T =
\32r-3 1 Zr== 1 ::Zr
Re pessessssssmmm - Re - ' Re esn—— :
42Zn Znt
Cdf {Cd} . Cd} 1
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Partial separation 5 (|b|) Partial separation 5 (|b|)

Figure 9: Schematic and partial separation of (c) dislocation dissociations on the Prism planes.
(a) Dissociation on the Prism I plane. (b,c) The equilibrium partial separation r12 normalized by
the Burgers vector (c) for the edge and screw (c) dislocation on the Prism I plane. The disso-
ciation distance for Cd is not computed as the corresponding SF is not stable in the current DFT
calculations. (d) Dissociation on the Prism II plane. (e) The equilibrium partial separation 712 nor-
malized by the Burgers vector (c) for the edge (c) dislocation on the Prism II plane. Dissociation
of the screw (c) on the Prism II plane is not expected (r12 < 0).

The (c) dislocations can glide-dissociate onto the Prism I and II planes or
climb-dissociate onto the Basal plane with a Basal extrinsic SF [5, 47]. An en-
ergetic comparison between the various dissociation configurations for the (c) is
again intricate, because the partial Burgers vectors, and thus their core energies,
change substantially. However, the SF energy (except Cd on the Prism I plane) is
quite high on the Prism planes, suggesting very narrow partial separations. Fig-
ure 9 shows the equilibrium partial separations for glide-dissociation on the Prism
planes as calculated by anisotropic elasticity. For all cases except the screw (c)
in Zn, the partial separation on the Prism plane is less than or comparable to the
Burgers vector (c) . This suggests that climb-dissociation onto the Basal plane is
quite feasible for the edge (c) , as driven by the low SF energy on the Basal plane
and by the strong angular preference of 90° for partials with similar edge charac-
ters [4]. This is also consistent with recent MD simulations showing spontaneous
(c) basal-climb-dissociation in Mg [47] and various experimental observations
showing long, straight (c) dislocations on the Basal planes [48, 49, 50]. The
screw (c) partial dislocations have a very narrow core separation (r < |b| except
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Zn) on the Prism I plane and so no dissociation is expected on the Prism II planes.
This suggests that the screw (c) dislocations have compact cores and, if they exist,
their cross-slip may be relatively easy.

5.3. Equilibrium partial separations for (a) and (c + a) dislocations

Figure 10 shows the equilibrium separation distance for the (a) and (c + a)
dislocations, as calculated by anisotropic linear elastic theory using experimen-
tal materials properties in Table 2 and the DFT-computed SF information in Ta-
ble 3. Full energetic comparison among the different dissociation configurations
have been presented in Ref. [4]. Here, we focus on the broad implications from
the calculated equilibrium separation and comparison with recent available di-
rect DFT calculations. For the (a) dislocation, dissociation into Shockley (mixed
edge/screw) partials is expected on the Basal plane in all metals. In contrast, the
SF position on the Prism I plane suggests that (a) edge and screw should dissoci-
ate into pure edge and pure screw partials, respectively. Similarly, the SF position
on the Pyr. I plane suggests (a) edge and screw dissociation into near-pure edge
and near-pure screw, respectively. In Mg, Re, Zn and Cd, where the Basal I5 en-
ergy is substantially lower than the Prism I SF1, the (a) dissociation distance is
much larger on the Basal plane than on Prism I or Pyr. I plane. The screw (a) has
a dissociation distance of at least 3a on Basal plane, and slightly smaller dissoci-
ation distances on the Prism and Pyr. I planes. The wider dissociation distance
of the screw (a) suggests that this dislocation is rather stable on the Basal planes,
so that cross-slip via partial constriction is difficult in these metals. In contrast,
Ti and Zr have Basal screw (a) dissociation distances close to a, suggesting that
the screw (a) dissociated on the Basal plane (if stable) can easily cross-slip to the
energetically favorable Prism plane [4]. These conclusions are all consistent with
the observed dominance of (a) slip in the different metals [S1]. For the (c + a)
dislocations on both Pyr. I and II planes, all metals show fairly large dissociation
distances. In particular, the dissociation distances are very large for Pyr. I (c + a)
in Ti, Zr and Cd and Pyr. II (c + a) in Zn and Cd. The large dissociation distances
pose a computational challenge for DFT simulations of full dislocations. Finally,
comparison with available DFT-based atomic simulations, as shown in Fig. 10 a,
b, d, f, h, i, j, shows good matches with the elasticity calculations here.

6. Discussion and conclusions

Our DFT calculations show that SF3 on the Pyr. I plane is stable in all 6
metals, while the y-surface by DFT in Zr [17] and «-surface by MEAM in Ti [52]
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Figure 10: Equilibrium partial dislocation separation 712 normalized by the respective Burgers
vector ((a) or (c + a) ) as calculated by anisotropic linear elastic theory. Filled-bars: lattice
and elastic constants from experiments (Table 2) and stacking fault energies from DFT (Table 3);
Hatched bars: all properties from DFT calculations; Symbols: full DFT simulations of dislocation
cores using flexible boundary conditions (hexagon) and periodic boundary conditions (diamond).
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seem to suggest that SF3 is not stable along the e, direction. Additional DFT
calculations in Ti and Zr on slightly perturbed SF structures (1-3%a in the +e; and
+e, directions) from the relaxed SF3 position show that the perturbed SFs relax
back to SF3. Stacking faults with larger perturbations from SF3 (> 3%a) relax
into SF2. This suggests SF3 is marginally stable close to the true fault position
and very likely a shallow local minimum not resolved in the v-surface calculated
using the standard method. Additional checks with different supercell sizes (/Vy,
N5 and N3) yield the same conclusion. In all metals except Mg, the energy of
SF3 is substantially different from that of SF2, suggesting that the high energy
SF is very unlikely to form through dislocation dissociation, as demonstrated in
Section 5.1. In Mg, direct DFT calculation [19] on the (c + a) dislocation core
structure on the Pyr. I plane shows that the (c + a) dislocation dissociates into
two partials. All these results suggest that the high energy stacking fault (SF3 in
Mg, Ti, Zr, and Re, SF2 in Zn and Cd) is not relevant to dislocation dissociation
and its physical properties.

Since the ~y-line profile determines a set of important material properties, its
accurate measurement is of fundamental importance. The current DFT results
shown in Fig. 5 and 6 indicate full relaxation is essential on Prism II, Pyr. I and
IT planes in all hcp metals examined here. The procedure detailed in Section 3
is only applicable for determining the stable SE. For any other unstable point on
the ~y-line or y-surface, additional constraints have to be applied to determine the
SF energy. In calculations of pure metals, the y-line can be obtained through the
nudged elastic band (NEB) method calculations, as demonstrated in a recent work
by Kwasniak et al. [13]. Alternatively, the procedure proposed by Morris et al.
[10] may be used to calculate the ~y-line or even the full ~-surface. Therefore, the
procedures to obtain accurate SF information in pure metals are readily available.
Accurate 5 and v, thus obtained can be used to better predict dislocation disso-
ciation [4] and crack-tip behavior in hcp metals [53]. In SF calculations of metals
with solid solution alloying, the NEB method can be applied to obtain a v-line,
but the result depends on the choice of the supercell size /NV; and s, in addition
to the usual Ns-dependence, and will depend on how the solutes are distributed.
The physical interpretation of such computed ~-lines is intricate. The calculations
of the full y-surface with full relaxation are not well-defined in systems with solid
solution, nor is there any clear understanding on its relation to the mechanical
properties of alloys with solutes.

In summary, we conducted a comprehensive study on all the stable stacking
fault on 5 slip planes for 6 hcp metals using crystal symmetry and DFT calcula-
tions. The atomic structures of the SFs are similar among all the metals examined
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here. Crystal symmetry dictates the overall in-plane and out-of-plane displace-
ments, while the details of atomic bonding determine the SF energies and affect
the precise positions and atomic relaxations in a quantitative manner. This sug-
gests that plastic slip share many common features in the family of hcp metals.
Differences in plasticity and the contribution of each slip system toward total plas-
tic strain are due to the activation of different slip systems, which depends on the
Peierls stress and the stability of the dislocation core of the respective slip sys-
tems. Special cases considered here suggest that (c + a) dislocation dissociation
into three partials on the Pyr. I plane is highly unlikely and that (c) dislocation
dissociation on the Prism planes is unlikely to be stable against basal-climb disso-
ciation in these hcp metals. While the above conclusions are general, robust and
not strongly influenced by dislocation core effects, we shall still emphasize that
the current framework does not provide the full scope of dislocation properties,
such as the dislocation core structure. Since dislocation core structures dictate
dislocation behavior in response to applied load, obtaining the true dislocation
core structures and properties, either through DFT calculations or experimental
methods, is still essential. The present comprehensive set of results on the energy
and structure of hcp stacking fault thus provides a useful benchmark for further
theoretical computations, for guiding future direct atomistic simulations, and for
the development of accurate empirical interatomic potentials to enable more com-
plex simulations of dislocation phenomena.
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