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Abstract 

The thesis deals with the development of transition metal-catalyzed difunctionalization of 

alkenes and alkynes, which can be categorized into two major topics: (1) palladium-catalyzed 

diamination of alkynes for the synthesis of tetracycles; (2) copper-catalyzed cyanoalkylation-initiated 

double functionalization of alkenes. The first part of this thesis describes the synthesis of free NH 

tetracyclic indoles by palladium-catalyzed diamination of triple bonds. In the presence of palladium 

catalyst, 1,2-diarylethynes bearing an N-methyl-N-[2-(methoxy-carbonyl)ethyl]amino and an 

aminocarbonyl/aminosulfonyl group at the ortho positions of the two aromatic rings underwent double 

cyclization in a highly ordered fashion to afford N-2-(methoxycarbonyl)ethylaed indolo[3,2-

c]isoquinolinone or indolobenzothiazine S,S-dioxide with complete chemoselectivity. Subsequently, 

the N-[2-(methoxycarbonyl)ethyl] group is readily removed under basic conditions (DBU, DMF, 120 

°C) to afford tetracycles with indolyl nitrogen unprotected. We subsequently developed a transition 

metal-free diamination process to access the tetracyclic quindolinones. In the presence of acetic acid 

and a hydride donor (Hantsch’s ester) under oxygen atmosphere, double cyclization of 1,3-diarylprop-

2-yn-1-ones bearing an N,N-dialkylated amino and an N-monoalkylated amino group at ortho 

positions of aromatic rings occurred smoothly to provide tetracyclic quindolinones. In the second part 

of thesis, copper-catalyzed cyanoalkylative difunctionalization of alkenes with alkylnitriles as 

alkylative reagents was addressed. We developed catalytic conditions (copper salt, ligand, peroxide, 

base) that allowed us to convert unactivated alkenes to 1,2-difunctionalized alkanes or its cyclic 

variants. The domino process proceeded through following key elementary steps: a) generation of 

cyanolakyl radicals; b) addition of cyanoalkyl radical to unactivated double bond; c) interception of 

this adduct radical by a suitable reagent, or more frequently, oxidation of adduct radical to carbenium; 

d) trapping of the carbocation by an internal/or external nucleophile. By applying this strategy, a series 

of value-added molecules such as dihydroisobenzofurans, γ-lactones, aziridines and γ-

azidobutyronitriles, were readily synthesized from simple alkenes. 

 

Keywords: Difunctionalization, palladium, copper, catalyst, alkyne, alkene, domino-reaction, 

tetracycle, indolo[3,2-c]isoquinolinone, indolobenzothiazine S,S-dioxide, quindolinone, alkylnitrile, 

dihydroisobenzofuran, γ-lactone, aziridine, γ-azidobutyronitrile. 
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Résumé 

La thèse traite du développement de la difonctionalisation d’alcènes et d’alcynes, catalysée par 

un métal de transition, qui peuvent être catégorisé en deux principaux thèmes: (1) diamination 

d’alcynes catalysée par le palladium pour la synthèse de tetracycles ; (2) double fonctionalisation 

d’alcènes initiée par une cyanoalkylation catalysée au cuivre. La première partie de cette thèse décrit 

la synthèse d’indole tetracyclique non-protégé par une diamination de triples liaisons catalysée par le 

palladium. En présence du catalyseur au palladium, les 1,2-diarylethynes portant un groupe N-methyl- 

N-[2-(methoxy-carbonyl)ethyl]amino et un groupe aminocarbonyl/aminosulfonyl en position ortho des 

deux cycles aromatiques réagissent via une double cyclisation d’une manière très ordonnée pour 

donner N-2-(methoxycarbonyl)ethylaed indolo[3,2-c]isoquinolinone ou indolobenzothiazine S,S-

dioxide avec une chemosélectivité totale. Par la suite, le groupe N-[2-(methoxycarbonyl)ethyl] peut 

être réduit dans des conditions basique (DBU, DMF, 120 °C) pour donner les indoles tetracycliques 

non-protégés. Nous avons ensuite développé un procédé de diamination sans métaux de transition pour 

accéder à des quindolinones tetracycliques. En présence d’acide acétique et d’un donneur d’hydrure 

(ester de Hantsch) sous atmosphère d’oxygène, une double cyclisation de 1,3-diarylprop-2-yn-1-ones, 

portant un groupe N,N-dialkylated amino et un groupe N-monoalkylated amino en position ortho des 

cycles aromatiques, se produit pour donner des quindolinones tetracycliques. Dans la deuxième partie 

de la thèse, la difonctionalisation d’alcènes initiée par une cyanoalkylation et catalysée par le cuivre 

avec des alkylnitriles comme réactifs alkylants a été étudié. Nous avons développé des conditions 

catalytiques (sel de cuivre, ligand, peroxide, base) qui nous permettent de convertir des alcènes non-

activées en alcanes 1,2-difonctionalisés ou en leur forme cyclique. Ce procédé domino se produit en 

suivant les étapes élémentaires suivantes : a) génération du radical cyanoalkyl ; b) addition du radical 

cyanoalkyl à la double liaison non-activée ; c) interception du nouveau radical formé par un réactif 

adapté ou plus souvent, oxidation du nouveau radical formé en carbenium ; d) piégeage du carbocation 

par un nucléophile interne/ou externe. En appliquant cette stratégie, une série de molécule de valeur 

telle que les dihydroisobenzofurans, les γ-lactones,  les aziridines et les γ-azidobutyronitriles ont été 

synthétisées à partir de simple alcènes. 

 

Mots clés: Difonctionalisation, palladium, cuivre, catalyseur, alcyne, alcène, réaction domino, 

tetracycle, indolo[3,2-c]isoquinolinone, indolobenzothiazine S,S-dioxide, quindolinone, alkylnitrile, 

dihydroisobenzofuran, γ-lactone, aziridine, γ-azidobutyronitrile. 
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General Introduction 

Difunctionalization of C-C multiple bonds has drawn a considerable attention, due to the 

availability of the starting materials and the possibility to reach high complexity and diversity of 

products in single step. Our group has recently developed a series of metal-catalyzed 

difunctionalization of double or triple bonds for the synthesis of heterocycles or complex molecules. 

The subject of my thesis resides on the development of intramolecular palladium-catalyzed 

diamination of triple bonds for the synthesis of tetracycles and copper-catalyzed cyanomethylation-

initiated double 1,2-difunctionalization of unactivated alkenes for the synthesis of value-added 

molecules.  

Significant progress has been made in palldadium-catalyzed diamination of alkenes during last 

decade. They have become powerful and reliable methods to access highly complex molecules, 

including natural products. The analogous diamination of alkynes, however, was restricted to few 

examples. Interested in this underexplored research area, we turned our attention to the development 

of palladium-catalyzed diamination of alkynes aimed at developing efficient access to biologically 

relevant nitrogen-containing heterocycles. In the first part of thesis, we will focus on the synthesis of 

polycyclic indoles such as indolo[3,2-c]isoquinolinones (I-1) and indolobenzothiazine S,S-dioxides (I-

2) by intramolecular double cyclization of bis-nitrogen nucleophiles to triple bond under palladium 

catalysis. The development of a removable N-protecting group for indoles in these palladium catalyzed 

process to reach free NH indoles will be presented. Additionally, the development of a simple acid-

mediated diamination of alkynes for the synthesis of bioactive tetracyclic quindolinone (I-3) will be 

documented. 

 

Copper-catalyzed difunctionalization of alkenes will be the main topic of the second part of this 

thesis. Although copper-catalyzed carbooxygenation/carboamination of alkenes involving the 

formation C(sp
3
)-C(sp

2
) bond was well-established, the corresponding transformations involving the 

formation of C(sp
3
)-C(sp

3
) bond are limited to trifluoromethylation. To exploit this underexplored 

research area, we implemented the development of copper-catalyzed 1,2-difunctionalization of 

unactivated alkenes. The working hypothesis that guided our reaction design are as follows: a) 
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generation of cyanolakyl radical in the presence of appropriate catalytic conditions (copper salt, 

ligand, DTBP); b) addition of cyanoalkyl radical to unactivated double bond; c) interception of this 

adduct radical by a suitable reagent, or more frequently, oxidation of adduct radical to carbenium; d) 

trapping of the carbocation by an internal/or external nucleophile. We will present in this section 

copper-catalyzed amino-cyanoalkylation, azido-cyanoalkylation, oxy-cyanoalkylation of unactivated 

alkenes via formation of a C(sp
3
)-C(sp

3
) and a C(sp

3
)-X (X = N, O) bonds. These reactions provided 

novel access to different scaffolds including dihydroisobenzofurans (II-1), γ-lactones (II-2), aziridines 

(II-3) and γ-azidobutyronitriles (II-4) of significant importance in medicinal chemistry and in organic 

synthesis as building blocks. The synthetic potential of these domino processes will be illustrated by 

developing efficient synthesis of citalopram (a marketed antidepressant) and sacidumligan (natural 

product). 
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1. 1. Palladium-Catalyzed Difunctionalization of Alkynes in Indole Synthesis 

The indole ring is one of the most ubiquitous heterocycles found in nature. Indole moiety can be 

found in tryptophan - a proteinogenic aminoacid, in serotonin, melatonin – neurotransmitters, and in 

many natural products such as alkaloid family. Owing to the broad spectrum of biological activities, 

indole scaffold holds a privileged position in medicinal chemistry.
1
 As a result, numerous indoles have 

been found in pharmaceutically active compounds (Scheme 1). Furthermore, it has also become an 

important structural motif in other research areas such as agriculture, materials, dyes and perfumes.
2
  

  

Figure 1.1: Examples of biologically active indoles 

Due to the prominent role of indole compounds in multidisciplinary fields, the synthesis and 

functionalization of this heterocycle has been one of major interests in organic chemistry and huge 

numbers of different synthetic approaches have been developed for over 100 years.
3
 Despite of plenty 

of available synthetic methodologies nowadays, development of novel processes which can lead 

efficiently and rapidly to indoles, and tolerate wide range of functional groups is still a continuously 

active field of research. Among many synthetic approaches for the synthesis of indoles, palladium-

catalyzed difunctionalization of alkynes is now emerging as very powerful and versatile method to 

produce a variety of substituted indoles.
4
 

                                                                        
1
 Humphrey, G. R.; Keuthe, J. T. Chem. Rev. 2006, 106, 2875. 

2
 Barden, T. In Heterocyclic Scaffolds II:; Gribble, G. W., Ed.; Springer Berlin Heidelberg, 2010; Vol. 26; pp 31. 

3
 Recent review on indole synthesis: (a) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (b) Vicente, 

R. Org. Biomol. Chem. 2011, 9, 6469. (c) Zhang, M.-Z.; Chen, Q.; Yang, G.-F. Eur. J. Med. Chem. 2015, 89,421. 
4
 Review on paladdium-catalyzed indole synthesis: (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. (b) 

Song, J. J.; Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Arkivoc 2010, 1, 390. (c) Shi, 

Z.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 9220.  
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Difunctionalization of carbon-carbon multiple bonds, the addition of two functional groups 

across an alkene or alkyne, is one of the most powerful chemical transformations in organic 

synthesis.
5,6

  It allows quick accessing of highly complex organic compounds by introducing two 

functional groups through a single step. Moreover, due to the availability, price and synthetic 

accessibility of alkenes and alkynes, this transformation is practically and economically useful for 

chemical and pharmaceutical industries. Palladium-catalyzed difunctionalization of carbon-carbon 

multiple bonds normally implies a concept of domino process, which is a combination of two and 

more bond-forming reactions under identical conditions wherein subsequent reaction result as a 

consequence of the functionality formed in the previous step.
7
 Those transformations such as 

carboamination, carbooxygenation, aminooxygenation and diamination have been considered as 

attractive synthetic approaches for construction of heterocyclic compounds. In this part of manuscript, 

palladium catalysis for difunctionalization of alkynes in indole synthesis will be the main topic for 

discussion. 

From viewpoint of difunctionalization of alkynes, indoles could be approached based on three 

different bond disconnections as summarized in Scheme 1.1: intramolecular amination reaction of o-

alkynylaniline (disconnection path b,d); intermolecular  cycloaddition of 2-halogenanilines with 

internal alkynes (disconnection path a,d) and heteroannulation of N-alkynyl-2-halogenanilines 

(disconnection path a,c).  

 

Scheme 1.1: Indole synthetic strategy by palladium-catalyzed difunctionalization of alkynes 

 

                                                                        
5
 Review on Pd-catalyzed difunctionalization of alkenes: (a) Schultz, D. M.; Wolfe, J. P. Synthesis 2012, 3, 351. 

(b) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (c) Jensen, K. H.; Sigman, M. S. Org. 

Biomol. Chem. 2008, 6, 4083. (d) Minatti, A.; Muniz, K. Chem. Soc. Rev. 2007, 36, 1142. (e) Wu, W.; Jiang, H. 

Acc. Chem. Res. 2012, 45, 1736. (f) Kocovsky, P.; Bäckvall, J.-E. Chem. Eur. J. 2015, 21, 36. Reviews on Cu-

catalyzed difunctionalization of alkenes: (g) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. 2007, 36, 1153. (h) 

Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062. (i) Shimizu,Y.; Kanai, M. 

Tetrahedron Lett. 2014, 55, 3727. 
6
 Review on hypervalent iodane mediated difunctionalization of alkenes: (a) Romero, R. M.; Woste, T. H; Muniz, 

K. Chem. Asian. J. 2014, 9, 972. (b) Arnold, A. M.; Ulmer, A.; Gulder, T. Chem. Eur. J. 2016, 22, 8728. 
7
 Tietze, L. F. Chem. Rev. 1996, 96, 115. 
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1. 1. 1. Palladium-Catalyzed Intramolecular Amination of o-alkynylaniline in 

Synthesis of 2,3-Disubstituted Indoles 

It is well-known that o-alkynylaniline derivatives, which are easily accessible by Sonogashira 

coupling reaction of o-iodoanilines and the corresponding alkynes, are excellent substrates for 

palladium-catalyzed domino difunctionalization to indoles. In these transformations, aminometalation 

of o-alkynylaniline/o-alkynylphenol 1.10 affords -indolylpalladium intermediate 1.12 which could 

subsequently be trapped by suitable electrophiles (Scheme 1.2, path a) or nucleophiles (Scheme 1.2, 

path b) to generate various substituted indoles 1.13 or 1.14. In this part, we only focus on discussion 

on the pathway (a); the latter will be mentioned in the chapter 1.2.1. 

 

Scheme 1.2: Palladium-catalyzed indole synthesis of o-alkynylaniline derivatives 

The pathway (a) approach is complementary to the classic Cacchi indole synthesis that involved 

reaction of (hetero)arylhalides or vinyl halides 1.16 with ortho-alkynyl acetinilides 1.15 in the 

presence of Pd(0) catalyst to afford 2,3-disubstituted indoles 1.17 (Scheme 1.3).
8
  

 

Scheme 1.3: Synthesis of 2,3-disubstituted indoles by Cacchi 

The reaction mechanism was postulated to proceed through coordination of organopalladium(II) 

complex 1.18, generated  in situ from aryl halides or vinyl triflates 1.16 and Ph(PPh3)4, to the alkyne 

1.15 to form -alkyne-organopalladium complex 1.19. Subsequent intramolecular nucleophilic attack 

by nitrogen atom across the triple bond generates -indolylpalladium complex 1.20, which undergoes 

reductive elimination to afford 2,3-disubstituted indole 1.21. The N-trifluoroacetyl group, which is 

                                                                        

8
  (a) A. Arcadi, S. Cacchi, F. Marinelli, Tetrahedron Lett. 1992, 33, 3915. (b) A. Arcadi, S. Cacchi, A. Cassetta, 

G. Fabrizi, L. M. Parisi,  Synlett 2001, 1605. (c) S. Cacchi, G. Fabrizi, L. M. Parisi, Synthesis 2003, 728. (d) S. 

Cacchi, G. Fabrizi, L. M. Parisi, Synthesis 2004, 1889. 
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renders the NH more acidic hence easily deprotonated, can be readily removed during the reaction or 

by workup to form free (NH) indole 1.17 (Scheme 1.4).  

 

Scheme 1.4: Mechanism of Cacchi indole synthesis 

This straightforward indole synthesis tolerated well a variety of functional groups, including 

aldehyde, ketone, ester, nitro and nitrile groups. A wide range of electrophiles has been utilized in this 

process, such as arenediazonium salts,
9 a

 ethyl iodoacetates,
9b

 benzyl bromides,
9b

 bromoalkynes,
9c

 

aldehydes,
9d

 isocyanates,
9e

 nitriles
9f

… affording various 2,3-disubstituted indoles.  Moreover, aryl 

chlorides, less reactive in oxidative addition step, are also suitable starting materials by using XPhos 

as a ligand.
10

  Cacchi-type synthesis generally provides 2,3-disubstituted indoles in moderate to good 

yield as result of C-N, C-C bond formation on alkyne substrates. However, alternative transition 

metal-catalyzed domino process for diamination or aminoetherification in this fashion is relatively rare 

(see chapter 1.2.2.a).  

As an improvement of Cacchi methodology, Lu and co-workers later reported a practical one-

pot, regiospecific three-component process for the synthesis of 2,3-disubstituted indoles 1.25 by 

combination of Sonogashira and Cacchi cyclization (Scheme 1.5).
11

 In order to find a proper condition 

for both processes: Sonogashira reaction and aminopalladation, aryl iodide was replaced by aryl 

bromide which reacts with alkyne more slowly to avoid side Sonogashira reaction. CuI should not be 

used as co-catalyst to avoid the non-Pd(II)-catalyzed cyclization of o-alkynyltrifluoroacetanilides 1.15. 

Overall, in the presence of Pd(OAc)2 catalyst, Ph3P and K2CO3 in DMF at 60 °C, 2,3-disubstituted 

indoles 1.25 were isolated in good yields from a mixture of o-iodoanilines 1.22, terminal alkynes 1.23 

and aryl bromides 1.24.  

                                                                        
9
 (a) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Perboni, A.; Sferrazza, A.; Stabile, P. Org. Lett. 2010, 12, 3279. (b) 

Cacchi, S.; Fabrizi, G.;  Parisi, L. M. Synlett 2000, 394. (c) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; 

Parisi, L. M. J. Org. Chem. 2005, 70, 6213. (d) X. Han, X. Lu, Org. Lett., 2010, 12, 3336. (e) Mizukami, A.; Ise, 

Y.; Kimachi, T.; Inamoto, K. Org. Lett. 2016, 18, 748. (f) Xia, G.; Han, X.; Lu, X. Org. Lett. 2014, 16, 2058. 
10

 S. Cacchi, G. Fabrizi, L. M. Parisi, Adv. Synth. Catal. 2006, 348, 1301. 
11

 B. Z. Lu, W. Zhao, H. –X. Wei, M. Dufour, V. Farina, C. H. Senanayake, Org. Lett. 2006, 8, 3271. 
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Scheme 1.5: Multi-component reactions to synthetize 2,3-disubstituted indoles by Lu 

 Besides Cacchi aminopalladation – reductive elimination process, Lu and Han described a novel 

cationic Pd(II)-catalyzed synthesis of substituted 3-hydroxymethyl indoles 1.29 from o-alkynylanilines 

1.27 and aldehydes 1.28 in moderate to good yields (Scheme 1.6).
12

 

 

Scheme 1.6: Synthesis of substituted 3-hydroxymethyl indoles by Lu and Han 

 The mechanism was postulated to proceed through the formation of -indolylpalladium 

complex 1.32 by intramolecular aminopalladation of the alkyne 1.27, then addition of this resulting 

intermediate to the carbonyl group which acts as an electrophile, to quench the carbo-palladium bond 

and complete the catalytic cycles by regeneration of Pd(II) 1.30 (scheme 1.7).  

 

Scheme 1.7: Cationic Pd(II)-catalyzed synthesis of substituted 3-hydroxymethyl indoles 

                                                                        
12

  X. Han, X. Lu, Org. Lett., 2010, 12, 3336. 
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1. 1. 2. Palladium-Catalyzed Heteroannulation of 2-Haloanilines with Alkynes in to 

2,3-Disubstitutedindoles 

Another pathway to access 2,3-disubstituted indoles by taking advantage of carboamination of 

alkynes that involves formation of C-C and C-N bonds was successfully developed by Larock and 

coworkers.
13

 A wide variety of 2,3-disubstituted indoles 1.37 can be prepared in good to excellent 

yields by heteroannulation between o-iodoanilines 1.35 and internal alkynes 1.36 in the presence of 

Pd(OAc)2, NH4Cl or LiCl and carbonate/acetate bases (Scheme 1.8).  Interestingly, o-iodoanilines 1.35 

bearing N-methyl, N-acetyl and N-tosyl are all tolerated under these reaction conditions, making this 

methodology more versatile and practical. Lately, other alternatives to o-iodoanilines such as o-bromo, 

o-chlorooanilines and o-iodobenzoic acids were also effectively introduced into this annulation.
14

  

 

Scheme 1.8: Pd-catalyzed heteroannulation in indole synthesis by Larock 

Different from above synthetic strategy which is initiated by aminopalladation, Larock indole 

synthesis presumably proceeds through carbopalladation of alkynes 1.36 to form C-C bond first, 

followed by formation of C-N bond. The complete mechanism can be described as follows (Scheme 

1.9): (1) oxidative addition of o-iodoanilines 1.35 with Pd(0) to form organopalladium(II) complex 

1.38; (2) coordination of Pd(II) intermediate 1.38 to alkynes 1.36; (3) carbopalladation to afford 

vinylpalladium intermidate 1.40; (4) ligand exchange between nucleophilic nitrogen atom and iodide 

on vinylpalladium intermediate 1.40 to form 6-membered ring palladacycle 1.41; (5) reductive 

elimination to form C-N bond and indole 1.37, with concurrent regeneration of Pd(0) to complete 

catalytic cycle.  

Similar to Fisher indole synthesis, the lack of regioselectivity is a major drawback of this 

important reaction when a dissymmetric alkyne is employed.
15

 The regioselectivity could be mainly 

determined at carbopalladation step in which carbon-carbon bond and vinylpalladium intermediate is 

formed. As a result, steric effect could be one of the major factors to influence the outcome of 

reaction. The insertion of dissymmetric alkynes to arylpalladium intermediate 1.39 favourably takes 

                                                                        
13

 (a) Larock, R. C.; Kgun Yum, E. J. Am. Chem. Soc. 1991, 113, 6689. (b) Larock, R. C.; Yum, E. K.; Refvik, 

M. D. J. Org. Chem. 1998, 63, 7652. (c) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 1551. (d) Roesch, K. R.; 

Larock, R. C. J. Org. Chem. 2001, 66, 412 
14

 (a) Shen, M.; Li, G.; Lu, B. Z.; Hossain, A.; Roschangar, F.; Farina, V.; Senanayake, C. H. Org. Lett. 2004, 6, 

4129. (b) Leogane, O.; Lebel, H. Angew. Chem. Int. Ed. 2008, 47, 350. 
15

 Kumi, S.; Hiroshi, Y.; Toshio, N.; Minoru, I. Biosci., Biotechnol., Biochem. 2008, 72, 2092. 
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place on the carbon atom of alkynes which has less steric hindrance, resulting in 2,3-disubstituted 

indole with bulkier substituent located on C-2 position as a major product. Moreover, coordinating 

effect could also influence on the regioselectivity of this transformation. The substituent with 

functional moiety which can stabilize vinylpalladidum 1.40 by coordination usually resides at the C-2 

position of indoles.  

 

Scheme 1.9: Mechanism of Pd-catalyzed indole synthesis by Larock 

Taking advantage of steric effect on regioselectivity, many silylalkynes are employed in Larock 

reactions to afford 2-silylindoles which upon removal of silyl moieties, furnishing 3-monosubstituted 

indoles. Indeed, this approach was well-recognized and applied in syntheses of many complex natural 

products.
16

 

Another regioselective heteroannulation of free NH o-chlorooanilines 1.42 with phenylacetylene 

derivatives 1.43 was described by Ackermann (Scheme 1.10).
17

 This one-pot reaction, however, is 

different from Larock indole synthesis in that the C-N bond was formed before the C-C bond. 

Mechanistically, it proceeds through two major steps: (1) TiCl4-catalyzed regioselective anti-

Markovnikov hydroamination
18

 of phenylacetylene 1.43 to generate in situ enamine intermediate 1.44; 

(2) palladium–catalyzed intramolecular Heck-type cyclization of intermediate 1.44 to furnish 2-alkyl-

3-aryl substituted indoles 1.45.  An alternative transformation, in which both terminal and internal 

                                                                        
16

 (a) Liu, X.; Deschamp, J. R.; Cook, J. M. Org. Lett. 2002, 4, 3339. (b) Gathergood, N.; Scammells, P. J. Org. 

Lett. 2003, 5, 921. (c) Garfunkle, J.; Kimball, F. S.; Trzupek, J. D.; Takizawa, S.; Shimamura, H.; Tomishima, 

M.; Boger, D. L. J. Am. Chem. Soc. 2009, 16036. (d) Shimamura, H.; Breazzano, S. P.; Garfunkle, J.; Kimball, F. 

S.; Trzupek, J. D.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 7776. 
17

 (a) Ackermann, L.; Kaspar, L. T.; Gschrei, C. J. Chem. Comm.  2004, 2824. (b) Ackermann, L.; Sandmann, R.; 

Villar, A.; Kaspar, L. T. Tetrahedron 2008, 64, 769. 
18

 (a) Ackermann, L. Organometallics 2003, 22, 4367e4368. (b) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 

2007, 72, 6149. 
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alkynes are compatible, was reported by the same group by switching TiCl4 catalyst to ruthenium 

catalyst in the hydroamination step.
19

 

 

Scheme 1.10: Pd-catalyzed heteroannulation in indole synthesis by Ackermann 

As an improvement of Larock's and Ackermann's methodologies, an oxidative heteroanullation 

of simple anilines 1.46 with internal alkynes 1.47 taking advantage of C-H activation was reported by 

Jiao and coworkers (Scheme 1.11).
20

  Direct carboamination of butynedioate derivatives in the 

presence of Pd(OAc)2 under oxygen atmosphere afforded 2,3-disubstituted indoles 1.48 in moderate to 

excellent yields. Pleasingly, both N-nonsubstituted and N-alkyl monosubstituted anilines can be 

transformed successfully into corresponding indoles.  

 

Scheme 1.11: Pd-catalyzed heteroannulation in indole synthesis by Jiao 

The reaction mechanism can be postulated as following: By activation of alkyne 1.47 with Pd(II) 

catalyst, aminopalladation could occur to form a vinylpalladium intermediate 1.51 which undergoes C-

H activation to produce a 6-membered palladacycle 1.52. Desired product can be obtained by 

reductive elimination of the resulting intermediate. Oxidation of Pd(0) by oxygen molecule generated 

Pd(II) species (pathway a, Scheme 1.12). Alternatively, similar to Ackerman's approach, Pd(II)-

catalyzed hydroamination leading to enamine intermediate 1.50 could not be ruled out. The 

subsequent double C-H activation generated the same intermediates as described above 1.51 and 1.52 

which undergo reductive elimination to give indole product (pathway b, Scheme 1.12).  

                                                                        
19

 Ackermann, L.; Althammer, A. Synlett 2006, 3, 3125. 
20

 Jiao, N.; Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y. Angew. Chem. Int. Ed. 2009, 48, 4572. 
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Scheme 1.12: Mechanism of Pd-catalyzed indole synthesis by Jiao 

A complementary method to Jiao's was reported by Lu and Wang.
21

 PdCl2-catalyzed oxidative 

heteroannulation of anilines with diarylacetylenes in the presence of copper salts and Na2CO3 afforded 

2,3-diarylindoles in moderate to good yields.   

Another palladium-catalyzed oxidative coupling was exploited using N-2-pyridyl as a directing 

group (Scheme 1.13).
22

 This reaction displayed a very good substrate scope and regioselectivity with 

respect of the alkyne part. 

 

Scheme 1.13: Pd-catalyzed heteroannulation in indole synthesis by Li 

Using anilines as starting materials, an alternative synthetic strategy to indole was also exploited 

by employing a directing group on nitrogen atom. The first example of this approach is rhodium-

catalyzed heteroannulation between alkynes 1.57 and N-acetyl anilines 1.56 reported by Fagnou and 

coworkers (Scheme 1.14).
23

 The same reaction can also be catalyzed by palladium catalysis (Scheme 

1.14).
24

 Oxidative conditions were performed in the presence of stoichiometric amount of oxidants 

such as Ag2O and Cu(OTf)2. Mechanistically, the reaction proceeds through (1) ortho- C-H activation 

by assistance of acetyl group to form arylpalladium intermediate 1.62; (2) insertion to alkynes 1.60 to 

form vinylpalladium intermediate 1.63; (3) ligand exchanging to form 6-membered palladacycles 1.64; 

(4) reductive elimination to product 1.61 and Pd(0); (5) regeneration of Pd(II) by external oxidants. 
                                                                        
21

 (a) Chen, X.; Li, X.; Wang, N.; Jin, J.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2012, 23, 4380. 
22

 Chen, J.; Pang, Q.; Sun, Y.; Li, X. J. Org. Chem. 2011, 76, 3523. 
23

 Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. 
24

 Zhou, F.; Han, X.; Lu, X. Tetrahedron Lett. 2011, 52, 4681.  
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Scheme 1.14: Heteroannulation in indole synthesis by C-H activation 

 

1. 1. 3. Palladium-Catalyzed Heteroannulation of N-alkynyl-2-Haloanilines in 

Synthesis of 2-Substituted Indoles 

The last disconnection for indole synthesis by difunctionalization of alkynes involves 

intramolecular cyclization of N-alkynyl-2-iodonilines in the presence of palladium catalyst and amine 

to afford 2,3-disubstituted indoles (Scheme 1.15).
25

 The amination-cyclization is tolerated with 

primary, secondary amines and anilines to afford a wide range of 2-aminoindoles. However, only N-

tosyl as a protecting group of nitrogen is reported. The limitation in employing protecting group could 

be accounted for by the requirement of tosyl for the stability and the synthesis of N-alkynyl-2-

iodonilines 1.67 from alkynyliodonium salts 1.66.  

 

Scheme 1.15: Pd-catalyzed amino-cyclization in indole synthesis by Witulsky 

The reaction mechanism was described in Scheme 1.16. Firstly, the oxidative addition of 1.67 to 

Pd(0) afforded palladium(II) complex 1.70. Subsequent aminopalladation of 1.70 afforded 1.71, which 

upon deprotonation provided the palladacycle intermediate 1.72. Reductive elimination from 1.72 

gave indole 1.69 with concurrent regeneration of Pd(0) species.   

                                                                        
25

 Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem. Int. Ed. 2003, 42, 4257. 
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Scheme 1.16: Mechanism of Pd-catalyzed amino-cyclization by Witulsky 

To the best our knowledge, above transformation is the sole example of this synthetic strategy 

using palladium catalysis. However, similar reactions using copper
26

 and gold
27

 as catalyst/promotor 

are known. 

  

                                                                        
26

 Frischmuth, A.; Knochel, P. Angew. Chem. Int. Ed. 2013, 52, 10084. 
27

 Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567. 
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1. 2. Metal-Catalyzed Diamination of Alkynes 

Vicinal diamines are important structural moieties which are present in a variety of natural 

products, biologically active molecules. Chiral vicinal diamines are also widely used as chiral ligands 

or chiral moieties in catalyst for asymmetric reactions.
28

 As a result, they have become an attractive 

target for synthetic chemists and plenty of methodologies have been established to construct this class 

of compound.
29

 Among them, a direct diamination of C-C multiple bonds, double introduction of C-N 

bond across alkenes or alkynes, is the most appealing synthetic approach. Indeed, transition metal-

catalyzed diamination of alkenes have drawn much attention and significant progress has been made 

for this challenging transformation for last decade.
30

 They have been further established as reliable 

methods that are applicable to complex natural product synthesis
31

 or bioactive compounds.
32

 

However, the corresponding diamination of alkynes which can be anticipated to contribute efficient 

synthetic access to nitrogen-containing heterocycles, was surprisingly far less studied.  

As a related topic to our research field, herein we will summarize precedent works on metal-

catalyzed diamination of alkynes in the literature. They will be categorized based on the different 

metal catalysts which are the most useful for this kind of transformation, including: palladium, copper 

and gold.  

 

 

 

  

                                                                        
28

 (a) Michalson, E. T.; Szmuszkovicz, J. Prog. Drug Res. 1989, 33, 135. (b) Lucet, D.; Le Gall, T.; Mioskowski, 

C. Angew. Chem. Int. Ed. 1998, 37, 2580. (c) Saibabu Kotti, S. R. S.; Timmons, C.; Li, G. Chem. Biol. Drug Des. 

2006, 67, 101. 
29

 De Jong, S.; Nosal, D. G.; Wardrop, D. J. Tetrahedron 2012, 68, 4067. 
30

 Reviews on vicinal diamines: (a) Cardona, F.; Goti, A. Nat. Chem. 2009, 1, 269. (b) De Figueiredo, R. M. 
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1. 2. 1. Palladium-Catalyzed Diamination of Alkynes 

Different from electrophilic addition on alkenes or alkynes which can be easily initiated by 

electrophilic attack, nucleophilic additions on unactivated C-C multiple bonds are rare. This could be 

reasoned by the fact that they both represent electron rich property. However, by coordination to metal 

such as palladium(II), the addition of nucleophiles such as amine or amides to C-C multiple bonds 

becomes feasible (Scheme 1.17).  The resulting palladium intermediate 1.76 could be further 

functionalized with suitable electrophile (path a) or another nucleophile (path b) to complete 

difunctionalization process. As a result, in principal, palladium-catalyzed or generally metal-catalyzed 

diamination of C-C multiple bonds could be achieved by employing either 1 nitrogen nucleophile, 1 

nitrogen electrophile or bisnitrogen nucleophiles.  

 

Scheme 1.17: Different approaches in difunctionalization of C-C multiple bond 

In contrast to diamination of alkenes, the corresponding palladium-catalyzed reaction of alkynes 

proceeds through -vinylpalladium intermediate 1.76 which is relatively more stable than -alkyl 

palladium intermediate, the latter being susceptible for β-hydride elimination. The end-stage trapping 

with second functional groups, therefore, is more promising. However, diamination of alkynes 

preserves a C-C unsaturated bond after the reaction; so that this transformation is only effective for the 

synthesis of cyclic and aromatized products. Subsequently, tailoring the reaction fashion for this 

transformation is crucial factor to its success.  

As mentioned previously, o-alkynylanilines, relevant substrates for palladium-catalyzed domino 

process, could be appropriate to diamination as well. Apart from trapping -indolylpalladium 

intermediate with electrophiles (see Scheme 1.2), other methodologies employing nucleophilic spices 

to functionalize indoles have been studied recently. In this case (pathway b), it can be envisioned that 

-indolylpalladium 1.12 can undergoes nucleophilic attack or ligand exchanging, then the resulting 

intermediate follows reductive elimination to generate Pd(0). To complete the catalytic cycles, the 

suitable oxidant is required to regenerate Pd(II) for activation of the triple bond.  
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The first example of diamination of triple bond was described by Muniz in the subscope 

investigation of Pd(II)-catalyzed bisindoline synthesis (Scheme 1.18).
33

 However, this reaction 

requires 20% mol of Pd(OAc)2, high temperature and long time to afford desired product in moderate 

yield.  

 

Scheme 1.18: Pd(II)-catalyzed diamination by Muniz 

The formation of this 3-aminoaindole 1.80 can be explained by a domino process involving 

precoordination/activation, aminopalladation, reductive elimination and regeneration of Pd(II) catalyst 

as shown in Scheme 1.19.  

 

Scheme 1.19: Mechanism of Pd(II)-catalyzed diamination by Muniz 

Our group recently discovered a novel Pd(II)-catalyzed domino transformation of o-(1-

alkynyl)benzamide 1.83 to smoothly afford indolo[3,2-c]isoquinolinones 1.84, in which an internal 

amide can act as a nucleophile to functionalize at position C-3 of indole when the Cacchi cyclization 

was carried out under oxidative condition (Scheme 1.20).
34 

 

Scheme 1.20: Pd(II)-catalyzed diamination by Zhu 
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 Muniz, K. J. Am. Chem. Soc., 2007, 129, 14542. 
34

 Yao,B.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2012, 51, 5170. 
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The double cyclization proceeded through a domino process involving three major steps: 

aminopalladation, reductive elimination and demethylation.
35

 The domino process is initiated by 

double coordination to Pd(II) catalyst by both amide and alkyne functionalities. Following 

deprotonation leads to formation of π,-chelated Pd(II) complex 1.85. The subsequent intramolecular 

nucleophilic attack of nitrogen atom across the activated triple bond affords -indolium-Pd(II) 

complex 1.86. The resulting intermediate undergoes reductive elimination to form the second C-N 

bond and tetracyclic indolium salt 1.87, concomitantly release Pd(0), which is oxidized by 

atmospheric oxygen to regenerate Pd(II) and complete catalytic cycles. Demethylation by SN2 reaction 

of 1.87 with iodide ion furnishes final tetracyclic product and MeI. Iodide anion possibly can be 

regenerated by reaction between acetate ion and MeI, then back to catalytic cycles, allowing the 

reaction to be performed in the presence of a catalytic amount of nBu4NI (scheme 1.21). 

 

Scheme 1.21: Mechanism of Pd(II)-catalyzed diamination by Zhu 

This designed model employing N,N-dimethyl o-alkynylaniline derivative 1.83, acidic and 

atmospheric medium  makes our synthetic method unique among other “conventional” Cacchi indole 

synthesis in which o-alkynyltrifluroacetanildes 1.15, Pd(0) and tricky deoxygenated and basic 

conditions are mandatory (see Scheme 1.3). After detailed investigation on the substrate scope, N,N-

dimethy o-alkynylanilines 1.83 was found to be the most suitable for our method. It is noteworthy that 

o-alkynylacetanilides 1.88 in the presence of Pd(OAc)2 under acidic condition can lead to either 6-exo-

dig oxopalladation or 5-endo-dig aminopalladation to form the corresponding products 1.89 and 

1.90.
36

 In addition, monosubstituted N-methyl o-alkynylaniline 1.91 failed to produce the 

biscyclization product due most probably to the strong coordination of the secondary amine to 

                                                                        
35

 Yao, B.; Wang, Q.; Zhu, J. Chem. Eur. J. 2014, 20, 12255. 
36

 T. Saito, S. Ogawa, N. Takei, N. Kutsumura, and T. Otani, Org. Lett. 2011, 13, 1098. 
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palldadium species. A palladidum catalyzed hydroamination of 1.91 could also occur to form a side 

product 1.93 (Scheme 1.22).
37

 

 

Scheme 1.22: Influence of substitutents on nitrogen to Pd-catalyzed cyclization 

Interestingly, palladium-catalyzed difunctionalization by two nucleophiles could be performed 

under neutral-redox conditions when propargyl bromide or propargyl carbonates was employed as 

alkyne substrates. Tanaka, Fujii and Ohno reported a palladium-catalyzed double cyclization of 

propargyl bromide 1.94 by two tethered nucleophilic nitrogens to construct bicyclic heterocycles 1.97 

(Scheme 1.23-a).
38

  This transformation proceeds through formation of η
3
-propargylpalladium 1.95 by 

oxidative addition, followed by double intramolecular nucleophilic attack by NHTs. Alternatively, 

intermolecular diamination of propargyl carbonates with bisnitrogen nucleophiles to afford highly 

substituted piperazines was published by Rawal et al. (Scheme 1.23-b).
39

 Although in those examples, 

both nucleophiles are not added across the triple bonds, they imply the efficient utilization of 

palladium catalysis in diamination of alkynes. 

 

Scheme 1.23: Pd-catalyzed double cyclization of propagyl bromide/carbonates 

 

                                                                        
37
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38
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2010, 16, 8410. 
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1. 2. 2. Copper-Catalyzed Diamination of Alkynes 

Copper catalysts represent multiple properties in chemical transformations, such as Lewis acid, 

-acid, a single-electron mediator and a two-electron mediator. As a result, copper-catalyzed 

transformation becomes a powerful tool to difunctionalize C-C multiple bonds. Herein we would like 

to list out precedent works in literature on diamination of alkynes using copper catalysis.  

a) Copper-catalyzed diamination of alkynes by a nucleophilic and an electrophilic nitrogen 

Hirano and Miura reported a copper-catalyzed annulative amination of o-iodoanilines/o-

iodophenols for synthesis of 3-aminobenozfurans and -indoles in mild conditions.
40

 Successful 

aminoetherification and diamination were achieved by trapping -benzoheteroylcuprate (as shown in 

scheme 1.2 or 1.17) with electrophilic amination reagents, O-acylated hydroxylamines.  The 

mechanism was postulated to proceed through the formation of -benzoheteroyl metal species 1.106 

via intramolecular anti-oxometalation or -aminometalation by nucleophilic attack of pendant 

nucleophile to triple bond, then subsequent coupling of this resulting intermediate to O-acylated 

hydroxylamines to afford desired 3-aminobenzoheteroles 1.103 or 1.104 along with regeneration of 

copper catalyst (Scheme 1.24). 

 

Scheme 1.24: Hirano and Miura's copper catalysed annulative amination  

                                                                        
40

 (a) Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2395. (b) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, 

M. J. Org. Chem. 2012, 77, 617. 
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Related to Hirano and Miura's work, a rhodium(III)-catalyzed cascade cyclization/electrophilic 

amidation of o-iodoanilines/o-iodophenols with N-pivaloyloxylamines as electrophilic reagents was 

reported by Tong and Liu.
41

 Addition of both pendant nucleophilic oxygen/nitrogen and electrophilic 

nitrogen amide across triple bond was also proceeded smoothly in the presence of rhodium catalyst 

under mild conditions to afford 3-amidobenzofurans or 3-amidoindoles (Scheme 1.25).  

 

Scheme 1.25: Tong and Liu's rhodium(III)-catalysed cascade cyclization/amidation  

b) Copper-catalyzed/mediated diamination of alkynes by bisnucleophilic nitrogens 

Complementary to Muniz's and our works, a copper-mediated intramolecular double-cyclization 

of bis(2-aminophenyl)acetylene was reported recently by Yamamoto and Jin.
42

 bis(2-amino-

phenyl)acetylene 1.110 bearing both N,N-dimethyl and primary amine groups was converted into 

tetracyclic 5,10-dihydroindolo[3,2-b]indoles 1.111 in good yield under oxidative Cu(hfacac)2/O2 

system (Scheme 1.26). The designing of substituents on nitrogen atoms is crucial to the success of the 

reaction, in which intermolecular methyl transferring from N,N-dimethyl amine to primary amine was 

observed by deuterium labelling experiments.   

 

Scheme 1.26: Copper-mediated diamination of alkynes by Yamamoto and Jin 

The reaction mechanism of double cyclization is not fully understood. However, based on the 

experimental observations, the following route could be suggested (Scheme 1.27): bis(2-

aminophenyl)acetylene can be oxidized on electron-rich N,N-dimethylamine by single electron 

transfer with copper salts to form cation radical 1.112 which is further oxidized by copper and oxygen 

molecule to give aniline-copper radical species 1.113. This intermediate should be stabilized by its 

resonance form of Cu-nitrenoid intermediate 1.114. Subsequently, intermolecular N-methyl transfer of 

1.113 from N,N-dimethyl amine to primary amine could take place to provide symmetrical N-

methylamine radical 1.115 which undergoes radical cyclization across triple bond to afford desired 

                                                                        
41

 Hu, Z.; Tong, X.; Liu, G. Org. Lett. 2016, 18, 2058. 
42

 Ho, H. E.; Oniwa, K.; Yamamoto, Y.; Jin, T. Org. Lett. 2016, 18, 2487. 
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tetracyclic product (pathway a). Alternatively, radical addition of 1.113 or 1.114 across the triple bond, 

and followed by intermolecular N-methyl transfer could be considered to form the same desired 

product (pathway b).  

 

Scheme 1.27: Suggested mechanism of copper-mediate diamination by Yamamoto and Jin 

Lately, a similar intramolecular double cyclization of bis(2-aminophenyl)acetylene 1.117 to 

afford the same tetracycles 5,10-dihydroindolo[3,2-b]indoles 1.118 via Cu(OAc)2-mediated reactions 

was published by Du and coworkers (Scheme 1.28).
43

 Different from previous work, double 

sulfonylated amines are required to the success of diamination.  

 

Scheme 1.28: Copper-mediated diamination of alkynes by Du 

Urabe et al. first revealed an intermolecular diamination of alkynes between 1-halo-1alkynes 

1.119 and bisnitrogen nucleophiles 1.120 to afford tetrahydropyrazines 1.123 by copper-catalyzed 

reactions in neutral redox conditions (Scheme 1.29).
44

  The reaction mechanism proceeds through 

copper(I)-catalyzed N-alkynylation
45

 to form the first C-N bond and ynamine intermediate 1.121. 

Interestingly, 1.121 can exclusively undergo 6-endo-trig cyclization instead of 5-exo-trig (which is 

normally more favourable) by copper-coordination and nucleophilic attack of the second NHTs to 

produce 6-membered ring intermediate 1.122. The regioselectivity of cyclization could be reasoned by 

coordination effect of sulfonamide functional group as depicted in scheme 1.29. The subsequent 

protonation of 1.122 provided desired tetrahydropyrazines 1.123 and release Cu(I) to continue 

catalytic cycles.  
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 Yu, J.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 3322. 
44
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Scheme 1.29: Copper-catalyzed diamination of alkynylbromides by Urabe 

Copper-catalyzed intermolecular diamination of alkynes was later reported by Liu and 

coworkers.
46

 The heteroannulation of 2-aminopyridines 1.124 with propiolate derivatives 1.125 was 

catalyzed by copper/iron catalyst system in oxidative conditions to afford imidazo[1,2-α]pyridines 

1.126 with high chemoselectivity and regioselectivity (Scheme 1.29). This transformation is well-

tolerated with different aromatic substituted on alkynes; however, an activating functional group 

(electro-withdrawing groups) on alkynes such as carboxylate is mandatory. The reaction proceeded 

through the following steps: (1) coordination of 2-aminopyridine 1.124 and alkyne 1.125 to copper to 

form complex 1.127; (2) syn-nucleocupration with pyridine nitrogen, which is more nucleophilic, led 

to copper(II) intermediate 1.128, along with dearomatization of pyridine ring; (3) Oxidation of 1.128 

to form cyclic copper(III) intermediate 1.129; (4) reductive elimination to form the second C-N bond 

and desired product 1.126, with concomitant release of copper(I); (5) regeneration of copper(II) by a 

sequence of redox cycles.   

 

Scheme 1.30: Copper-catalyzed diamination of alkynes by Liu 
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Analogously, Neuville reported an efficient copper-catalyzed 1,2,4-trisubstituted imidazole 

synthesis by diamination of terminal alkynes with amidines under oxidative conditions (Scheme 

1.31).
47

 This transformation tolerated a wide range of functional groups leading to a broad scope of 

imidazoles. Both aliphatic and aromatic terminal alkynes without activating groups are suitable 

substrates.  

 

Scheme 1.31: Copper-catalyzed diamination of terminal alkynes by Neuville 
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 Li, J.; Neuville, L. Org. Lett. 2013, 15, 1752. 
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1. 2. 3. Gold-Catalyzed Diamination of Alkynes 

Gold complexes, powerful soft Lewis acids which can activate alkynes toward nucleophilic 

attack have attracted great attention recently.
48

 Gold-catalyzed transformations provide efficient 

methods with mild conditions, good chemo- and regioselectivity for straightforward synthesis of 

heterocycles, polycyclic scaffolds and natural products.
49

 In recent years, α-carbonyl gold carbenes
50

 

have emerged as promising and valuable intermediates for complex organic transformations, 

especially, 1,2-difunctionalization of alkynes. The mechanism of generation of α-carbonyl gold 

carbene from oxidation (such as pyridine N-oxide) of alkynes can be postulated through addition of N-

oxide to gold-activated alkyne 1.134 to form vinyl gold intermediate 1.135 which undergoes 

rearrangement to form α-carbonyl gold carbene 1.136 and release pyridine as byproduct (Scheme 

1.32). The most viable transformation of this highly active intermediate is nucleophilic addition to 

obtain α-functionalized carbonyl product 1.137. 

 

Scheme 1.32: Gold-catalyzed oxidation/nucleophilic addition of alkynes 

This mechanic course of transformation has been further exploited in difunctionalization of 

alkynes. Herein, we will sort out several examples of gold-catalyzed diamination of alkynes related to 

the formation of carbenoid intermediate.  

Toste and coworkers developed a mild, atom economical gold-catalyzed synthesis of 

imidazo[1,2-α]pyridines 1.140 from 2-aminopyridine N-oxide 1.138 and terminal alkynes 1.139 

(Scheme 1.33).
51

 The synthetic strategy takes advantage of formation of 2-aminopiridine byproduct 

1.141 as bisnitrogen nucleophiles to trap α-carbonyl gold carbene 1.142. This synthetic approach could 

be considered as a complementary method to copper-catalyzed heteroannulation as mentioned 

previously (see Scheme 1.31).  
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Scheme 1.33: Gold-catalyzed diamination of alkynes by Toste 

Alternative to α-carbonyl gold carbene, imino carbene intermediate has attracted great attention 

recently.
52

 The formation of imino gold carbene intermediates could occur from nucleophilic addition 

of appropriate nitrogen-based reagents across a gold-activated triple bond 1.145 to get vinyl gold 

intermediate 1.146 which follows rearrangement to form imino carbene 1.147 (Scheme 1.34). The 

reactions involving with this intermediate should offer the great potential to construct nitrogen-

containing molecules. Rationally, using another nitrogen nucleophile for trapping 1.147, a diamination 

of alkynes could be achieved.  

 

Scheme 1.34: General formation of imino gold carbenes 

Indeed, the trapping of this intermediate with nitriles to afford bicyclic imidazoles was reported 

by Xiao and Zang (Scheme 1.35).
53

 In this transformation, a cyclic α-imino gold carbine intermediate 

1.150 is generated in situ via intramolecular nucleophilic addition of azido group, followed by 

extrusion of N2 molecule. The highly electrophilic intermediate 1.150 is then trapped by a nitrile to 

form intermediate 1.151 which cyclizes to furnish bicyclic imidazole 1.152. A variety of nitriles could 

be employed successfully to the system, including aliphatic, aromatic, and functional-group-

containing nitriles. However, the utilization of nitriles as solvents is mandatory to its success.  

                                                                        
52
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Scheme 1.35: Gold catalyzed diamination of alkynes via imino carbene by Zang 

Davies et al. has developed a novel nitrogen-based reagent for imino carbene generation. 

Pyridium N-(heteroaryl)amines 1.153 were used to react with internal alkynes 1.154 for the synthesis 

of fused imidazole compounds 1.158 (Scheme 1.36).
54

 Diamination of alkynes was achieved under the 

catalysis of either gold(I) or gold(III) in simple conditions. A broad scope of alkynes bearing alkyl 

chain, aryl, heterocycles, functional groups are applicable to this reaction.  

 

Scheme 1.36: Gold catalyzed diamination of alkynes via imino carbene by Davies 
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1. 3. Goals of The First Part of Thesis 

Given the advanced synthetic applicability of difunctionalization, development of new 

diamination or aminoacetoxylation/aminoetherification methodologies to rapidly construct 

heterocycles from readily available alkynes has become an active area of study. Our group has deep 

interests in developing efficient syntheses of nitrogen-heterocyclic compounds, especially, indoles and 

indole-containing natural products.
55

 As continuation of this topic, we have decided to develop novel 

diamination transformations of alkynes that could be applied to the synthesis of polycyclic indoles.  

The first part of this manuscript, therefore, will deal with Pd(II)-catalyzed intramolecular double 

cyclization of 1,2-diarylethynes bearing bisnitrogen nucleophiles to afford tetracyclic indoles (Scheme 

1.37). Studies on removable N-protecting group for indoles in those palladium catalysis systems to 

access free NH indoles will also be discussed.  

The investigation on palladium-catalyzed and acid-mediated intramolecular double clization of 

1,3-diarylprop-2-yn-1-ones bearing bisnitrogen nucleophiles to afford indolo[3,2-b]quinolinones 

scaffolds will also be detailed in this part (Scheme 1.37).  

 

Scheme 1.37: Synthesis of tetracyclic indoles by pd(II)-cat. or acid mediated diamination of alkynes 
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 (a) Wang, Z. H.; Bois-Choussy, M.; Jia, Y. X.; Zhu, J. Angew. Chem. Int. Ed., 2010, 49, 2018; (b) Gerfaud, T.; 
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CHAPTER 2 

Synthesis of Indoloisoquinolinones by 

Pd(II)-Catalyzed Intramolecular 

Diamination of Alkynes.  

2‑(Methoxycarbonyl)ethyl as a Removable 

N‑Protecting Group 

 

Note: This project was realized in collaboration with Dr. Yao Bo 

 

  



43 

 

2.1. Introduction  

Indole scaffold holds a privileged position in medicinal chemistry with broad spectrum of 

biological activities.
1
 In particular, polyheterocycles embedded with 3-aminoindole moiety and their 

derivatives have been found in a number of natural products (1.167-1.170, Figure 1.2)
56

 and bioactive 

synthetic compounds (1.171, Figure 1.2).
57

 They showed various biological activities such as anti-

malarial, anti-muscarinic, anti-bacterial, anti-viral and anti-plasmodial.
56, 58

 The synthesis of these 

compounds, therefore, has attracted significant attention from synthetic chemists.
56,59

 Interested in this 

scaffold, we have developed a synthesis of tetracyclic free NH indolo[3,2-c]isoquinolinones 1.171 by 

palladium catalysis, which will be described in this chapter. 

 

Figure 1.2: Natural and synthetic compounds embedded with 3-aminoindole moiety 

As introduced in the first part of this thesis, many transformations require an appropriate N-

protective group leading to N-substituted heterocycles and in many cases, the nature of the N-

substituent is crucial to the success of the reaction. While electron-withdrawing N-acyl, N-carbamoyl 

or N-sulfonyl protecting groups are frequently introduced to the cyclization precursors as they are 

easily removable, the N-alkylation is sometimes mandatory to ensure the occurrence of the desired 

transformation. For example, in Solé's synthesis of 1-methyl-2,3-dihydroquinolin-4(1H)-ones 1.173, 

                                                                        
56
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the aniline nitrogen in the cyclization substrate 1.172 has to be N-alkylated (eq 1, Scheme 1.38).
60

 The 

same trend was encountered in the electrophilic cyclization of anilines developed by Larock and co-

workers.
61

 Indeed, only N,N-dialkylated o-alkynyl anilines 1.174 underwent cyclization under their 

optimized conditions leading to 3-iodo, 3-sulfenyl and 3-selenylindoles 1.175. No cyclization occurred 

if the aniline nitrogen was left unproctected, mono N-alkylated, N-acylated or N-carbamoylated (eq 2, 

Scheme 1.38). The N-carbamoyl and N-tosyl derivatives failed to undergo cyclization due probably to 

unfavourable conformational properties of these compounds. Another example discussed in chapter 

1.2.1 is our methodology on double cyclization of o-(1-alkynyl)benzamide 1.83. N,N-dimethylamine is 

mandatory for the success of transformation, resulting in the formation of N-methylated indolo[3,2-

c]isoquinolinones 1.84 (eq 3, Scheme 1.38).
34

 No desired product was observed if N-acylated, N-

monosubstituted and N-unsubstituted amines were employed. Due to this limitation and the 

challenging in removal of methyl group on indole nitrogen atom, compound 1.84 cannot be further 

functionalized to modulate physical, chemical and biological properties. 

 

Scheme 1.38: Impact of N-alkyl substituent in cyclization 

In light of the recurrence of N-alkyl substituent in heterocycle synthesis, the difficulties 

associated with its removal and the importance of N-H function in the bioactivity of heterocycles, the 

development of an easily removable N-alkyl group is of high importance. This N-alkyl group should 

be easily introduced to the starting materials, compatible with the desired transformations but readily 

                                                                        
60

 (a) Solé, D.; Serrano, O. Angew. Chem. Int. Ed. 2007, 46, 7270. (b) Solé, D.; Vallverdu, L.; Solans, X.; Font-

Bardia, M.; Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587. 
61

 (a) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037. (b) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 

71, 62. (c) Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. (d) Chen, Y.; Cho, C.-H.; Larock, R. C. Org. Lett. 

2009, 11, 173. (e) Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Adv. Synth. Catal. 2011, 

353, 2739. (f) Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2013, 15, 3274. Friedel-Crafts type cyclization: (g) Moody, 

C. J.; Swann, E. Synlett 1998, 135. 
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removed after cyclization. In order to extend the scope and practical aspect of our method,
34

 we set out 

to investigate a newly designed model for Pd(II)-catalyzed intramolecular diamination with the aim of 

synthesizing tetracyclic free NH indoles. In this designed transformation, o-(1-alkynyl)benzamide 

1.159 bearing appropriate dialkyl substituents (R
3
, R

4
) on nitrogen atom could undergo double 

cyclization to afford N11-alkylated (N-R
3
) indolo[3,2-c]isoquinolinones 1.161. Subsequently, 1.161 

should be converted into free NH indoles 1.163 by removal of alkyl group (R
3
) (Scheme 1.139). It is 

worthy to note that the double cyclization should be controlled to proceed through a selective N-

dealkylation in order to afford the sole desired product if two different alkyl substituents are 

employed.   

 

Scheme 1.39: Synthesis of tetracyclic free NH indoles by  

Pd(II)-catalyzed diamination of alkynes and removal of N-alkyl group 
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2.2. Precedent Synthetic Approaches to Indolo[3,2-c]isoquinolinones  

Indolo[3,2-c]isoquinolinones are generally synthesized by multiple steps from unstable 3-

aminoindole derivatives which normally in turn are prepared by nitrosation or nitration of indoles 

(Scheme 1.40).
62

 In addition, this approach cannot provide structural diversity, due to the limitation in 

accessing starting materials. 

 

Scheme 1.40: Synthesis of indolo[3,2-c]isoquinolinone from 3-aminoindole 

Another facile and convenient synthesis of indolo[3,2-c]isoquinolinones was developed by 

Jagtap's group.
63

 Tetracyclic compound embedded 3-aminoindole can be easily accessed by base-

promoted condensation between ethyl 2-(1-bromo-2-ethoxy-2-oxoethyl)benzoate (1.180) and ethyl (2-

cyanophenyl)carbamate (1.181) followed by removal of carbamate group by hydrazine (Scheme 

1.41a). The formation of 1.171 was proposed through a sequence of reactions involving nucleophilic 

substitution, base-promoted condensation, and decarboxylation (Scheme 1.41b). 

 

Scheme 1.41: Synthesis of indolo[3,2-c]isoquinolinone by base-promoted condensation 

                                                                        
62

  a) Jagtap, P. G. et. al., US 2004/0039009 b) Jagtap, P. G. et. al., WO 2005/082368. 
63

  Jagtap, P. G.; Baloglu, E.; Southan, G.; Williams, W.; Roy, A.; Nivorozhkin, A.; Landrau, N.; Desisto, K.; 

Salman, A.; Szabó, C. Org. Lett., 2005, 7, 1753.  
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Based on Jagtap’s method, Chua and coworkers recently reported one-pot multiple synthesis of 

indolo[3,2-c]isoquinolin-5-one (1.171) from methyl 2-(bromomethyl)benzoate (1.188) and N-

protected 2-aminobenzonitriles 1.189 in the presence of KOt-Bu.
57

 By switching ethyl 2-(1-bromo-2-

ethoxy-2-oxoethyl)benzoate (1.180) into 1.188, the cascade reaction proceeded smoothly with various 

substituted substrates; N-methyl, N-benzyl, N-ethyl carbamate indolo[3,2-c]isoquinolinones were 

obtained in moderate to good yields (Scheme 1.42).  

 

Scheme 1.42: Synthesis of indolo[3,2-c]isoquinolinone by Chua 

Mechanism of this reaction is similar to Jagtap’s one (Scheme 1.41), excluding decarboxylation 

step which is replaced by deprotonation by strong base tBuOK. This synthesis enables quite broad 

scope of tetracyclic indoles. However, the introduction of substituents in aromatic ring of 2-

(bromomethyl)benzoate (1.188) is quite limited. Moreover, this reaction is base-promoted 

condensation, so that it might not tolerate many functional groups such as ester, nitrile or hydroxyl that 

may interfere to the formation of desired product. 
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2.3. Results and Discussion 

2.3.1. Primary results 

Our initial study focused on the choice of appropriate substituents on nitrogen atom. Several o-

(1-alkynyl)benzamide substrates 1.191a-f were prepared to examine the double cyclization under 

standard conditions reported previously by our group (Scheme 1.43).
34 

Unfortunately, unsubstituted, 

monosubstituted anilines 1.191a,b,d and N-methyl-N-phenylaniline 1.191c did not cyclize, and were 

recovered after the reactions. Strong coordination of primary and secondary amines to palladium 

catalyst could poison the catalyst system in cases of 1.191a,b,d. Furthermore, significant decrease of 

the nucleophilicity of nitrogen atom by conjugation could result in non-cyclization in case of 1.191c. 

N,N-dibenzyl substrate 1.191e did cyclize but afforded only a trace amount of the desired product after 

elongated time. On the other hand, N-benzyl-N-methylaniline 1.191f underwent the double 

cyclization, however, to provide N-methylated tetracycle 1.192f indicating that the N-debenzylation is 

faster than the N-demethylation under these oxidative conditions.  

 

Scheme 1.43: Primary study on impact of substituents on nitrogen atom to cyclization 

Early failure in double cyclization prompted us to redesign our model substrates. As mentioned 

previously, N,N-dialkyl substituents, crucial factor to the success of cyclization, can facilitate 

aminopalladation because they can increase the nucleophilicity of aniline functional group by 

inductive effect and sterically deconjugating effect between nitrogen and aromatic ring. Moreover, 

substrates with bulky N,N-dialkyl anilines such as 1.191e should be avoided due to steric hindrance 

which could slow down the aminopalladation step. As a result, an N-methyl-N-alkyl substrate could be 

a relevant option. Additionally, an N-demethylation pathway under diamination conditions could be 

controlled to provide N-alkylated tetracycle which, upon removal of the N-alkyl group, would provide 

the tetracycle with an N-unprotected indole unit. To reach this goal, we turned our attention on N-

methyl-N-[2-(methoxycarbonyl)ethyl]-o-alkylnylanilines 1.193 (see below) as a test substrate to 

investigate this intramolecular diamination.  
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2.3.2. Screening conditions 

Using N-methyl-N-[2-(methoxycarbonyl)ethyl]-o-alkylnylanilines 1.193a as test substrate, 

condition screening for oxidative diamination was carried out by varying palladium sources, additives, 

solvents, temperatures etc. The results are summarized in Table 1.1. 

Table 1.1: Optimization of conditions for oxidative diamination of 1.193a 

 

Entry 
Pd(II) 

(mol%) 
Additives (equiv) 

T 

(ºC) 

Time 

(h) 

Conversion 

(1.194a/1.194a') 

Yield 

[%] 

1 Pd(OAc)2 (05) nBu4NI (0.1), HOAc (2.0) 80 13 25% (1:1) 10%
(b)

 
 

2 Pd(OAc)2 (10) nBu4NI (1.0), HOAc (2.0) 50 13 50% (1:12.5) 
38%

(b)
 

(1.194a') 

3 Pd(OAc)2 (10) nBu4NI (1.0), HOAc (1.0) 80 13 100% (1:12.5) 56% 

4 Pd(TFA)2 (10) nBu4NI (1.0), HOAc (1.0) 50 1.5 30% (4:1) - 

5 Pd(TFA)2 (10) nBu4NI (1.0), HOAc (1.0) 50 17 70% (6:1) - 

6 Pd(TFA)2 (10) nBu4NI (1.0), HOAc (1.0) 80 17 85% (10:1) - 

7 Pd(TFA)2 (10) 
nBu4NI (1.0), HOAc (1.0), 

TsOH (0.1) 
50 21 77% (>30:1) 

60% 

(1.194a) 

8 Pd(TFA)2 (10) 
nBu4NI (1.0), HOAc (1.0), 

1,10-phen (0.1) 
80 14 38% (1.5:1) - 

9 Pd(TFA)2 (10) 
nBu4NI (1.0), HOAc (4.0), 

Cu(OTf)2 (0.2) 
50 26 53% (17:1) - 

10 Pd(TFA)2 (10) 
nBu4NI (1.0), HOAc (1.0), 

Cu(OTf)2 (0.25) 
80 14 100% (>30:1) 

71% 

(1.194a) 

(a) Reaction conditions: A solution of 1.193a (0.05 mmol), Pd(II), additives in 2.0 mL DMSO was 

heated under air atmosphere. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal 

standard 
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Using the previously optimized conditions [Pd(OAc)2 (5 mol%), n-Bu4NI (10 mol%), HOAc 

(2.0 equiv), air (1 atm), DMSO (0.025 M), 80 
o
C],

34,35
 only 25% of starting material was consumed 

after 13 hours (duration needed for full conversion with N,N-dimethyl 2-alkynylanilines 1.83). Both 

desired product 1.194a and side product 1.194a' resulting from N-demethylation and N-de(2-

methoxycarbonyl)ethylation respectively (see mechanism  in Scheme 1.21, chapter 1.2.1), were 

formed (1:1 ratio) in approximately ~10% yield each by NMR (entry 1, Table 1.1). The low 

conversion demonstrated the low activity of compound 1.193a. The steric hindrance and electron-

withdrawing effect of the ester group could reduce nucleophilicity of the nitrogen atom, inhibiting 

therefore the cyclization.  

We presumed that catalytic amount of iodide was not guaranteed to promote the reaction with 

such low activity. A stoichiometric amount of nBu4NI was applied (entry 2,3). Interestingly, the 

conversion increased dramatically; full conversion was observed at 80 ºC after 13 hours. However, 

regioselectivity of dealkylation step remained moderate (1.194a/1.194a' = 1:12.5) and favoured to 

formation of side product through N-de(2-methoxycarbonyl)ethylation pathway. These unexpected 

results prompted us to revise the mechanic hypothesis to figure out the factors controlling the 

regioselectivity (Scheme 1.44).  

 

Scheme 1.44: Possible mechanism of Pd(II)-catalyzed diamination of 1.193a 
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 Domino process involves several consecutive steps: aminopalladation, reductive elimination, 

demethylation, and regeneration of Pd(II). As discussed in 1.2.1of this thesis, demethylation is the key 

step to drive the formation of desired product. In this case, an expected demethylation can occur by a 

SN2 attack of iodide ion to methyl group, leading the formation of 2-(methoxycarbonyl)ethylated 

indole 1.194a (pathway a), whereas, a SN2 attack on N-(2-methoxycarbonyl)ethyl group could drive 

the reaction to form a tetracyclic N-methylated indole 1.194a' (pathway b). Rationally, methyl group 

is much more favourable to nucleophilic attack than a secondary 2-(methoxycarbonyl)ethyl. That 

means formation of 1.194a should dominate as a major product. However, the experimental results 

showed contradictory evidences. To explain this observation, we proposed that, the removal of 2-

(methoxycarbonyl)ethyl group which leads to formation of side product, can be conducted in another 

fashion. Particularly, an anion such as acetate can act as a base to promote retro-Michael reaction to 

remove ester side-chain through E1cb mechanism. This explanation could be reasonable, because in 

DMSO, acetic acid is not really a strong acid (pKa=12.3);
64

 consequentially, conjugated acetate ion is 

strong base. At high temperature, it can promote a retro-Michael reaction. 

 To confirm our hypothesis, we replaced Pd(OAc)2 catalyst by Pd(TFA)2 because trifluoroacetate 

anion is much weaker base compared to acetate (pKa TFA in DMSO = 3.45).
63

 As expected, 

regioselectivity was switched to formation of 1.193a as a major product (entry 4,5,6), although the 

conversion was slightly lower than Pd(OAc)2-mediated condition (see entry 6 and 3). To assist the 

catalyst system, several additives were also added (entry 7-10). Catalytic amount of TsOH further 

improved the selectivity in favour of the desired product 1.194a (entry 7); whereas, 1,10-

phenanthroline performed poor activity and poor selectivity (entry 8). Probably, 1,10-phenanthroline 

in this circumstance can react with acetic acid to produce a significant amount of acetate anion which 

is harmful to catalytic system. Finally, when Cu(OTf)2 was introduced (entry 9, 10), a full conversion 

with 71% isolated yield of 1.194a was obtained, implying that Cu(OTf)2 plays an important role in this 

catalytic system. It may participate directly as a co-catalyst or may support for regeneration of Pd(II) 

as a co-oxidant. Overall, the optimum conditions consisted of performing the intramolecular 

diamination of 1.193a in DMSO (c 0.025 M) at 80 
°
C in the presence of Pd(TFA)2 (0.1 equiv), 

Cu(OTf)2 (0.25 equiv), HOAc (1.0 equiv), and nBu4NI (1.0 equiv). Under these conditions, double 

cyclization of 1.193a took place smoothly to afford desired product 1.194a in 71% isolated yield with 

almost complete chemoselectivity. 

   

  

                                                                        
64

  Bordwell, F.G. Acc. Chem.Res. 1988, 21, 456. 
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2.2.3. Substrate scope for Pd(II)-catalyzed oxidative diamination 

2.2.3.1. Synthesis of o-(1-alkynyl)benzamide derivatives 

o-(1-alkynyl)benzamide 1.193 were synthesized by Sonogashira reaction (Table 1.2). In the 

presence of 1.10 equiv of 1.198, 3 mol% Pd(PPh3)2Cl2, 4  mol% CuI,  4.0 equiv of Et3N in DMF at 60 

°C or 80 °C, 2-iodobenzamide derivatives 1.199 were converted smoothly into 1.193 in average 75% 

yield. At 80 °C, 1.199 were consumed totally after 30 minutes, whereas, the condition at lower 

temperature (60 °C) took 2-3 hours to complete but furnished cleaner reaction and better yield. The 

reaction tolerated a variety of substituents on both aromatic rings.  

Table 1.2: Synthesis of o-(1-alkynyl)benzamide derivatives 1.193 

 

   

 

1.193a 

1.193b 

1.193c 

1.193d 

1.193e 

1.193f 

1.193g 

R
1
 =      

4-MeOC6H4 

Me 

4-MeC6H4 

C6H5 

4-ClC6H4 

3-FC6H4 

3-CF3C6H4 

 

72%
(a) 

26%
(a) 

70%
(a) 

80%
(a) 

73%
(a) 

79% 

66% 

 

1.193h 

1.193i 

1.193j 

1.193k 

1.193l 

1.193m 

1.193n 

R
2
 = 

4-MeO 

6-Me 

5-Me 

6-Cl 

5-Cl 

4-Cl 

5-F 

 

75% 

84% 

84% 

78% 

89% 

95% 

86% 

 

1.193o 

1.193p 

1.193q 

1.193r 

1.193s 

1.193t 

1.193u 

R
3
 = 

4-MeO 

4-Me 

4-Cl 

4-F 

5-MeO 

5-Me 

5-Cl 

 

78% 

91% 

73% 

64% 

85% 

94% 

86% 
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2.2.3.2. Substrate scope for Pd(II)-catalyzed oxidative diamination 

With the aforementioned conditions, we explored the generality of this deamination process 

with different alkynes. The results are summarized in the following table (Table 1.3). 

Table 1.3: Scope of Pd(II)-catalyzed diamination of o-alkynylanilines 1.193 

 

 
 

 

 

1.194a 

1.194b 

1.194c 

1.194d 

1.194e 

1.194f 

1.194g 

R
1
 =      

4-MeOC6H4 

Me 

4-MeC6H4 

C6H5 

4-ClC6H4 

3-FC6H4 

3-CF3C6H4 

 

71%
 

78%
 

76%
 

71%
 

72%
 

64% 

66% 

 

1.194h 

1.194i 

1.194j 

1.194k 

1.194l 

1.194m 

1.194n 

R
2
 = 

4-MeO 

6-Me 

5-Me 

6-Cl 

5-Cl 

4-Cl 

5-F 

 

79% 

82% 

61% 

48% 

85% 

68% 

75% 

 

1.194o 

1.194p 

1.194q 

1.194r 

1.194s 

1.194t 

1.194u 

R
3
 = 

4-MeO 

4-Me 

4-Cl 

4-F 

5-MeO 

5-Me 

5-Cl 

 

82% 

80% 

62% 

70% 

87% 

75% 

81% 

The optimized condition tolerated different substituents at different positions on aromatic rings 

including chlorine atom, which provides a handle for further functionalization. For substituents R
1
 and 

R
3
, the electron-donating groups provided better results than the electron-withdrawing groups. 

Basically, these electron-donating groups can increase nucleophilicity of nitrogen atom, therefore 

facilitating the aminopalladation step. Both aliphatic (1.193b) and aromatic benzamides 1.193 were 

applicable to afford tetracyclic indoles. For R
2
 substituents, it is ambiguous to clarify their electron 

effects. However, at certain position, we are still able to explain the results. For example, at position 5, 
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electron-withdrawing groups such Cl and F are favourable to reaction. That can be interpreted by the 

increased electrophilicity of the triple bond.  

2.2.4. Synthesis of tetracyclic free NH indoles by retro-Michael reaction 

The second major goal in this thesis is to prepare tetracyclic free (NH) indoles. The removal of 

side chain alkyl group could be expected by retro-Michael reaction. Although the retro-Michael 

reaction have been known to occur in some biological process,
65

 but only few examples able to apply 

in organic synthesis, have been described in the literature.
66

 Gratefully, simply heating a DMF solution 

of 1.194a in the presence of DBU (1.0 equiv) at 120 ºC afforded the desired free NH product 1.200a in 

97% yield.
66a

 These conditions were found to be generally applicable to a wide range of substrates 

1.193 as summarized in Table 1.4.  

Table 1.4: Synthesis of tetracyclic free NH indoles by retro-Michael reaction of 1.194 

 

   

 

1.200a 

1.200b 

1.200c 

1.200d 

1.200e 

1.200f 

1.200g 

R
1
 =      

4-MeOC6H4 

Me 

4-MeC6H4 

C6H5 

4-ClC6H4 

3-FC6H4 

3-CF3C6H4 

 

97%
 

87%
 

95%
 

95%
 

96%
 

97% 

97% 

 

1.200h 

1.200i 

1.200j 

1.200k 

1.200l 

1.200m 

1.200n 

R
2
 = 

4-MeO 

6-Me 

5-Me 

6-Cl 

5-Cl 

4-Cl 

5-F 

 

85% 

92% 

96% 

89% 

90% 

95% 

97% 

 

1.200o 

1.200p 

1.200q 

1.200r 

1.200s 

1.200t 

1.200u 

R
3
 = 

4-MeO 

4-Me 

4-Cl 

4-F 

5-MeO 

5-Me 

5-Cl 

 

95% 

95% 

92% 

96% 

95% 

93% 

96% 

                                                                        
65

  (a) Shabat, D.; Rader, C.; List, B.; Lerner, R. A.; Barras III, C. Proc. Natl. Acad. Sci. USA 1999, 96, 6925. (b) 

Chen, J.; Armstrong, R. N. Chem. Res. Toxicol. 1995, 8, 580. 
66

  (a) Boncel, S.; Maczka, M.; Walczak, K. Z. Tetrahedon 2000, 66, 8450. (b) Chen, W.; Yu, W. –G.; Shi, H. –

B.; Lu, X. –Z. Chemical Papers 2012, 66, 308. (c) Sánta-Csutor, A.; Mucsi, Z.; Finta, Z.; Gönczi, C.; Halász, J.; 

Csikós, É.; Hermecz, I. Eur. J. Org. Chem. 2006, 1769. 



55 

 

These results were quite surprising. Retro-Michael reactions normally proceed reversibly; 

therefore, the yields of these reactions are never high. However, analysis of desired product 1.200 by 

1
H-NMR showed that indolylic N-H is quite acidic, its signal appears at very low field δ ~ 12 ppm (in 

DMSO). This experimental result could account for its excellent ability as a leaving group.  

 

2.2.5. Application of N-2-(methoxycarbonyl)ethyl as a protecting group in other 

transformations
 

To demonstrate the utility of this N-2-(methoxycarbonyl)ethyl group in heterocycle syntheses, 

other cyclizations reported in literature were examined. Firstly, N-2-(methoxycarbonyl)ethyl was 

employed as a masked protecting group in Pd(II)-catalyzed coupling of o-alkynylanilines with 

terminal alkynes under aerobic conditions developed by our group.
67

 The coupling of N-methyl-N-2-

(methoxycarbonyl)ethyl o-alkylnylaniline 1.201 with p-tolylacetylene 1.202 took place smoothly to 

afford N-2-(methoxycarbonyl)ethylated 2,3-disubstituted indole 1.203 in 90% yield. Analogously, 

switching Pd(OAc)2
66

 into Pd(TFA)2 is a key factor to guide reaction through N-demethylation 

pathway. Deprotection of 1.203 by a retro-Michael reaction provided 2,3-disubstituted free NH indole 

1.204 in 75% yield (eq 1, Scheme 1.45).  

 

Scheme 1.45: N-2-(methoxycarbonyl)ethyl as protecting group in Pd(II)-catalyzed 

coupling of o-alkynylanilines with terminal alkynes 

N-methyl-N-2-(methoxycarbonyl)ethyl o-alkylnylaniline 1.201 was also successfully coupled 

with 4-iodobenzoate 1.205 under slightly modified Larock's condition
68

 to afford 2,3-diarylindoles 

1.206 which can undergo N-deprotection to obtain  free NH 1.207 in almost quantitative yield 

(Scheme 1.46).  

                                                                        
67

 Yao, B.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2012, 51, 12311. 
68

 Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 8908.  
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Scheme 1.46: N-2-(methoxycarbonyl)ethyl as protecting group in  

Larock's Pd(II)-catalyzed indole synthesis 

Finally, compound 1.201 was found to be applicable in electrophilic cyclization with arylselenyl 

1.208 under Larock's standard conditions to provide 2-selenyl-substituted indole 1.209.
69

 Removal of 

2-(methoxycarbonyl)ethyl by DBU (1.0 equiv) afforded free NH indole 1.210  in 52% yield, together 

with its deselenylated product in 20% (Scheme 1.47).  

 

Scheme 1.47: N-2-(methoxycarbonyl)ethyl as protecting group in  

Larock's electrophilic cyclization with arylselentyl 

 

  

                                                                        
69

 Chen, Y.; Cho, C.-H.; Larock, R. C. Org. Lett. 2009, 11, 173. 
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2.2.6. Conclusion 

In summary, we developed a novel Pd(II)-catalyzed double cyclization of 1,2-diarylethynes 

1.193 bearing an N-methyl-N-[2-(methoxy-carbonyl)ethyl]amino and an aminocarbonyl group at the 

ortho positions of the two aromatic rings to afford the tetracyclic N-[2-(methoxycarbonyl)-

ethyl]indoloisoquinolinones 1.194 in good to excellent yields. The N-[2-(methoxycarbonyl)ethyl] 

group is readily removed under basic conditions (DBU, DMF, 120 °C) to afford the corresponding 

tetracycles 1.200 with a free indolyl nitrogen in excellent yields (Scheme 1.48).
70

  

 

Scheme 1.48: Pd-catalyzed diamination of alkynes 1.193 and removal of protecting group 

The 2-(methoxycarbonyl)ethyl as a removable N-protecting group is illustrated in other Pd(II)- 

and Pd(0)-catalyzed and selenium-mediated transformations. 

 

  

                                                                        
70

 Ha, T. M.; Yao, B.; Wang, Q.; Zhu, J. Org. Lett. 2015, 17, 1750. 
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CHAPTER 3 

Synthesis of Tetracyclic 

Indolobenzothiazine S,S‑Dioxides by 

Pd(II)-Catalyzed Intramolecular 

Diamination of Alkynes.  
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3.1. Benzothiazine S,S-dioxide: Application and Synthesis 

The sulfonamides and their analogs are important structural motifs in medicincal chemistry due 

to their various biological activities, such as anti-bacterial, hypoglycemic, anti-convulsant, anti-thyoid, 

anti-inflammatory and anti-cancer activities.
71  

Particularly, sultams (cyclic sulfonamides) which 

usually exhibit versatile inhibitory properties, are privileged structures ubiquitously utilized in many 

bioactive compounds and drugs (Firgue 1.3). Among them, 1,2-benzothiazine S,S-dioxide (Figure 1.3) 

is a pharmacophore found in a number of marketed drugs, such as nonsteroidal anti-inflammatory 

meloxicam (1.215) and piroxicam
72

 (1.216); and carbonic anhydrase inhibitor brinzolamide (1.217)
73

 

for treatment of glaucoma.
 
Moreover, numerous compounds containing this moiety have been unveiled 

to exhibit other valuable activities such as: 11β-HSD2 inhibitor (1.218), calpain inhibitor (1.219) and 

anti-HIV (1.220) etc.
74

  

 

Figure 1.3: Biologically active sultams 

Owing to the pharmaceutical importance of 1,2-benzothiazine S,S-dioxide, the development of 

synthetic methodologies to this heterocycle has attracted particular attention. Indeed, several synthetic 

                                                                        
71

 (a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem. 2003, 10, 925. (b) Shah, S. 

S. A.; Rivera, G.; Ashfaq, M. Mini-Reviews in Medicinal Chemistry 2013, 13, 70. (c) Drews, J. Science 2000, 

287, 1960. 
72

 Rabasseda, X.; Hopkins, S. J. Drugs Today 1994, 30, 557. 
73

 Wroblewski, T.; Graul, A.; Castaner, J. Drugs Future 1998, 23, 365. 
74

 (a) Brzozowski, F.; Saczewski, F.; Neamati, N. Bioorg. Med. Chem. Lett. 2006, 16, 5298. (b) Wells, G. J.; Tao, 

M.; Josef, K. A.; Rihovsky, R. Med. Chem. Lett. 2001, 44, 3488. (c) Bihovsky, R; Tao, M.; Mallamo, J. P.; 

Wells, G. J. Med. Chem. Lett. 2004, 14, 1035. (d) Kim, S. H.; Ramu, R.; Kwon, S. W.; Lee, S. H.; Kim, C. H.; 

Kang, S. K.; Rhee, S. D.; Bae, M. A.; Ahn, S. H.; Ha, D. C.; Cheon, H. G.; Kim, K. Y.; Ahn, J. H. Bioorg. Med. 

Chem. Lett. 2010, 20, 1065. 
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approaches toward 1,2-benzothiazine S,S-dioxide were reported in the literature. For instance, Pal et 

al. reported transition metal-catalyzed intramolecular cyclization of o-(1-alkynyl)benzenesulfonamides 

1.221 to afford 3-substituted 1.222 or 3,4-disubstituted benzothiazine S,S-dioxides 1.223 (eq 1, 

Scheme 1.49).
75

 Alternatively, a one-pot methodology combining Sonogashira coupling and 

intramolecular cyclization of 2-bromobenzenesulfonamides 1.224 and terminal alkynes 1.225 was 

later developed by Mondal using palladium catalysis (eq 2, Scheme 1.49).
76

 

 

Scheme 1.49: Synthesis of benzothiazine by transition metal-catalyzed intramolecular cyclization  

An intermolecular heteroannulation of o-fluoro arene sulfonamides 1.228 with activated internal 

alkynes 1.229 to afford benzothiazine rings was reported by Juhl (eq 1, Scheme 1.50).
77

 The 

transformation proceeds through a domino process including a nucleophilic addition, followed by an 

aromatic nucleophilic substitution. Wolfe and coworkers developed another intermolecular 

heteroannulation of o-iodobenzenesulfonamide 1.231 with ketone enolate via photosimulated radical 

nucleophilic aromatic substitution to yield disubstituted 1,2-benzothiazine S,S-dioxide 1.233 (eq 2, 

Scheme 1.50).
78

 However, due to tricky reaction conditions and limited substrate scopes, those 

transformations are not practically useful.  

 

Scheme 1.50: Synthesis of benzothiazine by intermolecular heteroannalation 

                                                                        
75

 Barange, D. K.; Nishad, T. C.; Swamy, N. K.; Bandameedi, V.; Kumar, D.; Sreekanth, B. R.; Vyas, K.; Pal, M. 

J. Org. Chem. 2007, 8547. 
76

 Debnath, S.; Mondal, S. J. Org. Chem. 2015, 80, 3940. 
77
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In light of synthetic versatility of C-H activation in heterocycle synthesis, transition metal-

catalyzed cyclization towards benzothiazine scaffolds from simple benzene sulfonamides and alkynes 

has been reported recently. Cramer reported a rhodium-catalyzed heteroannulation of benzosultams 

1.236 via C-H activation of sulfonamides (eq 1, Scheme 1.51).
79

 A similar approach was introduced by 

Whiteoak and Ribas using cobalt catalyst system under oxidative conditions (eq 2, Scheme 1.51).
80

 

Complementary to those, Bi and coworkers recently developed decarbonylative cycloaddition of 

saccharins 1.242 with internal alkynes 1.243 by nickel catalysis (eq 3, Scheme 1.51).
81

 

 

Scheme 1.51: Synthesis of benzothiazine by transition metal-catalyzed cycloaddition 

  

                                                                        
79

 Pham, M. V.; Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2012, 51, 10610. 
80
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81
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In this chapter, the synthesis of 1,2-indolobenzothiazine S,S-dioxides by Pd(II)-catalyzed 

intramolecular double nucleophilic addition to alkynes, involving sulfonamide and aniline as internal 

nucleophiles, will be described (Scheme 1.52). As a continuation of our previous work, the synthetic 

strategy will employ N-methyl-N-[2-(methoxycarbonyl)-ethyl]anilines as substrates in order to reach 

tetracyclic free NH indoles containing sulfonamide moiety.  

 

Scheme 1.52: Synthesis of indolobenzothiazine S,S-dioxide 
by Pd(II)-catalyzed diamination of alkynes  
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3.2. Results and Discussion 

3.2.1. Screening conditions 

We began our investigation using an easily accessible N-phenyl sulfonamide 2-alkynylaniline 

1.245a as a test substrate. Desired product indolobenzothiazine S,S-dioxides 1.246a was indeed 

obtained, albeit in moderate yield 42% (entry 1, table 1.5), when 1.245a was submitted to the 

optimized conditions for the benzamide counterpart [see chapter 2, conditions: Pd(TFA)2 (0.1 equiv), 

Cu(OTf)2 (0.25 equiv), HOAc (1.0 equiv), and nBu4NI (1.0 equiv) in DMSO (c 0.025 M) at 80 ºC]. 

This result can be predictable based on the previous observation: 1.193f or 1.193g bearing an electron 

withdrawing group, with pKa or acidity of N-H approximate to sulfonamide's,  only provide moderate 

yield (see table 1.3) in this transformation. Moreover, the more acidic N-H functionality of 

sulfonamide is, the less activity of 1.245a is, in terms of the nucleophilicity. Another reason could not 

be ruled out for this moderate result is the fact that 1.245a can undergo monoamination via 5-exo-dig 

or 6-endo-dig cyclization involving sulphonamide as an internal nucleophile.  

Since using Pd(OAc)2 as a catalyst led to a nonselective N-dealkylation process, Pd(TFA)2 was 

kept as a palladium source in our survey for reaction conditions. With intention to remove acetate 

anion, AcOH was replaced by TFA (entry 2, 4) but almost no desired product was formed. One 

possible explanation is that TFA is too acidic, it can protonate aniline so that totally inhibits the 

cyclization of substrates. To examine the role of copper sources in this transformation, we removed 

Cu(OTf)2 in entry 3 and 4; only trace amount of desired product was observed in crude NMR. This 

evidences copper source may have significant roles; it is not only a co-oxidant, but also a co-catalyst 

mediating the reaction process. Screening copper sources later showed the best ones are Cu(OTf)2 or 

CuCl2, whereas, Cu(OAc)2 has no activity at all (entry 5-8, 1.0 equiv of copper salt). However, the low 

yields from these experiments indicated significant degradation of the reaction mixture which may 

also be triggered by metal catalysts. To overcome the low activity of this substrate, changing 

temperature was implemented when 35 mol% of Cu(OTf)2 was used as co-catalyst under oxygen 

balloon (entry 9-13). As expected, the yield of 1.246a was slightly increased along with temperature 

and desired product was obtained in 75% yield at 100 ºC. Further increase in temperature decreased 

the yield of the product due most probably to the degradation. Further survey of the reaction 

conditions indicated that the reaction outcome was very sensitive to the stoichiometry of Pd(TFA)2 

and Cu(OTf)2. A higher or lower loading of Cu(OTf)2 (30 mol%) led to a diminished yield of 1.246a 

(entry 12, 14, 15). Decrease of palladium loading to 5% showed significant drop in yield (entry 12, 

16). Last but not least, oxygen source was proven to be an influential factor to promote the reaction 

(entry 12, 17); oxygen balloon which although is not really practical, is much more effective than 

atmospheric air. Overall, the optimum conditions consisted of heating a DMSO solution (c 0.025 M) 
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of 1.245a to 100
 
ºC in the presence of Pd(TFA)2 (10 mol%), Cu(OTf)2 (35 mol%), nBu4NHI (1.0 

equiv), and HOAc (1.0 equiv) under oxygen atmosphere (entry 12).  

Table 1.5: Optimization for oxidative diamination of 1.245a
(a) 

 

Entry [Cu] (mol%) HX 
T 

(ºC) 

Time 

(h) 
Oxidant 

Yield
(b) 

[%] 

1 Cu(OTf)2 (25) HOAc 80 13 air 42
 

2 Cu(OTf)2 (25) TFA 80 21 air <10 

3 --- HOAc 80 21 air <5 

4 --- TFA 80 21 air <5 

5 Cu(OTf)2 (100) HOAc 90 12 O2 27 

6 Cu(OAc)2 (100) HOAc 90 12 O2 0 

7 CuCl2 (100) HOAc 90 12 O2 25 

8 CuI (100) HOAc 90 12 O2 13 

9 Cu(OTf)2 (35) HOAc 65 12 O2 31 

10 Cu(OTf)2 (35) HOAc 80 12 O2 62 

11 Cu(OTf)2 (35) HOAc 90 12 O2 65 

12 Cu(OTf)2 (35) HOAc 100 12 O2 76 (75) 

13 Cu(OTf)2 (35) HOAc 110 12 O2 59 

14 Cu(OTf)2 (25) HOAc 100 12 O2 34 

15 Cu(OTf)2 (45) HOAc 100 12 O2 49 

16
(c) 

Cu(OTf)2 (35) HOAc 100 12 O2 42 

17 Cu(OTf)2 (35) HOAc 100 12 Air 56 
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(a) Reaction conditions: A solution of 1.245a (0.05 mmol), 10 mol% Pd(TFA)2, 1.0 equiv 

nBu4NI, 1.0 equiv HX, and additives in 2.0 mL DMSO was heated for a given time. (b) 

Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard, yield of 

isolated products in parenthesis. (c) 5 mol% Pd(TFA)2 was used. 

3.2.2. Substrate scope for Pd(II)-catalyzed oxidative diamination 

3.2.2.1. Synthesis of o-(1-alkynyl)sulfonamide derivatives 

The initial attempts to synthesize sulfonamide o-alkynylaniline 1.245 were performed in the 

same conditions described previously. However, only N-benzyl-2-iodobenzenesulfonamide 1.249 was 

converted to desired product 1.245n in 48% yield at 80 °C and 80% yield at 60 °C (Scheme 1.53). 

 

Scheme 1.53: Synthesis of N-benzyl sulfonamide o-alkynylaniline 1.245n 

In case of N-phenyl-2-iodobenzenesulfonamide 1.250, a mixture which cannot be separated by 

chromatography column was obtained in 60% total yield, including desired product 1.245a and a side 

product 1.245a' resulting from a monocyclization of 1.245a (Scheme 1.54).  

 

Scheme 1.54: Initial attempt in synthesis of N-phenyl sulfonamide 2-alkynylaniline 1.245a 

This result could be explained by an intramolecular 6-endo-dig cyclization by base-promoted 

nucleophilic attack across the triple bond which is activated by either CuI or Pd(II). These 

transformations were well described in the literature.
75, 82

 The inconsistent results between 

carboxamides 1.193 and sulfonamides 1.245 synthesis might be reasoned by different acidity of the 

NH moiety. The N-H of sulfonamide being more acidic is readily deprotonated under basic condition 

of Sonogashira coupling reaction, therefore facilitating the cyclization. Indeed, these conditions were 

used for one-step combination of Sonogashira coupling and cyclization to 1,2-benzosultams reported 

by Mondal recently (see Scheme 1.49).
76
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Another condition for synthesis of these compounds was carried out according Pal and co-

workers.
75

 N-phenyl-2-iodobenzenesulfonamide 1.250 was converted smoothly to desired product 

1.245a without the formation of monocyclized adduct in the presence of catalytic amount of Pd/C, CuI 

in acetonitrile at 90 ºC (Scheme 1.55).  

 

Scheme 1.55: Synthesis of N-phenyl sulfonamide 2-alkynylaniline 1.245a 

This condition was later applied to prepare other substrates; however, it generally was not well-

tolerated with substrates containing electron withdrawing groups in the aromatic of benzasulfonamide. 

The same trend was observed with substituents on sulfonyl aromatic ring. The synthesis of starting 

material for Pd(II)-diamination was summarized in Table 1.6. 

Table 1.6: Synthesis of sulfonamide o-alkynylaniline 1.245    

 

   

 

 

1.245a 

1.245b 

1.245c 

R
1
 =      

C6H5 

4-MeO C6H4 

4-MeC6H4 

 

 

80%
 

75%
 

85% 

 

 

1.245d 

1.24e 

R
2
 =      

5-MeO  

4-Cl-5-Me 

      

41%
 

53% 

      

1.245f 

1.245g 

1.245h 

R
3
 =      

4-MeO  

4-Me  

4-Cl 

 

 

50%
 

53%
 

69%
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1.245i 

1.245j 

1.245k 

1.245l 

4-F 

5-MeO 

5-Me 

5-Cl 

66%
 

79%
 

75%
 

74%
 

 

3.2.2.2. Substrate scope for Pd(II)-diamination of sulfonamide 2-alkynylanilines and 

Retro-Michael for synthesis of free NH indoles 

With optimized condition in hand, the generality of this Pd(II)-catalyzed diamination was next 

examined by varying substituents on aromatic rings of alkyne substrates 1.245. The results were 

summarized in Table 1.7. 

Table 1.7: Scope of Pd(II)-catalyzed diamination of sulfonamide o-alkynylanilines 1.245 

 

  
 

 

 

1.246a 

1.246b 

1.246c 

R
1
 =      

C6H5 

4-MeO C6H4 

4-MeC6H4 

 

 

75%
 

41%
 

70% 

 

 

1.246d 

1.246e 

R
2
 =      

5-MeO  

4-Cl-5-Me 

      

74%
 

72% 

      

1.246f 

1.246g 

1.246h 

1.246i 

1.246j 

1.246k 

1.246l 

R
3
 =      

4-MeO  

4-Me  

4-Cl 

4-F 

5-MeO 

5-Me 

5-Cl 

 

 

76%
 

73%
 

53%
 

62%
 

78%
 

80%
 

49%
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Alkynes with both electron-donating and electron-withdrawing groups on aromatic rings were 

applicable in this double cyclization. Surprisingly; when the R
1
 substituents were changed, the yields 

decrease along with the increase in strength of electron donating groups. In principal, electron-

donating groups will increase nucleophilicity of nitrogen atom, as a result, accelerate the diamination. 

However, the results showed an opposite trend. When R
1
 is strong electron-donating group such as p-

MeO (1.245b), desired product 1.246b was obtained in moderate yield. N-benzyl substrate (1.245n) 

was not converted to desired product at all; even after long reaction time, we were able to recover 

more than 90% of starting material. Perhaps, an extraordinarily strong coordination between highly 

nucleophilic N-H of sulfonamide with metal catalysts halts them to function normally in the catalytic 

cycle. For the rest examples, no significant electron effect was observed and the presence of different 

electron-donating groups, electron-withdrawing groups is well tolerated. As expected, aryl chloride 

was inert under these conditions providing compounds with a handle for further functionalization.  

The removal of N-methyl-N-[2-(methoxycarbonyl)-ethyl] group via retro-aza-Michael reaction 

was next investigated in order to access free NH indoles containing sulfonamide moiety. Gratefully, 

simply heating a DMF solution of 1.246 in the presence of DBU (1.0 equiv) at 120 ºC afforded the 

desired N-deprotected products in good to excellent yields. The conditions were found to be generally 

applicable to wide range of substrates which are summarized in Table 1.8.  

Table 1.8: Synthesis of tetracyclic free NH indoles containing sulfonamide moiety 

 

   

 

 

1.247a 

1.247b 

R
1
 =      

C6H5 

4-MeO C6H4 

 

 

93%
 

84%
 

 

 

1.247d 

1.247e 

R
2
 =      

5-MeO  

4-Cl-5-Me 

      

93%
 

83% 

      

1.247f 

1.247g 

R
3
 =      

4-MeO  

4-Me  

 

 

94%
 

87%
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1.247c 

 

4-MeC6H4 

 

90%
 

 

 

 

1.247h 

1.247i 

1.247j 

1.247k 

1.247l 

4-Cl 

4-F 

5-MeO 

5-Me 

5-Cl 

90%
 

93%
 

87%
 

92%
 

88%
 

 

3.3. Mechanistic insight 

Although the mechanistic study of Pd(II)-catalyzed oxidative diamination of o-(1-

alkynyl)benzamide 1.83 was well-studied by our group.
34,35 

it could not be ruled out that the slightly 

change of substrate structure may entail the adjustment in mechanistic pathway. To gain insight into 

mechanism of this transformation, characterization of the intermediates were attempted. Gratefully, 

the reaction of 1.245a with Pd(TFA)2 (1.0 equiv) in DMSO-d6 for 45 min at room temperature 

afforded a compound whose spectroscopic data are in agreement with -indolylpalladium complex 

1.253. Subsequent heating the solution of this complex at 100
 
ºC provided tetracyclic indole 1.246a, 

indicating that 1.253 could indeed be an intermediate for our oxidative diamination (Scheme 1.56).  

 

Scheme 1.56: Observation of -indolylpalladidum intermediate 

Based on above observation and previous studies, a postulated mechanism for double 

cyclization of 1.245 could be described as following (Scheme 1.57): Coordination of both alkyne and 

sulfonamide to Pd(II) species followed by deprotonation of sulfonamide N-H would afford ,-

chelated palladium complex 1.252. Subsequent anti-aminopalldation via nucleophilic attack of N-

methyl-N-[2-(methoxycarbonyl)-ethyl]aniline to triple bond would provide an -indolyl palladium 

intermediate 1.253 which was experimentally observed. The subsequent reductive elimination of 1.253 

would give an ammonium salt 1.254 and Pd(0). Chemoselective dealkylation of ammonium salt via a 

nucleophilic attack of iodide ion to N-methyl group would furnish desired product 1.246. Finally, 

regeneration of Pd(II) from Pd(0) would be achieved by Cu(II)/O2 oxidative system to complete 

catalytic cycles (Scheme 1.57). 
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Scheme 1.57: Proposed mechanism of Pd(II)-catalyzed double cyclization of 1.245 

 

3.4. Conclusion 

In summary, a Pd(II)-catalyzed oxidative double cyclization of the 1,2-diarylethynes 1.245 

bearing an N-methyl-N-(2-methoxycarbonyl)ethylamino and an aminosulfonyl group was developed 

to afford indolobenzothiazine S,S-dioxides 1.246 in good to excellent yields. The 2-

(methoxycarbonyl)ethyl group attached to the indolyl nitrogen is readily removed under basic 

conditions (DBU, DMF, 120 °C) to provide the corresponding tetracycles 1.247 with a free indolyl 

nitrogen in excellent yields (Scheme 1.58).
83

  

 

Scheme 1.58: Synthesis of free NH indolobenzothiazine S,S-dioxide  
by Pd(II)-catalyzed diamination of alkynes   
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CHAPTER 4 

Synthetic Approaches to Quindolinones 

by Palladium-Catalyzed  

and Acid-Meidated Reactions 
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4.1. Indolo[3,2-b]quinolinone: Application and Synthesis 

Tetracyclic indolo[3,2-b]quinoline (quindoline) and indolo[3,2-b]quinolinone (quindolinone) 

rings constitute an important structural scaffolds in many natural products which exhibit numerous 

biologically activities, such as: antibacterial, antifungal, antiprotozoal, antitumoral, anti-inflamatory, 

hypotensive, anthithrombotic.
84

 The simplest natural products containing these moieties are 

cryptolepine (1.257) and cryptolepinone (1.259) with a methyl substituent at N-5 position (Figure 1.4). 

Along with other indoloquinonline alkaloids (Figure 1.4), they are isolated from the root and stem of 

the West African plant Cryptolepsis sanguinolenta,
 85

 which have been used as dye and traditional 

medicine to treat a variety of health disorders, including: rheumatism, urinary and respiratory tract 

infections, and malaria.
86

  

 

Figure 1.4: Indolo[3,2-b]quinoline and Indolo[3,2-b]quinolinone  

Owing to broad spectra of bioactivities, indolo[3,2-b]quinoline have become an attractive 

pharmacophore to exploit in medicinal chemistry. As a result, many analogues of quindoline 

incorporating various functional groups have been studied in order to evaluate biological activities. 

For instance, simple N5-alkylated cryptolepine 1.264 was reported to possess more expanded 
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antibacterial spectrum compared to the monomeric counterparts by Ablordeppey (Figure 1.5).
87

 

Wright reported 8,11-dichloro-5-methylquindoline 1.265 with 4-5 fold more cytotoxicity to MAC15A 

cancer cell line than cryptolepine.
88

 Modified quindoline 1.266 and 1.267 with strong electron donor 

substituents at C-11 position was proven to exhibit stronger binding-activity with telomeric G-

quadruplex (potential target for cancer therapy) with IC50 0.55 µM and 0.44 µM, respectively, as 

compared to 1.255 with IC50 >138 µM.
89

 

 

Figure 1.5: Examples of bioactive analogues of quindoline 

Development of synthetic method to quindolines has drawn great attention due to its potential 

application in pharmaceutical research. As related to our research, we summarize herein the literature 

precedents toward indolo[3,2-b]quinolinones (quindolinones) which are readily converted into  

quindolines in 1 or  2 steps.
90

  

Joule reported the synthesis of quindolinone 1.256 using intramolecular nucleophilic β-

substitution of 1-phenylsulfonyl-2-acylindole 1.269 as key step (Scheme 1.59).
91

 However, this 

approach requires multiple steps and provides desired tetracycle in very modest yield. 

 

Scheme 1.59: Synthesis of quindolinone by Joule 

Radle reported an efficient two-step synthesis of quindolinone 1.274 involving condensation of 

(2-nitrophenyl)acyl bromide 1.271 and ethyl (2-cyanophenyl)carbamate 1.272, followed by 

intramolecular nucleophilic aromatic substitution (Scheme 1.60).
92

 This method provided 
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quindolinones with various substituents on aromatic rings. Analogous benzofuro[3,2-b]quinolinones 

and benzothieno[3,2-b]quinolinones are also accessible by this approach. 

 

Scheme 1.60: Synthesis of quindolinone by Radle 

Lately, an improvement in synthesis of quindolinone was achieved by Bierer (Scheme 1.61).
93

 

Treatment of anthranilic (1.275) with bromoacetyl bromide provided compound 1.276 which was 

converted to anthranilic acid 1.277. Acid-promoted cyclization of 1.277 with polyphosphoric acid led 

to N-unprotected quindolinone 1.256. This method employed simple starting materials and provided 

wide range of quindolinones in good overall yields. As a result, it was widely used in medicinal 

chemistry. 

 

Scheme 1.61: Synthesis of quindolinone by Biere 

As continuation of our interests in constructing tetracycles, we focused our attention on the 

development of novel synthesis of quindolinones. In this chapter, we will describe two synthetic 

approaches to tetracyclic quindolinones. 1,3-diarylprop-2-yn-1-ones 1.278 bearing two internal amino 

groups at ortho positions of aromatic rings could be successfully converted into quindolinones by 

either Pd(II)-catalyzed diamination  (eq 1, Scheme 1.62) or acid-mediated double cyclization (eq 2, 

Scheme 1.62).  

 

Scheme 1.62: Our synthetic approaches to quinolinones   
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4.2. Synthesis of Quindolinones by Palladium Catalysis 

4.2.1. Primary results 

Inspired by previous work on Pd(II)-catalyzed diamination of alkyne,
34,35

 we assume indolo[3,2-

b]quinolinone 1.279 could also be obtained by a similar pathway from 1,3-diarylprop-2-yn-1-ones 

1.278 bearing two amino groups at ortho positions of aromatic rings (Scheme 1.63). This 

transformation could proceed through coordination of palladium species to triple bond and nitrogen 

atom to form ,π-palladium complex 1.281, followed by aminopalladation via intramolecular 

nucleophilic attack to afford vinylpalladium intermediate 1.282. Subsequent reductive elimination and 

dealkylation could provide tetracycle 1.279 as final product.  

 

Scheme 1.63: Synthetic approaches to quinolinones by Pd(II)-diamination 

Initially, we focused on examining the suitable substrates to our designed transformation by 

changing different substituents R
1
, R

2
, and R

3
. The primary results showed that substrates 1.278 with 

unsubstituted (R
1
 = R

2 
= H) or monosubstituted (R

1 
= H, R

2 
= Me)

 
aniline on aromatic ring A (see 

Scheme 1.63) are generally unstable and were not converted into desired product under previously 

reported conditions.
34

 The substrate with unsubstituted aniline (R
3
 = H) on aromatic ring B was 

synthetized in very moderate yield and was relatively unstable. Moreover, synthesis of 1.278 with R
3
 

as an electron-withdrawing group such as acyl or tosyl was not successful. The instability of those 

substrates might be reasoned by either cyclization via Aza-Michael addition of aniline to triple bond or 

condensation between unsubstituted aniline with carbonyl functional group. Subsequently, we turned 

our attention on N,N,N-trialkylated 1.278. Fortunately, these substrates can be accessed in reasonable 

yields and were sufficiently stable.  
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4.2.2. Conditions survey 

We began our investigation using 3-[2-(benzylamino)phenyl]-1-[2-(dimethylamino)-

phenyl]prop-2-yn-1-one (1.284a) as test substrate. Condition survey was carried out by varying 

palladium sources, additives, acids, oxidants, temperature and reaction time.   

4.2.2.1. Screening conditions: Palladium sources 

When 1.284a was submitted into the previously optimized conditions [Pd(OAc)2 (10 mol%), 

nBu4NI (1.0 equiv), HOAc (1.0 equiv), O2 (1 atm), DMSO (0.025 M), 80 ºC],
34,35

 only a trace amount 

of desired quindolinone 1.285a was observed by NMR spectra, along with  side product 1.286a which 

have the same tetracyclic motif as 1.285a (entry 1, Table 1.9). Formation of 1.285a and 1.286a might 

result from 6-endo-dig cyclization and 5-exo-dig cyclization, respectively.  

Table 1.9: Palladium source screening
 (a) 

 

Entry 
Pd source 

(mol%) 

nBu4NI 

(equiv) 

Oxidant 

(equiv) 

Yield
(b) 

of 1.285a 

Ratio 

1.285/1.286 

1 Pd(OAc)2 (10) 1.0 O2 <10
 

2.6 : 1.0 

2 Pd(TFA)2 (10) 1.0 O2 <10 2.2 : 1.0 

3 Pd(MeCN)2Cl2 (10) 1.0 O2 <10 1.6 : 1.0 

4 Pd(PPh3)2Cl2 (10) 1.0 O2 40 8.7 : 1.0 

5 Pd(PPh3)2Cl2 (10) 0.1 O2 21 6.0 : 1.0 

6 Pd(PPh3)2Cl2 (10) 1.0 BQ (5) 30 >30 : 1.0 

7 Pd(PPh3)2Cl2 (10) 0.1 BQ (5) 41 >30 : 1.0 

8 PdX2 (10) + PPh3 (20) 0.1 BQ (5) 15-24 18-30 : 1.0 

9 
Pd(PPh3)2Cl2 (10) 

Phosphine (20) 
0.1 BQ (5) 38-40 >30 : 1.0 

10 None none O2 8% -- : 1.0 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 10 mol% Pd source, 0.1-1 equiv 

nBu4NI, 1.0 equiv HOAc, and oxidant in 2.0 mL DMSO was heated at 80 ºC
 
for 3 h. (b) Yields 

determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 



77 

 

Different palladium sources were later investigated under the same condition. Unfortunately, 

Pd(TFA)2 and Pd(MeCN)2Cl2 showed the same activity, affording trace amount of 1.285a (entry 2,3). 

Significant improvement was achieved when Pd(PPh3)2Cl2 was employed; desired quindolinone was 

observed in 40% NMR yield (entry 4). Interestingly, quick screening the other parameters indicated 

that the outcome of reaction was dependent on iodide loading and oxidant sources (entry 4-7). When 

O2 molecule was used as oxidant, stoichiometric amount of nBu4NI was necessary to provide 

reasonable yield. On the other hand, when benzoquinone (BQ) was employed, the best result was 

observed with 0.1 equiv of nBu4NI, furnishing 1.285a in 41% NMR yield and cleaner reaction 

(1.285/1.286 > 30:1). Using combined system of PdX2 (X = Cl, OAc, TFA) and PPh3 (entry 8) or 

Pd(PPh3)2Cl2 and phosphine ligand (XPhos, PCy3) (entry 9), the transformation proceeded with either 

lower conversion or lower yield. In the absence of palladium catalyst, no desired product was 

observed (entry 10). However, under these conditions, tetracyclic 1.286a was obtained in 8% NMR 

yield with low conversion, indicating the side reaction could be mediated by only HOAc.  

 

4.2.2.2. Screening conditions: Oxidants  

Beside oxygen molecule and benzoquinone, different oxidants were screened in the presence of 

Pd(MeCN)2Cl2 (10 mol%), nBu4NI (0.1 equiv), HOAc (1.0 equiv) at 80 ºC. Quindolinone 1.285a was 

obtained in low to moderate yield with manganese salts and copper salts as oxidants (entry 1, 2, 4; 

Table 1.10). The transformation to desired product was totally inhibited when silver salt and strong 

organic oxidants such as hypervalent iodanes were employed (entry 3, 5, 6). Therefore, benzoquinone 

was chosen as an oxidant for further optimization. 

Table 1.10: Oxidant screening
 (a) 

 

Entry 
Oxidant 

(equiv) 

nBu4NI 

(equiv) 

Yield
(b) 

[%] 

Ratio 

1.285/1.286 

1 MnO2 (4) 0.1 20%
 

18 : 1.0 

2 Mn(OAc)32H2O (4) 0.1 38% >30 : 1.0 

3 Ag2CO3 (1) 0.1 0% --- 

4 CuX2 (X = OAc, OTf) 0.1 <15% 5-15 : 1.0 
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5 PIDA (1) 0.1 0% --- 

6 PIFA (1) 0.1 0% --- 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 10 mol% Pd(MeCN)2Cl2, 0.1 

equiv nBu4NI, 1.0 equiv HOAc, and oxidant in 2.0 mL DMSO was heated at 80 ºC
 
for 3 

h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

 

4.2.2.3. Screening conditions: Acid, solvent and temperature 

Next, we studied the effect of acids, solvents and temperature on the reaction outcome. The 

same result was obtained when acetic acid was replaced by pivalic acid (entry 1,2). However, using 

stronger acids such as benzoic acid and TsOH, the reaction gave inferior yield or no desired product 

(entry 3,4). Complete protonation of N,N-dimethylaniline, leading to the decrease in nucleophilicity, 

might be an account for this observation. It is worthy to note that in the absence of HOAc, an 

important reagent for regeneration of Pd(II) to catalytic cycles, very low conversion was observed. 

Additionally, polar solvents were found to be compatible with this transformation (entry 1, 5-10). Best 

solvents are DMF and DMA; whereas apolar solvents such as DME or toluene did not furnish any 

desired product. Further optimization indicated that increasing the temperature, and using 1.5 equiv of 

HOAc provided better outcome (entry 11-14) in which quindolinone 1.285a was obtained in 53% 

NMR yield (entry 14). 

Table 1.11: Acid, Solvent, Temperature screening
 (a) 

 

Entry 
Acid 

(equiv) 
Solvent 

Temp. 

[
o
C] 

Yield
(b) 

[%] 

Ratio 

1.285/1.286 

1 HOAc (2.0) DMSO 80 42%
 

>30 : 1.0 

2 HOPiv (2.0) DMSO 80 40% >30 : 1.0 

3 Benzoic acid (2.0) DMSO 80 16% 15 : 1.0 

4 TsOH (2.0) DMSO 80 0% --- 

5 HOAc (2.0) DMF 80 47% >30 : 1.0 

6 HOAc (2.0) DMA 80 47% >30 : 1.0 

7 HOAc (2.0) MeCN 80 10% 0.7 : 1.0 
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8 HOAc (2.0) Dioxane 80 <10% --- 

9 HOAc (2.0) DME 80 trace --- 

10 HOAc (2.0) Toluene 80 trace --- 

11 HOAc (2.0) DMF 70 47% >30 : 1.0 

12 HOAc (2.0) DMF 100 51% >30 : 1.0 

13 HOAc (1.0) DMF 100 50% >30 : 1.0 

14 HOAc (1.5) DMF 100 53% >30 : 1.0 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 10 mol% Pd(MeCN)2Cl2, 0.1 equiv 

nBu4NI, 2.0 equiv HX, and 5.0 equiv BQ in 2.0 mL solvent was heated at T ºC
 
for 3 h. (b) Yields 

determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

 
 

 

4.2.2.4. Screening conditions: Additional screening  

Additional screening was carried out in order to enhance the yield of double cyclization (Table 

1.12). Gratefully, replacing Pd(PPh3)2Cl2 by Pd(PPh3)2(OAc)2, yield of desired product was slightly 

improved to 60% (entry 2, Table 1.12).   Further optimization was achieved by reducing benzoquinone 

loading to 2.0 equiv affording quindolinone 1.285a in 63% NMR yield and 55% isolated yield (entry 

3). The oxidative system combining benzoquinone and air atmosphere was tested, and was found to be 

less efficient (entry 4). Finally, using different benzoquinone derivatives as alternative oxidants 

resulted in diminished yields (entry 5, 6). Particularly, prop-2-yn-1-one 1.284a was readily 

decomposed in the presence of strong oxidants such as O6-O9.     

Table 1.12: Additional screening
 (a) 

 

Entry Variation of reaction conditions 
Yield

(b) 

[%] 

1 None 53%
 

2 Pd(PPh3)2(OAc)2 (10 mol%)  60% 

3 Pd(PPh3)2(OAc)2 (10 mol%), BQ (2.0 equiv) 
63% 

(55% iso.) 

4 Pd(PPh3)2(OAc)2 (10 mol%), BQ (2.0 equiv), air 60% 
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5 Pd(PPh3)2(OAc)2 (10 mol%), O1-O5 (2.0 equiv) 21-50% 

6 Pd(PPh3)2(OAc)2 (10 mol%), O6-O11 (2.0 equiv) <10% 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 10 mol% Pd(MeCN)2Cl2, 0.1 

equiv nBu4NI, 1.5 equiv HOAc, and 5.0 equiv BQ in 2.0 mL DMF was heated at 100 ºC
 

for 2 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal 

standard. 

 

Figure 1.6: Oxidants for screeing conditions
 

Overall, the optimum conditions consisted of performing the double cyclization of 1.284a in 

DMF (c 0.025 M) at 100 ºC in the presence of Pd(PPh3)2(OAc)2 (10 mol%), nBu4NI (0.1 equiv), 

HOAc (1.5 equiv) and benzoquinone (2.0 equiv). Under these conditions, intramolecular diamination 

of 1.284a afforded tetracyclic quindolinone 1.285a in 55% isolated yield. (Scheme 1.64)  

 

Scheme 1.64: Optimized condition for Pd-catalyzed deamination of 1.284a 

Unfortunately, the primary scope investigation indicated that this synthetic approach is not 

widely applicable. Low to moderate yields are obtained when different prop-2-yn-1-one substrates 

were introduced into optimized conditions. Consequently, we turned our attention on an alternative 

transformation for constructing quindolinone scaffold.  
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4.3. Synthesis of Quindolinones by Acid-mediated Double Cyclization 

4.3.1. Introduction  

Given the fact that double cyclization of 1,3-diarylpropynone 1.284a occurred to afford 

quindolinone 1.286a in the absence of palladium catalyst (entry 10, Table 1.9), we decided to further 

exploit this interesting experimental observation. Although the initial result gave only modest 

conversion and yield of tetracyclic product (8% yield, ~ 50% conversion), development of alternative 

metal free transformation to access quindolinones is of great interest. In this part, the synthesis of 

tetracycles 1.280 via acid-mediated double cyclization under oxidative condition will be described 

(Scheme 1.65). 

 

Scheme 1.65: Synthetic approaches to quinolinones by Acid-mediated double cyclization 

 

4.3.2. Conditions survey 

3-[2-(benzylamino)phenyl]-1-[2-(dimethylamino)-phenyl]prop-2-yn-1-one 1.284a was chosen 

as test substrate to explore the double cyclization. Condition survey was carried out by varying acid 

sources, additives, oxidants, temperature and reaction time.   

4.3.2.1. Screening conditions: Acids 

Desired tetracyclic quindolinone 1.285a was obtained in 8% NMR yield with 50% conversion 

of starting material when prop-2-yn-1-one 1.284a was introduced to the following conditions: HOAc 

(4.0 equiv) as promoter, in DMSO (c 0.025 M), at 80 ºC for 8 h (entry 1, Table 1.13). Different acids 

were later investigated under the same conditions. Interestingly, double cyclization could also be 

promoted by pivalic acid, however, giving slightly inferior result (entry 2). Unfortunately, stronger 

acid TFA and TsOH induced the degradation of starting material (entry 3, 4), milder ones (SiO2 and 

NaH2PO4) were not able to promote the cyclization (entry 5, 6). Acetic acid therefore was kept as 

standard promoter for further optimization.  

 

 

 



82 

 

Table 1.13: Acid screening
 (a) 

 

Entry 
Acid 

(equiv) 

Conversion
(b) 

[%] 

Yield
(b) 

[%] 

1 HOAc (4) 50
 8% 

2 HOPiv (4) 60 
5% 

3 TFA (10) 100 
--- 

4 TsOH.H2O (4) 100 --- 

5 SiO2 (10) no rxn --- 

6 NaH2PO4 (4) no rxn --- 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 4.0 equiv HX in 2.0 mL 

DMSO under oxygen (1 atm) was heated at 80 ºC
 
for 8 h. (b) Yields determined by 

1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

 

4.3.2.2. Screening conditions: Solvents 

Next we investigated the effect of solvents on the cyclization of 1.284a in the presence of 

HOAc (4.0 equiv) at 80 ºC for 8 h (Table 1.14). The reactions in aprotic polar solvents such as DMSO, 

DMF and MeCN afforded 1.286a in modest yields with moderate conversions (entry 1-3). While 

protic solvents facilitated the reaction with almost full conversion, however, only ethanol gave a 

promising result with 30% NMR yield (entry 5-8). On other hand, the cyclization in apolar solvents 

provided quindolinone 1.286a in 22-28% NMR yield with moderate conversion (entry 9-12). The best 

result was obtained with 28% NMR yield when p-xylene was used as solvent. Interestingly, a side 

product quindoline 1.287a was observed in these cases. Attempt of using solvent system of EtOH and 

p-xylene (v/v 1/3) to enhance both conversion and yield was carried out, but only a trace amount of 

1.286a was detected by NMR (entry 13).  

Given the fact that p-xylene afforded desired product in better yield based on conversion 

compared to ethanol as solvent, we decided to use p-xylene for screening of other parameters.  
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Table 1.14: Solvent screening
 (a) 

 

Entry Solvent 
Conversion

(b) 

[%] 

Yield
(b)

  

of 1.286a 
 

Ratio 

1.286/1.287 

1 DMSO 50%
 

8% --- 

2 DMF 52% 13% --- 

3 MeCN 66% 15% --- 

4 Dioxane >90% <5% --- 

5 EtOH 100% 31% --- 

6 i-PrOH 100% <10% --- 

7 t-BuOH 90% <10% --- 

8 TFE 100% 0% --- 

9 Toluene 75% 28% 2 : 1 

10 p-Xylene 65% 28% 2 : 1 

11 PhCl >95% 26% 2 : 1 

12 PhCF3 >95% 22% 2 : 1 

13 Xylene/EtOH (3/1) 100% <10% --- 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 4.0 equiv HOAc in 2.0 mL 

solvent under oxygen (1 atm) was heated at 80 ºC
 
for 8 h. (b) Yields determined by 

1
H-

NMR spectroscopy with CH2Br2 as an internal standard. 

 

4.3.2.3. Screening conditions: Oxidants, concentration, acid loading 

The oxidants were screened using the previous best conditions: HOAc (4.0 equiv) as promoter, 

p-xylene as solvent, at 80 ºC but for longer time  (24 h) in order to force reaction to complete (Table 

1.15). Indeed, desired product was obtained in higher yield, but conversion was still halted at 72% 

(entry 1). Other oxidants including organic oxidant and metal salts were not compatible with reaction 

system, leading to full conversion but inferior yield (entry 2-6). Gratefully, dilution of reaction 

concentration, which is rationally favourable to intramolecular transformation, slightly improved the 

reaction outcome (entry 7). Finally, reaction reached to the completion when acid loading was 
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increased (entry 8, 9). In the presence of 8 equiv of HOAc, the cyclization of 1.284a afforded the best 

result with 55% NMR yield or 52% isolated yield of desired product (entry 8). 

Table 1.15: Oxidant, concentraion and acid loading screening
 (a) 

 

Entry 
Oxidant 

(equiv) 

Conc.
 

[M] 

Conv.
(b) 

[%] 

Yield
(b)

  

of 1.286a 
 

Ratio 

1.286/1.287 

1 O2 (1 atm) 0.025 72%
 

36% 1.5 : 1 

2 (tBuO)2 (1.0) 0.025 88% 12% --- 

3 mCPBA (2.0) 0.025 100% 11% --- 

4 PIDA (2.0) 0.025 100% 11% --- 

5 MnO2 (2.0) 0.025 90% 20% 0.9 : 1 

6 Mn(OAc)3 (2.0) 0.025 100% 15% --- 

7 O2 (1 atm) 0.010 88% 46% 2.0 : 1 

8
(c) 

O2 (1 atm) 0.010 95% 55% 2.5 : 1 

9
(d) 

O2 (1 atm) 0.010 100% 31% 4.3 : 1 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 4.0 equiv HOAc and 1-2 

equiv oxidant in 2.0 mL p-xylene was heated at 80 ºC
 
for 24 h. (b) Yields determined by 

1
H-NMR spectroscopy with CH2Br2 as an internal standard. (c) 8.0 equiv of HOAc was 

used. (d) 12.0 equiv of HOAc was used. 

 

4.3.2.4. Screening conditions: Additives and temperature 

Despite of moderate yield of desired product, the transformation of 1.284a under previous 

conditions (entry 8, Table 1.15) furnished 1.286a and 1.287a in good overall yield (~77% NMR). This 

result implied that double cyclization indeed occurred with satisfactory outcome. The major issue of 

our reaction system leading low yield of desired product could be reasoned by modest selectivity in 

formation of 1.286a and 1.287a. This prompted us to take consideration into the mechanism of 

reaction. We assumed that double cyclization of 1.284a could form an indoloquinolinium intermediate 

1.288a. The resulting intermediate 1.288a could undergo either oxidation to afford desired product 

1.286a or nucleophilic substitution with acetate anion to afford side product 1.287a (Scheme 1.66). 

Pleasingly, the effect of solvents on the outcome of this transformation (see 4.3.2.2) is in agreement 

with this hypothesis. In apolar solvent (eg. toluene, p-xylene), nucleophilic substitution of 1.288a with 
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acetate is favourable. As a result, formation of side product (pathway b, Scheme 1.66) was observed 

when polar solvents (eg. ethanol) were replaced by apolar solvents. 

 

Scheme 1.66: Hypothesis for the formation of 1.286a and 1.287a 

Based on above hypothesis, we proposed that the formation of side product 1.287a could be 

avoided by a quick reduction of indoloquinolinium intermediate 1.288a to generate 

dihydroindoloquinoline intermediate 1.289a. This intermediate is not a suitable subject for SN2 

reaction but subsequently could be reoxidized to form tetracyclic 1.286a. Therefore hydride donors 

such as dihydropyridines might be potentially suitable additives to ameliorate our transformation.
94

 

Adding Hantzsch ester (2.0 equiv) to the reaction mixture furnished complete reaction and the sole 

product 1.286a, however, no improvement in yield was observed (entry 1). Gratefully, elevating the 

reaction temperature to 90 ºC provided desired product in 74% NMR yield or 72% isolated yield 

(entry 2). Further increasing in temperature to 100 ºC led to incomplete reaction (entry 3). This result 

could be explained by fast consumption of Hantzsch ester at higher temperature under aerobic 

conditions. To overcome this issue, additional amount of Hantzsch ester (2.5 equiv) was employed, 

yielding 1.286a in 81% NMR yield or 77% isolated yield (entry 4).  

Table 1.16: Additive and temperature screening
 (a) 

 

                                                                        
94

 (a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem.  Int. Ed. 2006, 45, 3683. (b) You, S. L. 

Chem. - An Asian J. 2007, 2, 820. (c) Connon, S. J. Org. Biomol. Chem. 2007, 5, 3407. (d) Ouellet, S. G.; Walji, 

A. M.; Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327. (e) Richter, D.; Mayr, H. Angew. Chem. Int. Ed. 

2009, 48, 1958. 
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Entry 
Additive 

(equiv) 

Temp.
 

[
o
C] 

Conv.
(b) 

[%] 

Yield
(b)

  

of 1.286a 
 

Ratio 

1.286/1.287 

1 Hantzsch ester (2.0) 80 100%
 

55% 1 : 0 

2 Hantzsch ester (2.0) 90 100% 74% (72%)
(c)

 1 : 0 

3 Hantzsch ester (2.0) 100 86% 60% 1 : 0 

4 Hantzsch ester (2.5) 100 100% 81% (77%)
(c) 

1 : 0 

(a) Reaction conditions: A solution of 1.284a (0.05 mmol), 8.0 equiv HOAc and additive 

in 2.0 mL p-xylene (c 0.01 M) was heated at T ºC
 
for 15-24 h. (b) Yields determined by 

1
H-NMR spectroscopy with CH2Br2 as an internal standard. (c) Isolated yield. 

 

Overall, the optimum conditions consisted of performing the double cyclization of 1.284a in p-

xylene (c 0.01 M) at 100 ºC in the presence of HOAc (8.0 equiv) and Hantzsch ester (2.5 equiv). 

Under these conditions, intramolecular diamination of 1.284a afforded tetracyclic quindolinone 

1.286a in 77% isolated yield with complete chemoselectivity. 

 

4.3.3. Substrate scope for acid-mediated double cyclization 

4.3.3.1. Synthesis of starting materials 1.284 

In general, prop-2-yn-1-ones 1.284 were prepared in two steps including: nucleophilic addition 

of o-ethylnylaniline 1.290 with N,N-dialkylated 2-aminobenzaldehyde 1.291 to form propargylic 

alcohol 1.292, followed by oxidation with MnO2 to furnish 1.284 in moderate to good yields over two 

steps (Scheme 1.67). Due to instability of propargyl alcohol intermediates 1.292 on silic a gel,
95

 their 

crude products were submitted directly to oxidation step without any purification. Therefore, prop-2-

yn-1-ones 1.284 were accessed in two steps with single FCC purification.   

 

Scheme 1.67: Synthesis of prop-2-yn-1-ones 1.284 

Changing the substituent on nitrogen atoms, aromatic rings, a series of prop-2-yn-1-ones 1.284 

was collected. The result was summarized in Figure. 1.7. 

                                                                        
95

 Cariou, K.; Ronan, B.; Mignani, S.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2007, 46, 1881. 
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Figure 1.7: Starting materials for acid-mediated double cyclization 

4.3.3.2. Substrate scope of acid-mediated double cyclization 

With the optimized conditions in hand, we examined the generality of acid-mediated 

diamination. The result was summarized in Figure 1.8.    

 

Figure 1.8: S 

cope of acid-mediated double cyclization 

Firstly, the effect of the substituent (R
4
) on monoalkylated nitrogen atom was examined. All 

alkyl substituents are tolerated in oxidative cyclization conditions to afford N5-alkylated quindolinones 
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1.286a-e in moderate to good yields. The outcome is slightly better when bulky substituents were 

employed. Unfortunately, aryl substituted 1.284f (R
4
 = Ph) is not applicable to the double cyclization. 

 A series of quindolinones 1.286g-m was synthetized with different substituents (R
5
) on 

aromatic ring. In general, substrates with electron donating groups (Me, MeO) resulted in low 

conversions; therefore, longer reaction time (20-36 hours) was required to obtain significant yield. In 

other hand, substrates with electron-withdrawing groups (Cl, F) smoothly furnished desired products 

1.286i,j,m after 13 hours in good yields. This observation could be reasoned by the influence of 

substituents on electron density of triple bond. Particularly, when MeO was introduced at position 5, 

1.284l could dramatically increase the electron density of triple bond via conjugating effect, resulting 

in inactivity of starting material to nucleophilic cyclization; so that very low conversion was observed 

(after 36 h). In spite of slow reaction, the substrate with MeO at position 4, 1.284h, could reach to 

completion after 36 h, and provide 1.286h in good yield. In this case, MeO would not have significant 

effect on affinity of alkyne to nucleophilic attack. 

Interestingly, the influence of substituents (R
3
) on another aromatic ring showed totally different 

observation. Substrates with electron-withdrawing group (Cl, F) generally underwent the double 

cyclization with low conversions, therefore, resulted in low yield. The dramatical decrease in 

nucleophilicity of N,N-dimethylaniline when electron-withdrawing groups are present could explain to 

this outcome. Particularly, only 10% of conversion was observed (24 h at 100 ºC) when substrate 

1.284t having a CF3 substituent at position 5 was submitted to standard conditions. 

Further exploration the impact of substituents (R
1

,
 
R

2
) on dialkylated nitrogen atom was 

achieved using substrates 1.284u-x. The success of double cyclization was found to be dependent on 

the size of alkyl substituents. 1.284u and 1.284v were successfully converted into tetracyclic products 

1.286u,v in moderate yields; whereas 1.284x with sterically hindered alkyl chain demonstrated low 

activity under the same conditions. Pleasingly, the substrate 1.284w bearing N-methyl-N-benzyl 

moiety exclusively furnished quindolinone 1.286a in 41% yield, indicating in situ N-debenzylation 

was dominant under these optimized conditions.  

Additional attempts to synthesis of benzofuro[3,2-b]quinolinone 1.286y and benzothieno[3,2-

b]quinolinone 1.286z starting from 1.284y and 1.284z, respectively were not successful. Weaker 

nucleophilicity of OMe, SMe compared to NMe2 could be a reason for their inactivity under our 

conditions.  
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4.3.4. Mechanistic study 

We turned our attention on the reaction mechanism. As mentioned previously, we assumed that 

the double cyclization of 1.284a would afford quindolinone 1.286a and quindoline 1.287a via 

oxidation process or nucleophilic substitution respectively of an indoloquinolinium intermediate 

1.288a (see Scheme 1.66). Indeed this proposal was strengthened by successfully guiding the reaction 

to proceed exclusively via oxidation process when a hydride donor such as Hantzsch ester was 

employed. To further prove this hypothesis, we decided to control the formation of 1.287a based on 

assumption that 1.288a was a genuine intermediate.  

In this context, an oxidation process of 1.288a should be omitted; so that non-oxidative 

conditions are highly recommended. Gratefully, simply heating a degassed p-xylene solution of 

1.284a (c 0.01 M) in the presence of HOAc (4.0 equiv) at 120 ºC for 14 h under nitrogen atmosphere, 

afforded 1.287a as the sole product in 47% yield. Replacing HOAc by 3,4-dimethoxybenzoic acid, 

under the same condition, the double cyclization of 1.284a afforded 1.287a in 53% isolated yield  as 

the best result (Scheme 1.68).  

 

Scheme 1.68: Formation of quindoline 1.287a in non-oxidative conditions 

The completely selective formation of quindoline 1.287a under non-oxidative conditions further 

bolstered our hypothesis on indoloquinolinium 1.288a as an intermediate. Additionally, the efficiency 

of 3,4-dimethoxybenzoic acid over acetic acid and other benzoic derivatives (based on our 

experimental observation) is in agreement with the postulated nucleophilic substitution of 1.288a to 

form 1.287a.   

Moreover, attempt to identify the possible intermediate was implemented by carrying out a 

double cyclization of 1.284a in the presence of HOAc (8.0 equiv), Hantzsch ester (2.0 equiv) at 90 ºC 

for 15 h under inert atmosphere. Using LCMS analysis of crude reaction, the mass corresponding to 

the dihydroindoloquinoline intermediate 1.289a, a reduced form of 1.288a was detected, implying 

again 1.288a could be an intermediate of the desired product (Scheme 1.69).  
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Scheme 1.69: Possible formation of dihydroindoloquinoline 1.289a 

Based on our experimental observation, we proposed that the mechanism of acid-mediated 

Hantzsch ester-assisted double cyclization of prop-2-yn-1-ones 1.284a proceeded through two major 

stages: (1) formation of an indoloquinolinium intermediate 1.288a by double nucleophilic attack of 

anilines to triple bond and carbonyl group; (2) sequence of reduction by Hantzsch ester and oxidation 

by oxygen molecule and HOAc (Scheme 1.70).   

 

Scheme 1.70: Possible mechanism of acid-mediated Hantzsch ester-assisted double cyclization of 1.284a 

(1) Formation of an indoloquinolinium intermediate 1.288a   

Due to the lack of experimental evidences, we propose herein a possible pathway for formation 

of intermediate 1.288a (Scheme 1.71). In the presence of HOAc, prop-2-yn-1-ones 1.284a could be 

protonated to form an oxonium intermediate 1.293a, which would be stabilized by N-benzylaniline to 

provide highly conjugated intermediate 1.294a. This resulting intermediate would undergo 5-exo-dig 

cyclization by nucleophilic attack of N,N-dimethylaniline to allene carbon center, followed by 

protonation, and tautomerization to give N,N-dimethyl 3-oxindolium 1.296a. Subsequent 

demethylation by nucleophilic attack of acetate anion to methyl group, and a condensation between 

carbonyl group and aniline would furnish indoloquinolinium intermediate 1.288a (pathway a). 

Alternatively, 3-hydroxyindolium 1.295a would first undergo demethylation to restore the aromatic 

indole system, followed by tautomerization to give N-methyl 3-oxindole intermediate 1.299a. Finally, 

1.288a could be formed via an intramolecular condensation of 1.299a (pathway b).  
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Scheme 1.71: Possible mechanism for formation of intermediate 1.288a 

 (2) Sequence of reduction by Hantzsch ester and oxidation by oxygen molecule and HOAc 

The intermediate 1.288a would be readily reduced by Hantzsch ester to afford dihydroindolo-

quinolinium 1.289a.
94

 A very quick reduction in this case could be a reason for the complete 

suppression of formation of side product 1.287a, therefore enhancing the selectivity. To further 

confirm the role of Hantzsch ester in controlling the selectivity of this transformation, alternative 

hydride donors such as dihydrobenzothiazoles were examined. Pleasingly, comparable results were 

obtained when Hantzsch ester was replaced by 2-(4-nitrophenyl)-2,3-dihydrobenzothiazole 1.300 or 2-

(4-methoxyphenyl)-2,3-dihydrobenzothiazole 1.301 (Scheme 1.72). 

 

Scheme 1.72: Alternative hydride donor in double cycliation of 1.284a 
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Finally, in the presence of oxygen and HOAc, dihydroindolo-quinolinium 1.289a would be 

oxidized to furnish final product 1.296a (Scheme 1.71). The oxidation of this intermediate could 

proceed via a benzylic radical 1.302a, followed by trapping with ground state oxygen to form peroxide 

radical species 1.303a. Hydrogen abstraction of 1.303a from C-H benzylic of 1.289a would release 

hydroperoxide 1.304 and regenerate radical species 1.302. The formation of analogous hydroperoxide 

has been well-documented by Klussmann and coworkers in Brønsted acid-catalyzed oxidative 

coupling reactions.
96

 However, different from those works, in the presence of milder acid, such as 

HOAc, hydroperoxide 1.304 would undergo rearrangement to provide desired product 1.286a.
97

 The 

similar oxidation of acridine derivatives by oxygen molecule was also reported by Pandey et al. using 

photoredox catalyst as a radical initiator.
98

  

 

Scheme 1.73: Possible mechanism for oxidation of 1.289a to 1.286a 

  

                                                                        
96

 (a) Pintér, Á.; Sud, A.; Sureshkumar, D.; Klussmann, M. Angew. Chem. Int. Ed. 2010, 49, 5004. (b) Pintér, Á.; 

Klussmann, M. Adv. Synth. Catal. 2012, 354, 701. (c) Schweitzer-Chaput, B.; Sud, A.; Pintér, Á.; Dehn, S.; 

Schulze, P.; Klussmann, M. Angew. Chem. Int. Ed.  2013, 52, 13228. 
97

 (a) Kharasch, M.S.; Fono, A.; Nudenberg, W.; Poshkus, A. C. J. Org. Chem. 1950, 15, 775. For oxidation of 

acridines in absence of strong Brønsted acid to form ketone see: (b) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. 

Chem. Soc. Perkin Trans. II 1989, 1037. 
98

 Pandey, G.; Jadhav, D.; Tiwari, S. K.; Singh, B. Adv. Synth. Catal. 2014, 356 (13), 2813. 
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4.4. Conclusion 

In summary, the double cyclization of 1,3-diarylprop-2-yn-1-ones 1.278 bearing N,N-

dialkylated amino and N-monoalkylated amino groups at ortho positions of aromatic rings has been 

investigated in two different pathways.  In the presence of palladium catalyst, 1,3-diarylprop-2-yn-1-

ones underwent 6-endo-dig cyclization to afford indolo[3,2-b]quinolinones 1.279 in moderate yield 

under oxidative conditions. On the other hand, in the presence of stoichiometric amount of acid such 

HOAc and hydride donor, it assumedly proceeded via 5-exo-dig cyclization, followed by condensation 

and oxidation to afford other indolo[3,2-b]quinolinone products  1.280 in good yields (Scheme 1.72).  

 

Scheme 1.72: Pd-catalyzed and acid-mediated double cyclization of 1,3-diarylprop-1-one-2-ynes 
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1.1. Cyanoalkylation in Catalytic C-C Bond Forming Reactions 

Nitriles are important functional group in organic chemistry due to their facile conversion into 

many other functional groups such as carboxylic acids, esters, amides, amines and ketones.
99

 Numbers 

of nitrile-containing natural products have been found in a variety of plants and animal sources (Figure 

2.1). Particularly, they are most commonly present in various glycosides of mandelonitrile which are 

well-known for causing cyanogenetic toxic (2.2, 2.3).
100

 Nitriles are linear, sterically small and 

metabolically stable functional groups compared to others. Moreover, given the fact that they can act 

as hydrogen bond acceptors, nitriles are considered as a biosteric functional group to carbonyl in 

pharmacophore study, and have been employed intensively in medicinal chemistry.
101

 Indeed many 

nitrile-containing compounds have been used as marketed drugs and lead compounds in clinical 

development (2.4-2.7, Figure 2.1).  

 

Figure 2.1: Nitrile-containing natural products and bioactive compounds 

Owing to the synthetic versatility and the potential value in medicinal chemistry of nitriles, 

plenty of methodologies to this chemical class have been reported. However, development of an 

efficient, economic and user/environment-friendly synthesis is still a highly attractive topic to organic 

chemists.   Among synthetic approaches to nitriles,
102

 catalysed cyanoalkyaltion of organic compounds 

                                                                        
99

 Pappoport, Z.; Patai, S. Chemistry of the Cyano Group, Wiley & Sons, London, 1970. (b) Fleming, F.F.; Wang, 

Q. Chem. Rev. 2003, 103, 2035. 
100

 Mowry, D. T. Chem. Rev. 1948, 42, 189. 
101

 Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902. 
102

 Reviews on nitrile synthesis: (a) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779. (b) 

Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049. (c) Wen, Q.; Jin, J.; Zhang, L.; Luo, Y.; 

Lu, P.; Wang, Y. Tetrahedron Lett. 2014, 55, 1271. (d) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47, 1137. (e) 
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involving introduction of a nitrile moiety via C-C bond-forming reaction from a simple and available 

alkylnitrile has attracted a great attention.
102f

  The utilization of ubiquitous, inexpensive, easy-to-

handle alkylnitriles as preinstalled-CN sources to reach highly complex nitriles is economically and 

practically useful in both chemical and medicinal chemistry. However, different from 

prefunctionalized substrates such as halonitriles,
103

 trimethylsilylacetonitrile,
104

 cyanoacetates
105

 and 

cyanomethyltributyltin;
106

 direct catalyzed cyanomethylation/cyanoalkylation from unactivated nitriles 

is more challenging due to the lack of activity of C-H bond at α- position of CN triple bond. In this 

part of manuscript, we summarized herein the recent advances for activation of alkylnitriles in 

catalytic C-C bond-forming transformations. Based on the nature of active cyanomethyl intermediate, 

those reactions can be categorized into two parts as the following. 

  

                                                                                                                                                                                                                                

Bisseret, P.; Duret, G.; Blanchard, N. Org. Chem. Front. 2014, 1, 825. (f) López, R.; Palomo, C. Angew. Chem. 

Int. Ed. 2015, 54, 13170. 
103

 (a) Yang, Y.; Tang, S.; Liu, C.; Zhang, H.; Sun, Z.; Lei, A. Org. Biomol. Chem. 2011, 9, 5343. (b) Nambo, M.; 

Yar, M.; Smith, J. D.; Crudden, C. M. Org. Lett. 2015, 17, 50. 
104

 (a) Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824. (b)  Jinzaki, T.; Arakawa, M.; Kinoshita, H.; 

Ichikawa, J.; Miura, K. Org. Lett. 2013, 15, 3750.  
105

 (a) Yeung, P. Y.; Chung, K. H.; Kwong, F. Y. Org. Lett. 2011, 13, 2912. (b) Shang, R.; Ji, D. S.; Chu, L.; Fu, 

Y.; Liu, L. Angew. Chem. Int. Ed. 2011, 50, 4470. (c) (d) Recio, III, A.; Heinzman, J. D.; Tunge, J. a. Chem. 

Commun. 2012, 48, 142. (d) Yin, L.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9610. 
106

 (a) Kosugi, M.; Kiryu, T. F.; Migita, G. Y.; Sano, H. 1984, Chem. Lett. 1984, 1511. (b) Kashin, A. N.; 

Tulchinsky, M. L.; Beletskaya, I. P. J. Organomet. Chem. 1985, 292, 205. 
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1.1.1. Cyanoalkyl as Nucleophilic Reagents 

α-Cyano carbanions, most commonly generated from deprotonation of alkylnitriles with strong 

bases such as LiHMDS or LDA, are important synthetic intermediate, particularly for the C-C bond-

forming transformations such as alkylation or nucleophilic addition.
107

 Due to inductive stabilization 

of electron-withdrawing nitrile functional group, negative charge is delocalized on either nitrogen 

atom or adjacent carbon atom. As the result, the nitrile anion species can be divided into N-metalated 

and C-metalated either contact or separated ion pair (Figure 2.2). Calculation and NMR experimental 

analyses revealed that substantial portion of negative charge at α-cyano carbanions is localized on the 

adjacent carbon atom;
108

 resulting in excellent nucleophilic activity of α-cyano carbanions to a wide 

range of electrophiles.  

 

Figure 2.2: Nitrile-stabilized carbanions 

Although α-cyano carbanions was broadly used in organic chemistry, catalytic activation of 

nitriles as nucleophiles has been limited to some activated nitriles such as α-cyano esters, malonitriles 

and α-sulfonyl nitriles (pKa ~12-13 in DMSO)
109

 wherein a mild Brønsted base is enough for 

deprotonation. In contrast, the in situ generation of carbanions from simple alkylnitriles (pKa 31.3 in 

DMSO)
64

 requires the utilization of strong bases as mentioned previously, which are usually 

incompatible with catalytic system or base-sensitive substrates. To overcome the intrinsically low 

chemoactivity of C-H bond at α-position of simple alkylnitriles, most strategies has focused on the 

catalytic generation of either nitrile carbanions using appropriate bases or Lewis-acid such as metal 

salts; or α-cyanoalkyl organometallic intermediate using transition metal catalyst (Scheme 2.1). 

                                                                        
107

 Arseniyadis, S.; Kyler, K.S.; Watt, D.S. Org. React. 1984, 31, 1. 
108

 (a) Bradamante, S.; Pagani, G. A. J. Chem. Soc. Perkin Trans. II 1986, 1035. (b) Wiberg, K. B.; Castejon, H. 

J. Org. Chem. 1995, 60, 6327. (c) Richard, J. P.; Williams, G.; Gao, J. J. Am. Chem. Soc. 1999, 121, 715. (d) 

Carlier, P. R.; Lo, C. W. S. J. Am. Chem. Soc. 2000, 122, 12819.  
109

 Kumagai, N.; Matsunage, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632. 
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 Scheme 2.1: General strategy for catalytic C-H activation of alkylnitriles 

1.1.1.1. Catalytic base-promoted α-deprotonation 

Due to drawback of using strong base in initiating side reactions, there were limited examples 

for the direct catalytic base-promoted cyanoalkylation in the literature. The first example for this 

strategy was reported by Verkade and coworkers. The reaction of acetonitrile with ketones or 

aldehydes 2.17 in the presence of a catalytic amount of strong non-ionic proazaphosphatrane 2.19 

(pKaH ~34 in MeCN)
110

 and MgSO4 afforded β-hydroxyl nitriles 2.18 in good to excellent yields 

(Scheme 2.2).
111

 In this case, proazaphosphatrane 2.19 was found to be compatible with catalytic 

generation of cyanomethyl anion without triggering base-sensitive dehydration of 2.18, whereas 

MgSO4 was used to activate carbonyl for nucleophilic addition.  

 

Scheme 2.2: Proazaphosphatrane-catalyzed synthesis of β-hydroxyl nitriles 

Another example for base-promoted α-deprotonation in cyanoalkylation was reported by 

Knochel using strong base tBuOK (pKaH ~32.2 in DMSO)
112

 as a catalyst for addition of nitriles 2.20 

to moderately active Michael acceptors such as vinylic silanes, phosphines and thio derivatives 2.21a-

c (Scheme 2.3).
113

   

 

Scheme 2.3: tBuOK-catalyzed cyanoalkylation by Knochel 

                                                                        
110

 Ishikawa, T. Superbases for Organic Synthesis, John Wiley & Sons, UK, 2009.  
111
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 Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295. 
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An alternative strategy for α-deprotonation of nitriles was based on the utilization of Lewis-acid 

such as metal sources to lower the pKa value of the alkylnitriles through their coordination with 

nitrogen atom. As the result, a mild base was sufficient for deprotonation to generate nitrile 

carbanions. Pioneered on this synthetic approach, Shibasaki reported an efficient catalytic direct 

addition of alkylnitriles 2.24 to aldehydes 2.23 using tBuOCu-dppe as a catalyst (Scheme 2.4-a).
114a

 

The working hypothesis of this reaction was based on the soft interaction between copper center and 

CN triple bond, facilitating the deprotonation of nitriles by alkoxide via hard interaction. An 

enantioselective version was later succeeded using combination of tBuOCu and chiral phosphines such 

as (R)-DTBM-SEGPHOS (2.28), affording β-hydroxyl nitriles 2.27 in good yields, albeit in moderate 

enantioselectivity (Scheme 2.4-b).
114b 

 

Scheme 2.4: tBuOCu-catalyzed cyanoalkylation of aldehydes by Shibasaki 

Complementary to above work, Shibasaki and coworkers also discovered that cationic 

ruthenium complexes were also suitable for the catalytic direct cyanomethylation. Cooperative 

catalytic system of a cationic ruthenium complex, DBU and NaPF6 enabled the activation of 

acetonitrile as a nucleophile in the reaction with aldehydes 2.29 to afford β-hydroxyl nitriles 2.30 in 

good to excellent yields (Scheme 2.5).
115

 Based on NMR spectroscopy, ESI-MS and kinetic evidences, 

this aldol-type reaction could proceed through the following steps: (1) formation of ruthenium 

complex 2.31 through dominant coordination between soft Lewis acid ruthenium and acetonitrile, 

promoting the deprotonation; (2) deprotonation of acetonitrile by DBU to form metalated nitrile 2.32; 

(3) 1,2-insertion of metalated nitrile 2.32 to aldehyde 2.29 to provide alkoxylated ruthenium complex 

2.33; (4) conversion of 2.33 into 2.31 with concomitant release of 3-Na alkoxide nitrile 2.34 which is 

                                                                        
114

 (a) Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 3147. (b) Suto, Y.; 
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accelerated by NaPF6 via hard interaction between Na cation and alkoxide; (5) protonation of alkoxide 

2.34 by DBU-H
+
 to afford desired product 2.30 and concurrently regenerate both DBU and NaPF6 to 

close the catalytic cycles.  

 

Scheme 2.5: Ruthenium-catalyzed cyanoalkylation of aldehydes by Shibasaki 

Alternative direct activation of alkylnitriles as nucleophiles in the reaction with aldehydes using 

different metal complexes such as nickel,
116

 palladium
117

 was also exploited.  

Analogously, less active imines were found to be applicable in Mannich-type reaction with 

nitriles in the presence of a catalytic amount of Lewis acidic metals to afford corresponding 3-

aminonitriles.
114,118

 However, in these cases, more active nitriles such as allylic or benzylic cyanides 

were employed to compensate the activity of imines. Indeed, asymmetric Mannich-type reaction 

between N-diphenylphosphinoylimines 2.35 and allylic cyanides 2.36 in the presence of a copper(I) 

salt, chiral bidentate phosphine 2.38 and Li(OC6H4-p-OPh) was reported by Shibasaki to afford α,β-

unsaturated nitriles 2.37, resulting from nucleophilic addition and isomerization of double bond (eq 1, 

Scheme 2.6).
118a

  Surprisingly, when the same catalytic system was employed in Aldol-type reaction 

between ketones 2.39 and allylic cyanides 2.40, δ-hydroxynitriles 2.41, resulted from γ-addition, were 

obtained with complete regio-, stereoselectivity and excellent enantioselectivity (eq 2, Scheme 2.6).
119
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Scheme 2.6: Asymmetric copper-catalyzed cyanoalkylation of imines/ketones by Shibasaki 

1.1.1.2. Catalytic generation of metalated alkylnitriles 

The second strategy for catalytic C-C bond-forming transformation via direct activation of 

alkylnitriles could be accomplished by transition metal catalysis. Prior to this approach, transition 

metal-catalyzed methods for the direct coupling of ketone enolates and their derivatives were 

intensively studied.
120

 However, nitriles are less acidic than ketones, but a cyano group is more 

electron-withdrawing than an acyl group, leading to unpredictable effects during catalysis of 

alkylnitriles. Moreover, as discussed previously, there are several possible bonding modes of 

metalated nitriles: nitrile carbanion can coordinate to a metal center through either α-carbon atom (C-

metalated nitriles) or nitrogen atom (N-metalated nitriles). In the context of current topic, the 

generation of C-metalated nitriles 2.15 might be the crucial step (Scheme 2.1), which is followed by 

trapping with appropriate electrophile (through reductive elimination or insertion) to furnish C-C 

bond. 

Pioneered in this topic, Hartwig and coworkers implemented an insightful investigation on the 

structures of arylpalladium cyanoalkyl complexes.
121

 Numbers of these complexes was synthetized 

and characterized by combining NMR, IR spectroscopy techniques with X-ray crystallography. 

Experimental observation showed that the preferred binding mode for cyanoalkyl group was through 

α-carbon atom which is in agreement with soft attribution of palladium. For examples, complex 2.46 

chelated by 1,2-bis(diphenylphosphino)benzene (DPPBz), was shown to be C-bound by 

isobutyronitrile (Scheme 2.7). In case of larger and more donating ligands (for example, 

diisopropylphosphinoferrocene; DiPPF), the sterically hindered nitrile carbanion coordinates with 

palladium center through nitrogen atom (complex 2.47, Scheme 2.7). Additionally, when a labile 

ligand was present, the phosphine was displaced by the nitrogen atom and a bridging μ
2
-C,N 

cyanoalkyl complex was formed (complex 2.49, Scheme 2.8). 

                                                                        
120
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Scheme 2.7: Synthesis and structures of arylpalladium cyanoalkyl complexes 

 

Scheme 2.8: Formation of μ
2
-C,N cyanoalkyl complex 

Based on above results and additional study on reductive elimination of C-metalated cyanoalkyl 

complexes, the catalyzed direct coupling of aryl bromides and alkylnitriles was achieved in the 

presence of LHMDS, either combined catalytic system of [Pd(OAc)2 and BINAP] or [Pd2(dba)3 and 

PBu3] to afford α-arylnitriles in good to excellent yields (Scheme 2.9).  

 

Scheme 2.9: Palladium-catalyzed α-arylation of nitriles by Hartwig 

As an improvement of Hartwig's work, Verkade reported a useful method for the direct α-

arylation of nitriles using combination of Pd(OAc)2 and commercially available proazaphosphatrane 

2.55 as the ligand (Scheme 2.10).
122

 This condition allowed aryl chlorides which are generally inert to 

oxidative addition, to participate in the coupling to provide desired product in good yields.  

 

Scheme 2.10: Palladium-catalyzed α-arylation of nitriles by Verkade 

Liu and coworkers reported a palladium-catalyzed oxidative arylalkylation of activated alkenes 

for synthesis of cyano-bearing oxindoles involving dual C-H activation of both aniline and acetonitrile 

                                                                        
122
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using PhI(OPiv)2 and AgF as co-promoters (Scheme 2.11).
123

 The reaction could be initiated by 

coordination of the olefin to palladium catalyst, followed by first C-H activation of aniline to form 

palladium complex 2.61. The second C-H activation of acetonitrile could take place in the presence of 

PhI(OPiv)2/AgF, thus generating Pd(IV) complex 2.62 which would undergo reductive elimination to 

afford cyano-bearing oxindoles 2.59 as final product. Primary mechanistic studies showed that C-H 

activation of nitrile was the rate determining step. 

 

Scheme 2.11: Palladium-catalyzed oxidative arylalkylation by Liu 

Palladium-catalyzed C-H activation of acetonitrile in the reaction with isatins 2.63 was reported 

by Yang to afford Aldol-type products 2.64 in good to excellent yields (Scheme 2.12).
124

 Although no 

experimental evidences for its mechanism, the reaction was proposed to proceed through an activation 

of acetonitrile by palladium complex 2.65 to form α-cyanomethyl palladium complex 2.66 that could 

undergo insertion to carbonyl of isatins to furnish 3-hydroxyloxindole products.  

 

Scheme 2.12: Palladium-catalyzed cyanomethylation of isatins by Wang 

Alternative to above work, an Aldol-type reaction was reported by Guan using a highly active 

nickel pincer complex 2.69 as a catalyst (Scheme 2.13).
125

 Mechanistic studies indicated that the 
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124

 Wang, G.; Zhou, A.; Wang, J.; Hu, R.; Yang, S-D. Org. Lett. 2013, 15, 5270. 
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reaction was initiated by reversible 1,2-insertion of N-metalated acetonitrile to aldehydes, followed by 

an activation of acetonitrile by the resulting alkoxylated nickel complex 2.71 to release 3-

hydroxylnitrile 2.70 in good yield with concurrent regeneration of the catalyst 2.69. Different from 

base-promoted Lewis-acidic metal assisted α-deprotonation, no evidence of N-metalated acetonitrile 

involving catalytic cycles was observed.  

 

Scheme 2.13: Nickel-catalyzed cyanomethylation of aldehydes by Wang 

Similar aldol-type reactions between aldehydes and alkylnitriles were reported using efficient 

catalytic system of [Rh(OMe)(cod)]2 with either PPh3
126

 or NHC ligands.
127

 However, mechanism for 

C-H activation of alkylnitriles was not described in those works.  
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1.1.2. Cyanoalkyl as Electrophilic Radical Reagents 

An alternative method for direct activation of alkylnitriles could be achieved through homolytic 

cleavage α-C-H bond to generate cyanoalkyl radicals which would be ready to undergo various free 

radical processes to form C-C bond. Considering bond-dissociation energy (BDE)
128

 of the C-H bond, 

the homolytic cleavage of α-C-H bond of alkylnitriles should be more favourable compared to other 

C(sp3)-H bonds (Figure 2.3). Moreover, due to electro-withdrawing cyano group, radical center on 

adjacent carbon atom can be stabilized. As the result, selective activation of alkylnitriles to generate 

electrophilic cyanoalkyl radicals is practically feasible. Owing to high bond-dissociation energy, 

homolytic cleavage of α-C-H bond of alkylnitriles is nevertheless challenging, thus normally requiring 

normally hash conditions to generate cyanoalkyl radical. 

 

Figure 2.3: Comparison of BDE of C-H bond in nitriles and alkanes 

Recently, our group have developed an efficient method to activate alkylnitriles using catalytic 

system of Cu(II)/DTBP. Cyanoalkyl radicals generated in situ from alkylnitriles in the presence of 

Cu(II) salt, phenanthroline or bipyridine derivative and DTBP, participated in the addition to 

unactivated alkenes 2.76, followed by trapping the resulting radical intermediates 2.77 with 

appropriate partners to complete the difunctionalization of alkenes (Scheme 2.14).
129

 Although 

peroxide itself can abstract proton of alkylnitriles to afford cyanoalkylradical, the formation of desired 

products were still observed in the absence of DTBP, indicating that copper(II) salts indeed played an 

important role for generation of cyanomethyl radical. The mechanism was proposed to proceed 

through a sequence of N-activation of nitrile by Cu(II)/N,N-ligand complex 2.72 and deprotonation to 

give C-chelated nitrile intermediate 2.74. The resulting copper(II) cyanoalkylnitrile intermediate 2.74 

could be spontaneously decomposed to provide cyanomethyl radical and corresponding copper(I) 

complex 2.75. Furthermore, copper(II) could participate in a SET process to oxidize radical species 

2.77 to the corresponding carbenium 2.78 which was subsequently trapped by suitable nucleophile to 

form desired product 2.79. Alternatively, formation of C-Nu bond could result from an reductive 

                                                                        
128

 Luo, Y.-R. Handbook of Bond Dissociation Energy in Organic Compound, CRC Press, Boca Raton, 2002 
129
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Chem. Int. Ed. 2015, 54, 3132. (c) Chatalova-Sazepin, C.; Wang, Q.; Sammis, G. M.; Zhu, J. Angew. Chem. Int. 
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elimination of Cu(III) intermediate 2.80 which was generated by radical recombination of 2.77 and 

Cu(II) species (Scheme 2.14-a). 

Taking advantage of this direct activation of nitriles via the formation of cyanomethyl radical, 

several copper(II)-catalyzed cyanomethylation of unactivated alkenes were successfully developed by 

our group, which can be summarized in Scheme 2.14-b. The combination of Cu(II), N,N-ligand and 

DTBP was later applied to the synthesis of nitrile-containing heterocycles such as benzoxazines (eq 1, 

Scheme 2.15),
130

 fluorenes
131

 and pyrroloindoles (eq 2, Scheme 2.15)
131

 by Xu and Ji. 

 

 Scheme 2.14: Copper-catalyzed cyanomethylation by Zhu 

                                                                        
130

 Chu, X.-Q.; Xu, X.-P.; Meng, H.; Ji, S.-J. RSC Adv. 2015, 5, 67829. 
131
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Scheme 2.15: Copper-catalyzed cyanomethylation by Xu and Ji 

A direct activation of acetonitrile in cross-dehydrogenative-coupling (CDC) reaction between 

1,3-dicarbonyls and acetonitrile using Fe(III)/DTBP systems was recently reported by Kim and Wu 

(Scheme 2.16).
132

 A radical mechanism was also proposed based on the experimental observation of 

cyanomethyl radical formation.  

 

Scheme 2.16: Iron-catalyzed CDC reaction of 1,3-dicarbonyls and acetonitrile by Kim and Wu 

The simple strategy for the generation of cyanoalkyl radical is hydrogen abstraction of nitriles 

with a highly active radical species. Regarding to this approach, Gao and You reported a successful 

activation of alkylnitriles 2.97 by tBuO• species derived from di-tert-butylperoxide (DTBP). The 

resulting cyanoalkyl radical 2.99 was applied to a cascade involving alkene addition and cyclization to 

access oxindole 2.98 (Scheme 2.17).
133

 Without the presence of metal salts, the domino process still 

afforded desired product, albeit in modest yields; a catalytic amount of CuCl (10 mol%) was proven to 

be important to the efficiency of the transformation. The role of CuCl could be explained by its 

contribution in Cu(I)/Cu(II) cycle in which Cu(I) facilitates the decomposition of DTBP to provide 

tBuO• species, whereas Cu(II) oxidizes cyclic radical intermediate 2.101 via SET process, followed by 

deprotonation to restore  aromaticity.  

A wide range of alkylnitriles was found to be compatible to catalytic system, including benzyl 

cyanide and malononitrile. Interestingly, combined system of CuI/DTBP was also applicable for 

activation of nitroalkanes in the similar transformation.  

                                                                        
132

 Wang, C.; Li, Y.; Gong, M.; Wu, Q.; Zhang, J.; Kim, J. K.; Huang, M.; Wu, Y. Org. Lett. 2016, 18, 4151. 
133
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Scheme 2.17: Copper-catalyzed radical cascade cyanomethylation by Gao and You 

The catalytic system of Cu(I)/peroxide was later exploited by Liu and coworkers in 

hydrocyanoalkylation of unactivated alkenes with alkylnitriles (Scheme 2.18).
134

 The activation of α-

C-H bond was succeeded in the presence of CuI (10 mol%) and dicumylperoxide (DCP).  Again, a 

catalytic amount of copper salts is not crucial for the success of this transformation but essential for 

better outcome. A wide range of disubstituted alkenes with various functional groups was applicable 

to this hydrocyanoalkylation; but trisubstituted substrates were significantly less active.  

 

Scheme 2.18: Copper-catalyzed hydrocyanoalkylation by Liu 

Apart from peroxide chemistry, cyanoalkyl radical was found to be accessible by photomediated 

transformations. Yamashita and Yasuda reported an hydrocyanomethylation of olefins in the presence 

of benzophenone derivatives (25-50 mol%) as photosensitizers and tBuNH2 under irradiation by 

mercury lamp (Scheme 2.19).
135

 The reaction was proposed to proceed through: (1) the formation of 

tBuNH from the interaction between excited Ar2CO and tBuNH2; (2) hydrogen abstraction of 

acetonitrile by tBuNH to generate cyanomethyl radical; (3) radical addition to olefins, followed by 

another hydrogen abstraction to afford hydrocyanomethylated product. However, this 

cyanomethylation was limited to 1,2-diarylethylenes; other substrates such as simple styrenes were 

                                                                        
134

 Li, Z.; Xiao, Y.; Liu, Z.-Q. Chem. Commun. 2015, 51, 9969. 
135
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found to be incompatible. Interestingly, the combination of benzophenone derivatives and tBuNH2 was 

applicable for the direct α-C-H bond activation of ketones, esters, amides and sulfoxides in the similar 

transformations.
136

 

  

Scheme 2.19: Photosensitized hydrocyanomethylation of alkenes by Yamashita and Yasuda 

Recently, Yoshida and coworkers developed an interesting CDC reaction between an aromatic 

ring and acetonitrile using heterogeneous palladium catalyst hybridized with a titanium dioxide 

photocatalyst (Scheme 2.20).
137

 The experimental observations clarified the formation of cyanomethyl 

radical in the presence of hybrid catalyst upon irradiation. Although desired products were obtained in 

synthetically insignificant yields, the improvement in this direct C-C bond forming transformation is 

promising for wide application.  

 

Scheme 2.20: Photocatalyzed CDC reaction of aromatic ring and acetonitrile by Yoshida 

  

                                                                        
136
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1.2. Copper-Catalyzed Carbo-oxygenation/amination of Alkenes  

The difunctionalization of alkenes represents a domain of main interest in organic synthesis.
5,6

 

Recently, numbers of transition-metal-catalyzed difucntionalization of alkenes, particularly palladium-

catalyzed transformations,
7
 have been reported, providing attractive strategies for the assembly of 

functionalized organic compounds. Given the fact that carbon-carbon bond formation is a fundamental 

transformation in organic chemistry, palladium-catalyed carbo-oxygenation or carbo-amination of 

alkenes has flourished immensely for last decade. However, due to susceptibility for β-hydride 

elimination of alkylpalladium intermediate, those reactions are sometimes challenging (see part I, 

chapter 1.2.1). Development of alternative metal-catalyzed carbo-oxygenation or carbo-amination, 

therefore, has been of great interest.  

Copper catalysts, inexpensive and abundant transition metal resources, represent multiple 

properties in chemical transformations, such as Lewis acid, -acid, a single-electron mediator and a 

two-electron mediator.
5g-i

 As a result, copper-catalyzed transformation becomes a powerful tool to 

difunctionalize C-C multiple bonds, especially in carbo-oxygenation and carbo-amination. As related 

to our research topics, herein we would like introduce some examples in the literature on carbo-

oxygenation and carbo-amination of alkynes using copper catalysis. Owing to versatile reactivity of 

copper complexes, those transformations will be categorized based on mechanism of the first bond-

formation step, including: copper-catalyzed difunctionalization via nucleocupration, via electrophilic 

activation and via radical addition.  
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1.2.1. Copper-Catalyzed Carbo-oxygenation/amination of Alkenes via 

Nucleocupration 

Similar to palladium-catalyzed transformations, copper-catalyzed carbo-oxygenation/amination 

could be initiated by nucleocupration through nucleophilic attack of oxygen/nitrogen atom to double 

bonds to form alkylcopper intermediates. However, the resulting organocopper intermediates could act 

as either nucleophiles or radical precursors.  Pioneered in this approach, Chemler has contributed 

many important works in the field of difunctionalization of alkenes, particularly in copper-catalyzed 

asymmetric version.
5g

 For instance, enantioselective Cu(OTf)2-catalyzed intramolecular oxidative 

carboamination of alkenylsulfonamides 2.113 was successfully developed to access polycyclic sultams 

2.115 in good yields and enantioselectivities (Scheme 2.21).
138

 The process is composed of a multi-

step sequence involving: (1) syn-aminocupration of alkenes to form five-membered organocopper(II) 

intermediate 2.117; (2) homolytic cleavage C-Cu(II) bond to generate Cu(I) species and radical 

species 2.118 which could be trapped by the tethered aromatic group; (3) oxidation of Cu(I) species by 

MnO2 to regenerate the active Cu(II) catalyst.    

 

Scheme 2.21: Enantioselective Cu-catalyzed intramolecular carboamination of alkenes by Chemler 

Copper-catalyzed intermolecular oxidative carboamination of alkenylsulfonamide was further 

exploited by trapping the putative radical intermediate 2.121 by olefins to provide alkyl Heck-type 

product 2.122 (eq 1, Scheme 2.22).
139

 Lately, copper-catalyzed intramolecular carbooxygenation of 4-

                                                                        
138

 Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948. 
139
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pentenols 2.123, 2.126 initiated by oxocupration was described for the construction of fused and 

bridged-ring tetrahydrofurans 2.125, 2.128 (eq 2 and eq 3, Scheme 2.22).
140

  

  

Scheme 2.22: Chemler's copper-catalyzed carboamination/carbooxygenation of alkenes  

 

1.2.2. Copper-Catalyzed Carbo-oxygenation/amination of Alkenes via Electrophilic 

Activation 

The combination of Cu(I) complexes with diaryliodonium salts results in formation of aryl-

Cu(III) species that could be used for electrophilic activation of alkenes to induce their carbo-

functionalization. In contrast to nucleocupration, those high oxidation state aryl-Cu(III) species acted 

as electrophiles, whereas alkenes acted as nucleophiles (Scheme 2.23-a). This C-C bond-forming 

strategy was demonstrated mainly by Gaunt and coworkers.
141

 For examples, in the presence of copper 

thiophenecarboxylate catalyst, allylic amides 2.134 underwent oxoarylation with diaryliodonium 2.129 

to afford oxazine products 2.137 in high yields and excellent diastereoselectivity (Scheme 2.23-b).
142

 

The reaction was proposed to proceed through an activation of alkenes by organocopper(III) species 

2.130, followed by an nucleophilic attack of alkenes to electrophilic aromatic ring to form a C-C bond 

                                                                        
140
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141
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and carbocation intermediate 2.136. Subsequent intramolecular trapping 2.136 by oxygen atom of 

amide group could furnish product 2.137. 

   

Scheme 2.23: Copper-catalyzed carbooxygenation of alkenes via electrophilic activation 

 

1.2.3. Copper-Catalyzed Carbo-oxygenation/amination of Alkenes via Radical 

Addition 

The general approach for this difunctionalization of alkenes could involve the following steps 

(Scheme 2.24): (1) the generation of carbon radical species 2.139 via a SET process from Cu(I) 

catalyst to radical precursor 2.138; (2) subsequent addition into alkenes 2.140 to form a C-C bond and 

an alkyl radical intermediate 2.141; (3) trapping 2.141 with suitable nucleophile in the presence of 

Cu(II) species to form C-Nu bond (Nu = O or N) and regenerate Cu(I) catalyst.   

  

Scheme 2.24: Copper-catalyzed difunctionalization of alkynes via electrophilic activation 

As a demonstration for this synthetic approach, copper-catalyzed trifluoromethylation of double 

bonds has been developed intensively, and even become a reliable tool for introduction of CF3 into 

organic molecules. In those transformations, Togni's reagent (2.149, 2.150) and Umemoto's reagent 

(2.151) were employed to generate CF3• radical via single electron reduction. A wide range of 

nucleophile (Nu= O, N) has been found to be compatible for intramolecular or intermolecular trapping 



115 

 

of radical intermediate 2.141 to afford trifluoromethyl-containing heterocycles such as: epoxides, 

lactones, isoxazoles, and aziridines (Scheme 2.25).
143

   

 

Scheme 2.25: Copper-catalyzed trifluoromethylation of alkynes  

Recently, Loh and coworker reported a novel copper-catalyzed three-component oxidative 

coupling of olefins with hydroperoxide tBuOOH and alcohols (Scheme 2.26).
144

 The reaction involved 

an α-C-H activation of alcohols to generate α-hydroxyl carbon radical 2.155, followed by radical 

addition to form C-C bond. Subsequent combination of the resulting radical intermediate 2.156 with 

tBuOO• derived from hydroperoxide tBuOOH afforded β-peroxy alcohols 2.154 as desired products.  

 

Scheme 2.26: Copper-catalyzed trifluoromethylation of alkynes  
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 (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012. 134, 12462. (b) Janson, P. G.; Ghoneim, I.; Ilchenko, N. 

O.; Szabó, K. J. Org. Lett. 2012, 14 , 2882. (c) Egami, H.; Shimizu, R.; Sodeoka, M. Tetrahedron Lett. 2012, 53, 

5503. (d) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 

2013, 49, 5687. (e) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem. Int. Ed. 2013, 52, 7841. 

(f) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881.    
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1.3. Goals of The Second Part of Thesis  

Important advances have been made during the past few years in the copper mediated/catalyzed 

difunctionalization of unactivated alkenes involving the formation of a C-C and a C-heteroatom bond. 

Most of the known carbo-oxygenation/carbo-amination reactions were initiated by an intra- or an 

inter-molecular oxocupration/aminocupration of a C-C double bond followed by the formation of a 

C(sp
3
)-C(sp

2
) bond (chapter 1.2.1, part II).

 
Although alternative C(sp

3
)-C(sp

3
) bond-forming 

transformations with participation of CF3• radical were reported (chapter 1.2.3, part II),  

trifluoromethyl-containing products provide limited rooms for further functionalization to reach 

complex compounds. The recent success in direct activation of alkylnitriles in difunctionalization of 

alkenes which is initiated by the formation of a C(sp
3
)-C(sp

3
) bond has been made by our group (see 

chapter 1.1.2, part II). This initial results prompted us to further exploit the catalytic system of 

Cu(II)/N,N-ligand/DTBP to access highly-versatile nitrile compounds. 

The second part of my thesis focused on designing new transformations and finding suitable 

nucleophiles based on general approach outlined in Scheme 2.14. Those works could be divided into 

two major parts based on the nature of nucleophiles: oxo-cyanomethylation and amino/azido-

cyanomethylation (Scheme 2.27). Nitrile-containing/derivative compounds such as 1,3-

dihydroisobenzofurans 2.159, γ-lactones 2.161, aziridines 2.163 and γ-azidobutyronitriles 2.164 were 

accessed by using appropriate nucleophiles. Further exploitation of synthetic versatility of nitrile 

group was implemented to obtain interesting bioactive compound or natural product, including 

citalopram (2.160) and sacidumlignan D (2.162).  

 

Scheme 2.27: Copper-catalyzed cyanomethylation of unactivated alkenes  
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2.1. 1,3-Dihydroisobenzofurans: Application and Synthesis 

1,3-Dihydroisobenzofurans (phthalans) are present in a number of  natural products which 

display many interesting biological activities such as antifungal, antibacterial and antioxidant.
145

 For 

examples, pestacin (2.165) isolated from an endophytic fungus Pestalotiopsis microspore, has been 

found to exhibit potent antioxidant activity and moderate antifungal properties.
146

 The highly active 

benzylic C-H bond towards reactive oxygen species was postulated to account for its strong 

antioxidant activity. Moreover, these compounds and their analogues contributed important structural 

constitutions in pharmaceutical chemistry. Particularly, phenylsubstituted phthalans were found to be 

highly selective and potent inhibitors of the serotonin transporter (SERT) and the norepinephrine 

transporter (NET)
147

 which are important drug targets for treatment of psychiatric diseases such as 

depression and anxiety.
148

 Indeed, citalopram 2.160 – selective inhibitor of SERT, and talopram 2.170 

– selective inhibitor of NET were successfully developed into marketed antidepressant drugs for 

adults. Alkylidene phthalans were also reported as potential tyrosine kinase inhibitors.
149

 Recent 

primary pharmaceutical studies have showed that these compounds, particularly 2.71 exhibited 

antidepressant activity comparable to citalopram.
150

  

 

Figure 2.4: Examples of phthalans in natural products and bioactive compounds 
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Besides their important application in medicinal chemistry, 1,3-dihydroisobenzofurans have 

been used in the agricultural, perfume and colorant industries.
151

 

Owing to their valuable bioactivities, a variety of synthetic approaches to 1,3-

dihydroisobenzofuran derivatives have been investigated.
152

 Among them, electrophile-induced 

cycloetherification of (2-vinylphenyl)methanol derivatives has been intensively exploited. These 

resulting oxa-heterocycles can be further derivatized taking advantage of the leaving group aptitude of 

electrophilic group. For example, Kobayashi reported a simple iodine/tBuOK-promoted 

iodoetherification of 2-vinylbenzyl alcohols 2.172 to give phthalans 2.173 (eq 1, Scheme 2.28).
153

 

Alternative mild and metal-free fluoroetherifcation was later published by Rueping to access fluoro-

containing phthalans 2.175 using Selectfluor as a promoter (eq 2, Scheme 2.28).
154

   

 

Scheme 2.28: Haloetherification of (2-vinylphenyl)methanol to access phthalans 

Transition metal-catalyzed transformations were also employed to construct this interesting 

scaffold. Stoltz and coworkers reported an oxidative cyclization of 2-vinylbenzyl alcohols 2.176 in the 

presence of Pd(TFA)2, pyridine and Na2CO3 under oxygen atmosphere to afford 1-vinylphthalans 

2.177 (eq 1, Scheme 2.29).
155

 This reaction could proceed through a sequence of activation of double 

bond by Pd(II) catalyst, oxopalladation to alkylpalladium(II) complext and β-hydride elimination. 

Taking advantage of the formation of alkylpalladium (II) intermediate, a cascade reaction of 2-

vinylbenzyl alcohols 2.178 with allyl bromide involving oxopalladation, carbopalladation and β-halide 

elimination was developed by France to access 1-homoallylated 1,3-dihydroisobenzofurans 2.179 (eq 

2, Scheme 2.29).
156

 The utility of this heteroallylation was demonstrated in the synthesis of citalopram 

by a sequence of functional-group interconversions of alkene moiety.    
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Scheme 2.29: Pd-catalyzed oxidative cyclization of (2-vinylphenyl)methanol to phthalans 

Cycloetherification to 1,3-dihydroisobenzofurans can be also achieved by employing various 

starting materials, such as α-hydroxybenzyl quarternary ammonium salts,
157a

 o-fluoromethylbromo-

benzene,
157b

 phthalyl alcohols,
157c

 α,α'-dihalo-o-xylenes.
157d 

Particularly, phthalides 2.180 have been 

exploited as valuable starting materials for the preparation of 1-aryl-1-[3-

(diemthylamino)propyl]phthalans 2.182 which is a selective and potent inhibitor of NET and SERT, 

such as citalopram and talopram.
147,158

 The synthesis generally involved the conversion of phthalides 

2.180 into diol intermediates 2.181 by two-fold Grignard reaction with aryl organometallic compound 

and (3-dimethylamino)propylmagnesium chloride. Subsequent acid-catalyzed or MsCl/Et3N-promoted 

cycloetherfication of the resulting diols afforded bioactive products 2.182. In an alternative route, 

phthalides 2.180 could be converted in to 1-arylphathalans 2.185 by a sequence of Grignard reaction, 

reduction and cycloetherfication. Finally, introduction of aminoalkyl chain was completed through 

metalation followed by reaction with (3-dimethylamino)propyl chloride (Scheme 2.30). 

 

Scheme 2.30: Two pathways in synthesis of antidepressant-drug candidates 
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Potentially bioactive alkylidene phthalans 2.186 generally were synthesized via intramolecular 

5-exo-dig cyclization of (2-alkylnylphenyl)methanols 2.187. A number of reagents were found to 

promote this cyclization, including: copper salts,
159 a

 silver salts,
159b

 alkaline bis(trimethylsilyl)-

amides
159c  (Scheme 2.31).  

 

Scheme 2.31: Synthesis of alkylidene phthalans via cyclization of (2-alkylnylphenyl)methanols 

In connection with our research program dealing with copper-catalyzed alkylative 

difunctionalization of alkenes using alkylnitrile as a key reactant (see chapter 1.1.2),
131 

we turned our 

attention on the development of novel synthesis of 1,3-dihydroisobenzofurans using this methodology 

(Scheme 2.32). The designed reaction might involve the addition of cyanomethyl radical resulting 

from direct activation of alkyl nitrile, to unactivated double bonds 2.188, followed by oxidation of 

benzylic radical intermediate 2.189 by appropriate copper salt to the carbenium ion 2.190 (pathway a, 

Scheme 2.32). Trapping of the latter 2.190 by the pendant hydroxyl group would afford the desired 

1,3-dihydroisobenzofurans 2.191. Alternatively, radical combination of 2.189 with Cu(II) salt 

followed by ligand exchange with the tether hydroxyl function would provide 2.192, which upon 

reductive elimination, would deliver the product 2.191 with concomitant regeneration of Cu(I) 

(pathway b). Overall, the reaction would produce a medicinally relevant heterocycle via formation of a 

C(sp
3
)-C(sp

3
) and a C(sp

3
)-O bonds involving formally a (sp

3
)-H functionalization step. This 

transformation provides an alternative synthetic approach to France's palladium-catalyzed alkylative 

cycloetherification
156

 which is initiated by oxometallation process. The utility of cyanoalkylative 

etherification was further exploited in the syntheses of antidepressant drugs such as citalopram. 

 

Scheme 2.32: Designed copper-catalyzed cyanoalkylation in synthesis of 1,3-dihydroisobenzofurans 

                                                                        
159

 (a) Praveen, C.; Iyyappan, C.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 4767. (b) Lu, D.; Zhou, Y.; Li, Y.; 

Yan, S.; Gong, Y. J. Org. Chem. 2011, 76, 8869. (c) Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. 

A.; Reid, S. Organometallics 2012, 31, 7287. 
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2.2. Results and Discussion 

2.2.1. Conditions survey 

We began the survey of reaction conditions using [2-(prop-1-en-2-yl)phenyl]methanol (2.193a) 

as the benchmark substrate. Condition screening for copper-catalyzed alkylative cycloetherificaion 

was carried by varying copper sources, ligands, solvents, and additives etc.  

2.2.1.1. Screening conditions: Copper sources 

Based on our previous works,
129

 we decided to apply the typical combinatory system of 

Cu(II)/N,N-ligand/DTBP for this alkylative cycloetherificaion. Gratifying, in the presence of Cu(OTf)2 

(50 mol%), 2,2'-bipyridine (75 mol%), K3PO4 (50 mol%), DTBP (4.0 equiv), heating a solution of 

2.193a in MeCN (c 0.067 M) at 120 ºC after 2 hours  afforded desired phthalan 2.194a in 20% yield 

with full conversion (entry 1, Table 2.1).  

Table 2.1: Copper sources screening
(a) 

 

Entry 
Copper source 

(0.5 equiv) 
Solvent 

Yield 

(Conversion)
(b) 

1 Cu(OTf)2  MeCN 20% (100% conv.) 

2 Cu(OAc)2 MeCN 22%, (90% conv.) 

3 Cu(BF4)2.6H2O MeCN 24%, (100% conv.) 

4 CuCl2 
MeCN Degradation 

5 CuF2 MeCN <10%, (82% conv.) 

6 Cu(acac)2 MeCN 22%, (73% conv.) 

7 Cu(I) sources MeCN no reaction or degrad. 

8 Cu(OTf)2 MeCN/MeOH (4/1) 33%, (100% conv.) 

9 Cu(OAc)2 MeCN/MeOH (4/1) 25%, (80% conv.)
 

10 Cu(BF4)2.6H2O MeCN/MeOH (4/1) 37% (29%)
(c)

, (100% conv.) 

11 Cu(acac)2 MeCN/MeOH (4/1) <10%, (84% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.193a (0.1 mmol), 

copper source (0.5 equiv), 2,2'-bipyridine (0.75 equiv), DTBP (4.0 equiv) and K3PO4 (0.5 

equiv) in given solvent (c 0.067 M) under nitrogen at 120 ºC for 2 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. (c) Isolated yield. 
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Different copper sources were later investigated under the same condition. Cu(OTf)2, Cu(OAc)2, 

Cu(BF4)26H2O and Cu(acac)2 displayed the similar activities, providing desired product in about 20% 

NMR yield (entry 1-3, 6). Whereas, CuCl2, CuF2 and copper (I) sources such as Cu2O, CuX (X = Cl, 

Br, I) were not suitable for this reaction, either giving insignificant yields, or causing degradation of 

starting material (entry 4, 5, 7).   

Although it has been demonstrated that the copper salt is mainly responsible for the generation 

of cyanomethyl radical,
129

 the presence of tBuO• radical in the reaction mixture could be problematic 

in the present case. Indeed, the BDE of benzylic CH of benzyl alcohol (87 kcal/mol) is relatively low 

and it can therefore easily transfer its hydrogen to tBuO• (BDE of tBuO-H: 106 kcal/mol).
128

 Although 

the BDE of H-CH2OH (96 kcal/mol) is higher than that of the benzylic CH, we were pleased to find 

that by using MeOH as a co-solvent, the yield of product 2.194a was increased significantly (entries 1, 

8). With co-solvent system of MeCN/MeOH (v/v 4/1) in hand, Cu(BF4)2.6H2O was found to be the 

best catalyst to our transformation, furnishing a complete conversion and 2.194a in 37% NMR or 29% 

isolated yield (entry 10) after re-examination of copper salts (entry 8-11).  

2.2.1.2. Screening conditions: Ligands 

The N,N-ligand including bipyridines, phenanthrolines and bisoxazoline were next screened in 

the presence of Cu(BF4)26H2O (50 mol%), K3PO4 (50 mol%) and DTBP (4.0 equiv) at 120 ºC (Table 

2.2). Unfortunately, simple pyridine L3 and N,N-ligands bearing substituents at ortho positions of 

nitrogen atoms such as L2, L5 induced the decomposition (entry 2, 3, 5). Phenanthroline L4 was 

found to be more productive ligand to the reaction in comparison to bipyridine L1 and bisoxazoline 

L6 (entry 1, 4, 6). After changing substituents on phenanthroline (entry 7, 8) and tuning ligand loading 

(entry 9-11), the best result was obtained (57% NMR yield, 100% conversion) when 

bathophenanthroline (4,7-diphenyl-1,10-phenanthroline L8)  was employed and ½ molar ratio of 

Cu/Ligand was applied (entry 11).  

Gratefully, the combination of Cu(BF4)26H2O/bathophenanthroline enabled the reaction to 

result in  comparable yield, albeit slightly drop in conversion when copper loading was decreased to 

30 mol% (entry 12).   
Table 2.2: Ligand screening

(a) 
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Entry 
Ligand 

(equiv) 

Yield 

(Conversion)
(b) 

1 L1 (0.75) 37% (29%)
(c)

, (100% conv.) 

2 L2 (0.75) Degradation 

3 L3 (1.50) Degradation 

4 L4 (0.75) 47% (40%)
(c)

, (100% conv.) 

5 L5 (0.75) Degradation 

6 L6 (0.75) 34%, (100% conv.) 

7 L7 (0.75) 19%, (76% conv.) 

8 L8 (0.75) 53% (44%)
(c)

, (100% conv.) 

9 L8 (0.25) 42%, (100% conv.)
 

10 L8 (0.50) 50%, (100% conv.) 

11 L8 (1.00) 57% (51%)
(c)

, (100% conv.) 

12
(d) 

L8 (0.60) 52%, (92% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.193a (0.1 

mmol), Cu(BF4)2.6H2O (0.5 equiv), Ligand (0.25-1.00 equiv), DTBP (4.0 equiv) and 

K3PO4 (0.5 equiv) in MeCN/MeOH (4/1, c 0.067 M) under nitrogen at 120 ºC for 2 h. 

(b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

(c) Isolated yield. (d) Cu(BF4)2.6H2O (0.3 equiv), and K3PO4 (0.25 equiv) were used 

 

Figure 2.5: Selected ligands for screening 

2.2.1.3. Screening conditions: Solvents 

The positive effect of using methanol as co-solvent prompted us to investigate different co-

solvent systems (Table 2.3). Unfortunately, no improvement was observed when MeOH was replaced 

by other ROH solvents (entry 1-6). Further varying the amount of MeOH (entry 7-9) allowed us to 

conclude that a mixed solvent (MeCN/MeOH v/v = 7/3) is optimum to furnish 2.194a in 54% NMR 

yield (entry 8). 
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Table 2.3: Solvent screening
(a) 

 

Entry 
Solvents 

 

Yield 

(Conversion)
(b) 

1 MeCN/MeOH (4/1) 52%, (92% conv.) 

2 MeCN/EtOH (4/1) 40%, (90% conv.) 

3 MeCN/iPrOH (4/1) 19%, (96% conv.) 

4 MeCN/tBuOH (4/1) 28%, (100% conv.) 

5 MeCN/CF3CH2OH (4/1) 26%, (100% conv.) 

6 MeCN/H2O (4/1) 39%, (78% conv.) 

7 MeCN/MeOH (9/1) 33%, (100% conv.) 

8 MeCN/MeOH (7/3) 54%, (90% conv.) 

9 MeCN/MeOH (6/4) 43%, (83% conv.)
 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.193a (0.1 

mmol), Cu(BF4)2.6H2O (0.3 equiv), bathophenanthroline (0.6 equiv), DTBP (4.0 

equiv) and K3PO4 (0.25 equiv) in MeCN/ROH (c 0.067 M) under nitrogen at 120 ºC 

for 2 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal 

standard. (c) Isolated yield.  

2.2.1.4. Screening conditions: Oxidants, Additives and Temperature 

The effect of alternative peroxides to the reaction outcome was later examined (entry 1-4, Table 

2.4). Dicumyl peroxide (O2) and Luperox
®
 101, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (O3) 

displayed the similar activities to DTBP (O1), whereas, tert-butyl benzoyl peroxide (O4) caused the 

degradation. This result could be reasoned by the fact that O4 is likely to undergo thermal 

decomposition at high temperature to generate tBuO• radical which is detrimental to the reaction, 

compared to others O1-O3.
160

 Lowering DTBP (O1) loading led to the decrease in both conversion 

and yield (entry 5, 6).  

Intrigued by the role played by alcoholic solvent, benzyl alcohol, diphenylcarbinol and 1-

phenylethanol (1.2 equiv) were added into the reaction mixture (entries 7-9). Gratefully, we were able 

to obtained 2.194a in 61% yield when BnOH was introduced as an additive (entry 7). Comparable 

                                                                        

160
 Eds. Brandrup, J; Immergut, E.H.; Grulke, E.A. "Polymer Handbook", 4

th
 Edition, John Wiley, New York, 

1999, II/2-69. 
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yield was observed in case of using diphenylcarbinol (entry 8), whereas 1-phenylethanol had no 

influence (entry 9). Addition of other substituted benzyl alcohols (p-NO2C6H4CH2OH, P-ClC6H4 

CH2OH, p-MeOC6H4CH2OH) afforded 2.194a in reduced yields (entry 10-12). Finally, yield of 

2.194a was slightly increased when the reaction was performed at 100 °C (entry 13). 

Table 2.4: Oxidant, additive and temperature screening
(a)

 

 

Entry 
Oxidant 

(equiv) 

Additive 

(equiv) 

Yield 

(Conversion)
(b) 

1 O1 (4.0) None 54%, (90% conv.) 

2 O2 (4.0) None 50%, (100% conv.) 

3 O3 (4.0) None 50%, (94% conv.) 

4 O4 (4.0) None <10%, (100% conv.) 

5 O1 (3.0) None 52%, (90% conv.) 

6 O1 (2.0) None 39%, (80% conv.) 

7 O1 (4.0) BnOH (1.2) 61%, (94% conv.) 

8 O1 (4.0) Diphenylcarbinol (1.2) 60%, (89% conv.) 

9 O1 (4.0) 1-Phenylethanol (1.2) 52%, (91% conv.)
 

10 O1 (4.0) p-NO2C6H4CH2OH (1.2) 48%, (90% conv.) 

11 O1 (4.0) p-Cl C6H4CH2OH (1.2) 59%, (93% conv.) 

12 O1 (4.0) p-MeO C6H4CH2OH (1.2) 59%, (91% conv.) 

13
(d) 

O1 (4.0) BnOH (1.2) 69% (65%)
(d)

, (100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.193a (0.1 mmol), 

Cu(BF4)2.6H2O (0.3 equiv), bathophenanthroline (0.6 equiv), Oxidant (2-4 equiv), K3PO4 (0.25 equiv) 

and additive (1.2 equiv) in MeCN/MeOH (4/1, c 0.067 M) under nitrogen at T ºC. (b) Yields 

determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. (c) Isolated yield. (d) 

Reaction performed at 100 ºC. 

O1 = DTBP (di-tert-butyl peroxide)  O2 = Dicumyl peroxide 

         O3 =    O4 = tert-butyl benzoyl peroxide 

Overall, the optimum conditions consisted of performing the cyanoalkylative etherification of 

2.193a in MeCN/MeOH (v/v 7/3, c 0.025 M) at 100 ºC in the presence of Cu(BF4)26H2O (30 mol%), 
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bathophenanthroline (60 mol%), K3PO4 (25 mol%), DTBP (4.0 equiv) and benzyl alcohol (1.2 equiv). 

Under these conditions, alkyloxigenation of 1.293a afforded nitrile-containing 1,3-dihydro-

isobenzofuran 1.294a in 65% isolated yield.  

2.2.2. Substrate scope 

2.2.2.1. Synthesis of starting materials 

Several approaches were applied for the synthesis of (2-vinylphenyl)methanol derivatives. The 

first approach leading to the synthesis of 1.293a is depicted in Scheme 2.33.
156

 Commercially 

available 2-acetylbenzoic acid (2.195) was converted into 2-(prop-1-en-2-yl)benzoic acid (2.196) by 

Wittig reaction. Subsequent reduction of 2.196 with LAH afforded 2.193a in good overall yield.  

 

Scheme 2.33: Synthesis of 2.193a 

The second approach leading to the synthesis of 1.293b-m is depicted in Scheme 2.34. These 

starting materials were accessed through 2 steps: (1) Heck reaction of terminal olefins 2.193 with 

phenol triflates 2.197 using Zhou's conditions to afford 2-aryl-1-alkene 2.199 with high 

regioselectivity;
161

 (2) subsequent reduction of 2.199 by AlH(iBu)2 at low temperature. 

 

Scheme 2.34: Synthesis of 2.193b-m 

Finally, the third approach leading to the synthesis of 1.293r is depicted in Scheme 2.35.
 
1,1-

diarylethylene 2.200 which can be prepared by using Zhou's Heck coupling reaction described in the 

second approach, underwent two-fold Grignard reaction with MeLi to furnish 2.193r in good yield. 
 

 

Scheme 2.35: Synthesis of 2.193r 

                                                                        
161

 (a) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2012, 51, 5915. (b) Zou, Y.; Qin, L.; Ren, 

X.; Lu, Y.; Li, Y.; Zhou, J. Chem. Eur. J. 2013, 19, 3504. 
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2.2.2.2. Substrate scope 

With the optimized conditions in hand, the scope of the copper-catalysed cyanoalkylative 

cycloetherification of alkenes was investigated. The results are summarized in Scheme 2.36. 

 

Scheme 2.36: Scope for copper-catalyzed cyanoalkylative etherification of alkenes 

In addition to -methyl substituted styrenes 2.193a, -hexyl, -hydroxyethyl and -

benzyloxyethyl substituted styrenes (2.193b-d) participated in this reaction to afford the corresponding 

1,3-dihydrobenzofurans (2.194b-d) in moderate to good yields. Pleasingly, substrates bearing 

functional groups such as free hydroxyl (2.193c) or benzylated hydroxyl (2.193d) were found to be 

tolerated in reaction conditions.  

-Aryl substituted styrenes with electron-donating (Me, MeO) or electron-withdrawing (F, Cl, 

Br, NO2) substituents on both aryl rings, regardless of their positions, participated well in this reaction 

(2.194e-m). While we expected that substrates with electron-donating substituents would be 

transformed to 1,3-dihydroisobenzofurans (example 2.194f, 2.194g) in high yields, we were surprised 

to observe that substrates with electron-withdrawing groups (NO2, Cl, Br) were also converted to 

compounds 2.194j, 2.194l, 2.194m in very good yields. The experimental observation might suggest 

the reaction mechanism is unlikely to proceed through carbenium intermediate as depicted in pathway 

a, Scheme 2.32. However, it could not be ruled out that high yields of these substrates may result 
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simply from their stability toward tBuO• radical. The hydrogen abstraction of C-H benzylic alcohol by 

electrophilic tBuO• radical to form the corresponding nucleophilic -hydroxyl carbon radical is 

anticipated to be unfavourable in the presence of electro-withdrawing substituents.  The presence of 

halides and nitro group in this bicycles provided obvious handles for post-functionalizations.  

Propionitrile, butyronitrile, pentanenitrile and 3-methoxypropionitrile also took part in the 

reaction leading to the corresponding dihydroisobenzofurans 1.294n-q as a mixture of two 

diastereoisomers (dr 1/1), although the reactions were relatively slow and required higher temperature 

to complete (110 °C) in these cases. Alkene 1.293r with a pendant tertiary benzylic alcohol function 

afforded 1.294r in low yield (30%), most probably due to the instability of the tertiary alcohol under 

the reaction conditions.  

2.2.3. Application of Copper-catalyzed cyanoalkylative etherification of alkenes 

Citalopram (2.160), marketed in over 65 countries under different brand names and estimatedly 

exposed to more than 8 million people, was one of the top-selling antidepressant drugs.
162

 To illustrate 

the synthetic potential of our methodology, synthesis of 2.160 featuring the key cyanoalkylative 

cycloetherification was undertaken (Scheme 2.37). Regioselective Heck reaction of triflate 2.201 with 

4-fluorostyrene (2.202) according to Zhou
161

 followed by reduction of the methyl ester furnished 

2.193l. Copper-catalysed reaction of 2.193l with acetonitrile under our optimised conditions afforded 

dihydroisobenzofuran 2.194l in 71% yield. The reaction was performed in a gram scale with similar 

synthetic efficiency. Reduction of the cyano group to primary amine 2.203 followed by reductive N,N-

dimethylation provided 2.204. Finally, Rosenmund-von Braun reaction of 2.204 (CuCN, DMF, 150 

°C) afforded citalopram (2.160) in 74% yield.  

 

Scheme 2.37: Synthesis of citalopram (2.160) 

                                                                        
162

 (a) Baldwin, D.; Johnson, F. N. Rev. Contemp. Pharmacother. 1995, 6, 315. (b) Keller, M. B. J. Clin. 

Psychiatry 2000, 61, 896. (c) Dorell, K.; Cohen, M. A.; Huprikar, S. S.; Gorman, J. M.; Jones, M. 

Psychosomatics 2005, 46, 91. 
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Taking advantage of the aryl bromide function in 1.294l, a diverse set of substituents can be 

introduced to the dihydroisobenzofuran framework. For example, Suzuki-Miyaura cross-coupling of 

1.194l with p-tolylboronic acid afforded 2.205 (eq 1, Scheme 2.38), while Sonogashira reaction of 

2.194l with ethynylbenzene provided 2.206 (eq 2, Scheme 2.38). Applying the sequence of reduction 

of nitrile and reductive N,N-dimethylation of the resulting amine shown in Scheme 2.36 would afford 

a range of citalopram analogues with structural modification on side chain, aromatic rings and 

benzylic positions.  

 

Scheme 2.38: Post-transformation of dihydroisobenzofuran 2.189l 

 

2.3. Conclusion 

In summary, we developed a novel copper-catalysed cyanoalkylative cycloetherification of substituted 

(2-vinylphenyl)methanol using alkylnitriles as alkyl donors. The reaction provided an efficient 

approach to1,3-dihydroisobenzofurans via the formation of C(sp
3
)-C(sp

3
) and C(sp

3
)-O bond (Scheme 

2.39). The synthetic potential of this novel transformation was demonstrated by the development of a 

concise synthesis of citalopram, a marketed anti-depressant drug.
163

 

 

Scheme 2.39: Copper-catalyzed cyanoalkylative etherification of alkenes; 

synthesis of 1,3-dihydroisobenzofurans 

                                                                        
163

 Tu, H. M.; Wang, Q.; Zhu, J. Chem. Commun. 2016, 4, 11100–11103. 
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CHAPTER 3 

Copper-Catalyzed  

Formal [2+2+1] Heteroannulation of  

Alkenes, Alkylnitriles, and Water  

in Synthesis of γ-Lactones 

  



132 

 

3.1. Heteroannulation of Alkenes in Synthesis of γ-Lactones 

γ-Butyrolactone is important structural core found in many biologically active natural 

products
164

  and is also a useful synthetic building block in the syntheses of many types of natural 

products including antibiotics, pheromones, antifungal and flavour components.
165

 Consequently, the 

development of efficient methods for the synthesis of γ-butyrolactone has received considerable 

attention. Conventionally, γ-butyrolactones could be obtained from either γ-hydroxyl carbonyl 

compounds 2.208 (disconnection a, Scheme 2.40-a) or carbonyl compounds 2.209/2.210 bearing a 

functional group at γ-position (disconnection b, Scheme 2.40-a).  

Transition metal-mediated/catalyzed difunctionalization of alkenes has emerged as a powerful 

tool in organic synthesis because of their high potential for application in natural products and drugs 

synthesis.
5 

Important progress has been made during the past few years in this research area, 

particularly carboamination, carbooxygenation and carbohalogenation of alkenes. Among these 

transformations, carboesterification of alkenes involving the formation of C(sp
3
)-C(sp

3
) and C(sp

3
)-O 

bond in single step, has become a promising synthetic approach to γ-lactones (Scheme 2.40-b). 

 

Scheme 2.40: Synthetic approaches for synthesis of γ-lactones 

As mentioned in chapter 1 - part II, transition metal-catalyzed C(sp
3
)-C(sp

3
) bond-forming 

difunctionalization of alkenes remained a challenge. Those reactions are limited mainly to the 

transformations initiated by CF3• radical. The development of novel carboesterification of alkenes for 

construction of γ-lactones as depicted in Scheme 2.40 therefore is of great interest.  

                                                                        
164

 (a) Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids; Chapman and Hall: London, 1991; Vol. 1, pp 476. 

(b) Bandichhor, R.; Nosse, B.; Reiser, O. Top. Curr. Chem. 2005, 243, 43. (c) Kitson, R. R. A.; Millemaggi, A.; 

Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426. 
165

 (a) Koch, S. S. C.; Chamberlin, A. R. J. Org. Chem. 1993, 58, 2725. (b) Koch, S. S. C.; Chamberlin, A. R. 

Stud. Nat. Prod. Chem. 1995, 16, 687. (c) Collins, I.  J. Chem. Soc., Perkin Trans. 1 1999, 1377. 
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Indeed, Heiba and Bush independently reported manganese(III)-mediated oxidative addition of 

acetic acid to alkenes 2.213 to afford γ-butyrolactones 2.214 over 40 years ago (Scheme 2.41).
166

 The 

reaction mechanism proceeds through the formation of Mn
III

 enolate 2.215, followed by a rapid 

electron transfer to provide free radical 2.216 and concomitantly release Mn
II
 species. Subsequent 

addition of 2.216 to alkene 2.213 leads to the formation of C(sp
3
)-C(sp

3
) bond and generates alkyl 

radical 2.217. The resulting intermediate 2.217 is converted into γ-lactone 2.214 via oxidative electron 

transfer by another equivalent of Mn
III

. However, the requirement of stoichiometric amount of 

manganese salt and the employment of corrosive AcOH as solvent under harsh conditions makes this 

reaction unpractical.  

 

Scheme 2.41: Manganese-mediated oxidative addition of acetic to alkenes 

As improvement of Heiba and Bush's transformation, the heteroannulation of alkenes with 

cyanoacetic acid
167

 and malonic acid
168

 to γ-butyrolactones was reported to proceed smoothly at room 

temperature (Scheme 2.42). However, malonic acid gives only bis-lactone adducts resulting from the 

addition to two molecules of alkenes.  

 

Scheme 2.42: Mn(III)-mediated heteroannulation of alkenes with cyanoacetic acid or malonic acid 

Alternatively, Jiang and coworker recently reported a MnO2-promoted cycloaddition of alkenes 

with anhydrides involving the formation of C(sp
3
)-C(sp

3
) and C(sp

3
)-O bond to afford a variety of γ-

                                                                        
166

 (a) J. B. Bush, Jr., H. Finkbeiner, J. Am. Chem. Soc. 1968, 90, 5903. (b) E. I. Heiba, R. M. Dessau, W. J: 

Koehl, Jr., J. Am. Chem. Soc. 1968, 90, 5905. (c) E. I. Heiba, R. M. Dessau, P. G: Rodewald, J. Am. Chem. Soc. 

1974, 96, 7977; 
167

 Corey, E. J.; Gross, A. W., Tetrahedron Lett. 1985, 26, 4291. 
168

 (a) Fristad, W. E.; Hershberger, S. S., J. Org. Chem. 1985, 50, 3143. (b) Ito, N.; Nishino, H. Kurosawa, K., 

Bull. Chem. Soc. Jpn. 1983, 56, 3527. 
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butyrolactones in good to excellent yields (Scheme 2.43).
169

 A wide range of alkenes including 

styrenes, aliphatic alkenes, internal and terminal alkenes was found to be applicable in this 

carboesterification.   

 

Scheme 2.43: MnO2-promoted cycloaddition of alkenes with alhydrides by Jiang 

Indeed, copper-catalyzed version of above formal [3+2]-heteroannulation of alkenes with 

anhydrides was successfully developed by the same group,
170

 allowing the simple synthesis of γ-

lactones (Scheme 2.44). The proposed mechanism implies syn-oxycupration to form intermediate 

2.229, followed by the insertion into the enol to produce the 5-membered intermediate 2.225. Finally, 

with the aid of oxygen molecule, 2.230 afforded the product 2.228 and regenerate Cu(II) to complete 

the catalytic cycles.  

 

Scheme 2.44: Copper-catalyzed cycloaddition of alkenes with alhydrides by Jiang 

The strategy for C(sp
3
)-C(sp

3
) bond formation via radical addition to alkenes was also exploited 

in photocatalyzed process. Three-component [2+2+1] heteroannulation of styrenes 2.231, α-

bromoester 2.232 and water was reported by Wu and Liu for the construction of aryl-substituted γ-

lactones via visible-light photoredox catalysis (Scheme 2.45).
171

 

 

Scheme 2.45: Heteroannulation of alkenes to γ-lactones via photoredox catalysis 

                                                                        
169

 Wu, L.; Zhang, Z.; Liao, J.; Li, J. Chem. Commun. 2016, 52, 2628. 
170

 Huang, L.; Jiang, H.; Qi, C.; Liu, X. J. Am. Chem. Soc. 2010, 132, 17652. 
171

 Wei, X. J.; Yang, D. T.; Wang, L.; Song, T.; Wu, L. Z.; Liu, Q. Org. Lett. 2013, 15, 6054. 
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Inspired by our recent research program aimed at developing copper-catalyzed alkylative 

difunctionalization of alkenes using alkylnitriles as a key reactant, particularly copper-catalyzed 

carboetherficaion of unactivated double bonds (Scheme 2.46-a),
129c

 we proposed herein a novel 

synthesis of γ-lactones 2.240 by a copper-catalyzed three-component [2+2+1] heteroannulation of 

alkenes 2.238, alkylnitriles 2.2394 and water. The underline principle is outlined in Scheme 2.46-b. 

Addition of in situ generated -cyanoalkyl radical 2.241 to alkene 2.238 would afford the adduct 

radical 2.242 that could be further oxidized to the carbenium ion 2.243.
172

 Trapping of the latter by 

water would afford γ-hydroxy alkylnitrile 2.244, which, upon intramolecular cyclization, would 

provide cyclic imidate 2.245. Acidic work-up would then convert 2.245 to γ-butyrolactone 2.240. For 

the desired domino sequence to proceed towards the formation of 2.240, the catalytic conditions 

should satisfy the following mechanistic criteria: a) selective generation of electrophilic -cyanoalkyl 

radical 2.241 that adds rapidly to the double bond of alkene 2.238; b) fast oxidation of the resulting 

nucleophilic radical 2.242 to carbenium ion 2.243 to avoid the dimerization of the former; c) rapid 

addition of water to carbenium ion 2.243 to avoid its cationic polymerization with the remaining 

alkene and d) proper activation of the cyano group to accelerate the lactonization process. 

 

Scheme 2.46: Proposed difunctionalization of alkenes to γ-lactones: 

Copper-catalyzed three-component reaction of alkenes, alkylnitriles and water 

                                                                        
172

 a) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 843; b) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 

1790. For a recent review: c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. 2011, 123, 11256; 

Angew. Chem. Int. Ed. 2011, 50, 11062. 
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Overall, the proposed domino process involving a direct activation of (sp
3
)-H bond of 

alkylnitriles, an intermolecular hydroxyl-alkyaltion of olefins and an intramolecular lactonization 

would produce a γ-lactones via formation of a C(sp
3
)-C(sp

3
), a C(sp

3
)-O and a C(sp

2
)-O bonds.  

3.2. Results and Discussion 

3.2.1. Conditions survey 

Using α-methyl styrene (2.238a) and acetonitrile as test substrates, the reaction conditions were 

surveyed by varying copper sources, ligands, oxidants, bases and additives. 

3.2.1.1. Screening conditions: Copper sources 

We started our investigation on three-component reaction by screening the copper sources. 

Initially, the stoichiometric version was examined when 2.238a was introduced to our preivous 

conditions
129c

 consisting of copper salts (1.0 equiv), 2,2'-bipyridine (1.5 equiv), Na3PO4 (1-2 equiv) 

and DTBP (4.0 equiv) in acetonitrile at 140 ºC for 4 hours. To complete hydrolysis of the possible 

imidate intermediate 2.245 (see Scheme 2.46), the resulting reaction mixture was treated with aqueous 

solution of HCl 1N at 80 ºC for 30-45 mins. Gratifyingly, desired product 2.240a was obtained in 

significant yields when Cu(BF4)2.6H2O, Cu(ClO4)2.6H2O and Cu(OTf)2 were employed (entry 1-4, 

Table 2.5). The higher yield observed with Cu(BF4)2.6H2O and Cu(ClO4)2.6H2O compared to 

Cu(OTf)2 may result from hydrated water which could facilitate intermolecular  hydroxyl-alkyaltion of 

2.238a. Indeed, introduction of additional amount of water in Cu(OTf)2 conditions afforded higher 

yield (entry 1,4), albeit still less efficient than Cu(ClO4)2.6H2O. Insignificant yield of 2.240a was 

observed in case of Cu(OAc)2, CuF2 and Cu(acac)2 with or without water (entry 5-7); while side 

product 2.246 resulting from radical dimerization was obtained as major product. The influence of 

anion to redox potential of Cu(II)/Cu(I) might be an explanation to experimental observation. Naked 

copper(II) species such as  Cu(BF4)2, Cu(ClO4)2 and Cu(OTf)2 is more powerful oxidants than 

copper(II) salts with coordinated anion (acetate or fluoride), resulting in fast oxidation of the proposed 

radical intermediate 2.242 to avoid the formation of dimer.  

Given the fact that quantity of water has impact on the outcome of reaction, additional amount 

of water was introduced to the reaction conditions using Cu(BF4)2.6H2O (entry 8-11). Pleasingly, 

dramatically increase in yield was achieved (entry 8, 9). However, a side product 2.247 was obtained 

in significant yield when an excessive amount of water was employed (entry 10, 11). The addition of 

Me• radical resulting from thermal decomposition of DTBP in the presence of water as a co-solvent, to 

2.238a instead of •CH2CN might lead to the formation of side product 2.247. 
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Table 2.5: Copper sources screening
(a) 

 

Entry 
Cu source (equiv) 

+ H2O (equiv) 

Base 

(equiv) 

Yield
(b) 

 

1 Cu(BF4)2.6H2O (1) Na3PO4 (2) 51% 

2 Cu(OTf)2 (1) Na3PO4 (2) 16% 

3 Cu(ClO4)2.6H2O (1) Na3PO4 (2) 37% 

4 Cu(BF4)2.6H2O (1) + H2O (6) Na3PO4 (2) 37% 

5 Cu(OAc)2 (1) w/wo H2O Na3PO4 (2) Side product 2.246 

6 CuF2 (1) w/wo H2O Na3PO4 (2) Side product 2.246 

7 Cu(acac)2 (1) w/wo H2O Na3PO4 (2) Side product 2.246 

8 Cu(BF4)2.6H2O (1) + H2O (10) Na3PO4 (1) 77%  

9 Cu(BF4)2.6H2O (1) + H2O (50) Na3PO4 (1) 75% + 2.247 (trace) 

10 Cu(BF4)2.6H2O (1) + H2O (100) Na3PO4 (1) 54% + 2.247 (27%) 

11 Cu(BF4)2.6H2O (1) + H2O (200) Na3PO4 (1) 54% + 2.247 (41%) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 mmol), 

copper source (1.0 equiv), 2,2'-bipyridine (1.5 equiv), DTBP (4.0 equiv) and Na3PO4 (1-2 

equiv) in MeCN (c 0.025 M) under nitrogen at 140 ºC for 4 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

3.2.1.2. Screening conditions: Ligands and oxidants 

With promising result of stoichiometric version in hand, we next examined three-component 

reaction using a catalytic amount of Cu(BF4)2.6H2O with 30 equiv of water. Gratefully, desired 

product 2.240a was obtained in 57% NMR yield (entry 1, Table 2.6). The investigation of the effect of 

N,N-ligands on the outcome of reaction (entry 2-10) revealed that: (1) bipyridine-derived ligands are 

more compatible to catalytic system than phenanthrolines (entry 2-4 compared to entry 7-9); (2) no 

significant influence of substituents at 4,4'-positions of bipyridine ring was observed (entry 2-4); while 

the presence of substituents at 2,2'-positions shut down the reaction (entry 5-6); (3) 1/3 molar ratio of 

copper/ligand is optimum (entry 11).  

Different oxidants were also screened, including organic peroxide and inorganic salts. Dicumyl 

peroxide which is extremely unstable at high temperature (140 ºC) (entry 12), induced the degradation; 
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while Luperox
®
 101, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane afforded a comparable yield to 

DTBP (entry 13). Interestingly, silver carbonate was found to be effective to catalytic cycles, albeit 

giving lower yield (entry 14).  

Table 2.6: Ligand and oxidant screening
(a) 

 

Entry 
Ligand  

(equiv) 

Oxidant 

(equiv) 

Yield
(b) 

of 2.240 

 

1 L1 (0.3) DTBP (4) 57%  

2 L2 (0.3) DTBP (4) 55% 

3 L3 (0.3) DTBP (4) 48% 

4 L4 (0.3) DTBP (4) 46%  

5 L5 (0.3) DTBP (4) trace 

6 L6 (0.3) DTBP (4) trace 

7 L7 (0.3) DTBP (4) 55% 

8 L8 (0.3) DTBP (4) 42% 

9 L9 (0.3) DTBP (4) 18%  

10 L10 (0.3) DTBP (4) trace  

11 L1 (0.6) DTBP (4) 60% 

12 L1 (0.3) Dicumyl peroxide (4) Degradation 

13 
L1 (0.3) 

 (2) 

56%  

14 L1 (0.3) Ag2CO3 (2) 42%  

15 L1 (0.3) MnO2 (4) trace  

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(BF4)2.6H2O (0.2 equiv), ligand (0.3-0.6 equiv), oxidant (2-4 equiv), 

Na3PO4 (0.2 equiv) and water (30 equiv) in MeCN (c 0.025 M) under nitrogen at 140 

ºC for 4 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an 

internal standard.  
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Figure 2.6: Selected ligands for screening 

3.2.1.3. Screening conditions: Bases and additives 

Replacing Na3PO4 by K3PO4 in the previous condition afforded the same yield of 2.240a (entry 

1, 2, Table 2.7), however, lower loading of K3PO4 is required. Since intermediate 2.244a was detected 

before the acidic treatment, various Lewis acids were tested in order to accelerate the intramolecular 

lactonization step. Adding lanthanide triflates (entries 3, 4), Mg(OTf)2 (entry 5) to the reaction mixture 

increased slightly the yield of 2.240a. A significant improvement was observed by performing the 

reaction in the presence of a catalytic amount of Mg(ClO)4, Zn(OTf)2 Ca(ClO4)2 and Ca(OTf)2 (entries 

6-10),
173

 with the latter furnishing the cleaner reaction. Including Ca(OTf)2 as Lewis acid, the 

influence of base on the reaction outcome was re-investigated. Na3PO4 (entry 11), DBN and N-

methylimidazole (entries 15, 16) were as efficient as K3PO4 (entry 8), while lower yield of 2.240a was 

isolated when KOtBu, LiOtBu and 2,6-lutidine (entries, 12, 13 and 17) were used as bases. Gratefully, 

a clear improvement of the reaction efficiency was observed when the reaction was performed in the 

presence of DBU (entry 14).  

Table 2.7: Base and additive screening
(a) 

 

Entry 
Base 

(equiv) 

Additive 

(equiv) 

Yield
(b) 

of 2.240a 

 

1 Na3PO4 (0.2) None 60%  

2 K3PO4 (0.1) None 60%  

3 K3PO4 (0.1) In(OTf)3 (0.2) 66% 

4 K3PO4 (0.1) Yb(OTf)3 (0.2) 69% 
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 Niggemann, M.; Meel, M. J. Angew. Chem. Int. Ed. 2010, 49, 3684.  
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5 K3PO4 (0.1) Mg(OTf)2  (0.2) 68% 

6 K3PO4 (0.1) Mg(ClO4)2 (0.2) 79% 

7 K3PO4 (0.1) Zn(OTf)2 (0.2) 75% 

8 K3PO4 (0.1) Ca(OTf)2 (0.2) 81% (69%)
(c)

 

9 K3PO4 (0.2) Ca(OTf)2 (0.2) 74%  

10 K3PO4 (0.1) Ca(ClO4)2 (0.2) 65%  

11 Na3PO4 (0.2) Ca(OTf)2 (0.2) 75%  

12 KOtBu (0.1) Ca(OTf)2 (0.2) 56%  

13 LiOtBu (0.1) Ca(OTf)2 (0.2) 54%  

14 DBU (0.15) Ca(OTf)2 (0.2) 89% (73%)
(c)

 

15 DBN (0.15) Ca(OTf)2 (0.2) 75%  

16 N-methylimidazole (0.15) Ca(OTf)2 (0.2) 75%  

17 2,6-lutidine (0.15) Ca(OTf)2 (0.2) 56%  

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(BF4)2.6H2O (0.2 equiv), 2,2'-bipyridine (0.6 equiv), DTBP (4 equiv), base 

(0.1-0.2 equiv), additive (0.2 equiv) and water (30 equiv)  in MeCN (c 0.025 M) under 

nitrogen at 140 ºC for 4 h. (b) Yields determined by 
1
H-NMR spectroscopy with 

CH2Br2 as an internal standard. (c) Isolated yield. 

Overall, under optimum conditions [Cu(BF4)2.6H2O (0.2 equiv), 2,2'-bipyridine (0.6 equiv), DTBP (4 

equiv), DBU (0.15 equiv) , Ca(OTf)2 (0.2 equiv) and water (30 equiv)  in MeCN (c 0.025 M) under nitrogen at 

140 ºC for 4 h], 2.240a was isolated in 73% isolated yield. We noted that the reaction proceeded equally 

well in the dark. Since three chemical bonds were created in this domino process, the average yield per 

chemical bond formation is around 90%.  

3.2.2. Substrate scope 

With the optimized conditions in hand, the scope of this copper-catalyzed formal [2+2+1] 

heteroannulation was investigated. The result is summarized in Scheme 2.47.  

Firstly, the effect of the substituents on the aromatic ring of α-methyl styrenes 2.238a-i was 

examined. The substrates with both electron-donating (Me, OMe) and electron-withdrawing (Cl) 

substituents on the aromatic ring regardless of their positions afforded γ-butyrolactones 2.240b-i in 

moderate to good yields. Surprisingly, electron-donating substituents (Me, OMe) at para-position to 

double bond provided desired products in lower yields (2.240d, 2.240g) even though these groups 

stabilize the carbenium intermediate. A risk of cationic polymerization could be an explanation in 

these cases. Indeed, when Me substituent resides at ortho position, steric effect might hinder the 

polymerization process, resulting in the formation of 2.240b in higher yield compared to 2.240c and 

2.240d. 
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Scheme 2.47: Substrate scope for Cu-catalyzed [2+2+1]-heteroannulation to γ-lactones 

α-Primary alkyl (methyl, ethyl, isopropyl and (2-phenyl)ethyl), secondary alkyl (cyclohexyl) 

and functionalized alkyl substituted styrenes also participated in the reaction to provide the 

corresponding γ-butyrolactones (2.240j-n) in good yields. Unfortunately, tertiary alkyl such as R = 

tBu, did not afford any desired product.  

1,1-Diaryl substituted alkenes was found to be compatible to the reaction, leading to the 

corresponding lactones (2.240o-q) in slightly lower yields. Side products resulting from Me• radical 

addition were observed in these cases. High activity towards radical species of 1,1-diarylethylenes 

reduces chemoselectivity of radical addition step, wherein both Me• radical and electrophilic •CH2CN 

could react with electron-rich double bonds. As a result, the optimum conditions for these substrates 

were carried out with 2.5 equiv of DTBP instead of 4.0 equiv. 

Importantly, trisubstituted alkenes participated in the reaction equally well to give efficiently the 

3,4,4-trisubstituted γ-butyrolactones 2.240r-t. Particularly, 2.240r was obtained in very good yield 

indicating Thorpe-Ingold effect in lactonization step.  

Propionitrile, butyronitrile, valeronitrile and 2-methoxypropionitrile are competent alkylating 

agents to initiate the domino process leading to the corresponding γ-butyrolactones 2.240u-x as a 

mixture of two diastereoisomers. Pleasingly, reaction of trisubstituted alkenes with propionitrile 

afforded the 2,3,4,4-tetrasubstituted γ-butyrolactone 2.240y, albeit in a slightly reduced yield (47%). 
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Scheme 2.48: Additional examples on the synthesis of nitrile-containing γ-lactones 

The reaction of methyl 4-phenylpent-4-enoate (2.248) with acetonitrile under standard 

conditions afforded lactone 2.249 in which the cyano group remained untouched (eq 1, Scheme 2.48). 

Similarly, methyl 2-(prop-1-en-2-yl)benzoate (2.250) was converted under identical conditions to 

lactone 2.251 (eq 2). The observed high chemo-selective cyclization could be account for by the direct 

interception of the benzylic cation by the tethered methoxycarbonyl function. Moreover, the efficient 

formation of phthalide 2.251 suggests these conditions could provide an improvement to our previous 

method for the synthesis of phthalides, wherein benzoic derivatives are required to the success of 

catalytic system.
129a 

Unfortunately, aliphatic alkenes, α-monosubstituted styrenes were found to be unsuitable to our 

reaction conditions, either furnishing γ-lactones in modest yields or undergoing 

degradation/polymerization. 

The attempts for exploring alternative alkylative reagents to alkylnitriles were implemented 

(Scheme 2.49). Reaction of 2.238a in ethyl acetate under optimized conditions afforded lactone 

2.240a in 18% isolated yield. On the other hand, the same reaction in tert-butyl acetate and in 

pinacolone led to a complex mixture. This result indicated that it might be possible to generate 

EtOOCCH2• and to engage it in subsequent domino processes.  

 

Scheme 2.49: Initial attempts on finding alternative alkylative reagents 
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3.2.3. Mechanistic aspect 

We turned out attention to the reaction mechanism. Although the mechanism of copper-

catalyzed cyanoalkylation of unactivated alkenes has been studied intensively in previous works,
129

 a 

slight change in the reaction conditions might entail the alteration in mechanism. 

In the absence of Cu(BF4)2.6H2O or 2,2'-bipyridine, no trace amount of γ-butyrolactone 2.240a 

was formed. On the other hand, without DTBP, 2.238a was converted to lactone 2.240a in 39% NMR 

yield in the presence of a stoichiometric amount of Cu(BF4)2.6H2O. These observations are in accord 

with our previous conclusion that the Cu catalyst played a key role in the generation of acetonitrile 

radical 2.241 and that DTBP served mainly as an oxidant to regenerate the Cu(II) species.
174 

In our 

initial survey of reaction conditions, we have isolated the dimer 1.246, resulting most probably from 

the dimerization of the benzylic radical 2.242 due to its inefficient oxidation to carbenium ion 2.243. 

Therefore, the copper catalyst played a dual role in this transformation, ie, to generate the cyanoalkyl 

radical and to oxidize selectively the adduct radical to the carbenium ion. 

 

Scheme 2.50: 
18

O-labbeling and control experiments 

Moreover, an isotope labelling experiment was conducted to gain further mechanistic insights. 

Reaction of alkene 2.238a with acetonitrile in the presence of H2
18

O (
18

O content 97%) under 

otherwise standard conditions afforded double and mono 
18

O labelled products 2.240a-
18

O2 and 

2.240a-
18

O1 in a ratio of 3/5 (eq 1, Scheme 2.50). The up-field shift of 
13

C NMR signals of C1 and C4 
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 (a) Morris, G. E.; Oakley, D.; Pippard, D. A.; Smith, D. J. H. J. Chem. Soc. Chem. Commun. 1987, 411. (b) 

Gephart III, R. T.; McMullin, C. L.; Sapiezynski, N. G.; Jang, E. S.; Aguila, M. J. B.; Cundari, T. R.; Warren, T. 

H. J. Am. Chem. Soc. 2012, 134, 17350. 
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in 2.240a-
18

O2/2.240a-
18

O1 relative to 2.240a [∆δ(C=O)
16

O –
18

O = + 2.5 Hz, [∆δ (C4)
16

O –
18

O = + 4.9 Hz] 

is in agreement with literature reports.
175

 The results of these control experiments indicated that the 

oxygen atoms in lactones 2.240 came from water rather than from adventurous oxygen or DTBP. 

Furthermore, submitting the authentic sample of tertiary alcohol 2.244a
176

 to the standard reaction 

conditions afforded γ-lactone 2.240a in 92% yield (eq 2) indicating that the tertiary alcohol 2.244 

could indeed be an intermediate on the way to lactone 2.240 (cf. Scheme 2.44). A similar labelling 

experiment of alkene 2.248 with acetonitrile in the presence of H2
18

O was also carried out, affording 

unlabelled 2.249 as the sole product (eq 3). The result further implies that the intermediate benzylic 

carbocation was exclusively trapped by tethered methoxycarbonyl function rather than water.     

3.2.4. Synthetic application of Copper-catalyzed [2+2+1]-heteroannulation of 

alkenes 

(±)-Sacidumlignan D (2.253) was isolated by Yue and co-workers from the plant Sarcostemma 

acidum (Roxb.) collected from Hainan island, China, where the local people used it for the treatment 

of chronic cough and postnatal hypogalactia.
177

  

To illustrate the synthetic application of our heteroannulation process, a total synthesis of (±)-

sacidumlignan D (2.253) was undertaken (Scheme 2.51). Lithium-halogen exchange of arylbromide 

2.254, readily synthesized in two steps from 2,6-dimethoxyphenol,
177d

 followed by two-fold 

nucleophilic addition of the resulting aryllithium species to propionyl chloride furnished a tertiary 

alcohol, which, without purification, was dehydrated under acidic conditions to give alkene 2.255. The 

key copper-catalyzed [2+2+1] heteroannulaton of 2.255 with acetonitrile and water under our standard 

conditions occurred smoothly to afford lactone 2.256 in 60% yield. Treatment of 2.256 with LHMDS 

followed by methylation of the lithium enolate provided 2,3-trans disubstituted lactone 2.257 as an 

only stereoisomer. Reduction of lactone 2.257 with LiAlH4 afforded tetrahydrofuran 2.258, which was 

converted to (±)-sacidumlignan D (2.253) in 93% yield under hydrogenolysis conditions. This is the 

shortest synthesis reported to date. 
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 (a) Vederas, J. C. J. Am. Chem. Soc. 1980, 102, 374. (b) Odabachian, Y.; Tong, S.; Wang, Q.; Wang, M.-X.; 

Zhu, J. Angew. Chem. Int. Ed. 2013, 52, 10878. (c) Buyck, T.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2014, 136, 

11524. 
176

 Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Chem. Commun. 1986, 624. 
177

 (a) Gan, L.-S.; Yang, S.-P.; Fan, C.-Q.; Yue, J.-M. J. Nat. Prod. 2005, 68, 221. For the synthesis of (±)-

Sacidumlignan D: (b) Pandey, D. S. K.; Ramana, C. V. J. Org. Chem. 2011, 76, 2315. (c) Rout, J. K.; Ramana, 

C. V. J. Org. Chem. 2012, 77, 1566. (d) Zhang, J.-J.; Yan, C.-S.; Peng, Y.; Luo, Z.-B.; Xu, X.-B.; Wang, Y.-W. 

Org. Biomol. Chem. 2013, 11, 2498. (e) Xie, C.; Bai, D.; Huang, S.-H.; Jia, X.; Hong, R. Asian J. Org. Chem. 

2014, 3, 277. 
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Scheme 2.51: Total synthesis of  (±)-sacidumlignan D 

An attempt to improve the synthesis by conducting copper-catalyzed [2+2+1] heteroannulaton 

of 2.255 with propionitrile to directly access 2.257 was implemented (Scheme 2.52). However, desired 

2,3-trans disubstituted lactone 2.257 was obtained in 24% yield as major product, accompanying with 

its 2,3-cis isomer in moderate diasteroselectivity (trans/cis 3/1). Additional modification of the 

reaction conditions (copper loading, DTBP loading, temperature…) provided insignificant 

improvement in yield and diastereoselectivity.  

 

Scheme 2.52: Heteroannulation of 2.255 with propionitrile 
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3.3. Conclusion 

In summary, we developed a novel copper-catalysed formal [2+2+1]-heteroannulation of 

styrenes with alkylnitriles and water. The domino process involving direct activation of alkylnitriles, 

intermolecular hydroxyl-alkylation and intramolecular lactonization, provided an efficient approach to 

γ-lactone  bearing a quaternary carbon center at γ-position via the formation of C(sp
3
)-C(sp

3
), C(sp

3
)-

O and C(sp
2
)-O bond (Scheme 2.53). The synthetic potential of this novel transformation was 

demonstrated by the development of a concise total synthesis of (±)-sacidumlignan D.
178

 

 

Scheme 2.53: Copper-catalyzed [2+2+1]-heteroannulation of alkenes, alkylnitriles and water 
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 Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 9249. 
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CHAPTER 4 

Copper-Catalyzed Cyanoalkylative 

Aziridination of Alkenes  
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4.1. Aziridines: Introduction and Synthesis 

Aziridine, one of the smallest nitrogen-containing heterocycles, is an important scaffold in 

organic chemistry. A number of compounds possessing an aziridine ring have been shown to exhibit 

potent bioactivity, which is usually associated with its ring strain. For example, mitosanes 2.262-2.268, 

isolated from soil extracts of Streptomyces verticillatus,
 179

 exhibit both anti-tumor and antibiotic 

activities:
180

 Structure-activity relationship studies have identified that the aziridine ring is an 

important moiety for such anti-tumor activity. Many synthetic aziridines have also been revealed to 

exhibit useful biological properties. For instance, aziridine β-D-galactopyranoside 2.270 was evaluated 

to possess high selectivity against breast cancer.
181

 3-azabicyclo[3.1.0]hexane 2.271 was demonstrated 

as selective dopamine reuptake inhibitor for treatment of nervous system disorders including inter alia, 

vasomotor symptoms, chronic pain.
182

 Moreover, aziridines are wildly used as versatile synthetic 

intermediates in organic synthesis. Due to inherent ring strain and the electronegativity of nitrogen 

atom, aziridines are willing to undergo ring cleavage under relative mild conditions by nucleophiles to 

access highly complex molecules such as amino alcohols, amino acids and other nitrogen-containing 

compounds by ring-opening reactions.
183

  

 

Figure 2.7: Examples of aziridine-containing natural products and bioactive compounds 

Owing to their importance in bioactivities and synthetic application, the development of 

methodologies toward aziridines has been of broad interest for at least half a century.
184

 Among many 
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 Lefemine, D. V.; Dann, M.; Barbatschi, E.; Hausmann, W.  K.; Zbinovsky, V.; Monnikendam, P.; Adam, J.; 

Bohnos, N.    J.  Am.  Chem.  Soc.  1962, 34, 3184. 
180

 Kasai, M.; Kono, M.  Synlett. 1992, 778. 
181

 Vega-Pérez, J. M.; Palo-Nieto, C.; Vega-Holm, M.; Góngora-Vargas, P.; Calderón-Montaño, J. M.; Burgos-

Morón, E.; López-Lázaro, M.; Iglesias-Guerra, F. Eur. J. Med. Chem. 2013, 70, 380. 
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efficient synthesis strategies, intramolecular cyclization of 1,2-vicinal haloamines or amino 

alcohols,
185

 addition of nitrenes to alkenes,
186

 addition of carbene to imines
187

 have been extensively 

investigated.  

Despite of great advances in transition metal-catalyzed difunctionalization of alkenes has been 

made and applied in various syntheses of five-membered heterocycles such as pyrolidines,
5d

 the 

corresponding methodologies involving the formation of carbon-heteroatom and carbon-carbon bonds 

for construction of strained three-membered heterocycles such as aziridines remained challenging. To 

the best of our knowledge, there were limited examples on aziridination of allylic amines via 

carboamination reported in the literature. For examples, Yorimitsu and Oshima reported a novel 

method for the synthesis of trisubstituted aziridines 2.274 by palladium-catalyzed reaction of allylic 

amines 2.272 with aryl halides 2.273 (Scheme 2.54).
188

 The reaction was initiated by syn-

aminopalladation to give C(sp
3
)-N bond, followed by reductive elimination to afford C(sp

3
)-C(sp

2
) 

bond.   

 

Scheme 2.54: Palladium-catalyzed carboamination of allylic amines with aryl bromides 

Sodeoka and coworkers reported an efficient aminotrifluoromethylation of allylamines 2.275 

with Togni reagent II 2.150 in the presence of CuI catalyst via the sequence of C(sp
3
)-N and C(sp

3
)-

C(sp
3
) bond formation, to afford trifluoromethylated aziridines 2.276 in good to excellent yields 

(Scheme 2.55).
189

 The synthetic utility of this method was demonstrated by further functionalization of 

the products via one-pot aziridination and nucleophilic ring-opening. The mechanistic study was 

recently carried out by the same group, indicating that the reaction was not initiated by the addition of 

CF3• radical species to allylic amines to form C(sp
3
)-C(sp

3
) bond.

190
 Indeed, Cu(II) complex 2.277 

generated in situ from Cu(I) complex and  Togni reagent II, acts as a Lewis acid to activate 

hypervalent iodane and enhance its electrophilicity. Subsequent intramolecular electrophilic addition 

                                                                        
185
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of nitrogen atom to double bond produces C(sp
3
)-N and intermediate 2.279 which can furnish aziridine 

2.276 upon the reductive elimination. 

  

Scheme 2.55: Copper-catalyzed aminotrifluoromethylation of allylic amines 

An alternative aminotrifluoromethylation of allylic amines and trifluoromethyl iodide was 

developed by Cho using Ru-bipyridine complexes as photoredox catalyst (Scheme 2.56).
191

 Mild 

conditions enabled a wide range of unactivated alkenes to participate the difunctionalization. 

Perfluoroalkylation by using perfluoroalkyl iodides such as C3F7I and C4F9I also proceeded equally 

well under the same conditions.   

 

Scheme 2.56: Copper-catalyzed aminotrifluoromethylation of allylic amines 

Although aminotrifluoromethylation was well-established for construction of 

trifluoromethylated aziridines which are biologically valuable in medicinal chemistry, the limited 

chemical modifications with trifluomethyl group offers minimal choices for further transformation. 

Inspired by our recent research program on difucntionalization of unactivated alkenes using 

alkylnitrile as alkylating reagents,
129

 we turned our attention on the synthesis of aziridines by applying 

this general strategy. We propose herein an unprecedented copper-catalyzed amino-cyanoalkylation of 

allylamines 2.283 with alkylnitriles 2.284 to afford nitrile-containing aziridines 2.285. The working 

hypothesis of our reaction design is depicted in Scheme 2.57. In situ generation of electrophilic 

cyanoalkyl radical 2.286 followed by its addition to electron-rich alkene 2.283 would afford adduct 

radical 2.287 that could be oxidized by a suitable metal salt to the carbenium ion 2.288. Trapping of 

the latter by the pendant amino group would afford the desired aziridine 2.285. Alternatively, radical 

recombination of 2.287 with Cu(II) salt followed by ligand exchange with the tethered amine would 

                                                                        
191

 Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem. Eur. J. 2013, 19, 6209. 



151 

 

provide four-membered metalocycle 2.289, which would furnish the product 2.285 with concurrent 

release of Cu(I) salt upon reductive elimination,.  

 

  

Scheme 2.57: Our designed copper-catalyzed amino-cyanoalkylation of allylic amines 

Overall, the reaction would provide aziridines bearing a quaternary carbon center via formation 

of a C(sp
3
)-C(sp

3
) and a C(sp

3
)-N bonds involving a direction activation of C-H bond of alkylnitriles.  
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4.2. Results and Discussion 

4.2.1. Conditions survey 

Primary screening was carried out in order to quickly discover suitable substrates to the 

proposed cyanoalkylation. Based on above underline principle (Scheme 2.52), key intermediates 2.287 

and 2.288 could be stabilized by an aryl group at C-2 position (R
1
 = aryl) so that 2-arylated 

allylamines were chosen as models to investigate this transformation. Several N-monosubstituted 2-

phenylprop-2-en-1-amine were prepared, then introduced to our previous conditions
129

 using 

stoichiometric amount of copper [Cu(OTf)2 (1.0 equiv), 1,10-phenanthroline (1.0 equiv), K3PO4 (2.0 

equiv) and DTBP (2.0 equiv) in acetonitrile at 140 ºC for 2.5 hours] (Scheme 2.58).  

 

Scheme 2.58: Primary result of copper-mediated amino-cyanoalkylation of alkenes 

N-Phenyl and N-trifluoroacetyl allylamines (2.290a, 2.290c) led to degradation, while N-

benzoyl substrate 2.290b was not reactive in reaction conditions. The instability of N-allyl-N-phenyl 

secondary amine to oxidative conditions and the susceptibility of trifluoroacetamide to the hydrolysis 

in harsh conditions might reason for the experimental outcome of 2.290a and 2.290c, respectively. 

Fortunately, the desired aziridine was observed in 30% NMR, 21% isolated yield when N-tosylated 

allylamine 2.292a was employed. The primary results suggested that pKa(NH) could be a key factor to 

the success of the cyclization. 

Using N-tosylated 2-phenylprop-2-en-1-amine (2.292a) as test substrates, the reaction 

conditions were surveyed by varying copper sources, ligands, oxidants, bases and additives. 

4.2.1.1. Screening conditions: Copper sources 

We continued our investigation on the aziridination by screening the copper sources. Initially, 

the stoichiometric version was examined when 2.292a was introduced to reaction conditions 

consisting of copper salts (1.0 equiv), 1,10-phenanthroline (1.0 equiv), K3PO4 (2.0 equiv) and DTBP 

(2.0 equiv) in degassed acetonitrile at 140 ºC for 2.5 hours. Gratifyingly, the desired product 2.293a 

was obtained in 30% and 52% NMR yields when Cu(OTf)2 and Cu(BF4)2.6H2O were employed, 

respectively (entry 1, 3, Table 2.8). Only a trace amount of the desired product was observed when 

other copper(II) salts and copper(I) halides were used. As discussed previously, ionic copper(II) 
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species such as Cu(BF4)2 and Cu(OTf)2 are more efficient for oxidation of the proposed radical 

intermediate 2.287 to carbenium, therefore facilitating intramolecular cyclization to afford aziridine.  

It is worthy to note that in the absence of Cu(BF4)2.6H2O or 2,2'-bipyridine, no trace amount of 

aziridine 2.293a was formed. On the other hand, without DTBP, 2.292a was converted to lactone 

2.293a in 18% NMR yield in the presence of a stoichiometric amount of Cu(BF4)2.6H2O with 35% 

NMR conversion after 1 h. These experimental observations indicated that Cu catalyst played a key 

role in the generation of acetonitrile radical 2.286. 

Table 2.8: Copper sources screening
(a) 

 

Entry 
Cu source (1.0 equiv) 

 

Yield
(b) 

(conversion) 

1 Cu(OTf)
2
 30% (100% conv.) 

2 Cu(OAc)
2
 trace (100% conv.) 

3 Cu(BF
4
)

2
. 6H2O 52% (100% conv.) 

4 CuSO4 trace (100% conv.) 

5 Cu(acac)
2
 trace (42% conv.) 

6 CuF
2
 trace (92% conv.) 

7 CuCl
2
 trace (100% conv.) 

8 CuX (X = Cl, Br, I) trace (100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.292a (0.05 

mmol), copper source (1.0 equiv), 1,10-phenanthroline (1.0 equiv), DTBP (2.0 equiv) 

and K3PO4 (2.0 equiv) in MeCN (c 0.067 M) under nitrogen at 140 ºC for 2.5 h. (b) 

Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

4.2.1.2. Screening conditions: Ligands  

The influence of N,N-ligand to the reaction outcome was next examined. Unfortunately, 

substituted 1,10-phenanthroline ligands were found to be incompatible to the reaction (entry 1-4, 

Table 2.9). Yield of 2.293a was slightly increased when phenanthroline (L1) was replaced by 2,2'-

bipyridine (L5). Attempts to modify electron-property of 2,2'-bipyridine by introducing substituents at 

4,4' and 2,2'- positions gave no improvement (entry 6-9). Again, in cases of both phenanthrolines and 

bipyridines as ligands, when substituents locate at ortho- positions to nitrogen atoms, the combination 

of copper/N,N-ligand was inactive to convert allylamine to the desired product (L4, L9, entry 4, 9). 
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Terpyridine (L10) and 2,2'-bipyrimidine (L11) were suitable, albeit, providing the desired product in 

decreased yields (entry 10, 11).  

Table 2.9: Ligand screening
(a) 

 

Entry 
Ligand (1.0 equiv) 

 

Yield
(b) 

(conversion) 

1 L1 52% (100% conv.) 

2 L2 21% (100% conv.) 

3 L3 0% (100% conv.) 

4 L4 0% (100% conv.) 

5 L5 60% (100% conv.) 

6 L6 38% (100% conv.) 

7 L7 54% (100% conv.) 

8 L8 43% (100% conv.) 

9 L9 0% (100% conv.) 

10 L10 43% (100% conv.) 

11 L11 39% (100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 

2.292a (0.05 mmol), Cu(BF4)26H2O (1.0 equiv), N,N-ligand (1.0 equiv), 

DTBP (2.0 equiv) and K3PO4 (2.0 equiv) in MeCN (c 0.067 M) under 

nitrogen at 140 ºC for 2.5 h. (b) Yields determined by 
1
H-NMR 

spectroscopy with CH2Br2 as an internal standard. 

 

Figure 2.8: Selected ligands for screening 

 



155 

 

4.2.1.3. Screening conditions: Bases and solvents 

Primary screening on substituents on nitrogen atom implied that the deprotonation of NH-Ts has 

impact on the reaction. As the result, we turned our attention on the effect of base to the reaction 

outcome. Unfortunately, no improvement was achieved when many different inorganic bases were 

examined. Weaker bases (compared to K3PO4) such as carbonate or carboxylate provided only trace of 

the desired product (entry 3, 4, Table 2.10). Stronger bases such as hydroxyl or alkoxide resulted in 

lower yield or degradation (entry 5, 6). It is worthy to note that in the absence of base, the formation of 

the desired product was not observed, implying the importance of the deprotonation to the success of 

reaction.  

Co-solvent system which was found to have positive impact on the previous copper-catalyzed 

cyanomethylation was also investigated. However, the presence of methanol, ethanol and isopropanol 

were detrimental to the formation of 2.293a (entry 7, 8). Lewis acid-promoted ring-opening of 

aziridines by alkoxide could explain for this observation. Indeed, bulky tert-butanol that cannot induce 

nucleophilic attack, had no influence to the outcome of the reaction (entry 9). The presence of 

additional 10% DMA provided the desired aziridine equally well, while co-solvent of MeCN/DMSO 

shut down the reaction (entry 10, 11). 

Table 2.10: Base and solvent screening
(a) 

 

Entry Base  Solvent 
Yield

(b)
 

(Conversion)
 

1 K
3
PO

4
 MeCN 60% (100% conv.) 

2 Na
3
PO

4
 MeCN 25% (100% conv.) 

3 K
2
CO

3, Na
2
CO

3
 MeCN <20% (100% conv.) 

4 KOAc, CsOPiv MeCN <20% % (100% conv.) 

5 KOH MeCN 30% (100% conv.) 

6 KOtBu MeCN 0% (100% conv.) 

7 K
3
PO

4
 MeCN/MeOH (19/1) 0% (100% conv.) 

8 K
3
PO

4
 MeCN/iPrOH (19/1) 40% (100% conv.) 

9 K
3
PO

4
 MeCN/tBuOH (19/1) 60% (100% conv.) 

10 K
3
PO

4
 MeCN/DMA (9/1) 56% (100% conv.) 
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11 K
3
PO

4
 MeCN/DMSO (9/1) 0% (100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.292a (0.05 mmol), 

Cu(BF4)26H2O (1.0 equiv), 2,2'-bipyridine (1.0 equiv), DTBP (2.0 equiv) and Base (2.0 equiv) 

in given solvent (c 0.067 M) under nitrogen at 140 ºC for 2.5 h. (b) Yields determined by 
1
H-

NMR spectroscopy with CH2Br2 as an internal standard. 

4.2.1.4. Screening conditions: Time and Temperature 

The degradation of the desired product in the presence of MeOH by mostly possible ring-

opening reaction implied that aziridine 2.293a could be degraded during reaction by the moisture in 

MeCN. Careful monitoring reaction time was performed. Indeed, the reaction was complete after 30 

min, at 140 ºC, affording 2.2293a in 79% NMR yield (entry 2, Table 2.11). Slightly better yield was 

obtained when the reaction was conducted at reduced temperature 130 ºC for 1 h (entry 3). Further 

decreasing temperature to 120 ºC gave comparable yield.   

Table 2.11: Time and Temperature
(a) 

 

Entry Time (h) 
Temperature 

(ºC) 

Yield
(b)

 

(Conversion)
 

1 2.5  140 60% (100% conv.) 

2 0.5 140 79% (100% conv.) 

3 1.0 130 82% (100% conv.) 

4 0.5 130 75% (87% conv.) 

5 2.0 120 77% (100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.292a (0.05 

mmol), Cu(BF4)26H2O (1.0 equiv), 2,2'-bipyridine (1.0 equiv), DTBP (2.0 equiv) 

and K3PO4 (2.0 equiv) in MeCN (c 0.067 M) under nitrogen at T ºC for t h. (b) 

Yields determined by 
1
H-NMR spectroscopy with CH2Br2 as an internal standard. 

4.2.1.5. Screening conditions: Copper loading and final tuning 

With promising result of stoichiometric version in hand, we further explored the amino-

cyanoalkylation of 2.292a at reduced copper loading. When 50 mol% of copper was employed, 2.293a 

was obtained in 67% NMR yield (entry 1, Table 2.12). Significant improvement was achieved when 

ratio of copper/ligand was changed from 1/1 to 1/2 (entry 2), and K3PO4 loading was reduced to 0.5 

equiv (entry 3). Finally, by increasing amount of DTBP and decreasing temperature, aziridine 2.293a 

was obtained in 88% isolated yield (entry 4). Gratefully, further reducing copper loading to 20 mol%, 

yield of the desired product was only slightly reduced to 84% (entry 5). 
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Table 2.12: Copper loading screening
(a) 

 

Entry Variation 
Yield

(b)
 

(Conversion)
 

1 none  67% (100% conv.) 

2 [Cu]/bipy/K3PO4 = 0.5/1.0/1.0 (equiv) 78% (100% conv.) 

3 [Cu]/bipy/K3PO4 = 0.5/1.0/0.5 (equiv) 85% (100% conv.) 

4 
[Cu]/bipy/K3PO4 = 0.5/1.0/0.5 (equiv),  

DTBP (4.0 equiv), 120 ºC 

92% (88%)
(c) 

(100% conv.) 

5 
[Cu]/bipy/K3PO4 = 0.2/0.45/0.3 (equiv)  

DTBP (4.0 equiv), 120 ºC 

88% (84%)
(c) 

(100% conv.) 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.292a (0.05 mmol), 

Cu(BF4)26H2O (0.5 equiv), 2,2'-bipyridine (0.5 equiv), DTBP (2.0 equiv) and K3PO4 (1.0 equiv) 

in MeCN (c 0.067 M) under nitrogen at 130 ºC for 1 h. (b) Yields determined by 
1
H-NMR 

spectroscopy with CH2Br2 as an internal standard. (c) Isolated yield. 

Overall, under optimum conditions [Cu(BF4)2.6H2O (0.2 equiv), 2,2'-bipyridine (0.45 equiv), 

DTBP (4.0 equiv) and K3PO4 (0.3 equiv) in MeCN (c 0.067 M) under nitrogen at 120 ºC for 1 h, N-

tosylated 2-phenylprop-2-en-1-amine (2.292a) was converted into nitrile-containing aziridine 2.293a  

in 84% isolated yield.  

4.2.2. Substrate scope 

4.2.2.1. Synthesis of starting materials 

Several approaches were applied for the synthesis of N-sulfonylated 2-arylprop-2-en-1-amine 

derivatives. The first approach leading to the synthesis of 2.292b-d is depicted in Scheme 2.59. 2-

phenylprop-2-en-1-amine (2.294)
192

 was sulfonylated with the corresponding sulfonyl chloride in the 

presence of pyridine (Scheme 2.59).  

 

Scheme 2.59: Synthesis of 2.292b-d 
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The second approach leading to the synthesis of 2.292a, 2.292e-j is depicted in Scheme 2.60. 

Nucleophilic substitution of 2-aryl-3-bromoprop-2-en-1 2.295 with tosylamine in the presence of 

K2CO3 in acetone at 60 ºC afforded the corresponding N-tosylated allylamines (Scheme 2.60).  

 

Scheme 2.60: Synthesis of 2.292a and 2.292e-j 

The third approach leading to the synthesis of 2.292k-q is depicted in Scheme 2.61. Allylamines 

2.292k-q with substituents at α-position of nitrogen atom were accessed through a sequence of 

amination of α-bromoketones 2.296 with tosylamine, followed by Wittig reaction.  

 

Scheme 2.61: Synthesis of 2.292k-q 

4.2.2.2. Substrate scope 

With the optimized conditions in hand, the scope of this copper-catalyzed amino-

cyanoalkylation of allylamines 2.292 was investigated. The result is summarized in Scheme 2.62.  

Different N-tosylated 2-phenylprop-2-en-1-amines 2.292b-d participated in the amino-

cyanoalkylation with MeCN to provide the corresponding aziridines in good yields. Gratefully, 

arylsulfonylated substrate with bulkyl substituents such as 2.292c gave a reasonable yield. While 

slower carboamination was observed in case of 2.292d, producing the desired aziridine 2.293d in 

slightly lower yield. Although the deprotonation is facile, the lack of nucleophilicity due to electron-

conjugating effect of NO2 might account for this experimental observation.   

The effect of the substituents on the aromatic ring of 2-arylprop-2-en-1-amines 2.292e-i was 

next examined. The substrates with both weak electron-donating (Me) and electron-withdrawing (Cl) 

substituents on the aromatic ring regardless of their positions afforded aziridines 2.293e-i in moderate 

to good yields. Surprisingly, when Me substituent resided at para- or ortho- position, the desired 
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products were obtained in lower yields (2.293e, 2.293g). Particularly, MeO-substituted substrates 

regardless of its position, gave a mixture of complex products. The stability of the carbenium 

intermediate 2.288 due to conjugation with Me and MeO on aromatic ring, not only facilitates the 

nucleophilic trapping by the pendant amino group (see Scheme 2.57), but also triggers cationic 

polymerization and particularly Cu(BF4)2 Lewis-acid promoted ring opening of strained aziridines, 

leading to the degradation.  

 

Scheme 2.62: Substrate scope for Cu-catalyzed amino-cyanoalkylation of alkenes 

1-Monosubstituted 2-phenylprop-2-en-1-amines 2.292k-o also participated in the reaction to 

provide the corresponding 2,2,3-trisubstituted aziridines 2.293k-o in excellent overall yields (>90% 

yield), indicating that Thorpe-Ingold effect might involve in cyclization step. Good to excellent 

diastereoselectivity was observed in these cases, wherein the diastereoisomers with substituent and 

phenyl group locating on the different sides of aziridine ring, were major isomers (determined by 

ROESY experiments). Gratifyingly, tetrasubstituted aziridine 2.293p which is typically challenging 

target to synthesize was also accessed in excellent yield from 3,3-disubstituted 2-phenylprop-2-en-1-

amine 2.292p.  

Propionitrile, butyronitrile, iso-butyronitrile and 2-methoxypropionitrile are competent 

alkylating agents to initiate the domino process with 2.292o leading to the corresponding aziridines 

2.293r-u, albeit higher cooper loading (50 mol%) was needed.  
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Pleasingly, the optimized reaction conditions can be applied to the synthesis of nitrile-

containing pyrrolidines 2.293v and 2.293w from the corresponding starting materials in excellent 

yields.  

4.2.3. Synthetic application 

To illustrate the synthetic application of our amino-cyanoalkylation of alkenes, synthesis of 

enantiorich aziridines bearing a quaternary carbon via chiral pool approach was implemented (Scheme 

2.63). Enantiorich 1-monosubstituted 2-phenylprop-2-en-1-amines 2.298, ent-2.298 were accessed 

from the corresponding commercially available L/D-amino acids through three-step sequence 

including: (1) protection of amino group by tosyl chloride; (2) reaction with organoaryl lithium to 

form enantiorich N-tosylated α-aminoketones; (3) subsequent Wittig reaction of these intermediates to 

afford chiral 1-monosubstituted 2-phenylprop-2-en-1-amines 2.298, ent-2.298. Gratefully, copper-

catallyzed amino-cyanoalkylation of these chiral alkenes under the optimized conditions led to the 

formation of enantiorich (>96% ee) aziridines 2.299, ent-1.299 bearing two chiral carbon centers in 

high yield and enantioselectivity. Overall, starting from simple L/D-phenylalanine, leucine and valine, 

enantiorich aziridines with benzyl, isobutyl, and isopropyl substituent at C-3 respectively, were 

successfully prepared. 

 

Scheme 2.63: Synthesis of chiral trisubstituted aziridines by Cu-catalyzed cyanoalkylative aziridination 
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With a wide range of chiral natural and synthetic aminoacis, this synthetic approach could 

provide efficiently various enantiorich 2,2,3-trisubstituted aziridines which are challenging targets for 

organic synthesis, especially asymmetric synthesis. Moreover, as versatile synthetic building blocks, 

these aziridines could be further transformed to many useful scaffolds with the pre-installed 

enantiorich carbon centers.  

4.3. Conclusion 

In summary, we developed a novel copper-catalysed amino-cyanoalkyation of 2-arylprop-2-en-

1-amines with alkylnitriles. The domino process involving direct activation of alkylnitriles, 

intermolecular cyanoalkylation and intramolecular aziridination, provided an efficient approach to 

aziridines bearing a quaternary carbon center via the formation of C(sp
3
)-C(sp

3
), and C(sp

3
)-N 

(Scheme 2.64). The synthetic potential of this novel transformation was demonstrated by the 

development of an efficient synthesis to chiral 2,2,3-trisubstituted aziridines through chiral pool 

approach. 

 

Scheme 2.64: Copper-catalyzed amino-cyanoalkylation of alkynes to aziridines 
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CHAPTER 5 

Copper-Catalyzed Carboazidation  

of Alkenes with   

Acetonitrile and Sodium Azide  

Note: This project was realized in collaboration with Dr. Ala Bunescu 
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5.1. Carboazidation of Alkynes to Synthesis of Organoazides 

Organoazides are important class of organic compounds, which are widely used as valuable 

intermediates and building blocks in synthesis.
193

 Azido group can undergo various transformations 

such as reduction, cycloaddition and rearrangement.
194

 Particularly, azides are well-known for copper-

catalyzed 1,3-dipolar addition with terminal alkynes (Click chemistry) which are extensively applied 

in medicinal chemistry, combinatorial chemistry, polymer chemistry.
195

 Furthermore, azido group was 

found in many bioactive compounds and has been used for designing lead compounds for drug 

discovery (Figure 2.9). For instance, azidothymidine (AZT, 2.302) is highly potent nucleoside 

analogue reverse-transcriptase inhibitor which is used to prevent and treat HIV/AIDS.
196

 Besides their 

importance in medicinal chemistry, organic azides have found broad applications in other research 

areas such as polymer chemistry, material science.
191,197

 

 

Figure 2.9: Examples of biologically active organoazides 

Owing to their highly valuable application, the development of an efficient and convenient 

synthesis of organoazides has become an active research area for organic chemists. In the light of 

recent advances in difunctionalization, the establishment of novel methodologies involving 

difuntionalization of alkenes with the introduction of azido group has attracted a great attention. 

Despite diazidation,
198

 azidocyanation,
199

 azidophosphonation,
200

 oxyazidation
198b

 and haloazidation
201
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of alkenes have been extensively studied recently, alternative carboazidation with the formation of 

C(sp
3
)-C(sp

3
) bond is restricted to few examples. 

Among those, Renaud group developed carboazidation reaction of unactivated terminal alkenes 

2.306 employing an α-iodocarbonyl 2.307 and arenesulfonyl azide 2.308 as the alkyl and the azide 

sources, respectively (eq 1, Scheme 2.65).
202a

 This transformation requires stoichiometric amount of 

hexabutylditin as a chain-transfer agent. The same group developed very elegant, tin-free 

desulfonylative carboazidation reaction employing alkanesulfonyl azides 2.311 as source for both 

alkyl and azide groups (eq 2).
202b

 Those approaches were efficiently applied to the synthesis of a series 

of alkaloids, demonstrating the utility of the formed azido-containing products.
203

 

 

Scheme 2.65: Renaud's carboazidation of alkenes 

Recently, Liu and coworker reported a novel copper-catalyzed three-component 

azidotrifluoromethylation of alkenes under mide conditions, in which Togni reagent I was employed 

as an oxidant as well as a CF3 source, while trimethylsilylazide was employed as azide source 

(Scheme 2.66).
204

 The transformation was postulated to proceed through radical addition of CF3• to 

alkenes, followed by trapping the radical intermediate with TMSN3 to afford triflouromethyl-

containing organozides. Both activated and unactivated alkenes with a wide range of functional groups 

were suitable to this reaction.   

  

Scheme 2.66: Copper-catalyzed azidotrifluoromethylation of alkenes by Liu 

                                                                        
202

 (a) Renaud, P.; Ollivier, C.; Panchaud, P. Angew. Chem. Int. Ed. 2002, 41, 3460.  (b) Weidner, K.; Giroult, A.; 

Panchaud, P.; Renaud, P. J. Am. Chem. Soc. 2010, 132, 17511. 
203

 Lapointe, G.; Kapat, A.; Weidner, K.; Renaud, P. Pure  Appl. Chem. 2012, 84, 1633. 
204

 Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881. 
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A similar azidotrifluoromethyl of alkenes was developed by Magnier and Masson using 

photoredox catalysis (Scheme 2.67).
205

 Difunctionalization of alkenes involving the formation of 

C(sp
3
)-C(sp

3
) and C(sp

3
)-N bond was achieved in the presence of ruthenium-pyridine complex, 

Togni's
205a

 or Umemoto's
205b

 reagent and Na3/TMSN3 as photocatalyst, CF3 source and azido source, 

respectively. However, these transformations were only limited to styrenes and enamines derivatives.  

  

Scheme 2.67: Photoredox-catalysed azidotrifluoromethylation of alkenes by Magnier and Masson 

As a continuation of our recent research program aimed at developing copper-catalyzed 

alkylative difunctionalization of alkenes using alkylnitriles as a key reactant,
129 

we propose herein a 

novel synthesis of γ-cyanoazides 2.320 by a copper-catalyzed three-component carboazidation 

reaction of alkenes 2.319 with acetonitrile and sodium azide. The working hypothesis of this 

transformation was postulated as the following (Scheme 2.68). Addition of in situ generated -

cyanomethyl radical to alkene 2.319 would afford the adduct radical 2.321 that could be further 

oxidized to the carbenium ion 2.322. Trapping of the latter by azide anion would afford γ-cyanoazide 

2.320 (pathway a). Alternatively, the radical adduct 2.321 would undergo azide transfer with 

copper(II)-azide complex 2.323 to furnish γ-cyanoazides 2.320 with concurrent release of copper(I) 

species (pathway b). For the desired domino sequence to proceed towards the formation of 2.320, the 

catalytic conditions should satisfy the following mechanistic criteria: a) selective suppression of 

alternative process of azide radical resulting from oxidation of azide anion by metal salt, leading to the 

formation of diazide adduct 2.324;
206

 b) fast conversion of the resulting nucleophilic radical 2.321 to 

carbenium ion 2.322 or Cu(III) complex 2.323 to avoid the formation of dimer side product 2.325.  

                                                                        
205

 (a) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 1240. (b) Dagousset, G.; 

Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340. 
206

 (a) Fristad, W.; Brandvold, T.; Peterson, J.; Thompson, S. J. Org. Chem. 1985, 50, 3647. (b) Snider, B. B.; 

Lin, H. Synth. Commun. 1998, 28, 1913.  
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Scheme 2.68: Proposed copper-catalyzed azidocyanomethylation of alkenes 

 

5.2. Results and Discussion 

5.2.1. Conditions survey 

Using α-methyl styrene (2.238a) and acetonitrile as test substrates, the reaction conditions were 

surveyed by varying copper sources, ligands, oxidants, bases and additives. 

5.2.1.1. Primary screening 

Primary screening was carried out by applying our reported conditions.
131

 In the presence of 

Cu(OAc)2 (50 mol%), 1,10-Phenanthroline (50 mol%), DTBP (2.0 equiv) and sodium azide (2.0 

equiv) in mixed solvent MeCN/MeOH, at 140 ºC after 2 h, γ-cyanoazide 2.320a was obtained in 63% 

NMR, 56% isolated yield together with a trace amount of side product 2.325a resulting from 

dimerization of radical intermediate 2.321 (entry 1, Table 2.13). Interestingly, alkylative etherification 

product 2.326a
129c

 was not observed even though reaction was performed in MeOH as a co-solvent. 

Significant improvement was observed when a stoichiometric amount of copper was used, affording 

75% isolated yield 2.320a (entry 2). In the absence of MeOH as co-solvent (entry 3-5), the reaction 

was less efficient, giving a mixture of products. Particularly, in the absence of 1,10-phenanthroline, 

diazide 2.324a became a major product (entry 4). Lowering the temperature gave the similar result, 

albeit affording less clean reaction with the formation of 2.326a (entry 6). Moreover, the reduction of 

NaN3 loading disfavoured the selectivity of 2.320a over 2.324a (entry 7). Surprisingly, 

azidocyanomethylation was found to be cleaner and more efficient under aerobic atmosphere, 

contrasting to our precedent works wherein oxygen was detrimental to the catalytic system (entry 8, 

9).       
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Table 2.13: Primary screening
(a) 

 

Entry 
Variation from above 

conditions 

Ratio 

2.320a : 2.325a : 

2.324a : 2.326a 

Yield
(b)

 

 

1 None  9.2 : 1.0 : - : - 63 (56)
(c)

 

2 Cu(OAc)2 (1.0 equiv) >20 : 1.0 : - : - 88 (75)
 (c)

 

3 MeCN only 4.2 : 1.0 : - : - 35 

4 No Phen, MeCN only 1.2 : 1.0 : 2.4 : - 26
 

5 No (
t
BuO)2, MeCN only 2.1 : 1.0 : - :- 17 

6 110 
o
C 16.5 : - : - : 1.0 66 

7
 

NaN3 (1.2 equiv) 8.8 : 2.7 : - : 1.0 35 

8 Under air >20 : 1.0 : - : - 65 (59)
(c)

 

9 Under O2 >20 : 1.0 : - : - 68 (61)
(c)

 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(OAc)2 (0.5 equiv), 1,10-phenanthroline (0.5 equiv), DTBP (2.0 equiv) 

and NaN3 (2.0 equiv) in MeCN/MeOH (1/1, c 0.1 M) under nitrogen at 140 ºC for 2 

h. (b) Yields determined by 
1
H-NMR spectroscopy with CH3NO2 as an internal 

standard. (c) Isolated yield. 

Overall, according to the primary screening, we could conclude that (1) using MeOH as co-

solvent is important to suppression of the formation of dimer 2.325a and to the efficacy of 

azidocyanomethylation; (2) ligands and equivalence of NaN3 have strong impact on the formation of 

diazide product 2.324a; (3) the formation of alkylative etherification 2.326a generally is not 

favourable over the desired product 2.320a at high temperature.  

5.2.1.2. Screening conditions: Copper sources 

With above promising result in hand, we next investigated the influence of copper sources on 

the outcome of the reaction (Table 2.14). In contrast to our previous works, Cu(OTf)2 and 

Cu(BF4)26H2O were less efficient than Cu(OAc)2, providing slightly decrease in yield of 2.320a along 

with a trace amount of 2.325a (entry 2, 3). Significant decrease in yield was observed when other 

copper(II) sources were used such as CuF2 and CuSO4 (entry 4, 5). Copper(I) and iron sources were 



168 

 

not suitable to the catalytic system, giving dimer 2.325a as a major product (entry 6, 7). The addition 

of inorganic and organic bases gave no improvement in yield, but decreased the selectivity of 

2.320a/2.325a (entry 8, 9).      

The reaction evolution with time was monitored by 
1
H-NMR spectroscopy. The reaction was 

stopped after 20 min before full conversion (TLC). Analysis of the crude mixture showed that the 

carboamination product 2.320a was formed in 64% yield and that only a trace amount of dimer was 

produced (2.320/2.325a >20/1) (entry 10). After 2 h at 140 °C, the amount of desired compound did 

not increase, however the dimer 2.325a was formed in 7% yield. This experimental observation 

indicated that at certain point the copper catalyst was deactivated and unable to transfer the azide to 

benzyl radical 2.321 (cf. Scheme 2.68). Subsequently, the benzyl radical would dimerize to yield the 

octanedinitrile 2.325a. We assumed that the copper (I) species generated at the end of catalytic cycle is 

not efficiently reoxidized to copper (II). 

Table 2.14: Copper source screening
(a) 

 

Entry Cu source  

Ratio 

2.320a : 2.325a : 

2.324a : 2.326a 

Yield
(b)

 

 

1 Cu(OAc)2 >20 : 1.0 : - : - 68 (61)
(c)

 

2 Cu(OTf)2  6.5 : 1.0 : - : - 59 

3 Cu(BF4)2.6H2O 6.2 : 1.0 : - : - 56 

4 CuF2 7.0 : 1.0 : - : 1.2 42 

5 CuSO4 0.8 : 1.0 : - : - <30 

6 Cu(I) sources  0.6-0.9 : 1.0 : - : - <30 

7
 

Fe(OAc)2 1.1 : 1.0 : - : - <10 

8 Cu(OAc)2 + K3PO4/CsOPiv 20 mol% 15-18 : 1.0 : - : - 66 

9 Cu(OAc)2 + DBU 20 mol% 13 : 1.0 : - : - 50 

10
(d) 

Cu(OAc)2 >20 : 1.0 : - : - 64 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), copper source (0.5 equiv), 1,10-phenanthroline (0.5 equiv), DTBP (2.0 equiv) 
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and NaN3 (2.0 equiv) in MeCN/MeOH (1/1, c 0.1 M) under O2 atmosphere at 140 ºC for 

2 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH3NO2 as an internal 

standard. (c) Isolated yield. (d) Reaction time: 20 min. 

5.2.1.3. Screening conditions: Additive and Azide sources 

Based on above hypothesis, different additives such as manganese(III) salts which could act as 

cooxidants were next screened (Table 2.15). Addition of a catalytic amount of Mn(OAc)3 or Mn(acac)3 

provided no improvement, but increased the formation of diazide product 2.324a
206

 (entry 2, 3). 

Fortunately, in the presence of MnF3 (15 mol%), 2.320a was obtained in slightly increasing yield 

(71% NMR and 66% isolated yield), accompanying with minor amount of diazide (entry 4). Applying 

these conditions, replacing NaN3 by different inorganic or organic azides (entry 5-7), however, 

afforded the desired product with decreased yields. Gratefully, significant improvement in yield and 

selectivity (2.320a/2.324a >20/1) was obtained when additional amount of 1,10-phenanthroline was 

employed (entry 8), implying that MnF3 coordinates with this N,N-ligand as well. Finally, after quick 

screening DTBP loading, the best result for substoichiometric version of azidocyanomethylation was 

achieved. In the presence of Cu(OAc)2 (50 mol%), 1,10-Phenanthroline (90 mol%), DTBP (2.5 equiv), 

sodium azide (2.0 equiv) and MnF3 (15 mol%) in mixed solvent MeCN/MeOH (1/1, c 0.1 M), at 140 

ºC after 2 h, γ-cyanoazide 2.320a was obtained in 84% NMR, 78% isolated yield (entry 9).    

Table 2.15: Additive and azide source screening
(a) 

 

Entry Additive (equiv) and Azide (equiv) 

Ratio 

2.320a : 2.325a : 

2.324a : 2.326a 

Yield
(b)

 

 

1 No additive, NaN3 (2) >20 : 1.0 : - : - 68 (61)
(c)

 

2 Mn(OAc)3 (0.15), NaN3 (2) 7 : - : 1.0 : - 68 (61)
(c)

 

3 Mn(acac)3 (0.15), NaN3 (2) 12 : - : 1.0 : - 39 

4 MnF3 (0.15), NaN3 (2) 11 : - : 1.0 : - 72 (66)
(c)

 

5 MnF3 (0.15), KN3 (2) 12 : - : 1.0 : - 64 

6 MnF3 (0.15), CsN3 (2) 14 : - : 1.0 : - 64 

7
 

MnF3 (0.15), Bu4NN3 (2) 12 : - : 1.0 : - 60 
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8
(d) 

MnF3 (0.15), NaN3 (2) >20 : - : 1.0 : - 77 (70)
(c)

 

9
(d,e) 

MnF3 (0.15), NaN3 (2) >20 : - : 1.0 : - 84 (78)
(c)

 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(OAc)2 (0.5 equiv), 1,10-phenanthroline (0.5 equiv), DTBP (2.0 equiv), RN3 

(2.0 equiv) and additive (0.15 equiv) in MeCN/MeOH (1/1, c 0.1 M) under O2 

atmosphere at 140 ºC for 2 h. (b) Yields determined by 
1
H-NMR spectroscopy with 

CH3NO2 as an internal standard. (c) Isolated yield. (d) 0.9 equiv of 1,10-

phenanthreoline was used. (e) 2.5 equiv of DTBP was used.  

5.2.1.4. Screening conditions: Copper loading, ligands and additive loading 

Carboazidation was then examined with catalytic copper loading. In the presence of Cu(OAc)2 

(20 mol%), 1,10-Phenanthroline (55 mol%), DTBP (2.0 equiv), sodium azide (2.0 equiv) and MnF3 

(10 mol%) in mixed solvent MeCN/MeOH (1/1, c 0.1 M), at 140 ºC after 2 h, 2.320a was obtained in 

49% NMR yield, along with 10% of dimer 2.325a (entry 1, Table 2.16).  

The impact of N,N-ligand including 1,10-phenanthrolines, 2,2'-bipyridine, bisoxazoline on the 

reaction outcome was investigated. Introduction of both electron-donating and electron-withdrawing 

substituents on 1,10-phenanthroline (L2, L3) increased the selectivity, but decreased the yield of the 

desired product (entry 2, 3). Moreover, 2,2'-bipyridine derivatives and bioxazoline (L4-7, entry 4-7) 

were found to be less effective compared to 1,10-phenanthroline (L1). As a result, 1,10-

phenanthroline was chosen for further  condition screening.  

 Gratefully, important improvement was observed when additional amount of MnF3 (0.3 equiv) 

was employed, affording the desired product 2.320a in 68% NMR, 64% isolated yield (entry 8). The 

formation of dimer was suppressed completely, however, diazide 2.324a was observed as a minor 

product. Finally, increasing 1,10-phenanthroline loading (65 mol%) provided 2.320a in slightly 

increased yield (entry 9). It is worth noting that the similar result was obtained when carboazidation 

was performed under air instead of oxygen atmosphere (entry 9, 10). For the convenience, the 

following screening was then implemented under air.   

 

Table 2.16: Ligand and MnF3 loading screening
(a) 
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Entry Ligand (equiv) 

Ratio 

2.320a : 2.325a : 

 2.324a : 2.326a 

Yield
(b)

 

 

1 L1 (0.55) 4.5 : 1.0 : - : - 49 

2 L2 (0.55) 10.4 : 1.0 : - : - 34 

3 L3 (0.55) 8.7 : 1.0 : - : - 33 

4 L4 (0.55) 5.9 : 1.0 : - : - 36 

5 L5 (0.55) 5.1 : 1.0 : - : - 40 

6 L6 (0.55) 4.0 : 1.0 : - : - 16 

7
 

L7 (0.55) 1.7 : 1.0 : - : - 31 

8
(d) 

L1 (0.55) 6.1 : - : 1.0 : - 68 (64)
(c)

 

9
(d) 

L1 (0.65) 6.1 : - : 1.0 : - 71 (66)
(c)

 

10
(d,e) 

L1 (0.65) 6.5 : - : 1.0 : - 71 (66)
(c)

 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(OAc)2 (0.2 equiv), ligand (0.55 equiv), DTBP (2.0 equiv), NaN3 (2.0 

equiv) and additive (0.15 equiv) in MeCN/MeOH (1/1, c 0.1 M) under O2 atmosphere 

at 140 ºC for 2 h. (b) Yields determined by 
1
H-NMR spectroscopy with CH3NO2 as an 

internal standard. (c) Isolated yield. (d) 0.3 equive of MnF3 was used. (e) Under air 

atmosphere.  

 

Figure 2.10: Selected ligand for condition screening 

5.2.1.5. Screening conditions: Temperature, time and control experiments 

Better outcome was observed when slight increase of DTBP peroxide was made, affording 

2.320a in 74% NMR yield (entry 2, Table 2.17). Moreover, lowering temperature of the action was 

found to be beneficial to the reaction (entry 3, 4). The best result was obtained at 100 ºC, after 10 h, 

carboazidation product was obtained in 80% NMR, 72% isolated yield (entry 4). However, the 

undesired diazide 2.324a was observed in all cases, remaining in the reaction mixture as minor 

product in around 10% yield. 

  



172 

 

Table 2.17: Temperature and time screening
(a) 

 

Entry Temperature and Time 

Ratio 

2.320a : 2.325a :  

2.324a : 2.326a 

Yield
(b)

 

 

1 140 
o
C, 2 h 6.5 : - : 1.0 : - 71 (66)

(c)
 

2
(d)

 140 
o
C, 2 h 6.5 : - : 1.0 : - 74 (69)

(c)
 

3
(d)

 120 
o
C, 7 h 6.5 : - : 1.0 : - 78 (71)

(c)
 

4
(d)

 110 
o
C, 10 h 6.5 : - : 1.0 : - 80 (72)

(c)
 

(a) Reaction conditions: The reaction was performed in a sealed tube: 2.238a (0.1 

mmol), Cu(OAc)2 (0.2 equiv), 1,10-phenanthroline (0.65 equiv), DTBP (2.0 equiv), 

NaN3 (2.0 equiv) and MnF3 (0.3 equiv)  in MeCN/MeOH (1/1, c 0.1 M) under air 

atmosphere at T ºC for t h. (b) Yields determined by 
1
H-NMR spectroscopy with 

CH3NO2 as an internal standard. (c) Isolated yield. (d) 2.5 equiv of DTBP was used.  

Overall, under optimum conditions [Cu(OAc)2 (0.2 equiv), 1,10-phenanthroline (0.65 equiv), 

DTBP (2.0 equiv), NaN3 (2.0 equiv) and MnF3 (0.3 equiv)  in MeCN/MeOH (1/1, c 0.1 M) under air at 

110 ºC for 10 h], the azidocyanomethylation of alkene 2.238a furnished 2.320a in 72% isolated yield.  

 

5.2.2. Substrate scope 

With the optimized conditions in hand [Cu(OAc)2 (20 mol%), 1,10-phenantroline (0.65 equiv), 

MnF3 (30 mol%), DTBP (2.5 equiv), air, 110-120 °C, CH3CN/MeOH (1/1, c 0.1 M)], the generality of 

the carboazidation process was investigated. The result was summarized in Scheme 2.69.  

Firstly, the effect of the substituents on the aromatic part of α-methyl styrene derivative was 

examined. Substrates with weak (p-Me) and strong electron donating groups (p-OMe) are well-

tolerated under the reaction conditions, delivering the carboazidation product in 72% (2.320c) and 

73% (2.320d) yield, respectively. Olefin with electron poor aromatics containing withdrawing 

functionalities such us –NO2, -Cl, -CF3 are also suitable substrates for difunctionalization, providing 

the γ-cyanoazide 2.320f-i in yields ranging from 54-57%, albeit longer reaction time was required. 

Electro-deficient property of double bonds in these cases might account for slow addition of 

electrophilic radical •CH2CN. Importantly, α,α-heteroarylmethyl ethylene such as 3-(prop-1-en-2-
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yl)pyridine and 2-(prop-1-en-2-yl)thiophene equally undergo the carboazidation reaction furnishing 

the difunctionalized products 2.320j and 2.320k in 52% and 48% yield, respectively.  

 

Scheme 2.69: Substrate scope for azidocyanomethylation of alkenes 

Symmetric and asymmetric 1,1-diaryl ethylenes were next examined (2.320l-x). Reaction of 

1,1-diphenylethylene with MeCN provide the γ-cyanoazide 2.320l in 76% yield, albeit the higher 

temperature (120 ºC) was required. Good yields for carboazidation products were obtained regardless 

of the electronic nature and the position of substitution on the aromatic ring (p-Cl, p-Br, o-F, p-CF3, p-

OMe, o-Me, m-Me, p-Me).  

Gratefully, monosubstituted styrene derivatives such as p-methoxyvinylbenzene or p-

phenylvinylbenzene are transformed into 4-azido-4-arylbutanenitriles 2.320y and 2.320z in 46% and 

58% yield respectively. According to our precedent works, these substrates which readily undergo the 

radical-initiated polymerization, are not compatible to catalytic system of Cu(II)/N,N-ligand/DTBP.  
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Next, the effects of variation in the aliphatic part of 1,1-arylalkylethylene were studied. 

Substrates with primary alkyl (-Et, -nPr, -CH2CH2Ph) groups underwent carboazidation reaction and 

delivered the corresponding desired compounds in 61-65 % yield (2.320aa-ac). When (1-

cyclohexylvinyl)benzene was subjected to standard reaction conditions the reaction did not reach total 

conversion. In this case the γ-cyanoazidation product 2.320ad was obtained in 58% yield (72% based 

on recovered starting material). Importantly, ester and free alcohol are well tolerated under 

alkylazidation conditions (2.320ae and 2.320af). Exocyclic disubstituted alkenes and endocyclic 

trisubstituted alkenes can undergo the difunctionalization process, affording the desired γ-

cyanoazidation products in 46 to 48 % yield (2.320ag-i). 

Unfortunately, other alkylnitriles such as propionitrile, butyronitrile were found to be inactive to 

the reaction conditions. The carboazidation of α-methyl styrene, 1,1-diphenylethylene and p-

phenylvinylbenzene afforded no desired product even though stoichiometric amount of copper, higher 

temperature and modification of MnF3 and sodium azide loading were applied.  

 

5.2.3. Synthetic application of carboazidation 

To demonstrate the utility of carboazidation process, the formed γ-cyanoazidation products were 

transformed to different motifs depicted in Scheme 2.70. In the presence of Pd/C in methanol under H2 

atmosphere (1 atm), γ-cyanoazide 2.320a can be reduced to δ-diamine 2.327. Selective reduction of 

azide group of compound 2.320a using Pd/CaCO3 as a catalyst afforded γ-aminonitrile 2.328 in 72% 

yield. Finally, γ-cyanoazide 2.320a was converted to the γ-lactam 2.331 through a sequence of two 

steps: (a) conversion of nitrile into ester group using HCl/MeOH, and (b) reductive cyclization of the 

resulting intermediate using Pd/CaCO3 under H2 atmosphere.  

 

Scheme 2.70: Post-transformation reactions of γ-cyanoazidation 2.320a 
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5.2.4. Mechanistic aspect 

Control experiments were performed to gain insights on the reaction mechanism. The reaction 

of 2.238a with MeCN took place in the absence of DTBP to afford 2.320a in 15% NMR yield with 

low conversion. Interestingly, no γ-cyanoazide was detected when the same reaction was performed in 

the absence of Cu(OAc)2, suggesting that the copper is essential for the acetonitrile activation and 

C(sp
3
)-azide bond formation.  

Moreover, given the fact that propionitrile (with BDE of H-CH(Me)CN 94±3 kcal.mol
-1 

compared to BDE H-CH2CN ~96 kcal.mol
-1

)
128

 could not undergo carboazidation suggests that the 

generation of cyanoalkyl radical may not be mediated by DTBP but copper catalyst. The inactivity of 

propionitrile could be explained by two factors: (1) steric hindrance and (2) the coordination of azide 

to copper complex. Different from the precedent work wherein activation of MeCN in catalytic system 

of Cu(II)/N,N-ligand/DTBP undergoes smoothly, the activation of EtCN in the presence of azide anion 

resulting from similar sequence of (a) unfavourable ligand exchanging of azide with EtCN to form N-

metalated complex 2.333 due to strong coordination of azide to copper and (b) unfavourable 

rearrangement to form C-metalated complex 2.334 due to steric effect of Me group, could be more 

challenging. Arguably steric effect of Me group could be bolstered by our experimental observation 

that combination of copper with N,N-ligands bearing methyl substituents at ortho- positions of 

nitrogen atoms (eg. 2.336) failed to activate alkylnitriles (Scheme 2.71).  

 

Scheme 2.71: The activation of MeCN and EtCN without or without azide inion 

As a probe for cyanomethyl radical generation, 1-(1-cyclopropylvinyl)benzene (2.337) and β-

pinene (2.341) were subjected to carboazidation conditions (Scheme 2.72). In both cases rearranged 

compounds 2.338 and 2.342 were isolated as the major product. In the case of α-cyclopropyl styrene 

(2.337), the formed product is likely the result of cyclopropane ring opening after the addition of 

cyanomethyl radical to the double bond followed by intramolecular oxidative cyclization of carbo 
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radical 2.340.
129c,207

 Surprisingly, the intermediate 2.340 was able to undergo azidation to provide 

allylic azide 2.339 in non-negligible yield. In the second case, the β-pinene underwent the 

addition/fragmentation/C-N3 bond formation sequence to deliver cyanoazide 2.342 in 42% yield.
208

 

These radical-clock experiments clearly imply that the proposed radical 2.321 is indeed an 

intermediate in the catalytic cycles (cf. Scheme 2.68). 

 

Scheme 2.72: Radical-clock experiments 

The formation of 2.339 probably results from direct azide transfer of radical 2.340 instead of 

oxidation by copper(II) to the corresponding carbenium intermediate (which is unstable), followed by 

trapping with azide anion. This suggests that, the formation of C-N3 bond might proceed through 

copper-catalyzed azide transfer (pathway b, Scheme 2.68). The suppression of the formation of 2.326a 

during optimization further supports for this hypothesis. In MeCN/MeOH (1/1) solvent mixture, the 

formation of carbenium 2.322 should have led to the formation of 2.326a as a major product. 

Additionally, methyl 4-phenylpent-4-enoate (2.248) under the optimized conditions underwent 

selectively carboazidation to form γ-cyanoazide 2.230ae without the formation of 2.249 resulting from 

oxycyanomethylation (see Scheme 2.48), giving a clear evidence for the preference of azide-transfer 

(pathway b, Scheme 2.68) over carbenium/nucleophilic trapping (pathway a, Scheme 2.68).  

There is no experimental evidence for the role of MnF3 in the catalytic cycles. We assumed that 

MnF3 might participate in both regeneration of Cu(II) from Cu(I) species and azide-transfer process of 

radical intermediate 2.321.  

  

                                                                        
207

 Liwosz, T. W.; Chemler, S. R., Chem. Eur. J. 2013, 19, 12771. 
208

 Li, Y.; Studer, A., Angew. Chem. Int. Ed. 2012, 51, 8221. 
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5.3. Conclusion 

In conclusion, we developed a novel copper-catalyzed three-component reaction of alkenes with 

acetonitrile and sodium azide allowing the one-step formation of both C(sp
3
)-C(sp

3
) and C(sp

3
)-N 

bonds. The reaction is applicable to a wide range of styrene derivatives. The provided γ-cyanoazide 

can be easily converted to an array of motifs such us γ-lactams, γ-aminonitriles or 1,4-diamines, which 

are otherwise difficult to access. 

 

Scheme 2.73: Copper-catalyzed carboazidation of styrenes 
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General Conclusion 

In summary, we developed several transition metal-catalyzed difunctionalization of carbon-

carbon multiple bonds during my PhD study. These works can be categorized into two major parts: (1) 

palladium-catalyzed diamination of alkynes to access tetracycles; (2) copper-catalyzed 

difunctionalization of olefins using alkylnitrile as a key component for the synthesis of value-added 

molecules. 

The first part of this thesis aimed at developing a synthesis of free NH tetracyclic indoles by 

palladium-catalyzed diamination of 1,2-diarylethynes. The reaction has previously been developed in 

our group. However, it required the use of N,N-dimethylaniline as one of the nucleophiles which 

inevitably led to N-methylated products. This drawback prompted us to find a suitable N-alkyl group 

that is compatible with the transformation, yet readily removable after cyclization. Indeed, we found 

that simple 2-(methoxy-carbonyl)ethyl group satisfied these criteria. Pd(II)-catalyzed double 

cyclization of 1,2-diarylethynes 1.193 bearing an N-methyl-N-[2-(methoxy-carbonyl)ethyl]amino and 

an aminocarbonyl group at the ortho positions of the two aromatic rings proceeded smoothly to afford 

the tetracyclic N-[2-(methoxycarbonyl)-ethyl]indoloisoquinolinones 1.194 in good to excellent yields. 

The N-[2-(methoxycarbonyl)-ethyl] group is readily removed under basic conditions (DBU, DMF, 120 

°C) to afford the corresponding tetracycles 1.200 with a free indolyl nitrogen. The utility of 2-

(methoxycarbonyl)ethyl as a removable N-protecting group was subsequently illustrated in other 

literature-reported Pd(II)- and Pd(0)-catalyzed and selenium-mediated transformations. 

 

The similar strategy was later exploited in the synthesis of free NH tetracyclic 

indolobenzothiazine S,S-dioxides. Pd(II)-catalyzed oxidative double cyclization of the 1,2-

diarylethynes 1.245 bearing an N-methyl-N-(2-methoxycarbonyl)ethylamino and an aminosulfonyl 

group afforded indolobenzothiazine S,S-dioxides 1.246. The 2-(methoxycarbonyl)ethyl group attached 

to the indolyl nitrogen is readily removed under basic conditions (DBU, DMF, 120 °C) to provide the 

corresponding free indolyl NH tetracycles 1.247. 
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Inspired by early works, the double cyclization of 1,3-diarylprop-2-yn-1-ones 1.278 bearing 

N,N-dialkylated amino and N-monoalkylated amino groups at ortho positions of aromatic rings was 

then investigated. We developed two sets of conditions allowing access selectively to two types of 

biologically active quindolinones. In the presence of palladium catalyst under oxidative conditions, 

1,3-diarylprop-2-yn-1-ones 1.278 underwent 6-endo-dig cyclization to afford indolo[3,2-

b]quindolinones 1.279 in moderate yield. On the other hand, in the presence of a stoichiometric 

amount of HOAc and a hydride donor (Hantzsch’s ester), a domino process initiated by a 5-exo-dig 

cyclization took place to afford, after intramolecular condensation and oxidation, a regioisomeric 

indolo[3,2-b]quindolinone 1.280 in good yields. 

 

The second part of this thesis was a continuation of our previous research program aimed at 

developing copper-catalyzed alkylative difunctionalization of alkenes using alkylnitriles as alkylative 

reagents. The general synthetic strategy is based on the radical addition of cyanoalkyl radical species 

generated in situ from alkylnitriles followed by oxidation of the resulting radical adduct to carbenium 

and trapping with an appropriate nucleophile. These transformations allow the consecutive formation 

of C(sp
3
)-C(sp

3
) and C(sp

3
)-X (X = N, O) bonds to afford value-added molecules from simple starting 

materials.  

Firstly, a copper-catalyzed cyanoalkylative cycloetherification of substituted (2-

vinylphenyl)methanol was developed providing an efficient approach to1,3-dihydroisobenzofurans via 

the formation of a C(sp
3
)-C(sp

3
) and a C(sp

3
)-O bond. The synthetic potential of this novel 
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transformation was demonstrated by the development of a concise synthesis of citalopram (2.160), a 

marketed anti-depressant drug. 

 

Secondly, a novel copper-catalyzed three-component reaction of styrenes with alkylnitriles and 

water was developed. The domino process involved a) generation of alkylnitriles; b) its addition to 

unactivated double bond; c) oxidation of the resulting radical adduct to carbenium; d) trapping of the 

carbocation by water and e) lactonization. It provided an efficient approach to γ-lactone bearing a 

quaternary carbon center at γ-position via the formation of a C(sp
3
)-C(sp

3
), a C(sp

3
)-O and a C(sp

2
)-O 

bonds. The synthetic potential of this novel transformation was demonstrated by the development of a 

concise total synthesis of (±)-sacidumlignan D. 

 

Thirdly, a cyanoalkylative aziridination of alkenes was developed. A wide range of aziridines 

bearing a quaternary carbon center was synthesized by copper-catalyzed domino process involving 

direct activation of alkylnitriles, intermolecular cyanoalkylation and intramolecular aziridination. The 

synthetic potential of this novel transformation was illustrated by the development of an efficient 

synthesis of enantioenriched 2,2,3-trisubstituted aziridines staring from readily accessible chiral amino 

acids. 

 

Finally, a novel copper-catalyzed three-component reaction of alkenes with acetonitrile and 

sodium azide allowing the one-step formation of both C(sp
3
)-C(sp

3
) and C(sp

3
)-N bonds was 

established. The reaction is applicable to a wide range of styrene derivatives. The so-formed γ-
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cyanoazides can be easily converted to an array of important structural motifs such us γ-lactams, γ-

aminonitriles or 1,4-diamines that are otherwise difficultly accessible. 
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PART III 

Experimental Data 
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General Information 

All reactions were carried out in oven dried glasswares. All chemicals were purchased from Acros, 

Aldrich, Fluka, VWR, Aplichem or Merck and used directly unless stated otherwise. CH3CN, toluene, 

DCM, THF and DMF were dried by passage over activated alumina under nitrogen atmosphere (H2O 

content < 30 ppm, Karl-Fischer titration).  

Chromatographic purification was conducted with technical grade solvents and silica gel 40-63 μm. 

TLC was performed on Merck silica gel 60 F254 TLC aluminium plates and visualized with UV light 

(254 nm), permanganate stain, Phosphomolyblic acid stain, CAN stain or anisaldehyde stain.  

Melting points were measured on a Stuart SMP30 melting point apparatus using open glass capillaries 

(uncorrected).  

NMR spectra were recorded on a Brüker AvanceIII-400, Brüker Avance-400 at room temperature, 
1
H 

frequency is at 400.13 MHz, 
13

C frequency is at 100.62 MHz. Chemical shifts (δ) were reported in 

parts per million (ppm) relative to residual solvent peaks rounded to the nearest 0.01 for proton and 

0.1 for carbon (ref: CHCl3[1H: 7.26,13C: 77.2]). Coupling constants (J) were reported in Hz to the 

nearest 0.1 Hz. Peak multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet) and br (broad). Attribution of peaks was done using the multiplicities and 

integrals of the peaks. When needed, a COSY, HSQC and/or HMBC experiments were carried out to 

confirm the attribution.  

IR spectra were recorded in a Jasco FT/IR-4100 spectrometer outfitted with a PIKE technology 

MIRacle
TM 

ATR accessory as neat films compressed onto a Zinc Selenide window. The spectra were 

reported in cm
−1

. 

Mass spectra were determined with a Waters ACQUITY H-class UPLC/MS ACQ-SQD by electron 

ionisation (EI positive and negative) or a Finnigan TSQ7000 by electrospray ionization (ESI
+
). The 

accurate masses were measured by the mass spectrometry service of the EPFL by ESI-TOF using a 

QTOF Ultima from Waters or APPI-FT-ICR using a linear ion trap Fourier transform ion cyclotron 

resonance mass spectrometer from Thermo Scientific.  
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3.1. Synthesis of Indoloisoquinolinones by Pd(II)-Catalyzed Intramolecular 

Diamination of Alkynes. 2-(Methoxycarbonyl)ethyl as a Removable N-Protecting 

Group 

3.1.1. Preparation of starting materials 1.193 

 

To a solution of 2-iodobenzamide (1.199) (0.5 mmol) in 2.5 mL DMF were added 

bis(triphenylphosphine)palladium(II) dichloride (10.50 mg, 3.0 mol%), CuI (3.82 mg, 4 mol%) and 

triethylamine (0.28 mL, 2.0 mmol), successively, under argon. After being stirred for 10 min, o-

alkynylanline 1.198 (0.6 mmol) was added and the reaction mixture was heated with stirring at 80 ºC 

or 60 ºC until the disappearance of 2-iodobenzamide (1.199) (monitored by TLC). The reaction 

mixture was cooled down, diluted with water, extracted with EtOAc. The combined organic layers 

were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to give 

compound 1.193. 

 

Methyl 3-((2-((2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.193a) 

 

Yield: 162.0 mg (73%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H), 8.15 – 8.13 (m, 1H), 

7.68 – 7.61 (m, 1H), 7.56 (d, J = 8.9 Hz, 2H), 7.51 – 7.41 (m, 3H), 7.34 – 7.25 (m, 1H), 6.95 (d, J = 

8.2 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.85 (d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.69 – 3.58 (m, 2H), 3.49 

(s, 3H), 2.78 (s, 3H), 2.56 – 2.46 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.7, 164.3, 156.5, 153.6, 

135.5, 134.4, 133.2, 131.3, 130.7, 130.3, 130.2, 128.8, 122.2, 121.2, 120.0, 118.5, 114.4, 114.1, 95.8, 

92.2, 55.5, 51.6, 51.2, 40.0, 32.3; ATR-IR ν1733 (w), 1658 (w), 1511 (s), 1240 (s), 1174 (m), 1034 

(w), 829 (m), 754 (s); HRMS (ESI) calcd for C27H27N2O4
+
 [M+H]

+ 
443.1965; found 443.1955. 
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Methyl 3-(methyl(2-((2-(methylcarbamoyl)phenyl)ethynyl)phenyl)amino)propanoate (1.193b) 

 

Yield: 45.6 mg (26%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 8.18 – 8.02 (m, 1H), 7.70 (s, 1H), 

7.62 – 7.55 (m, 1H), 7.49 – 7.45 (m, 1H), 7.44 – 7.41 (m, 2H), 7.34 – 7.28 (m, 1H), 7.03 – 6.92 (m, 

2H), 3.71 (t, J = 7.5 Hz, 2H), 3.53 (s, 3H), 3.04 (d, J = 4.8 Hz, 3H), 2.92 (s, 3H), 2.58 (t, J = 7.5 Hz, 

2H); 
13

C NMR (101 MHz, CDCl3) δ 172.7, 164.0, 153.4, 135.3, 134.3, 133.2, 130.6, 130.3, 130.2, 

128.8, 121.7, 120.0, 119.0, 115.4, 94.8, 92.7, 51.8, 51.5, 40.5, 32.2, 27.0;  

ATR-IR ν 3387 (w), 3386 (w), 3385 (w), 3309 (w), 3308 (w), 3304 (w), 3303 (w), 3302 (w), 3062 

(w), 3061 (w), 2949 (w), 2209 (w), 1732 (s), 1731 (s), 1649 (s), 1534 (s), 1493 (s), 1439 (s), 1314 (m), 

1285 (s), 1284 (s), 1169 (s); HRMS (ESI) calcd for C21H23N2O3
+ 

[M+H]
+
 351.1703; found 351.1706. 

 

Methyl 3-(methyl(2-((2-(p-tolylcarbamoyl)phenyl)ethynyl)phenyl)amino)propanoate (1.193c) 

 

Yield: 149.3 mg (70%), dark yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H), 8.18-8.16 (m, 

1H), 7.66 – 7.64 (m, 1H), 7.52 (d, J = 8.2 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.45 – 7.43 (dd, J = 7.7, 1.6 

Hz, 1H), 7.30 (td, J = 7.7, 1.6 Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 6.95 (d, J = 8.2 Hz, 1H), 6.90 (t, J = 

7.5 Hz, 1H), 3.64 (t, J = 7.5 Hz, 2H), 3.49 (s, 3H), 2.79 (s, 3H), 2.52 (t, J = 7.5 Hz, 2H), 2.31 (s, 3H); 

13
C NMR (101 MHz, CDCl3) δ 172.6, 164.2, 153.6, 135.4 (2C), 134.4, 134.0, 133.2, 130.7, 130.4, 

130.2, 129.4, 128.8, 121.1, 120.4, 119.9, 118.4, 114.3, 95.9, 92.1, 51.5, 51.2, 39.9, 32.3, 20.9; ATR-

IR ν 3340 (w), 2951 (w), 2206 (w), 1732 (s), 1666 (s), 1598 (s), 1537 (s), 1494 (s), 1440 (s), 1321 (s), 

1250 (s), 1174 (m), 1045 (m); HRMS (ESI) calcd for C27H27N2O3
+ 

[M+H]
+
 427.2016; found 

427.2022. 

 

Methyl 3-(methyl(2-((2-(phenylcarbamoyl)phenyl)ethynyl)phenyl)amino)propanoate (1.193d) 



186 

 

 

Yield: 163.9 mg (80%), yellow solid; mp: 69 – 70 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 

8.18 – 8.16 (m, 1H), 7.67 – 7.63 (m, 3H), 7.52-7.46 (m, 2H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.33 – 

7.27 (m, 3H), 7.11 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.89 (td, J = 7.5, 1.0 Hz, 1H), 3.65 (t, J 

= 7.5 Hz, 2H), 3.49 (s, 3H), 2.79 (s, 3H), 2.52 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 

172.6, 164.4, 153.6, 138.0, 135.4, 134.4, 133.2, 130.8, 130.4, 130.2, 128.9, 128.8, 124.4, 121.1, 120.4, 

120.0, 118.5, 114.2, 96.0, 92.0, 51.5, 51.2, 39.8, 32.3; ATR-IR ν 3340 (w), 2951 (w), 2206 (w), 1732 

(s), 1666 (s), 1598 (s), 1537 (s), 1494 (s), 1440 (s), 1321 (s), 1250 (s), 1174 (m); HRMS (ESI) calcd 

for C26H25N2O3
+ 

[M+H]
+
 413.1859; found 413.1862.  

 

Methyl 3-((2-((2-((4-chlorophenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.193e) 

 

Yield: 163.0 mg (73%), light yellow solid; mp: 71 – 73 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.49 (s, 

1H), 8.17 – 8.15 (m, 1H), 7.67 – 7.65 (m, 1H), 7.59 (d, J = 8.8 Hz, 2H), 7.51 – 7.48 (m, 2H), 7.43 (dd, 

J = 7.7, 1.7 Hz, 1H), 7.31 (td, J = 7.7, 1.7 Hz, 1H), 7.27 – 7.25 (m, 2H), 6.98 (d, J = 8.4 Hz, 1H), 6.91 

(t, J = 7.5 Hz, 1H), 3.64 (t, J = 7.6 Hz, 2H), 3.49 (s, 3H), 2.79 (s, 3H), 2.52 (t, J = 7.6 Hz, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 172.6, 164.3, 153.7, 136.6, 135.0, 134.4, 133.3, 131.1, 130.4, 130.3, 

129.3, 128.9 (2C), 121.5, 121.2, 119.9, 118.5, 114.1, 96.1, 92.0, 51.6, 51.3, 39.8, 32.3; ATR-IR ν 

2953 (w), 2924 (s), 2853 (m), 1736 (m), 1735 (m), 1672 (w), 1596 (w), 1529 (w), 1493 (m), 1316 (w), 

1090 (w), 756 (w); HRMS (ESI) calcd for C26H24ClN2O3
+ 

[M+H]
+
 447.1469; found 447.1483.  

 

Methyl 3-((2-((2-((3-fluorophenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-propanoate 

(1.193f) 
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Yield: 170.2 mg (79%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.53 (s, 1H), 8.16 (dd, J = 6.8, 2.5 

Hz, 1H), 7.67 (dd, J = 6.8, 2.5 Hz, 1H), 7.62 (d, J = 11.0 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.45 (dd, J = 

7.7, 1.6, 1H), 7.33 – 7.19 (m, 3H), 6.97 (d, J = 8.3 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.81 (ddd, J = 9.8, 

5.7, 2.0 Hz, 1H), 3.66 (t, J = 7.5 Hz, 2H), 3.48 (s, 3H), 2.80 (s, 3H), 2.55 (t, J = 7.5 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 172.6, 164.4, 163.0 (d, J = 244.7 Hz), 153.7, 139.6 (d, J = 10.5 Hz), 134.9, 

134.5, 133.4, 131.1, 130.5, 130.4, 130.0 (d, J = 9.3 Hz), 129.0, 121.2, 120.0, 118.5, 115.6 (d, J = 3.0 

Hz), 114.1, 111.1 (d, J = 21.3 Hz), 107.8 (d, J = 26.2 Hz), 96.2, 91.9, 51.6, 51.4, 39.7, 32.3; ATR-IR ν 

3343 (w), 3332 (w), 3331 (w), 2951 (w), 2919 (w), 2853 (w), 2209 (w), 1735 (m), 1674 (m), 1549 

(m), 1493 (m), 1444 (m), 1333 (s), 1271 (m), 1168 (m), 1124 (s), 756 (m); HRMS (ESI) calcd for 

C26H24FN2O3
+ 

[M+H]
+
 431.1765; found 431.1776. 

 

Methyl 3-(methyl(2-((2-((3-(trifluoromethyl)phenyl)carbamoyl)phenyl)ethynyl)phenyl)amino)-

propanoate (31.193g) 

 

Yield: 158.0 mg (66%), light yellow solid; mp: 58 – 59 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.67 (s, 

1H), 8.18 (dd, J = 6.8, 2.4 Hz, 1H), 7.89 (s, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.67 (dd, J = 6.8, 2.4 Hz, 

1H), 7.53-7.49 (m, 2H), 7.44 (dd, J = 7.5, 1.7 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.38 – 7.33 (m, 1H), 7.34 

– 7.29 (m, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 3.66 (t, J = 7.5 Hz, 2H), 3.47 (s, 3H), 

2.78 (s, 3H), 2.53 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 164.6, 153.7, 138.6, 

134.8, 134.3, 133.3, 131.3 (q, J = 32 Hz), 131.2, 130.5, 130.4, 129.5, 129.0, 123.8 (q, J = 273 Hz), 

123.3, 121.3, 120.9 (q, J = 3.8 Hz), 120.0, 118.5, 117.0 (q, J = 4.0 Hz), 113.9, 96.3, 91.9, 51.6, 51.4, 

39.7, 32.3; ATR-IR ν 3343 (w), 3332 (w), 2951 (w), 2919 (w), 2853 (w), 2209 (w), 2195 (w), 1735 

(m), 1674 (m), 1549 (m), 1493 (m), 1444 (m), 1333 (s), 1168 (m), 1124 (s), 756 (m); HRMS (ESI) 

calcd for C27H24N2O3F3
+ 

[M+H]
+ 

481.1734; found 481.1731. 
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Methyl 3-((2-((5-methoxy-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)-amino)-

propanoate (31.193h)  

 

Yield: 177.5 mg (75%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.43 (s, 1 H), 8.18 (d, J = 8.8, 1H), 

7.52 (d, J = 9.0, 2H), 7.46 (dd, J = 7.5, 1.7 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.14 (d, J = 2.7, 1H), 7.01 

(dd, J = 8.8, 2.7 Hz, 1H), 6.96 (dd, J = 8.4, 1.1 Hz, 1H), 6.93 (dd, J = 7.5, 1.1 Hz, 1H), 6.83 (d, J = 9.0 

Hz, 2H),  3.90 (s, 3H), 3.79 (s, 3H), 3.63 (t, J = 7.6, 2H), 3.51 (s, 3H), 2.77 (s, 3H), 2.51 (t, J = 7.6 Hz, 

2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 163.7, 161.2, 156.2, 153.7, 134.4, 132.6, 131.4, 130.3, 

127.6, 122.2, 121.3, 121.2, 118.6, 117.8, 115.1, 114.2, 114.0 , 95.7, 92.3, 55.6, 55.4, 51.4, 51.3, 39.9, 

32.2; ATR-IR ν 3627 (w), 3350 (w), 3349 (w), 2987 (m), 2970 (m), 2902 (m), 1734 (m), 1662 (m), 

1534 (m), 1512 (s), 1245 (s), 1045 (m), 829 (w); HRMS (ESI) calcd for C28H29N2O5
+ 

[M+H]
+ 

473.2071; found 473.2076. 

 

Methyl 3-((2-((2-((4-methoxyphenyl)carbamoyl)-3-methylphenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (1.193i) 

 

Yield: 191.7 mg (84%), yellow oil;  

1
H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.56 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 7.7, 1H), 7.28 (t, J = 

7.7, 1H), 7.27 (d, J = 7.5, 1H), 7.22-7.17 (m, 2H), 6.86 (d, J = 9.0 Hz, 2H), 6.84 (dd, J = 8.2, 1.1 Hz, 

2H), 6.77 (td, J = 7.5, 1.1 Hz, 1H), 3.79 (s, 3H), 3.60 (t, J = 7.5, 2H), 3.46 (s, 3H), 2.79 (s, 3H), 2.57 

(t, J = 7.5 Hz, 2H), 2.46 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 173.1, 166.7, 156.5, 153.3, 139.0, 

136.0, 134.7, 131.2, 130.3, 129.42, 129.40 , 129.0, 121.9, 120.7, 120.6, 117.7, 114.5, 114.1, 92.6, 

91.8, 55.5, 51.5, 51.2, 39.7, 32.9, 19.5; ATR-IR ν 3290 (w), 2987 (m), 2972 (m), 2902 (m), 1733 (m), 
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1653 (m), 1511 (s), 1245 (m), 1040 (m); HRMS (ESI) calcd for C28H29N2O4
+ 

[M+H]
+
 457.2122; 

found 457.2114.  

 

Methyl 3-((2-((2-((4-methoxyphenyl)carbamoyl)-4-methylphenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (1.193j) 

 

Yield: 190.3 mg (84%), yellow solid; mp: 78 – 80 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.36 (s, 1H), 

8.11 – 7.86 (m, 1H), 7.57 – 7.51 (m, 3H), 7.43 (dd, J = 7.6, 1.7 Hz, 1H), 7.32 – 7.26 (m, 2H), 6.95 (dd, 

J = 8.5, 1.0 Hz, 1H), 6.90 (td, J = 7.5, 1.1 Hz, 1H), 6.84 (d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.63 (t, J = 

7.6, 2H), 3.50 (s, 3H), 2.77 (s, 3H), 2.51 (t, J = 7.6 Hz, 2H), 2.43 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 172.6, 164.3, 156.4, 153.5, 139.2, 135.0, 134.3, 133.2, 131.6, 131.2, 130.9, 130.0, 122.1, 

121.2, 118.5, 116.9, 114.6, 114.0, 95.0, 92.3, 55.4, 51.5, 51.2, 39.9, 32.2, 21.4; ATR-IR ν 3627 (w), 

3350 (w), 3349 (w), 2987 (m), 2970 (m), 2902 (m), 1734 (m), 1662 (m), 1534 (m), 1512 (s), 1245 (s), 

1045 (m), 829 (w); HRMS (ESI) calcd for C28H29N2O4
+ 

[M+H]
+
 457.2122; found 457.2115. 

 

Methyl 3-((2-((3-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (1.193k) 

 

Yield: 185.0 mg (78%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.57 (d, J = 9.0 Hz, 

2H), 7.47 (dd, J = 7.6, 1.2 Hz, 1H), 7.39 (dd, J = 8.1, 1.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.21 (ddd, J = 

8.4, 7.6, 1.2 Hz, 1H), 6.86 (d, J = 9.0 Hz, 2H), 6.84 (dd, J = 8.4, 1.2 Hz, 1H), 6.79 (td, J = 7.6, 1.2 Hz, 

1H), 3.79 (s, 3H), 3.60 (t, J = 7.5, 2H), 3.47 (s, 3H), 2.79 (s, 3H), 2.59 (t, J = 7.5 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 173.1, 163.9, 156.7, 153.5, 138.5, 134.9, 131.6, 130.9, 130.3, 130.0, 129.8, 

129.4, 123.2, 122.1, 120.6, 117.7, 114.2, 114.0, 93.8, 90.4, 55.5, 51.6, 51.2, 39.7, 32.9; ATR-IR ν 
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3302 (w), 3290 (w), 3280 (w), 2969 (w), 2969 (w), 2953 (w), 2902 (w), 1732 (m), 1658 (m), 1541 

(m), 1511 (s), 1453 (m), 1247 (m), 1037 (w); HRMS (ESI) calcd for C27H26ClN2O4
+ 

[M+H]
+
 

477.1576; found 477.1587. 

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl) (methyl)amino)-

propanoate (1.193l) 

 

Yield: 212.8 mg (89%), light yellow solid; mp: 71 – 73 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.35 (s, 

1H), 8.16 (d, J = 2.3 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.44 (td, J = 7.8, 7.3, 

2.0 Hz, 2H), 7.30 (td, J = 8.7, 1.7 Hz, 1H), 6.95 (dd, J = 8.4, 1.0 Hz, 1H), 6.91 (td, J = 7.5, 1.1 Hz, 

1H), 6.85 (d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.61 (t, J = 7.5, 2H), 3.50 (s, 3H), 2.77 (s, 3H), 2.50 (t, J = 

7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 162.8, 156.7, 153.7, 136.8, 135.1, 134.4, 134.4, 

130.9, 130.8, 130.5, 130.4, 122.2, 121.3, 118.6, 118.3, 114.1, 113.9, 96.7, 91.2, 55.4, 51.6, 51.3, 39.9, 

32.2; ATR-IR ν 3342 (w), 3302 (w), 2998 (w), 2951 (w), 2836 (w), 1734 (m), 1659 (m), 1538 (m), 

1512 (s), 1247 (m), 1177 (w), 1035 (w), 829 (w); HRMS (ESI) calcd for C27H26ClN2O4
+ 

[M+H]
+
 

477.1576; found 477.1569. 

 

Methyl 3-((2-((5-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (1.193m) 

 

Yield: 227.0 mg (95%), light yellow solid; mp: 81 – 83 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.32 (s, 

1H), 8.12 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 2.2 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.45 – 7.42 (m, 2H), 

7.31 (ddd, J = 8.8, 7.4, 1.7 Hz, 1H), 6.96 (dd, J = 8.3, 1.1 Hz, 1H), 6.91 (td, J = 7.5, 1.1 Hz, 1H), 6.84 

(d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.62 (t, J = 7.5, 2H), 3.52 (s, 3H), 2.77 (s, 3H), 2.51 (t, J = 7.5 Hz, 

2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 163.2, 156.6, 153.8, 136.8, 134.5, 133.7, 132.6, 132.0, 
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130.9, 130.6, 129.1, 122.2, 121.5, 121.3, 118.6, 114.1, 113.8, 97.0, 90.9, 54.4, 51.6, 51.3, 39.9, 32.2; 

ATR-IR ν 3340 (w), 3300 (w), 3290 (w), 2997 (w), 2997 (w), 2951 (w), 1734 (m), 1650 (m), 1538 

(m), 1512 (s), 1442 (w), 1245 (m), 1177 (w), 1035 (w); HRMS (ESI) calcd for C27H26ClN2O4
+ 

[M+H]
+
 477.1576; found 477.1598. 

 

Methyl 3-((2-((4-fluoro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (3n) 

 

Yield: 198.0 mg (86%), yellow oil;  

1
H NMR (400 MHz, CDCl3) δ 9.49 (s, 1H), 7.91 (dd, J = 9.7, 2.8 Hz, 1H), 7.65 (dd, J = 8.6, 5.4 Hz, 

1H), 7.52 (d, J = 9.0 Hz, 2H), 7.44 (dd, J = 7.7, 1.7 Hz, 1H), 7.31 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.20 

(ddd, J = 8.6, 7.6, 2.8 Hz, 1H), 6.96 (dd, J = 8.4, 1.0 Hz, 1H), 6.92 (td, J = 7.5, 1.1 Hz, 1H), 6.85 (d, J 

= 9.0 Hz, 2H), 3.79 (s, 3H), 3.62 (t, J = 7.5, 2H), 3.50 (s, 3H), 2.76 (s, 3H), 2.50 (t, J = 7.5 Hz, 2H); 

13
C NMR (101 MHz, CDCl3) δ 172.5, 162.6, 162.5 (d, J = 252.5 Hz), 156.7, 153.7, 137.6 (d, J = 7.5 

Hz) , 135.3 (d, J = 7.8 Hz), 134.3, 130.8, 130.3, 122.2, 121.3, 118.6, 118.3 (d, J = 22.3 Hz) , 117.6 (d, 

J = 24.2 Hz), 116.0 (d, J = 3.6 Hz), 114.3, 114.1, 95.6, 91.2, 55.4, 51.6, 51.3, 39.9, 32.2;  

ATR-IR ν 3348 (w), 3347 (w), 3336 (w), 2987 (m), 2971 (m), 2902 (w), 1734 (m), 1662 (m), 1601 

(w), 1512 (s), 1246 (s), 1046 (m), 830 (m);  

HRMS (ESI) calcd for C27H26FN2O4
+
 [M+H]

+
 461.1871; found 461.1869. 

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)-4-methoxyphenyl)(methyl)-

amino)propanoate (1.193o) 
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Yield: 196.0 mg (78%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.32 (s, 1H), 8.19 – 8.10 (m, 1H), 

7.59 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.9 Hz, 2H), 7.45 (dd, J = 8.3, 2.3 Hz, 1H), 6.97 – 6.91 (m, 2H), 

6.90 – 6.87 (m, 1H), 6.85 (d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.67 (s, 3H), 3.52 (s, 3H), 3.44 (t, J = 7.5 

Hz, 2H), 2.67 (s, 3H), 2.45 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.7, 162.9, 156.8, 

154.5, 147.8, 136.9, 135.2, 134.5, 130.9, 130.8 , 130.5, 122.5, 120.7, 118.2, 117.6, 117.3, 116.6, 

114.1, 96.2, 90.9, 55.5, 55.5, 51.9, 51.6, 40.9, 32.2; ATR-IR ν l3324 (w), 3306 (w), 3305 (w), 3293 

(w), 2951 (w), 2835 (w), 2202 (w), 1733 (m), 1651 (m), 1603 (w), 1511 (s), 1237 (s), 1179 (m), 1035 

(m), 828 (m), 806 (w); HRMS (ESI) calcd for C28H28ClN2O5
+ 

[M+H]
+ 

507.1681; found 507.1687.  

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)-4methylphenyl)(methyl)-

amino)propanoate (1.193p) 

 

Yield: 199.0 mg (91%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.36 (s, 1H), 8.24 – 8.02 (m, 1H), 

7.57 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.9 Hz, 2H), 7.44 (dd, J = 8.3, 2.3 Hz, 1H), 7.25 – 7.21 (m, 1H), 

7.14 – 7.06 (m, 1H), 6.93 – 6.79 (m, 3H), 3.79 (s, 3H), 3.66 (s, 3H), 3.52 (t, J = 7.5, 2H), 2.73 (s, 3H), 

2.47 (t, J = 7.5 Hz, 2H), 2.21 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 162.8, 156.7, 151.5, 

136.8, 135.1, 134.6, 134.4, 131.2, 130.9, 130.5, 122.3, 122.0, 118.8, 118.4, 114.5, 114.1, 113.9, 96.9, 

90.9, 55.5, 51.6, 51.5, 40.2, 32.1, 20.2; ATR-IR ν 3288 (w), 2951 (w), 2914 (w), 1734 (m), 1650 (m), 

1605 (m), 1511 (s), 1243 (s), 1175 (m), 1106 (w), 1035 (w), 829 (m), 805 (w); HRMS (ESI)calcd for 

C28H28ClN2O4
+ 

[M+H]
+
 491.1732; found 491.1740.  

 

Methyl 3-((4-chloro-2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)phenyl)(methyl)-

amino)propanoate (1.193q) 
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Yield: 187.0 mg (73%), light yellow solid; mp: 117 – 119 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.04 (s, 

1H),8.10 (d, J = 2.3 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.46 (dd, J = 8.3, 2.3 

Hz, 1H), 7.37 (d, J = 2.6 Hz, 1H), 7.23 (dd, J = 8.8, 2.6 Hz, 1H), 6.97 – 6.85 (m, 3H), 3.80 (s, 3H), 

3.58 (t, J = 7.5 Hz, 2H), 3.51 (s, 3H), 2.73 (s, 3H), 2.47 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, 

CDCl3) δ 172.4, 162.9, 156.8, 152.2, 137.4, 135.5, 134.3, 133.6, 130.9, 130.7, 130.4, 130.2, 126.0, 

122.1, 119.7, 117.9, 115.5, 114.2, 94.9, 92.0, 55.5, 51.7, 51.2, 34.0, 32.2; ATR-IR ν 3296 (w), 3290 

(w), 3277 (w), 2989 (w), 2952 (w), 2910 (w), 1734 (m), 1651 (m), 1540 (m), 1512 (s), 1492 (m), 1247 

(s), 1177 (m), 1108 (w), 1035 (w), 828 (m); HRMS (ESI) calcd for C27H25Cl2N2O4
+ 

[M+H]
+ 
511.1186; 

found 511.1185. 

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)-4-fluorophenyl)-(methyl)-

amino)-propanoate (1.193r) 

 

Yield: 157.5 mg (64%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.12 (s, 1H), 8.20 – 8.06 (m, 1H), 

7.58 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.9 Hz, 2H), 7.46 (dd, J = 8.3, 2.3 Hz, 1H), 7.13 (dd, J = 8.6, 2.9 

Hz, 1H), 7.02 (ddd, J = 10.7, 7.8, 3.1 Hz, 1H), 6.97 – 6.91 (m, 1H), 6.87 (d, J = 8.9 Hz, 2H), 3.80 (s, 

3H), 3.50 (s, 3H), 3.52 – 3.47 (m, 2H), 2.69 (s, 3H), 2.44 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, 

CDCl3) δ 172.4, 162.9, 157.3 (d, J = 244.6 Hz), 156.8, 150.4 (d, J = 3.8 Hz), 137.3, 135.5, 134.5, 

130.9, 130.7, 130.4, 122.3, 120.4 (d, J = 9.7 Hz), 120.2 (d, J = 25.5 Hz), 117.9, 117.2 (d, J = 22.1 Hz), 

116.6 (d, J = 9.0 Hz), 114.2, 94.8, 91.8, 55.5, 51.7, 51.6, 40.6, 32.1; ATR-IR ν 3055 (w), 2952 (w), 

2925 (w), 2869 (w), 2853 (w), 1735 (m), 1681 (m), 1650 (m), 1506 (s), 1463 (m), 1247 (s), 1163 (s), 

1035 (s), 994 (s); HRMS (ESI) calcd for C27H25ClFN2O4
+ 

[M+H]
+ 

495.1481; found 495.1493. 

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)-5-methoxyphenyl)(methyl)-

amino)propanoate (1.193s) 

 



194 

 

Yield: 215.0 mg (85%), light yellow solid; mp: 100 – 102 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.44 (s, 

1H), 8.18 (d, J = 2.3 Hz, 1H), 7.60 – 7.48 (m, 3H), 7.43 (dd, J = 8.3, 2.3 Hz, 1H), 7.35 (d, J = 9.2 Hz, 

1H), 6.85 (d, J = 9.0 Hz, 2H), 6.62 – 6.39 (m, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 3.63 (t, J = 7.5 Hz, 2H), 

3.52 (s, 3H), 2.76 (s, 3H), 2.50 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 162.7, 

161.5, 156.6, 155.2, 136.4, 135.7, 134.7, 134.2, 130.9, 130.9, 130.5, 122.1, 118.7, 114.1, 106.2, 106.1, 

105.0, 97.2, 90.0, 55.5, 55.4, 51.6, 51.1, 39.7, 32.1; ATR-IR ν 2989 (w), 2952 (w), 2911 (w), 2910 

(w), 2836 (w), 2199 (w), 1734 (m), 1660 (w), 1601 (m), 1512 (s), 1298 (w), 1238 (s), 1175 (w), 1092 

(w), 1037 (m), 1037 (m), 829 (w); HRMS (ESI) calcd for C28H28ClN2O5
+ 

[M+H]
+
 507.1681; found 

507.1677. 

 

Methyl 3-((2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl)-5-methylphenyl)-(methyl)-

amino)-propanoate (1.193t) 

 

Yield: 231.0 mg (94%), light yellow solid; mp: 93 – 94 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.43 (s, 

1H), 8.18 (d, J = 2.3 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.44 (dd, J = 8.3, 2.3 

Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 6.85 (d, J = 9.0 Hz, 2H), 6.76 – 6.71 (m, 2H), 3.80 (s, 3H), 3.60 (t, J 

= 7.5 Hz, 2H), 3.51 (s, 3H), 2.75 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 172.6, 162.7, 156.6, 153.7, 141.0, 136.5, 134.9, 134.4, 134.2, 130.9, 130.6, 122.3, 122.2, 

119.3, 118.5, 114.1, 111.1, 97.1, 90.6, 55.5, 51.6, 51.3, 39.9, 32.2, 21.9; ATR-IR ν 3347 (w), 3338 

(w), 2951 (w), 2920 (w), 2203 (w), 1734 (m), 1660 (m), 1602 (m), 1539 (m), 1512 (s), 1469 (m), 1413 

(m), 1246 (s), 1176 (m), 1035 (w), 828 (m); HRMS (ESI) calcd for C28H28ClN2O4
+ 

[M+H]
+
 491.1732; 

found 491.1742. 

 

Methyl 3-((5-chloro-2-((4-chloro-2-((4-methoxyphenyl)carbamoyl)phenyl)ethynyl) phenyl)(methyl)-

amino)propanoate (1.193u) 
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Yield: 219.5 mg (86%), light yellow solid; mp: 90 – 91 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.11 (s, 

1H), 8.11 (d, J = 2.3 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.51 (d, J = 9.0 Hz, 2H), 7.45 (dd, J = 8.3, 2.3 

Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 6.91 – 6.86 (m, 2H), 6.86 (d, J = 9.0 Hz, 2H), 3.80 (s, 3H), 3.65 (t, J 

= 7.5 Hz, 2H), 3.51 (s, 3H), 2.77 (s, 3H), 2.51 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 

172.3, 162.9, 156.7, 154.3, 137.2, 136.0, 135.3, 135.3, 134.2, 130.9, 130.8, 130.4, 122.0, 121.2, 118.7, 

118.1, 114.2, 111.9, 95.4, 91.9, 55.5, 51.7, 51.0, 39.7, 32.2; ATR-IR ν 3346 (w), 3332 (w), 3296 (w), 

2951 (w), 2910 (w), 2865 (w), 2836 (w), 2205 (w), 1735 (m), 1655 (m), 1655 (m), 1585 (w), 1543 

(m), 1512 (s), 1494 (m), 1468 (w), 1412 (w), 1246 (s), 1178 (m), 1106 (w), 1036 (w), 829 (m); HRMS 

(ESI) calcd for C27H25Cl2N2O4
+ 

[M+H]
+ 

511.1186; found 511.1194. 

 

3.1.2. Substrate scope for Pd(II)-catalyzed oxidative diamination of alkenes 

 

A 5-mL-vial was charged with 1.193 (0.1 mmol), Pd(TFA)2 (10 mol%), Cu(OTf)2 (25 mol%), nBu4NI 

(1.0 equiv), acetic acid (1.0 equiv) together with 4 mL DMSO and heated at 80 ºC under air 

atmosphere (1 atm) for 13 – 15 hours. The reaction mixture was quenched with ice and the aqueous 

phase was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, 

dried over Na2SO4, filtered and concentrated in vacuo. Then the crude product was purified by flash 

column chromatography on silica gel (petroleum ether/ethyl acetate) to give compound 1.194. 

 

Methyl 3-(6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194a) 
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Yield: 30.2 mg (71%), brown solid; mp: 166 – 167 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.73 (dd, J = 

8.0, 1.4 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.84 (td, J = 7.7, 1.5 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.48 

(d, J = 8.5 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.8 Hz, 2H), 6.86 (t, 

J = 7.7 Hz, 1H), 6.19 (d, J = 8.3 Hz, 1H), 5.01 (t, J = 7.7, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 2.97 (t, J = 

7.7 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.4, 161.6, 160.1, 138.2, 133.02, 131.9, 131.0, 130.0, 

129.3, 126.3, 125.4, 124.8, 123.1, 120.5, 120.3, 120.0, 118.6, 117.3, 115.3, 109.4, 55.8, 52.3, 41.5, 

34.7; ATR-IR ν 2954 (w), 2925 (w), 2841 (w), 2360 (w), 1736 (m), 1634 (s), 1608 (s), 1511 (s), 1248 

(s), 1171 (s), 1029 (s); HRMS (ESI) calcd for C26H23N2O4
+ 

[M+H]
+
 427.1652; found 427.1644.  

 

Methyl 3-(6-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194b) 

 

Yield: 26.1 mg (78%), yellow solid; mp: 112 – 113 ºC; 
1
H NMR (400 MHz, CDCl3): δ 8.73 (dd, J = 

8.3, 1.4 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.79 (m, 1H), 7.58 – 7.54 (m, 2H), 

7.43 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 5.00 (t, J = 7.8, 2H), 4.20 (s, 3H), 3.71 (s, 3H), 2.92 

(t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.2, 160.9, 138.2, 132.4, 130.6, 128.3, 126.1, 

124.76, 124.71,122.5, 120.8, 120.2, 120.0, 118.5, 117.5, 109.7, 52.1, 41.3, 34.4, 32.5; ATR-IR ν 2987 

(w), 2972 (w), 2902 (w), 1733 (m), 1632 (s), 1610 (m), 1371 (w), 1075 (w), 1067 (w), 1052 (w), 739 

(w); HRMS (ESI) calcd for C20H19N2O3
+ 

[M+H]
+ 

335.1390; found 335.1385. 

 

Methyl 3-(5-oxo-6-(p-tolyl)-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194c) 



197 

 

 

Yield: 31.1 mg (76%), yellow solid; mp: 188 – 189 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.73 (dd, J = 

8.0, 1.4 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.84 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 

7.48 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.29 (ddd, J = 8.3, 7.0, 1.1 

Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.13 (d, J = 8.3 Hz, 1H), 5.00 (t, J = 7.8, 2H), 3.73 (s, 3H), 2.97 (t, J 

= 7.8 Hz, 2H), 2.54 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.2, 161.3, 139.1, 138.0, 136.4, 132.8, 

130.8, 130.6, 129.1, 128.5, 126.1, 125.3, 124.6, 122.7, 120.3, 120.1, 119.7, 118.4, 117.1, 109.2, 52.1, 

41.2, 34.5, 21.4; ATR-IR ν 2971 (w), 2922 (w), 1734 (w), 1638 (m), 1609 (w), 1514 (w), 1374 (w), 

1353 (w), 1206 (w), 1175 (w), 732 (s); HRMS (ESI) calcd for C26H23N2O3
+ 

[M+H]
+ 

411.1703; found 

411.1709. 

 

Methyl 3-(5-oxo-6-phenyl-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194d) 

 

Yield: 28.1 mg (71%), yellow solid; mp: 127 – 129 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.73 (dd, J = 

8.1, 1.5 Hz, 1H), 8.19 (d, J = 8.3 Hz, 1H), 7.85 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H), 7.67 – 7.57 (m, 4H), 

7.51 – 7.47 (m, 3H), 7.32 – 7.27 (m, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.03 (d, J = 8.2 Hz, 1H), 5.01 (t, J = 

7.8, 2H), 3.71 (s, 3H), 2.97 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.4, 161.3, 139.2, 

138.2, 133.1, 131.0, 130.1, 129.33, 129.29, 129.0, 126.4, 125.5, 124.8, 122.7, 120.4, 120.3, 120.0, 

118.6, 117.2, 109.4, 52.3, 41.4, 34.7; ATR-IR ν 2987 (m), 2972 (m), 2902 (w), 1733 (m), 1644 (s), 

1610 (w), 1535 (w), 1375 (m), 1355 (m), 1355 (m), 1251 (w), 1213 (w), 1178 (w), 1066 (m), 1058 

(m), 740 (m); HRMS (ESI) calcd for C25H21N2O3
+ 

[M+H]
+
 397.1547; found 397.1550. 

 

Methyl 3-(6-(4-chlorophenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194e) 
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Yield: 31.0 mg (72%), light yellow solid; mp: 173 – 175 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.71 (dd, 

J = 8.1, 1.4 Hz, 1H), 8.18 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 8.4 Hz, 1H), 7.62 (d, J  = 8.4 Hz, 2H), 7.59 

(t, J = 7.6 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.31 (t, J = 8.4 Hz, 1H); 6.89 (t, 

J = 7.6 Hz, 1H), 6.18 (d, J = 8.2 Hz, 1H), 5.02 (t, J = 7.8, 2H), 3.73 (s, 3H), 2.97 (t, J = 7.8 Hz, 2H); 

13
C NMR (101 MHz, CDCl3) δ 171.3, 161.3, 138.2, 137.7, 135.2, 133.3, 130.9, 130.5, 130.4, 129.3, 

126.5, 125.3, 124.9, 122.2, 120.4, 120.2, 120.1, 118.8, 116.9, 109.5, 52.3, 41.4, 34.7; ATR-IR ν 2952 

(w), 2951 (w), 2925 (w), 2854 (w), 2853 (w), 1744 (m), 1635 (s), 1534 (m), 1493 (m), 1470 (w), 1469 

(w), 1383 (w), 1374 (w), 1206 (w), 1175 (w), 827 (w), 740 (m); HRMS (ESI) calcd for 

C25H20ClN2O3
+ 

[M+H]
+ 

431.1157; found 431.1153. 

 

Methyl 3-(6-(3-fluorophenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate (1.194f) 

 

Yield: 30.7 mg (74%), light yellow solid; mp: 171 – 173 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.71 (d, J 

= 7.8, Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.86 (t, J = 7.6 Hz, 1H), 7.68 – 7.57 (m, 2H), 7.50 (d, J = 8.4 

Hz, 1H), 7.39 – 7.28 (m, 3H), 7.27 – 7.24 (m, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.13 (d, J = 8.2 Hz, 1H), 

5.02 (t, J = 7.8, 2H), 3.74 (s, 3H), 2.98 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.3, 

163.5 (d, J = 249.1 Hz), 161.2, 140.5 (d, J = 9.8 Hz), 138.2, 133.3, 131.3 (d, J = 8.8 Hz), 130.9, 129.3, 

126.5, 125.3, 125.1 (d, J = 3.3 Hz), 124.9, 122.1, 120.3 (d, J = 22.0 Hz), 120.0, 118.7, 117.0, 116.9, 

116.8, 116.6 (d, J = 20.8 Hz), 109.5, 52.3, 41.4, 34.7; ATR-IR ν 3062 (w), 2951 (w), 1733 (m), 1646 

(s), 1608 (m), 1535 (m), 1488 (m), 1373 (m), 1355 (m), 1177 (m), 738 (s); HRMS (ESI) calcd for 

C25H20FN2O3
+ 

[M+H]
+ 

415.1452; found 415.1448. 

 

Methyl 3-(5-oxo-6-(3-(trifluoromethyl)phenyl)-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)propanoate 

(1.194g) 
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Yield: 30.6 mg (66%), light yellow solid; mp: 97 – 98 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 

8.1 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.92 – 7.76 (m, 4H), 7.73 (d, J = 8.1 Hz, 1H), 7.60 (t, J = 7.6 

Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.00 (d, J = 8.3 Hz, 

1H), 5.02 (t, J = 7.8, 2H), 3.73 (s, 3H), 2.98 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.3, 

161.3, 139.7, 138.2, 133.4, 132.9, 132.9, 132.6 (q, J = 33.2 Hz), 130.9, 130.7, 129.4, 126.6, 126.5 (q, J 

= 3.7 Hz), 126.2 (q, J = 3.6 Hz), 125.2, 125.0, 120.4, 120.2, 119.7, 116.8, 110.3 109.6, 52.3, 41.4, 34.7 

(CF3 not detected); ATR-IR ν 2957 (w), 2922 (w), 1734 (m), 1650 (s), 1610 (w), 1331 (s), 1169 (s), 

1127 (s), 1068 (m), 741 (m); HRMS (ESI) calcd for C26H20F3N2O3
+ 

[M+H]
+
 465.1421; found 

465.1418. 

 

Methyl 3-(2-methoxy-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-

propanoate (1.194h) 

 

Yield: 36.0 mg (79%), brown solid; mp: 178 – 180 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 9.0 

Hz, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.29 (ddd, J = 

8.5, 6.9, 1.2 Hz, 1H), 7.15 – 7.12 (m, 3H), 6.85 (t, J = 7.5 Hz, 1H), 6.18 (d, J = 8.1 Hz, 1H), 4.98 (t, J 

= 8.0, 2H), 4.01 (s, 3H), 3.95 (s, 3H), 3.73 (s, 3H), 2.98 (t, J = 7.9 Hz, 2H); 
13

C NMR (101 MHz, 

CDCl3) δ 171.4, 163.3, 161.5, 160.0, 138.3, 133.0, 131.9, 130.9, 130.0, 124.9, 123.7, 120.6, 119.9, 

119.2, 118.4, 117.3, 115.3, 114.1, 109.3, 103.5, 55.8 (2C), 52.3, 41.4, 34.9; ATR-IR ν 2971 (m), 2902 

(m), 1732 (w), 1644 (s), 1609 (s), 1512 (s), 1473 (m), 1249 (s), 1037 (m); HRMS (ESI) calcd for 

C27H25N2O5
+ 

[M+H]
+
 457.1758; found 457.1776.  

 

Methyl 3-(6-(4-methoxyphenyl)-4-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-propanoate 

(1.194i) 
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Yield: 36.1 mg (82%), brown solid; mp: 119 – 120 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.2 

Hz, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 7.4 

Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 8.8 Hz, 2H), 6.85 (ddd, J = 8.1, 7.0, 0.9 Hz, 1H), 6.17 

(dd, J = 8.2 Hz, 1H), 4.98 (t, J = 7.8, 2H), 3.94 (s, 3H), 3.72 (s, 3H), 3.00 (s, 3H), 2.94 (t, J = 7.8 Hz, 

2H); 
13

C NMR (101 MHz, CDCl3) δ 171.2, 162.5, 159.8, 144.8, 138.7, 132.1, 131.9, 130.9, 130.0, 

129.9, 124.6, 123.6, 123.2, 120.3, 119.8, 118.8, 118.2, 117.0, 115.2, 109.3, 55.6, 52.1, 41.5, 34.5, 

25.2; ATR-IR ν 2953 (w), 2953 (w), 2929 (w), 2838 (w), 1735 (m), 1645 (s), 1607 (m), 1601 (m), 

1512 (s), 1366 (m), 1354 (m), 1292 (m), 1248 (s), 1031 (w), 741 (m); HRMS (ESI) calcd for 

C27H25N2O4
+ 

[M+H]
+
441.1809; found 441.1793. 

 

Methyl 3-(6-(4-methoxyphenyl)-3-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl) propanoate 

(1.194j) 

 

Yield: 26.8 mg (61%), light brown crystal; mp: 157 – 159 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.53 – 

8.50 (m, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.66 (dd, J = 8.4, 2.0 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.39 (d, 

J = 8.9 Hz, 2H), 7.27 (ddd, J = 8.2, 7.0, 1.0 Hz, 1H), 7.14 (d, J = 8.9 Hz, 2H), 6.85 (ddd, J = 8.2, 7.0, 

1.0 Hz, 1H), 6.16 (dd, J = 8.2, 1.0 Hz, 1H), 4.99 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 2.95 (t, J = 

7.8 Hz, 2H), 2.55 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.2, 161.4, 159.8, 137.8, 136.3, 134.2, 

131.9, 130.5, 129.8, 126.7, 125.3, 124.3, 122.1, 120.12, 120.09, 119.7, 118.6, 117.2, 115.1, 109.1, 

55.6, 52.1, 41.1, 34.5, 21.3; ATR-IR ν 3290 (w), 2987 (m), 2972 (m), 2902 (m), 1733 (m), 1653 (m), 

1511 (s), 1245 (m), 1040 (m); HRMS (ESI) calcd for C27H24N2O4Na
+
 [M+Na]

+
 463.1628; found 

463.1638. 
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Methyl 3-(4-chloro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-propanoate 

(1.194k) 

 

Yield: 22.1 mg (48%); yellow solid; mp: 142 – 143 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.08 (dd, J = 

8.3, 1.2 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.58 (dd, J = 7.9, 1.1 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.37 

(d, J = 8.8 Hz, 2H), 7.31 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.13 (d, J = 8.8 Hz, 2H), 6.86 (ddd, J = 8.1, 

7.0, 1.0 Hz, 1H), 6.17 (d, J = 8.2, Hz, 1H), 4.96 (t, J = 7.8, 2H), 3.94 (s, 3H), 3.72 (s, 3H), 2.92 (t, J = 

7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.1, 160.0, 159.9, 138.9, 138.5, 132.2 (2C), 131.6, 

129.9 (2C), 125.3, 124.1, 121.4, 120.7, 120.1, 119.0, 117.7, 116.8, 115.2, 109.4, 55.6, 52.2, 41.6, 34.4; 

ATR-IR ν 2953 (w), 2953 (w), 2839 (w), 1734 (m), 1650 (s), 1596 (m), 1512 (s), 1354 (m), 1248 (s), 

1030 (w), 742 (m); HRMS (ESI) calcd for C26H21ClN2O4Na
+
 [M+Na]

+
 483.1082; found 483.1086. 

 

Methyl 3-(3-chloro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-propanoate 

(1.194l) 

 

Yield: 39.1 mg (85%), light yellow solid; mp: 147 – 149 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.68 (d, J 

= 2.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.77 (dd, J = 8.8, 2.5 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.38 

(d, J = 8.8 Hz, 2H), 7.30 (ddd, J = 8.4, 7.0, 1.2 Hz, 1H), 7.14 (d, J = 8.8 Hz, 2H), 6.87 (ddd, J = 8.1, 

7.0, 0.9 Hz, 1H), 6.17 (dd, J = 8.2, 1.0 Hz, 1H), 4.97 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 2.93 (t, 

J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.1, 160.5, 160.0, 138.2, 133.1, 132.1, 131.4, 

130.3, 129.7, 127.4, 126.6, 125.0, 123.1, 121.7, 120.4, 120.0, 117.8, 117.0, 115.2, 109.2, 55.6, 52.2, 

41.2, 34.4; ATR-IR ν 2987 (w), 2970 (w), 2902 (w), 1735 (m), 1646 (s), 1523 (m), 1512 (s), 1375 

(w), 1355 (m), 1249 (s), 1034 (w), 742 (w); HRMS (ESI) calcd for C26H21ClN2O4Na
+
 [M+Na]

+
 

483.1082; found 483.1089. 
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Methyl 3-(2-chloro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-propanoate 

(1.194m) 

 

Yield: 31.3 mg (68%), brown solid; mp: 205 – 206 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.6 

Hz, 1H), 8.15 (d, J = 1.9 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.32 (ddd, J = 8.3, 

7.0, 1.2 Hz, 1H), 7.13 (d, J = 8.8 Hz, 2H), 6.87 (ddd, J = 8.1, 7.0, 0.9 Hz, 1H), 6.17 (dd, J = 8.2, 1.0 

Hz, 1H), 4.98 (t, J = 7.8 Hz, 2H), 3.95 (s, 3H), 3.74 (s, 3H), 2.96 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 170.9, 161.0, 160.0, 139.4, 138.3, 132.5, 131.4, 130.1, 129.7, 126.4, 125.2, 124.1, 

123.5, 120.5, 120.0, 119.9, 117.2, 116.9, 115.2, 109.3, 55.6, 52.2, 41.1, 34.6; ATR-IR ν 2998 (w), 

2953 (w), 2839 (w), 1735 (m), 1648 (s), 1601 (s), 1511 (s), 1463 (m), 1351 (m), 1249 (s), 1213 (m), 

1179 (m), 1030 (w), 906 (w), 833 (w), 741 (m); HRMS (ESI) calcd for C26H21ClN2O4Na
+
 [M+Na]

+
 

483.1082; found 483.1076. 

 

Methyl 3-(3-fluoro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-propanoate 

(1.194n) 

 

Yield: 33.3 mg (75%), light yellow solid; mp: 191 – 192 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.38 (dd, 

J = 9.5, 2.9 Hz, 1H), 8.18 (dd, J = 9.1, 4.7 Hz, 1H), 7.57 (ddd, J = 9.1, 7.7, 2.9 Hz, 1H), 7.47 (d, J = 

8.4 Hz, 1H), 7.39 (d, J = 8.8 Hz, 2H), 7.30 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.14 (d, J = 8.8 Hz, 2H), 

6.87 (t, J = 7.6, Hz, 1H), 6.18 (dd, J = 8.2, 1.0 Hz, 1H), 4.98 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.73 (s, 3H), 

2.95 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.1, 160.8 (d, J = 247.8 Hz), 160.6 (d, J = 

3.1 Hz), 160.0, 137.9, 131.5, 129.7, 127.4 (d, J = 7.5 Hz), 125.8 (d, J = 2.5 Hz), 124.6, 122.4 (d, J = 

7.6 Hz), 122.3 (d, J = 2.0 Hz), 121.2 (d, J = 23.4 Hz), 120.2, 120.0. 118.0, 117.1, 116.2 (d, J = 22.9 

Hz), 115.2, 109.2, 55.6, 52.2, 41.2, 34.4; ATR-IR ν 2955 (w), 2911 (w), 2903 (w), 1734 (m), 1646 (s), 
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1577 (m), 1538 (m), 1512 (s), 1462 (m), 1443 (m), 1355 (m), 1250 (s), 1181 (m), 742 (w); HRMS 

(ESI) calcd for C26H21FN2O4Na
+
 [M+Na]

+
 467.1378; found 467.1389. 

 

Methyl 3-(3-chloro-6-(4-methoxyphenyl)-8-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-

propanoate (1.194o) 

 

Yield: 40.1 mg (82%), brown solid; mp: 192 – 193 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 2.3 

Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.77 (dd, J = 8.8, 2.4 Hz, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 

9.1 Hz, 1H), 7.16 (d, J = 8.7 Hz, 2H), 6.94 (dd, J = 9.0, 2.5 Hz, 1H), 5.53 (d, J = 2.4 Hz, 1H), 4.92 (t, J 

= 7.8, 2H), 3.92 (s, 3H), 3.71 (s, 3H), 3.45 (s, 3H), 2.90 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, 

CDCl3) δ 171.1, 160.3, 160.1, 153.6, 133.6, 133.1, 132.0, 131.4, 130.3, 130.1, 127.5, 126.5, 122.7, 

121.6, 118.4, 116.9, 115.7, 115.1, 110.2, 101.2, 55.7, 55.2, 52.2, 41.3, 34.5. ATR-IR ν 2952 (w), 2836 

(w), 1734 (m), 1644 (s), 1525 (s), 1512 (s), 1458 (m), 1247 (s), 1208 (m), 1033 (m), 835 (w), 799 (w), 

733 (w); HRMS (ESI) calcd for C27H24ClN2O5
+ 

[M+H]
+ 

491.1368; found 491.1365. 

 

Methyl 3-(3-chloro-6-(4-methoxyphenyl)-8-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-

propanoate (1.194p) 

 

Yield: 38.0 mg (80%), light yellow solid; mp: 196 – 197 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.67 (d, J 

= 2.3 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.76 (dd, J = 8.7, 2.4 Hz, 1H), 7.38-7.34 (m, 3H), 7.16-7.12 

(m, 3H), 5.91 (s, 1H), 4.93 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.72 (s, 3H), 2.90 (t, J = 7.8 Hz, 2H), 2.17 (s, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 171.3, 160.6, 160.2, 136.9, 133.2, 132.1, 131.7, 130.4, 129.9, 

129.3, 127.7, 126.8, 126.6, 122.9, 121.8, 120.1, 118.1, 117.3, 115.3, 109.2, 55.9, 52.3, 41.4, 34.6, 

21.7; ATR-IR ν 2953 (w), 2921 (w), 2920 (w), 2839 (w), 1734 (m), 1644 (s), 1607 (m), 1528 (s), 
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1512 (s), 1462 (m), 1439 (m), 1330 (m), 1248 (s), 1172 (m), 1032 (m), 793 (w), 733 (m); HRMS 

(ESI) calcd for C27H24ClN2O4
+ 

[M+H]
+
 475.1419; found 475.1420. 

 

Methyl 3-(3,8-dichloro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-

propanoate (1.194q) 

 

Yield: 30.7 mg (62%), light yellow solid; mp: 218 – 219 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.67 (d, J 

= 2.4 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.78 (dd, J = 8.7, 2.4 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.35 

(d, J = 8.8 Hz, 2H), 7.24 (dd, J = 8.9, 2.1 Hz, 1H), 7.16 (d, J = 8.8 Hz, 2H, 6.07 (d, J = 2.0 Hz, 1H), 

4.94 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.71 (s, 3H), 2.92 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) 

δ 170.9, 160.3, 160.3, 136.4, 133.2, 132.6, 130.9, 130.4, 129.6, 127.1, 126.9, 125.5, 125.1, 122.4, 

121.7, 119.7, 118.8, 117.7, 115.4, 110.4, 55.7, 52.2, 41.4, 34.4; ATR-IR ν 2953 (w), 2926 (w), 2851 

(w), 2841 (w), 1738 (m), 1635 (s), 1607 (m), 1606 (m), 1522 (s), 1459 (m), 1304 (m), 1252 (s), 1033 

(w), 830 (m), 772 (m); HRMS (ESI) calcd for C26H21Cl2N2O4
+ 

[M+H]
+ 

495.0873; found 495.0866. 

 

Methyl 3-(3,8-dichloro-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-yl)-

propanoate (1.194r) 

 

Yield: 33.5 mg (70%), light yellow solid; mp: 225 – 226 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.68 (d, J 

= 2.4 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.78 (dd, J = 8.8, 2.4 Hz, 1H), 7.41 (dd, J = 9.1, 4.2 Hz, 1H), 

7.36 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H), 7.10 – 6.98 (m, 1H), 5.79 (dd, J = 10.1, 2.5 Hz, 1H), 

4.95 (t, J = 7.8, 2H), 3.95 (s, 3H), 3.72 (s, 3H), 2.92 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) 

δ 171.0, 160.3, 160.2, 157.1 (d, J = 236.0 Hz), 134.8, 133.2, 132.6, 130.9, 130.4, 129.6, 127.2, 126.8, 

122.8 (d, J = 4.9 Hz), 121.7, 119.2, 116.8 (d, J = 10.6 Hz), 115.3, 113.5 (d, J = 26.5 Hz), 110.2 (d, J = 
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9.3 Hz), 105.3 (d, J = 26.3 Hz), 55.6, 52.2, 41.4, 34.4; ATR-IR ν 2987 (w), 2966 (w), 2958 (w), 2902 

(w), 1735 (m), 1636 (s), 1526 (m), 1514 (m), 1333 (w), 1253 (m), 1029 (w), 836 (w), 794 (w); HRMS 

(ESI) calcd for C26H21FClN2O4
+ 

[M+H]
+ 

479.1168; found 479.1170.  

 

Methyl 3-(3-chloro-9-methoxy-6-(4-methoxyphenyl)-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-

yl)propanoate (1.194s) 

 

Yield: 42.6 mg (87%), light yellow solid; mp: 176 – 177 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.64 (d, J 

= 2.4 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.73 (dd, J = 8.8, 2.4 Hz, 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.13 

(d, J = 8.8 Hz, 2H), 6.88 (d, J = 2.2 Hz, 1H), 6.52 (dd, J = 9.0, 2.2 Hz, 1H), 6.02 (d, J = 9.0 Hz, 1H), 

4.89 (t, J = 7.8, 2H), 3.94 (s, 3H), 3.86 (s, 3H), 3.73 (s, 3H), 2.92 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 171.2, 160.5, 160.0, 158.5, 139.6, 133.1, 131.4, 131.3, 130.2, 129.6, 127.5, 125.7, 

123.6, 121.3, 121.1, 117.0, 115.2, 111.5, 110.0, 92.5, 55.6, 55.6, 52.2, 41.2, 34.3; ATR-IR ν 2952 (w), 

2910 (w), 2836 (w), 1734 (m), 1651 (m), 1512 (s), 1492 (m), 1247 (s), 1177 (w), 828 (m); HRMS 

(ESI) calcd for C27H24ClN2O5
+ 

[M+H]
+ 

491.1368;  found 491.1365;  

 

Methyl 3-(3-chloro-6-(4-methoxyphenyl)-9-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-

yl)propanoate (1.194t) 

 

Yield: 35.5 mg (75%), brown solid; mp: 202 – 203 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 2.4 

Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.76 (dd, J = 8.8, 2.5 Hz, 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.23 (s, 1H), 

7.13 (d, J = 8.8 Hz, 2H), 6.70 (dd, J = 8.5, 1.4 Hz, 1H), 6.03 (d, J = 8.4 Hz, 1H), 4.92 (t, J = 7.8, 2H), 

3.94 (s, 3H), 3.74 (s, 3H), 2.90 (t, J = 7.8 Hz, 2H), 2.45 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

171.1, 160.4, 160.0, 138.7, 135.4, 133.1, 131.7, 131.5, 130.2, 129.6, 127.5, 126.2, 123.3, 121.9, 121.4, 

120.0, 117.4, 115.2, 115.0, 109.0, 55.6, 52.2, 41.1, 34.4, 22.0; ATR-IR ν 2987 (m), 2971 (m), 2912 
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(w), 1639 (s), 1607 (m), 1511 (s), 1436 (m), 1355 (m), 1249 (s), 1036 (m), 911 (w), 830 (w), 801 (w), 

733 (w); HRMS (ESI) calcd for C27H24ClN2O4
+ 

[M+H]
+
 475.1419; found 475.1417. 

 

Methyl 3-(3-chloro-6-(4-methoxyphenyl)-9-methyl-5-oxo-5H-indolo[3,2-c]isoquinolin-11(6H)-

yl)propanoate (1.194u) 

 

Yield: 40.0 mg (81%), yellow solid; mp: 217 – 218 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 2.4 

Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.78 (dd, J = 8.8, 2.4 Hz, 1H), 7.40 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 

7.14 (d, J = 8.8 Hz, 2H), 6.82 (dd, J = 8.8, 1.8 Hz, 1H), 6.04 (d, J = 8.8 Hz, 1H), 4.91 (t, J = 7.8, 2H), 

3.94 (s, 3H), 3.74 (s, 3H), 2.93 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 170.8, 160.4, 

160.1, 138.5, 133.2, 132.4, 131.1, 131.1, 130.4, 129.6, 127.2, 126.6, 123.0, 121.6, 121.3, 120.8, 118.2, 

115.6, 115.3, 109.3, 55.6, 52.2, 41.4, 34.3; ATR-IR ν 2955 (w), 2923 (w), 2855 (w), 2854 (w), 1740 

(m), 1607 (m), 1562 (m), 1511 (s), 1253 (s), 1208 (w), 1171 (w), 831 (m); HRMS (ESI) calcd for 

C26H21Cl2N2O4
+ 

[M+H]
+ 

495.0873; found 495.0875. 

 

3.1.3. Selective cyclization of o-alkynylaniline 1.201 

Preparation of o-alkynylaniline 1.201 

 

o-Alkynylaniline 1.201 was prepared by the Sonogashira reaction of ortho-iodoaniline with 4-

tolylacetylene according to the procedure reported in our previous publication (Yao, B.; Wang, Q.; 

Zhu, J. Angew. Chem. Int. Ed. 2012, 51, 12311–12315). 

Yield 88%; brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.48 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (d, J = 8.1 

Hz, 2H), 7.26 – 7.20 (m, 1H), 7.15 (d, J = 7.9 Hz, 2H), 6.99 – 6.85 (m, 2H), 3.79 – 3.68 (m, 2H), 3.58 

(s, 3H), 2.91 (s, 3H), 2.74 – 2.62 (m, 2H), 2.37 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 172.9, 153.4, 
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138.3, 134.5, 131.4, 129.2, 129.1, 121.1, 120.8, 118.3, 116.0, 94.8, 88.0, 51.7, 51.5, 40.0, 32.9, 21.6; 

ATR-IR ν 1735 (s), 1592 (w), 1511 (w), 1489 (m), 1437 (w), 1169 (m), 1046 (w), 818 (m), 756 (m); 

HRMS (ESI) calcd for C20H22NO2
+
 [M+H]

+
 308.1645; found 308.1658. 

 

Pd(II)-catalyzed cyclizative alkynylation to form 3-alkynylindole 1.203 

A 5-mL-Vial was charged with 1.201 (0.1 mmol), 4-tolylacetylene (1.202) (2 equiv), Pd(TFA)2 (10 

mol%), nBu4NI (1.0 equiv), HOAc (1.0 equiv) together with 1.0 mL DMSO and heated at 50 ºC under 

air atmosphere (1 atm) for 22 h. The reaction mixture was quenched with ice and the aqueous phase 

was extracted with DCM (3 x 10 mL). The combined organic extracts were washed with brine, dried 

over Na2SO4, filtered and concentrated in vacuo. Then the crude product was purified by flash column 

chromatography on silica gel (petroleum ether/DCM 1: 1) to give compound 1.203. 

 

Yield 31.3 mg (77%), brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 

7.8 Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.31 – 7.22 (m, 2H), 7.11 (d, J = 7.9 Hz, 

2H), 4.52 (t, J = 7.6 Hz, 2H), 3.60 (s, 3H), 2.63 (t, J = 7.6 Hz, 2H), 2.46 (s, 3H), 2.35 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 171.3, 143.4, 138.8, 137.4, 136.1, 131.2, 130.0, 129.5, 129.3, 129.1, 

127.9, 123.1, 121.5, 121.1, 120.4, 110.0, 98.1, 92.1, 83.1, 52.0, 40.1, 34.3, 21.6; ATR-IR ν 2205 (w), 

1730 (m), 1419 (m), 1258 (m), 1168 (s), 817 (s), 744 (s); HRMS (ESI) calcd for C28H26NO2
+
 [M+H]

+ 

408.1958; found 408.1962. 

 

Pd(0)-catalyzed arylative cyclization to form 3-arylindole 1.206 

A 5-mL-Vial was charged with 1.201 (0.075 mmol), aryl iodide 1.205 (1.1 equiv), Pd(PPh3)2Cl2 (3 

mol%), nBu4NI (0.1 equiv) together with 1.5 mL CH3CN and flushed with argon for 5 min. Then the 

reaction mixture was heated by microwave at 90 ºC for 1 h. The reaction mixture was quenched with 

ice and the aqueous phase was extracted with DCM (3 x 10 mL). The combined organic extracts were 

washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. Then the crude product was 
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purified by flash column chromatography on silica gel (petroleum ether/DCM 1: 1) to give compound 

1.206. 

 

Yield 29.7 mg (90%), foam; 
1
H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 7.9 

Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.25 – 7.16 (m, 5H), 

4.44 (t, J = 7.6 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.62 (s, 3H), 2.64 (t, J = 7.6 Hz, 2H), 2.41 (s, 3H), 

1.38 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.4, 166.9, 140.3, 138.7, 138.2, 136.3, 

130.8, 129.7, 129.6, 129.5, 128.4, 127.4, 127.1, 122.7, 120.9, 119.7, 115.1, 110.0, 60.9, 52.0, 39.5, 

34.5, 21.5, 14.5; ATR-IR ν 1736 (w), 1709 (m), 1606 (w), 1461 (w), 1362 (w), 1270 (s), 1176 (m), 

1102 (m), 1020 (w), 776 (w), 744 (m), 711 (m); HRMS (ESI) calcd for C28H28NO4
+
 [M+H]

+
 

442.2013; found 442.2013. 

 

PhSeCl-mediated electrophilic cyclization to form 3-phenylselenylindole 1.209 

A 5-mL-Vial was charged with 1.201 (0.1 mmol), PhSeCl (1.208) (0.2 mmol), nBu4NI (1.0 equiv) 

together with DCE (2 mL) and was heated at 70 ºC under nitrogen atmosphere for 6 h. The reaction 

mixture was quenched with saturated sodium bicarbonate solution and the aqueous phase was 

extracted with DCM (3 x 10 mL). The combined organic extracts were washed with brine, dried over 

Na2SO4, filtered and concentrated in vacuo. Then the crude product was purified by flash column 

chromatography on silica gel (petroleum ether/DCM 2 : 1) to give compound 1.209. 

 

Yield 30.0 mg (67%), brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 

8.3 Hz, 1H), 7.36 – 7.23 (m, 5H), 7.20 (t, J = 7.8 Hz, 1H), 7.17 – 7.04 (m, 5H), 4.54 – 4.45 (m, 2H), 

3.59 (s, 3H), 2.71 – 2.61 (m, 2H), 2.43 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.3, 145.7, 139.0, 

136.7, 134.5, 131.0, 130.6, 130.5, 129.3, 129.0, 128.6, 128.3, 125.4, 123.0, 121.2, 121.0, 110.0, 52.0, 
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40.4, 34.5, 21.6; ATR-IR ν 1735 (m), 1476 (w), 1457 (w), 1436 (w), 1354 (w), 1198 (m), 1166 (m), 

1021 (w), 829 (w), 737 (s); HRMS (ESI) calcd for C25H24NO2Se
+
 [M+H]

+ 
450.0967; found 450.0974. 

 

3.1.4. Synthesis of tetracyclic free NH indoles by retro-Michael reaction 

 

A 5-mL-Vial was charged with 1.194 (0.05 mmol), DBU (1.0 equiv) and DMF (2.5 mL) and was 

flushed by N2 for 5 minutes. The reaction mixture was then heated at 120 ºC under nitrogen 

atmosphere for 24 h. The reaction mixture was quenched with ice and the aqueous phase was extracted 

with DCM (3 x 10 mL). The combined organic extracts were washed with brine, dried over Na2SO4, 

filtered and concentrated in vacuo. Then the crude product was purified by flash column 

chromatography on silica gel to give compound 1.200. 

 

6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200a) 

 

Yield: 16.5 mg (97%), yellow solid; mp: 262 – 263 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.06 (s, 

1H), 8.36 (dd, J = 8.0, 1.4 Hz, 1H), 8.25 (d, J = 7.9 Hz, 1H), 7.91 (td, J = 7.8, 1.4 Hz, 1H), 7.58 (t, J = 

7.9 Hz, 1H), 7.50 (dd, J = 7.5, 0.7 Hz, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.25 – 7.14 (m, 3H), 6.79 (t, J = 

7.5 Hz, 1H), 6.05 (d, J = 8.2 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 160.4, 159.3, 

136.8, 132.8, 131.8, 130.0, 129.0, 128.7, 126.3, 124.0, 123.8, 121.0, 120.8, 118.91, 118.89, 118.6, 

117.0, 114.8, 112.0, 55.5; ATR-IR ν 3214 (w), 3183 (w), 2953 (w), 2952 (w), 2925 (w), 2853 (w), 

2853 (w), 1623 (s), 1610 (s), 1557 (m), 1511 (s), 1461 (m), 1302 (m), 1168 (w), 1029 (m), 752 (s), 

741 (m), 733 (m); HRMS (ESI) calcd for C22H17N2O2
+
 [M+H]

+ 
 341.1285;  found 341.1281. 

 

6-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200b) 
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Yield: 10.8 mg (87%), yellow solid; mp: 221 – 222 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.05 (s, 

1H), 8.37 (dd, J = 8.2, 1.2 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.85 (ddd, J = 

8.2, 7.1, 1.1 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.33 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.15 (ddd, J = 8.1, 7.0, 

1.1 Hz, 1H), 4.06 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.9, 136.9, 132.3, 128.8, 127.9, 126.1, 

123.9, 123.4, 120.8, 120.3, 120.2, 119.3, 118.7, 117.3, 112.1, 31.7; ATR-IR ν 3219 (w), 3184 (w), 

2953 (m), 2952 (m), 2923 (s), 2853 (m), 1714 (m), 1562 (m), 1464 (s), 1397 (m), 1376 (m), 1254 (m), 

1077 (m), 1049 (m), 745 (s); HRMS (ESI) calcd for C16H13N2O
+
 [M+H]

+ 
249.1022;  found 249.1025. 

 

6-(p-tolyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200c) 

 

Yield: 15.3 mg (95%), yellow solid; mp: 282 – 283 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.09 (s, 

1H), 8.36 (d, J = 7.9 Hz, 1H), 8.23 (d, J = 7.9 Hz, 1H), 7.91 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.6 Hz, 

1H), 7.50 (d, J = 8.3 Hz, 1H), 7.47 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.18 (t, J = 7.6 Hz, 

1H), 6.76 (t, J = 7.6 Hz, 1H), 5.99 (d, J = 8.2 Hz, 1H), 2.50 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) 

δ 160.8, 138.9, 137.2, 137.0, 133.3, 130.7, 129.4, 129.13, 129.10, 126.9, 124.4, 124.3, 121.4, 120.9, 

119.4, 119.3, 119.2, 117.3, 112.5, 21.4; ATR-IR ν 3176 (w), 2954 (w), 2926 (w), 1727 (m), 1612 (s), 

1554 (m), 1512 (m), 1457 (m), 1352 (m), 1254 (m), 1168 (m), 752 (s), 731 (s), 695 (s); HRMS (ESI) 

calcd for C22H17N2O
+
 [M+H]

+
 325.1335; found 325.1332.  

 

6-phenyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200d) 

 

Yield: 14.7 mg (95%), yellow solid; mp 304 -305 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.09 (s, 

1H), 8.37 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.70-7.6 4 (m, 3H), 
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7.60 (t, J = 7.7 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.17 (t, J = 7.8 Hz, 1H), 6.74 (t, J = 7.7 Hz, 1H), 5.90 (d, 

J = 8.3 Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 160.2, 139.2, 136.8, 132.9, 129.8, 129.04, 128.98 

(2C), 128.7, 126.4, 124.0, 123.8, 121.0, 120.4, 118.9 (2C), 118.7, 116.8, 112.0; ATR-IR ν 3179 (w), 

2956 (m), 2922 (s), 2853 (m), 1722 (w), 1622 (m), 1492 (w), 1461 (m), 1352 (w), 1188 (w), 1081 (w), 

966 (m), 739 (m), 694 (m); HRMS (ESI) calcd for C21H15N2O
+
 [M+H]

+ 
311.1179; found 311.1170. 

 

6-(4-chlorophenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200e) 

 

Yield: 16.5 mg (96%), yellow solid; mp: 342 - 344 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.15 (s, 

1H), 8.35 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.74 (d, J = 8.4 Hz, 

2H), 7.59 (t, J = 7.6 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.7 Hz, 

1H), 6.82 (t, J = 7.7 Hz, 1H), 6.04 (d, J = 8.2 Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 160.7, 

138.4, 137.2, 134.0, 133.5, 131.5, 130.3, 129.4, 129.2, 127.0, 124.4, 124.2, 121.5, 120.4, 119.6, 119.4, 

119.0, 117.4, 112.6; ATR-IR ν 3179 (w), 3075 (w), 2920 (w), 2907 (w), 2895 (w), 1623 (s), 1613 (s), 

1556 (s), 1489 (m), 1353 (m), 1088 (w), 727 (s), 726 (s), 692 (s), 633 (m); HRMS (ESI) calcd for 

C21H14N2OCl
+
 [M+H]

+ 
345.0789; found 345.0777;  

 

6-(3-fluorophenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200f) 

 

Yield: 15.9 mg (97%), yellow solid; mp:  273 - 274 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.12 (s, 

1H), 8.37 (dd, J = 8.1, 1.3 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.93 (ddd, J = 8.2, 7.2, 1.3 Hz, 1H), 7.76 

– 7.68 (m, 1H), 7.60 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.55-7.51 (m, 3H), 7.45 – 7.38 (m, 1H), 7.20 (ddd, 

J = 8.2, 7.0, 1.1 Hz, 1H), 6.81 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 6.00 (d, J = 8.3 Hz, 1H); 
13

C NMR (101 

MHz, DMSO-d6) δ 162.6 (d, J = 245.5 Hz), 160.1, 140.6 (d, J = 10.2 Hz), 136.7, 133.0, 131.3 (d, J = 

9.1 Hz), 129.0, 128.8, 126.5, 125.5 (d, J = 3.2 Hz), 123.9 (2C), 121.1, 120.0, 119.1, 118.8, 118.5, 

116.7 (d, J = 23.3 Hz), 116.6, 116.1 (d, J = 20.7 Hz), 112.1; ATR-IR ν 3224 (w), 3075 (w), 3067 (w), 

2924 (w), 2923 (w), 2922 (w), 1625 (s), 1563 (m), 1489 (w), 1453 (w), 1452 (w), 1374 (w), 1349 (w), 
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1254 (w), 1178 (w), 741 (m), 694 (w); HRMS (ESI) calcd for C21H14FN2O
+
 [M+H]

+
 329.1085; found 

329.1084. 

 

6-(3-(trifluoromethyl)phenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200g) 

 

Yield: 18.3 mg (97%), yellow solid; mp: 259 – 260 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.16 (s, 

1H), 8.37 (dd, J = 8.1, 1.2 Hz, 1H), 8.27 (d, J = 7.9 Hz, 1H), 8.09 – 8.01 (m, 2H), 7.98 – 7.87 (m, 3H), 

7.61 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.19 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 6.79 

(ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 5.89 (d, J = 8.2 Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 160.3, 

139.8, 136.8, 133.6, 133.1, 131.0, 130.5 (q, J = 32.3 Hz), 129.0, 128.8, 126.5, 126.3 (q, J = 3.7 Hz), 

125.8 (q, J = 4.1 Hz), 123.9 (2C), 123.8 (q, J = 272.0 Hz), 121.1, 119.8, 119.1, 119.0, 118.1, 116.6, 

112.2; ATR-IR ν 3253 (w), 3227 (w), 2956 (w), 2924 (w), 2853 (w), 1623 (s), 1555 (m), 1450 (m), 

1348 (m), 1329 (s), 1300 (m), 1168 (s), 1126 (s), 1093 (m), 1068 (s), 739 (s), 697 (s); HRMS (ESI) 

calcd for C22H14F3N2O
+
 [M+H]

+
 379.1053; found 379.1052.  

 

6-(4-methoxyphenyl)-3-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200h) 

 

Yield: 16.1 mg (85%), yellow solid; mp: 290 – 291 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.97 (s, 

1H), 8.25 (d, J = 8.8 Hz, 1H), 7.73 (s, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.28 – 

7.10 (m, 4H), 6.78 (t, J = 7.7 Hz, 1H), 6.04 (d, J = 8.3 Hz, 1H), 3.98 (s, 3H), 3.89 (s, 3H); 
13

C NMR 

(101 MHz, DMSO-d6) δ 162.7, 160.3, 159.3, 136.7, 131.8, 131.1, 130.6, 130.1, 123.8, 121.3, 119.0, 

118.9, 118.7, 117.7, 117.0, 115.2, 114.7, 111.9, 102.8, 55.7, 55.5; ATR-IR ν 3137 (w), 2959 (w), 

2835 (w), 1630 (s), 1620 (s), 1511 (s), 1247 (s), 1023 (s), 1000 (s), 743 (s); HRMS (ESI) calcd for 

C23H19N2O3
+ 

[M+H]
+
 371.1390; found 371.1395. 

 

6-(4-methoxyphenyl)-4-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200i) 
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Yield: 17.1 mg (97%), yellow solid; mp: 270 - 271 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.89 (s, 

1H), 8.07 (d, J = 7.9 Hz, 1H), 7.72 (td, J = 7.7, 2.7 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.39 (dd, J = 8.2, 

2.6 Hz, 2H), 7.33 (d, J = 7.3 Hz, 1H), 7.20-7.16 (m, 3H), 6.77 (t, J = 7.7 Hz, 1H), 6.18 (dt, J = 6.6, 3.1 

Hz, 1H), 3.90 (s, 3H), 2.84 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 161.4, 159.2, 142.4, 136.9, 

132.1, 132.1, 130.2, 130.1, 129.7, 123.8, 122.1, 120.8, 119.1, 118.9, 118.9, 118.8, 116.8, 114.8, 111.9, 

55.5, 24.0; ATR-IR ν 3175 (w), 2926 (w), 2852 (w), 1707 (w), 1615 (s), 1561 (s), 1510 (s), 1248 (s);  

HRMS (ESI) calcd for C23H19N2O2
+
 [M+H]

+ 
355.1441; found 355.1442.  

 

6-(4-methoxyphenyl)-3-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200j) 

 

Yield: 17.0 mg (96%), yellow solid; mp: 318 - 320 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.99 (s, 

1H), 8.17 (d, J = 1.6 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.74 (dd, J = 8.0, 1.9 Hz, 1H), 7.48 (d, J = 8.1 

Hz, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H), 7.16 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 6.78 

(ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 6.04 (d, J = 8.1 Hz, 1H), 3.91 (s, 3H), 2.51 (s, 3H); 
13

C NMR (101 

MHz, DMSO-d6) δ 160.4, 159.3, 136.5, 135.9, 134.0, 131.9, 130.0, 128.6, 126.4, 124.1, 123.5, 121.0, 

120.1, 118.84, 118.80, 118.7, 117.1, 114.8, 111.9, 55.5, 21.2; ATR-IR ν 3293 (w), 2968 (s), 2967 (s), 

2923 (s), 1623 (m), 1614 (m), 1613 (m), 1512 (s), 1464 (m), 1378 (m), 1249 (s), 1075 (s), 1057 (s); 

HRMS (ESI) calcd for C23H19N2O2
+ 

[M+H]
+
 355.1441; found 355.1452. 

 

4-chloro-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200k) 
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Yield: 16.7 mg (89%), yellow solid; mp: 266 – 267 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.08 (s, 

1H), 8.21 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.3 Hz, 

1H), 7.41 (dd, J = 8.6, 2.1 Hz, 2H), 7.25 – 7.12 (m, 3H), 6.79 (t, J = 7.7 Hz, 1H), 6.02 (d, J = 8.3 Hz, 

1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 160.4, 159.3, 136.5, 135.9, 134.0, 131.9, 130.0, 

128.6, 126.4, 124.1, 123.5, 121.0, 120.1, 118.84, 118.80, 118.7, 117.1, 114.8, 111.9, 55.5; ATR-IR ν 

3172 (w), 2928 (w), 2927 (w), 2926 (w), 1637 (s), 1610 (m), 1510 (s), 1249 (s), 1026 (s), 1007 (s), 

739 (s); HRMS (ESI) calcd forC22H16ClN2O2
+
 [M+H]

+ 
375.0895; found 375.0891. 

 

6-(4-methoxyphenyl)-4-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200l) 

 

Yield: 16.7 mg (89%), yellow solid; mp: 337 - 339 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.08 (s, 

1H), 8.29 (s, 1H), 8.28 (d, J = 8.6 Hz, 1H), 7.58 (dd, J = 8.6, 2.3 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 

7.43 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.20 – 7.19 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.04 

(d, J = 8.3 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.4, 136.9, 133.0, 131.5, 

130.7, 129.9, 128.0, 127.4, 125.5, 125.3, 124.2, 123.3, 121.2, 119.1, 119.0, 118.0, 116.8, 114.9, 112.0, 

55.5; ATR-IR ν 3276 (w), 3248 (w), 3247 (w), 2927 (w), 2926 (w), 2853 (w), 1715 (m), 1714 (m), 

1621 (s), 1579 (m), 1562 (m), 1512 (s), 1458 (m), 1372 (m), 1351 (w), 1302 (m), 1249 (s), 1172 (m), 

1172 (m), 1171 (m), 1171 (m), 1106 (w), 1031 (m), 831 (m), 745 (m); HRMS (ESI) calcd for 

C22H16ClN2O2
+
 [M+H]

+
 375.0895; found 375.0909. 

 

2-chloro-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200m) 

 

Yield: 17.8 mg (95%), yellow solid; mp: 300 – 301 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.07 (s, 

1H), 8.36 (d, J = 2.1 Hz, 1H), 8.34 (d, J = 8.6 Hz, 1H), 7.58 (dd, J = 8.6, 2.1 Hz, 1H), 7.50 (d, J = 8.3 

Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.31 – 7.10 (m, 3H), 6.81 (ddd, J = 8.0, 7.0, 0.9 Hz, 1H), 6.05 (d, J 

= 8.3 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.9, 159.4, 137.9, 137.0, 131.5, 
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131.4, 130.0, 129.9, 126.2, 124.4, 122.5, 122.0, 120.4, 119.1 (2C), 117.5, 116.7, 114.9, 112.1, 55.5; 

ATR-IR ν 3213 (w), 2960 (w), 2959 (w), 2923 (w), 1614 (s), 1557 (m), 1510 (s), 1460 (m), 1438 (w), 

1375 (m), 1249 (s), 1032 (m), 837 (w), 742 (s); HRMS (ESI) calcd for C22H16ClN2O2
+
 [M+H]

+
 

375.0895; found 375.0881. 

 

3-fluoro-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200n) 

 

Yield: 17.4 mg (97%), yellow solid; mp: 329 – 331 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.10 (s, 

1H), 8.32 (dd, J = 8.9, 5.1 Hz, 1H), 8.02 (dd, J = 9.7, 2.8 Hz, 1H), 7.85 (td, J = 8.7, 2.8 Hz, 1H), 7.50 

(dt, J = 8.2, 0.9 Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 8.8 Hz, 2H), 7.17 (m, 1H), 6.80 (ddd, J 

= 8.1, 7.0, 1.0 Hz, 1H), 6.04 (d, J = 8.2 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 

160.5 (d, J = 244.1 Hz), 59.6 (d, J = 3.3 Hz), 159.4, 136.6, 131.5, 129.9, 125.8 – 125.7 (2C), 123.9 (d, 

J = 8.2 Hz), 123.8, 121.4 (d, J = 23.6 Hz), 120.3, 119.0, 118.8, 118.3, 116.9, 114.8, 114.0 (d, J = 22.9 

Hz), 112.0, 55.5; ATR-IR ν 3246 (w), 3234 (w), 2987 (m), 2958 (s), 2923 (s), 2857 (m), 1626 (w), 

1625 (w), 1611 (w), 1610 (w), 1512 (w), 1462 (w), 1462 (w), 1378 (w), 1250 (w), 1076 (w), 1066 (m), 

1058 (w); HRMS (ESI) calcd for C22H16FN2O2
+
 [M+H]

+
 359.1190; found 359.1185. 

 

3-chloro-8-methoxy-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200o) 

 

Yield:19.2 mg (95%), yellow solid; mp: 306 – 308 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.93 (s, 

1H), 8.28 (d, J = 2.2 Hz, 1H), 8.23 (d, J = 8.6 Hz, 1H), 7.96 (dd, J = 8.6, 2.3 Hz, 1H), 7.44 (d, J = 8.6 

Hz, 2H), 7.40 (d, J = 8.9 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 6.86 (dd, J = 8.9, 2.4 Hz, 1H), 5.39 (d, J = 

2.4 Hz, 1H), 3.89 (s, 3H), 3.40 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.6, 159.2, 152.6, 132.9, 

132.2, 131.4, 130.6, 130.2, 128.0, 127.5, 125.2, 123.2, 121.0, 118.8, 116.7, 114.8, 114.3, 112.8, 100.5, 

55.6, 54.6; ATR-IR ν 3417 (w), 3410 (w), 3277 (w), 2956 (w), 2927 (w), 2855 (w), 1725 (w), 1620 
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(w), 1549 (w), 1510 (w), 1455 (w), 1248 (m), 1026 (s), 1006 (s); HRMS (ESI) calcd for 

C23H18ClN2O3
+
 [M+H]

+ 
405.1000; found 405.1006. 

 

3-chloro-6-(4-methoxyphenyl)-8-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200p) 

 

Yield: 18.4 mg (95%), yellow solid; mp: 349 – 351 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.00 (s, 

1H), 8.27 (d, J = 2.3 Hz, 1H), 8.25 (d, J = 8.6 Hz, 1H), 7.96 (dd, J = 8.6, 2.3 Hz, 1H), 7.42 – 7.38 (m, 

3H), 7.21 (d, J = 8.8 Hz, 2H), 7.03 (dd, J = 8.4, 1.6 Hz, 1H), 5.79 (d, 1.6 Hz, 1H), 3.91 (s, 3H), 2.10 (s, 

3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.5, 159.4, 135.4, 132.9, 131.5, 130.5, 129.9, 128.0, 127.5, 

127.4, 125.8, 125.1, 123.3, 120.9, 118.5, 118.2, 116.9, 114.8, 111.8, 55.6, 21.3; ATR-IR ν 3295 (w), 

3294 (w), 3252 (w), 3251 (w), 3250 (w), 2957 (w), 2922 (w), 2921 (w), 2857 (w), 2856 (w), 1620 (s), 

1560 (s), 1510 (s), 1453 (m), 1305 (m), 1304 (m), 1250 (s), 1031 (m), 1031 (m), 834 (m), 801 (s); 

HRMS (ESI) calcd for C23H18ClN2O2
+
 [M+H]

+ 
389.1057; found 389.1061. 

 

3-chloro-6-(4-methoxyphenyl)-8-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200q) 

 

Yield: 18.8 mg (92%), yellow solid; mp: 309 – 311 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.37 (s, 

1H), 8.29 (d, J = 2.4 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.00 (dd, J = 8.6, 2.3 Hz, 1H), 7.53 (d, J = 8.8 

Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 7.20 (dd, J = 8.6, 2.1 Hz, 1H), 5.92 (d, J = 

1.9 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.6, 159.3, 135.2, 133.1, 131.3, 131.1, 

129.9, 128.1, 127.1, 125.7, 123.9, 123.5, 123.4, 120.5, 119.4, 118.0, 117.5, 115.0, 113.7, 55.7; ATR-

IR ν 3444 (w), 3437 (w), 3429 (w), 3422 (w), 2923 (w), 2852 (w), 2851 (w), 1649 (w), 1052 (s), 1025 

(s), 1006 (s), 823 (m), 761 (m); HRMS (ESI) calcd for C22H15Cl2N2O2
+
 [M+H]

+ 
409.0505;  found 

409.0496.  

3-chloro-8-fluoro-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200r) 
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Yield:18.8 mg (96%), yellow solid; mp: 314 – 315 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 

1H), 8.29 (d, J = 2.3 Hz, 1H), 8.27 (d, J = 8.6 Hz, 1H), 7.99 (dd, J = 8.6, 2.3 Hz, 1H), 7.52 (dd, J = 

9.0, 4.6 Hz, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 7.08 (td, J = 9.0, 2.6 Hz, 1H), 5.61 

(dd, J = 10.4, 2.6 Hz, 1H), 3.91 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.6, 159.3, 156.1 (d, J = 

232.0 Hz), 133.5, 133.1, 131.2, 131.0, 130.0, 128.1, 127.2, 125.6, 123.5, 121.1 (d, J = 5.0 Hz), 119.8, 

116.4 (d, J = 10.7 Hz), 114.9, 113.4 (d, J = 9.6 Hz), 112.5 (d, J = 26.7 Hz), 103.4 (d, J = 25.6 Hz), 

55.6; ATR-IR ν 3310 (w), 3302 (w), 3299 (w), 2960 (w), 2925 (w), 2916 (w), 2842 (w), 2841 (w), 

1624 (s), 1560 (s), 1549 (s), 1510 (s), 1454 (m), 1252 (s), 1106 (m), 1034 (m), 832 (m), 799 (s), 794 

(s), 748 (m); HRMS (ESI) calcd for C22H15ClFN2O2
+
 [M+H]

+ 
393.0801; found 393.0807.  

 

3-chloro-9-methoxy-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200s) 

 

Yield: 19.2 mg (95%), yellow solid; mp: 304 – 306 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.92 (s, 

1H), 8.25 (d, J = 2.3 Hz, 1H), 8.19 (d, J = 8.6 Hz, 1H), 7.93 (dd, J = 8.6, 2.3 Hz, 1H), 7.41 (d, J = 8.8 

Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 2.3 Hz, 1H), 6.49 (dd, J = 9.0, 2.3 Hz, 1H), 5.91 (d, J = 

9.0 Hz, 1H), 3.89 (s, 3H), 3.77 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.4 (2C), 157.5, 138.3, 

132.9, 131.4, 129.8 (2C), 128.0, 127.4, 124.3, 122.9, 121.7, 119.8, 117.0, 114.9, 111.3, 109.8, 94.4, 

55.5, 55.2, ATR-IR ν 3235 3228 (w), 3227 (w), 2852 (w), 1723 (w), 1722 (w), 1616 (s), 1510 (s), 

1461 (m), 1444 (m), 1443 (m), 1380 (m), 1246 (s), 1203 (s), 1166 (s), 811 (s), 798 (s); HRMS (ESI) 

calcd for C23H18ClN2O3
+ 

[M+H]
+ 

405.1000; found 405.1015. 

 

3-chloro-6-(4-methoxyphenyl)-9-methyl-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200t) 
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Yield: 18.0 mg (93%), yellow solid; mp: 313 – 315 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 11.94 (s, 

1H), 8.26 (d, J = 2.3 Hz, 1H), 8.24 (d, J = 8.6 Hz, 1H), 7.95 (dd, J = 8.6, 2.3 Hz, 1H), 7.41 (d, J = 8.8 

Hz, 2H), 7.29 – 7.25 (m, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.63 (dd, J = 8.5, 1.4 Hz, 1H), 5.93 (d, J = 8.4 

Hz, 1H), 3.90 (s, 3H), 2.36 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.4 (2C), 137.4, 133.8, 

132.9, 131.5, 130.3, 129.9, 128.0, 127.5, 124.9, 123.2, 121.4, 121.0, 118.7, 117.5, 114.8 (2C), 111.6, 

55.5, 21.4; ATR-IR ν 3310 (w), 3309 (w), 3308 (w), 2953 (w), 2952 (w), 2951 (w), 2950 (w), 2925 

(w), 2924 (w), 2856 (w), 2855 (w), 2854 (w), 2853 (w), 1621 (s), 1557 (s), 1556 (s), 1543 (s), 1508 

(s), 1458 (m), 1248 (s), 1025 (m), 827 (s), 826 (s), 798 (s), 741 (m); HRMS (ESI) calcd for 

C23H18ClN2O2
+
 [M+H]

+ 
389.1051; found 389.1045. 

 

3,9-dichloro-6-(4-methoxyphenyl)-6,11-dihydro-5H-indolo[3,2-c]isoquinolin-5-one (1.200u) 

 

Yield: 19.6 mg (96%), yellow solid; mp: 336 – 338 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.32 (s, 

1H), 8.29 (d, J = 2.3 Hz, 1H), 8.27 (d, J = 8.6 Hz, 1H), 8.00 (dd, J = 8.6, 2.3 Hz, 1H), 7.54 (d, J = 1.9 

Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 8.8 Hz, 2H), 6.87 (dd, J = 8.8, 2.0 Hz, 1H), 6.00 (d, J = 

8.8 Hz, 1H), 3.90 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.5, 159.4, 137.1, 133.1, 131.14, 

131.09, 129.9, 128.7, 128.1, 127.1, 125.4, 123.4, 121.1, 120.2, 119.6, 118.8, 115.7, 115.0, 111.6, 55.5; 

ATR-IR ν 3308 (w), 2959 (w), 2919 (w), 2918 (w), 2850 (w), 1627 (s), 1573 (s), 1560 (s), 1559 (s), 

1509 (s), 1461 (m), 1249 (s), 1105 (m), 1105 (m), 1067 (m), 1022 (s), 834 (s), 834 (s), 827 (s), 827 (s), 

801 (s), 801 (s), 780 (m), 748 (m); HRMS (ESI) calcd for C22H15Cl2N2O2
+
 [M+H]

+ 
409.0505; found 

409.0508. 

 

2-(p-Tolyl)-3-(p-tolylethynyl)-1H-indole (1.204) 
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Yield 12.1 mg (75%), foam; 
1
H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 7.95 (d, J = 8.2 Hz, 2H), 

7.84 (d, J = 7.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.38 (dd, J = 6.8, 1.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 

2H), 7.27 – 7.22 (m, 2H), 7.18 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H), 2.39 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 139.7, 138.6, 137.7, 135.4, 131.3, 130.5, 129.8, 129.2, 128.9, 126.5, 123.4, 121.5, 121.0, 

120.2, 111.0, 95.8, 93.7, 83.6, 21.6, 21.5; ATR-IR ν 3413 (w), 2919 (w), 2203 (w), 1495 (w), 1442 

(m), 1260 (m), 816 (s), 741 (s); HRMS (ESI) calcd for C24H20N
+
 [M+H]

+ 
322.1590; found 322.1581. 

 

Ethyl 4-(2-(p-tolyl)-1H-indol-3-yl)benzoate (1.207) 

 

Yield 17.6 mg (99%), foam; 
1
H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.09 – 8.00 (m, 2H), 7.70 (d, 

J = 8.0 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.28 – 7.23 

(m, 1H), 7.19 (dd, J = 8.0, 1.0 Hz, 1H), 7.15 (d, J = 7.8 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 

1.41 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 167.0, 140.5, 138.2, 136.0, 135.3, 130.0, 

129.9, 129.7, 129.5, 128.43, 128.37, 128.1, 122.9, 120.9, 119.5, 113.7, 111.1, 61.0, 21.4, 14.5; ATR-

IR ν 3353 (w), 1693 (m), 1606 (m), 1455 (m), 1275 (s), 1108 (m), 1021 (m), 822 (m), 745 (m); 

HRMS (ESI) calcd for C24H22NO2
+
 [M+H]

+
 356.1645; found 356.1660. 

 

3-(Phenylselanyl)-2-(p-tolyl)-1H-indole (1.210) 
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Yield 9.4 mg (52%), brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 7.63 – 7.50 (m, 3H), 7.37 

(d, J = 8.1 Hz, 1H), 7.22 – 7.15 (m, 3H), 7.15 – 6.96 (m, 6H), 2.32 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 142.4, 138.8, 136.2, 134.3, 132.3, 129.5, 129.3, 129.2, 128.5, 128.4, 125.5, 123.2, 121.2, 

121.0, 111.0, 95.6, 21.5; ATR-IR ν 3405 (w), 3404 (w), 3403 (w), 3402 (w), 2921 (w), 2921 (w), 

2852 (w), 1280 (w), 1280 (w), 1265 (w), 820 (m), 734 (s); HRMS (ESI) calcd for C21H18NSe
+
 

[M+H]
+ 

363.0526; found 363.0534. 
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3.2. Synthesis of Tetracyclic Indolobenzothiazine S,S-Dioxides by Pd(II)-

Catalyzed Intramolecular Diamination of Alkynes  

3.2.1. Preparation of starting materials 1.245 

 

To a solution of 2-iodobenzensulfonamide (1.251) (0.4 mmol) in 4.0 mL MeCN were added Pd/C 10% 

(17.10 mg, 4 mol%), Ph3P (17.10 mg, 16 mol%), CuI (54.4 mg, 7 mol%) and triethylamine (0.16 mL, 

1.2 mmol), successively, under argon. After being stirred for 30 min, o-alkynylanline 1.248 (0.44 

mmol) was added and the reaction mixture was heated with stirring at 80 ºC for 1.5 – 2.0 hours. The 

reaction mixture was cooled down, filtered through a short bed of celite and concentrated in vacuo. 

The crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl 

acetate) to give compound 1.245. 

 

Methyl 3-((2-((2-(N-benzylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate (1.245a) 

 

Yield: 144.0 mg (80%), yellow solid; 80 – 81 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.69 (s, 1H), 8.00 

(dd, J = 8.0, 1.3 Hz, 1H), 7.62 (ddd, J = 9.1, 7.6, 1.5 Hz, 2H), 7.46 (td, J = 7.6, 1.3 Hz, 1H), 7.41 (ddd, 

J = 8.2, 7.3, 1.6 Hz, 1H), 7.35 (td, J = 7.7, 1.3 Hz, 1H), 7.23 (dd, J = 8.2, 1.1 Hz, 1H), 7.17 (td, J = 

7.5, 1.1 Hz, 1H), 7.15 – 7.09 (m, 4H), 7.02 – 6.87 (m, 1H), 3.60 (t, J = 7.5 Hz, 2H), 3.52 (s, 3H), 2.84 

(s, 3H), 2.52 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 153.6, 140.2, 136.7, 133.8, 

133.8, 132.2, 130.4, 129.9, 129.1, 128.3, 125.2, 124.5, 122.0, 121.3, 120.9, 118.9, 96.0, 90.5, 52.1, 

51.6, 43.4, 31.0; ATR-IR ν 3119 (w), 3078 (w), 2948 (w), 2859 (w), 1724 (s), 1598 (w), 1490 (m), 

1345 (m), 1336 (m), 1160 (s), 1040 (m), 928 (w); HRMS (ESI) calcd for C25H25N2O4S
+
 [M+H]

+
 

449.1530; found 449.1538. 
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Methyl 3-((2-((2-(N-(4-methoxyphenyl)sulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.245b) 

 

Yield: 162.4 mg (85%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.53 (s, 1H), 7.92 (dd, J = 8.0, 1.3 

Hz, 1H), 7.67 (dd, J = 7.7, 1.3 Hz, 1H), 7.62 (dd, J = 7.7, 1.6 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 

7.39 (td, J = 7.8, 1.6 Hz, 1H), 7.33 (td, J = 7.7, 1.3 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.17 (t, J = 7.5 

Hz, 1H), 7.11 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 3.68 (s, 3H), 3.53 – 3.49 (m, 5H), 2.79 (s, 

3H), 2.49 (t, J = 7.7 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.4, 157.7, 153.5, 140.3, 133.7, 132.0, 

130.3, 129.8, 129.1, 128.3, 125.5, 125.4, 124.6, 121.4, 120.8, 119.3, 114.3, 96.1, 90.3, 55.3, 51.9, 

51.6, 44.1, 31.1; ATR-IR ν 3066 (w), 2952 (w), 2951 (w), 2840 (w), 2839 (w), 2215 (w), 1736 (m), 

1510 (m), 1337 (m), 1250 (m), 1164 (s), 1035 (w), 1034 (w), 763 (m); HRMS (ESI) calcd for 

C26H27N2O5S
+
 [M+H]

+
 479.1635; found 479.1646. 

 

Methyl 3-(methyl(2-((2-(N-(p-tolyl)sulfamoyl)phenyl)ethynyl)phenyl)amino)propanoate (1.245c) 

 

Yield: 147.8 mg (80%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.57 (s, 1H), 7.97 (dd, J = 8.0, 1.3 

Hz, 1H), 7.64 (dd, J = 7.7, 1.3 Hz, 1H), 7.61 (dd, J = 7.7, 1.6 Hz, 1H), 7.47 (td, J = 7.6, 1.3 Hz, 1H), 

7.42-7.37 (m, 1H), 7.34 (td, J = 7.7, 1.3 Hz, 1H), 7.22 (dd, J = 8.1, 1.1 Hz, 1H), 7.16 (td, J = 7.5, 1.1 

Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 3.57 (d, J = 7.6 Hz, 2H), 3.52 (s, 3H), 2.83 

(s, 3H), 2.52 (t, J = 7.6 Hz, 2H), 2.18 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 153.7, 140.4, 

135.2, 134.0, 133.9, 133.8, 132.2, 130.5, 130.0, 129.8, 128.4, 124.6, 122.8, 121.5, 121.0, 119.2, 96.1, 

90.6, 52.2, 51.7, 43.7, 31.1, 20.9; ATR-IR ν 3065 (w), 3060 (w), 3059 (w), 3058 (w), 2950 (w), 2858 

(w), 2857 (w), 2856 (w), 2214 (w), 2213 (w), 1732 (m), 1510 (m), 1437 (m), 1337 (m), 1161 (s); 

HRMS (ESI) calcd for C26H27N2O4S
+ 

[M+H]
+ 

463.1686; found 463.1693. 
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Methyl 3-((2-((2-(N-benzylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate (1.245d) 

 

Yield: 78.5 mg (41%), brown oil; 
1
H NMR (400 MHz, CDCl3) δ 9.77 (s, 1H), 7.60 (dd, J = 7.7, 1.6 

Hz, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 2.7 Hz, 1H), 7.39 (ddd, J = 8.1, 7.3, 1.6 Hz, 1H), 7.24 

(dd, J = 8.2, 1.1 Hz, 1H), 7.21 – 7.13 (m, 5H), 7.07 – 7.02 (m, 1H), 6.99 (dd, J = 8.5, 2.7 Hz, 1H), 3.83 

(s, 3H), 3.61 (d, J = 7.6 Hz, 2H), 3.55 (s, 3H), 2.85 (s, 3H), 2.53 (t, J = 7.6 Hz, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 172.7, 159.4, 153.3, 141.9, 136.7, 135.3, 133.5, 130.0, 129.3, 125.4, 124.7, 122.5, 

121.5, 119.7, 118.7, 114.9, 112.8, 94.4, 90.6, 55.9, 52.2, 51.7, 43.6, 31.1; ATR-IR ν 3232 (w), 3223 

(w), 3067 (w), 3057 (w), 3056 (w), 2952 (w), 2853 (w), 1734 (m), 1600 (m), 1495 (m), 1228 (m), 

1160 (s); HRMS (ESI) calcd for C26H27N2O5S
+
 [M+H]

+
 479.1635; found 479.1634. 

 

Methyl 3-((2-((5-chloro-4-methyl-2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-

propanoate (1.245e) 

 

Yield: 105.2 mg (53%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H), 7.85 (s, 1H), 7.61 – 

7.58 (m, 2H), 7.44 – 7.38 (m, 1H), 7.24 – 7.13 (m, 6H), 7.06 – 7.02 (m, 1H), 3.58 (t, J = 7.8 Hz, 2H), 

3.52 (s, 3H), 2.83 (s, 3H), 2.51 (t, J = 7.7 Hz, 2H), 2.36 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

172.6, 153.7, 138.7, 138.5, 137.3, 136.6, 133.9, 133.9, 132.2, 130.7, 129.4, 125.5, 124.8, 122.4, 121.6, 

119.7, 118.9, 96.3, 89.5, 52.3, 51.8, 43.6, 31.1, 20.2; ATR-IR ν 3070 (w), 3069 (w), 2951 (w), 2854 

(w), 1735 (m), 1596 (w), 1493 (m), 1472 (m), 1344 (w), 1162 (s), 954 (m); HRMS (ESI) calcd for 

C26H26ClN2O4S
+
 [M+H]

+ 
497.1296; found 497.1299. 

Methyl 3-((4-methoxy-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-propanoate 

(1.245f) 
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Yield: 95.7 mg (50%), light yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 7.98 (dd, J = 

7.9, 1.3 Hz, 1H), 7.67 – 7.61 (m, 1H), 7.46 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (td, J = 7.7, 1.3 Hz, 1H), 

7.21 – 7.09 (m, 6H), 7.04 – 6.99 (m, 1H), 6.97 (dd, J = 8.9, 3.0 Hz, 1H), 3.85 (s, 3H), 3.53 (s, 3H), 

3.44 (t, J = 7.8 Hz, 2H), 2.75 (s, 3H), 2.51 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 

156.5, 140.4, 136.7, 133.7, 132.1, 129.9, 129.1, 128.41, 128.37, 125.3, 123.0, 122.5, 120.8, 120.7, 

117.4, 116.8, 95.7, 90.0, 55.6, 52.8, 51.6, 44.5, 31.0; ATR-IR ν 3073 (w), 2987 (m), 2970 (m), 2901 

(m), 2213 (w), 2212 (w), 1735 (m), 1600 (w), 1599 (w), 1496 (m), 1343 (m), 1342 (m), 1225 (m), 

1224 (m), 1165 (s), 1065 (m), 1037 (m), 919 (w), 760 (m), 730 (m); HRMS (ESI) calcd for 

C26H27N2O5S
+ 

[M+H]
+ 

479.1635; found 479.1639. 

 

Methyl 3-(methyl(4-methyl-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)amino)propanoate 

(1.245g) 

 

Yield: 97.9 mg (53%), light yellow solid; mp: 86 – 88 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.87 (s, 1H), 

7.99 (dd, J = 7.8, 1.3 Hz, 1H), 7.69 – 7.56 (m, 1H), 7.46-7.42 (m, 2H), 7.34 (td, J = 7.8, 1.3 Hz, 1H), 

7.21 (dd, J = 8.5, 2.2 Hz, 1H), 7.18 – 7.08 (m, 5H), 7.00 (m, 1H), 3.53-3.49 (m, 5H), 2.80 (s, 3H), 2.51 

(t, J = 7.7 Hz, 2H), 2.35 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 151.1, 140.2, 136.7, 134.5, 

134.0, 133.7, 132.1, 131.2, 129.9, 129.1, 128.2, 125.1, 122.2, 121.4, 121.0, 119.1, 96.1, 90.0, 52.4, 

51.6, 43.8, 30.9, 20.6; ATR-IR ν 3073 (w), 3041 (w), 3027 (w), 2951 (w), 2921 (w), 2920 (w), 2880 

(w), 2207 (w), 1736 (m), 1599 (w), 1496 (m), 1346 (m), 1165 (s), 759 (w); HRMS (ESI) calcd for 

C26H27N2O4S
+
 [M+H]

+ 
463.1686; found 463.1689. 

 

Methyl 3-((4-chloro-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.245h) 
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Yield: 133.3 mg (69%), light yellow solid; mp: 110 – 112 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.43 (s, 

1H), 8.01 (dd, J = 7.9, 1.3 Hz, 1H), 7.63 (dd, J = 7.7, 1.3 Hz, 1H), 7.58 (d, J = 2.5 Hz, 1H), 7.48 (td, J 

= 7.6, 1.4 Hz, 1H), 7.39 (dd, J = 7.7, 1.4 Hz, 1H), 7.39 – 7.32 (m, 1H), 7.17 – 7.09 (m, 5H), 7.05 – 

6.97 (m, 1H), 3.61 (d, J = 7.5 Hz, 2H), 3.53 (s, 3H), 2.84 (s, 3H), 2.52 (t, J = 7.5 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 172.4, 152.1, 140.3, 136.5, 134.0, 133.2, 132.3, 130.3, 130.0, 129.2 (2C), 128.7, 

125.2, 122.5, 121.8, 120.4, 120.3, 94.3, 91.4, 52.0, 51.7, 43.3, 30.9; ATR-IR ν 3127 (w), 3117 (w), 

3072 (w), 3030 (w), 3029 (w), 2951 (w), 2845 (w), 2219 (w), 2211 (w), 1732 (m), 1597 (w), 1489 

(m), 1345 (m), 1162 (s), 911 (m), 756 (m), 730 (s), 695 (m); HRMS (ESI) calcd for C25H24ClN2O4S
+
 

[M+H]
+ 

483.1140; found 483.1146. 

 

Methyl 3-((4-fluoro-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.245i) 

 

Yield: 123.1 mg (66%), white solid; mp: 110 – 111 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.70 (s, 1H), 

7.99 (dd, J = 7.9, 1.3 Hz, 1H), 7.64 (dd, J = 7.6, 1.3 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.37 (td, J 

= 7.7, 1.4 Hz, 1H), 7.31 (dd, J = 8.6, 3.0 Hz, 1H), 7.24 – 7.17 (m, 1H), 7.17 – 7.07 (m, 4H), 7.12 – 

7.08 (m, 1H), 7.05 – 6.99 (m, 1H), 3.53 (s, 3H), 3.53 – 3.50 (m, 2H), 2.79 (s, 3H), 2.52 (t, J = 7.6 Hz, 

2H); 
13

C NMR (101 MHz, CDCl3) δ 172.4, 159.2 (d, J = 244.7 Hz), 149.7, 140.4, 136.6, 133.9, 132.2, 

129.9, 129.2, 128.7, 125.3, 123.2 (d, J = 9.2 Hz), 122.2, 121.0 (d, J = 10.0 Hz), 120.3, 119.8 (d, J = 

23.6 Hz), 117.4 (d, J = 22.2 Hz), 94.4, 91.0, 52.5, 51.6, 44.1, 30.9; ATR-IR ν 3115 (w), 3075 (w), 

2952 (w), 2886 (w), 2885 (w), 2208 (w), 1734 (m), 1494 (m), 1345 (m), 1202 (m), 1164 (s), 921 (w), 

759 (m); HRMS (ESI) calcd for C25H24FN2O4S
+
 [M+H]

+ 
467.1435; found 467.1438. 

 

Methyl 3-((5-methoxy-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)-propanoate 

(1.245j) 
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Yield: 151.6 mg (79%), yellow solid; mp: 115 – 117 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.50 (s, 1H), 

7.99 (dd, J = 7.9, 1.3 Hz, 1H), 7.59 (dd, J = 7.7, 1.3 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.44 (td, J = 

7.6, 1.4 Hz, 1H), 7.31 (td, J = 7.6, 1.3 Hz, 1H), 7.12 (d, J = 4.3 Hz, 4H), 7.02 – 6.97 (m, 1H), 6.73 – 

6.71 (m, 1H), 6.69 (dd, J = 8.5, 2.4 Hz, 1H), 3.86 (s, 3H), 3.61 (t, J = 7.6 Hz, 2H), 3.54 (s, 3H), 2.85 

(s, 3H), 2.54 (t, J = 7.6 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.5, 161.4, 155.2, 139.6, 136.7, 

135.0, 133.3, 132.2, 129.8, 129.1, 127.7, 125.0, 121.7, 121.3, 110.7, 109.3, 107.7, 96.4, 89.5, 55.5, 

51.9, 51.6, 43.0, 30.9; ATR-IR ν 2987 (w), 2971 (m), 2901 (w), 2209 (w), 1734 (m), 1600 (m), 1496 

(m), 1345 (m), 1298 (m), 1232 (s), 1163 (s), 1079 (m), 1065 (m), 1039 (m), 915 (w), 759 (m), 730 

(w), 696 (w); HRMS (ESI) calcd for C26H27N2O5S
+
 [M+H]

+ 
479.1635; found 479.1645. 

 

Methyl 3-(methyl(5-methyl-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)amino)propanoate 

(1.245k) 

 

Yield: 138.0 mg (75%), white solid; mp: 80 – 81 ºC; 
1
H NMR (400 MHz, CDCl3) δ 9.68 (s, 1H), 7.99 

(dd, J = 7.9, 1.2 Hz, 1H), 7.61 (dd, J = 7.7, 1.3 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.45 (td, J = 7.6, 1.4 

Hz, 1H), 7.32 (td, J = 7.8, 1.3 Hz, 1H), 7.16 – 7.09 (m, 4H), 7.03 – 6.94 (m, 3H), 3.58 (t, J = 7.7 Hz, 

2H), 3.53 (s, 3H), 2.83 (s, 3H), 2.54 (t, J = 7.7 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 153.5, 

141.0, 140.0, 136.7, 133.6, 133.5, 132.1, 129.8, 129.1, 128.0, 125.4, 125.0, 122.0, 121.9, 121.1, 115.9, 

96.2, 89.9, 52.1, 51.6, 43.4, 30.9, 21.8; ATR-IR ν 3070 (w), 3063 (w), 2950 (w), 2845 (w), 2211 (w), 

1734 (m), 1601 (w), 1495 (m), 1467 (w), 1436 (w), 1346 (m), 1164 (s), 916 (w), 758 (m), 730 (w), 

730 (w), 696 (w); HRMS (ESI) calcd for C26H27N2O4S
+
 [M+H]

+ 
463.1686; found 463.1695. 

 

Methyl 3-((5-chloro-2-((2-(N-phenylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate 

(1.245l) 
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Yield: 142.7 mg (74%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.14 (s, 1H), 8.00 (dd, J = 7.9, 1.3 

Hz, 1H), 7.62 (dd, J = 7.7, 1.3 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.47 (td, J = 7.6, 1.4 Hz, 1H), 7.36 

(td, J = 7.7, 1.3 Hz, 1H), 7.18 – 7.07 (m, 6H), 7.03 – 6.97 (m, 1H), 3.68 (t, J = 7.5 Hz, 2H), 3.54 (s, 

3H), 2.88 (s, 3H), 2.55 (t, J = 7.5 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 172.3, 154.5, 140.0, 136.5, 

136.1, 134.7, 133.8, 132.3, 129.9, 129.1, 128.4, 125.1, 124.1, 121.5, 121.3, 120.6, 116.3, 95.0, 91.3, 

51.7, 42.5, 30.9; ATR-IR ν 3074 (w), 2951 (w), 2861 (w), 2844 (w), 2843 (w), 2814 (w), 2813 (w), 

2211 (w), 1732 (m), 1582 (w), 1492 (m), 1401 (w), 1346 (m), 1162 (s), 1125 (w), 911 (m), 756 (m), 

729 (s), 694 (m); HRMS (ESI) calcd for C25H24ClN2O4S
+
 [M+H]

+ 
483.1140; found 483.1136. 

 

Methyl 3-((2-((5-chloro-2-(N-(4-methoxyphenyl)sulfamoyl)-4-methylphenyl)ethynyl)phenyl)-

(methyl)amino)propanoate (1.245m) 

 

Yield: 116.0 mg (55%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 9.56 (s, 1H), 7.77 (s, 1H), 7.64 (s, 

1H), 7.60 (dd, J = 7.7, 1.6 Hz, 1H), 7.42 – 7.36 (m, 1H), 7.24 – 7.15 (m, 2H), 7.11 (d, J = 8.9 Hz, 2H), 

6.70 (d, J = 8.9 Hz, 2H), 3.70 (s, 3H), 3.53 (s, 3H), 3.49 (t, J = 7.7 Hz, 2H), 2.77 (s, 3H), 2.47 (t, J = 

7.6 Hz, 2H), 2.35 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 172.6, 158.0, 153.8, 138.7, 138.5, 137.3, 

133.8, 133.8, 132.1, 130.7, 129.0, 125.9, 124.9, 121.7, 119.7, 119.3, 114.5, 96.4, 89.4, 55.5, 52.1, 

51.8, 44.4, 31.3, 20.2; ATR-IR ν 3000 (w), 2952 (w), 2836 (w), 1734 (m), 1644 (s), 1525 (s), 1512 

(s), 1458 (m), 1247 (s), 1208 (m); HRMS (ESI) calcd for C27H28ClN2O5S
+ 

[M+H]
+
 527.1402; found 

527.1400. 

 

Methyl 3-((2-((2-(N-benzylsulfamoyl)phenyl)ethynyl)phenyl)(methyl)amino)propanoate (1.245n) 
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Yield: 164.8 mg (89%), brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 7.9 Hz, 1H), 7.69 (d, J 

= 7.7 Hz, 1H), 7.61 (t, J = 6.3 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.46 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.8 

Hz, 1H), 7.22 – 7.16 (m, 2H), 7.10 (dt, J = 15.4, 6.0 Hz, 4H), 6.96 (d, J = 8.2 Hz, 1H), 4.03 (d, J = 6.3 

Hz, 2H), 3.52 (s, 3H), 3.33 (t, J = 7.6 Hz, 2H), 2.46 (s, 3H), 2.32 (t, J = 7.6 Hz, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 172.5, 153.5, 140.5, 136.2, 133.7, 133.6, 132.0, 130.1, 129.6, 128.41, 128.37 (2C), 

127.6, 123.7, 120.7, 120.6, 118.2, 95.8, 89.9, 51.5, 51.4, 47.2, 42.0, 30.7;  ATR-IR ν 3065 (w), 2950 

(w), 2925 (w), 2854 (w), 2213 (w), 1732 (m), 1492 (w), 1466 (w), 1455 (w), 1437 (m), 1331 (m), 

1161 (s), 1066 (m), 761 (s), 701 (m); HRMS (ESI) calcd for C26H27N2O4S
+
 [M+H]

+ 
463.1686; found 

463.1694. 

 

3.2.2. Substrate scope for Pd(II)-catalyzed diamination of sulfonamide 2-

alkynylanilines 

 

A 5-mL-Vial was charged with 1.245 (0.1 mmol), Pd(TFA)2 (10 mol%), Cu(OTf)2 (35 mol%), nBu4NI 

(1.0 equiv), acetic acid (1.0 equiv) together with 4 mL dry DMSO and heated at 100 ºC under oxygen 

(1 atm) for 12 hours. The reaction mixture was quenched with ice and the aqueous phase was extracted 

with DCM (3 x 10 mL). The combined organic extracts were washed with brine, dried over Na2SO4, 

filtered and concentrated in vacuo. Then the crude product was purified by flash column 

chromatography on silica gel (petroleum ether/ethyl acetate) to give compound 1.246. 

 

Methyl3-(5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)propanoate (1.246a) 
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Yield: 32.4 mg (75%), yellow solid; mp: 230 – 232 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.8 

Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.4 Hz, 

1H), 7.37 – 7.22 (m, 4H), 7.19 (dd, J = 7.1, 1.9 Hz, 2H), 7.07 (t, J = 7.9 Hz, 1H), 7.03 (t, J = 7.4 Hz, 

1H), 4.86 (t, J = 7.8, 2H), 3.68 (s, 3H), 2.89 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.0, 

138.5, 138.0, 132.7, 132.4, 129.0, 127.7, 127.4, 127.0, 126.1, 125.6, 125.4, 125.0, 123.6, 121.5, 121.2, 

120.5, 119.6, 110.2, 52.1, 41.5, 34.3; ATR-IR ν 2951 (w), 2924 (w), 2853 (w), 1734 (m), 1593 (w), 

1488 (w), 1459 (w), 1350 (s), 1177 (s); HRMS (ESI) calcd for C24H21N2O4S
+
 [M+H]

+
 433.1217; 

found 433.1231. 

 

Methyl 3-(6-(4-methoxyphenyl)-5,5-dioxidobenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-

propanoate (1.246b) 

 

Yield: 18.5 mg (41%), yellow solid; mp: 186 – 187 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.98 (dd, J = 

7.9, 1.3 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.76 (td, J = 7.8, 1.4 Hz, 1H), 7.53 (td, J = 7.6, 1.0 Hz, 1H), 

7.45 (dt, J = 8.4, 0.9 Hz, 1H), 7.32 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.16 – 7.07 (m, 3H), 7.04 (ddd, J = 

7.9, 6.9, 0.9 Hz, 1H), 4.85 (t, J = 7.8, 2H), 3.76 (s, 3H), 3.67 (s, 3H),  2.88 (t, J = 7.8 Hz, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 171.0, 158.8, 138.0, 132.6, 132.0, 131.4, 127.6, 127.0, 125.4, 125.1, 

125.0, 123.5, 121.5, 121.1, 121.1, 119.6, 114.2, 110.2, 55.4, 52.1, 41.5, 34.3; ATR-IR ν 2987 (w), 

2968 (w), 2956 (w), 2902 (w), 1734 (m), 1507 (m), 1507 (m), 1462 (w), 1348 (s), 1251 (m), 1207 (w), 

1174 (s), 1032 (w), 746 (m), 735 (m); HRMS (ESI) calcd for C25H23N2O5S
+ 

[M+H]
+ 

463.1322; found 

463.1333. 

 

Methyl 3-(5,5-dioxido-6-(p-tolyl)benzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)propanoate (1.246c) 
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Yield: 31.2 mg (70%), dark brown solid; mp: 192 – 194 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.97 (dd, J 

= 7.9, 1.3 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.76 (td, J = 7.8, 1.4 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.48 – 7.43 

(m, 1H), 7.32 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.17 – 6.99 (m, 6H), 4.85 (t, J = 7.8 Hz, 2H), 3.67 (s, 

3H), 2.88 (t, J = 7.8 Hz, 2H), 2.30 (s, 3H);  
13

C NMR (101 MHz, CDCl3) δ 171.2, 138.1, 137.6, 

136.1, 132.8, 132.4, 129.8, 127.8, 127.2, 126.2, 125.6, 125.5, 125.1, 123.7, 121.7, 121.3, 121.0, 119.8, 

110.3, 52.3, 41.7, 34.5, 21.2; ATR-IR ν 2985 (w), 2945 (w), 1738 (s), 1373 (m), 1236 (s), 1045 (s); 

HRMS (ESI) calcd for C25H23N2O4S
+ 

[M+H]
+ 

447.1373; found 447.1378. 

 

Methyl 3-(3-methoxy-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246d) 

 

Yield: 34.6 mg (74%), yellow solid; mp: 111 – 112 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.8 

Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.44 (dt, J = 8.4, 0.9 Hz, 1H), 7.32 – 7.24 (m, 5H), 7.21 – 7.16 (m, 

2H), 7.09 (d, J = 7.6 Hz, 1H), 7.03 (ddd, J = 7.9, 6.9, 0.9 Hz, 1H), 4.83 (t, J = 7.8 Hz, 2H), 3.88 (s, 

3H), 3.68 (s, 3H), 2.89 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.2, 159.3, 138.8, 137.6, 

134.1, 129.1, 127.5, 126.2, 126.2, 125.4, 124.5, 121.9, 121.2, 120.3, 119.7, 119.3, 118.6, 110.1, 109.3, 

56.0, 52.3, 41.6, 34.5; ATR-IR ν 2955 (w), 2930 (w), 1732 (m), 1605 (w), 1503 (w), 1457 (w), 1348 

(s), 1167 (s), 1028 (m), 745 (s), 696 (s); HRMS (ESI) calcd for C25H22N2O5SNa
+
 [M+Na]

+
 485.1142; 

found 485.1134.  

 

Methyl 3-(2-chloro-3-methyl-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-

propanoate (1.246e) 
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Yield: 34.6 mg (72%), yellow solid; mp: 137 – 138 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.88 (s, 1H), 

7.83 (s, 1H), 7.46 (dd, J = 8.5, 0.9 Hz, 1H), 7.36 – 7.23 (m, 4H), 7.21 – 7.15 (m, 2H), 7.10 – 7.02 (m, 

2H), 4.84 (t, J = 7.7, 2H), 3.68 (s, 3H), 2.88 (t, J = 7.7, 2H),  2.48 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 171.0, 139.3, 138.6, 138.1, 136.5, 130.6, 129.2, 127.6, 127.6, 126.2, 126.1, 125.3, 124.8, 

124.1, 121.6, 121.5, 121.0, 119.7, 110.4, 52.3, 41.6, 34.5, 20.2; ATR-IR ν 2966 (w), 2920 (w), 1734 

(m), 1595 (w), 1558 (w), 1489 (w), 1458 (w), 1349 (s), 1170 (s), 1081 (m), 745 (m); HRMS (ESI) 

calcd for C25H21ClN2O4SNa
+
 [M+Na]

+
 503.0803; found 503.0802. 

 

Methyl 3-(8-methoxy-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246f) 

 

Yield: 35.1 mg (76%), yellow solid; mp: 225 – 226 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 

7.9, 1.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 

9.0 Hz, 1H), 7.24 – 7.14 (m, 3H), 7.11 (dd, J = 7.2, 1.8 Hz, 2H), 6.89 (dd, J = 8.9, 2.5 Hz, 1H), 6.48 

(d, J = 2.5 Hz, 1H), 4.74 (t, J = 7.8, 2H), 3.60 (s, 3H), 3.57 (s, 3H),  2.79 (t, J = 7.8 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 171.2, 155.0, 138.6, 133.4, 132.8, 132.5, 129.1, 127.8, 127.4, 127.2, 126.4, 

126.1, 125.6, 123.7, 122.2, 120.2, 115.7, 111.4, 100.7, 55.8, 52.3, 41.8, 34.5; ATR-IR ν 2951 (w), 

2924 (w), 2853 (w), 1721 (m), 1496 (m), 1489 (m), 1457 (m), 1346 (s), 1327 (m), 1249 (m), 1210 (m), 

1168 (s), 1051 (m), 1021 (m), 803 (m), 761 (m), 737 (m), 698 (m); HRMS (ESI) calcd for 

C25H23N2O5S
+ 

[M+H]
+ 

463.1322; found 463.1324. 

 

Methyl 3-(8-methyl-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246g) 
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Yield: 32.7 mg (73%), yellow solid; mp: 150 – 151 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 

7.8, 1.3 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.79 – 7.72 (m, 1H), 7.57 – 7.48 (m, 1H), 7.35 (d, J = 8.5 

Hz, 1H), 7.30 – 7.26 (m, 3H), 7.18 – 7.13 (m, 3H), 6.88 (s, 1H), 4.82 (t, J = 7.8, 2H), 3.67 (s, 3H), 

2.87 (t, J = 7.8 Hz, 2H), 2.30 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.1, 138.6, 136.4, 132.7, 

132.3, 130.8, 129.0, 127.6, 127.3, 127.1, 126.8, 126.0, 125.9, 125.5, 123.6, 121.8, 120.0, 119.0, 109.9, 

52.1, 41.5, 34.3, 21.3; ATR-IR ν 2952 (w), 2923 (w), 2855 (w), 1736 (m), 1736 (m), 1593 (w), 1489 

(m), 1459 (w), 1436 (w), 1353 (s), 1317 (m), 1247 (w), 1237 (w), 1205 (m), 1176 (s), 1138 (w), 737 

(m); HRMS (ESI) calcd for C25H23N2O4S
+ 

[M+H]
+ 

447.1373; found 447.1371. 

 

Methyl 3-(8-chloro-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246h) 

 

Yield: 24.7 mg (53%), yellow solid; mp: 179 – 180 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 

7.9, 1.3 Hz, 1H), 7.87 (dd, J = 8.0, 1.1 Hz, 1H), 7.76 (td, J = 7.6, 1.3 Hz, 1H), 7.55 (td, J = 7.6, 1.0 Hz, 

1H), 7.39 (d, J = 8.8 Hz, 1H), 7.32 – 7.23 (m, 4H), 7.18 – 7.11 (m, 2H), 7.05 (d, J = 2.0 Hz, 1H), 4.82 

(t, J = 7.8, 2H), 3.68 (s, 3H), 2.86 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 171.0, 138.4, 

136.3, 132.9, 132.8, 129.3, 128.4, 127.8, 127.1, 127.1, 126.7, 126.1, 125.7, 125.5, 123.9, 122.7, 119.8, 

118.9, 111.6, 52.4, 41.7, 34.4; ATR-IR ν 3067 (w), 3066 (w), 2952 (w), 2926 (w), 2853 (w), 1734 

(m), 1488 (m), 1456 (m), 1352 (s), 1302 (m), 1266 (w), 1204 (m), 1174 (s), 736 (s), 694 (m); HRMS 

(ESI) calcd for C24H20ClN2O4S
+ 

[M+H]
+ 

467.0827; found 467.0816. 

 

Methyl 3-(8-fluoro-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246i) 
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Yield: 28.1 mg (62%), yellow solid; mp: 217 – 219 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.98 (dd, J = 

7.8, 1.3 Hz, 1H), 7.92 – 7.85 (m, 1H), 77.78 (td, J = 7.8, 1.3 Hz, 1H), 7.60 – 7.50 (m, 1H), 7.40 (dd, J 

= 9.1, 4.0 Hz, 1H), 7.41 – 7.35 (m, 3H), 7.16 (dd, J = 8.3, 1.5 Hz, 2H), 7.06 (td, J = 9.0, 2.5 Hz, 1H), 

6.73 (dd, J = 8.7, 2.5 Hz, 1H), 4.84 (t, J = 7.8, 2H), 3.67 (s, 3H), 2.87 (t, J = 7.8 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 171.0, 158.3 (d, J = 238.8 Hz), 138.4, 134.6, 132.9, 132.8, 129.3, 128.3, 127.7, 

127.3, 126.8, 126.1, 125.6, 123.8, 122.1 (d, J = 10.3 Hz), 120.4 (d, J = 5.0 Hz), 113.8 (d, J = 26.6 Hz), 

111.5 (d, J = 9.5 Hz), 104.7 (d, J = 24.7 Hz), 52.3, 41.8, 34.5; ATR-IR ν 3059 (w), 2947 (w), 2929 

(w), 2849 (w), 1732 (m), 1490 (m), 1350 (s), 1327 (m), 1243 (m), 1178 (s), 1169 (s), 1158 (s), 1158 

(s), 805 (m), 758 (s), 735 (s), 695 (m); HRMS (ESI) calcd for C24H20FN2O4S
+ 

[M+H]
+ 

451.1122; 

found 451.1117. 

 

Methyl 3-(9-methoxy-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246j) 

 

Yield: 36.0 mg (78%), yellow solid; mp: 133 – 134 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 

8.0, 1.3 Hz, 1H), 7.83 (dd, J = 8.1, 1.0 Hz, 1H), 7.73 (td, J = 7.7, 1.4 Hz, 1H), 7.48 (td, J = 7.6, 1.1 Hz, 

1H), 7.31 – 7.25 (m, 3H), 7.19 – 7.16 (m, 2H), 6.92 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 2.1 Hz, 1H), 6.68 

(dd, J = 8.8, 2.1 Hz, 1H), 4.80 (t, J = 7.8, 2H), 3.86 (s, 3H), 3.68 (s, 3H),  2.87 (t, J = 7.8 Hz, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 171.1, 158.7, 139.3, 138.4, 132.6, 131.5, 129.0, 127.4, 127.2, 127.0, 

126.1, 125.3, 124.4, 123.0, 120.9, 120.4, 115.7, 111.1, 93.7, 55.7, 52.1, 41.5, 34.1; ATR-IR ν 2987 

(w), 2953 (w), 2908 (w), 2902 (w), 1735 (m), 1735 (m), 1622 (w), 1593 (m), 1489 (m), 1351 (s), 1252 

(m), 1222 (m), 1177 (s), 1028 (w), 759 (w), 736 (w); HRMS (ESI) calcd for C25H23N2O5S
+ 

[M+H]
+
 

463.1322; found 463.1305. 
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Methyl 3-(9-methyl-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246k) 

 

Yield: 37.5 mg (80%), yellow solid; mp: 173 – 174 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 

7.8, 1.2 Hz, 1H), 7.86 (dd, J = 8.2, 1.0 Hz, 1H), 7.75 (td, J = 7.8, 1.4 Hz, 1H), 7.51 (td, J = 7.7, 1.1 Hz, 

1H), 7.31 – 7.22 (m, 4H), 7.20 – 7.15 (m, 2H), 6.94 (d, J = 8.1 Hz, 1H), 6.86 (dd, J = 8.3, 1.2 Hz, 1H), 

4.82 (t, J = 7.8, 2H), 3.69 (s, 3H), 2.88 (t, J = 7.8 Hz, 2H), 2.48 (s, 3H); 
13

C NMR (101 MHz, CDCl3) 

δ 171.1, 138.5, 138.5, 135.3, 132.6, 132.0, 129.0, 127.4, 127.3, 127.1, 126.0, 125.3, 125.0, 123.4, 

123.0, 120.6, 119.4, 119.2, 110.1, 52.1, 41.4, 34.3, 22.1; ATR-IR ν 2984 (w), 2952 (w), 2921 (w), 

2920 (w), 1735 (m), 1593 (w), 1489 (m), 1458 (w), 1349 (s), 1199 (w), 1177 (s), 758 (w), 736 (m);  

HRMS (ESI) calcd for C25H23N2O4S
+ 

[M+H]
+ 

447.1373; found 447.1384.  

 

Methyl 3-(9-chloro-5,5-dioxido-6-phenylbenzo[5,6][1,2]thiazino[4,3-b]indol-11(6H)-yl)-propanoate 

(1.246l) 

 

Yield: 22.8 mg (49%), white solid; mp: 191 – 192 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.8 

Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.46 (s, 1H), 7.32 

– 7.26 (m, 3H), 7.20 – 7.14 (m, 2H), 7.03 – 6.94 (m, 2H), 4.82 (t, J = 7.8, 2H), 3.69 (s, 3H), 2.89 (t, J 

= 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 170.9, 138.4 (2C), 132.9, 132.5, 131.2, 129.2, 128.2, 

127.7, 126.8, 126.3, 126.2, 125.6, 123.7, 122.2, 120.6, 120.1, 110.5 (2C), 52.4, 41.8, 34.4; ATR-IR ν 

2996 (w), 2995 (w), 2987 (w), 2979 (w), 2972 (w), 2954 (w), 1736 (m), 1489 (w), 1355 (s), 1205 (w), 

1204 (w), 1177 (s), 1138 (w), 763 (w), 737 (m), 695 (w); HRMS (ESI) calcd for C24H20ClN2O4S
+ 

[M+H]
+
 467.0827; found 467.0829. 
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Methyl 3-(2-chloro-6-(4-methoxyphenyl)-3-methyl-5,5-dioxidobenzo[5,6][1,2]thiazino[4,3-b]indol-

11(6H)-yl)propanoate (1.246m) 

 

Yield: 22.4 mg (44%), yellow solid; mp: 165 – 166 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 

7.75 (d, J = 0.8 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.24 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.08 – 6.93 (m, 

4H), 6.73 (d, J = 9.0 Hz, 2H), 4.75 (t, J = 7.6 Hz, 2H), 3.69 (s, 3H), 3.61 (s, 3H), 2.79 (t, J = 7.6 Hz, 

2H), 2.40 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.1, 159.1, 139.3, 138.1, 136.4, 131.4, 130.3, 

127.7, 127.6, 126.1, 125.3, 124.4, 124.1, 121.6, 121.6, 121.4, 119.8, 114.4, 110.4, 55.6, 52.3, 41.6, 

34.5, 20.2; ATR-IR ν 2987 (w), 2969 (w), 2922 (w), 2909 (w), 2902 (w), 1736 (m), 1507 (s), 1460 

(w), 1348 (s), 1251 (s); HRMS (ESI) calcd for C26H24ClN2O5S
+
 [M+H]

+
 511.1089; found 511.1076. 

 

3.2.3. Synthesis of containing-sulfonamide free NH indoles  

 

A 5-mL-Vial was charged with 1.246 (0.05 mmol), DBU (1.0 equiv) and DMF (2.5 mL) and was 

flushed by N2 for 5 minutes. The reaction mixture was then heated at 120 ºC under nitrogen 

atmosphere for 20 h. The solvent was evaporated directly, then the crude product was purified by flash 

column chromatography on silica gel to give compound 1.247. 

 

6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247a) 
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Yield: 16.1 mg (93%), white solid; mp: 273 – 275 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 

1H), 8.15 (dd, J = 8.0, 1.1 Hz, 1H), 7.91 (td, J = 7.7, 1.3 Hz, 1H), 7.85 (dd, J = 7.9, 1.2 Hz, 1H), 7.63 

(td, J = 7.7, 1.1 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.40 – 7.28 (m, 3H), 7.25 (ddd, J = 8.2, 6.1, 2.1 Hz, 

1H), 7.16 – 7.08 (m, 2H), 7.01 – 6.91 (m, 2H); 
13

C NMR (101 MHz, DMSO-d6) δ 138.8, 135.8, 

133.4, 130.8, 129.2, 128.5, 127.7, 126.8, 126.4, 124.22, 124.15, 124.0, 123.7, 120.5, 120.3, 117.9, 

117.8, 112.4; ATR-IR ν 3332 (w), 2987 (m), 2974 (m), 2901 (w), 2892 (w), 2884 (w), 1593 (w), 1487 

(w), 1335 (m), 1153 (s), 1074 (s), 1068 (s), 1053 (s), 741 (s), 732 (m), 693 (m); HRMS (ESI) calcd 

for C20H15N2O2S
+
 [M+H]

+
 347.0849; found 347.0848. 

 

6-(4-methoxyphenyl)-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247b) 

 

Yield: 15.6 mg (84%), light yellow solid; mp: 242 – 244 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.21 

(s, 1H), 8.13 (d, J = 7.9 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.62 (t, J = 7.7 Hz, 

1H), 7.52 (d, J = 8.2 Hz, 1H), 7.24 (ddd, J = 8.4, 6.2, 1.9 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 7.01 – 

6.95 (m, 2H), 6.89 (d, J = 8.8 Hz, 2H), 3.72 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 158.6, 135.8, 

133.3, 131.6, 130.6, 128.4, 127.9, 126.8, 124.1, 124.0, 123.8, 123.6, 120.6, 120.2, 118.5, 118.0, 114.4, 

112.4, 55.3; ATR-IR ν 3346 (w), 3345 (w), 3340 (w), 2957 (w), 2925 (w), 2925 (w), 2925 (w), 2853 

(w), 1505 (s), 1337 (s), 1337 (s), 1301 (m), 1248 (s), 1160 (s), 1032 (m), 739 (s); HRMS (ESI) calcd 

for C21H17N2O3S
+
 [M+H]

+ 
377.0954; found 377.0952. 

 

6-(p-tolyl)-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247c) 

 

Yield: 15.1 mg (84%), white solid; mp: 303 – 305 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.21 (s, 

1H), 8.13 (d, J = 7.9 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 7.7 Hz, 

1H), 7.53 (d, J = 8.2 Hz, 1H), 7.29 – 7.20 (m, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.00 – 6.96 (m, 4H), 2.27 

(s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 137.3, 136.3, 135.8, 133.3, 130.7, 129.7, 128.4, 126.8, 
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126.2, 124.1, 124.04, 123.97, 123.6, 120.6, 120.2, 118.0, 117.9, 112.4, 20.6; ATR-IR ν 3344 (w), 

2959 (w), 2958 (w), 2922 (w), 2853 (w), 1592 (w), 1506 (w), 1442 (w), 1332 (s), 1155 (s), 741 (s), 

728 (s); HRMS (ESI) calcd for C21H17N2O2S
+
 [M+H]

+
 361.1005; found 361.1010. 

 

3-methoxy-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247d) 

 

Yield: 17.4 mg (93%), yellow solid; mp: 290 – 291 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.14 (s, 

1H), 8.09 (d, J = 8.7 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.40 – 7.26 (m, 4H), 7.21 (ddd, J = 8.2, 4.6, 3.6 Hz, 

1H), 7.12 – 7.09 (m, 2H), 6.98 – 6.92 (m, 2H), 3.88 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 159.2, 

139.0, 135.4, 132.2, 129.2, 127.6, 126.3, 125.5, 124.7, 123.5, 120.8, 120.2, 120.1, 119.6, 117.4, 116.0, 

112.2, 108.0, 55.9; ATR-IR ν 3345 (w), 2956 (w), 2926 (w), 2925 (w), 2854 (w), 2853 (w), 1734 (w), 

1717 (w), 1595 (w), 1457 (m), 1342 (s), 1237 (m), 1154 (s), 758 (s), 747 (s); HRMS (ESI) calcd for 

C21H16N2NaO3S
+
 [M+Na]

+
 399.0774; found 399.0768. 

 

2-Chloro-3-methyl-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247e) 

 

Yield: 16.4 mg (83%), yellow solid; mp: 280 – 281 ºC; 
1
H NMR (400 MHz, DMSO-d6): δ 12.23 (s, 

1H), 8.26 (s, 1H), 7.88 (s, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.25 (ddd, J = 8.3, 5.8, 

2.5 Hz, 1H), 7.15 – 7.09 (m, 2H), 7.02 – 6.93 (m, 2H), 2.46 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) 

δ 139.2 (2C), 138.9, 136.9, 136.2, 129.7, 128.3, 127.0, 126.9, 126.6, 124.8, 124.3, 123.8, 120.9, 120.9, 

118.7, 118.4, 113.0, 20.0; ATR-IR ν 3363 (w), 2923 (w), 2853 (w), 1595 (w), 1488 (m), 1488 (m), 

1455 (w), 1355 (m), 1329 (s), 1320 (s), 1263 (m), 1152 (s), 942 (m), 868 (m), 741 (s); HRMS (ESI) 

calcd for C21H15ClN2NaO2S
+
 [M+Na]

+
 417.0435; found 417.0441. 

 

8-methoxy-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247f) 
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Yield: 17.5 mg (94%), yellow solid; mp: 271 – 273 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.13 (s, 

1H), 8.12 (dd, J = 8.0, 1.9 Hz, 1H), 7.91 (td, J = 7.6, 1.7 Hz, 1H), 7.85 (dd, J = 7.9, 1.9 Hz, 1H), 7.62 

(td, J = 7.7, 1.9 Hz, 1H), 7.46 (dd, J = 9.0, 2.1 Hz, 1H), 7.41 – 7.27 (m, 3H), 7.14 (dd, J = 7.6, 2.4 Hz, 

2H), 6.92 (dd, J = 9.0, 2.4 Hz, 1H), 6.37 (d, J = 2.4 Hz, 1H), 3.59 (s, 3H); 
13

C NMR (101 MHz, 

DMSO-d6) δ 153.8, 138.7, 133.3, 131.0, 130.8, 129.2, 128.3, 127.6, 126.9, 126.3, 124.8, 124.0, 123.5, 

120.9, 117.5, 114.5, 113.4, 99.0, 55.2; ATR-IR ν 3335 (w), 2954 (w), 2922 (w), 2853 (w), 1492 (w), 

1454 (w), 1341 (s), 1261 (m), 1168 (m), 1154 (s), 1028 (m), 768 (m), 732 (m), 622 (m); HRMS (ESI) 

calcd for C21H17N2O3S
+
 [M+H]

+
 377.0954; found 377.0956. 

. 

8-methyl-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247g) 

 

Yield: 15.7 mg (87%), yellow solid; mp: 275 – 277 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.13 (s, 

1H), 8.11 (d, J = 7.9 Hz, 1H), 7.89 (t, J = 7.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.8 Hz, 

1H), 7.43 (d, J = 8.4 Hz, 1H), 7.38 – 7.23 (m, 3H), 7.10 – 7.06 (m, 3H), 6.76 (s, 1H), 2.24 (s, 3H); 
13

C 

NMR (101 MHz, DMSO-d6) δ 139.0, 134.3, 133.4, 130.7, 129.2, 129.1, 128.4, 127.6, 127.0, 126.2, 

125.9, 124.5, 124.1, 123.6, 120.9, 117.3, 117.1, 112.2, 21.1; ATR-IR ν 3335 (m), 2957 (w), 2920 (w), 

2853 (w), 1593 (m), 1493 (m), 1342 (s), 1149 (s), 766 (s), 735 (s); HRMS (ESI) calcd for 

C21H17N2O2S
+ 

[M+H]
+ 

361.1005; found 361.1010. 

 

8-chloro-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247h) 

 

Yield: 17.1 mg (90%), light yellow solid; mp: 279 – 281 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.52 

(s, 1H), 8.15 (d, J = 7.7, 1H), 7.93 (td, J = 7.7, 1.3 Hz, 1H), 7.87 (dd, J = 8.0, 1.1 Hz, 1H), 7.66 (td, J = 

7.7, 1.1 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.26 (dd, J = 8.7, 2.1 Hz, 1H), 7.16 – 
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7.10 (m, 2H), 6.92 (d, J = 2.1 Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 138.6, 134.2, 133.6, 131.1, 

129.4, 129.0, 127.9, 126.4, 126.4, 125.8, 124.7, 124.2, 124.1, 123.9, 121.5, 117.2, 116.7, 114.3; ATR-

IR ν 3326 (w), 2923 (w), 2853 (w), 1594 (w), 1487 (w), 1487 (w), 1471 (w), 1471 (w), 1455 (w), 

1455 (w), 1329 (s), 1292 (s), 1154 (s), 762 (s), 745 (m), 696 (m); HRMS (ESI) calcd for 

C20H14ClN2O2S
+ 

[M+H]
+
 381.0459; found 381.0461. 

 

8-fluoro-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247i) 

 

Yield: 17.0 mg (93%), yellow solid; mp: 245- 247 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.41 (s, 

1H), 8.15 (d, J = 7.9 Hz, 1H), 7.93 (td, J = 7.7, 1.3 Hz, 1H), 7.86 (dd, J = 7.9, 1.1 Hz, 1H), 7.70 – 7.62 

(m, 1H), 7.56 (dd, J = 8.9, 4.4 Hz, 1H), 7.43 – 7.25 (m, 3H), 7.17 – 6.98 (m, 3H), 6.65 (dd, J = 9.2, 2.5 

Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 157.0 (d, J = 235.1 Hz), 138.6, 133.5 (2C), 132.5, 131.0, 

129.3, 128.9, 127.9, 126.5, 126.4, 126.1, 124.0 (d, J = 23.8 Hz), 120.7 (d, J = 10.5 Hz), 117.8 (d, J = 

4.9 Hz), 114.0 (d, J = 9.7 Hz), 112.7 (d, J = 26.3 Hz), 102.4 (d, J = 24.6 Hz); ATR-IR ν 3409 (w), 

2958 (w), 2922 (w), 2874 (w), 2873 (w), 2854 (w), 1490 (m), 1344 (s), 1304 (m), 1254 (m), 1169 (s), 

1151 (s), 946 (m), 756 (s), 693 (s); HRMS (ESI) calcd for C20H14FN2O2S
+ 

[M+H]
+ 

365.0755; found 

365.0738. 

 

9-methoxy-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247j) 

 

Yield: 16.3 mg (87%), yellow solid; mp: 253 – 255 ºC;  
1
H NMR (400 MHz, DMSO-d6) δ 12.05 (s, 

1H), 8.06 (d, J = 7.9 Hz, 1H), 7.88 (t, J = 7.7 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 

1H), 7.37-7.30 (m, 3H), 7.10 (d, J = 7.2 Hz, 2H), 6.97 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 

6.63 (d, J = 8.7 Hz, 1H), 3.80 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 157.6, 138.7, 137.1, 133.3, 

129.9, 129.2, 127.7 (2C), 127.0, 126.4, 123.9, 123.1, 122.9, 118.7, 118.2, 114.8, 110.9, 94.9, 55.3; 

ATR-IR ν 3359 (w), 2957 (w), 2924 (w), 2924 (w), 2904 (w), 1594 (m), 1359 (m), 1326 (s), 1326 (s), 

1274 (s), 1149 (s), 1025 (m), 815 (m), 752 (s), 742 (m); HRMS (ESI) calcd for C21H17N2O2S
+ 

[M+H]
+ 

377.0954; found 377.0961. 
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9-methyl-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247k) 

 

Yield: 16.5 mg (92%), yellow solid; mp: 289 – 291 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.08 (s, 

1H), 8.13 (d, J = 7.9 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.61 (t, J = 7.7 Hz, 

1H), 7.44 – 7.30 (m, 4H), 7.12 (d, J = 7.6 Hz, 2H), 6.83 – 6.79 (m, 2H), 2.41 (s, 3H); 
13

C NMR (101 

MHz, DMSO-d6) δ 138.8, 136.3, 133.8, 133.3, 130.5, 129.2, 128.1, 127.6, 127.0, 126.3, 123.9, 123.6, 

123.4, 122.1, 118.5, 117.9, 117.6, 112.0, 21.5; ATR-IR ν 3358 (w), 2957 (w), 2922 (w), 2854 (w), 

1592 (m), 1336 (s), 1155 (s), 807 (m), 757 (s), 732 (m), 692 (s); HRMS (ESI) calcd for C21H17N2O2S
+ 

[M+H]
+
 361.1005; found 361.1012. 

 

9-chloro-6-phenyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-dioxide (1.247l) 

 

Yield: 16.7 mg (88%), yellow solid; mp: 238 – 239 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.45 (s, 

1H), 8.14 (d, J = 8.0 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.7 Hz, 

1H), 7.58 (d, J = 1.9 Hz, 1H) ,7.38 – 7.30 (m, 3H), 7.11 (dd, J = 7.6, 1.9 Hz, 2H), 7.01 (dd, J = 8.6, 1.8 

Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H); 
13

C NMR (101 MHz, DMSO-d6) 138.6, 136.1, 133.5, 130.8, 129.3, 

128.9, 128.8, 127.9, 126.42, 126.38, 125.2, 124.0, 123.8, 120.8, 119.33, 119.27, 117.8, 112.0; ATR-

IR ν 3344 (w), 2955 (m), 2921 (s), 2853 (m), 1724 (w), 1609 (m), 1596 (m), 1454 (m), 1341 (s), 1158 

(s), 1056 (s); HRMS (ESI) calcd for C20H13ClN2NaO2S
+
 [M+Na]

+
 403.0278; found 403.0283. 

 

2-Chloro-6-(4-methoxyphenyl)-3-methyl-6,11-dihydrobenzo[5,6][1,2]thiazino[4,3-b]indole 5,5-

dioxide (1.247m) 
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Yield: 18.6 mg (88%), yellow solid; mp: 295 – 296 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 12.16 (s, 

1H), 8.26 (s, 1H), 7.86 (s, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.24 (ddd, J = 8.4, 6.4, 2.2 Hz, 1H), 7.11 – 

6.95 (m, 4H), 6.89 (d, J = 8.9 Hz, 2H), 3.72 (s, 3H), 2.46 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 

158.7, 138.3, 136.3, 135.8, 131.5, 129.1, 128.0, 126.4, 126.1, 124.3, 123.7, 122.8, 120.4, 120.3, 118.9, 

118.0, 114.4, 112.4, 55.3, 19.5; ATR-IR ν 3319 (w), 3314 (w), 2954 (w), 2929 (w), 2928 (w), 2853 

(w), 2836 (w), 1605 (w), 1508 (s), 1460 (m), 1460 (m), 1443 (w), 1319 (s), 1250 (s), 1146 (s), 1035 

(s), 748 (s); HRMS (ESI) calcd for C22H17ClN2NaO3S
+
 [M+Na]

+
 447.0541; found 447.0539. 

 

3.2.4. Mechanistic Study 

 

In the glovebox, a NMR tube was charged with 1.245a (0.1 mmol), Pd(TFA)2 (100 mol%) together 

with 1 mL DMSO–d6   and  then sonicated at room temperature. The reaction was monitored by NMR. 

The starting material was totally consumed after 45 minutes; intermediate 1.253 was observed and 

characterized by NMR, HRMS. The reaction mixture was further heated to 100 ºC overnight, then 

quenched with ice and the aqueous phase was extracted with DCM (3 x 10 mL). The combined 

organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. Then 

the crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl 

acetate) to give compound 1.246a. 

1
H NMR (400 MHz, DMSO-d6) δ 8.23 (d, J = 7.9 Hz, 1H), 8.20 (d, J = 7.5 Hz, 1H), 8.11 (d, J = 8.1 

Hz, 1H), 7.89 - 7.86 (m, 2H), 7.82 - 7.78 (m, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 

7.49 - 7.46 (m, 2H), 7.18 (t, J = 7.7 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 4.68 (t, J = 9.0 Hz, 2H), 3.51 (s, 

3H), 3.48 (s, 3H), 2.83 (m, 1H), 1.99 – 1.80 (m, 1H); 
13

C NMR (101 MHz, DMSO-d6) δ 170.2, 146.5, 

145.0, 138.8 (2C), 137.1, 132.9, 131.8, 130.8, 130.2, 130.1, 129.2, 128.9, 128.5, 128.1 (3C), 128.0, 
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126.5, 123.5, 117.7, 59.8, 52.3, 50.9, 27.6; HRMS (ESI) calcd for C25H23N2O4PdS
+
 [M–CF3COO

-
] 

553.0413; found 553.0432. 
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3.3. Synthetic Approaches to Quindolinones by Palladium-Catalyzed and Acid-

Meidated Reactions 

3.3.1. Preparation of starting materials 1.245 

 

To a solution of 1.290 (2.2 mmol) in THF (10 mL) was added dropwise a solution of n-BuLi in hexane 

(2.2 mmol, 0.96 mL, 2.3 M) at – 78 
o
C. The reaction mixture was stirred at this temperature for 

another 1 h followed by the addition of a solution of 1.291 (2.0 mmol) in THF (10 mL). The resulting 

mixture was then warmed up to – 40 
o
C and stirred for additional 2 h. After quenching with aqueous 

saturated NH4Cl, the reaction mixture was extracted with ethyl acetate, the combined organic phases 

were dried over MgSO4, filtered and concentrated in vacuo. The crude propagyl alcohol product 1.292 

was dissolved in DCM (20 mL) followed by addition of MnO2 (20 mmol, 1.72 g) in five potions in a 

period of 3 h. The heterogeneous mixture was allowed to stir at room temperature until 1.292 was 

totally consumed.  The reaction mixture was filtered directly through a short plug of Celite, washed 

with DCM, and concentrated to afford the crude product. Purification by flash column 

chromatography on silica gel (ethyl acetate/petroleum ether) afforded desired product 1.284. 

 

Characterization Data of Compounds 1.284 

3-(2-(Benzylamino)phenyl)-1-(2-(dimethylamino)phenyl)prop-2-yn-1-one (1.284a) 

 

Brown liquid;
1
H NMR (400 MHz, CDCl3) δ 7.97 (dd, J = 7.8, 1.7 Hz, 1H), 7.48 (dd, J = 7.7, 1.6 Hz, 

1H), 7.40 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.23 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 

6.95 (d, J = 8.7 Hz, 1H), 6.86 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.66 (td, J = 7.5, 1.0 Hz, 1H), 6.56 (d, J 

= 8.5 Hz, 1H), 5.52 (t, J = 5.8 Hz, 1H), 4.47 (d, J = 5.4 Hz, 2H), 2.89 (s, 6H); 
13

C NMR (101 MHz, 

CDCl3) δ 178.1, 152.7, 151.0, 138.7, 134.4, 133.6, 133.0, 132.7, 128.9, 127.7, 127.4, 127.0, 118.8, 

116.9, 116.7, 110.5, 104.4, 96.2, 88.8, 47.6, 44.6; ATR-IR ν 2943 (w), 2867 (w), 2173 (m), 1600 (s), 

1502 (m), 1159 (s), 995 (m), 747 (s), 698 (s); HRMS (ESI) calcd for C24H23N2O
+
 [M+H]

+
 355.1805; 

found 355.1805. 
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1-(2-(Dimethylamino)phenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one (1.284b) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.47 (dd, J = 7.7, 1.6 Hz, 

1H), 7.39 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.28 – 7.22 (m, 3H), 6.94 (dd, J = 8.4, 1.0 Hz, 1H), 6.89 – 

6.81 (m, 3H), 6.65 (td, J = 7.5, 1.0 Hz, 1H), 6.57 (dd, J = 8.5, 1.0 Hz, 1H), 5.42 (t, J = 5.4 Hz, 1H), 

4.39 (d, J = 5.2 Hz, 2H), 3.80 (s, 3H), 2.89 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 178.1, 159.0, 

152.7, 151.1, 134.4, 133.5, 133.0, 132.7, 130.7, 128.3, 127.7, 118.8, 116.8, 116.7, 114.3, 110.5, 104.3, 

96.2, 88.8, 55.4, 47.1, 44.6; ATR-IR ν 2935 (w), 2837 (w), 2175 (s), 1612 (s), 1602 (s), 1510 (s), 

1324 (m), 1248 (s), 1161 (m), 750 (s); HRMS (ESI) calcd for C25H25N2O2
+
 [M+H]

+
 355.1911; found 

355.1919. 

 

1-(2-(Dimethylamino)phenyl)-3-(2-(methylamino)phenyl)prop-2-yn-1-one (1.284c) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.47 (dd, J = 7.7, 1.6 Hz, 

1H), 7.39 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.28 – 7.22 (m, 3H), 6.94 (dd, J = 8.4, 1.0 Hz, 1H), 6.89 – 

6.81 (m, 3H), 6.65 (td, J = 7.5, 1.0 Hz, 1H), 6.57 (dd, J = 8.5, 1.0 Hz, 1H), 5.42 (t, J = 5.4 Hz, 1H), 

4.39 (d, J = 5.2 Hz, 2H), 3.80 (s, 3H), 2.89 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 178.1, 159.0, 

152.7, 151.1, 134.4, 133.5, 133.0, 132.7, 130.7, 128.3, 127.7, 118.8, 116.8, 116.7, 114.3, 110.5, 104.3, 

96.2, 88.8, 55.4, 47.1, 44.6; ATR-IR ν 2935 (w), 2837 (w), 2175 (s), 1612 (s), 1602 (s), 1510 (s), 

1324 (m), 1248 (s), 1161 (m), 750 (s); HRMS (ESI) calcd for C25H25N2O2
+
 [M+H]

+
 385.1911; found 

385.1912. 

 

1-(2-(Dimethylamino)phenyl)-3-(2-(propylamino)phenyl)prop-2-yn-1-one (1.284d) 
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Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 7.8, 1.7 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.32 

– 7.26 (m, 1H), 7.00 (dd, J = 8.5, 1.0 Hz, 1H), 6.90 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.67 – 6.54 (m, 

2H), 4.99 – 4.92 (m, 1H), 3.18 (td, J = 7.2, 5.7 Hz, 2H), 2.95 (s, 6H), 1.67 (h, J = 7.4 Hz, 2H), 0.99 (t, 

J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 178.0, 152.7, 151.4, 134.4, 133.6, 133.3, 132.7, 

127.4, 118.4, 116.7, 116.2, 110.0, 104.0, 96.1, 89.2, 45.3, 44.5, 22.7, 11.7; ATR-IR ν 2959 (w), 2932 

(w), 2872 (w), 2171 (s), 1616 (m), 1600 (s), 1508 (m), 1189 (m), 1159 (s), 1159 (s), 993 (m), 993 (m), 

746 (s); HRMS (ESI) calcd for C20H23N2O
+
 [M+H]

+
 307.1805; found 307.1801. 

 

1-(2-(Dimethylamino)phenyl)-3-(2-(isopropylamino)phenyl)prop-2-yn-1-one (1.284e) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 8.07 (dd, J = 7.9, 1.7 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.31 

– 7.26 (m, 1H), 6.99 (dd, J = 8.4, 1.0 Hz, 1H), 6.89 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.70 – 6.33 (m, 

2H), 4.70 (d, J = 7.7 Hz, 1H), ), 3.84 – 3.65 (m, 1H), 2.95 (s, 6H), 1.26 (d, J = 6.4 Hz, 6H); 
13

C NMR 

(101 MHz, CDCl3) δ 177.9, 152.7, 150.5, 134.5, 133.6, 133.5, 132.7, 127.1, 118.1, 116.6, 116.1, 

110.5, 104.1, 96.2, 89.3, 44.3, 44.1, 23.0; ATR-IR ν 2966 (w), 2930 (w), 2170 (s), 1617 (m), 1598 (s), 

1506 (m), 1282 (m), 1189 (m), 1175 (s), 1157 (s), 995 (s), 746 (s); HRMS (ESI) calcd for C20H23N2O
+
 

[M+H]
+
 307.1805; found 307.1806. 

 

1-(2-(Dimethylamino)phenyl)-3-(2-(phenylamino)phenyl)prop-2-yn-1-one (1.284f) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 7.8, 1.7 Hz, 1H), 7.53 (dd, J = 7.7, 1.6 Hz, 

1H), 7.41 (ddd, J = 8.7, 7.1, 1.8 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.28 – 7.18 (m, 3H), 7.14 (dd, J = 8.5, 

1.0 Hz, 1H), 7.12 – 7.05 (m, 1H), 6.97 (dd, J = 8.4, 1.0 Hz, 1H), 6.92 – 6.86 (m, 1H), 6.79 (td, J = 7.5, 

1.1 Hz, 1H), 6.74 (s, 1H), 2.89 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 177.8, 152.9, 147.9, 140.9, 

134.6, 133.7, 133.1, 132.2, 129.6, 127.4, 123.8, 122.0, 119.1, 118.8, 116.7, 113.3, 106.6, 96.0, 88.0, 

44.7; ATR-IR ν 2987 (w), 2972 (w), 2360 (w), 1594 (w), 1593 (w), 1576 (w), 1265 (m), 733 (s), 699 

(s); HRMS (ESI) calcd for C23H21N2O
+
 [M+H]

+
 341.1648; found 341.1450. 
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1-(2-(Dimethylamino)phenyl)-3-(2-((4-methoxybenzyl)amino)-5-methylphenyl)prop-2-yn-1-one 

(1.284g) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 7.9, 1.5 Hz, 1H), 7.39 (ddd, J = 8.5, 7.0, 1.5 

Hz, 1H), 7.32 – 7.19 (m, 3H), 7.11 – 7.02 (m, 1H), 6.94 (d, J = 8.4 Hz, 1H), 7.87 – 7.83 (m, 3H), 6.49 

(d, J = 8.5 Hz, 1H), 5.30 (t, J = 5.4 Hz, 1H), 4.37 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H), 2.88 (s, 6H), 2.21 

(s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 178.1, 158.9, 152.7, 149.2, 134.4, 133.73, 133.5, 133.0, 

130.9, 128.2, 127.7, 125.9, 118.7, 116.7, 114.3, 110.7, 104.2, 96.0, 89.2, 55.4, 47.3, 44.6, 20.2; ATR-

IR ν 2968 (w), 2902 (w), 2172 (w), 1614 (m), 1512 (s), 1249 (s), 1169 (w), 1036 (w); HRMS (ESI) 

calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 399.2066. 

 

1-(2-(dimethylamino)phenyl)-3-(5-methoxy-2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284h) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.94 (dd, J = 7.8, 1.7 Hz, 1H), 7.39 (ddd, J = 8.6, 7.1, 

1.7 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.01 (d, J = 3.0 Hz, 1H), 7.01 (d, J = 3.0 Hz, 1H), 7.01 (d, J = 3.0 

Hz, 1H), 6.87 – 6.81 (m, 3H)), 6.53 (d, J = 9.0 Hz, 1H), 5.12 (t, J = 5.7 Hz, 1H), 4.35 (d, J = 5.3 Hz, 

2H), 3.80 (s, 3H), 3.73 (s, 3H), 2.88 (s, 6H); ATR-IR ν 2927 (w), 2836 (w), 2169 (m), 1612 (s), 1510 

(s), 1246 (s), 1202 (m), 1158 (m), 1021 (m); HRMS (ESI) calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; 

found 399.2075. 

 

3-(5-Chloro-2-((4-methoxybenzyl)amino)phenyl)-1-(2-(dimethylamino)phenyl)prop-2-yn-1-one 

(1.284i) 
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Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.94 (dd, J = 7.9, 1.7 Hz, 1H), 7.38 (ddd, J = 8.5, 7.0, 

1.5 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.16 – 7.11 (m, 1H), 6.94 (t, J = 8.0 Hz, 1H), 6.85 (m, 3H), 6.77 (d, 

J = 8.4 Hz, 1H), 6.47 (d, J = 9.0 Hz, 1H), 5.43 (t, J = 5.8 Hz, 1H), 4.35 (d, J = 5.6 Hz, 2H), 3.78 (s, 

3H), 2.87 (s, 6H); ATR-IR ν 2954 (w), 2836 (w), 2177 (w), 1612 (m), 1511 (s), 1496 (s), 1247 (s), 

907 (s); HRMS (ESI) calcd for C25H24ClN2O2
+
 [M+H]

+
 419.1521; found 419.1532. 

 

1-(2-(Dimethylamino)phenyl)-3-(5-fluoro-2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284j) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.94 (dd, J = 7.9, 1.6 Hz, 1H), 7.38 (ddd, J = 8.5, 7.0, 

1.5 Hz, 1H),, 7.26 – 7.20 ( 

m, 2H), 7.15 (dd, J = 8.7, 3.0 Hz, 1H), 7.01 – 6.92 (m, 2H), 6.90 – 6.80 (m, 3H), 6.48 (dd, J = 9.2, 4.5 

Hz, 1H), 5.28 (t, J = 5.4 Hz, 1H), 4.35 (d, J = 5.6 Hz, 2H), 3.79 (s, 3H), 2.88 (s, 6H); ATR-IR ν 2935 

(w), 2836 (w), 2177 (w), 1612 (m), 1510 (s), 1497 (s), 1497 (s), 1247 (s), 1247 (s), 729 (s); HRMS 

(ESI) calcd for C25H24FN2O2
+
 [M+H]

+
 403.1816; found 403.1819. 

 

1-(2-(Dimethylamino)phenyl)-3-(2-((4-methoxybenzyl)amino)-4-methylphenyl)prop-2-yn-1-one 

(1.284k) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 7.8, 1.8 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.27 – 

7.23 (m, 2H), 6.97 – 6.72 (m, 4H), 6.53 – 6.46 (m, 1H), 6.40 (s, 1H), 5.34 (t, J = 5.4 Hz, 1H), 4.37 (d, 

J = 5.4 Hz, 2H), 3.81 (s, 3H), 2.86 (s, 6H), 2.27 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 178.3, 159.0, 

152.6, 151.1, 143.7, 134.4, 133.4, 132.9, 130.8, 128.3, 127.9, 118.7, 118.1, 116.7, 114.3, 111.0, 101.6, 

96.2, 89.6, 55.4, 47.1, 44.6, 22.5; ATR-IR ν 2955 (w), 2902 (w), 2168 (s), 1607 (s), 1510 (s), 1246 

(s), 1191 (m), 994 (s), 994 (s); HRMS (ESI) calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 

399.2079. 
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1-(2-(Dimethylamino)phenyl)-3-(4-methoxy-2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284l) 

 

Brown liquid; 
1
H NMR (400 MHz, CDCl3) δ 7.91 (dd, J = 7.9, 1.7 Hz, 1H), 7.44 – 7.32 (m, 2H), 7.32 

– 7.19 (m, 3H), 7.26 (s, 2H), 6.92 (dd, J = 8.4, 1.0 Hz, 1H), 6.88 – 6.78 (m, 3H), 6.24 (dd, J = 8.6, 2.4 

Hz, 1H), 6.07 (d, J = 2.4 Hz, 1H), 5.47 (t, J = 5.6 Hz, 1H), 4.37 (d, J = 5.5 Hz, 2H), 3.80 (s, 3H), 3.74 

(s, 3H), 2.87 (s, 6H); ATR-IR ν 2934 (w), 2833 (w), 2170 (m), 1611 (m), 1508 (s), 1243 (s), 1212 (s), 

1169 (s), 1159 (s), 1035 (s); HRMS (ESI) calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 399.2082. 

 

3-(4-Chloro-2-((4-methoxybenzyl)amino)phenyl)-1-(2-(dimethylamino)phenyl)prop-2-yn-1-one 

(1.284m) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 7.8, 1.7 Hz, 1H), 7.45 – 7.31 (m, 2H), 7.26 – 

7.21 (m, 2H), 6.97 – 6.78 (m, 4H), 6.63 (dd, J = 8.3, 1.9 Hz, 1H), 6.57 (d, J = 1.9 Hz, 1H), 5.44 (t, J = 

5.3 Hz, 1H), 4.36 (d, J = 5.3 Hz, 2H), 3.81 (s, 3H), 2.88 (s, 6H), 2.86 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 177.8, 159.2, 152.8, 151.6, 138.9, 135.2, 133.7, 133.0, 129.9, 128.3, 127.4, 118.8, 117.2, 

116.7, 114.4, 110.5, 103.0, 96.6, 87.4, 55.5, 47.1, 44.6; ATR-IR ν 2936 (w), 2837 (w), 2176 (m), 

1611 (s), 1611 (s), 1595 (s), 1562 (m), 1509 (s), 1429 (m), 1277 (m), 1248 (s); HRMS (ESI) calcd for 

C25H24ClN2O2
+
 [M+H]

+
 419.1521; found 419.1525. 

 

1-(2-(Dimethylamino)-4-methylphenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284n) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8.0 Hz, 1H), 7.46 (dd, J = 7.7, 1.6 Hz, 1H), 

7.28 – 7.15 (m, 3H), 6.91 – 6.80 (m, 2H), 6.73 (s, 1H), 6.68 – 6.62 (m, 2H), 6.57 (d, J = 8.3 Hz, 1H), 

5.41 (t, J = 5.8 Hz, 1H), 4.39 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H), 2.87 (s, 6H), 2.35 (s, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 177.4, 159.0, 153.0, 151.0, 144.6, 134.4, 133.5, 132.6, 130.7, 128.3, 125.2, 
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120.0, 117.2, 116.8, 114.3, 110.4, 104.5, 96.2, 88.3, 55.4, 47.1, 44.6, 22.2; ATR-IR ν 2944 (w), 2837 

(w), 2173 (s), 1602 (s), 1572 (m), 1510 (s), 1457 (m), 1456 (m), 1247 (s), 1186 (m), 825 (m), 749 (m); 

HRMS (ESI) calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 399.2078. 

 

1-(2-(Dimethylamino)-4-methoxyphenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284o) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.8, 2.0 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 

7.34 – 7.15 (m, 3H), 7.00 – 6.78 (m, 2H), 6.65 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 8.7 Hz, 1H), 6.41 – 6.28 

(m, 2H), 5.36 (t, J = 5.4 Hz, 1H), 4.38 (d, J = 5.4 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 2.87 (s, 6H); 
13

C 

NMR (101 MHz, CDCl3) δ 175.9, 164.3, 159.0, 155.1, 150.9, 136.4, 134.2, 132.4, 130.7, 128.4, 

121.1, 116.8, 114.3, 110.4, 104.7, 104.6, 102.0, 96.0, 87.9, 55.5, 55.4, 47.2, 44.5; ATR-IR ν 2934 (w), 

2837 (w), 2173 (m), 1600 (s), 1510 (s), 1242 (s), 1178 (m), 1110 (m), 827 (m), 749 (m); HRMS (ESI) 

calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 399.2082. 

 

1-(4-Chloro-2-(dimethylamino)phenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284p) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 7.7, 1.6 Hz, 1H), 

7.32 – 7.11 (m, 3H), 6.92 – 6.86 (m, 3H), 6.75 (dd, J = 8.4, 1.9 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.60 

(d, J = 8.4 Hz, 1H), 5.28 (t, J = 5.4 Hz, 1H), 4.37 (d, J = 5.4 Hz, 2H), 3.81 (s, 3H), 2.87 (s, 6H); 
13

C 

NMR (101 MHz, CDCl3) δ 176.8, 159.1, 153.3, 151.1, 139.7, 134.4, 134.4, 132.9, 130.5, 128.4, 

125.6, 118.6, 116.9, 116.6, 114.3, 110.5, 104.1, 95.8, 89.4, 55.45, 47.19, 44.3; ATR-IR 2837 (w), 

2174 (s), 1614 (s), 1602 (s), 1588 (s), 1510 (s), 1248 (s), 1162 (s), 993 (m), 749 (m); HRMS (ESI) 

calcd for C25H24ClN2O2
+
 [M+H]

+
 419.1521; found 419.1531. 

 

1-(2-(Dimethylamino)-5-methylphenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284q) 
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Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.82 – 7.69 (m, 1H), 7.47 (dd, J = 7.7, 1.6 Hz, 1H), 7.27 – 

7.14 (m, 4H), 6.90 – 6.81 (m, 3H), 6.65 (td, J = 7.5, 1.0 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H), 5.52 (t, J = 

5.7 Hz, 1H), 4.40 (d, J = 5.7 Hz, 2H), 3.80 (s, 3H), 2.83 (s, 6H), 2.28 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 178.5, 159.0, 151.1, 151.0, 134.5, 134.4, 132.7 (2C), 130.7, 128.9, 128.5, 128.1, 117.1, 

116.8, 114.3, 110.5, 104.4, 96.4, 88.7, 55.4, 47.1, 45.1, 20.4; ATR-IR ν 2947 (w), 2836 (w), 2168 

(m), 1619 (m), 1602 (m), 1572 (m), 1510 (s), 1322 (m), 1248 (s), 1171 (s), 1036 (m), 822 (m), 749 

(m); HRMS (ESI) calcd for C26H27N2O2
+
 [M+H]

+
 399.2067; found 399.2069. 

 

1-(2-(Dimethylamino)-5-methoxyphenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284r) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 7.6, 1.6 Hz, 1H), 7.43 (d, J = 3.1 Hz, 1H), 

7.29 – 7.17 (m, 3H), 7.02 (dd, J = 8.9, 3.1 Hz, 1H), 6.94 (d, J = 9.0 Hz, 1H), 6.89 – 6.81 (m, 2H), 6.69 

– 6.61 (m, 1H), 6.55 (d, J = 8.4 Hz, 1H), 5.60 (t, J = 5.8 Hz, 1H), 4.41 (d, J = 5.8 Hz, 2H), 3.79 (s, 

6H), 2.78 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 178.2, 158.9, 153.6, 151.2, 147.7, 134.6, 132.8, 

130.6, 130.3, 128.0, 120.7, 119.1, 116.8, 115.3, 114.3, 110.5, 104.3, 96.6, 89.0, 55.9, 55.4, 47.1, 45.7; 

ATR-IR ν 2934 (w), 2834 (w), 2166 (w), 1572 (m), 1510 (s), 1458 (m), 1244 (s), 1173 (s), 1161 (s), 

1028 (s), 821 (m), 749 (s); HRMS (ESI) calcd for C26H27N2O3
+
 [M+H]

+
 415.2016; found 415.2030. 

 

1-(5-Chloro-2-(dimethylamino)phenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-1-one 

(1.284s)  

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 2.7 Hz, 1H), 7.46 (dd, J = 7.7, 1.6 Hz, 1H), 

7.31 (dd, J = 8.9, 2.7 Hz, 1H), 7.28 – 7.13 (m, 3H), 6.87 – 6.83 (m, 3H), 6.94 (d, J = 8.4 Hz, 1H), 6.65 

(td, J = 7.5, 1.0 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 5.38 (t, J = 5.7 Hz, 1H), 4.39 (d, J = 5.5 Hz, 2H), 

3.79 (s, 3H), 2.85 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 176.8, 159.0, 151.2, 151.2, 134.5, 133.1, 
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133.0, 132.0, 130.5, 128.5, 128.2, 123.7, 118.2, 116.8, 114.3, 110.6, 103.9, 95.8, 89.8, 55.4, 47.1, 

44.6; ATR-IR ν 2936 (w), 2844 (w), 2180 (m), 1611 (s), 1599 (s), 1514 (s), 1492 (m), 1285 (m), 1241 

(s), 1163 (s), 826 (s), 760 (s); HRMS (ESI) calcd for C25H24ClN2O2
+
 [M+H]

+
 419.1521; found 

419.1523. 

 

1-(2-(Dimethylamino)-5-(trifluoromethyl)phenyl)-3-(2-((4-methoxybenzyl)amino)phenyl)prop-2-yn-

1-one (1.284t) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.27 (dd, J = 2.1, 1.0 Hz, 1H), 7.56 (dd, J = 8.9, 2.4 Hz, 1H), 7.46 (dd, J = 

7.7, 1.6 Hz, 1H), 7.30 – 7.11 (m, 3H), 6.95 (d, J = 8.9 Hz, 1H), 6.90 – 6.80 (m, 2H), 6.67 (td, J = 7.5, 

1.0 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.31 (t, J = 5.7 Hz, 1H), 4.40 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H), 

296 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 176.7, 159.0, 153.9, 151.2, 134.5, 133.1, 130.6 (q, J = 3.9 

Hz), 130.5, 129.7 (q, J = 3.4 Hz), 128.2, 125.4, 124.4 (q, J = 270 Hz), 119.23 (d, J = 33.4 Hz), 116.9, 

116.2, 114.3, 110.7, 103.8, 95.5, 90.3, 55.4, 47.1, 44.1; ATR-IR ν 2960 (w), 2959 (w), 2175 (m), 

1620 (m), 1603 (m), 1513 (s), 1318 (s), 1158 (s), 1099 (s), 1098 (s), 821 (s), 746 (s); HRMS (ESI) 

calcd for C26H24F3N2O2
+
 [M+H]

+
 453.1784; found 453.1788. 

 

3-(2-(benzylamino)phenyl)-1-(2-(dipropylamino)phenyl)prop-2-yn-1-one (1.284u) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 7.8, 1.7 Hz, 1H), 7.45 – 7.15 (m, 8H), 7.03 (d, 

J = 8.4 Hz, 1H), 6.87 (t, J = 7.7 Hz, 1H), 6.69 – 6.60 (m, 1H), 6.56 (d, J = 8.4 Hz, 1H), 5.39 (t, J = 5.9 

Hz, 1H), 4.46 (d, J = 5.7 Hz, 2H), 3.26 – 2.92 (m, 4H), 1.63 – 1.45 (m, 4H), 0.82 (t, J = 7.4 Hz, 6H); 

13
C NMR (101 MHz, CDCl3) δ 178.5, 151.8, 151.0, 138.7, 133.9, 133.0, 132.54, 132.50, 130.4, 

128.9, 127.38, 127.0, 120.3, 119.6, 116.7, 110.4, 104.6, 96.6, 88.2, 55.7, 47.5, 20.4, 11.7; ATR-IR ν 

2960 (w), 2930 (w), 2173 (w), 1613 (m), 1602 (m), 1572 (m), 1510 (m), 1453 (m), 746 (s), 697 (s);  

HRMS (ESI) calcd for C28H31N2O
+
 [M+H]

+
 411.2431; found 411.2445. 

 

3-(2-(Benzylamino)phenyl)-1-(2-(diallylamino)phenyl)prop-2-yn-1-one (1.284v) 
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Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.92 (dt, J = 7.8, 1.3 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.42 – 

7.19 (m, 7H), 7.02 (d, J = 8.3 Hz, 1H), 6.97 – 6.83 (m, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.56 (d, J = 8.4 

Hz, 1H), 5.94 – 5.67 (m, 2H), 5.41 (t, J = 5.9 Hz, 1H), 5.26 – 5.03 (m, 4H), 4.46 (d, J = 5.6 Hz, 2H), 

3.81 (dd, J = 6.1, 1.4 Hz, 4H); 
13

C NMR (101 MHz, CDCl3) δ 178.5, 151.0, 150.8, 138.7, 134.4, 

134.2, 133.1, 132.7, 132.5, 130.5, 128.9, 127.4, 127.0, 120.7, 120.4, 118.22, 116.8, 110.5, 104.3, 96.5, 

88.9, 56.4, 47.5; ATR-IR ν 2930 (w), 2848 (w), 2173 (m), 1601 (m), 1322 (m), 1163 (m), 996 (m), 

922 (m), 747 (s), 698 (s); HRMS (ESI) calcd for C28H27N2O
+
 [M+H]

+
 407.2118; found 407.2116. 

 

1-(2-(Benzyl(methyl)amino)phenyl)-3-(2-(benzylamino)phenyl)prop-2-yn-1-one (1.284w) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 7.8, 1.7 Hz, 1H), 7.47 (dd, J = 7.6, 1.6 Hz, 

1H), 7.42 – 7.15 (m, 12H), 6.94 (d, J = 8.4 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H, 6.67 (t, J = 7.5 Hz, 1H), 

6.57 (d, J = 8.4 Hz, 1H), 5.41 (t, J = 5.8 Hz, 1H), 4.45 (d, J = 5.5 Hz, 2H), 4.41 (s, 2H), 2.78 (s, 3H); 

13
C NMR (101 MHz, CDCl3) δ 178.2, 152.2, 151.0, 138.7, 137.5, 134.3, 133.5, 133.0, 132.8, 128.9, 

128.6, 128.4, 128.0, 127.4, 127.3, 127.0, 119.4, 118.6, 116.9, 110.5, 104.3, 96.4, 89.0, 60.5, 47.6, 

41.6; ATR-IR ν 2987 (w), 2971 (w), 2902 (w), 2172 (w), 1600 (w), 1451 (m), 1164 (w), 1066 (m), 

1052 (m), 747 (s), 731 (s), 697 (s); HRMS (ESI) calcd for C30H27N2O
+
 [M+H]

+
 431.2118; found 

431.2119. 

 

3-(2-(Benzylamino)phenyl)-1-(2-(diisobutylamino)phenyl)prop-2-yn-1-one (1.284x) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 7.9, 1.8 Hz, 1H), 7.44 (dd, J = 7.7, 1.6 Hz, 

1H), 7.35 – 7.18 (m, 4H), 7.09 – 6.96 (m, 1H), 6.91 – 6.82 (m, 2H), 6.76 – 6.71 (m, 1H), 6.65 (td, J = 

7.5, 1.0 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.27 (t, J = 5.4 Hz, 1H), 4.39 (d, J = 4.5 Hz, 2H), 3.80 (d, J 
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= 1.3 Hz, 3H), 3.03 (d, J = 7.2 Hz, 4H), 1.95 (hept, J = 6.7 Hz, 2H), 0.81 (d, J = 6.6 Hz, 12H); 
13

C 

NMR (101 MHz, CDCl3) δ 177.26, 159.0, 152.3, 150.9, 134.1, 133.9, 133.3, 132.4, 130.7, 128.4, 

127.4, 119.5, 117.8, 116.7, 114.3, 110.4, 104.5, 96.1, 88.5, 61.3, 55.4, 47.1, 26.9, 20.6; ATR-IR ν 

2957 (w), 2902 (w), 2172 (w), 1602 (m), 1510 (m), 1247 (s), 1151 (m), 1038 (m), 991 (m), 747 (s); 

HRMS (ESI) calcd for C31H37N2O2
+
 [M+H]

+
 469.2850; found 469.2845. 

 

3-(2-(Benzylamino)phenyl)-1-(2-methoxyphenyl)prop-2-yn-1-one (1.284y) 

 

Brown oil; 
1
H NMR (400 MHz, CDCl3) δ 7.88 (dd, J = 7.8, 1.8 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.29 – 

7.07 (m, 6H), 6.97 – 6.89 (m, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.62 – 6.54 (m, 1H), 6.49 (d, J = 8.4 Hz, 

1H), 5.51 (t, J = 5.6 Hz, 1H), 4.38 (d, J = 5.6 Hz, 2H), 3.69 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

176.4, 159.5, 151.2, 138.6, 134.8, 134.5, 132.9, 131.9, 128.9, 127.5, 127.2, 120.9, 116.9, 112.7, 110.4, 

104.4, 97.1, 90.4, 56.2, 47.6; ATR-IR ν 2987 (w), 2971 (w), 2902 (w), 2175 (m), 1598 (m), 1453 (m), 

1317 (s), 1248 (m), 1008 (s), 747 (s); HRMS (ESI) calcd for C23H20NO2
+
 [M+H]

+
 342.1489; found 

342.1492. 

 

3-(2-(Benzylamino)phenyl)-1-(2-(methylthio)phenyl)prop-2-yn-1-one (1.284z) 

 

Yellow solid; 
1
H NMR (400 MHz, CDCl3) δ 8.30 (dd, J = 7.8, 1.5 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.43 

– 7.21 (m, 7H), 7.17 – 6.99 (m, 1H), 6.73 – 6.63 (m, 1H), 76.60 (d, J = 8.4 Hz, 1H), 5.34 (t, J = 5.7 

Hz, 1H), 4.47 (d, J = 5.6 Hz, 2H), 2.46 (s, 3H), 2.88 (s, 6H), 2.21 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 177.6, 151.1, 144.5, 138.6, 134.3, 134.1, 133.5, 133.2, 133.0, 128.9, 127.5, 127.3, 124.3, 

123.4, 116.9, 110.6, 104.0, 94.6, 91.3, 47.65, 15.69; ATR-IR ν 2987 (m), 2972 (m), 2902 (w), 2180 

(w), 1613 (w), 1508 (w), 1315 (w), 1264 (w), 1066 (s), 1048 (s), 732 (s); HRMS (ESI) calcd for 

C23H20NOS
+
 [M+H]

+
 358.1260; found 358.1249. 

 

3.3.2. Substrate scope of acid-mediated double cyclization 
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To a solution of 1.284 (0.1 mmol, 1.0 equiv) and Hantzsch ester (2.0-3.0 equiv) in p-xylene (c = 0.025 

M) was added glacial acetic acid (8.0 equiv). The resulting mixture was evacuated and filled back with 

O2 three times, then connected with balloon of oxygen, warmed up to 90-100 ºC. After stirring for 12-

24 h, the reaction mixture was diluted with water, extracted with diethyl acetate. The combined 

organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The 

crude product was purified by flash column chromatography on silica gel (ethyl acetate/petroleum 

ether) to give compound 1.286. 

 

Characterization Data of Compounds 1.286 

5-Benzyl-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286a) 

 

Yield: 26.0 mg (77%), yellow solid; mp: 205 – 207 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.73 (dd, J = 

8.0, 1.7 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.61 (ddd, J = 8.5, 6.8, 1.6 Hz, 1H), 7.53 – 7.44 (m, 3H), 

7.39 – 7.31 (m, 4H), 7.29 – 7.26 (m, 2H), 7.07 (dt, J = 8.2, 3.9 Hz, 1H), 5.98 (s, 2H), 4.47 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 169.9, 140.9, 140.4, 135.9, 131.8, 131.5, 129.5, 128.1, 127.6, 126.9, 125.9, 

125.2, 123.2, 122.5, 121.6, 119.8, 115.2, 114.9, 110.5, 52.8, 31.7; ATR-IR ν 2928 (w), 1618 (s), 1590 (s), 

1517 (m), 1461 (m), 1452 (m), 1375 (m), 751 (s), 743 (s), 736 (s), 693 (s); HRMS (ESI) calcd for 

C23H19N2O
+
 [M+H]

+
 339.1492; found 339.1491. 

 

5-(4-Methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286b) 

 

Yield: 28.3 mg (77%), brown solid; mp: 190 – 192 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.68 (dd, J = 

8.1, 1.7 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.58 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 7.54 – 7.42 (m, 3H), 

7.33 (ddd, J = 7.9, 6.8, 1.0 Hz, 1H), 7.21 – 7.12 (m, 2H), 7.07 (ddd, J = 8.2, 6.1, 1.9 Hz, 1H), 6.95 – 
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6.80 (m, 2H), 5.87 (s, 2H), 4.43 (s, 3H), 3.76 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 170.0, 159.3, 

140.4, 140.3, 131.7, 131.4, 127.7, 127.5, 127.1, 126.7, 125.2, 123.1, 122.5, 121.4, 119.7, 115.2, 114.9, 

114.9, 110.4, 55.4, 52.2, 31.6; ATR-IR 2922 (w), 2853 (w), 1615 (m), 1588 (s), 1515 (s), 1459 (m), 

1281 (m), 1252 (s), 1033 (m), 746 (s); HRMS (ESI) calcd for C24H21N2O2
+
 [M+H]

+
 369.1598; found 

369.1599. 

5,10-Dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286c) 

 

Yield: 12.8 mg (49%), yellow solid; mp: 179 – 181 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.69 (dd, J = 

8.2, 1.6 Hz, 1H), 8.31 – 8.13 (m, 1H), 7.71 (ddd, J = 8.5, 6.6, 1.6 Hz, 1H), 7.63 (d, J = 8.7 Hz, 1H), 

7.59 – 7.52 (m, 1H), 7.51 – 7.46 (m, 1H), 7.39 – 7.32 (m, 1H), 7.26 – 7.21 (m, 1H), 4.41 (s, 3H), 4.35 

(s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.5, 140.3, 140.25, 131.4 (2C), 127.4, 126.8, 125.0, 123.0, 

122.7, 121.0, 119.3, 115.8, 114.3, 110.4, 36.1, 31.5; ATR-IR ν 2925 (w), 2853 (w), 1620 (s), 1589 (s), 

1517 (m), 1471 (m), 740 (m); HRMS (ESI) calcd for C17H15N2O
+
 [M+H]

+
 263.1179; found 263.1182. 

 

10-Methyl-5-propyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286d) 

 

Yield: 18.3 mg (63%), yellow solid; mp: 187 – 188 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.65 (dd, J = 

8.2, 1.7 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.65 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 7.58 – 7.48 (m, 2H), 

7.46 – 7.39 (m, 1H), 7.30 (ddd, J = 8.0, 6.8, 1.0 Hz, 1H), 7.22 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 4.56 (d, 

J = 8.3 Hz, 2H), 4.35 (s, 3H), 2.13 – 1.96 (m, 2H), 1.18 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 169.5, 140.3, 139.4, 131.3, 130.4, 127.3, 126.8, 124.9, 123.0, 122.2, 120.9, 119.5, 115.1, 

114.1, 110.4, 49.3, 31.5, 21.7, 11.0; ATR-IR ν 2922 (w), 1596 (s), 1513 (s), 1464 (m), 1247 (s), 1173 

(m), 1033 (s), 809 (m), 744 (s); HRMS (ESI) calcd for C19H19N2O
+
 [M+H]

+
 291.1492; found 

291.1494. 

 

5-Isopropyl-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286e) 
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Yield: 19.1 mg (66%), yellow solid; mp: 191 – 193 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.67 (dd, J = 

8.1, 1.7 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.63 (ddd, J = 8.7, 6.7, 1.7 Hz, 

1H), 7.58 – 7.45 (m, 2H), 7.35 – 7.31 (m, 1H), 7.29 – 7.19 (m, 1H), 5.71 (hept, J = 7.1 Hz, 1H), 4.43 

(s, 3H), 1.92 (s, 3H), 1.90 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 170.1, 140.3, 139.4, 132.2, 130.0, 

127.3, 127.1, 126.4, 123.6, 122.5, 121.0, 119.4, 117.6, 115.7, 110.7, 53.9, 31.6, 21.6; ATR-IR ν 2970 

(w), 2923 (w), 1617 (m), 1589 (s), 1514 (m), 1461 (m), 1354 (m), 956 (m), 749 (s); HRMS (ESI) 

calcd for C19H19N2O
+
 [M+H]

+
 291.1492; found 291.1491. 

 

5-(4-Methoxybenzyl)-2,10-dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286g) 

 

Yield: 23.2 mg (61%), yellow solid; mp: 202 – 204 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.48 – 8.31 (m, 

1H), 7.78 (d, J = 8.3 Hz, 1H), 7.54 – 7.43 (m, 2H), 7.41 – 7.32 (m, 2H), 7.16 (d, J = 8.5 Hz, 2H), 7.06 

(ddd, J = 8.1, 6.0, 1.9 Hz, 1H), 6.92 – 6.66 (m, 2H), 5.87 (s, 2H), 4.43 (s, 3H), 3.76 (s, 3H), 2.47 (s, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 169.8, 159.3, 140.4, 138.6, 133.2, 131.3, 131.0, 127.9, 127.4, 

127.1, 125.9, 125.1, 123.1, 122.5, 119.5, 115.3, 114.8 (2C), 110.3, 55.4, 52.1, 31.6, 21.0; ATR-IR ν 

2929 (w), 1614 (m), 1593 (s), 1515 (s), 1464 (m), 1249 (s), 739 (w); HRMS (ESI) calcd for 

C25H23N2O2
+
 [M+H]

+
 383.1754; found 383.1752. 

 

2-Methoxy-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286h) 

 

Yield: 31.6 mg (79%), yellow solid; mp: 191 – 193 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.13 – 7.97 (m, 

1H), 7.77 (d, J = 8.3 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.39 (d, J = 9.3 Hz, 1H), 7.24 – 7.17 (m, 1H), 7.14 

(d, J = 8.3 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.3 Hz, 2H), 5.86 (s, 2H), 4.42 (s, 3H), 3.93 

(s, 3H), 3.75 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 168.9, 159.3, 154.6, 140.5, 135.2, 131.1, 127.7, 

127.5, 127.0, 125.9, 122.8, 122.7, 122.5, 119.5, 116.6, 115.2, 114.8, 110.2, 105.2, 55.8, 55.4, 52.2, 
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31.6; ATR-IR ν 2933 (w), 2835 (w), 1592 (s), 1514 (s), 1464 (m), 1463 (m), 1278 (m), 1245 (s), 732 

(s), 731 (s); HRMS (ESI) calcd for C25H23N2O3
+
 [M+H]

+
 399.1703; found 399.1702. 

 

2-Chloro-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286i) 

 

Yield: 24.9 mg (62%), yellow solid; mp: 232 – 234 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.60 – 8.55 (m, 

1H), 7.78 (d, J = 8.4 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.38 (d, J = 9.2 Hz, 1H), 7.15 (d, J = 8.3 Hz, 2H), 

7.11 – 7.04 (m, 1H), 6.94 – 6.76 (m, 2H), 5.87 (s, 2H), 4.37 (d, J = 1.2 Hz, 3H), 3.77 (d, J = 1.2 Hz, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 168.7, 159.4, 140.5, 138.6, 131.8, 131.4, 127.8, 127.5, 127.2, 

127.0, 126.1, 125.9, 123.1, 122.5, 119.9, 116.7, 115.1, 114.9, 110.4, 55.4, 52.3, 31.6; ATR-IR ν 2932 

(w), 2836 (w), 1620 (s), 1588 (s), 1514 (s), 1463 (m), 1249 (s), 1249 (s); HRMS (ESI) calcd for 

C24H20ClN2O2
+
 [M+H]

+
 403.1208; found 403.1210. 

 

2-Fluoro-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286j) 

 

Yield: 27.0 mg (70%), yellow solid; mp: 201 – 203 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 

9.4, 3.0 Hz, 1H), 7.71 (dt, J = 8.4, 0.9 Hz, 1H), 7.43 (ddd, J = 8.2, 7.0, 1.0 Hz, 1H), 7.34 – 7.26 (m, 

2H), 7.24 – 7.14 (m, 1H), 7.12 – 7.05 (m, 2H), 7.02 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 6.86 – 6.72 (m, 

2H), 5.77 (s, 2H), 4.19 (s, 3H), 3.70 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 168.5 (d, J = 2.9 Hz), 

159.3, 157.7 (d, J = 242.5 Hz), 140.3, 136.6, 131.3, 127.6, 127.3, 127.0, 126.0 (d, J = 6.6 Hz), 122.4, 

120.0 (d, J = 25.4 Hz), 119.7, 116.9 (d, J = 7.7 Hz), 114.9, 114.8, 110.6 (d, J = 22.6 Hz), 110.2, 55.3, 

52.3, 31.3; ATR-IR ν 2957 (w), 2934 (w), 1598 (s), 1513 (s), 1463 (s), 1269 (s), 1249 (s), 1174 (m), 

907 (m), 733 (s); HRMS (ESI) calcd for C24H20FN2O2
+
 [M+H]

+
 387.1503; found 387.1504. 

 

5-(4-Methoxybenzyl)-3,10-dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286k) 
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Yield: 24.4 mg (64%), light yellow solid; mp: 242 – 244 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.58 (d, J 

= 8.3 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.60 – 7.37 (m, 2H), 7.22 – 7.15 (m, 4H), 7.06 (ddd, J = 8.0, 

5.7, 2.4 Hz, 1H), 6.95 – 6.76 (m, 2H), 5.87 (s, 2H), 4.43 (s, 3H), 3.77 (s, 3H), 2.45 (s, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 169.9, 159.3, 142.5, 140.6, 140.3, 131.3, 127.8, 127.4, 127.1, 126.7, 123.4, 

123.2, 123.0, 122.5, 119.6, 115.3, 114.9, 114.4, 110.3, 55.4, 52.1, 31.7, 22.5; ATR-IR ν 2958 (w), 

2924 (w), 2841 (w), 1628 (m), 1601 (s), 1510 (s), 1470 (m), 1457 (m), 1290 (s), 1244 (s), 1034 (m), 

815 (m), 754 (s); HRMS (ESI) calcd for C25H23N2O2
+
 [M+H]

+
 383.1754; found 383.1758. 

 

3-Chloro-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286m) 

 

 

Yield: 25.3 mg (63%), yellow solid; mp: 248 – 250 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 8.7 

Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.41 (d, J = 1.7 Hz, 1H), 7.26 – 7.22 (m, 1H), 

7.19 – 7.14 (m, 2H), 7.08 (ddd, J = 8.1, 6.6, 1.3 Hz, 1H), 6.96 – 6.84 (m, 2H), 5.84 (s, 2H), 4.39 (s, 

3H), 3.78 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.4, 159.5, 140.9, 140.3, 138.0, 131.3, 128.4, 

127.7, 127.1, 127.0, 123.6, 123.1, 122.4, 122.1, 120.0, 115.1, 115.0, 114.5, 110.5, 55.4, 52.3, 31.6; 

ATR-IR ν 2924 (w), 1728 (w), 1619 (s), 1586 (s), 1512 (s), 1465 (m), 1244 (s), 728 (s); HRMS (ESI) 

calcd for C24H20ClN2O2
+
 [M+H]

+
 403.1208; found 403.1209. 

 

5-(4-Methoxybenzyl)-8,10-dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286n) 

 

Yield: 29.4 mg (77%), yellow solid; mp: 242 – 244 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.69 (dd, J = 

8.1, 1.7 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.58 (ddd, J = 8.6, 6.9, 1.7 Hz, 1H), 7.45 (d, J = 8.6 Hz, 

1H), 7.33 (ddd, J = 7.9, 6.8, 1.0 Hz, 1H), 7.26 (s, 1H), 7.21 – 7.09 (m, 2H), 6.95 – 6.80 (m, 3H), 5.87 
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(s, 2H), 4.43 (s, 3H), 3.76 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.8, 159.3, 141.0, 140.2, 138.2, 

131.6, 131.5, 127.8, 127.1, 126.7, 125.3, 123.0, 122.1, 121.7, 121.4, 114.9, 114.8, 113.1, 110.1, 55.4, 

52.1, 31.6, 22.3; ATR-IR ν 2955 (w), 2925 (w), 1619 (s), 1590 (s), 1513 (s), 1465 (m), 1287 (m), 

1249 (s), 1175 (m), 758 (m), 733 (m), 733 (m); HRMS (ESI) calcd for C25H23N2O2
+
 [M+H]

+
 

383.1754; found 383.1756. 

 

8-Methoxy-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286o) 

 

Yield: 19.9 mg (50%), yellow solid; mp: 232 – 234 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.68 (dd, J = 

8.1, 1.7 Hz, 1H), 7.63 (d, J = 9.1 Hz, 1H), 7.57 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 7.44 (d, J = 8.6 Hz, 

1H), 7.36 – 7.30 (m, 1H), 7.20 – 7.08 (m, 2H), 6.91 – 6.84 (m, 2H), 6.80 (d, J = 2.3 Hz, 1H), 6.71 (dd, 

J = 9.0, 2.3 Hz, 1H), 5.83 (s, 2H), 4.41 (s, 3H), 3.91 (s, 3H), 3.77 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 169.0, 160.4, 159.3, 142.2, 140.1, 132.0, 131.4, 127.6, 127.1, 126.7, 125.4, 123.6, 122.8, 

121.4, 114.9, 114.7, 110.8, 109.4, 92.0, 55.7, 55.4, 52.1, 31.7; ATR-IR ν 2933 (w), 2833 (w), 1612 

(s), 1588 (s), 1587 (s), 1516 (s), 1459 (s), 1247 (s), 1035 (s), 823 (s), 761 (s); HRMS (ESI) calcd for 

C25H23N2O3
+
 [M+H]

+
 399.1703; found 399.1701. 

 

5-(4-Methoxybenzyl)-7,10-dimethyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286q) 

 

Yield: 30.2 mg (80%), yellow solid; mp: 206 – 208 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.69 (dd, J = 

8.1, 1.7 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.35 – 7.30 

(m, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.92 – 6.77 (m, 2H), 5.88 (s, 2H), 4.42 (s, 3H), 3.77 (s, 3H), 2.37 (s, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 170.0, 159.3, 140.4, 139.0, 131.6, 131.0, 129.4, 128.9, 127.9, 

127.2, 126.8, 125.1, 123.4, 121.8, 121.3, 115.3, 114.9, 114.8, 110.1, 55.4, 52.1, 31.7, 21.8; ATR-IR ν 

2931 (w), 2924 (w), 1622 (s), 1592 (s), 1515 (s), 1468 (m), 1288 (m), 1249 (m); HRMS (ESI) calcd 

for C25H23N2O2
+
 [M+H]

+
 383.1754; found 383.1752. 

 

7-Methoxy-5-(4-methoxybenzyl)-10-methyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286r) 



260 

 

 

Yield: 25.1 mg (63%), yellow-brown solid; mp: 183 – 185 ºC; Yield: 25.1 mg (63%), yellow-brown 

solid; mp: 183 – 185 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.85 – 8.29 (m, 1H), 7.59 (ddd, J = 8.5, 6.8, 1.6 

Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.40 – 7.30 (m, 2H), 7.23 – 7.12 (m, 4H), 6.89 (d, J = 8.6 Hz, 2H), 

5.85 (s, 2H), 4.40 (s, 3H), 3.77 (s, 3H), 3.63 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 170.1, 159.3, 

153.6, 140.6, 136.1, 131.7, 130.9, 127.9, 127.0, 126.8, 125.0, 123.8, 121.3, 118.3, 114.9 (2C), 114.7, 

111.2, 103.9, 55.9, 55.4, 52.1, 31.7; ATR-IR ν 2960 (w), 2934 (w), 1623 (m), 1585 (s), 1518 (s), 1245 

(s), 1236 (s), 1030 (s), 806 (m), 756 (s); HRMS (ESI) calcd for C25H23N2O3
+
 [M+H]

+
 399.1703; found 

399.1696. 

 

5-Benzyl-10-propyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286u) 

 

Yield: 14.3 mg (39%), yellow solid; mp: 136 – 138 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.70 (dd, J = 

8.1, 1.6 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.50 – 7.43 

(m, 2H), 7.39 – 7.24 (m, 6H), 7.04 (t, J = 7.7 Hz, 1H), 5.96 (s, 2H), 4.92 (t, J = 7.5 Hz, 2H), 1.98 (h, J 

= 7.3 Hz, 2H), 1.02 (t, J = 7.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.7, 140.5, 139.7, 136.0, 

131.7, 131.5, 129.5, 128.0, 127.4, 126.9, 125.9, 125.3, 122.9, 122.5, 121.5, 119.5, 115.3, 114.9, 110.8, 

52.8, 46.4, 24.3, 11.5; ATR-IR ν 2960 (w), 2928 (w), 1619 (m), 1590 (s), 1514 (m), 1460 (m), 1287 

(m), 732 (s), 705 (m), 699 (m); HRMS (ESI) calcd for C25H23N2O
+
 [M+H]

+
 367.1805; found 

367.1803. 

 

10-Allyl-5-benzyl-5,10-dihydro-11H-indolo[3,2-b]quinolin-11-one (1.286v) 

 

Yield: 14.9 mg (41%), yellow solid; mp: 144 – 146 ºC; 
1
H NMR (400 MHz, CDCl3) δ 8.79 – 8.47 (m, 

1H), 7.84 – 7.73 (m, 1H), 7.65 – 7.55 (m, 1H), 7.53 – 7.42 (m, 3H), 7.40 – 7.27 (m, 6H), 7.10 – 7.00 

(m, 1H), 6.21 – 6.07 (m, 1H), 5.97 (s, 2H), 5.78 – 5.54 (m, 2H), 5.14 (ddt, J = 10.1, 3.6, 1.4 Hz, 1H), 
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5.03 (ddt, J = 17.2, 3.6, 1.5 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 169.8, 140.5, 139.8, 135.9, 

134.3, 131.8, 131.7, 129.5, 128.1, 127.6, 126.9, 125.9, 125.3, 122.6, 122.5, 121.6, 119.9, 116.3, 115.6, 

114.9, 111.0, 52.8, 47.0; ATR-IR ν 2925 (w), 1620 (s), 1591 (s), 1514 (m), 1459 (m), 1387 (m), 1288 

(m), 735 (s); HRMS (ESI) calcd for C25H21N2O
+
 [M+H]

+
 365.1648; found 365.1648.   
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3.4. Copper-Catalyzed Cyanoalkylative Cycloetherification of Alkenes to 1,3-

Dihydroisobenzofurans 

3.4.1. Preparation of starting materials 2.193 

Compound 2.193a was prepared according to the reported procedure:
156 

 

 

Compounds 2.193b-m were prepared in 2 steps according to the following general procedure:
161

 

 

Step 1: In the glovebox, Pd2(dba)3 and dppf were dissolved in THF (0.2 M) in a sealed tube. After 

stirring for 10 min at room temperature, phenol triflate 2.197 (1.0 equiv), styrene 2.198 (2.0 equiv) and 

urotropine (2.0 equiv) were successively added. The reaction mixture was heated to 90 
o
C and stirred 

overnight. After quenching with water, the reaction mixture was extracted with ethyl acetate. The 

combined organic phases were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography on silica gel (ethyl 

acetate/petroleum ether 1/30) to give the corresponding 2-vinylbenzoate 2.199. 

Step 2: To a solution of 2-vinylbenzoate 2.199 (1.0 equiv) in THF (0.1 M) was added dropwise at – 78 

o
C a solution of AlHiBu2 in toluene (1.4 M, 2.5 equiv). The reaction mixture was stirred at this 

temperature for 1 h and then warmed up to 0 
o
C. After stirring for 3 h, the reaction mixture was 

quenched by methanol at – 78 
o
C, then warmed up to room temperature and extracted with ethyl 

acetate. The combined organic phases were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel 

(ethyl acetate/petroleum ether 1/10) to give the corresponding compound 2.193b-m. 

 

Compound 2.193r was prepared from 2-(1-phenylvinyl)benzoate according to the following 

procedure: 
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To a solution of methyl 2-(1-phenylvinyl)benzoate (2.200) (170 mg, 0.71 mmol) in THF (0.1 M) was 

added dropwise at – 78 
o
C a solution of MeLi in THF (1.5 M, 1.2 mL). The reaction mixture was 

stirred at this temperature for 1 h and then slowly warmed up to room temperature. After stirring 

overnight, the reaction mixture was quenched with an aqueous NH4Cl solution, extracted with ethyl 

acetate. The combined organic phases were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel 

(ethyl acetate/petroleum ether 1/50) to give compound 2.193r as a colorless oil (121 mg, 71% yield). 

 

Characterization Data of Compounds 2.193 

(2-(prop-1-en-2-yl)phenyl)methanol (2.193a) 

 

Colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.49 – 7.40 (m, 1H), 7.30 – 7.23 (m, 2H), 7.19 – 7.10 

(m, 1H), 5.26 (p, J = 1.7 Hz, 1H), 4.90 (d, J = 1.7 Hz, 1H), 4.70 (s, 2H), 2.08 (s, 3H), 1.70 (s, 1H); 
13

C 

NMR (101 MHz, CDCl3) δ 144.9, 143.2, 137.5, 128.3, 128.2, 127.7, 127.4, 115.6, 63.4, 25.2; ATR-

IR ν 3334 (w), 3316 (w), 3304 (w), 1436 (w), 1195 (w), 1006 (m), 901 (m), 762 (s); HRMS (ESI) 

calcd for C10H12O [M+] 148.0883; found 148.0882. 

 

(2-(oct-1-en-2-yl)phenyl)methanol (2.193b) 

 

Colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 7.2, 1.8 Hz, 1H), 7.33 – 7.23 (m, 2H), 7.12 

(dd, J = 7.2, 1.8 Hz, 1H), 5.21 (q, J = 1.7 Hz, 1H), 4.91 (d, J = 2.1 Hz, 1H), 4.68 (s, 2H), 2.35 (t, J = 

7.6 Hz, 2H), 1.43 – 1.19 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 149.4, 

142.6, 137.8, 128.6, 128.3, 127.5, 127.3, 114.4, 63.3, 38.5, 31.8, 29.2, 27.9, 22.8, 14.2; ATR-IR ν 

3310 (w), 2956 (w), 2927 (m), 2856 (w), 2855 (w), 1458 (w), 1034 (m), 1008 (m), 902 (m), 762 (s), 

727 (m); HRMS (ESI) calcd for C15H22O [M+] 218.1665; found 218.1668. 



264 

 

 

3-(2-(hydroxymethyl)phenyl)but-3-en-1-ol (2.193c) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.50 – 7.41 (m, 1H), 7.29 – 7.21 (m, 2H), 7.16 – 7.10 

(m, 1H), 5.29 (q, J = 1.4 Hz, 1H), 4.96 (d, J = 1.9 Hz, 1H), 4.63 (s, 2H), 3.55 (t, J = 6.7 Hz, 2H), 2.62 

(td, J = 6.8, 1.4 Hz, 2H); 
13

C NMR (101 MHz, CD3OD) δ 146.9, 142.8, 139.3, 129.6, 129.2, 128.2, 

128.2, 116.8, 62.8, 60.8, 42.5; ATR-IR ν 3319 (w), 2933 (w), 2884 (w), 1446 (w), 1427 (w), 1197 

(w), 1042 (m), 1016 (s), 761 (s); HRMS (ESI) calcd for C11H14NaO2
+
 [M+Na]

+
 201.0886; found 

201.0886. 

 

(2-(4-(benzyloxy)but-1-en-2-yl)phenyl)methanol (2.193d) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.45 – 7.39 (m, 1H), 7.36 – 7.21 (m, 7H), 7.16 – 7.10 

(m, 1H), 5.33 (q, J = 1.5 Hz, 1H), 5.04 (d, J = 1.8 Hz, 1H), 4.68 (s, 2H), 4.43 (s, 2H), 3.50 (t, J = 6.1 

Hz, 2H), 2.73 (t, J = 6.1 Hz, 2H); 
13

C NMR (101 MHz, CD3OD) δ 145.4, 141.5, 138.5, 138.0, 129.4, 

128.5, 128.4, 127.9, 127.8, 127.6, 127.5, 116.8, 72.8, 67.9, 63.3, 38.6; ATR-IR ν 3382 (w), 2914 (w), 

2864 (w), 1454 (m), 1362 (w), 1096 (m), 1095 (m), 1078 (m), 1029 (m), 1007 (m), 736 (s), 698 (s); 

HRMS (ESI) calcd for C18H20NaO2
+
 [M+Na]

+
 291.1355; found 291.1355. 

 

(2-(1-phenylvinyl)phenyl)methanol (2.193e) 

 

Colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.49 (dd, J = 7.5, 1.5 Hz, 1H), 7.40 – 7.24 (m, 8H), 5.80 

(d, J = 1.3 Hz, 1H), 5.25 (d, J = 1.4 Hz, 1H), 4.43 (s, 2H); 
13

C NMR (101 MHz, CDCl3) δ 148.5, 

140.8, 140.6, 138.8, 130.4, 128.7, 128.24, 128.20, 128.1, 127.8, 126.7, 115.8, 63.4; ATR-IR ν 3422 

(w), 3416 (w), 3058 (w), 3026 (w), 2924 (w), 1493 (w), 1446 (w), 1026 (m), 757 (s), 700 (s); HRMS 

(ESI) calcd for C15H14O [M+] 210.1039; found 210.1042. 
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(2-(1-(p-tolyl)vinyl)phenyl)methanol (2.193f) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.54 (dd, J = 7.7, 1.1 Hz, 1H), 7.36 (td, J = 7.6, 1.4 Hz, 

1H), 7.28 (td, J = 7.5, 1.5 Hz, 1H), 7.17 – 7.08 (m, 5H), 5.76 (d, J = 1.4 Hz, 1H), 5.12 (d, J = 1.4 Hz, 

1H), 4.37 (s, 2H), 2.31 (s, 3H); 
13

C NMR (101 MHz, CD3OD) δ 149.8, 141.6, 140.4, 139.1, 138.8, 

130.8, 130.1, 128.7, 128.0, 127.9, 127.5, 114.7, 62.6, 21.1; ATR-IR ν 3325 (w), 2921 (w), 2886 (w), 

2864 (w), 1510 (m), 1035 (m), 1019 (m), 826 (s), 770 (s), 735 (m); HRMS (ESI) calcd for C16H16O 

[M+] 224.1196; found 224.1200. 

 

(2-(1-(4-methoxyphenyl)vinyl)phenyl)methanol (2.193g) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.55 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (td, J = 7.5, 1.5 Hz, 

1H), 7.28 (td, J = 7.5, 1.4 Hz, 1H), 7.19 – 7.15 (m, 3H), 6.83 (d, J = 8.9 Hz, 2H), 5.70 (d, J = 1.4 Hz, 

1H), 5.06 (d, J = 1.5 Hz, 1H), 4.38 (s, 2H), 3.77 (s, 3H); 
13

C NMR (101 MHz, CD3OD) δ 161.0, 

149.3, 141.7, 140.4, 134.4, 130.8, 128.74, 128.69, 127.98, 127.96, 114.8, 113.6, 62.6, 55.7; ATR-IR ν 

3364 (w), 2934 (w), 2836 (w), 1509 (s), 1249 (s), 1180 (m), 1033 (s), 837 (s), 773 (m); HRMS (ESI) 

calcd for C16H16NaO2
+
 [M+Na]

+
 263.1042; found 263.1043. 

 

(2-(1-(4-fluorophenyl)vinyl)phenyl)methanol (2.193h) 

 

Colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 7.6, 1.6 Hz, 1H), 7.38 (td, J = 7.5, 1.6 Hz, 

1H), 7.32 (td, J = 7.4, 1.5 Hz, 1H), 7.25 – 7.21 (m, 3H), 6.97 (t, J = 8.7 Hz, 2H), 5.73 (d, J = 1.1 Hz, 
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1H), 5.22 (d, J = 1.1 Hz, 1H), 4.43 (s, 2H); 
13

C NMR (101 MHz, CDCl3) δ 162.7 (d, J = 247.7 Hz), 

147.4, 140.3, 138.7, 136.8 (d, J = 3.3 Hz), 130.3, 128.4 (d, J = 8.1 Hz), 128.3, 128.1, 127.8, 115.5 (d, J 

= 21.4 Hz), 115.5, 63.3; ATR-IR ν 3335 (w), 2953 (w), 2926 (w), 2898 (w), 2889 (w), 1508 (s), 1225 

(m), 1161 (m), 842 (s), 773 (m); HRMS (ESI) calcd for C15H13FO [M+] 228.0945; found 228.0949. 

 

(4-methyl-2-(1-(p-tolyl)vinyl)phenyl)methanol (2.193i) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.41 (d, J = 7.8 Hz, 1H), 7.18 (dd, J = 7.9, 1.7 Hz, 1H), 

7.14 – 7.07 (m, 4H), 6.98 (d, J = 1.8 Hz, 1H), 5.73 (d, J = 1.5 Hz, 1H), 5.10 (d, J = 1.5 Hz, 1H), 4.33 

(s, 2H), 2.33 (s, 3H), 2.31 (s, 3H); 
13

C NMR (101 MHz, CD3OD) δ 149.8, 141.6, 139.2, 138.7, 137.7, 

137.3, 131.5, 130.0, 129.3, 128.3, 127.5, 114.5, 62.6, 21.13, 21.10; ATR-IR ν 3383 (w), 2920 (w), 

2864 (w), 1510 (w), 1206 (w), 1185 (w), 1035 (m), 1018 (s), 815 (s); HRMS (ESI) calcd for C17H18O 

[M+] 238.1352; found 238.1353. 

 

(4-chloro-2-(1-(p-tolyl)vinyl)phenyl)methanol (2.193j) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.53 (d, J = 8.3 Hz, 1H), 7.37 (dd, J = 8.3, 2.2 Hz, 1H), 

7.18 – 7.08 (m, 5H), 5.79 (d, J = 1.1 Hz, 1H), 5.15 (d, J = 1.2 Hz, 1H), 4.33 (s, 2H), 2.32 (s, 3H); 

13
C NMR (101 MHz, CD3OD) δ 148.5, 143.3, 139.4, 139.2, 138.3, 133.6, 130.5, 130.2, 129.6, 128.7, 

127.39, 115.5, 62.0, 21.2; ATR-IR ν 3312 (w), 3312 (w), 2921 (w), 2864 (w), 1511 (w), 1039 (m), 

879 (m), 825 (s); HRMS (ESI) calcd for C16H15ClO [M+] 258.0806; found 258.0807. 

 

(5-methyl-2-(1-(p-tolyl)vinyl)phenyl)methanol (2.193k) 
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Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.36 (d, J = 1.8 Hz, 1H), 7.17 – 7.00 (m, 6H), 5.72 (d, J 

= 1.4 Hz, 1H), 5.10 (d, J = 1.4 Hz, 1H), 4.33 (s, 2H), 2.38 (s, 3H), 2.30 (s, 3H); 
13

C NMR (101 MHz, 

CD3OD) δ 149.7, 140.1, 139.3, 138.74, 138.70, 138.4, 130.9, 130.0, 128.7, 128.6, 127.5, 114.6, 62.7, 

21.4, 21.1; ATR-IR ν 3391 (w), 2920 (w), 2863 (w), 2862 (w), 1511 (w), 1033 (m), 1032 (m), 1018 

(s), 818 (s); HRMS (ESI) calcd for C17H18O [M+] 238.1352; found 238.1354. 

 

(5-bromo-2-(1-(4-fluorophenyl)vinyl)phenyl)methanol (2.193l) 

 

Colorless oil; 
1
H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 2.1 Hz, 1H), 7.45 (dd, J = 8.1, 2.2 Hz, 1H), 

7.26 (dd, J = 8.9, 5.4 Hz, 2H), 7.09 (d, J = 8.1 Hz, 1H), 7.03 (t, J = 8.8 Hz, 2H), 5.79 (d, J = 1.0 Hz, 

1H), 5.19 (d, J = 1.0 Hz, 1H), 4.33 (s, 2H); 
13

C NMR (101 MHz, CD3OD) δ 164.0 (d, J = 246.4 Hz), 

147.7, 143.2, 140.0, 137.7 (d, J = 3.3 Hz), 132.6, 131.0, 130.9, 129.5 (d, J = 8.2 Hz), 122.9, 116.3 (d, J 

= 22.1 Hz), 116.3, 62.0; ATR-IR ν 3309 (w), 2926 (w), 2855 (w), 1507 (s), 1225 (m), 1160 (m), 1037 

(m), 1014 (m), 842 (s), 825 (s); HRMS (ESI) calcd for C15H12BrFO [M+] 306.0050; found 306.0054. 

 

(5-nitro-2-(1-(p-tolyl)vinyl)phenyl)methanol (2.193m) 

 

Yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 8.44 (d, J = 2.4 Hz, 1H), 8.16 (dd, J = 8.3, 2.4 Hz, 1H), 

7.41 (d, J = 8.3 Hz, 1H), 7.15 – 7.08 (m, 4H), 5.84 (d, J = 0.8 Hz, 1H), 5.22 (d, J = 0.8 Hz, 1H), 4.50 

(s, 2H), 2.35 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 147.9, 147.0, 146.6, 141.0, 138.8, 136.4, 131.1, 

129.6, 126.4, 122.6, 122.5, 116.0, 62.2, 21.3; ATR-IR ν 3324 (w), 2951 (w), 2924 (w), 2856 (w), 



268 

 

1519 (s), 1344 (s), 1039 (w), 905 (w), 827 (m); HRMS (ESI) calcd for C16H15NO3 [M+] 269.1046; 

found 269.1049. 

 

2-(2-(1-phenylvinyl)phenyl)propan-2-ol (2.193r) 

 

Colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.52 (dd, J = 7.9, 1.4 Hz, 1H), 7.34 – 7.24 (m, 7H), 7.11 

(dd, J = 7.5, 1.5 Hz, 1H), 5.87 (d, J = 1.3 Hz, 1H), 5.23 (d, J = 1.3 Hz, 1H), 1.49 (s, 6H); 
13

C NMR 

(101 MHz, CDCl3) δ 151.6, 146.7, 141.1, 138.5, 132.6, 128.5, 127.9, 127.6, 126.7, 126.6, 126.5, 

114.4, 74.4, 32.5; ATR-IR ν 3432 (w), 2972 (w), 2929 (w), 1494 (w), 1363 (w), 1166 (w), 902 (m), 

783 (m), 761 (s), 712 (s); HRMS (ESI) calcd for C17H18O [M+] 238.1352; found 238.1354. 

 

3.4.2. Substrate scope for copper-catalyzed cyanoalkylative cycloetherification 

 

In the glovebox, alkene 2.193 (0.1 mmol, 1 equiv), Cu(BF4)2.6H2O (30 mol%), bathophenanthroline 

(60 mol%), BnOH (120 mol%), and K3PO4 (25 mol%) were dissolved in degassed R
4
CH2CN/MeOH 

(v/v 7/3, 0.067 M) in a sealed tube. DTBP (4 equiv) was then added and the tube was sealed and 

heated to 100 
o
C. After 18 h, the reaction mixture was cooled down to room temperature, diluted with 

water, extracted with EtOAc. The combined organic layers were washed with brine, dried over 

MgSO4, filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica gel (petroleum ether/ethyl acetate) to give compound 2.194. 

 

Characterization Data of Compounds 2.194 

3-(1-Methyl-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194a) 
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Yield: 12.2 mg (65%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.20 

(m, 1H), 7.10 – 7.06 (m, 1H), 5.11 (d, J = 12.5 Hz, 1H), 5.05 (d, J = 12.5 Hz, 1H), 2.34 (ddd, J = 16.1, 

10.0, 5.7 Hz, 1H), 2.24 (ddd, J = 13.6, 9.9, 5.7 Hz, 1H), 2.14 (ddd, J = 13.7, 9.9, 5.1 Hz, 1H), 2.10 – 

1.99 (m, 1H), 1.49 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.1, 139.1, 128.3, 128.0, 121.5, 120.9, 

120.1, 87.1, 72.0, 37.1, 27.5, 12.4; ATR-IR ν 2970 (w), 2928 (w), 2856 (w), 2247 (w), 1454 (w), 1359 

(w), 1031 (s), 1019 (s), 763 (s), 726 (s); HRMS (ESI) calcd for C12H12NO [M+] 186.0913; found 

186.0916. 

 

3-(1-Hexyl-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194b) 

 

Yield: 16.1 mg (63%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.23 – 7.18 (m, 2H), 7.13 – 7.07 

(m, 1H), 6.99 – 6.91 (m, 1H), 4.99 (s, 2H), 2.26 – 2.09 (m, 2H), 2.07 – 1.96 (m, 1H), 1.86 (ddd, J = 

17.0, 10.6, 5.1 Hz, 1H), 1.75 – 1.58 (m, 2H), 1.20 – 1.05 (m, 7H), 0.90 – 0.82 (m, 1H), 0.73 (t, J = 6.8 

Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 141.5, 139.9, 128.2, 128.0, 121.3, 121.2, 120.2, 90.1, 73.2, 

41.3, 36.5, 31.8, 29.6, 23.6, 22.7, 14.2, 12.2; ATR-IR ν 2929 (m), 2929 (m), 2929 (m), 2856 (w), 

2248 (w), 1463 (m), 999 (s), 756 (s), 701 (m); HRMS (ESI) calcd for C17H23NNaO
+
 [M+Na]

+
 

280.1672; found 280.1670. 

 

3-(1-(2-Hydroxyethyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194c) 

 

Yield: 10.6 mg (52%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.27 – 7.25 

(m, 1H), 7.09 – 7.04 (m, 1H), 5.16 (d, J = 12.4 Hz, 1H), 5.13 (d, J = 12.4 Hz, 1H), 3.67 (ddd, J = 11.4, 

6.8, 4.8 Hz, 1H), 3.58 (ddd, J = 11.4, 6.8, 4.8 Hz, 1H), 2.43 – 2.23 (m, 1H), 2.18 – 1.95 (m, 4H), 1.64 

(broad, s, 1H); 
13

C NMR (101 MHz, CDCl3) δ 140.9, 139.3, 128.8, 128.4, 121.7, 121.1, 119.8, 90.6, 

73.0, 59.3, 42.2, 36.2, 12.1; ATR-IR ν 3423 (w), 2952 (w), 2923 (w), 2912 (w), 1028 (s), 1018 (s), 

761 (s), 726 (m); HRMS (ESI) calcd for C13H15NNaO2
+
 [M+Na]

+
 240.0995; found 240.0994. 



270 

 

 

3-(1-(2-Hydroxyethyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194d) 

 

Yield: 15.3 mg (49%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.37 – 7.23 (m, 5H), 7.23 – 7.17 

(m, 3H), 7.12 – 7.03 (m, 1H), 5.08 (d, J = 12.5 Hz, 1H), 5.04 (d, J = 12.5 Hz, 1H), 4.39 (d, J = 11.8 

Hz, 1H), 4.35 (d, J = 11.8 Hz, 1H), 3.53 (ddd, J = 9.4, 7.3, 6.1 Hz, 1H), 3.33 (ddd, J = 9.4, 7.3, 6.3 Hz, 

1H), 2.38 – 2.22 (m, 2H), 2.22 – 2.07 (m, 3H), 1.98 (ddd, J = 14.6, 11.0, 4.8 Hz, 1H); 
13

C NMR (101 

MHz, CDCl3) δ 141.0, 139.5, 138.2, 128.5, 128.4, 128.1, 127.8, 127.7, 121.5, 121.4, 120.0, 88.8, 73.2, 

72.9, 66.2, 40.6, 36.6, 12.1; ATR-IR ν 2925 (w), 2856 (w), 2246 (w), 1456 (m), 1367 (m), 1366 (m), 

1102 (s), 1027 (s), 730 (s), 699 (s); HRMS (ESI) calcd for C20H21NNaO2
+
 [M+Na]

+
 330.1464; found 

330.1464. 

 

3-(1-Phenyl-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194e) 

 

Yield: 14.6 mg (58%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.53 – 7.44 (m, 2H), 7.39 – 7.15 (m, 

7H), 5.20 (d, J = 12.5 Hz, 1H), 5.15 (d, J = 12.5 Hz, 1H), 2.59 (ddd, J = 13.9, 10.2, 5.9 Hz, 1H), 2.47 

(ddd, J = 14.0, 9.6, 5.7 Hz, 1H), 2.37 – 2.13 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 143.5, 142.4, 

139.2, 128.7, 128.4, 128.0, 127.7, 125.0, 121.9, 121.6, 120.0, 89.9, 72.2, 37.3, 12.7; ATR-IR ν 2929 

(w), 2928 (w), 2853 (w), 2853 (w), 2247 (w), 1459 (w), 1446 (w), 1018 (m), 753 (s), 753 (s), 725 (s), 

700 (s); HRMS (ESI) calcd for C17H15NNaO
+
 [M+Na]

+
 272.1046; found 272.1048. 

 

3-(1-(p-Tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194f) 

 

Yield: 20.0 mg (76%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.36 (d, J = 8.2 Hz, 2H), 7.33 – 

7.27 (m, 3H), 7.24 – 7.19 (m, 1H), 7.15 (d, J = 8.2 Hz, 2H), 5.19 (d, J = 12.5 Hz, 1H), 5.15 (d, J = 
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12.5 Hz, 1H), 2.58 (ddd, J = 13.9, 10.4, 5.7 Hz, 1H), 2.46 (ddd, J = 13.9, 9.8, 5.6 Hz, 1H), 2.37 – 2.17 

(m, 2H), 2.32 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 142.6, 140.6, 139.1, 137.4, 129.4, 128.3, 128.0, 

124.9, 121.8, 121.6, 120.0, 89.9, 72.2, 37.2, 21.1, 12.7; ATR-IR ν 2953 (w), 2945 (w), 2923 (w), 2858 

(w), 2247 (w), 1509 (w), 1459 (w), 1017 (s), 817 (s), 758 (s), 732 (s); HRMS (ESI) calcd for 

C18H17NNaO
+
 [M+Na]

+
 286.1202; found 286.1205. 

 

3-(1-(4-Methoxyphenyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194g) 

 

Yield: 22.9 mg (82%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.8 Hz, 2H), 7.32 – 

7.27 (m, 3H), 7.23 – 7.19 (m, 1H), 6.86 (d, J = 8.8 Hz, 2H), 5.18 (d, J = 12.5 Hz, 1H), 5.13 (d, J = 

12.5 Hz, 1H), 3.78 (s, 3H), 2.58 (ddd, J = 13.8, 10.4, 5.6 Hz, 1H), 2.45 (ddd, J = 13.8, 9.9, 5.4 Hz, 

1H), 2.37 – 2.14 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 159.1, 142.6, 139.2, 135.6, 128.3, 128.0, 

126.3, 121.8, 121.6, 120.0, 114.1, 89.7, 72.1, 55.4, 37.2, 12.7; ATR-IR ν 2952 (w), 2932 (w), 2839 

(w), 2246 (w), 1509 (s), 1248 (s), 1029 (s), 830 (s), 760 (s), 735 (s); HRMS (ESI) calcd for 

C18H17NNaO2
+
 [M+Na]

+
 302.1151; found 302.1163. 

 

3-(1-(4-Fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194h) 

 

Yield: 13.9 mg (52%), white solid, mp: 123 – 124 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.49 – 7.40 (m, 

2H), 7.36 – 7.28 (m, 3H), 7.25 – 7.22 (m, 1H), 7.09 – 6.92 (m, 2H), 5.19 (d, J = 12.5 Hz, 1H), 5.14 (d, 

J = 12.5 Hz, 1H), 2.56 (ddd, J = 13.9, 10.2, 5.9 Hz, 1H), 2.46 (ddd, J = 14.0, 9.6, 5.6 Hz, 1H), 2.38 – 

2.12 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 162.3 (d, J = 246.5 Hz), 142.0, 139.4 (d, J = 3.1 Hz), 

139.2, 128.5, 128.1, 126.8 (d, J = 8.0 Hz), 121.8, 121.7, 119.8, 115.6 (d, J = 21.4 Hz), 89.6, 72.2, 37.3, 

12.7; ATR-IR ν 2934 (w), 2933 (w), 2932 (w), 2916 (w), 2863 (w), 2241 (w), 1506 (s), 1219 (m), 

1158 (m), 1009 (s), 832 (s), 767 (s), 738 (s); HRMS (ESI) calcd for C17H14FNNaO
+
 [M+Na]

+
 

290.0952; found 290.0957. 
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3-(6-Methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194i) 

 

Yield: 21.0 mg (76%), white solid, mp: 61 – 63 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.36 (d, J = 8.2 

Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.10 – 7.08 (m, 3H), 5.16 (d, J = 12.5 Hz, 1H), 5.12 (d, J = 12.5 Hz, 

1H), 2.57 (ddd, J = 13.8, 10.6, 5.6 Hz, 1H), 2.45 (ddd, J = 13.8, 10.1, 5.3 Hz, 1H), 2.38 (s, 3H), 2.37 – 

2.18 (m, 2H), 2.32 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 142.8, 140.8, 137.8, 137.3, 136.2, 129.4, 

129.2, 124.9, 122.3, 121.2, 120.1, 89.8, 72.1, 37.1, 21.6, 21.1, 12.7; ATR-IR ν 2955 (w), 2954 (w), 

2920 (w), 2920 (w), 2853 (w), 2251 (w), 1437 (w), 1356 (w), 1270 (w), 1022 (s), 1011 (s), 821 (s); 

HRMS (ESI) calcd for C19H19NNaO
+
 [M+Na]

+
 300.1359; found 300.1365. 

 

3-(6-Chloro-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194j) 

 

Yield: 24.0 mg (81%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.2 Hz, 2H), 7.28 – 

7.24 (m, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.14 (dd, J = 7.8, 0.9 Hz, 1H), 5.16 (d, J = 12.6 Hz, 1H), 5.13 

(d, J = 12.6 Hz, 1H), 2.56 (ddd, J = 13.9, 9.4, 6.6 Hz, 1H), 2.42 (ddd, J = 13.9, 8.4, 6.9 Hz, 1H), 2.33 – 

2.23 (m, 2H), 2.30 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.9, 139.8, 137.8, 137.5, 133.9, 129.6, 

128.6, 124.8, 122.8, 122.1, 119.8, 89.8, 71.8, 37.0, 21.1, 12.7; ATR-IR ν 2955 (w), 2926 (w), 2925 

(w), 2870 (w), 2245 (w), 1510 (w), 1476 (w), 1030 (s), 817 (s); HRMS (ESI) calcd for 

C18H16ClNNaO
+
 [M+Na]

+
 320.0813; found 320.0817. 

 

3-(5-Methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194k) 

 

Yield: 22.1 mg (80%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 8.2 Hz, 2H), 7.20 (d, 

J = 7.8 Hz, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.13 – 7.10 (m, 1H), 7.02 (s, 1H), 5.16 (d, J = 12.5 Hz, 1H), 
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5.11 (d, J = 12.5 Hz, 1H), 2.56 (ddd, J = 13.8, 10.4, 5.7 Hz, 1H), 2.44 (ddd, J = 13.8, 9.9, 5.4 Hz, 1H), 

2.35 (s, 3H), 2.30 (s, 3H), 2.33 – 2.19 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 140.9, 139.7, 139.5, 

138.3, 137.3, 129.4, 128.8, 124.9, 122.0, 121.5, 120.1, 89.7, 72.0, 37.2, 21.4, 21.1, 12.7; ATR-IR ν 

2946 (w), 2945 (w), 2924 (w), 2859 (w), 2247 (w), 1511 (w), 1441 (w), 1028 (s), 1027 (s), 1017 (s), 

815 (s); HRMS (ESI) calcd for C19H19NNaO
+
 [M+Na]

+
 300.1359; found 300.1363. 

 

3-(5-Bromo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194l) 

 

Yield: 24.4 mg (71%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.49 – 7.44 (m, 1H), 7.43 – 7.37 (m, 

3H), 7.18 (d, J = 8.1 Hz, 1H), 7.06 – 6.99 (m, 2H), 5.16 (d, J = 12.9 Hz, 1H), 5.09 (d, J = 12.9 Hz, 

1H), 2.54 (ddd, J = 13.9, 9.9, 6.0 Hz, 1H), 2.42 (ddd, J = 13.9, 9.1, 5.9 Hz, 1H), 2.35 – 2.20 (m, 2H); 

13
C NMR (101 MHz, CDCl3) δ 162.4 (d, J = 247.0 Hz), 141.5, 141.3, 138.7 (d, J = 3.2 Hz), 131.3, 

126.7 (d, J = 8.1 Hz), 125.1, 123.3, 122.6, 119.6, 115.7 (d, J = 21.4 Hz), 89.5, 71.5, 37.1, 12.6; ATR-

IR ν 2955 (w), 2925 (w), 2862 (w), 2861 (w), 2243 (w), 1506 (s), 1222 (s), 1024 (s), 845 (s), 817 (s), 

742 (m); HRMS (ESI) calcd for C17H13BrFNNaO
+
 [M+Na]

+
 368.0057; found 368.0058. 

 

3-(5-Nitro-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194m) 

 

Yield: 24.3 mg (79%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.4, 2.0 Hz, 1H), 8.09 

(d, J = 1.8 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 5.28 

(d, J = 13.1 Hz, 1H), 5.21(d, J = 13.1 Hz, 1H), 2.62 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.47 (ddd, J = 

14.0, 9.1, 6.3 Hz, 1H), 2.32 (s, 3H), 2.34 – 2.30 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 149.8, 

148.6, 140.9, 138.7, 138.2, 129.8, 124.8, 124.0, 122.6, 119.5, 117.4, 89.8, 71.4, 36.8, 21.1, 12.6; ATR-

IR ν 2954 (w), 2953 (w), 2925 (w), 2869 (w), 2859 (w), 2858 (w), 2247 (w), 1521 (s), 1345 (s), 1032 

(m), 1018 (m), 816 (s), 729 (m); HRMS (ESI) calcd for C18H16N2NaO3
+
 [M+Na]

+
 331.1053; found 

331.1051. 
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2-Methyl-3-(5-methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194n) 

 

Yield: 21.5 mg (74%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.4 Hz, 1H), 7.37 (d, 

J = 8.2 Hz, 1H), 7.25 (d, J = 7.8 Hz, 0.5H), 7.17 (d, J = 7.8 Hz, 0.5H), 7.15 – 7.07 (m, 3H), 7.02 (s, 

0.5H), 7.01 (s, 0.5H), 5.25 – 5.05 (m, 2H), 2.72 – 2.42 (m, 2H), 2.34 (s, 3H), 2.30 (s, 3H), 2.31 – 2.19 

(m, 1H), 1.29 (d, J = 7.1 Hz, 1.5H), 1.28 (d, J = 7.1 Hz, 1.5H); 
13

C NMR (101 MHz, CDCl3) δ 141.6, 

141.4, 140.1, 140.0, 139.8, 139.3, 138.2, 138.1, 137.14, 137.09, 129.32, 129.27, 128.63, 128.61, 

124.9, 124.8, 123.5, 123.4, 122.2, 122.1, 121.9, 121.5, 90.1, 89.9, 71.9 (2C), 45.6, 45.5, 21.7, 21.4, 

21.4, 21.3, 21.1, 21.0, 19.8, 19.5; ATR-IR ν 2939 (w), 2938 (w), 2921 (w), 2858 (w), 2857 (w), 2852 

(w), 2238 (w), 1510 (w), 1454 (w), 1031 (s), 1018 (s), 819 (s), 813 (s); HRMS (ESI) calcd for 

C20H21NNaO
+
 [M+Na]

+
 314.1515; found 314.1514. 

 

2-((5-Methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)methyl)butanenitrile (2.194o) 

 

Yield: 20.4 mg (67%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.42 – 7.35 (m, 2H), 7.28 (d, J = 

7.8 Hz, 0.5H), 7.19 (d, J = 7.8 Hz, 0.5H), 7.15 – 7.07 (m, 3H), 7.04 (s, 0.5H), 7.02 (s, 0.5H), 5.25 – 

5.09 (m, 2H), 2.64 – 2.52 (m, 1.5H), 2.36 (s, 1.5H), 2.35 (s, 1.5H), 2.31 (s, 3H), 2.40 – 2.22 (m, 1.5H), 

1.68 – 1.58 (m, 2H), 1.02 (t, J = 7.4 Hz, 1.5H), 1.01 (t, J = 7.4 Hz, 1.5H); 
13

C NMR (101 MHz, 

CDCl3) δ 141.6, 141.5, 140.1, 140.0, 139.9, 139.3, 138.2, 138.1, 137.1, 137.0, 129.3, 129.2, 128.63, 

128.59, 124.9, 124.8, 122.6, 122.5, 122.2, 122.1, 121.9, 121.4, 90.2, 89.9, 72.0, 71.9, 43.7 (2C), 29.0, 

28.6, 27.1, 26.6, 21.4, 21.3, 21.1, 21.0, 11.5, 11.4; ATR-IR ν 2967 (w), 2926 (w), 2861 (w), 2237 (w), 

1510 (w), 1459 (w), 1033 (s), 811 (s); HRMS (ESI) calcd for C21H23NNaO
+
 [M+Na]

+
 328.1672; 

found 328.1673. 

 

2-((5-Methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)methyl)pentanenitrile (2.194p) 
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Yield: 21.1 mg (66%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.35 (m, 2H), 7.27 (d, J = 

7.8 Hz, 0.5H), 7.18 (d, J = 7.8 Hz, 0.5H), 7.15 – 7.07 (m, 3H), 7.04 (s, 0.5H), 7.02 (s, 0.5H), 5.25 – 

5.09 (m, 2H), 2.64 – 2.52 (m, 1.5H), 2.45 – 2.38 (m, 0.5H), 2.36 (s, 1.5H), 2.35 (s, 1.5H), 2.31 (s, 3H), 

2.33 – 2.22 (m, 1H), 1.62 – 1.50 (m, 3H), 1.44 – 1.35 (m, 1H), 0.88 (t, J = 7.3 Hz, 1.5H), 0.87 (t, J = 

7.3 Hz, 1.5H); 
13

C NMR (101 MHz, CDCl3) δ 141.6, 141.5, 140.1, 140.0, 139.9, 139.3, 138.2, 138.1, 

137.1, 137.0, 129.3, 129.2, 128.62, 128.6, 125.0, 124.8, 122.8, 122.7, 122.2, 122.1, 121.9, 121.4, 90.2, 

90.0, 72.0, 71.9, 44.0 (2C), 35.8, 35.4, 27.2, 26.8, 21.4, 21.3, 21.1, 21.0, 20.2, 20.1, 13.66, 13.64; 

ATR-IR ν 2959 (w), 2925 (w), 2865 (w), 2237 (w), 1510 (w), 1465 (w), 1458 (w), 1032 (s), 1018 (s), 

820 (s), 813 (s); HRMS (ESI) calcd for C22H25NNaO
+
 [M+Na]

+
 342.1828; found 342.1830. 

 

3-Methoxy-2-((5-methyl-1-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)methyl)propanenitrile (2.194q) 

 

Yield: 21.5 mg (67%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.38 (m, 2H), 7.27 (d, J = 

7.8 Hz, 0.5H), 7.20 (d, J = 7.8 Hz, 0.5H), 7.15 – 7.07 (m, 3H), 7.03 (s, 0.5H), 7.02 (s, 0.5H), 5.24 – 

5.09 (m, 2H), 3.54 – 3.39 (m, 2H), 3.32 (s, 1.5H), 3.31 (s, 1.5H), 2.83 (dtd, J = 7.3, 6.1, 4.6 Hz, 0.5H), 

2.69 (dtd, J = 8.4, 6.1, 4.5 Hz, 0.5H), 2.62 – 2.40 (m, 2H), 2.35 (s, 3H), 2.31 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 141.32, 141.29, 140.0, 139.9, 139.8, 139.3, 138.3, 138.2, 137.2, 137.1, 129.3 129.30, 

128.69, 128.68, 124.92, 124.88, 122.2, 122.1, 121.9, 121.6, 121.3, 121.1, 90.0, 89.8, 72.7, 72.4, 72.0, 

71.9, 59.1 (2C), 40.5, 40.4, 28.3, 28.0, 21.4, 21.3, 21.11, 21.09; ATR-IR ν 2924 (w), 2923 (w), 2880 

(w), 2865 (w), 2864 (w), 2860 (w), 2242 (w), 1448 (s), 1380 (m), 1379 (m), 1348 (s), 1121 (s), 1030 

(s), 1018 (s), 813 (s), 711 (s); HRMS (ESI) calcd for C21H23NNaO2
+
 [M+Na]

+
 344.1621; found 

344.1628. 

 

3-(3,3-Dimethyl-1-phenyl-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.194r) 
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Yield: 8.3 mg (30%), white solid, mp: 63 – 64 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.59 – 7.53 (m, 2H), 

7.40 – 7.30 (m, 5H), 7.26 – 7.22 (m, 1H), 7.15 – 7.09 (m, 1H), 2.62 – 2.48 (m, 1H), 2.38 – 2.19 (m, 

3H), 1.61 (s, 3H), 1.42 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 147.1, 144.7, 141.2, 128.7, 128.6, 

128.0, 127.5, 125.3, 122.3, 121.2, 120.1, 88.3, 85.7, 39.1, 30.0, 29.9, 12.9; ATR-IR ν 974 (w), 2924 

(w), 2867 (w), 2853 (w), 2243 (w), 1440 (w), 1052 (m), 975 (m), 765 (s), 704 (s); HRMS (ESI) calcd 

for C19H19NNaO
+
 [M+Na]

+
 300.1359; found 300.1365. 

 

3.4.3. Synthesis of Cetalopram 

Synthesis of 3-(5-bromo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)propan-1-amine 

(2.203) 

 

To a suspension of LiAlH4 (14 mg, 1 equiv), and AlCl3 (40 mg, 1 equiv) in diethyl ether (c = 0.1 M) 

was added dropwise a solution of 2.194l (102 mg, 1 equiv) in diethyl ether at 0 
o
C. The stirring was 

continued at the same temperature until the starting material was consumed. The reaction mixture was 

then treated by successive dropwise addition of ice-cold water (14 µL), an aqueous 15% NaOH (14 

µL), and ice-cold water (42 µL). After stirring for 30 min, the mixture was filtered through a sintered 

glass frit. The filtrate was then concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica gel (DCM/methanol/Et3N 20/1/0.02) to give compound 2.203 as a colourless 

oil (73.9 mg, 70% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.34 (m, 3H), 7.31 (s, 1H), 7.16 (d, J = 8.1 Hz, 1H), 6.97 (t, J = 

8.5 Hz, 2H), 5.17 (d, J = 12.7 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 2.89 (broad, s, 2H), 2.39 – 2.27 (m, 

1H), 2.22 – 2.15 (m, 1H), 1.75 – 1.71 (m, 1H), 1.62 – 1.56 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 

162.1 (d, J = 246.3 Hz), 142.7, 141.2, 139.7 (d, J = 3.0 Hz), 131.0, 126.9 (d, J = 8.1 Hz), 124.8, 123.5, 

122.0, 115.5 (d, J = 21.4 Hz), 90.7, 71.6, 39.9, 37.8, 22.6; ATR-IR ν 3355 (w), 2930 (w), 2856 (w), 

2253 (w), 1507 (s), 1224 (s), 1031 (s), 1013 (s), 836 (s), 821 (s), 739 (m), 699 (m); HRMS (ESI) 

calcd for C17H18BrFNO
+
 [M+H]

+
 350.0550; found 350.0551. 
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Synthesis of 3-(5-bromo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)-N,N-dimethyl-

propan-1-amine (2.204) 

 

To a solution of 2.203 (53 mg, 1 equiv) in MeCN (c = 0.1 M) at 0 
o
C was added aqueous formalin 

(35%, 0.4 mL) and NaBH3CN (45mg, 5 equiv). The resulting reaction mixture was warmed up to 

room temperature, occasionally treated with a drop of acetic acid to keep the pH slightly below 7. 

After stirring for 4 h, the reaction mixture was diluted with ethyl acetate, washed with 1 M NaOH 

solution, then brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography on silica gel (chloroform/methanol 30/1 to 20/1) to give 

compound 2.204 as a colorless oil (47.0 mg, 83% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.46 – 7.36 (m, 3H), 7.34 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.09 – 6.96 

(m, 2H), 5.13 (d, J = 12.7 Hz, 1H), 5.08 (d, J = 12.7 Hz, 1H), 2.37 (t, J = 7.4 Hz, 2H), 2.24 (s, 6H), 

2.28 – 2.03 (m, 2H), 1.61 – 1.47 (m, 1H), 1.45 – 1.33 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 162.0 

(d, J = 245.8 Hz), 143.3, 141.5, 140.4 (d, J = 3.2 Hz), 130.8, 126.9 (d, J = 7.9 Hz), 124.7, 123.5, 

121.7, 115.3 (d, J = 21.3 Hz), 90.8, 71.4, 59.4, 45.0, 39.1, 21.8; ATR-IR ν 2944 (w), 2926 (w), 2854 

(w), 2781 (w), 1507 (s), 1468 (m), 1225 (s), 1160 (m), 1033 (s), 834 (s), 820 (s); HRMS (ESI) calcd 

for C19H22BrFNO
+
 [M+H]

+
 378.0863; found 378.0865. 

 

Synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-

carbonitrile - Citalopram (2.160) 

 

In a sealed tube, compound 2.204 (38 mg, 1 equiv) and CuCN (36 mg, 4 equiv) was dissolved in DMF 

(1 mL). The reaction mixture was evacuated and filled back with N2 three times. The resultant mixture 

was then heated to 150 °C for 24 hours. After cooling to room temperature, this solution was 

partitioned between toluene (5 mL) and aqueous NH3 25% (5 mL) and stirred vigorously for 10 

minutes. The aqueous layer was removed and the organic layer was washed 3 times with aqueous 

solution of NH3 25% (3 x 5 mL). The organic phase was then washed with brine (10 mL) and dried 
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over anhydrous Na2SO4, filtered and concentrated in vacuo. The crude product was purified by 

preparative thin layer chromatography (chloroform/methanol 20/1) to give compound 2.160 as a 

colorless oil (23.6 mg, 74% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.60 (dd, J = 7.9, 1.4 Hz, 1H), 7.50 (s, 1H), 7.45 – 7.40 (m, 3H), 7.03 

– 6.99 (m, 2H), 5.20 (d, J = 12.9 Hz, 1H), 5.15 (d, J = 12.9 Hz, 1H), 2.34 (t, J = 7.2 Hz, 2H), 2.30 – 

2.11 (m, 2H), 2.22 (s, 6H), 1.57 – 1.45 (m, 1H), 1.42 – 1.35 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 

162.2 (d, J = 246.3 Hz), 149.5, 140.4, 139.5 (d, J = 3.2 Hz), 132.1, 126.9 (d, J = 8.1 Hz), 125.4, 122.9, 

118.8, 115.5 (d, J = 21.4 Hz), 111.9, 91.2, 71.5, 59.3, 45.1 (2C), 38.9, 21.9; ATR-IR ν 2948 (w), 2858 

(w), 2782 (w), 2230 (w), 1508 (s), 1226 (s), 1226 (s), 1035 (s), 835 (s); HRMS (ESI) calcd for 

C20H22FN2O
+
 [M+H]

+
 325.1711; found 325.1714. 

 

3.4.4. Post-transformations of dihydroisobenzofuran 2.193l 

Synthesis of 3-(1-(4-fluorophenyl)-5-(p-tolyl)-1,3-dihydroisobenzofuran-1-yl)propanenitrile 

(2.205) 

 

To a suspension of 4-tolylboronic acid (10.2 mg, 0.075 mmol, 1.5 equiv), 2.194l (17.3 mg, 0.05 mmol, 

1.0 equiv) and Na2CO3 (10.6 mg, 0.1 mmol, 2.0 equiv) in a mixture of DME/H2O (3/1, c = 0.1 M) was 

added Pd(PPh3)4 (5.7 mg, 10 mol%) under N2. The resulting mixture was heated to 90 
o
C and stirred 

for 24 h. The solvent was then removed under reduced pressure, and the residue was diluted with 

water, then extracted with ethyl acetate. The combined organic layers were washed with brine, dried 

over MgSO4, filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica gel (ethyl acetate/petroleum ether 1/9 to 2/8) to give compound 2.205 as a 

colourless oil (14.5 mg, 82% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.55 – 7.38 (m, 6H), 7.35 (d, J = 7.9 Hz, 1H), 7.26 – 7.24 (m, 2H), 

7.07 – 7.01 (m, 2H), 5.23 (d, J = 12.4 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 2.59 (ddd, J = 13.9, 10.2, 5.9 

Hz, 1H), 2.49 (ddd, J = 14.0, 9.6, 5.6 Hz, 1H), 2.40 (s, 3H), 2.38 – 2.19 (m, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 162.3 (d, J = 246.4 Hz), 142.0, 140.8, 139.9, 139.4 (d, J = 3.2 Hz), 137.68, 137.65, 

129.7, 127.2, 126.8 (d, J = 8.1 Hz), 122.0, 120.2, 119.9, 115.6 (d, J = 21.3 Hz), 89.5, 72.2, 37.3, 21.3, 

12.7; ATR-IR ν 2925 (w), 2856 (w), 2249 (w), 1507 (m), 1225 (m), 908 (m), 835 (m), 813 (s), 730 

(s); HRMS (ESI) calcd for C24H20FNNaO
+
 [M+Na]

+
 380.1421; found 380.1421. 



279 

 

 

Synthesis of 3-(1-(4-fluorophenyl)-5-(phenylethynyl)-1,3-dihydroisobenzofuran-1-yl)-

propanenitrile (2.206) 

 

To a solution of 2.194l (17.3 mg, 0.05 mmol, 1.0 equiv), phenylacetylene (20.4 mg, 0.2 mmol, 4.0 

equiv), CuI (1.9 mg, 20 mol%), and Et3N (18 µL, 0.125 mmol, 2.5 equiv) in DMF (c = 0.05 M) was 

added Pd(PPh3)4 (5.7 mg, 10 mol%) at room temperature. The resulting mixture was evacuated and 

filled back with N2 three times, then warmed up to 80 
o
C. After stirring for 24 h, the reaction mixture 

was diluted with water, extracted with diethyl ether. The combined organic layers were washed with 

brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography on silica gel (ethyl acetate/petroleum ether 1/9 to 2/8) to give compound 

2.206 as a yellow oil (11.5 mg, 62% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.53 – 7.50 (m, 3H), 7.45 – 7.42 (m, 3H), 7.37 – 7.34 (m, 3H), 7.29 (d, 

J = 7.9 Hz, 1H), 7.07 – 7.01 (m, 2H), 5.18 (d, J = 12.6 Hz, 1H), 5.12 (d, J = 12.6 Hz, 1H), 2.57 (ddd, J 

= 13.9, 10.1, 5.9 Hz, 1H), 2.52 – 2.39 (m, 1H), 2.38 – 2.14 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 

162.4 (d, J = 246.6 Hz), 142.2, 139.6, 138.9 (d, J = 3.4 Hz), 131.8, 131.7, 128.7, 128.6, 126.8 (d, J = 

8.1 Hz), 124.8, 123.9, 123.0, 121.8, 119.7, 115.7 (d, J = 21.4 Hz), 90.2, 89.6, 88.7, 71.9, 37.1, 12.7; 

ATR-IR ν 2955 (w), 2925 (w), 2903 (w), 2855 (w), 2248 (w), 1507 (m), 1225 (m), 836 (s), 835 (s), 

757 (s), 691 (s); HRMS (ESI) calcd for C25H18FNNaO
+
 [M+Na]

+
 390.1265; found 390.1266. 
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3.5. Copper-Catalyzed Formal [2+2+1] Heteroannulation of Alkenes, 

Alkylnitriles, and Water in Synthesis of γ-Lactones 

3.5.1. Substrate scope 

 

In the glovebox, alkene 2.238 (0.1 mmol, 1 equiv), Cu(BF4)2.6H2O (20 mol%), 2,2'-bipyridine (60 

mol%), Ca(OTf)2 (20 mol%), and DBU (15 mol%) were dissolved in degassed R
4
CH2CN (0.025 M) in 

a sealed tube. DTBP (4 equiv) and H2O (30 equiv) were then added and the tube was sealed and 

heated to 140 
o
C. After 3.5 h, the reaction mixture was cooled down to room temperature, and an 

aqueous HCl solution (1N, 1 mL) was added. After heating at 80 
o
C for 45 minutes, the resulting 

mixture was cooled down, diluted with water, extracted with EtOAc. The combined organic layers 

were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to give 

compound 2.240. 

 

Characterization data of 2.240 

5-Methyl-5-phenyldihydrofuran-2(3H)-one (2.240a) 

 

Yield: 12.9 mg (73%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.35 (m, 4H), 7.33 – 7.26 

(m, 1H), 2.66 – 2.59 (m, 1H), 2.55 – 2.39 (m, 3H), 1.72 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

176.7, 144.4, 128.8, 127.8, 124.2, 87.1, 36.3, 29.6, 29.1; ATR-IR ν 2979 (w), 2937 (w), 1765 (s), 

1447 (w), 1242 (m), 1133 (s), 1068 (m), 943 (m), 767 (s), 701 (s); HRMS (ESI) calcd for C11H13O2
+
 

[M+H]
+
 177.0910; found 177.0913 

 

5-Methyl-5-phenyldihydrofuran-2(3H)-one-
18

O1/
18

O2 (2.240a-
18

O1 + 3a-
18

O2) 
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1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.35 (m, 4H), 7.33 – 7.26 (m, 1H), 2.66 – 2.59 (m, 1H), 2.55 – 

2.39 (m, 3H), 1.72 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.6, 144.4, 128.7, 127.8, 124.2, 87.1, 

36.3, 29.6, 29.1; HRMS (ESI) calcd for C11H13O
18

O
+
 [M-

18
O1

 
+H]

+
 179.0953; found 179.0958; calcd 

for C11H13
18

O2
+
 [M-

18
O2

 
+H]

+
 181.0995; found 181.1000. 

 

5-Methyl-5-(o-tolyl)dihydrofuran-2(3H)-one (2.240b) 

 

Yield: 12.5 mg (66%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.48 – 7.45 (m, 1H), 7.22 – 7.18 

(m, 3H), 2.73 – 2.49 (m, 4H), 2.46 (s, 3H), 1.75 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.3, 142.1, 

133.8, 132.6, 127.9, 126.2, 124.9, 88.0, 35.2, 28.9, 28.0, 21.7; ATR-IR ν 2973 (w), 2928 (w), 1767 

(s), 1211 (m), 1134 (m), 1062 (m), 939 (m), 763 (s), 728 (m); HRMS (ESI) calcd for C12H15O2
+
 

[M+H]
+
 191.1067; found 191.1070. 

 

5-Methyl-5-(m-tolyl)dihydrofuran-2(3H)-one (2.240c) 

 

Yield: 12.0 mg (63%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.28 – 7.24 (m, 1H), 7.20 – 7.10 (m, 

3H), 2.66 – 2.58 (m, 1H), 2.53 – 2.38 (m, 3H), 2.37 (s, 3H), 1.71 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 176.7, 144.4, 138.5, 128.6, 128.5, 124.9, 121.3, 87.2, 36.4, 29.6, 29.1, 21.7; ATR-IR ν 2923 

(w), 2851 (w), 1771 (s), 1244 (m), 1202 (m), 1131 (m), 943 (m), 789 (m), 707 (m); HRMS (ESI) 

calcd for C12H15O2
+
 [M+H]

+
 191.1067; found 191.1069. 

 

5-Methyl-5-(p-tolyl)dihydrofuran-2(3H)-one (2.240d) 

 

Yield: 10.0 mg (54%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 8.0 Hz, 2H), 7.18 (d, 

J = 8.0 Hz, 2H), 2.66 – 2.60 (m, 1H), 2.58 – 2.36 (m, 3H), 2.35 (s, 3H), 1.71 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 176.8, 141.5, 137.5, 129.4, 124.2, 87.2, 36.4, 29.6, 29.2, 21.1; ATR-IR ν 2926 (w), 
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1773 (s), 1242 (m), 1133 (m), 1077 (m), 941 (m), 820 (m); HRMS (ESI) calcd for C12H15O2
+
 [M+H]

+
 

191.1067; found 191.1070. 

 

5-(3-Chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2.240e) 

 

Yield: 8.8 mg (42%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 1.8 Hz, 1H), 7.33 – 7.24 

(m, 3H), 2.69 – 2.62 (m, 1H), 2.56 – 2.39 (m, 3H), 1.71 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

176.2, 146.5, 134.8, 130.1, 128.0, 124.7, 122.5, 86.4, 36.2, 29.5, 29.0; ATR-IR ν 2980 (w), 2927 (w), 

1771 (s), 1770 (s), 1244 (m), 1135 (s), 1077 (s), 945 (s), 831 (m), 822 (m); HRMS (ESI) calcd for 

C11H12ClO2
+
 [M+H]

+
 211.0520; found 211.0526.  

 

5-(4-Chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2.240f) 

 

Yield: 11.3 mg (54%), white solid, mp: 48 – 49 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.36 – 7.30 (m, 

4H), 2.69 – 2.61 (m, 1H), 2.54 – 2.37 (m, 3H), 1.70 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.3, 

143.0, 133.7, 128.9, 125.8, 86.6, 36.2, 29.5, 29.0; ATR-IR ν 2980 (w), 2927 (w), 1775 (s), 1491 (w), 

1244 (s), 1136 (s), 1077 (s), 944 (s), 831 (s), 821 (s); HRMS (ESI) calcd for C11H12ClO2
+
 [M+H]

+
 

211.0520; found 211.0528. 

 

5-(4-Methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2.240g) 

 

Yield: 9.7 mg (48%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 8.8 Hz, 2H), 6.89 (d, J 

= 8.8 Hz, 2H), 3.81 (s, 3H), 2.66 – 2.58 (m, 1H), 2.55 – 2.34 (m, 3H), 1.70 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 176.7, 159.1, 136.5, 125.5, 114.0, 87.1, 55.5, 36.3, 29.6, 29.2; ATR-IR ν 2934 (w), 

2934 (w), 2838 (w), 1768 (s), 1515 (s), 1249 (s), 1133 (s), 1030 (s), 833 (s); HRMS (ESI) calcd for 

C12H15O3
+
 [M+H]

+
 207.1016; found 207.1022. 
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5-([1,1'-Biphenyl]-4-yl)-5-methyldihydrofuran-2(3H)-one (2.240h)  

 

Yield: 18.1 mg (72%), yellow solid, mp: 122 – 124 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.61 – 7.58 (m, 

4H), 7.47 – 7.43 (m, 4H), 7.38 – 7.34 (m, 1H), 2.70 – 2.63 (m, 1H), 2.62 – 2.41 (m, 3H), 1.77 (s, 3H); 

13
C NMR (101 MHz, CDCl3) δ 176.6, 143.4, 140.7, 140.5, 129.0, 127.6, 127.4, 127.2, 124.7, 87.0, 

36.3, 29.5, 29.1; ATR-IR ν 2975 (w), 2921 (w), 1760 (s), 1489 (w), 1249 (m), 1140 (m), 1076 (s), 837 

(m), 765 (s), 728 (s), 691 (s); HRMS (ESI) calcd for C17H17O2
+
 [M+H]

+
 253.1223; found 253.1227. 

 

5-Methyl-5-(naphthalen-1-yl)dihydrofuran-2(3H)-one (2.240i) 

 

Yield: 15.6 mg (69%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 8.7 Hz, 1H), 7.91 (dd, J 

= 8.2, 1.5 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.71 (dd, J = 7.4, 1.2 Hz, 1H), 7.55 – 7.43 (m, 3H), 2.95 – 

2.87 (m, 1H), 2.76 – 2.68 (m, 2H), 2.58 – 2.50 (m, 1H), 2.01 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

176.3, 139.5, 134.8, 129.7, 129.2, 129.1, 126.1, 125.6, 125.3, 125.0, 122.6, 88.0, 35.6, 29.3, 29.0; 

ATR-IR ν 2979 (w), 2973 (w), 2934 (w), 1769 (s), 1510 (w), 1209 (m), 1198 (m), 1089 (m), 943 (m), 

805 (m), 777 (s); HRMS (ESI) calcd for C15H15O2
+
 [M+H]

+
 227.1067; found 227.1066.  

 

5-Ethyl-5-phenyldihydrofuran-2(3H)-one (2.240j) 

 

Yield: 12.4 mg (66%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.27 (m, 5H), 2.63 – 2.54 (m, 

1H), 2.51 – 2.41 (m, 3H), 2.00 (q, J = 7.4 Hz, 2H), 0.82 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 176.8, 142.8, 128.6, 127.6, 124.9, 90.0, 35.4, 34.7, 28.9, 8.4; ATR-IR ν 2927 (w), 2886 (w), 

1770 (s), 1242 (m), 1196 (m), 1183 (m), 1135 (m), 780 (m), 764 (m), 703 (m); HRMS (ESI) 

C12H15O2
+
 [M+H]

+
 191.1067; found 191.1072. 

 

5-Phenyl-5-propyldihydrofuran-2(3H)-one (2.240k) 
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Yield: 13.0 mg (64%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.27 (m, 5H), 2.62 – 2.58 (m, 

1H), 2.50 – 2.40 (m, 3H), 2.01 – 1.79 (m, 2H), 1.41 – 1.31 (m, 1H), 1.14 – 1.05 (m, 1H), 0.84 (t, J = 

7.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.8, 143.1, 128.6, 127.6, 124.8, 89.7, 44.8, 35.2, 28.8, 

17.4, 14.2; ATR-IR ν 2960 (w), 2913 (w), 1772 (s), 1448 (w), 1193 (m), 1181 (m), 765 (m), 702 (s); 

HRMS (ESI) calcd for C13H16NaO2
+
 [M+Na]

+
 227.1042; found 227.1041. 

 

5-Phenethyl-5-phenyldihydrofuran-2(3H)-one (2.240l) 

 

Yield: 18.8 mg (71%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.39 (m, 4H), 7.35 – 7.31 (m, 

1H), 7.26 – 7.23 (m, 2H), 7.18 – 7.16 (m, 1H), 7.10 – 7.07 (m, 2H), 2.74 – 2.67 (m, 1H), 2.65 – 2.44 

(m, 4H), 2.38 – 2.24 (m, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.7, 142.6, 141.4, 128.9, 128.8, 

128.6, 128.3, 127.8, 126.1, 124.7, 89.2, 44.6, 35.6, 30.4, 28.7; ATR-IR ν 2934 (w), 2927 (w), 2868 

(w), 1773 (s), 1497 (w), 1456 (w), 1449 (w), 1193 (m), 1166 (m), 936 (m), 767 (m), 752 (m), 700 (s); 

HRMS (ESI) calcd for C18H18NaO2
+
 [M+Na]

+
 289.1199; found 289.1202. 

 

5-Cyclohexyl-5-phenyldihydrofuran-2(3H)-one (2.240m) 

 

Yield: 17.3 mg (71%), light yellow solid, mp: 67 – 69 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.37 – 7.26 

(m, 5H), 2.56 – 2.35 (m, 4H), 1.88 – 1.83 (m, 1H), 1.78 – 1.70 (m, 3H), 1.62 – 1.56 (m, 2H), 1.25 – 

0.83 (m, 5H); 
13

C NMR (101 MHz, CDCl3) δ 176.9, 142.0, 128.2, 127.6, 125.7, 92.1, 48.5, 32.2, 

29.1, 27.5, 27.2, 26.5, 26.2, 26.1; ATR-IR ν 2940 (w), 2928 (w), 2928 (w), 2853 (w), 1754 (s), 1446 

(w), 1238 (m), 1195 (m), 1176 (m), 986 (m), 923 (m), 740 (m), 713 (s); HRMS (ESI) calcd for 

C16H20NaO2
+
 [M+Na]

+
 267.1355; found 267.1355. 

 

N,4-dimethyl-N-(2-(5-oxo-2-phenyltetrahydrofuran-2-yl)ethyl)benzenesulfonamide (2.240n) 
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Yield: 20.6 mg (56%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.3 Hz, 2H), 7.42 – 7.37 

(m, 2H), 7.35 – 7.31 (m, 3H), 7.25 (d, J = 8.3 Hz, 2H), 2.98 (ddd, J = 13.9, 10.9, 5.2 Hz, 1H), 2.78 – 

2.69 (m, 1H), 2.64 (s, 3H), 2.59 – 2.36 (m, 5H), 2.40 (s, 3H), 2.27 (ddd, J = 14.0, 10.8, 5.2 Hz, 1H); 

13
C NMR (101 MHz, CDCl3) δ 176.4, 143.5, 141.8, 134.1, 129.8, 129.0, 128.1, 127.4, 124.5, 87.8, 

46.2, 40.5, 35.9, 35.8, 28.3, 21.6; ATR-IR ν 2925 (w), 2924 (w), 1775 (s), 1449 (w), 1337 (m), 1336 

(m), 1191 (m), 1158 (s), 1089 (m), 934 (m), 735 (m), 702 (s); HRMS (ESI) calcd for C20H24NO4S
+
 

[M+H]
+
 374.1421; found 374.1416. 

 

5,5-Diphenyldihydrofuran-2(3H)-one (2.240o) 

 

Yield: 11.8 mg (50%), yellow solid. 83 – 85 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.41 (m, 4H), 

7.37 – 7.33 (m, 4H), 7.29 – 7.26 (m, 2H), 2.91 (t, J = 7.8 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H); 
13

C NMR 

(101 MHz, CDCl3) δ 176.2, 143.2, 128.7, 128.0, 125.5, 89.9, 35.8, 29.2; ATR-IR ν 2926 (w), 1766 

(s), 1449 (w), 1220 (m), 1154 (s), 973 (m), 901 (m), 755 (s), 700 (s);  

 

5,5-Bis(4-chlorophenyl)dihydrofuran-2(3H)-one (2.240p) 

 

Yield: 17.2 mg (56%), yellow solid, mp: 86 – 87 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.32 (s, 8H), 2.86 

(t, J = 7.8 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 175.5, 141.3, 134.3, 

129.1, 126.9, 88.7, 35.7, 29.0; ATR-IR ν 2924 (w), 2853 (w), 1774 (s), 1489 (m), 1215 (m), 1160 (s), 

1092 (s), 1053 (m), 1013 (m), 986 (s), 908 (m), 830 (m), 824 (m), 813 (s); HRMS (ESI)calcd for 

C16H12Cl2NaO2
+
 [M+Na]

+
 329.0107; found 329.0107.  

5,5-Bis(4-fluorophenyl)dihydrofuran-2(3H)-one  (2.240q) 
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Yield: 13.7 mg (50%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 – 7.34 (m, 4H), 7.06 – 7.02 (m, 

4H), 2.87 (t, J = 7.7 Hz, 2H), 2.59 (t, J = 7.7 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 175.8, 162.4 (d, 

J = 247.9 Hz), 138.8 (d, J = 3.3 Hz), 127.4 (d, J = 8.3 Hz), 115.8 (d, J = 21.6 Hz), 89.0, 36.0, 29.2; 

ATR-IR ν 2953 (w), 2952 (w), 2929 (w), 2924 (w), 1775 (s), 1601 (w), 1508 (s), 1220 (s), 1157 (s), 

985 (m), 906 (m), 832 (s); HRMS (ESI) calcd for C16H12F2NaO2
+
 [M+Na]

+
 297.0698; found 

297.0695. 

 

4-Methyl-5,5-diphenyldihydrofuran-2(3H)-one (2.240r) 

 

Yield: 20.0 mg (79%), yellow solid, mp: 101 – 103 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.53 – 7.47 (m, 

2H), 7.39 – 7.17 (m, 8H), 3.45 – 3.38 (m, 1H), 2.71 (dd, J = 17.1, 7.4 Hz, 1H), 2.32 (dd, J = 17.1, 4.9 

Hz, 1H), 0.91 (d, J = 7.0 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 175.9, 142.9, 140.6, 128.7, 128.3, 

128.2, 127.6, 126.3, 125.8, 92.4, 38.2, 37.7, 17.3; ATR-IR ν 2958 (w), 2922 (w), 2922 (w), 1777 (s), 

1765 (m), 1451 (w), 1223 (m), 1162 (s), 1162 (s), 970 (m), 927 (s), 754 (m), 747 (s), 697 (s); HRMS 

(ESI) calcd for C17H17O2
+
 [M+H]

+
 253.1223; 

 found 253.1222. 

 

4-Ethyl-5,5-diphenyldihydrofuran-2(3H)-one (2.240s) 

 

Yield: 18.6 mg (70%), yellow solid, mp: 95 – 97 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.50 – 7.47 (m, 

2H), 7.39 – 7.18 (m, 8H), 3.17 – 3.12 (m, 1H), 2.70 (dd, J = 17.3, 7.6 Hz, 1H), 2.43 (dd, J = 17.3, 6.3 

Hz, 1H), 1.55 – 1.42 (m, 1H), 0.93 – 0.78 (m, 4H); 
13

C NMR (101 MHz, CDCl3) δ 176.0, 143.0, 

140.8, 128.7, 128.3, 127.6, 126.5, 126.0, 92.4, 45.5, 34.6, 24.6, 12.3; ATR-IR ν 2933 (w), 2932 (w), 
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1773 (s), 1446 (w), 1231 (m), 1230 (m), 1215 (m), 1157 (m), 990 (m), 973 (m), 768 (m), 767 (m), 701 

(s); HRMS (ESI) calcd for C18H19O2
+
 [M+H]

+
 267.1380; found 267.1380. 

 

4-Isopropyl-5,5-diphenyldihydrofuran-2(3H)-one (2.240t) 

 

Yield: 14.0 mg (50%), yellow solid, mp: 146 – 148 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.54 – 7.51 (m, 

2H), 7.39 – 7.21 (m, 8H), 3.27 – 3.24 (m, 1H), 2.51 (d, J = 5.7 Hz, 2H), 1.94 – 1.90 (m, 1H), 0.95 (d, J 

= 6.9 Hz, 3H), 0.58 (d, J = 6.7 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.4, 144.1, 140.6, 128.7, 

128.4, 128.0, 127.4, 125.9, 125.7, 92.5, 48.6, 30.9, 27.3, 22.4, 16.4; ATR-IR ν 2963 (w), 2933 (w), 

2929 (w), 2928 (w), 2927 (w), 2923 (w), 2922 (w), 1764 (s), 1448 (w), 1191 (m), 1155 (m), 979 (m), 

972 (m), 706 (s), 696 (s); HRMS (ESI) calcd for C19H20NaO2
+
 [M+Na]

+
 303.1355; found 303.1353. 

 

3,5-Dimethyl-5-phenyldihydrofuran-2(3H)-one (2.240u) 

 

Yield: 12.9 mg (67%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.27 (m, 5H), 2.94 (ddq, J 

= 10.8, 8.8, 7.1 Hz, 0.54H), 2.80 – 2.68 (m, 1H),  2.51 (ddq, J = 14.1, 8.2, 7.1 Hz, 0.46H), 2.15 – 1.98 

(m, 1H), 1.73 (s, 1.4H), 1.68 (s, 1.6H), 1.26 – 1.24 (m, 3H); 
13

C NMR (101 MHz, CDCl3) δ 179.4, 

179.0, 145.5, 144.0, 128.7, 128.7, 127.7, 127.6, 124.4, 124.0, 84.7, 84.6, 45.2, 44.1, 35.4, 35.1, 30.5, 

29.0, 15.6, 14.8; ATR-IR ν 2976 (w), 2934 (w), 1767 (s), 1457 (w), 1448 (w), 1222 (m), 952 (m), 766 

(m), 700 (s); HRMS (ESI) calcd for C12H14NaO2
+
 [M+Na]

+
 213.0886; found 213.0883. 

 

3-Ethyl-5-methyl-5-phenyldihydrofuran-2(3H)-one (2.240v) 

 

Yield: 13.3 mg (65%), colorless oil;  

Isomer 1: 
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1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.27 (m, 5H), 2.81 (dtd, J = 10.6, 8.9, 4.8 Hz, 1H), 2.65 (dd, J = 

12.5, 8.8 Hz, 1H), 2.11 (dd, J = 12.5, 10.7 Hz, 1H), 1.91 (dqd, J = 13.8, 7.6, 4.8 Hz, 1H), 1.68 (s, 3H), 

1.45 (dtd, J = 14.0, 7.3, 1.5 Hz, 1H), 0.97 (t, J = 7.5 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 178.2, 

145.6, 128.7, 127.6, 124.1, 84.8, 42.0, 41.7, 29.1, 23.8, 11.9; ATR-IR ν 2966 (w), 2933 (w), 2900 (w), 

1770 (s), 1447 (w), 1223 (m), 1140 (w), 1062 (w), 951 (w), 768 (w), 705 (m); HRMS (ESI) calcd for 

C13H17O2
+
 [M+H]

+
 205.1223; found 205.1224. 

Isomer 2: 

1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.27 (m, 5H), 2.72 (dd, J = 12.4, 8.2 Hz, 1H), 2.46 – 2.30 (m, 

1H), 2.11 – 2.00 (m, 1H), 1.97 – 1.84 (m, 1H), 1.73 (s, 3H), 1.56 – 1.45 (m, 1H), 0.95 (t, J = 7.4 Hz, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 178.7, 144.2, 128.7, 127.7, 124.4, 84.8, 42.7, 41.6, 30.5, 23.2, 

11.8; ATR-IR ν 2964 (w), 2929 (w), 2877 (w), 2860 (w), 2859 (w), 1767 (s), 1447 (m), 1222 (s), 

1222 (s), 1139 (s), 1062 (s), 950 (s), 767 (s); HRMS (ESI) calcd for C13H17O2
+
 [M+H]

+
 205.1223; 

found 205.1228. 

 

5-Methyl-5-phenyl-3-propyldihydrofuran-2(3H)-one (2.240w) 

 

Yield: 14.2 mg (65%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.42 – 7.27 (m, 5H), 2.93 – 2.79 

(m, 0.47H), 2.79 – 2.61 (m, 1H), 2.53 – 2.34 (m, 0.53H), 1.94 – 1.90 (m, 1H), 1.93 – 1.82 (m, 1H), 

1.73 (s, 1.6H), 1.68 (s, 1.4H), 1.50 – 1.30 (m, 3H), 0.94 – 0.89 (m, 3H); 
13

C NMR (101 MHz, CDCl3) 

δ 178.9, 178.5, 145.6, 144.2, 128.7, 128.7, 127.7, 127.6, 124.4, 124.0, 84.8, 84.7, 43.2, 42.2, 40.4, 

40.0, 32.8, 32.3, 30.6, 29.1, 20.7 (2C), 14.0, 13.9; ATR-IR ν 2960 (w), 2959 (w), 2930 (w), 2930 (w), 

2872 (w), 1767 (s), 1447 (w), 1230 (m), 1215 (m), 956 (m), 767 (m), 701 (s); HRMS (ESI) calcd for 

C14H19O2
+
 [M+H]

+
 219.1380; found 219.1386. 

 

3-(Methoxymethyl)-5-methyl-5-phenyldihydrofuran-2(3H)-one (2.240x) 

 

Yield: 15.1 mg (68%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.27 (m, 5H), 3.71 – 3.52 

(m, 2H), 3.37 (s, 1.6H), 3.31 (s, 1.4H), 3.21 – 3.05 (m, 0.53H), 2.77 – 2.58 (m, 1.47H), 2.51 – 2.30 (m, 
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1H), 1.75 (s, 1.6H), 1.69 (s, 1.4H); 
13

C NMR (101 MHz, CDCl3) δ 176.7, 176.1, 145.2, 144.3, 128.8, 

128.7, 127.8, 127.7, 124.4, 124.2, 85.3, 85.2, 70.9, 70.4, 59.3, 59.2, 41.8, 41.6, 40.1, 39.4, 30.3, 29.2;  

ATR-IR ν 2930 (w), 2929 (w), 2928 (w), 2927 (w), 2926 (w), 2894 (w), 2893 (w), 2885 (w), 1771 (s), 

1225 (w), 1128 (m), 1037 (w), 1037 (w), 953 (w), 770 (w), 704 (m); HRMS (ESI) calcd for 

C13H16NaO3
+
 [M+Na]

+
 243.0992; found 243.0993. 

 

3,4-Dimethyl-5,5-diphenyldihydrofuran-2(3H)-one (2.240y) 

 

Yield: 12.6 mg (47%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.59 – 7.54 (m, 0.3H), 7.48 – 7.43 

(m, 1.7H), 7.41 – 7.27 (m, 6.3H), 7.14 – 7.01 (m, 1.7H), 3.38 (p, J = 7.0 Hz, 0.15H), 2.93 (dq, J = 

11.8, 6.8 Hz, 0.85H), 2.81 (p, J = 7.2 Hz, 0.15H), 2.37 (dq, J = 11.9, 7.0 Hz, 0.85H), 1.27 (d, J = 7.0 

Hz, 2.55H), 1.17 (d, J = 7.2 Hz, 0.45H), 1.06 (d, J = 6.8 Hz, 2.55H), 0.72 (d, J = 7.1 Hz, 0.45H); 
13

C 

NMR (101 MHz, CDCl3) δ 178.7, 178.3, 143.2, 142.9, 141.3, 140.2, 128.8, 128.6, 128.5, 128.4, 

128.1, 128.0, 127.8, 127.3, 127.0, 126.8, 125.8, 125.3, 90.6, 90.5, 46.2, 42.5, 41.1, 40.3, 16.2, 13.2, 

11.8, 10.4; ATR-IR ν 2971 (w), 2933 (w), 1772 (s), 1448 (w), 1230 (m), 1194 (m), 1181 (m), 978 

(m), 765 (m), 742 (m), 699 (s); HRMS (ESI) calcd for C18H19O2
+
 [M+H]

+
 267.1380; found 267.1378. 

 

3-(5-Oxo-2-phenyltetrahydrofuran-2-yl)propanenitrile (2.249) 

 

Yield: 12.0 mg (55%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.44– 7.30 (m, 5H), 2.67 – 2.55 

(m, 1H), 2.55 – 2.28 (m, 6H), 2.10 – 1.95 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 175.6, 140.4, 

129.3, 128.7, 124.6, 118.9, 87.3, 38.1, 35.8, 28.3, 12.6; ATR-IR ν 2927 (w), 2878 (w), 1777 (s), 1448 

(w), 1194 (m), 1176 (m), 1088 (m), 1055 (m), 942 (m), 767 (w), 704 (m); HRMS (ESI) calcd for 

C13H13NNaO2
+
 [M+Na]

+
 238.0838; found 238.0844. 

 

3-(1-Methyl-3-oxo-1,3-dihydroisobenzofuran-1-yl)propanenitrile (2.251) 
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Yield: 15.9 mg (79%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.90 (dt, J = 7.7, 0.9 Hz, 1H), 7.73 

(td, J = 7.5, 1.1 Hz, 1H), 7.58 (td, J = 7.5, 0.9 Hz, 1H), 7.42 (dt, J = 7.7, 0.9 Hz, 1H), 2.49 (ddd, J = 

14.0, 9.9, 5.3 Hz, 1H), 2.37 (ddd, J = 16.3, 9.7, 5.3 Hz, 1H), 2.25 (ddd, J = 13.9, 9.7, 5.3 Hz, 1H), 2.04 

(ddd, J = 16.3, 9.9, 5.3 Hz, 1H), 1.70 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.2, 151.7, 135.0, 

130.0, 126.4, 125.8, 121.1, 118.6, 85.5, 35.4, 26.1, 12.2; ATR-IR ν 2975 (w), 2922 (w), 2852 (w), 

1759 (s), 1249 (m), 1140 (m), 1076 (s), 765 (s), 728 (s), 692 (s); HRMS (ESI) calcd for C12H12NO2
+
 

[M+H]
+
 202.0863; found 202.0871. 

4,5-Dimethyl-4,5-diphenyloctanedinitrile (2.246) 

 

1
H NMR (400 MHz, CDCl3) δ 7.31 – 7.20 (m, 6H), 6.95 – 6.92 (m, 4H), 2.66 – 2.52 (m, 1H), 2.43 – 

2.27 (m, 1H), 2.08 – 1.77 (m, 6H), 1.31 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 140.5, 140.3, 129.2 

(2C), 127.9 (2C), 127.1, 127.0, 120.4 (2C), 47.9, 47.7, 32.2, 32.0, 21.6, 21.1, 13.2, 13.1; ATR-IR ν 

2980 (w), 2957 (w), 2924 (w), 2851 (w), 2245 (w), 1444 (w), 1383 (w), 1068 (w), 1031 (w), 790 (m), 

766 (w), 706 (s); HRMS (ESI) calcd for C22H24N2Na
+
 [M+Na]

+
 339.1832; found 339.1830. 

 

3.5.2. Total synthesis of (±)-Sacidumlignan D (2.253) 

Synthesis of 5,5'-(prop-1-ene-1,1-diyl)bis(2-(benzyloxy)-1,3-dimethoxybenzene) (2.255) 

 

To a solution of 2.254
177d

 (0.5 mmol, 162 mg) in THF (10 mL) was added dropwise a solution of n-

BuLi in hexane (0.5 mmol, 0.22 mL, 2.3 M) at – 78 
o
C. The reaction mixture was stirred at this 

temperature for another 1 h followed by the addition of propionyl chloride (0.2 mmol, 18.5 mg). The 

resulting mixture was stirred at – 78 
o
C for additional 30 min, warmed up to room temperature and 

heated to 60 
o
C for 2 h. After quenching with aqueous saturated NH4Cl, the reaction mixture was 

extracted with ethyl acetate, the combined organic phases were dried over MgSO4, filtered and 
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concentrated in vacuo. The crude tertiary alcohol product was dissolved in toluene (5 mL) followed by 

addition of PTSA (0.02 mmol, 38 mg). The mixture was heated to reflux for 4 h, then cooled down to 

room temperature, evaporated. Purification by flash column chromatography on silica gel (ethyl 

acetate/petroleum ether 1/10 to 1/8) afforded desired product 2.255 as yellow oil (60 mg, 56% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.52 – 7.48 (m, 4H), 7.38 – 7.28 (m, 6H), 6.45 (s, 2H), 6.39 (s, 2H), 

6.13 (q, J = 7.0 Hz, 1H), 5.10 (s, 2H), 5.02 (s, 2H), 3.78 (s, 6H), 3.75 (s, 6H), 1.79 (d, J = 7.0 Hz, 3H); 

13
C NMR (101 MHz, CDCl3) δ 153.4, 153.2, 142.5, 138.5, 138.0, 138.0, 135.5, 128.6, 128.5, 128.2, 

128.1, 127.9, 127.8, 123.6, 107.3, 104.7, 75.2, 75.0, 56.3, 56.2, 16.0; ATR-IR ν 2935 (w), 2858 (w), 

2837 (w), 1579 (m), 1502 (m), 1454 (m), 1410 (m), 1235 (m), 1123 (s), 735 (m), 697 (m); HRMS 

(ESI) calcd for C33H34NaO6
+
 [M+Na]

+
 549.2248; found 549.2241. 

 

Synthesis of 5,5-bis(4-(benzyloxy)-3,5-dimethoxyphenyl)-4-methyldihydrofuran-2(3H)-one 

(2.256) 

 

In the glovebox, alkene 2.255 (0.1 mmol, 52.6 mg), Cu(BF4)2.6H2O (0.02 mmol, 7.0 mg), 2,2'-

bipyridine (0.06 mmol, 9.6 mg), Ca(OTf)2 (0.02 mmol, 6.8 mg), and DBU (0.015 mmol, 2.3 mg) were 

dissolved in degassed MeCN (4.0 mL, 0.025 M) in a sealed tube. DTBP (2.5 equiv) and H2O (30 

equiv) were then added and the tube was sealed and heated to 140 
o
C. After 4 h, the reaction mixture 

was cooled down to room temperature, and an aqueous HCl solution (1N, 1 mL) was added. After 

heating at 80 
o
C for 45 minutes, the reaction mixture was cooled down, diluted with water, extracted 

with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel 

(ethyl acetate/petroleum ether 2/8 to 3/7) to give compound 2.256 as yellow solid (35.0 mg, 60% 

yield). 

1
H NMR (400 MHz, CDCl3) δ 7.52 – 7.43 (m, 4H), 7.38 – 7.28 (m, 6H), 6.70 (s, 2H), 6.45 (s, 2H), 

5.02 (s, 2H), 5.00 (s, 2H), 3.82 (s, 6H), 3.75 (s, 6H), 3.30 (pd, J = 6.9, 4.1 Hz, 1H), 2.74 (dd, J = 17.1, 

7.3 Hz, 1H), 2.33 (dd, J = 17.2, 4.2 Hz, 1H), 0.90 (d, J = 7.0 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

175.9, 153.6, 153.4, 138.4, 137.8, 137.7, 137.1, 136.3, 136.2, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 
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104.1, 103.2, 92.4, 75.1, 75.0, 56.6, 56.5, 38.6, 37.8, 17.3; ATR-IR ν 2932 (w), 2872 (w), 2866 (w), 

1784 (w), 1776 (w), 1589 (m), 1455 (m), 1414 (m), 1124 (s), 977 (m), 732 (m), 698 (m); HRMS 

(ESI) calcd for C35H37O8
+
 [M+H]

+
 585.2483; found 585.2473. Mp: 42 – 44 

o
C; 

Synthesis of trans-5,5-bis(4-(benzyloxy)-3,5-dimethoxyphenyl)-3,4-dimethyldihydrofuran-2(3H)-

one (2.257)
 

 

To a solution of LHMDS (0.88 mmol, 0.88 mL, 1 M in THF) in THF (1 mL) at – 78 
o
C was added a 

solution of 2.256 (0.22 mmol, 130 mg) in THF (3 mL) dropwise via syringe and stirring was continued 

for 1.0 h at this temperature. The resulting enolate was treated with MeOTf (0.66 mmol, 108 mg) at – 

78 
o
C, and the reaction mixture was stirred for 1.0 h at the same temperature. The reaction was 

quenched with an aqueous NH4Cl solution. The reaction mixture was allowed to warm to room 

temperature, extracted with ethyl acetate. The combined organic phases were washed with brine, dried 

over MgSO4, filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography on silica gel (ethyl acetate/petroleum ether 2/8) to give compound 2.257 as yellow 

solid (118 mg, 89% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.48 – 7.43 (m, 4H), 7.36 – 7.28 (m, 6H), 6.65 (s, 2H), 6.24 (s, 2H), 

5.04 (s, 2H), 5.01 (s, 2H), 3.80 (s, 6H), 3.70 (s, 6H), 2.85 (dq, J = 11.4, 6.7 Hz, 1H), 2.40 (dq, J = 

11.7, 7.0 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

178.6, 153.5, 153.2, 138.6, 137.7, 137.1, 136.5, 135.7, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 104.8, 

104.3, 90.7, 75.1, 74.9, 56.6, 56.3, 46.5, 41.3, 16.4, 13.4; ATR-IR ν 2935 (w), 2872 (w), 2865 (w), 

2837 (w), 1763 (w), 1753 (w), 1590 (m), 1502 (m), 1455 (m), 1415 (m), 1239 (m), 1121 (s), 735 (m), 

728 (m), 698 (s); HRMS (ESI) calcd for C36H39O8
+ 

[M+H]
+ 

599.2639; found 599.2641. 

 

Synthesis of trans-2,2-bis(4-(benzyloxy)-3,5-dimethoxyphenyl)-3,4-dimethyltetrahydrofuran 

(2.258)
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To a stirred solution of 2.257 (0.136 mmol, 82 mg) in THF (8.0 mL) at 0 
o
C was added LiAlH4 (0.41 

mmol, 15.6 mg). The reaction mixture was stirred at room temperature for 1.0 h and quenched with a 

saturated aqueous NH4Cl solution (15 mL). The resulting precipitate was then filtered through a short 

plug of Celite and the filtrate was extracted with DCM. The combined organic layers were washed 

with brine, dried over Na2SO4, filtered and concentrated in vacuo. The resulting diol crude product 

could be used directly without further purification. To a solution of the above crude diol in DCM (4.0 

mL) was added TFA (0.272 mmol, 20 µL) in one portion. After stirring for 20 minutes, the reaction 

was quenched with a saturated aqueous NaHCO3 solution (15 mL) and extracted with DCM. The 

combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography on silica gel (ethyl 

acetate/petroleum ether 2/8) to give compound 2.258 as colorless oil (72 mg, 91% yield). 

1
H NMR (400 MHz, CDCl3) δ 7.50 – 7.43 (m, 4H), 7.35 – 7.26 (m, 6H), 6.67 (s, 2H), 6.37 (s, 2H), 

5.03 (s, 2H), 4.99 (s, 2H), 4.31 (t, J = 7.8 Hz, 1H), 3.81 (s, 6H), 3.71 (s, 6H), 3.48 (dd, J = 10.5, 8.3 

Hz, 1H), 2.48 – 2.29 (m, 1H), 2.09 – 1.93 (m, 1H), 1.02 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H); 

13
C NMR (101 MHz, CDCl3) δ 153.1, 152.6, 142.7, 140.6, 138.0, 136.2, 135.6, 128.6, 128.2, 128.1, 

127.9, 127.8, 105.1, 104.8, 90.9, 75.1, 75.0, 74.0, 56.5, 56.2, 50.0, 40.9, 15.8, 14.6; ATR-IR ν 2958 

(w), 2932 (w), 2932 (w), 2835 (w), 1587 (m), 1500 (m), 1454 (m), 1410 (m), 1328 (m), 1236 (m), 

1124 (s), 1012 (m), 994 (m), 731 (m), 731 (m), 697 (m); HRMS (ESI) calcd for C36H41O7
+
 [M+H]

+
 

585.2847; found 585.2841. 

 

Synthesis of (±)-Scidumlignan D (2.253)
 

 

To a solution of 2.258 (0.072mmol, 42 mg) in a mixture of MeOH and EtOAc (1:1, 0.1 M) was added 

10 wt% Pd/C (0.072 mmol, 77 mg) at room temperature. The flask was carefully evacuated and filled 

back with H2 atmosphere 3 times. The heterogeneous mixture was allowed to stir at room temperature 

for 24 h. The reaction mixture was filtered directly through a short plug of Celite, washed with EtOAc, 

and concentrated to afford the crude product. Purification by flash column chromatography on silica 

gel (ethyl acetate/petroleum ether 1/2 to 1/1) gave desired product 2.253 as yellow oil (27 mg, 93% 

yield). 

1
H NMR (400 MHz, CDCl3) δ 6.68 (s, 2H), 6.39 (s, 2H), 5.52 (s, 1H), 5.44 (s, 1H), 4.29 (t, J = 7.8 

Hz, 1H), 3.86 (s, 6H), 3.79 (s, 6H), 3.45 (dd, J = 10.5, 8.2 Hz, 1H), 2.37 (dq, J = 10.4, 6.9 Hz, 1H), 
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2.05 – 1.89 (m, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) 

δ 146.6, 146.2, 138.3, 136.3, 134.0, 133.5, 104.6, 104.3, 90.9, 73.9, 56.6, 56.4, 49.8, 40.8, 15.9, 14.6; 

ATR-IR ν 3415 (w), 2960 (w), 2960 (w), 2933 (w), 2873 (w), 2838 (w), 1612 (w), 1513 (m), 1453 

(m), 1418 (m), 1326 (m), 1211 (s), 1110 (s), 910 (m), 727 (s); HRMS (ESI) calcd for C22H29O7
+
 

[M+H]
+
 405.1908; found 405.1905. 
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3.6. Copper-Catalyzed Cyanoalkylative Aziridination of Alkenes  

3.6.1. Synthesis of starting materials 

Synthesis of of 2.292b-d 

 

To a solution of 2.294
192

 (1.0 mmol) and pyridine (1.5 mmol, 120 mg) in DCM (5.0 mL) was added 

dropwise a solution of arylsulfonyl chloride (1.3 mmol) in DCM (5.0 mL) at 0ºC. The reaction mixture 

was warmed up to room temperature and stirred overnight. After quenching with water, the reaction 

mixture was extracted with DCM. The combined organic layers were washed with 1M HCl, aqueous 

NaHCO3 and brine, dried over Na2SO4, filtered and concentrated in vacuo. Purification by flash 

column chromatography on silica gel (ethyl acetate/petroleum ether) gave desired product 2.292b-d. 

Characterization data of 2.292b-d 

N-(2-phenylallyl)benzenesulfonamide (2.292b)
209

 

 

1
H NMR (400 MHz, CDCl3) δ 7.84 – 7.81 (m, 2H), 7.60 – 7.55 (m, 1H), 7.51 – 7.47 (m, 2H), 7.30 – 

7.20 (m, 5H), 5.35 (s, 1H), 5.19 (s, 1H), 4.64 (t, J = 6.8 Hz, 1H), 4.02 (dd, J = 6.1, 1.2 Hz, 1H). 

 

2,4,6-triisopropyl-N-(2-phenylallyl)benzenesulfonamide (2.292c) 

  

1
H NMR (400 MHz, CDCl3) δ 8.29 – 8.25 (m, 5H), 7.16 (s, 2H), 5.42 (s, 1H), 5.26 (s, 1H), 4.41 (t, J 

= 6.2 Hz, 1H), 4.13 (p, J = 6.8 Hz, 2H), 4.05 (dd, J = 6.2, 1.1 Hz, 2H), 2.92 (hept, J = 6.9 Hz, 1H), 

1.27 (d, J = 6.9 Hz, 6H), 1.22 (d, J = 6.7 Hz, 12H);
 13

C NMR (101 MHz, CDCl3) δ 153.0, 150.4, 

143.2, 138.0, 132.3, 128.7, 128.3, 126.1, 123.9, 115.5, 46.8, 34.3, 29.9, 25.0, 23.8.  

 

                                                                        
209

 Wei, Y.; Liang, F.; Zhang, X. Org. Lett. 2013, 15, 5186. 
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4-nitro-N-(2-phenylallyl)benzenesulfonamide (2.292d) 

  

1
H NMR (400 MHz, CDCl3) δ 8.37 – 8.21 (m, 2H), 7.98 – 7.80 (m, 2H), 7.32 – 7.21 (m, 3H), 7.20 – 

7.14 (m, 2H), 5.35 (s, 1H), 5.19 (s, 1H), 4.86 (t, J = 6.1 Hz, 1H), 4.12 (dd, J = 6.0, 1.1 Hz, 2H);
 13

C 

NMR (101 MHz, CDCl3) δ 150.1, 146.0, 142.6, 137.5, 128.8, 128.6, 128.5, 126.1, 124.4, 116.0, 47.4. 

 

Synthesis of of 2.292a and 2.292e-j 

 

To a suspension of TsNH2 (2.0 equiv) and K2CO3 (2.5 equiv) in acetone (5-10 mL) was added 

allylbromide 2.295 (0.5-1.0 mmol) at room temperature. The reaction mixture was heated to 60 ºC and 

stirred for 24 h. The reaction mixture was then cooled down to room temperature, filtered through a 

short plug of silica gel, washed with EtOAc and concentrated to afford the crude product. Purification 

by flash column chromatography on silica gel (ethyl acetate/petroleum ether) afforded desired product 

2.292a and 2.292e-j. 

Characterization data of 2.292a and 2.292e-j 

4-methyl-N-(2-phenylallyl)benzenesulfonamide (2.292a)
210 

 

1
H NMR (400 MHz, CDCl3) δ 7.83 – 7.62 (m, 2H), 7.34 – 7.07 (m, 7H), 5.36 (s, 1H), 5.19 (s, 1H), 

4.62 – 4.57 (m, 1H), 3.98 (d, J = 6.2 Hz, 2H), 2.43 (s, 3H). 

 

4-methyl-N-(2-(o-tolyl)allyl)benzenesulfonamide (2.292e) 

                                                                        
210

 Kiyokawa, K.; Kojima, T.; Hishikawa, Y.; Minakata, S. Chem. Eur. J. 2015, 21, 15548. 



297 

 

 

1
H NMR (400 MHz, CDCl3) δ 7.87 – 7.55 (m, 2H), 7.23 – 7.20 (m, 2H), 7.14 – 7.03 (m, 3H), 6.91 

(dd, J = 7.6, 1.4 Hz, 1H), 5.37 (q, J = 1.5 Hz, 1H), 5.06 (t, J = 6.3 Hz, 1H), 4.95 (q, J = 1.2 Hz, 1H), 

3.75 (dt, J = 6.4, 1.5 Hz, 2H), 2.38 (s, 3H), 2.14 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.5, 143.4, 

139.4, 136.9, 135.3, 130.3, 129.7, 128.6, 127.7, 127.2, 127.1, 125.7, 115.9, 48.2, 21.6, 19.7; ATR-IR 

ν 3285 (w), 2987 (m), 2972 (m), 2901 (m), 1408 (m), 1395 (m), 1324 (m), 1156 (s), 1066 (s), 1059 (s); 

HRMS (ESI) calcd for C17H20NO2S
+
 [M+H]

+
 302.1209; found 302.1217. 

 

4-methyl-N-(2-(m-tolyl)allyl)benzenesulfonamide (2.292f) 

 

1
H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 6.90 (t, J = 7.5 Hz, 

1H), 6.84 – 6.69 (m, 3H), 5.07 (s, 1H), 4.93 (s, 1H), 4.70 (t, J = 6.2 Hz, 1H), 3.71 (d, J = 6.2 Hz, 2H), 

2.16 (s, 3H), 2.03 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.4, 143.0, 138.1, 183.0, 136.8, 129.7, 

128.9, 128.4, 127.3, 126.8, 123.2, 114.9, 47.0, 21.6, 21.5; ATR-IR ν 3269 (w), 2987 (m), 2972 (m), 

2909 (m), 2901 (m), 1155 (m), 1090 (m), 1066 (s); HRMS (ESI) calcd for C17H20NO2S
+
 [M+H]

+
 

302.1209; found 302.1211. 

 

4-methyl-N-(2-(p-tolyl)allyl)benzenesulfonamide (2.292g) 

 

1
H NMR (400 MHz, CDCl3) δ 7.77 – 7.67 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.17 – 7.01 (m, 4H), 

5.33 (s, 1H), 5.14 (q, J = 1.1 Hz, 1H), 4.48 (t, J = 6.2 Hz, 1H), 4.00 – 3.95 (m, 2H), 2.44 (s, 3H), 2.33 

(s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.6, 142.7, 138.2, 136.9, 135.0, 129.8, 129.4, 127.4, 126.1, 

114.5, 47.2, 21.7, 21.3; HRMS (ESI) calcd for C17H20NO2S
+
 [M+H]

+
 302.1209; found 302.1215. 

 

N-(2-(4-chlorophenyl)allyl)-4-methylbenzenesulfonamide (2.292h) 
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1
H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 8.2, 1.8 Hz, 2H), 7.28 – 6.96 (m, 6H), 5.33 (s, 1H), 5.14 

(q, J = 1.1 Hz, 1H), 5.29 (d, J = 1.8 Hz, 1H), 5.15 (s, 1H), 4.61 (t, J = 6.4 Hz, 1H), 3.88 (d, J = 6.3 Hz, 

2H), 2.37 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.7, 142.0, 136.8, 136.4, 134.1, 129.8, 128.8, 

127.5, 127.3, 116.0, 47.1, 21.7; ATR-IR ν 3249 (w), 2923 (w), 2853 (w), 1493 (w), 1427 (w), 1332 

(m), 1319 (m), 1160 (s), 834 (s), 814 (s); HRMS (ESI) calcd for C16H17ClNO2S
+
 [M+H]

+
 322.0663; 

found 322.0672. 

 

4-methyl-N-(2-(3-(trifluoromethyl)phenyl)allyl)benzenesulfonamide (2.292i) 

 

1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.58 (m, 2H), 7.49 – 7.43 (m, 1H), 7.42 – 7.29 (m, 3H), 7.25 – 

7.14 (m, 2H), 5.36 (s, 1H), 5.25 (d, J = 1.4 Hz, 1H), 4.56 (t, J = 6.3 Hz, 1H), 3.95 (d, J = 6.4 Hz, 2H), 

2.36 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.9, 142.0, 138.9, 136.8, 131.1 (q, J = 32.3 Hz), 129.9, 

129.5, 129.2, 127.3, 125.0 (q, J = 3.8 Hz), 124.1 (q, J = 272.7 Hz), 123.1 (q, J = 3.9 Hz), 117.2, 47.1, 

21.7. 

 

4-methyl-N-(2-(naphthalen-2-yl)allyl)benzenesulfonamide (2.292j) 

 

1
H NMR (400 MHz, CDCl3) δ 7.87 – 7.79 (m, 2H), 7.76 (d, J = 8.3 Hz, 1H), 7.67 – 7.60 (m, 2H), 

7.52 – 7.31 (m, 3H), 7.17 – 7.15 (m, 3H), 5.64 (s, 1H), 5.21 (s, 1H), 5.03 (t, J = 6.3 Hz, 1H), 3.98 (d, J 

= 6.4 Hz, 2H), 2.38 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.4, 143.3, 137.6, 136.8, 133.7, 131.2, 

129.6, 128.4, 128.1, 127.1, 126.3, 125.9, 125.8, 125.3, 125.1, 117.6, 49.0, 21.6; ATR-IR ν 3284 (w), 

2922 (w), 1324 (m), 1156 (s), 1092 (m), 804 (s), 779 (s); HRMS (ESI) calcd for C20H20NO2S
+
 

[M+H]
+
 338.1209; found 338.1217. 

 

Synthesis of 2.292k-s 
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Step 1: To a suspension of TsNH2 (2.0 equiv) and K2CO3 (2.5 equiv) in acetone (5-10 mL) was added 

α-bromide acetophenone 2.296 (0.5-1.0 mmol) at 0 ºC. The reaction mixture was warmed up to room 

temperature and stirred for 24 h. The reaction mixture was then filtered through a short plug of silica 

gel, washed with EtOAc and concentrated to afford the crude product. Purification by flash column 

chromatography on silica gel (ethyl acetate/petroleum ether) afforded 2.297. 

Step 2: To a suspension of methyltriphenylphosphonium bromide (4.0 equiv) in PhMe (5-10 mL) was 

added potionwise tBuOK (4.0 equiv) at 0 ºC. The reaction mixture was warmed up to room 

temperature and stirred for 1 h. To the resulting yellow mixture was added dropwise a solution of 

2.297 (0.5-1.0 mmol) in THF (5-10 mL) at 0 ºC. The suspension was stirred at room temperature for 

12-24 h then diluted with an aliquot amount of EtOAc and filtered through a short plug of silica gel. 

The solvent was removed and the crude product was purified by flash chromatography on silica gel to 

yield 2.292k-s. 

Characterization data of 2.292k-s 

4-methyl-N-(3-phenylbut-3-en-2-yl)benzenesulfonamide (2.292k) 

 

1
H NMR (400 MHz, CDCl3) δ 7.75 – 7.66 (m, 2H), 7.28 – 7.20 (m, 5H), 7.17 – 7.12 (m, 2H), 5.23 – 

5.18 (m, 1H), 5.15 (s, 1H), 4.93 – 4.85 (m, 1H), 4.45 – 4.33 (m, 2H), 2.41 (s, 3H), 1.27 (d, J = 6.8 Hz, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 150.0, 143.3, 139.8, 137.8, 129.7, 128.4, 127.8, 127.2, 126.9, 

113.8, 52.8, 22.2, 21.6; ATR-IR ν 3275 (w), 2979 (w), 1322 (m), 1159 (s), 1088 (m), 666 (s). 

 

4-methyl-N-(2-phenylpent-1-en-3-yl)benzenesulfonamide (2.292l) 

 

1
H NMR (400 MHz, CDCl3) δ 7.88 – 7.78 (m, 2H), 7.34 – 7.15 (m, 7H), 5.64 (d, J = 8.4 Hz, 1H), 

5.19 (s, 1H), 5.17 (s, 1H), 4.35 – 4.22 (m, 1H), 2.41 (s, 3H), 1.71 – 1.59 (m, 1H), 1.60 – 1.50 (m, 1H), 

0.86 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 148.6, 143.1, 140.2, 138.1, 129.5, 128.3, 

127.6, 127.2, 126.8 114.3, 58.8, 28.4, 21.5, 10.0; ATR-IR ν 3281 (w), 2969 (w), 1160 (s), 907 (s), 730 

(s), 667 (s). 
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4-methyl-N-(2-phenylhex-1-en-3-yl)benzenesulfonamide (2.292m) 

 

1
H NMR (400 MHz, CDCl3) δ 7.70 – 7.54 (m, 2H), 7.22 – 7.11 (m, 5H), 7.09 – 6.96 (m, 2H), 5.02 (s, 

1H), 4.99 (s, 1H), 4.69 (d, J = 8.3 Hz, 1H), 4.20 (q, J = 7.8 Hz, 1H), 2.32 (s, 3H), 1.57 – 1.09 (m, 4H), 

0.72 (t, J = 7.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 149.1, 143.3, 140.0, 138.1, 129.6, 128.5, 

127.8, 127.3, 127.0, 114.3, 57.5, 38.0, 21.6, 19.0, 13.7; ATR-IR ν 3287 (w), 2959 (w), 2930 (w), 2873 

(w), 1322 (m), 1161 (s), 667 (s). 

 

4-methyl-N-(4-methyl-2-phenylpent-1-en-3-yl)benzenesulfonamide (2.292n) 

 

1
H NMR (400 MHz, CDCl3) δ 7.79 (dd, J = 8.1, 1.7 Hz, 2H), 7.37 – 7.02 (m, 7H), 5.12 (s, 1H), 5.12 

– 5.02 (m, 1H), 5.02 (s, 1H), 4.21 (dd, J = 9.3, 5.3 Hz, 1H), 2.41 (s, 3H), 1.77 (h, J = 6.6 Hz, 1H), 0.91 

(dd, J = 6.7, 1.6 Hz, 3H), 0.82 (dd, J = 6.8, 1.6 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 148.1, 143.2, 

140.6, 138.2, 129.5, 128.5, 127.8, 127.3, 127.0, 126.9, 114.6, 62.8, 31.0, 21.6, 20.1, 16.7. 

 

N-(1,2-diphenylallyl)-4-methylbenzenesulfonamide (2.292o) 

 

1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.51 (m, 2H), 7.31 – 6.95 (m, 12H), 5.49 (d, J = 7.9 Hz, 1H), 

5.39 (s, 1H), 5.22 – 5.07 (m, 2H), 2.40 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 147.2, 143.2, 139.1, 

138.8, 137.5, 129.4, 128.6, 128.4, 127.9, 127.7, 127.4, 127.3, 126.9, 116.5, 60.9, 21.5. 

 

4-methyl-N-(2-methyl-3-phenylbut-3-en-2-yl)benzenesulfonamide (2.292p) 

 

1
H NMR (400 MHz, CDCl3) δ 7.73 – 7.55 (m, 2H), 7.33 – 6.94 (m, 7H), 5.33 (d, J = 0.9 Hz, 1H), 

4.92 (d, J = 0.8 Hz, 1H), 4.75 (s, 1H), 2.32 (s, 3H), 1.29 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 

154.5, 142.8, 140.8, 140.4, 129.4, 129.2, 127.8, 127.2, 127.0, 114.9, 59.3, 27.9, 21.5. 
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4-methyl-N-(5-methylene-6,7,8,9-tetrahydro-5H-benzo[7]annulen-6-yl)benzenesulfonamide (2.292q) 

 

1
H NMR (400 MHz, CDCl3) δ 7.73 – 7.62 (m, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.17 (td, J = 7.7, 7.3, 1.4 

Hz, 1H), 7.08 – 7.04 (m, 2H), 6.62 – 6.47 (m, 1H), 5.03 (s, 1H), 4.80 (d, J = 1.4 Hz, 1H), 4.42 (d, J = 

8.9 Hz, 1H), 4.28 – 4.25 (m, 1H), 2.75 – 2.58 (m, 2H), 2.46 (s, 3H), 2.17 – 2.06 (m, 1H), 1.96 – 1.60 

(m, 3H); 
13

C NMR (101 MHz, CDCl3) δ 150.6, 143.4, 140.2, 139.0, 138.0, 130.1, 129.6, 129.2, 

128.3, 127.4, 126.6, 115.2, 57.3, 38.5, 36.1, 22.4, 21.7; ATR-IR ν 3280 (w), 2927 (w), 2854 (w), 1329 

(m), 1329 (m), 1159 (s), 1093 (m); HRMS (ESI) calcd for C19H22NO2S
+
 [M+H]

+
 328.1366; found 

328.1374. 

 

3.6.2. Substrate scope 

 

In the glovebox, alkene 2.292 (0.1 mmol, 1 equiv), Cu(BF4)2.6H2O (20 mol%), 2,2'-bipyridine (45 

mol%), and K3PO4 (30 mol%) were dissolved in degassed R
4
CH2CN (v/v 7/3, 0.067 M) in a sealed 

tube. DTBP (4 equiv) was then added and the tube was sealed and heated to 120 
o
C. After 1-2 h, the 

reaction mixture was cooled down to room temperature, diluted with water, extracted with EtOAc. The 

combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum 

ether/ethyl acetate) to give compound 2.293. 

Characterization data of 2.293 

3-(2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.293a) 

 

Yield: 27.4 mg (84%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.87 – 7.67 (m, 2H), 7.46 – 7.29 

(m, 7H), 3.00 (s, 1H), 2.81 – 2.70 (m, 2H), 2.68 – 2.54 (m, 2H), 2.43 (s, 3H), 2.27 – 2.14 (m, 1H); 
13

C 

NMR (101 MHz, CDCl3) δ 144.6, 137.0, 136.6, 129.8, 129.0, 128.9, 128.0, 127.7, 118.8, 54.2, 40.4, 
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31.4, 21.8, 14.9; ATR-IR ν 2927 (w), 2249 (w), 1449 (w), 1321 (m), 1159 (s), 700 (s); HRMS (ESI) 

calcd for C18H19N2O2S
+
 [M+H]

+
 327.1162; found 327.1162. 

 

3-(2-phenyl-1-(phenylsulfonyl)aziridin-2-yl)propanenitrile (2.293b) 

 

Yield: 22.4 mg (72%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.00 – 7.89 (m, 2H), 7.67 – 7.59 

(m, 1H), 7.53 (td, J = 7.6, 1.5 Hz, 2H), 7.47 – 7.30 (m, 5H), 3.03 (s, 1H), 2.79 – 2.74 (m, 2H), 2.68 – 

2.59 (m, 2H), 2.25 – 2.20 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 139.9, 136.4, 133.6, 129.2, 129.0 

(2C), 128.0, 127.7, 118.8, 54.4, 40.5, 31.5, 14.9; ATR-IR ν 2987 (w), 2969 (w), 2249 (w), 1448 (m), 

1322 (m), 1322 (m), 1311 (m), 1161 (s), 740 (s), 688 (s); HRMS (ESI) calcd for C17H16N2NaO2S
+
 

[M+Na]
+
 335.0825; found 335.0831. 

 

3-(2-phenyl-1-((2,4,6-triisopropylphenyl)sulfonyl)aziridin-2-yl)propanenitrile (2.293c) 

 

Yield: 28.0 mg (64%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.46 – 7.43 (m, 2H), 7.42 – 7.31 

(m, 3H), 7.17 (s, 2H), 4.36 (p, J = 6.8 Hz, 2H), 3.09 (s, 1H), 2.95 – 2.75 (m, 3H), 2.72 – 2.54 (m, 2H), 

2.35 – 2.06 (m, 1H), 1.28 (d, J = 6.7 Hz, 6H), 1.24 (d, J = 6.9 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H); 
13

C 

NMR (101 MHz, CDCl3) δ 153.6, 150.9, 137.0, 133.4, 128.9, 128.8, 127.9, 123.9, 118.9, 54.3, 40.6, 

34.4, 31.2, 29.9, 25.0, 24.9, 23.7, 15.1; ATR-IR ν 2960 (w), 2925 (w), 2867 (w), 2246 (w), 1602 (w), 

1313 (m), 1164 (m), 1155 (m), 776 (s), 702 (s); HRMS (ESI) calcd for C26H34N2NaO2S
+
 [M+Na]

+
 

461.2233; found 461.2231. 

 

3-(1-((4-nitrophenyl)sulfonyl)-2-phenylaziridin-2-yl)propanenitrile (2.293d) 
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Yield: 22.4 mg (45%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.42 – 8.34 (m, 2H), 8.21 – 7.87 

(m, 2H), 7.49 – 7.37 (m, 5H), 3.10 (s, 1H), 2.87 (s, 1H), 2.82 – 2.71 (m, 1H), 2.66 – 2.56 (m, 2H), 2.26 

– 2.20 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 150.6, 145.3, 135.7, 129.4, 129.2, 129.1, 128.0, 

124.4, 118.5, 55.3, 41.1, 31.9, 14.9; ATR-IR ν 2971 (w), 2250 (w), 1529 (s), 1349 (s), 1308 (m), 1164 

(s), 1090 (m), 744 (s), 688 (s); HRMS (ESI) calcd for C17H15N3NaO4S
+
 [M+Na]

+
 380.0675; found 

380.0673. 

 

3-(2-(o-tolyl)-1-tosylaziridin-2-yl)propanenitrile (2.293e) 

 

Yield: 22.1 mg (65%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.80 – 7.74 (m, 2H), 7.27 (d, J = 

8.0 Hz, 2H), 7.23 – 7.18 (m, 1H), 7.17 – 7.15 (m, 2H), 7.12 – 7.06 (m, 1H), 2.94 (s, 1H), 2.72 – 2.66 

(m, 2H), 2.61 – 2.52 (m, 2H), 2.39 (s, 3H), 2.31 (s, 3H), 2.20 – 2.11 (m, 1H); 
13

C NMR (101 MHz, 

CDCl3) δ 144.5, 138.8, 136.9, 136.4, 129.7, 129.7, 128.8, 128.6, 127.7, 125.1, 118.9, 54.2, 40.3, 31.3, 

21.8, 21.6, 14.9; ATR-IR ν 2923 (w), 2770 (w), 2249 (w), 1322 (m), 1158 (s), 1092 (m), 702 (s); 

HRMS (ESI) calcd for C19H21N2O2S
+
 [M+H]

+
 341.1318; found 341.1329. 

 

3-(2-(m-tolyl)-1-tosylaziridin-2-yl)propanenitrile (2.293f) 

 

Yield: 26.9 mg (79%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 8.2 Hz, 2H), 7.31 (d, 

J = 8.1 Hz, 2H), 7.27 – 7.14 (m, 4H), 3.13 (s, 1H), 2.83 – 2.61 (m, 3H), 2.58 (s, 1H), 2.50 (s, 3H), 2.42 

(s, 3H), 2.32 – 2.12 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.6, 137.2, 135.0, 131.4, 129.8, 129.6, 

128.9, 127.6, 126.1, 118.9, 54.6, 41.3, 29.8, 21.7, 19.1, 15.2; HRMS (ESI) calcd for C19H21N2O2S
+
 

[M+H]
+
 341.1318; found 341.1320. 

 

3-(2-(p-tolyl)-1-tosylaziridin-2-yl)propanenitrile (2.293f) 
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Yield: 14.6 mg (43%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.88 – 7.79 (m, 2H), 7.33 – 7.28 

(m, 4H), 7.19 – 7.17 (m, 2H), 2.96 (s, 1H), 2.81 – 2.66 (m, 2H), 2.65 – 2.50 (m, 2H), 2.43 (s, 3H), 2.35 

(s, 3H), 2.27 – 2.08 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.5, 138.9, 137.1, 133.4, 129.7, 129.6, 

128.0, 127.8, 118.8, 54.1, 40.3, 31.6, 21.8, 21.3, 14.8; HRMS (ESI) calcd for C19H21N2O2S
+
 [M+H]

+
 

341.1318; found 341.1324. 

 

3-(2-(4-chlorophenyl)-1-tosylaziridin-2-yl)propanenitrile (2.293g) 

 

Yield: 25.9 mg (72%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.86 – 7.69 (m, 2H), 7.42 – 7.28 

(m, 6H), 2.98 (s, 1H), 2.77 – 2.68 (m, 2H), 2.68 – 2.53 (m, 2H), 2.44 (s, 3H), 2.24 – 2.17 (m, 1H); 
13

C 

NMR (101 MHz, CDCl3) δ 144.8, 136.8, 135.0 (2C), 129.8, 129.5, 129.2, 127.8, 118.6, 53.4, 40.3, 

31.3, 21.8, 14.8; ATR-IR ν 2924 (w), 2248 (w), 1494 (w), 1322 (m), 1159 (s), 1089 (m), 816 (s), 711 

(s); HRMS (ESI) calcd for C18H18ClN2O2S
+
 [M+H]

+
 361.0772; found 361.0769. 

 

3-(1-tosyl-2-(3-(trifluoromethyl)phenyl)aziridin-2-yl)propanenitrile (2.293h) 

 

Yield: 31.1 mg (79%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.86 – 7.79 (m, 2H), 7.69 – 7.58 

(m, 3H), 7.53 – 7.51 (m, 1H), 7.39 – 7.30 (m, 2H), 3.04 (s, 1H), 2.80 – 2.59 (m, 4H), 2.44 (s, 3H), 2.29 

– 2.09 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.9, 137.8, 136.6, 131.54, 131.5 (q, J = 32.5 Hz), 

129.9, 129.6, 127.8, 125.9 (q, J = 3.7 Hz), 124.8 (q, J = 3.8 Hz), 123.8 (q, J = 272.4 Hz), 118.4, 53.4, 

40.2, 31.0, 21.8, 14.8; ATR-IR ν 2926 (w), 1324 (s), 1160 (s), 1124 (s), 1096 (s), 1072 (s), 703 (s); 

HRMS (ESI) calcd for C19H18F3N2O2S
+
 [M+H]

+
 395.1036; found 395.1040. 

 

3-(2-(naphthalen-2-yl)-1-tosylaziridin-2-yl)propanenitrile (2.293i) 
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Yield: 29.7 mg (79%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.94 – 7.83 (m, 5H), 7.66 (t, J = 

7.8 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 3.33 (s, 1H), 3.10 

– 2.96 (m, 1H), 2.90 – 2.57 (m, 3H), 2.41 (s, 3H), 2.17 – 2.00 (m, 1H); 
13

C NMR (101 MHz, CDCl3) 

δ 144.6, 137.2, 134.1, 132.8, 129.9, 129.8, 129.2, 127.7, 127.2, 126.4, 125.0, 118.8, 54.2, 41.2, 30.2, 

21.7, 15.7; HRMS (ESI) calcd for C22H21N2O2S
+
 [M+H]

+
 377.1318; found 377.1325. 

 

3-(3-methyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.293k) 

 

Yield: 30.4 mg (84%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.79 – 7.56 (m, 2H), 7.53 – 7.45 

(m, 2H), 7.42 – 7.35 (m, 3H), 7.33 – 7.19 (m, 2H), 3.48 (q, J = 5.9 Hz, 1H), 2.58 – 2.48 (m, 1H), 2.43 

(s, 3H), 2.35 – 2.26 (m, 1H), 2.14 – 1.98 (m, 2H), 1.39 (d, J = 6.0 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 144.1, 137.0, 134.4, 129.6, 129.5, 129.3, 128.8, 127.6, 118.7, 57.8, 45.6, 30.7, 21.7, 13.8, 

13.0; ATR-IR ν 2987 (w), 2973 (w), 2249 (w), 1322 (s), 1152 (s), 974 (s), 768 (s), 700 (s); HRMS 

(ESI) calcd for C19H20N2NaO2S
+
 [M+Na]

+
 363.1138; found 363.1136. 

 

3-(3-ethyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.293l) 

 

Yield: 27.6 mg (78%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.54 (m, 2H), 7.41 – 7.37 

(m, 2H), 7.33 – 7.26 (m, 3H), 7.23 – 7.11 (m, 2H), 3.20 (dd, J = 8.8, 4.7 Hz, 1H), 2.49 – 2.39 (m, 1H), 

2.34 (s, 3H), 2.25 – 2.15 (m, 1H), 2.09 – 1.92 (m, 2H), 1.88 – 1.72 (m, 1H), 0.76 (t, J = 7.4 Hz, 3H); 

13
C NMR (101 MHz, CDCl3) δ 144.2, 136.5, 134.5, 129.6, 129.5, 129.3, 128.7, 128.2, 118.7, 58.1, 

51.9, 31.4, 21.7, 21.1, 13.9, 11.9; ATR-IR ν 2968 (w), 2248 (w), 1461 (w), 1321 (s), 1154 (s), 996 

(m), 926 (s); HRMS (ESI) calcd for C20H23N2O2S
+
 [M+H]

+
 355.1475; found 355.1483. 

 

3-(2-phenyl-3-propyl-1-tosylaziridin-2-yl)propanenitrile (2.293m) 
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Yield: 29.8 mg (81%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.70 – 7.58 (m, 2H), 7.46 (dd, J 

= 6.6, 3.0 Hz, 2H), 7.43 – 7.34 (m, 3H), 7.29 – 7.17 (m, 2H), 3.33 (dd, J = 8.6, 4.7 Hz, 1H), 2.57 – 

2.48 (m, 1H), 2.42 (s, 3H), 2.34 – 2.24 (m, 1H), 2.19 – 2.02 (m, 2H), 1.82 – 1.77 (m, 1H), 1.47 – 1.39 

(m, 1H), 1.31 – 1.15 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.2, 136.4, 

134.4, 129.6, 129.4, 129.3, 128.7, 128.1, 118.7, 57.9, 50.2, 31.4, 29.7, 21.7, 20.9, 14.0, 13.9; ATR-IR 

ν 2960 (w), 2245 (w), 2244 (w), 1450 (w), 1321 (m), 1154 (s), 1090 (s), 983 (m), 916 (m), 767 (s), 

701 (s); HRMS (ESI) calcd for C 

21H25N2O2S
+
 [M+H]

+
 369.1631; found 369.1640. 

 

3-(3-isopropyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.293n) 

 

Yield: 22.8 mg (62%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.01 – 7.60 (m, 2H), 7.53 – 7.43 

(m, 2H), 7.41 – 7.34 (m, 3H), 7.29 – 7.19 (m, 2H), 2.97 (d, J = 9.9 Hz, 1H), 2.41 (s, 3H), 2.50 – 2.25 

(m, 3H), 2.14 – 1.94 (m, 1H), 1.64 – 1.55 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H), 0.62 (d, J = 6.6 Hz, 3H); 

13
C NMR (101 MHz, CDCl3) δ 144.4, 136.4, 135.0, 129.6, 129.4, 129.2, 128.7, 128.4, 118.9, 58.5, 

57.4, 31.8, 26.9, 21.8, 20.8, 20.4, 14.2; ATR-IR ν 2964 (w), 2245 (w), 1454 (w), 1322 (m), 1154 (s), 

1090 (s), 983 (m), 916 (m); HRMS (ESI) calcd for C21H25N2O2S
+
 [M+H]

+
 369.1631; found 369.1645. 

 

3-(2,3-diphenyl-1-tosylaziridin-2-yl)propanenitrile (2.293o) 

 

Yield: 30.1 mg (75%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.78 – 7.72 (m, 2H), 7.71 – 7.64 (m, 

2H), 7.51 – 7.48 (m, 3H), 7.37 – 7.33 (m, 3H), 7.30 – 7.20 (m, 4H), 4.58 (s, 1H), 2.44 (s, 3H), 2.30 (ddd, J = 13.7, 10.2, 5.0 

Hz, 1H), 2.12 (ddd, J = 16.7, 10.1, 5.0 Hz, 1H), 2.05 – 1.94 (m, 1H), 1.83 (ddd, J = 13.8, 10.1, 6.3 Hz, 1H); 
13

C NMR (101 

MHz, CDCl3) δ 144.5, 136.4, 133.9, 132.1, 129.8, 129.7, 129.6, 128.9, 128.9, 128.6, 127.9, 127.3, 118.5, 59.7, 

51.2, 31.2, 21.7, 13.3; ATR-IR ν 2987 (w), 2973 (w), 2249 (w), 1322 (s), 1152 (s), 974 (s), 768 (s), 700 

(s); HRMS (ESI) calcd for C24H23N2O2S
+
 [M+H]

+
 403.1475; found 403.1486. 

 

3-(2,3-diphenyl-1-tosylaziridin-2-yl)propanenitrile (2.293p) 
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Yield: 29.7 mg (86%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.02 – 7.80 (m, 2H), 7.40 – 7.24 

(m, 5H), 7.22 – 7.09 (m, 2H), 2.96 – 2.83 (m, 1H), 2.75 – 2.57 (m, 2H), 2.46 (s, 3H), 2.18 – 1.99 (m, 

1H), 1.81 (s, 3H), 0.88 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.2, 138.6, 137.3, 129.8, 128.8, 

128.2, 127.5, 127.4, 119.3, 60.6, 54.0, 28.3, 24.4, 21.8, 17.1, 15.0; ATR-IR ν 2987 (w), 2973 (w), 

2249 (w), 1322 (s), 1152 (s), 974 (s), 768 (s), 700 (s); HRMS (ESI) calcd for C20H23N2O2S
+
 [M+H]

+
 

355.1475; found 355.1482. 

 

3-(1-tosyl-1a,2,3,4-tetrahydrobenzo[3,4]cyclohepta[1,2-b]azirin-8b(1H)-yl)propanenitrile (2.293q) 

 

Yield: 30.7 mg (84%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.88 – 7.74 (m, 2H), 7.42 – 7.20 

(m, 5H), 7.16 – 6.87 (m, 1H), 3.15 (dd, J = 10.1, 4.9 Hz, 1H), 3.09 – 2.88 (m, 2H), 2.80 (ddd, J = 14.4, 

10.7, 5.0 Hz, 1H), 2.72 – 2.47 (m, 3H), 2.42 (s, 3H), 2.02 – 1.79 (m, 2H), 1.64 – 1.49 (m, 1H), 0.80 – 

0.65 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.3, 137.7, 136.3, 134.8, 130.1, 129.7, 129.5, 129.1, 

127.4, 127.4, 119.4, 56.0, 48.0, 30.5, 29.9, 25.6, 21.7, 21.3, 14.5; ATR-IR ν 2987 (w), 2973 (w), 2249 

(w), 1322 (s), 1152 (s), 974 (s), 768 (s), 700 (s); HRMS (ESI) calcd for C21H23N2O2S
+
 [M+H]

+
 

367.1475; found 367.1474. 

 

3-(1-methyl-2-tosylisoindolin-1-yl)propanenitrile (2.293v) 

 

Yield: 28.7 mg (85%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.82 (dd, J = 8.3, 1.9 Hz, 2H), 7.38 

– 7.25 (m, 4H), 7.19 (d, J = 7.4 Hz, 1H), 7.10 – 6.98 (m, 1H), 4.66 (d, J = 13.1 Hz, 1H), 4.54 (d, J = 

12.9 Hz, 1H), 3.03 – 2.95 

 (m, 1H), 2.42 (s, 3H), 2.42 – 2.29 (m, 1H), 2.19 – 2.14 (m, 1H), 1.85 – 1.76 (m, 1H), 1.69 (d, J = 1.9 

Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 143.8, 142.4, 137.2, 134.4, 129.9, 128.8, 128.7 (2C), 127.5, 

122.8, 121.5, 119.4, 53.7, 37.8, 28.0, 21.6, 12.8; ATR-IR ν 2987 (w), 2973 (w), 2249 (w), 1322 (s), 
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1152 (s), 974 (s), 768 (s), 700 (s); HRMS (ESI) calcd for C19H21N2O2S
+
 [M+H]

+
 341.1318; found 

341.1319. 

 

3-(2-phenyl-1-tosylpyrrolidin-2-yl)propanenitrile (2.293w) 

 

Yield: 31.8 mg (90%), colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.2 Hz, 2H), 7.24 – 

7.19 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 3.69 (dt, J = 9.5, 7.2 Hz, 1H), 3.59 (dt, J = 9.5, 6.7 Hz, 1H), 

2.97 (ddd, J = 13.8, 9.2, 6.5 Hz, 1H), 2.69 (ddd, J = 13.9, 8.5, 6.9 Hz, 1H), 2.55 – 2.48 (m, 2H), 2.39 

(s, 3H), 2.29 – 2.14 (m, 2H), 1.92 (p, J = 7.1 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 143.5, 143.1, 

137.2, 129.4, 128.5, 127.5, 127.1, 126.3, 120.0, 71.6, 50.4, 41.9, 34.6, 22.8, 21.6, 13.6; ATR-IR ν 

2987 (w), 2973 (w), 2249 (w), 1322 (s), 1152 (s), 974 (s), 768 (s), 700 (s); HRMS (ESI) calcd for 

C20H23N2O2S
+
 [M+H]

+
 355.1475; found 355.1474. 

 

3.6.3. Synthesis of chiral trisubstituted aziridine by chiral pool approach 

Synthesis of chiral starting materials 

Synthesis of chiral starting material for copper-catalyzed cyanoalkylative aziridination was done 

by the procedure developed by Burgess and co-workers.
211

 Enantiorich 1-monosubstituted 2-

phenylprop-2-en-1-amines 2.298, ent-2.298 were accessed from the corresponding commercially 

available L/D-amino acids through three-step sequence including: (i) protection of amino group by 

tosyl chloride; (ii) reaction with organoaryl lithium to form enantiorich N-tosylated α-aminoketones; 

(iii) subsequent Wittig reaction of these intermediates to afford chiral 1-monosubstituted 2-

phenylprop-2-en-1-amines 2.298, ent-2.298. 

 

                                                                        
211

 Burgess, K.; Liu, L. T.; Biman, P. J. Org. Chem. 1993, 2, 4758. 
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Synthesis of chiral trisubstituted aziridines 

3-((2S,3S)-3-benzyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.299a) 

 

Yield 77%, white solid; 
1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 2H), 7.48 – 7.32 (m, 5H), 

7.16 – 7.08 (m, 3H), 7.03 – 6.97 (m, 2H), 6.76 (d, J = 7.5 Hz, 2H), 3.45 (dd, J = 8.9, 4.2 Hz, 1H), 2.99 

– 2.76 (m, 3H), 2.70 (dd, J = 14.5, 4.2 Hz, 1H), 2.42 (s, 3H), 2.31 – 2.21 (m, 1H), 1.94 (dd, J = 14.5, 

8.8 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.0, 137.3, 137.1, 135.5, 129.6, 129.0, 128.7, 128.7, 

128.5, 128.2, 128.1, 127.7, 126.4, 119.3, 58.7, 54.0, 35.5, 31.6, 21.8, 14.8; ATR-IR ν 3281 (w), 2969 

(w), 1160 (s), 907 (s), 730 (s), 667 (s); HRMS (ESI) calcd for C25H25N2O2S
+
 [M+H]

+
 417.1631; found 

417.1635. 

 

                            Mixture of isomers                                                     2.299a (98% ee) 

 

3-((2R,3R)-3-benzyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (ent-2.299a) 
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Yield 77%, white solid; 
1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 2H), 7.48 – 7.32 (m, 5H), 

7.16 – 7.08 (m, 3H), 7.03 – 6.97 (m, 2H), 6.76 (d, J = 7.5 Hz, 2H), 3.45 (dd, J = 8.9, 4.2 Hz, 1H), 2.99 

– 2.76 (m, 3H), 2.70 (dd, J = 14.5, 4.2 Hz, 1H), 2.42 (s, 3H), 2.31 – 2.21 (m, 1H), 1.94 (dd, J = 14.5, 

8.8 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.0, 137.3, 137.1, 135.5, 129.6, 129.0, 128.7, 128.7, 

128.5, 128.2, 128.1, 127.7, 126.4, 119.3, 58.7, 54.0, 35.5, 31.6, 21.8, 14.8; ATR-IR ν 3281 (w), 2969 

(w), 1160 (s), 907 (s), 730 (s), 667 (s); HRMS (ESI) calcd for C25H25N2O2S
+
 [M+H]

+
 417.1631; found 

417.1642. 

 

                            Mixture of isomers                                                        ent-2.299a (96.5% ee) 

 

3-((2R,3R)-3-isobutyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.299b) 
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Yield 85%, white solid; 
1
H NMR (400 MHz, CDCl3) δ 7.79 – 7.61 (m, 2H), 7.52 – 7.42 (m, 2H), 7.40 

– 7.35 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 3.38 (dd, J = 7.9, 4.8 Hz, 1H), 2.58 – 2.46 (m, 1H), 2.42 (s, 

3H), 2.19 – 1.99 (m, 2H), 1.69 – 1.54 (m, 1H), 1.46 – 1.30 (m, 2H), 0.94 (d, J = 6.4 Hz, 3H), 0.89 (d, J 

= 6.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.2, 136.6, 134.5, 129.6, 129.4, 129.3, 128.7, 128.0, 

118.7, 57.7, 49.0, 36.4, 31.3, 26.9, 23.3, 22.2, 21.7, 14.0; ATR-IR ν 3281 (w), 2969 (w), 1160 (s), 907 

(s), 730 (s), 667 (s); HRMS (ESI) calcd for C22H27N2O2S
+
 [M+H]

+
 383.1788; found 383.1790. 

 

                            Mixture of isomers                                                               2.299b (99.3% ee) 

 

3-((2R,3R)-3-isobutyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (ent-2.299b) 

 

Yield 83%, white solid; 
1
H NMR (400 MHz, CDCl3) δ 7.79 – 7.61 (m, 2H), 7.52 – 7.42 (m, 2H), 7.40 

– 7.35 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 3.38 (dd, J = 7.9, 4.8 Hz, 1H), 2.58 – 2.46 (m, 1H), 2.42 (s, 

3H), 2.19 – 1.99 (m, 2H), 1.69 – 1.54 (m, 1H), 1.46 – 1.30 (m, 2H), 0.94 (d, J = 6.4 Hz, 3H), 0.89 (d, J 

= 6.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.2, 136.6, 134.5, 129.6, 129.4, 129.3, 128.7, 128.0, 

118.7, 57.7, 49.0, 36.4, 31.3, 26.9, 23.3, 22.2, 21.7, 14.0; ATR-IR ν 3281 (w), 2969 (w), 1160 (s), 907 

(s), 730 (s), 667 (s); HRMS (ESI) calcd for C22H27N2O2S
+
 [M+H]

+
 383.1788; found 383.1795. 

 



312 

 

 

                            Mixture of isomers                                                         ent-2.299b (96.5% ee) 

3-((2S,3S)-3-isopropyl-2-phenyl-1-tosylaziridin-2-yl)propanenitrile (2.299c) 

 

Yield 77%, colourless oil; 
1
H NMR (400 MHz, CDCl3) δ 8.01 – 7.60 (m, 2H), 7.53 – 7.43 (m, 2H), 

7.41 – 7.34 (m, 3H), 7.29 – 7.19 (m, 2H), 2.97 (d, J = 9.9 Hz, 1H), 2.41 (s, 3H), 2.50 – 2.25 (m, 3H), 

2.14 – 1.94 (m, 1H), 1.64 – 1.55 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H), 0.62 (d, J = 6.6 Hz, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 144.4, 136.4, 135.0, 129.6, 129.4, 129.2, 128.7, 128.4, 118.9, 58.5, 57.4, 31.8, 

26.9, 21.8, 20.8, 20.4, 14.2; ATR-IR ν 2964 (w), 2245 (w), 1454 (w), 1322 (m), 1154 (s), 1090 (s), 

983 (m), 916 (m); HRMS (ESI) calcd for C21H25N2O2S
+
 [M+H]

+
 369.1631; found 369.1645. 

       

Racemic mixture                                                   2.299c (96.2% ee) 
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3.7. Copper-Catalyzed Carboazidation of Alkenes with Acetonitrile and Sodium 

Azide  

3.7.1. Substrate scope 

 

Alkene 2.319 (0.2 mmol, 1 equiv), Cu(OAc)2 (20 mol%), 1,10-phenanthroline (65 mol%), MnF3 (30 

mol%), and NaN3 (2 equiv) were dissolved in degassed MeCN/MeOH (v/v 1/1, c 0.1 M) in a sealed 

tube. DTBP (2 equiv) was then added and the tube was sealed and heated to 110-120 
o
C. After 10-18 

h, the reaction mixture was cooled down to room temperature, diluted with water, extracted with 

EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel 

(petroleum ether/ethyl acetate) to give compound 2.320. 

 

Characterization Data of Compounds 2.320 

4-azido-4-phenylpentanenitrile (2.320a) 

 

Yield: 28.8 mg (72%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.47 – 7.27 (m, 5H), 2.36 – 2.28 

(m, 1H), 2.20 – 2.13 (m, 2H), 2.12 – 2.01 (m, 1H), 1.76 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

141.4, 129.2, 128.2, 125.4, 119.3, 65.8, 38.4, 25.8, 12.7; ATR-IR ν 2934 (w), 2933 (w), 2248 (w), 

2094 (s), 1447 (w), 1253 (m), 764 (m), 700 (s); HRMS (ESI) calcd for C11H12N4Na
+
 [M+Na]

+
 

223.0954; found 223.0958. 

 

4-azido-4-(m-tolyl)pentanenitrile (2.320b) 

 

Yield: 26.4 mg (62%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.29 (td, J = 7.4, 1.1 Hz, 1H), 

7.16 – 7.12 (m, 3H), 2.39 (s, 3H), 2.36 – 2.27 (m, 1H), 2.19 – 2.12 (m, 2H), 2.11 – 2.00 (m, 1H), 1.75 

(s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 141.3, 138.9, 129.0, 128.9, 126.1, 122.4, 119.4, 65.7, 38.3, 
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25.8, 21.8, 12.7; ATR-IR ν 2975 (w), 2927 (w), 2248 (w), 2104 (s), 1251 (m), 788 (m), 706 (s); 

HRMS (ESI) calcd for C12H14N4Na
+
 [M+Na]

+
 237.1111; found 237.1107. 

 

4-azido-4-(p-tolyl)pentanenitrile (2.320c) 

 

Yield: 31.0 mg (72%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.5 Hz, 2H), 7.19 (d, 

J = 8.5 Hz, 2H), 2.34 (s, 3H), 2.37 – 2.26 (m, 1H), 2.15 – 2.01 (m, 3H), 1.72 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 138.3, 137.9, 129.7, 125.3, 119.4, 65.6, 38.3, 25.6, 21.1, 12.7; ATR-IR ν 2975 (w), 

2930 (w), 2928 (w), 2248 (w), 2095 (s), 1253 (m), 1082 (m), 819 (s); HRMS (ESI) calcd for 

C12H14N4Na
+
 [M+Na]

+
 237.1111; found 237.1112. 

 

4-azido-4-(4-methoxyphenyl)pentanenitrile (2.320d) 

 

Yield: 33.6 mg (73%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.9 Hz, 2H), 6.92 (d, 

J = 8.9 Hz, 2H), 3.82 (s, 3H), 2.34 – 2.25 (m, 1H), 2.19 – 2.04 (m, 3H), 1.74 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 159.3, 133.3, 126.7, 119.4, 114.3, 65.4, 55.4, 38.4, 25.6, 12.7; ATR-IR ν 2956 (w), 

2931 (w), 2247 (w), 2246 (w), 2097 (s), 1512 (m), 1249 (s), 1182 (m), 1031 (m), 832 (s); HRMS 

(ESI) calcd for C12H14N4NaO
+
 [M+Na]

+
 253.1060; found 253.1057. 

 

4-([1,1'-biphenyl]-4-yl)-4-azidopentanenitrile (2.320e) 

 

Yield: 40.8 mg (74%), white solid, mp: 46 – 47 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.59 (m, 

4H), 7.50 – 7.36 (m, 5H), 2.42 – 2.34 (m, 1H), 2.23 – 2.19 (m, 2H), 2.16 – 2.08 (m, 1H), 1.80 (s, 3H); 

13
C NMR (101 MHz, CDCl3) δ 141.0, 140.3, 140.2, 129.0, 127.8 (2C), 127.2, 125.9, 119.4, 65.6, 

38.3, 25.7, 12.7; ATR-IR ν 2977 (w), 2952 (w), 2931 (w), 2246 (w), 2113 (s), 1489 (m), 1246 (s), 

1086 (m), 839 (m), 766 (s); HRMS (ESI) calcd for C17H16N4Na
+
 [M+Na]

+
 299.1267; found 299.1270. 



315 

 

 

4-azido-4-(3-nitrophenyl)pentanenitrile (2.320f) 

 

Yield: 26.4 mg (54%), white solid, mp: 72 – 73 ºC;
1
H NMR (400 MHz, CDCl3) δ 8.27 (t, J = 2.1 Hz, 

1H), 8.21 (ddd, J = 8.1, 2.2, 1.1 Hz, 1H), 7.75 (ddd, J = 7.9, 1.9, 1.1 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 

2.38 (ddd, J = 16.1, 8.9, 6.0 Hz, 1H), 2.26 – 2.21 (m, 2H), 2.12 (ddd, J = 16.1, 9.1, 5.8 Hz, 1H), 1.82 

(s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 148.7, 144.0, 131.6, 130.3, 123.3, 120.8, 118.7, 65.1, 38.0, 

25.7, 12.7; ATR-IR ν 2977 (w), 2955 (w), 2933 (w), 2247 (w), 2109 (s), 1524 (s), 1353 (s), 1260 (s), 

738 (s), 684 (s), 684 (s); HRMS (ESI) calcd for C11H12N5O2
+
 [M+H]

+
 246.0986; found 246.0987. 

 

4-azido-4-(3-chlorophenyl)pentanenitrile (2.320g) 

 

Yield: 26.6 mg (57%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 – 7.30 (m, 3H), 7.27 – 7.24 

(m, 1H), 2.39 – 2.31 (m, 1H), 2.19 – 2.04 (m, 3H), 1.76 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

143.6, 135.2, 130.5, 128.4, 125.9, 123.6, 119.1, 65.3, 38.2, 25.7, 12.7; ATR-IR ν 2975 (w), 2952 (w), 

2932 (w), 2931 (w), 2249 (w), 2098 (s), 1249 (m), 786 (m), 698 (s); HRMS (ESI) calcd for 

C11H12ClN4
+
 [M+H]

+
 235.0745; found 235.0746. 

 

4-azido-4-(4-chlorophenyl)pentanenitrile (2.320h) 

 

Yield: 23.6 mg (50%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.35 (m, 2H), 7.32 – 7.29 

(m, 2H),  2.33 (ddd, J = 15.6, 9.7, 5.3 Hz, 1H), 2.19 – 2.03 (m, 3H), 1.74 (s, 3H); 
13

C NMR (101 

MHz, CDCl3) δ 140.0, 134.2, 129.3, 126.9, 119.1, 65.3, 38.2, 25.7, 12.7; ATR-IR ν 2976 (w), 2933 

(w), 2249 (w), 2106 (s), 2105 (s), 1490 (m), 1250 (m), 1096 (s), 1012 (s), 829 (s); HRMS (ESI) calcd 

for C11H11AgClN4
+
 [M+Ag]

+
 340.9718; found 340.9731. 

 

4-azido-4-(3-(trifluoromethyl)phenyl)pentanenitrile (2.320i) 
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Yield: 27.1 mg (51%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.64 – 7.53 (m, 4H), 2.36 (ddd, J 

= 16.2, 9.4, 5.9 Hz, 1H), 2.23 – 2.18 (m, 2H), 2.08 (ddd, J = 16.2, 9.5, 5.7 Hz, 1H), 1.79 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 142.8, 131.6 (q, J = 32.4 Hz), 129.8, 128.9, 125.2 (q, J = 3.8 Hz), 123.9 

(q, J = 272.5 Hz), 122.3 (q, J = 3.8 Hz), 119.0, 65.3, 38.2, 25.8, 12.7; ATR-IR ν 2976 (w), 2962 (w), 

2932 (w), 2250 (w), 2102 (s), 1330 (s), 1165 (s), 1122 (s), 1072 (s), 704 (s); HRMS (ESI) calcd for 

C12H11F3N4Na
+
 [M+Na]

+
 291.0828; found 291.0829. 

 

4-azido-4-(pyridin-3-yl)pentanenitrile (2.320j) 

 

Yield: 20.9 mg (52%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 8.66 (s, 1H), 8.63 – 8.59 (m, 1H), 

7.71 (ddd, J = 8.1, 2.5, 1.5 Hz, 1H), 7.35 (dd, J = 8.1, 4.7 Hz, 1H), 2.41 – 2.33 (m, 1H), 2.22 – 2.07 

(m, 3H), 1.79 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 149.6, 147.1, 137.2, 133.4, 123.8, 118.9, 64.2, 

38.1, 25.5, 12.6; ATR-IR ν 2976 (w), 2933 (w), 2248 (w), 2102 (s), 1418 (m), 1251 (m), 714 (s); 

HRMS (ESI) calcd for C10H12N5
+
 [M+H]

+
 202.1087; found 202.1092. 

 

4-azido-4-(thiophen-2-yl)pentanenitrile (2.320k) 

 

Yield: 19.9 mg (48%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 5.0, 1.3 Hz, 1H), 7.02 

– 6.98 (m, 3H), 2.44 – 2.36 (m, 1H), 2.30 – 2.15 (m, 3H), 1.80 (s, 3H); 
13

C NMR (101 MHz, CDCl3) 

δ 145.7, 127.3, 125.7, 124.6, 119.2, 64.0, 39.0, 26.3, 12.8; ATR-IR ν 2976 (w), 2956 (w), 2933 (w), 

2248 (w), 2105 (s), 1242 (s), 856 (w), 836 (w), 704 (s); HRMS (ESI) calcd for C9H11N4S
+
 [M+H]

+
 

207.0699; found 207.0703. 

 

4-azido-4,4-diphenylbutanenitrile (2.320l) 
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Yield: 40.0 mg (76%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.28 (m, 10H), 2.78 – 2.74 

(m, 2H), 2.23 – 2.19 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 141.0, 128.9, 128.4, 127.0, 119.4, 71.5, 

35.4, 12.8; ATR-IR ν 2958 (w), 2929 (w), 2249 (w), 2099 (s), 1447 (w), 1248 (m), 1031 (w), 770 (w), 

757 (m); HRMS (ESI) calcd for C16H14N4Na
+
 [M+Na]

+
 285.1111; found 285.1116. 

 

4-azido-4-phenyl-4-(o-tolyl)butanenitrile (2.320m) 

 

Yield: 33.7 mg (61%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.66 – 7.63 (m, 1H), 7.35 – 7.28 (m, 

5H), 7.21 – 7.15 (m, 3H), 2.85 (ddd, J = 13.4, 10.7, 5.4 Hz, 1H), 2.69 (ddd, J = 13.4, 10.6, 5.2 Hz, 

1H), 2.31 (ddd, J = 17.0, 10.6, 5.4 Hz, 1H), 2.12 (ddd, J = 16.9, 10.7, 5.2 Hz, 1H), 1.87 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 140.5, 138.4, 137.3, 133.3, 128.9, 128.7, 128.0, 126.7, 126.4, 126.0, 

119.5, 71.3, 35.6, 21.2, 12.9; ATR-IR ν 2930 (w), 2249 (w), 2100 (s), 1448 (w), 1250 (m), 756 (s), 

730 (m), 701 (s); HRMS (ESI) calcd for C17H17N4
+
 [M+H]

+
 277.1448; found 277.1454. 

 

4-azido-4-phenyl-4-(m-tolyl)butanenitrile (2.320n) 

 

Yield: 40.3 mg (73%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 – 7.22 (m, 6H), 7.13 – 7.10 (m, 

1H), 7.07 – 7.03 (m, 2H), 2.74 – 2.70 (m, 2H), 2.32 (s, 3H), 2.20 – 2.16 (m, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 141.2, 141.0, 138.6, 129.1, 128.8, 128.7, 128.3, 127.5, 127.0, 124.1, 119.5, 71.6, 35.5, 

21.7, 12.8; ATR-IR ν 2957 (w), 2926 (w), 2248 (w), 2100 (s), 1447 (w), 1249 (m), 765 (m), 717 (m), 

700 (s); HRMS (ESI) calcd for C17H17N4
+
 [M+H]

+
 277.1448; found 277.1455. 

 

4-azido-4-phenyl-4-(p-tolyl)butanenitrile (2.320o) 
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Yield: 40.2 mg (73%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.26 (m, 5H), 7.20 – 7.15 (m, 

4H), 2.80 – 2.67 (m, 2H), 2.36 (s, 3H), 2.26 – 2.14 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 141.2, 

138.2, 138.1, 129.5, 128.8, 128.3, 126.94, 126.91, 119.5, 71.5, 35.5, 21.1, 12.8; ATR-IR ν 2944 (w), 

2925 (w), 2249 (w), 2100 (s), 1250 (m), 1249 (m), 816 (m), 765 (m), 726 (m), 700 (s); HRMS (ESI) 

calcd for C17H17N4
+
 [M+H]

+
 277.1448; found 277.1454. 

 

4-azido-4-(4-methoxyphenyl)-4-phenylbutanenitrile (2.320p) 

 

Yield: 20.4 mg (67%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.43 – 7.29 (m, 5H), 7.24 – 7.21 (m, 

5H), 6.94 – 6.91 (m, 2H), 3.84 (s, 3H), 2.81 – 2.69 (m, 2H), 2.28 (ddd, J = 17.0, 9.8, 6.1 Hz, 1H), 2.18 

(ddd, J = 17.0, 10.1, 6.0 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.4, 141.3, 133.2, 128.8, 128.34, 

128.27, 126.9, 119.5, 114.1, 71.4, 55.4, 35.7, 12.8; ATR-IR ν 2957 (w), 2934 (w), 2248 (w), 2100 (s), 

1511 (s), 1250 (s), 1181 (m), 1031 (s), 830 (s), 699 (s); HRMS (ESI) calcd for C17H17N4O
+
 [M+H]

+
 

293.1397; found 293.1393. 

 

4-azido-4-(4-bromophenyl)-4-phenylbutanenitrile (2.320q) 

 

Yield: 47.1 mg (69%), yellow oil;  
1
H NMR (400 MHz, CDCl3) δ 7.55 – 7.52 (m, 3H), 7.44 – 7.37 

(m, 3H), 7.30 – 7.28 (m, 2H), 7.21 – 7.18 (m, 2H), 2.78 – 2.74 (m, 2H), 2.26 – 2.22 (m, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 140.5, 140.3, 132.1, 129.1, 128.8, 128.7, 126.9, 122.7, 119.2, 71.1, 35.3, 

12.8; ATR-IR ν 2987 (w), 2958 (w), 2248 (w), 2100 (s), 1249 (m), 1009 (m), 821 (m), 767 (m), 700 

(s); HRMS (ESI) calcd for C16H14BrN4
+
 [M+H]

+
 341.0396; found 341.0397. 
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4-azido-4-(4-fluorophenyl)-4-phenylbutanenitrile (2.320r) 

 

Yield: 40.8 mg (73%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.35 (m, 3H), 7.32 – 7.28 

(m, 4H), 7.12 – 7.08 (m, 2H), 2.77 (dd, J = 8.4, 7.6 Hz, 2H), 2.31 – 2.17 (m, 2H); 
13

C NMR (101 

MHz, CDCl3) δ 162.4 (d, J = 248.6 Hz), 140.8, 137.1 (d, J = 3.3 Hz), 129.0, 128.9 (d, J = 8.3 Hz), 

128.5, 126.9, 119.2, 115.8 (d, J = 21.6 Hz), 71.1, 35.5, 12.8; ATR-IR ν 2960 (w), 2249 (w), 2101 (s), 

1509 (s), 1229 (s), 834 (s), 699 (s); HRMS (ESI) calcd for C16H13FN4Na
+
 [M+Na]

+
 303.1016; found 

303.1018. 

 

4-azido-4-(3-chlorophenyl)-4-phenylbutanenitrile (2.320s) 

 

Yield: 34.8 mg (59%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.45 – 7.28 (m, 8H), 7.21 – 7.17 

(m, 1H), 2.84 – 2.71 (m, 2H), 2.32 – 2.18 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 143.3, 140.4, 

135.0, 130.2, 129.1, 128.7, 128.7, 127.2, 126.9, 125.2, 119.1, 71.1, 35.3, 12.8; ATR-IR ν 2969 (w), 

2947 (w), 2929 (w), 2249 (w), 2101 (s), 1248 (m), 791 (m), 768 (m), 697 (s); HRMS (ESI) calcd for 

C16H14ClN4
+
 [M+H]

+
 297.0901; found 297.0914. 

 

4-azido-4-phenyl-4-(3-(trifluoromethyl)phenyl)butanenitrile (2.320t) 

 

Yield: 46.9 mg (71%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.63 (m, 2H), 7.54 (td, J = 

8.0, 0.8 Hz, 1H), 7.48 – 7.39 (m, 4H), 7.32 – 7.29 (m, 2H), 2.88 – 2.77 (m, 2H), 2.34 – 2.17 (m, 2H); 

13
C NMR (101 MHz, CDCl3) δ 142.5, 140.3, 131.3 (q, J = 32.5 Hz), 130.5, 129.6, 129.2, 128.9, 

126.9, 125.4 (q, J = 3.8 Hz), 123.9 (q, J = 272.4 Hz), 123.5 (q, J = 3.9 Hz), 119.0, 71.1, 35.2, 12.7; 
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ATR-IR ν 2969 (w), 2935 (w), 2250 (w), 2103 (s), 1329 (s), 1165 (s), 1123 (s), 1077 (s), 700 (s); 

HRMS (ESI) calcd for C17H13F3N4Na
+
 [M+Na]

+
 353.0984; found 353.0988. 

 

4-azido-4,4-di-p-tolylbutanenitrile (2.320u) 

 

Yield: 43.6 mg (75%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.19 – 7.14 (m, 8H), 2.73 – 2.69 (m, 

2H), 2.35 (s, 6H), 2.22 – 2.18 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 138.3, 138.2, 129.5, 126.9, 

119.6, 71.4, 35.6, 21.2, 12.8; ATR-IR ν 3025 (w), 2924 (w), 2248 (w), 2101 (s), 1510 (w), 1252 (m), 

1046 (w), 1019 (w), 811 (s), 790 (m), 739 (w); HRMS (ESI) calcd for C18H18N4Na
+
 [M+Na]

+
 

313.1424; found 313.1422. 

 

4-azido-4,4-bis(4-chlorophenyl)butanenitrile (2.320v) 

 

Yield: 45.6 mg (69%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.38 – 7.34 (m, 4H), 7.22 – 7.19 (m, 

4H), 2.73 – 2.69 (m, 2H), 2.22 – 2.19 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 139.3, 134.7, 129.2, 

128.3, 118.9, 70.6, 35.2, 12.7; ATR-IR ν 2969 (w), 2956 (w), 2249 (w), 2102 (s), 1490 (m), 1247 (m), 

1094 (s), 1012 (s), 818 (s); HRMS (ESI) calcd for C16H13Cl2N4
+
 [M+H]

+
 331.0512; found 331.0521. 

 

4-azido-4,4-bis(4-fluorophenyl)butanenitrile (2.320w) 

 

Yield: 42.8 mg (72%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.31 – 7.26 (m, 4H), 7.13 – 7.07 

(m, 4H), 2.77 – 2.73 (m, 2H), 2.26 – 2.22 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 162.5 (d, J = 248.9 

Hz), 136.8 (d, J = 3.3 Hz), 128.8 (d, J = 8.3 Hz), 119.0, 116.0 (d, J = 21.6 Hz), 70.6, 35.6, 12.8; ATR-
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IR ν 2958 (w), 2933 (w), 2250 (w), 2249 (w), 2103 (s), 1507 (s), 1229 (s), 1162 (m), 832 (s); HRMS 

(ESI) calcd for C16H13F2N4
+
 [M+H]

+
 299.1103; found 299.1097. 

 

4-azido-4-(4-methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)butanenitrile (2.320x) 

 

Yield: 48.3 mg (67%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.65 – 7.62 (m, 2H), 7.44 – 7.41 (m, 

2H), 7.20 – 7.16 (m, 2H), 6.93 – 6.89 (m, 2H), 3.82 (s, 3H), 2.83 – 2.67 (m, 2H), 2.29 (ddd, J = 17.0, 

10.2, 5.5 Hz, 1H), 2.12 (ddd, J = 17.0, 10.5, 5.5 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.7, 

145.5, 132.4, 130.5 (q, J = 32.7 Hz), 128.3, 127.4, 125.9 (q, J = 3.8 Hz), 123.9 (q, J = 273.3 Hz), 

119.1, 114.4, 71.0, 55.4, 35.4, 12.8; ATR-IR ν 2958 (w), 2935 (w), 2250 (w), 2104 (s), 1513 (m), 

1325 (s), 1253 (s), 1070 (s), 1032 (m), 1016 (m), 829 (s); HRMS (ESI) calcd for C18H15F3N4NaO
+
 

[M+Na]
+
 383.1090; found 383.1093. 

 

(S)-4-azido-4-(4-methoxyphenyl)butanenitrile (2.320y) 

 

Yield: 20.0 mg (46%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.22 – 7.10 (m, 2H), 6.89 – 6.84 (m, 

2H), 4.51 (dd, J = 8.7, 6.0 Hz, 1H), 3.75 (s, 3H), 2.43 – 2.35 (m, 1H), 2.32 – 2.24 (m, 1H), 2.05 – 1.90 

(m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 160.1, 129.7, 128.3, 118.9, 114.6, 64.1, 55.5, 32.0, 14.5; 

ATR-IR ν 2958 (w), 2932 (w), 2247 (w), 2097 (s), 2096 (s), 1514 (s), 1248 (s), 1177 (m), 1031 (s), 

831 (s); HRMS (ESI) calcd for C11H12N4NaO
+
 [M+Na]

+
 239.0903; found 239.0907. 

 

4-([1,1'-biphenyl]-4-yl)-4-azidobutanenitrile (2.320z) 

 

Yield: 30.5 mg (46%), white solid, mp: 42 – 43 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.68 – 7.63 (m, 

2H), 7.62 – 7.59 (m, 2H), 7.49 – 7.36 (m, 5H), 4.69 (dd, J = 8.7, 5.8 Hz, 1H), 2.56 – 2.48 (m, 1H), 

2.45 – 2.37 (m, 1H), 2.19 – 2.04 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 142.1, 140.3, 136.8, 129.0, 
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128.0, 127.8, 127.4, 127.2, 118.8, 64.2, 32.1, 14.5; ATR-IR ν 2936 (w), 2247 (w), 2099 (s), 1486 (m), 

1247 (m), 847 (m), 838 (m), 768 (s), 735 (s), 698 (s); HRMS (ESI) calcd for C16H14N4Na
+
 [M+Na]

+
 

285.1111; found 285.1110. 

 

4-azido-4-phenylhexanenitrile (2.320aa) 

 

Yield: 27.7 mg (65%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.42 – 7.37 (m, 2H), 7.33 – 7.29 

(m, 3H), 2.34 – 2.18 (m, 3H), 2.13 – 1.94 (m, 3H), 0.83 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 139.2, 129.0, 128.0, 125.9, 119.4, 69.5, 36.1, 32.7, 12.5, 8.3; ATR-IR ν 2973 (w), 2937 (w), 

2249 (w), 2099 (s), 1256 (m), 761 (m), 701 (s); HRMS (ESI) calcd for C12H14N4Na
+
 [M+Na]

+
 

237.1111; found 237.1116. 

 

4-azido-4-phenylheptanenitrile (2.320ab) 

 

Yield: 28.7 mg (63%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.35 (m, 2H), 7.34 – 7.28 

(m, 3H), 2.34 – 2.19 (m, 3H), 2.04 – 1.89 (m, 3H), 1.40 – 1.26 (m, 1H), 1.14 – 1.05 (m, 1H), 0.89 (t, J 

= 7.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 139.5, 129.0, 127.9, 125.8, 119.3, 69.1, 42.1, 36.4, 

17.2, 14.2, 12.5; ATR-IR ν 2961 (w), 2934 (w), 2248 (w), 2105 (s), 1448 (w), 1257 (m), 765 (m), 701 

(s); HRMS (ESI) calcd for C13H17N4
+
 [M+H]

+
 229.1448; found 229.1443. 

 

4-azido-4,6-diphenylhexanenitrile (2.320ac) 

 

Yield: 35.4 mg (61%), yellow solid, mp: 69 – 70 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.33 (m, 

5H), 7.27 – 7.23 (m, 2H), 7.20 – 7.16 (m, 1H), 7.10 – 7.08 (m, 2H), 2.65 – 2.56 (m, 1H), 2.36 – 2.21 

(m, 6H), 2.03 – 1.95 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 140.9, 139.0, 129.2, 128.7, 128.3, 

128.2, 126.3, 125.8, 119.2, 68.9, 42.1, 36.5, 30.4, 12.5; ATR-IR ν 2952 (w), 2937 (w), 2932 (w), 2121 
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(m), 2097 (s), 1252 (s), 763 (m), 705 (s); HRMS (ESI) calcd for C18H18N4Na
+
 [M+Na]

+
 313.1424; 

found 313.1424. 

 

4-azido-4-cyclohexyl-4-phenylbutanenitrile (2.320ad) 

 

Yield: 31.1 mg (58%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.39 – 7.34 (m, 2H), 7.32 – 7.25 

(m, 3H)), 2.46 (dd, J = 8.8, 6.9 Hz, 2H), 2.29 (ddd, J = 16.5, 8.8, 7.6 Hz, 1H), 2.09 – 2.01 (m, 1H), 

1.95 – 1.89 (m, 1H), 1.82 – 1.68 (m, 3H), 1.66 – 1.59 (m, 1H), 1.57 – 1.51 (m, 1H), 1.28 – 1.12 (m, 

2H), 1.08 – 0.86 (m, 3H); 
13

C NMR (101 MHz, CDCl3) δ 138.3, 128.6, 127.8, 126.6, 119.4, 72.0, 

48.6, 32.7, 28.0, 27.7, 26.6, 26.5, 26.2, 12.8; ATR-IR ν 2932 (m), 2854 (w), 2247 (w), 2094 (s), 1447 

(m), 1254 (m), 763 (m), 704 (s); HRMS (ESI) calcd for C16H21N4
+
 [M+H]

+
 269.1761; found 

269.1759. 

 

methyl 4-azido-6-cyano-4-phenylhexanoate (2.320ae) 

 

Yield: 33.4 mg (61%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.37 (m, 2H), 7.34 – 7.29 

(m, 3H), 3.61 (s, 3H), 2.40 – 2.23 (m, 6H), 2.11 – 1.94 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 

172.9, 138.1, 129.3, 128.3, 125.8, 119.0, 68.4, 52.0, 36.2, 34.7, 28.8, 12.5; ATR-IR ν 2953 (w), 2924 

(w), 2853 (w), 2248 (w), 2101 (s), 1734 (s), 1253 (s), 1199 (m), 1168 (m), 764 (m), 702 (s); HRMS 

(ESI) calcd for C14H16N4NaO2
+
 [M+Na]

+
 295.1165; found 295.1167. 

 

4-azido-7-hydroxy-4-phenylheptanenitrile (2.320af) 

 

Yield: 24.3 mg (50%), yellow oil; 
1
H NMR (400 MHz, CDCl3) δ 7.42 – 7.35 (m, 2H), 7.32 – 7.28 (m, 

3H), 3.58 (t, J = 6.2 Hz, 2H), 2.34 – 2.20 (m, 3H), 2.16 – 2.08 (m, 2H), 2.04 – 1.93 (m, 1H), 1.59 

(broand, s, 1H), 1.64 – 1.53 (m, 1H), 1.37 – 1.25 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 139.2, 
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129.1, 128.1, 125.8, 119.3, 68.9, 62.3, 36.4, 36.1, 27.1, 12.5; ATR-IR ν 3389 (w), 2949 (w), 2930 (w), 

2249 (w), 2100 (s), 1255 (m), 763 (m), 702 (s); HRMS (ESI) calcd for C13H16N4NaO
+
 [M+Na]

+
 

267.1216; found 267.1219. 

 

3-(1-azido-1,2,3,4-tetrahydronaphthalen-1-yl)propanenitrile (2.320ag) 

 

Yield: 21.9 mg (48%), yellow solid, mp: 41 – 42 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.36 (m, 

1H), 7.28 – 7.25 (m, 2H), 7.18 – 7.14 (m, 1H), 2.92 – 2.76 (m, 2H), 2.50 – 2.35 (m, 2H), 2.28 – 2.14 

(m, 2H), 2.09 – 1.84 (m, 4H); 
13

C NMR (101 MHz, CDCl3) δ 137.5, 135.7, 130.0, 128.5, 126.8, 

126.5, 119.5, 64.6, 36.5, 33.1, 29.3, 19.5, 12.6; ATR-IR ν 2942 (w), 2871 (w), 2863 (w), 2245 (w), 

2105 (s), 1440 (m), 1246 (s), 763 (s), 735 (s); HRMS (ESI) calcd for C13H15N4
+
 [M+H]

+
 227.1291; 

found 227.1292. 

 

3-(5-azido-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-yl)propanenitrile (2.320ah) 

 

Yield: 22.1 mg (46%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.48 (dd, J = 7.6, 1.6 Hz, 1H), 

7.27 – 7.19 (m, 2H), 7.15 (dd, J = 7.3, 1.8 Hz, 1H), 2.93 – 2.81 (m, 2H), 2.47 – 2.36 (m, 2H), 2.17 – 

1.87 (m, 7H), 1.60 – 1.49 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 140.0, 139.7, 132.3, 128.4, 127.4, 

126.9, 119.6, 70.2, 37.4, 36.7, 33.4, 27.5, 25.4, 12.6; ATR-IR ν 2932 (w), 2857 (w), 2247 (w), 2098 

(s), 1445 (w), 1253 (m), 759 (s), 747 (m); HRMS (ESI) calcd for C14H16N4Na
+
 [M+Na]

+
 263.1267; 

found 263.1268. 

 

2-(2-azido-2-phenylcyclopentyl)acetonitrile (2.320ai) 

 

Yield: 21.1 mg (46%), colorless oil; 
1
H NMR (400 MHz, CDCl3) δ 7.45 – 7.40 (m, 2H), 7.39 – 7.33 

(m, 3H), 2.55 – 2.46 (m, 1H), 2.46 – 2.39 (m, 1H), 2.33 – 2.24 (m, 2H), 2.12 – 1.97 (m, 3H), 1.79 – 
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1.70 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 138.1, 129.2, 128.8, 127.2, 118.7, 77.3, 45.9, 32.8, 

28.9, 21.1, 20.3; ATR-IR ν 2956 (w), 2249 (w), 2096 (s), 2095 (s), 1246 (m), 764 (m), 701 (s); 

HRMS (ESI) calcd for C13H15N4
+
 [M+H]

+
 227.1291; found 227.1294. 

 

3.7.2. Post-transformation of γ-azidonitrile 2.320a 

Synthesis of 4-phenylpentane-1,4-diamine (2.327) 

 

To a solution of 2.320a (40 mg, 0.2 mmol) in MeOH (2 mL, 0.1 M) was added Pd/C (m/m 10%, 21 

mg, 10 mol%). The reaction mixture was evacuated and filled with H2 (from balloom) three times. 

After stirring at room temperature for 24 hours, the reaction mixture was then filtered through a plug 

of Celite. The resulting filtrate was concentrated in vacuo. The crude product was purified by flash 

column chromatography on silica gel (dichloro methane/methanol 15/1) to give compound 2.327 

(colorless oil, 20.0 mg, 56%). 

1
H NMR (400 MHz, CDCl3) δ 7.50 – 7.47 (m, 2H), 7.34 – 7.30 (m, 2H), 7.23 – 7.19 (m, 1H), 3.18 – 

3.12 (m, 1H), 3.05 – 2.99 (m, 1H), 2.30 (s, broad, 2H), 2.15 – 2.08 (m, 1H), 1.94 – 1.88 (m, 2H), 1.80 

– 1.74 (m, 1H), 1.46 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 148.6, 128.4, 126.4, 125.6, 65.6, 45.8, 

40.0, 30.2, 25.4; ATR-IR ν 2960 (w), 2925 (w), 2869 (w), 1665 (w), 1445 (w), 1372 (w), 763 (m), 

700 (s); HRMS (ESI) calcd for C11H20N2
2+

 [M+2H]
2+

 180.1616; found 180.1623. 

 

Synthesis of 4-amino-4-phenylpentanenitrile (2.328) 

 

To a solution of 2.320a (110 mg, 0.55 mmol) in EtOH (5.5 mL, 0.1 M) was added Pd/CaCO3 (m/m 

10%, 60 mg, 5 mol%). The reaction mixture was evacuated and filled with H2 (from balloom) three 

times. After stirring at room temperature for 24 hours, the reaction mixture was then filtered through a 

plug of Celite. The resulting filtrate was concentrated in vacuo. The crude product was purified by 
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flash column chromatography on silica gel (dichloro methane/methanol 50/1) to give compound 2.328 

(colorless oil, 69.0 mg, 72%). 

1
H NMR (400 MHz, CDCl3) δ 7.44 – 7.40 (m, 2H), 7.38 – 7.34 (m, 2H), 7.28 – 7.24 (m, 1H), 2.37 – 

2.30 (m, 1H), 2.14 – 2.02 (m, 3H), 1.60 (s, broad, 2H), 1.53 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

146.3, 146.3, 128.8, 127.1, 125.1, 120.4, 54.7, 40.4, 32.0, 12.7; ATR-IR ν 2963 (w), 2927 (w), 2245 

(w), 1650 (w), 1602 (w), 1445 (w), 765 (m), 700 (s); HRMS (ESI) calcd for C11H15N2
+
 [M+H]

+
 

175.1230; found 175.1239. 

 

Synthesis of 5-methyl-5-phenylpyrrolidin-2-one (2.331) 

 

Step 1: To a solution of 2.320a (100 mg, 0.5 mmol) in MeOH (1.0 mL, 0.5 M) was added a solution 

of HCl in Et2O (1M, 2.0 mL). After stirring at room temperature for 24 hours, the reaction mixture 

was quenched with NaHCO3, extracted with EtOAc. The combined organic layers were washed with 

brine, dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography on silica gel (petroleum ether/ethyl acetate 9/1) to give compound 2.329 

(colorless oil, 52.4 mg, 45%), and recover 2.320a (51.0 mg). 

1
H NMR (400 MHz, CDCl3) δ 7.41 – 7.27 (m, 5H), 3.61 (d, J = 1.6 Hz, 3H), 2.43 – 2.25 (m, 1H), 

2.23 – 1.99 (m, 3H), 1.71 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 173.6, 142.6, 128.8, 127.7, 125.6, 

66.3, 51.8, 37.3, 29.5, 26.0; ATR-IR ν 2930 (w), 2246 (w), 2102 (w), 1450 (w), 1426 (w), 761 (s), 

739 (s); HRMS (ESI) calcd for C12H16N3O2
+
 [M+H]

+
 234.1237; found 234.1239. 

 

 

Step 2: To a solution of 2.329 (41.4 mg, 0.2 mmol) in EtOH (2.0 mL, 0.1 M) was added Pd/CaCO3 

(m/m 10%, 22 mg, 5 mol%). The reaction mixture was evacuated and filled with H2 (from balloom) 

three times. After stirring at room temperature for 24 hours, the reaction mixture was then filtered 

through a short plug of Celite. The resulting filtrate was added K2CO3 (110 mg, 0.8 mmol), stirred at 

room temperature overnight.The reaction mixture was then extracted with EtOAc. The combined 

organic layers were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The 



327 

 

crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl 

acetate 1/2) to give compound 2.331 (colorless oil, 30.8 mg, 88%). 

1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.23 (m, 5H), 6.84 (s, 1H), 2.53 – 2.23 (m, 4H), 1.66 (s, 3H); 

13
C NMR (101 MHz, CDCl3) δ 177.8, 146.6, 128.8, 127.2, 124.6, 62.1, 37.8, 30.7, 29.6.; ATR-IR ν 

2930 (w), 2246 (w), 2102 (w), 1450 (w), 1426 (w), 761 (s), 739 (s); HRMS (ESI) calcd for 

C11H14NO
+
 [M+H]

+
 176.1070; found 176.1082. 

 

3.7.3. Radical clock experiments 

Carboazidation reaction of (1-cyclopropylvinyl)benzene 2.337 

 

Alkene 2.337 (0.2 mmol, 1 equiv), Cu(OAc)2 (20 mol%), 1,10-phenanthroline (65 mol%), MnF3 (30 

mol%), and NaN3 (2 equiv) were dissolved in degassed MeCN/MeOH (v/v 1/1, 0.1 M) in a sealed 

tube. DTBP (2 equiv) was then added and the tube was sealed and heated to 110 
o
C. After 20 h, the 

reaction mixture was cooled down to room temperature, diluted with water, extracted with EtOAc. The 

combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum 

ether/ethyl acetate) to give compound 2.338
129c

 (colorless oil, 13.4 mg, 36%), and 2.339 (colorless oil, 

9.0 mg, 20%). 

 

1
H NMR (400 MHz, CDCl3) δ 7.23 – 7.12 (m, 4H), 6.00 (t, J = 4.5 Hz, 1H), 2.85 – 2.73 (m, 4H), 2.57 

(t, J = 7.4 Hz, 2H), 2.32 – 2.27 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 137.0, 133.3, 133.2, 128.2, 

127.6, 127.4, 126.7, 121.9, 119.5, 28.8, 28.2, 23.1, 16.9. 
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1
H NMR (400 MHz, CDCl3) δ 7.34 – 7.20 (m, 15.5H), 7.33 – 7.11 (m, 2H), 5.70 (t, J = 7.4 Hz, 2.5H), 

5.57 (t, J = 7.4 Hz, 1.0H), 3.37 (t, J = 6.8 Hz, 5H), 3.19 (t, J = 6.9 Hz, 2H), 2.83 (t, J = 7.3 Hz, 5H), 

2.63 (t, J = 7.2, 2H), 2.50 (q, J = 7.0 Hz, 5H), 2.32 – 2.11 (m, 9H); 
13

C NMR (101 MHz, CDCl3) δ 

140.6, 140.5, 139.4, 138.3, 128.9 (2C), 128.4, 127.9, 127.8, 127.5, 126.7, 126.0, 119.19, 119.15, 

51.17, 51.15, 35.2, 28.9, 28.7, 26.1, 16.6, 16.5; ATR-IR ν 2930 (w), 2246 (w), 2102 (w), 1450 (w), 

1426 (w), 761 (s), 739 (s); HRMS (ESI) calcd for C13H15N4
+
 [M+H]

+
 227.1291; found 227.1287. 

 

Carboazidation reaction of (-)-β-pinene 2.341 

 

Alkene 2.341 (0.2 mmol, 1 equiv), Cu(OAc)2 (20 mol%), 1,10-phenanthroline (65 mol%), MnF3 (30 

mol%), and NaN3 (2 equiv) were dissolved in degassed MeCN/MeOH (v/v 1/1, 0.1 M) in a sealed 

tube. (
t
BuO)2 (2 equiv) was then added and the tube was sealed and heated to 110 

o
C. After 20 h, the 

reaction mixture was cooled down to room temperature, diluted with water, extracted with EtOAc. The 

combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography on silica gel (petroleum 

ether/ethyl acetate) to give compound 2.342 (colorless oil, 18.3 mg, 42%). 

1
H NMR (400 MHz, CDCl3) δ 5.54 – 5.52 (m, 1H), 2.43 (td, J = 7.2, 0.9 Hz, 2H), 2.33 – 2.23 (m, 

2H), 2.18 – 1.79 (m, 5H), 1.60 – 1.51 (m, 1H), 1.34 – 1.22 (m, 1H), 1.27 (s, 3H), 1.24 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 134.0, 123.1, 119.7, 64.1, 43.4, 32.8, 28.8, 26.8, 24.0, 24.0, 23.2, 16.2; 

ATR-IR ν 2964 (w), 2924 (w), 2924 (w), 2246 (w), 2098 (s), 1372 (w), 1260 (m), 1223 (w), 1134 w); 

HRMS (ESI) calcd for C12H18N4Na
+
 [M+Na]

+
 241.1424; found 241.1424. 
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mediated reactions", NCCR Site Visit, Octobor 2014, EPFL, Switzerland. 

3. Poster presentation: "Synthesis of Aziridines by Copper catalyzed amino-cyanomethylation 

of unactivated alkenes", NCCR Chemical Biology retreat, June 2015, Villars, Switzerland. 

4. Poster presentation: "Copper catalyzed cyanomethylation of unactivated alkenes", NCCR 

Chemical Biology retreat, June 2016, Villars, Switzerland. 

 

2012-16 NCCR (National Centre of Competence in Research, Switzerland) doctoral fellowship 

2008  Third Prize in the Student’s Research Contest, Vietnam Ministry of Education and 

Training 

 Third Prize of VIFOTEC (Viet Nam Fund for Technology Creation) 

 Second Prize in the Student’s Research Contest, Vietnam National University Hanoi 

2005  First prize at the National Contest of Chemistry for excellent high school students, 

Ministry of Education and Training 

2004  Bronze Medal at the 36
th
 International Chemistry Olympiad (IChO) 

 First prize at the National Contest of Chemistry for excellent high school students, 

Ministry of Education and Training 

2004 & 2006  Outstanding student and promotive scientist honor, Vietnam National 

University Hanoi 

2004 & 2006  Recontres du Vietnam Scholarship for Academic Excellent, Recontres du 

Vietnam Organization 
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Fluent in English  

Computer Proficient (Microsoft Windows All versions, Microsoft Word, Excel, Power Point, etc) 

Technical Proficient (Organic synthesis, Purification techniques, Schlenk and Glove-box technique, 

NMR, MS, IR, …) 

 

1. T. Ha, Y. Bo, Q. Wang, J. Zhu, "2‑(Methoxycarbonyl)ethyl as a Removable N‑Protecting 

Group: Synthesis of Indoloisoquinolinones by Pd(II)-Catalyzed Intramolecular Diamination of 

Alkynes", Organic Letters 2015, 17, 1750-1753 (T. Ha and Y. Bo contributed equally). 

2. T. Ha, Y. Bo, Q. Wang, J. Zhu, "Sulfonamide and Tertiary Amine as Nucleophiles in Pd(II)-

Catalyzed Diamination of Alkynes: Synthesis of Tetracyclic Indolobenzothiazine S,S-Dioxides", 

Organic Letters 2015, 17, 5256-5259. 

3. T. Ha, C. Chatalova-Sazepin, Q. Wang, J. Zhu, "Copper-Catalyzed Formal [2+2+1] 

Heteroannulation of Alkenes, Alkylnitriles and Water to γ-Butyrolactones: Development and 

Application to a Total Synthesis of (±)-Sacidumlignan D", Angew. Chemie Int. Ed. 2016, 55, 9249 –

9252. 

4. T. Ha, Q. Wang, J. Zhu, "Copper-Catalysed Cyanoalkylative Cycloetherification of Alkenes 

to 1,3-Dihydroisobenzofurans: Development and Application to the Synthesis of Citalopram", Chem. 

Comm. 2016, accepted, DOI: 10.1039/C6CC06356J. 

5. A. Bunescu, T. Ha, Q. Wang and J. Zhu, "Copper-Catalyzed Intermolecular Carboamination 

of Unactivated Alkenes with Alkyl Nitriles and azide: Efficent route to access β-aminoacids", 

manuscript in preparation (A. Bunescu and T. Ha contributed equally). 

6. T. Ha, Q. Wang and J. Zhu, "Synthesis of aziridines by Copper catalyzed amino-

cyanomethylation of unactivated alkenes", manuscript in preparation. 

7. T. Ha, Q. Wang and J. Zhu, "Synthesis of Indolo[3,2-b]quinolinone derivatives by simple 

acid-mediated reactions", manuscript in preparation. 
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Dr. René GRÉE 

Director of UMR 6226 - CNRS, Rennes, France. 

Address: Campus de Beaulieu – Batiment 10B, Rennes Cedex 35042, France 

Email : Rene.Gree@univ-rennes1.fr 

Prof. Dr. Jieping Zhu 

Head of Laboratory of Synthesis and Natural Product LSPN, ISIC, SB, EPFL 

Address: BCH 5304, Av. Forel 2, Lausanne 1015, Switzerland 

Email : jieping.zhu@epfl.ch 
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