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Abstract
Tokamaks and stellarators are the most promising reactor concepts using the magnetic con-

finement to contain the plasma fuel. Reactors capable of sustaining deuterium-tritium (D-T)

fusion reactions requires the confinement of a very high temperature plasma (above 100

millions kelvin). In addition to external heating methods, the slowing down of α particles

(helium-4 nuclei) born from D-T fusion reactions on the background plasma represents a

significant source of plasma heating. The good confinement of fast particles is therefore one

of the most important aspect of magnetic fusion devices. Furthermore, long plasma operation

in future fusion reactors requires the control of inherent plasma instabilities. These instabil-

ities are particularly dangerous in tokamaks because of the large plasma current necessary

to establish the confining magnetic field. In this thesis we use the numerical code package

SCENIC to study the application of Ion Cyclotron Range of Frequency (ICRF) waves to toka-

mak and stellarator devices. This numerical tool was built to self-consistently solve, in three

dimensional configurations, the plasma magnetohydrodynamic (MHD) equilibrium, the ICRF

wave propagation and the resonant ion distribution function. SCENIC is used to interpret how

the sawtooth instability can be controlled in tokamaks by appropriate application of ICRF

waves. This control method was successfully tested in the JET tokamak and it is foreseen to

be applied in the future ITER tokamak. Such plasma degrading instabilities are not, however,

expected in stellarators because they operate with no plasma current. The recently started

stellarator Wendelstein 7-X (W7-X) must however prove experimentally that fast particles can

be confined in an optimised quasi-isodynamic magnetic configuration. An efficient auxiliary

source of fast ions is required in W7-X since it is not designed to procude α particles via D-T

fusion reactions. In this thesis, we address the possibility of generating a significant fast ion

population with ICRF waves in W7-X. SCENIC simulations are employed in order to identify

relevant fast ion loss channels that may still exist in the W7-X quasi-omnigenous equilibrium.

These simulations show that ICRF minority heating may not be suitable for producing fast

ions in W7-X plasmas. It is found that a high energy tail is more likely to be developed if a

three-ion species scheme is applied.

Key words: Ion-Cyclotron Range of Frequency waves, minority heating, three-ion species

scheme, fast particle generation, magnetic confinement, stellarator, quasi-isodynamicity, loss

channels.
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Résumé
Les concepts les plus prometteurs de réacteurs à fusion utilisant le confinement magnétique

du plasma sont les tokamak et stellarator. Des réacteurs capable d’entretenir des réactions de

fusion de type deutérium-tritium (D-T) doivent pouvoir confiner des plasmas à très haute tem-

pérature (au-delà de 100 millions de kelvin). Des méthodes de chauffage auxiliaires peuvent

être appliquées mais le ralentissement sur les ions et les électrons du plasma des particules α

(noyaux d’atomes d’helium-4 produits par les réactions de fusion D-T) représente une source

cruciale de chauffage du plasma. Le confinement des particules rapides est par conséquent

l’un des aspects essentiels de la viabilité des réaction à fusion par confinement magnétique. De

plus, le fonctionnement des futurs réacteurs à fusion sur de longues durée requiert le contrôle

des instabilités inhérentes au plasma. Ces instabilités sont d’autant plus nombreuses dans

les plasmas de tokamak en raison du très fort courant plasma nécessaire à l’établissement

du champ magnétique confinant. Dans ce travail de thèse, la suite de code nommée SCENIC
est utilisé afin d’étudier les applications des ondes à Fréquence Cyclotronique Ionique (FCI)

aux plasmas de tokamak et de stellarator. Cet outil numérique a été conçu dans le but de

résoudre de manière auto-cohérente l’équilibre magnétohydrodynamique (MHD) du plasma,

la propagation de l’onde FCI et la fonction de distribution des ions résonants. Des simulations

obtenus avec SCENIC sont présentées et permettent de comprendre comment l’instabilité

de type dent-de-scie peut être contrôlée dans les tokamaks par une application adéquate

de l’onde FCI. Cette méthode de contrôle a été utilisé avec succès dans le tokamak JET et il

également prévu de l’appliquer dans le future tokamak ITER. Les stellarators ne développent

pas de telles instabilités car ils ne nécessite pas l’induction de courant plasma. Le stellarator

Wendelstein 7-X (W7-X) qui a récemment été démarré, doit cependant apporter la preuve

expérimentale que la configuration magnétique isodynamique est capable de confiner effica-

cement les particules rapides. Aucune réaction de fusion de type D-T n’aura lieu dans W7-X

et par conséquent aucune particle α ne pourra y être produite. Ainsi, une source auxiliaire

et efficace d’ions rapides doit être développée pour cette machine. Dans cette thèse, nous

étudions la possibilité de générer une importante population d’ions rapides dans W7-X par le

truchement d’ondes FCI. Des calculs obtenus avec SCENIC permettent d’identifier des canaux

pertes d’ions rapides pouvant subsister en dépit du caractère quasi-omnigène de l’équilibre

MHD de W7-X. Ces simulations montrent également que le schéma de chauffage FCI dit

“minoritaire” ne semble pas être adapté pour la production efficace d’ions rapides dans les

plasmas de W7-X. Cependant, des ions à hautes énergies sont plus susceptibles d’apparaître si

le schéma de chauffage FCI dit “à trois ions” est appliqué.
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1 Introduction

1.1 The plasma state and fusion reactions

An increasing amount of scientific research has been focused in the past decades towards

production of energy that does not produce greenhouse gases. At the beginning of the 20th

century, physicists discovered that an incredible amount of energy is stored in the nuclei of

atoms. It was found that, if brought sufficiently close to each other, two light atom nuclei can

fuse into a heavier nucleus. The mass of the daughter nucleus is lower that the sum of the two

parents nuclei so that, following Einstein’s famous equation ΔE =Δmc2, the missing mass has

been converted into energy. Stars, such as the sun, are powered by these nuclear reactions

and produce the first elements in the Mendeleev period table up to iron. Physicists have been

trying for the past sixty years to reproduce in a controlled manner these nuclear reactions in

order to harvest fusion energy. Fusion reactions are possible if nuclei, having positive electric

charge, have sufficient kinetic energy in order to overcome the Coulomb barrier that pushes

them apart. This condition is reached when a sufficient amount of fuel is brought to very high

temperature. In these conditions the fuel reaches the plasma state which is often called the

fourth state of matter and which was well defined by F.F. Chen [1] as:

A plasma is a quasineutral gas of charged and neutral particles which exhibits

collective behavior.

The conception of a fusion reactor on Earth is a very challenging task because it requires

forcing the plasma into favourable conditions for fusion reactions to occur. These conditions

can be written in terms of the product of three crucial quantities (plasma density ne , plasma

temperature Te and plasma energy confinement time τ). The fusion reaction that requires

the least constraints to occur in a man-made fusion reactor involves deuterium and tritium

(isotopes of hydrogen) nuclei:

2
1D +3

1 T →4
2 He(3.5MeV)+n(14MeV) (1.1)

In this equation, the kinetic energy of the reaction products are given in parenthesis. Neutrons
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Chapter 1. Introduction

born from fusion reactions are free to escape the magnetic confinement and will heat up the

reactor coolant, for example liquid water, that will generate electricity following a thermo-

dynamic cycle commonly used in today’s thermal power plant. Practically, the 4
2He nuclei

(also called α particle) will contribute to heat up the plasma and help to sustain the fusion

reactions. Lawson derived a criterion [2] which gives the conditions for which a fusion reactor

is self-sustained by the energy produced from α particles:

ne Teτ� 1021m−3keVs. (1.2)

Above this threshold, ignition is reached: no external heating sources are required to maintain

the plasma at fusion relevant temperature. The confinement time is probably the most difficult

parameter to control. The plasma in the core of the sun is confined by the considerable

gravitational field generated by the sun’s mass. On Earth, most of the fusion energy research is

focused on inertial confinement (which involves powerful lasers to implode a target containing

the fuel) and magnetic confinement (which uses magnetic field to confine the plasma). In this

thesis we focus on the two main reactor concepts from the magnetic confinement branch: the

tokamak and the stellarator. In fusion reactor-sized tokamak and stellarator machines, the

typical order of magnitude that are aimed in terms of plasma parameters are: ne � 1020m−3,

Te � 10keV, τ� 1s.

1.2 Fusion device concepts

In fusion reactor machines, the core temperature is sufficiently high so that the plasma is fully

ionised. According to Chen’s definition, a fusion plasma is only formed of charged particles:

electrons and ions. Electromagnetic fields exhert net forces on these particles which can be

used to contain the plasma. Two main reactor concepts have been developed on this basic

principle.

1.2.1 The tokamak

The tokamak is a toroidally symmetric donut shaped machine as shown in Fig. 1.1. The

tokamak vacuum vessel designed to contain the plasma, is surrounded by planar coils which

generate a toroidal magnetic field (green arrows in Fig. 1.1). As it will be mathematically

described in chapter 1.4, charged particles that compose the plasma are sensitive to the

external magnetic fields and gyrate around the magnetic field lines. This is the basic principle

behind magnetic confinement. However, the inherent toroidal shape of the machine causes

inhomogeneities in the magnetic field that in turn make the particles drift vertically out of

the vessel. This vertical drift can be cancelled by an additional poloidal magnetic field which

is generated by the flowing of a toroidal current inside the plasma (large red arrows in Fig.

1.1). The sum of the poloidal and toroidal magnetic fields is a helical confining magnetic field

(yellow arrows in Fig. 1.1). The magnetic fusion research has been mainly focused on the

tokamak concept so that most of the fusion plasma physics laboratories in the world have

2



1.2. Fusion device concepts

Figure 1.1: Schematic view of the tokamak concept. The main coil system and the confining
magnetic field are shown. Courtesy of Max-Planck Institut für Plasmaphysik.

built their own tokamaks such as: TCV (Tokamak à Configuration Variable) in Switzerland,

Tore Supra in France, ASDEX in Germany, NSTX (National Spherical Torus eXperiment) in

the USA, etc. The largest tokamak now in operation is JET (Joint European Torus) in the UK.

A larger experimental machine called ITER is a joint international effort and is now under

construction in France. In tokamaks, the generation of the plasma current is crucial to the

confinement of the plasma and is ensured by an external transformer. Physical constraints on

the toroidal coils and the finite capacity of the transformer impose a time limit on tokamak

operations. For example, TCV which uses copper coils can generate plasma for up to 2 seconds.

The plasma duration can be extended by the use of superconducting coils and the induction

of plasma current by launching lower hybrid waves in the plasma. Tore Supra was equipped

with these technologies and was able to produce 6- minute plasmas (which counts among the

longest tokamak plasmas). ITER benefits from all the accumulated tokamak knowledge and

technology and is designed to produce plasmas for up to 600 seconds. However the plasma

current is a source of instabilities that must be externally controlled in order to preserve

plasma confinement. These inherent instabilities and the need for the generation of plasma

current are the main drawbacks of tokamak technology.

1.2.2 The stellarator

The stellarator concept is similar to the tokamak in the sense that it aims at magnetically

confining a plasma in a toroidal machine. However, the goal here is to generate the confining

helical magnetic field without the use of the plasma current which is a source of instability

3



Chapter 1. Introduction

Figure 1.2: Schematic view of the stellarator concept. Courtesy of www.sciencemag.org.

and also technologically limits the duration of machine operation. The confining magnetic

field of a stellarator is solely generated by external field coils so that no net toroidal plasma

current flows in the plasma. The magnetic field coils are therefore shaped in three dimensions

so that the resulting twisted magnetic field lines confine the plasma. A illustration of the

Wendelstein 7-X (W7-X) stellarator that started operation in 2016 is shown in Fig. 1.2. W7-X

is equipped with superconducting coils. The engineering and the manufacturing of such

a coil system is one of the main reasons that make stellarator machines more complicated

and more coslty to build compared than tokamaks. However future stellarators of the type

of W7-X will be able to produce energy in steady state since no current induction is required.

Also, since no net plasma current flows in the plasma, most of the deleterious instabilities

occuring in tokamaks are avoided. The technical and economical difficulties brought by the

intrinsic three-dimensional nature of stellarators have long hindered to the development of

these machines. Theoretical progress, in particular the elaboration of the quasi-isodynamic

stellarator concept, and consequently the construction of W7-X, renewed the interest of the

scientific community in stellarators. A short review of the stellarator history and current state

will be presented in chapter 3.6.

1.3 Thesis contribution

Sustaining reactions in a fusion device requires heating the plasma to high temperatures,

typically above 10keV. For particles to reach such energies, different heating schemes have

to be combined. In tokamaks, the plasma temperature is increased partly via ohmic heating

generated by the plasma current. This source of heating is however not sufficient to reach
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1.3. Thesis contribution

Figure 1.3: Auxiliary heating sources applied to fusion devices. Courtesy of www.euro-
fusion.org.

fusion relevant temperatures, plus, stellarators cannot in principle beneficit from this method.

Additional auxiliary heating sources must therefore be applied. Figure 1.3 illustrates the

various heating methods that have been developed to efficiently heat fusion plasmas. Neutral

Beam Injection (NBI) consists of injecting highly energetic neutral atoms that will transfer

their energy to the plasma via charge exchange processes and Coulomb collisions. In addition,

electromagnetic waves tuned at the ion and/or electron cyclotron frequency can be used

to accelerate the plasmas charged particle population and consequently raise the plasma

temperature. This method is commonly referred to as Radio Frequency (RF) heating. Once

fusion relevant temperature is reached and fusion reactors are initiated, a significant amount

of plasma heating is ensured by fast α particles, born from fusion reactions (eq. 1.1) at 3.5MeV,

that slow down on the background electrons and ions via Coulomb collisions. Future fusion

reactors producing electricity must therefore be able to confine α particles during their slowing

down time in order to increase the machine efficiency. In tokamaks, the toroidal symmetry in

the magnetic field allows in general good fast particle confinement. However, α particles are

known to interact with the so-called sawtooth instability in tokamaks that not only degrades

the plasma performance but can trigger secondary instabilities which can lead to the complete

loss of the plasma confinement. This instability can however be externally controlled. Indeed,

the energy transfer from the RF waves to the resonant particles not only increases their energy

but also modifies significantly the particles distribution in phase-space. This can cause for

example an increase in the fraction of so-called mirror trapped particles, asymmetries in the

5



Chapter 1. Introduction

particle velocity distribution, or generate strong local current densities. Consequently, RF

wave scenarios have been developed in order to use these kinds of redistribution to control the

sawtooth instability and limit its impact on the plasma performance. In the work presented

here, we address, using the appropriate numerical tool SCENIC , the following problems:

• the physical interpretation for the experimental observations of the JET plasmas where

ICRF waves were used to control the sawtooth instability,

• the relevant physical mechanism at stake for the observed triggering of the sawtooth

instability,

• the resonant ion distribution function related to this mechanism.

In stellarators, most of the plasma instabilities that are encountered in tokamaks are non-

existent because no plasma current is required. However the intrinsic three-dimensional

structure of the magnetic field does not guarantee good confinement of fast particles over

their slowing down time. Stellarator fields must therefore be conceived to take this major

constraint into account. In this thesis we study the magnetic configuration of the W7-X

stellarator that has been optimised for the confinement of fast particles. We try to answer the

following questions.

• Are there still particle loss channels in W7-X despite the optimisation procedure that led

to its design?

• Since one of the main experimental goals of W7-X is to prove the capacity of the quasi-

isodymanic concept to confine efficiently fast particles such as α particles, this thesis

addresses whether a significant fast ion population can be generated in the machines

high density plasma.

• A final question addressed is whether Ion-Cyclotron Range of Frequency (ICRF) wave

absorption scenarios can generate distributions with confined fast ion tails in W7-X in

advance of a future isodynamic nuclear fusion reactor.

1.4 Outline

The remainder of this thesis is organised as follows. In chapter 1.4, the relevant plasma physics

concepts for the understanding of the results presented in the next chapters are explained.

The numerical code package SCENIC that is used throughout this thesis is also presented.

SCENIC simulations applied to JET experimental plasmas where sawtooth instabilities were

actively controlled by application of ICRF waves are presented in chapter 2.4. The fast ion

mechanism most likely responsible for the triggering of sawteeth is presented.

6



1.4. Outline

Chapter 3.6 is dedicated to the study of the W7-X stellarator. Standard W7-X magnetic configu-

rations are analysed in terms of collisionless particle confinement. Fast particle loss channels

are identified and illustrated with relevant simulations of an NBI-like population. The ion

distribution function obtained in a typical W7-X plasma under ICRF heating conditions is

analysed. The confined fast ion and lost particle distributions are discussed. The inclusion of

a neoclassically resolved radial electric field in the fast ion simulations is addressed.

The so-called minority heating scheme is most commonly applied to tokamak and stellarator

plasmas. As shown in chapter 4.6, this scenario is quite inefficient in W7-X high plasma density,

at least for generating long fast ion tails. To address this, an alternative three ion species

scheme is modelled with the SCENIC tool in chapter 4.6. The fast ion distribution obtained

with this scheme applied to a JET plasma is analysed. Three ion species simulations in a W7-X

plasma are then presented. The results indicate that this scheme would be more suitable than

standard minority heating schemes for generating a significant fast ion population in W7-X.

Finally, the results gathered throughout this thesis are summarised in chapter 5.4. Many possi-

ble improvements of the SCENIC code package are also discussed. Some potential physical

questions that remain to be solved are also mentioned.

7





2 Equilibrium, heating and fast parti-
cles: the basis of the SCENIC package

The basic principle of plasma equilibrium, charged particle orbits in a magnetic field and the

propagation of electromagnetic waves in a plasma are briefly reviewed. Important considera-

tions are reviewed on particle orbits and transport in stellarators. The working principles of

the codes comprising the SCENIC package which is the modelling tool used throughout this

thesis are also presented.

2.1 Magnetic confinement: equilibrium and particle orbits

2.1.1 Ideal MagnetoHydroDynamic equations

The basic working principle of tokamak and stellarator machines is to magnetically confine

a plasma. As the plasma is composed of particles of opposite signs which have collective

behaviour, it can reasonably be regarded on a macroscopic scale as a mixture of two charged

fluids. In tokamaks, an electrical current is generated in the plasma to create the poloidal

magnetic field. In stellarators, there is no such plasma current, however local current densities

arise. Therefore the auxiliary generated magnetic field will exert Lorentz forces J ×B on the

plasma. As in neutral fluids, pressure gradients arise and apply also forces on the plasma

fluid elements. Ignoring the electrical resistivity of the plasma, the balance of the Lorentz and

pressure forces is written by virtue of the Newton’s second law as:

J ×B −∇p = 0. (2.1)

The confining field and the current density flowing in the plasma must verify Maxwell’s

equations:

∇·B = 0, (2.2)

∇×B =μ0 J . (2.3)

Equations 2.1 to 2.3 form the basis of the plasma ideal MagnetoHydroDynamic (MHD) equilib-

ria. Solutions of this system of equations can be obtained for prescribed current density and

9



Chapter 2. Equilibrium, heating and fast particles: the basis of the SCENIC package

pressure profiles. A certain number of crucial assumptions help the calculation of such solu-

tions. It is useful to introduce now a curvilinear coordinate system which relies on quantities

derived from the magnetic field. Let us consider for the sake of simplicity a tokamak device

which has the advantage of being (nearly) toroidally symmetric. As it was briefly discussed

in the previous chapter, the magnetic field must be helical in order to compensate vertical

drifts that would lead to rapid loss of the plasma. This magnetic field can be written as a sum

toroidal and poloidal components:

B = Bt +Bp . (2.4)

The magnetic axis is defined as the locus where the magnetic field is purely toroidal, i.e. where

Bp = 0. The magnetic axis defines the origin of surfaces that measure the flux of poloidal

magnetic field:

ψp =
∫

S
B ·dS. (2.5)

An example of one such surface is illustrated in Fig. 2.1. A system of flux coordinates
(
ψp ,u, v

)
can be conveniently defined such that ψp is considered as the radial variable, and u and v

are respectively the poloidal and toroidal angles. v is taken here as the cylindrical angle. The

magnetic field can then be written in a covariant and contravariant form:

B = Bψp∇ψp +Bu∇u +Bv∇v, (2.6)

B = B ueu +B v ev . (2.7)

It can be shown that the component Bψp vanishes by invoking the Maxwell’s equation ∇·B = 0

and the conservation of the poloidal flux. This gives the fundamental result: B · ∇ψp = 0,

which means that the magnetic field lines lies on surfaces of constant ψp called magnetic flux

surfaces.

Figure 2.1: Illustration of the confining magnetic field components and an example of surface
S that measures the poloidal magnetic flux.
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2.1. Magnetic confinement: equilibrium and particle orbits

Additionally, the magnetic flux encapsulated by these magnetic flux surfaces defines the

toroidal magnetic flux ψt which can alternatively be used as a radial variable. The fluxes

ψt and ψp define the local pitch of the magnetic field lines on a given flux surface, which is

commonly called the local safety factor:

ql =
B v

B u = dψt

dψp
. (2.8)

The flux surface average of ql gives the safety factor q(ψp ) which is most commonly used.

Note that it is possible to define the flux coordinate system
(
ψp ,u, v

)
such that the magnetic

field lines are straight in the u − v planes, in which case ql = q . In Reverse Field Pinch (RFP)

machines, the magnetic field reverses direction on a certain flux surface causing q → 0, so

that the most commonly used radial variable is based on ψp . In stellarators however, currents

and poloidal fields are usually weak, so that radial variables are often based on ψt , and the

commonly used winding index is ι= 1/q .

The assumption of axisymmetric geometry gives for any scalar quantity A the property: ∂A
∂v = 0.

The projection of eq. 2.1 on B gives:

B ·∇p = 0 ⇒ (
B ueu +B v ev

) ·( ∂p

∂ψp
∇ψp + ∂p

∂u
∇u

)
= 0 (2.9)

⇒ B u ∂p

∂u
= 0. (2.10)

Since the magnetic field must possess a non-zero poloidal component, the plasma fluid

pressure must therefore only be a function of the flux variable: p = p(ψp ). Equivalently, one

can say that the pressure is a flux surface quantity and that the flux surfaces are iso-pressure

surfaces. It is also seen that the hypothesis of having a toroidally symmetric system ensures

that the flux surfaces are nested around the magnetic axis. Based on this result, the ideal MHD

balance equation 2.1 can be projected in the ∇ψp direction in order to obtain the famous

Grad-Shafranov [3, 4] equation for axisymmetric (or 2D) MHD equilibrium:

R
∂

∂R

(
1

R

∂ψp

∂R

)
+ ∂2ψp

∂Z 2 =−R2 dp

dψp
−Bv

dBv

dψp
. (2.11)

In Eq. 2.11, the left-hand side and the term dBv
dψp

are related to the current density flowing in

the plasma. Given some hypothesis on the analytic form of the pressure and toroidal magnetic

field Bv profiles, analytic solutions of the Grad-Shafranov such as the Solov’ev equilibrium

can be derived. More solutions can be found numerically by the use of computer codes. These

tools allow the prescription of more general pressure and current density profiles. Boundary

conditions on the shape of the flux surfaces are also usually to be provided. For example, the

EFIT code [5,6] solves the Grad-Shafranov equation in order to reconstruct the 2D equilibrium

based on experimental measurements of the pressure, the current density and of the plasma

shape. The CHEASE code [7] is another Grad-Shafranov solver which is widely used to provide

equilibrium solutions to other codes which solve for example MHD stability or low frequency

11



Chapter 2. Equilibrium, heating and fast particles: the basis of the SCENIC package

wave propagation.

If one relaxes the axisymmetric assumption, the equilibrium state cannot be analytically

described by the Grad-Shafranov equation. More importantly, in three-dimensional equilibria

such as stellarator plasmas, the existence of the nested flux surfaces cannot necessarily be

ensured throughout the whole plasma volume. Some equilibrium codes such as PIES [8] and

SPEC [9] are able to converge to equilibrium states where regions of nested flux surfaces are

surrounded by a domain where the magnetic field lines are stochastic or form magnetic islands.

Nevertheless, numerical calculations and experimental observations confirm that regions of

nested flux surfaces can be found even in 3D systems. Therefore it is valid to solve the ideal

MHD equilibrium while prescribing the existence of nested flux surfaces. A re-formulation of

the MHD force balance equation is found to render this task more tractable. It can be shown

that equation 2.1 is strictly equivalent to minimising the plasma energy functional defined as:

μ0W =
∫

dV

(
B 2

2
+ μ0p(ψp )

Γ−1

)
(2.12)

where Γ is the adiabatic index. The VMEC code [10] uses a steepest-gradient method in order

to find the minimum of this functional. This code is part of the STELLOPT package designed

for the optimisation of the 3D MHD equilibria which helped the design of the Wendelstein

7-X stellarator. The ANIMEC code is an extension of VMEC that takes into account the pressure

anisotropy, typically arising from fast particles has been developed [11], and this will be

described lated in section 2.3.2. One of the most important outputs of MHD codes is the

equilibrium magnetic field amplitude since it characterises the plasma device. Figures 2.2

and 2.3 show examples of the B distribution for the JET tokamak and the W7-X stellarator

configurations.

12



2.1. Magnetic confinement: equilibrium and particle orbits

Figure 2.2: Magnetic field amplitude profile for a typical JET-like equilibrium.

Figure 2.3: Magnetic field amplitude profiles at various toroidal positions for a W7-X high-
mirror equilibrium.
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2.1.2 Charged particle orbit in a magnetic field

Cyclotron motion

The ideal MHD equation gives a framework for the calculation of magnetic equilibria which

can be used to study the trajectory of fast particles. This is a fundamental notion used in this

thesis and we shall therefore describe the basis of the motion of charged particles bathing in

a magnetic field. Let us first consider a uniform and static magnetic field B pointing in the

ẑ direction in a Cartesian frame. Using Newton’s second law, one can derive the equations

of motion of a single particle considered initially at rest with charge Z e and mass m. This

derivation can be found in numerous plasma physics textbooks such as in Chapter 2 of Ref. [1].

Therefore only the main relevant results are discussed here. The Lorentz force acting on the

particle will set it into a gyro-motion in the x − y plane which can be described as:

x −x0 = rL sinωt (2.13)

y − y0 = rL cosωt . (2.14)

It is seen that the gyro- or cyclotron motion of the charged particle is characterised by:

ωc = Z eB

m
the cyclotron frequency, (2.15)

(x0, y0) the trajectory of the guiding centre, (2.16)

rL = |v ×B/B |
ωc

= v⊥
ωc

the Larmor radius. (2.17)

If the charged particle possesses an initial velocity v0, i.e. before the magnetic field is switched

on, then the guiding centre will move along the magnetic field line with the parallel velocity:

v∥ = v0 ·B/B as shown in Fig. 2.4:

Figure 2.4: Schematic of the gyro-motion of a charged particle around a magnetic field line.
Courtesy of www.euro-fusion.org.
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2.1. Magnetic confinement: equilibrium and particle orbits

The perpendicular velocity can be used to defined the magnetic moment μ:

μ= 1

2
mv2

⊥/B. (2.18)

This quantity can be shown to be an adiabatic invariant associated with the cyclotron motion

of the particles for slowly time (and spatially) varying magnetic fields. In the particular case of

a static magnetic field, μ is a constant of motion. Moreover the main forces that acts on the

plasma charged particles are purely electromagnetic. The electric force causing the E ×B drift

is conservative and the Lorentz force does not produce any work on the particle. Therefore

the particles total energy

E = Eki n +Epot = 1

2
m
(
v2
∥ + v2

⊥
)
+Z eΦ, (2.19)

with the electric potential Φ, is conserved along its trajectory. As illustrated in Figs. 2.2 and 2.3,

the confining magnetic field of fusion plasma devices exhibits the appearance of regions of

stronger and weaker magnetic field. We shall see that these spatial variations have a strong

effect on the particles trajectory.

Guiding centre trajectory

It is seen that if one chooses to fully resolve the cyclotron motion of the charge particle, the

corresponding phase-space is comprised of 6 dimensions (3 for the particles position and 3

for its velocity). However, in most plasma applications the Larmor radius is small compared to

the characteristic length of the magnetic field variation. Therefore the single particle motion

can be approximated by the motion of the guiding centre. Therefore the particles phase-space

can be reduced to 4 dimensions: only the guiding centre position and parallel velocity need to

be resolved. This very convenient framework, discussed in Ref. [12], is known as the guiding

centre drift formalism and is the basis of the numerical simulations presented in this thesis.

The guiding centre dynamics is therefore dictated by the variables
(

Xg c ,ρ∥ = mv∥/qB
)
: the

guiding centre position and the parallel gyro-radius.

In an unbounded homogeneous magnetic field, the guiding centre trajectory will stick to

the magnetic field lines. However, drifts of the guiding centre appear if the magnetic field

amplitude is inhomogeneous and/or if an electric field is present. We shall now discuss the

relevant sources of drifts and define the corresponding guiding centre drift velocities at the first

order. In tokamaks, the equilibrium magnetic field amplitude varies strongly in the poloidal

direction, mainly because the toroidal field coils are closer to each other on the inboard side

of the torus compared to the outboard side. Stellarators do not possess toroidal symmetry,

so that the magnetic field amplitude varies also in the toroidal direction. In both type of

machines, charged particles experience gradients of B which translates into a guiding centre
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velocity drift:

v∇B = μ

q

B ×∇B

BB∗
∥

, (2.20)

where B∗
∥ = B

B · (B +ρ∥∇×B
)

is the modified magnetic field as discussed in Ref. [13]. In

addition, because of the toroidal geometry of these machines the magnetic field lines are

intrinsically curved. The magnetic field lines curvature can be written as [14]:

κ=−B

B
×
(
∇× B

B

)
. (2.21)

This other form of inhomogeneity gives rise to a curvature drift:

vκ = v∥ρ∥
B ×κ

BB∗
∥

. (2.22)

Inspection of the combination of these two drifts already shows that a guiding centre orbit

does not stick to the magnetic field lines but instead crosses flux surfaces. The cross field drifts

of eqs. 2.20 and 2.22 line increase with the particles energy.

Finally, electric fields may arise in fusion plasmas which in turn act upon the particles trajec-

tory via E ×B velocity drifts:

vE×B = E ×B

BB∗
∥

(2.23)

It will be shown in section 2.1.4 and in chapter 3.6 that this drift is expected to play a significant

role in particle confinement in the W7-X stellarator. This guiding centre drifts of eqs. 2.20,

2.22 and 2.23 are not exhaustive but already contain the relevant physics for the scope of this

thesis.

The resolution of the fast ion distribution requires solving in time the guiding centre trajecto-

ries, and is consequently a computationally demanding task which usually involves numerical

tools. Many computer codes have been written in order to tackle this task. The toroidal

symmetry of tokamak plasma can be exploited in order to invoke the conservation of a third

quantity known as the toroidal angular momentum Pϕ. The FIDO [15] code uses the 3 con-

stants of motion
(
E ,μ,Pϕ

)
that uniquely define orbits to resolve fast ion distributions. This

approach reduces the required numerical resources but is however restricted to axisymmetric

configurations. Other codes implement algorithms that directly solves in time the guiding

centre equations of motion and are able to deal with both 2D and 3D magnetic configurations.

This applies to the codes ASCOT [16], SPIRAL [17], ANTS [18] and VENUS-LEVIS [19].
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2.1. Magnetic confinement: equilibrium and particle orbits

2.1.3 Trapped particles trajectories

Consider a single-particle motion in a static tokamak or stellarator magnetic field, and for

simplicity assume that there is no electric field. The particle kinetic energy E and magnetic

magnetic moment μ, in the approximation of slowly varying fields, are constant along the

free guiding centre trajectory. The magnetic field spatial dependency for a typical tokamak

and stellarator was illustrated in Figs. 2.2 and 2.3. It is therefore expected that particles will

experience varying magnetic field amplitude along their trajectory. Since μ is a constant of

motion, as a particle sees an increasing magnetic field amplitude along its trajectory, the

particles perpendicular velocity must increase in order to keep μ (adiabatically) constant at

all times. Consequently, by virtue of the conservation of the kinetic energy E , the parallel

velocity must decrease. Depending on the particles initial position in phase-space (position

and velocity) and the strength of the magnetic field, the parallel velocity may vanish and

change sign. The particle is therefore reflected by the magnetic field. This effect is often called

magnetic mirroring and gives rise to trapped particle orbits. One can introduce the notion

of a critical magnetic field for particle reflection Br e f which is essential to classify the classes

of particle orbit. This quantity defines the value that the ambient magnetic field must reach

so that a particle is reflected. If a particle is trapped then its parallel velocity v∥ vanishes at

the bounce points. Br e f is the magnetic field amplitude at the bounce point. Therefore the

particle energy at this location is:

E = 1

2
mv2

⊥,bounce =
1

2
mv2

⊥,bounce

Br e f

Br e f
= Br e f μ. (2.24)

It then follows:

Br e f =
E

μ
. (2.25)

Br e f is a function of constants of motion and is used to classify orbits in tokamaks and stel-

larators. Trapped particles therefore refer to particles for which the parallel velocity eventually

vanishes along their trajectory because B = Br e f at a given position. On the other hand passing

particles possess sufficiently high parallel velocity such that they never encounter the situation

B = Br e f . These particles are able to circulate around the machine without being reflecting.

In tokamaks, trapped particles will mainly visit the low-field side (LFS) of the machine because

the iso-surfaces of B are approximately vertical lines in the R−Z plane projection (see Fig. 2.2).

An example of the resulting trajectory is shown by the red lines in Fig. 2.5 which indicates two

important features of trapped particle orbits in axisymmetric tokamaks. Firstly, the particle

does not take the same path after one bounce: the ∇B and curvature drifts result in a net

vertical drift which gives a width to the trapped particles orbit. After two bounces, trapped

particle orbits do repeat in the R − Z plane of an axisymmetric configuration. The trapped

orbits are more commonly called banana orbits because of their shape. Let us mention

that passing particles also experience this vertical drift and also possess a finite orbit width.

The particles orbit width has crucial consequences, e.g. on particles and heat transport as
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Figure 2.5: Passing (blue) and trapped (red) particles orbit in an axisymmetric equilibrium.
Right: projections of the orbits in the pseudo-Cartesian system obtained via the magnetic flux
coordinate system

(
ρ =√

ψt /ψed g e ,θ,ϕ
)
. Dashed line: last closed flux surface.

discussed in the following section. Secondly, the symmetry of the magnetic field equilibrium

causes the banana orbit to be symmetric with respect to the mid-plane: the toroidal symmetry

of tokamak magnetic field causes the vertical ∇B drift on each banana leg to compensate.

Therefore collisionless trapped particles are well confined in tokamaks. The trajectory coloured

in red in the left panel of Fig.2.5 suggests that trapped particles possess a net toroidal motion

around the machine. The straight-field line Boozer coordinate system (discussed in section

2.3.2)
(
s,θ,ϕ

)
is used for the computation of the orbits shown in Figs. 2.5 to 2.8. Inspecting the

projection of a banana orbit in the θ−ϕ plane, Fig.2.6 shows that the motion is not toroidally

bounded but instead the trapped particles experience a net toroidal precession drift. The

toroidal precession is similar to the motion of a spinning top around the vertical axis and

corresponds to the change in time of the toroidal position of the trapped particles banana

tips. A toroidal precession frequency ωϕ is usually associated to this bounce averaged toroidal

motion.

This discussion indicates that in tokamaks, particle orbits fall into two main categories: passing

and trapped. A more detailed classification of particle orbits in tokamaks can be found in

Ref. [20]. In stellarators, the three-dimensional variation of B complicates this picture. Analysis

and classification of particle orbits in stellarators are found in Refs. [21, 22]. In mirror machine

type stellarators such as W7-X, a classification of the particle orbits can be made following

the particle trajectory in a given toroidal period. The terminology introduced in Ref. [21] is

now used. Three types of orbits are identified on the basis of their trajectory around the whole

torus.
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Figure 2.6: Projection in the θ−ϕ plane of a trapped particle trajectory (dotted line) in a
tokamak equilibrium.�: initial particles position. ���: initial drift direction.

Passing particles: These particles are able to complete a full toroidal revolution around the

machine without ever being reflected (assuming no collisions). Passing particles are charac-

terised by a Br e f value higher than the maximum value of the equilibrium magnetic field on

the particle trajectory.

Localised or toroidally trapped particles: Depending on the mirror ratio value, there can exist a

population of particles that will remain locally trapped by the toroidal magnetic mirror and

can never travel to the next toroidal period. In this case, the particle trajectory is toroidally

bounded by two iso-surfaces B = Br e f . These iso-surfaces are poloidally closed and are located

between two consecutive bean shaped cross sections in the case of W7-X.

Blocked or helically trapped particles: These particles are located in the region of phase space

near the locally trapped-passing boundary. These particles may be regarded as locally trapped

for a few bounces but they are able to de-trap collisionlessly. A blocked particle’s trajectory is

not restricted to a single toroidal segment but extends to neighbouring sections. Such particles

are also called transitioning [23]. An illustration of these three types of orbits and a comparison

with particle orbits in an axisymmetric plasma is given in Fig. 2.7. Orbits are drawn in a full

torus and in a poloidal cross section.
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Figure 2.7: Passing (blue,Br e f = 4.5T ), blocked (green,Br e f = 2.5T ) and localised (red,Br e f =
2.22T ) particles orbit in a W7-X high-mirror equilibrium. Another example of a localised
particle orbit with Br e f = 2.22T is shown in black. In this case the particle drifts rapidly
outside the plasma.

Localised particles are of concern is W7-X because, contrary to the tokamak case, the magnetic

drift may not compensate along the trapped trajectory due the three-dimensional structure of

the magnetic field. Indeed, particles trapped in the main magnetic field wells may drift rapidly

out of the plasma (see black line in Fig. 2.7). In order to better characterise a confined localised

particle motion, one can inspect its projection in the θ−ϕ plane as shown in Fig. 2.8.It is seen

that confined particles trapped between main mirrors possess a bounded toroidal motion

and a net poloidal precession drift. This poloidal drift is associated with a poloidal precession

frequency ωθ which can be seen as the equivalent of the toroidal precession frequency for

trapped particles in axisymmetric tokamaks. The poloidal precession is of most importance

for localised particles in W7-X. Indeed it shall be shown that such particles remain confined if

the poloidal precession is strong enough to restore a certain symmetry in the magnetic field

amplitude “seen” by the particle. Some degree of quasi-symmetry can be achieved in order to

increase the poloidal drift frequency of localised particles. These aspects and the resulting

consequences on the design of W7-X will be further discussed in section 4.2.1. However, in

certain regions of stellarators, ωθ vanishes for some particles. The resulting trajectories have

a dominant radial contribution and the particles escape quickly from the plasma. These

so-called super-banana orbits are mostly seen in low collisionality regimes. This kind of orbit

also appears because of the presence of local minima in the magnetic field as is the case for

the black orbit in Fig. 2.7. Similar orbits are seen in the edge region of rippled tokamaks which

also exhibits local minima of B . These ripple losses can be reduced in tokamaks by increasing

the number of toroidal coils or by using ferritic inserts.
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Figure 2.8: Projection in the θ−ϕ plane of a confined trapped particles trajectory (dotted line)
in a W7-X equilibrium.�: initial particles position. ���: initial drift direction.

2.1.4 Confinement and transport in toroidal devices

Transport mechanisms

Despite the magnetic field being designed in part for improved plasma confinement, particle

and energy loss is observed in tokamaks and stellarators. Several mechanisms are responsible

for these deleterious phenomena. Coulomb interactions, i.e. short-range electromagnetic

interactions, between the plasma species partly explains this transport. Coulomb collisions

can be described as a diffusive process and follows with good accuracy a random walk model.

Inter-species Coulomb collisions cause the outward diffusion of electrons and ions. The

diffusion coefficients that dictate the flux of particles and heat depend on the temperature and

density profiles applied to the plasma. This classical transport model however overestimates

the confinement level in toroidal machines. The first reason comes from the orbit width

of trapped particles which can be quite large and participate significantly in the transport

process. Neoclassical transport theory aims at including the effect of the toroidal magnetic

geometry and therefore of trapped particles to the collisional transport description. A third

form of transport in fusion devices is caused by plasma turbulence mechanisms. This is

also referred to as anomalous transport and is beyond the scope of this thesis. In tokamaks,

turbulence is known to be the most significant particle and heat transport mechanism. How-

ever in stellarators, neoclassical fluxes can be comparable or higher than fluxes generated by
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anomalous transport [24]. Neoclassical effects are associated with particle diffusion coeffi-

cients that take different forms depending on the plasma collisionality ν∗. This normalised

quantity corresponds to the ratio between the particles bounce time and the effective collision

time for de-trapping. Figure 2.9 shows how the neoclassical particle diffusion coefficient

scales with the collisionality in tokamaks and stellarator. Trapped fast particles such as alphas

and ICRF heated ions will usually bounce a few times before becoming passing because of

Coulomb collisions and are subjected to low collisionality regimes (ν∗ << 1). It is seen that

stellarators possess very high transport level for these types of particle (
	
ν∗ and 1/ν∗ regimes).

In comparison, for the same collisionality, neoclassical transport in tokamaks (banana regime)

is quite low.

Figure 2.9: Particle diffusion coefficient in tokamak (dashed line) and in W7-X (solid line) with
respect to the plasma collisionality. Courtesy of Ref. [24].

Ambipolar particle diffusion in tokamaks and stellarators

Fick’s law can be invoked in order to write down the diffusion equation for particles and energy.

Consider a plasma volume with temperature T and density n, the particle and energy fluxes

for ions (i) and electrons (e) read:

Γi ,e =−Di ,e∇ni ,e (particle flux), (2.26)

Qi ,e =−χi ,e∇Ti ,e (energy flux). (2.27)
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In these equations, Di ,e is the particle diffusion coefficient and χi ,e is the heat diffusivity. In

this thesis we focus on the transport of particles in toroidal devices. In tokamaks, ions and

electrons diffuse at the same rate. This can be shown as in Chapter 8 of Ref. [25] by invoking

the conservation of toroidal momentum, therein defined as Pϕ = ψp −ρ∥, ensured by the

equilibrium axisymmetry. On each flux surface, the total toroidal momentum, i.e. over all

species, must be conserved. This can be written as:

d

dt

∑
s

∫
d3vPϕ fs(x , v ) = 0

⇒∑
s

∫
d3vPϕ

d

dt
fs(x , v ) = 0 (2.28)

Moreover, as the guiding centre drift can be put in a Hamiltonian form, the particle trajectories

follow Liouville’s equation. The effect of collisions on the distribution function of species “s” is

given by the collision operator: C[ fs]. A review of the properties of this collision operator can

be found in Chapter 2 of Ref. [26]. The time evolution of the distribution function fs is written

as:

d

dt
fs = C[ fs]. (2.29)

Therefore eq. 2.28 becomes:

∑
s

∫
d3v

(
ψp −ρ∥

)
C[ fs] = 0. (2.30)

The first term can be eliminated because, as shown in Ref. [26], collisions conserve the number

of particles:
∫

d3vC[ fs] = 0. Therefore we are left with:

∑
s

∫
d3vρ∥C[ fs] = 0. (2.31)

Let us now consider the radial particle flux for each species across a flux surface ψp . It is flux

averaged as [25]:

Γs =
∫∫

dθ

2π
d3v

fs v ·∇ψp

|∇ψp |
= ± 1

4π
q
∫∫

dθd3vρ∥C[ f ], (2.32)

where q corresponds to the safety factor and the ± sign is related to the sign of the particle

charge. Combining eqs. 2.31 and 2.32, one shows that electrons and ions indeed diffuse at the

same rate. Hence the important result: neoclassical diffusion of species across flux surfaces in

tokamaks is intrinsically ambipolar.

Now, in stellarators the toroidal angular momentum is not a constant motion because the

equilibrium is not toroidally symmetric. Therefore an electric field must arise in order to

restore the ambipolarity and prevent charge separation. Early theoretical derivations pre-
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sented in Ref. [27] showed that a purely radially dependent electric potential Φ(ψp ) can restore

ambipolarity. It was also shown in the latter that on each flux surface, the diffusion of ions

and electrons do not necessarily occur at the same rate for all values of Φ. However it was

suggested that one can impose on each flux surface the ambipolar condition:

Γe = ZiΓi , (2.33)

in order to solve for a self-consistent ambipolar potential Φ. Solving for the roots of this

equation allows determination of possible ambipolarity regimes, and determination of self-

consistent particle and heat transport coefficients. In Ref. [28], the calculation of such regimes

was extended by considering several collisionality regimes (e.g. 1/ν∗,
	
ν∗, ν∗). In general, eq.

2.33 has three roots as indicated in Fig. 2.10. The first and negative root Φ1 generates an inward

pointing electric field and corresponds to the so-called ion-root regime where ions are held

back in the plasma by electrons. The second large positive root Φ2 yields the opposite regime

to that of Φ1, producing the electron-root regime. There exists a third root Φ3 for slightly

positive potential. As mentioned in Ref. [28], but also in [29] where the topic of ambipolar

diffusion in non-axisymmetric devices is discussed at length, this root is thermodynamically

unstable: a small decrease (respectively increase) in the positive charges in the considered

local volume will cause the electric potential to bifurcate towards the negative (resp. positive)

root. The electron-root regime is typically achieved in relatively low density and high electron

temperature plasma, i.e. with a strong central ECRH power applied. This is the regime expected

in the present early operation phase of W7-X. On the other hand, the ion-root requires high ion

temperature and is expected to dominate with NBI and ICRF heating. Indeed the dominantly

poloidal E ×B drift caused by the radial electric field helps to restore some symmetry in the

trapped particles orbit and improve their confinement. It will be seen in Chapter 3.6 that

the radial electric arising in this regime appears crucial in simulations of fast ions generation

scenarios in W7-X.

Figure 2.10: Normalised ion and electron particle flux (γi ,e ) as a function of the radial electric
potential. Courtesy of Ref. [28].
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2.2 Plasma interaction with waves in the Ion-Cyclotron Range of

Frequency

One of the main topics of this thesis is the plasma interaction with electromagnetic waves

in the Ion-Cyclotron Range of Frequency (ICRF). In this section, the basic principles of the

propagating waves in plasmas and the absorption regimes of ICRF waves are reviewed.

2.2.1 Waves in plasmas

Magnetised plasmas can carry different types of electromagnetic or electrostatic waves. The

accessible modes that can be carried by the plasma can be found by determining the cor-

responding dispersion relation that relates the wave frequency ω and wave number k. As

they propagate, plasma waves typically induce oscillations of the plasma species and of the

confining magnetic field lines. Therefore plasma waves are classified based on the oscillating

plasma species (electrons or ions) and on the direction of propagation (determined by the

wave vector k) with respect to the equilibrium magnetic field. Such classifications can be

found for example in Ref. [30].

Dispersion relations for plasma waves can be obtained using Maxwell’s equations:

∇·D = ρant (2.34a)

∇·B = 0 (2.34b)

∇×E =−∂B

∂t
(2.34c)

∇×B =μ0

(
∂D

∂t
+ jant

)
. (2.34d)

In these equations, ρant and jant are respectively the charge and current density on the

antenna, i.e. the source of the wave excitation outside the plasma. The electric displacement

field D is related to the waves electric field E by an internal plasma current term generated by

the wave propagation:

D = ε0E + i

ω
j . (2.35)

In this equation, for stationary and homogeneous plasmas, the current density is linearly

related to the waves electric field by the Ohm’s:

j =σ ·E , (2.36)

where σ is the conductivity tensor. Combining eqs. 2.35 and 2.36, one can define the dielectric

tensor ε:

D = ε0

(
I + i

ε0
σ

)
·E = ε0ε ·E , (2.37)
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where I is the unit dyadic. The dielectric tensor is a crucial quantity in plasma wave physics

because it contains all the information about the wave propagation and absorption by the

plasma. The wave equation is obtained by the standard procedure, i.e. Fourier decomposing

Maxwell’s equations and manipulating the curl of eq. 2.34c:

(
kk −k2I + ω2

c2 ε

)
·E = M ·E = 0. (2.38)

The general dispersion relation is finally obtained by looking for the solution of the equation:

Det
[

M
]
= 0. (2.39)

The dielectric tensor elements are then derived according to the chosen plasma model. The

plasma wave modes “allowed” to propagate are obtained by inserting the dielectric tensor

elements in eq. 2.39. The dispersion relation is usually manipulated in order to write k2
⊥ as

a function of the wave frequency and the plasma parameters. This equation captures the

crucial interaction between the plasma and the wave, i.e. cut-offs (k2
⊥ = 0) and resonances

(k2
⊥ → 0). A quite exhaustive classification of the plasma waves can be found in Ref. [30].

Here we will briefly discuss the low frequency waves, i.e. below and around the ion-cyclotron

frequency. For a very good review on low frequency waves in plasmas, the reader is referred

to Ref. [31]. In the cold plasma model, the ideal two-fluid (electrons and one ionic species)

MHD equations are used. In the Alfvén range of frequencies (ω<ωci ), two modes co-exist:

the fast magneto-sonic wave and the shear Alfvén wave. As the wave frequency approaches

ωci , only the fast magneto-sonic wave can propagate and is the relevant mode for interactions

with plasma ions.

The cold plasma model does not take into account the particles velocity distribution. The

warm plasma model can then be used in order to take into account some kinetic effects. In the

warm plasma model, the dielectric tensor elements have to be derived using the distribution

function of each species. The distribution is approximated by a Maxwellian with characteric

temperature T :

FM (x , v ) = n(x)

(
2m

πT

)3/2

e−
2mv2

T , (2.40)

where n(x) is the particle density. The warm plasma model allows the description of additional

physical phenomena such as, for example, the Landau damping.

2.2.2 Plasma heating with ICRF waves

The absorption of RF waves by the plasma species occurs via a wave-particle resonant inter-

action. This interaction may take place where the relevant resonance condition is valid. The
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general cyclotron resonance we are interested in reads:

ω−k∥v∥ −nωc = 0. (2.41)

In this equation, k∥ = k ·B/B , and n is an integer. Landau damping will occur for the resonance

condition with n = 0. In this work we will focus on the fundamental resonance n = 1. The

second harmonic n = 2 and higher harmonic resonances are beyond the scope of this thesis.

Let us focus on the question of heating ions with a fast wave at the fundamental resonance.

Following the seminal paper by Stix [32] which contains a broad discussion of ICRF heating,

the electric field components perpendicular to the magnetic field can be decomposed into two

circularly polarised components noted: E+ and E−. The E+ component is of most importance

for ICRF heating because it is the component that rotates in the same direction as the ion

cyclotron motion and is therefore responsible for ion acceleration. Indeed, as the fundamental

resonance condition is met, the resonant ions and the E+ field rotate in phase in the wave

frame of reference. It is shown in this case that the E+ field accelerates the particle in the

perpendicular direction as illustrated in Fig. 2.11. A very good review of the many wave-particle

interactions is found in Ref. [33].

Figure 2.11: Schematic of a positive ion being accelerated by the E+ field at the fundamental
cyclotron resonance.

However, efficient ICRF heating also depends on the wave polarisation, i.e. the ratio E+/E−

at the wave-particle resonance position. It can be shown that the wave polarisation for cold

plasma model can be written as:

∣∣∣∣E+

E−

∣∣∣∣=
∣∣∣∣ω−ωci

ω+ωci

∣∣∣∣ . (2.42)

Therefore it seen that at the resonance position E+ = 0, first harmonic ICRF heating of a
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single ion species plasma is not possible within the cold plasma model. Let us recall that

the cold plasma model does not take into account thermal effects. Therefore moving to

the warm plasma model, it would be possible (with a hot enough plasma) to Doppler shift

the resonance position away from the “bad” polarisation position and still get some wave

absorption. However the amplitude of E+ still remains low for efficient bulk plasma heating.

Nevertheless, this scheme can be used ICRF acceleration of Neutral Beam Ions which possess

a very high parallel velocity (in the case of tangential injection).

An alternative scheme for plasma heating with ICRF waves, which is most commonly applied

in plasma devices, is the so-called minority heating scenario. It consists of introducing in the

plasma a second ionic species in low concentration. In that situation, the existence of the

so-called mode conversion layer and the ion-ion hybrid resonance near the minority cyclotron

resonance dictates the polarisation of the wave such that it is no longer exactly wrong at the

minority ion resonance position. Good absorption of the wave energy by the minority species

is therefore possible. The heating energy is then transferred to the bulk electrons and ions

by Coulomb collisions with the minority ions. In deuterium or deuterium-tritium plasmas,

good candidates for playing the role of the minority species are hydrogen or helium-3. This

scheme is commonly used in present tokamaks (e.g. JET [34] and ASDEX upgrade [35]) and in

stellarators (e.g. LHD [36, 37]) and is foreseen as the main ICRF heating scheme in ITER [38].

In Chapter 3.6, we investigate the possibility of using this scheme in the W7-X stellarator. The

minority heating scheme is usually elaborated such that most of the wave is absorbed by the

minority species. This occurs for relatively low concentrations, e.g. nH /ne ∼ 5% or less. At

high concentration, the wave is not efficiently absorbed by the minority species, and travels

through the mode conversion layer. In this region the fast wave becomes evanescent and is

converted into short wave length modes such as the Ion Bernstein Wave (IBW), hence the

name. These waves are usually absorbed by electrons and experimental exploration of the

mode conversion scheme for bulk electron heating can be found for example in Ref. [39, 40].

Finally, a new ICRF scheme, similar to minority heating but involving three ionic species, has

recently been developed [41]. This scheme aims at maximising the power absorption by the

species introduced at very low concentration (< 0.1%). A more detailed explanation and some

modelling of this scenario is presented in chapter 4.6.

2.3 Self-consistent solution to a non-linear problem

In the previous section we briefly described the many interactions between charged particles

that form the plasma and the confining magnetic field and waves in the Ion-Cyclotron Range of

Frequency. Fusion devices must employ carefully designed magnetic fields in order to confine

drifting particles, and maintain the plasma in the vacuum vessel. In addition, the plasma

must be heated up to several keV in order to reach fusion relevant temperatures. Considering

the number of particles involved in such a system, it is convenient to describe the plasma

using statistical tools in order to understand and predict experimental observations. In the

case of a minority heating scheme, the distribution function in phase-space (position and
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velocity) f (x , v ) is used for the mathematical description of the minority ion population. The

Vlasov-Boltzmann equation describes the time evolution of this distribution function while

taking into account the ambient magnetic equilibrium, the ICRF wave and Coulomb collisions

with the background species:

∂ f

∂t
+v · ∂ f

∂x
+ q

m
(E +v ×B ) · ∂ f

∂v
= ∂ f

∂t

∣∣∣∣
C

. (2.43)

In this equation, the E and B contain contributions from equilibrium fields (radial electric field

arising from neoclassical transport in 3D plasmas and confining magnetic field) and the ICRF

electromagnetic wave. Under the influence of this wave the resonant particles distribution

develops a fast ion tail. The ions forming this part of the distribution are known to reach

energies above a few hundred of keV in typical JET plasmas. The Coulomb collisions between

these energetic particles and the background species are known to be dominated by slowing

down interaction with electrons. Since pitch-angle scattering is quite inefficient and since

wave-particle interaction occurs mainly in the perpendicular direction, it follows that the tail

of the minority distribution contains more perpendicular than parallel energy. An example of

a heated minority distribution in a JET plasma with 3MW of ICRF power is illustrated in Fig.

2.12. The thermal and the fast components of this distribution are clearly distinguishable in

this example and they cannot be described with the same distribution model. A Maxwellian

model, as given in eq. 2.40 is appropriate for the modelling of the thermal part. However,

another model must be used for the fast tail in order to take into account the anisotropy caused

by ICRF heating.

Figure 2.12: ICRF heated distribution function (red line). The fast tail component (highlighted
by the dashed blue line) appears clearly.

2.3.1 A nearly bi-Maxwellian distribution

A suitable way to describe the fast tail of the minority distribution is to use the so-called

bi-Maxwellian distribution. This model was introduced in Ref. [42–44] and reads:

Fh

(
ψp ,E ,μ

)
=N (ψp )

(
m

2πT⊥(ψp )

)3/2

e
−
(

μBc
T⊥(ψp )

+ |E−μBc |
T∥(ψp )

)
, (2.44)
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where ψ corresponds to the average flux surface occupied by the particles along their un-

perturbed trajectories. Bc is a critical value of the magnetic field that in the context of ICRF

heating is equal to the resonant magnetic field. N is a function related to the density of fast

particles, T⊥ and T∥ are respectively temperature in the perpendicular and parallel direction

to the magnetic field. The definition of these quantities are also found in Ref. [44]. This model

allows inclusion of on one the hand of the anisotropy previously mentioned via T⊥ and T∥
but also its localisation. Indeed, the Bc parameter introduces a spatial dependency in the

bi-Maxwellian function which attempts to model the wave power deposition that predom-

inantly occurs in the Doppler broadened resonance layer. This bi-Maxwellian function (eq.

2.44) was constructed in order to verify the lowest order Vlasov equation B ·∇FH = 0. The

model therefore appears to contain the essential parameters to describe an ICRF generated

fast ion distribution. As it shall be seen in the following, moments of Fh can be used in order

to correct the MHD equilibrium and the wave propagation.

2.3.2 The SCENIC package

The fast ion population develops significant localised pressure which can be of the order of the

bulk plasma pressure and current densities. The magnetic equilibrium is therefore expected

to be influenced by the formation of the fast tail. In addition, the localisation of particles along

the resonance layer due to ICRF trapping and the development of pressure predominantly

in the direction perpendicular to the magnetic field influences the plasma dielectric tensor,

which in turn dictates the ICRF wave propagation and absorption. Equation 2.43 therefore

appears as a highly non-linear problem. Hence, development of a self-consistent numerical

tool for the precise description of ICRF heated plasma scenarios while taking into account the

interplay between the wave field, distribution function and magnetic equilibrium is required.

The SCENIC package has been built for that purpose. The main codes that comprise this

package and the iterative procedure required for the calculation of the self-consistent solution

are discussed hereafter.

The ANIMEC code

The ideal MHD equilibrium is solved by the ANIMEC code [11]. As mentionned earlier, this is an

extension of the VMEC code [10] which aims at including the contribution from the fast particles

typically generated by ICRF heating. The ANIMEC code uses a steepest-descent method in

order to minimise the plasma energy functional (eq. 2.12), but with a generalisation to include

anisotropic pressure:

W =
∫

V
d3x

(
B 2

2μ0
+ p∥
Γ−1

)
(2.45)

The calculation grants access to crucial equilibrium quantities such as the spatial magnetic

field amplitude and flux surface geometry. These quantities are obtained by their Fourier
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series decomposition in the poloidal and toroidal variables. For example, assuming stellarator

symmetry (up-down symmetry in tokamaks for the case n = 0):

B (s,u, v) =
∑
mn

Bmn (s)cos(mu −nv) , (2.46a)

R (s,u, v) =
∑
mn

Rmn (s)cos(mu −nv) , (2.46b)

Z (s,u, v) =
∑
mn

Zmn (s)sin(mu −nv) . (2.46c)

In ANIMEC , a magnetic flux coordinate system (s,u, v) is used, where the radial variable

s = ρ2 =ψt /ψt ,ed g e is the normalised toroidal magnetic flux, u is a poloidal angle that min-

imises the number of poloidal modes in the equilibrium decomposition, and v is the geometric

toroidal angle. The contribution of both the thermal (Maxwellian) and hot (bi-Maxwellian)

species are included in the equilibrium calculation. Moments of the corresponding distribu-

tion functions (eqs. 2.40 and 2.44) are therefore needed. In the presence of ICRF heating for

example, the anisotropy develops predominantly in the Doppler broadened resonance layer.

Therefore the parallel pressure (eq. 2.45) is not a flux surface quantity and reads:

p∥(s,B) = p(s)+ph
∥ (s,B). (2.47)

The s notation is adopted for consistency with the bi-Maxwellian model given by eq. 2.44. In

eq. 2.47, p(s) denotes the thermal pressure derived from the isotropic Maxwellian background

species distribution, and ph
∥ (s,B) is the parallel pressure moment derived from the anisotropic

bi-Maxwellian hot species distribution. This moment can be analytically derived from eq.

2.44:

ph
∥ (s,B) =N (s)T∥(s)H(s,B), (2.48)

where N (s) and T∥(s) are flux surface functions that parametrise the bi-Maxwellian distribu-

tion function. Defining the temperature anisotropy A(s) = T⊥(s)
T∥(s) , one has for H(s,B):

H(s,B) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B/Bc

1−A
(
1− B

Bc

) if B > Bc ,

1 if B = Bc ,

B
Bc

1+A
(
1− B

Bc

)
−2A5/2

(
1− B

Bc

)5/2

1−
(

A
(
1− B

Bc

))2 if B < Bc .

(2.49)

It is recalled that in the context of ICRF heating studies, Bc is constant and equals the resonant

magnetic field value Br es given by the unshifted cyclotron resonance condition: ωc = Z eBr es
m .

However Bc can in general be a three-dimensional function. The density factor N (s) is related

to the hot particle physical density function Nh(s,B) by:

nh(s,B) =N (s)A(s)−1/2C (s,B). (2.50)
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Here again, the hot particle density is allowed to contain a spatial dependence in order to

represent the resonant trapped particles alignment with the resonance layer. It is important to

note that the functions H and C depend intrinsically on |B | (i.e. on the three spatial variables)

and are well suited for the modelling of anisotropic ICRF distributions in both two- and

three-dimensional equilibria. Finally, the so-called hot pressure scale factor is introduced:

ph(s) = N (s)T∥(s)

p(s)
, (2.51)

which can also be related to the hot particle parallel pressure using eq. 2.48:

ph
∥ (s,B) = p(s)ph(s)H(s,B). (2.52)

Note that the same formulation with arguably more intuitive variables definition is given

in Ref. [45]. As ANIMEC solves anisotropic equilibria, it also verifies the fire-hose and mirror

stability relations [11, 46] as part of the convergence check:

σ= 1

μ0
− 1

B

∂p∥
∂B

∣∣∣∣
s
= 1

μ0
− p∥ −p⊥

B 2 > 0, (2.53)

τ= ∂σB

∂s

∣∣∣∣
s
= 1

μ0
+ 1

B

∂p⊥
∂B

∣∣∣∣
s
> 0. (2.54)

The ANIMEC code typically takes as inputs p(s), ph(s), A(s), Bc , and the current density J(s)

or the rotation transform ι(s). A discussion on the usage J and ι will be found in section

3.2. In this thesis we focus on fixed boundary calculation of the MHD equilibrium which

requires a prescription of the shape of the last closed flux surface (LCFS) in terms of its Fourier

decomposition (see eqs 2.46b and 2.46c).

Transformation to Boozer coordinates

The coordinate system for the resolution of the self-consistent ICRF distribution function has

to be carefully chosen because it can ease the evaluation of certain analytic expressions. In

particular the parallel wave vector k∥ which is identified with the magnetic operator:

i k∥ =
1

B
B ·∇. (2.55)

So-called straight field lines coordinate systems are particularly well suited for the calculation

of this operator since the number of analytic terms are reduced. The magnetic field lines in

the ANIMEC coordinate system (s,u, v) unfortunately do not show this property, as seen in

Fig. 2.13a. In the LEMan and VENUS-LEVIS codes the Boozer coordinate system
(
s,θ,ϕ

)
[47] is

adopted. The mapping of the ANIMEC MHD equilibrium onto the Boozer coordinate system

is perform by the TERPSICHORE code. The primary purpose of TERPSICHORE is to compute

the stability of 3D ideal MHD equilibria [48]. This problem is more tractable in straight-
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field line coordinates and therefore a module to convert the MHD equilibrium computed

by ANIMEC to Boozer coordinates was implemented. In the SCENIC package, TERPSICHORE
is consequently only used for coordinate transformation. The radial variable s is here the

same as the one defined in the ANIMEC code, and θ and ϕ are poloidal and toroidal angles that

do not match with the corresponding geometrical angles. Instead, as it is seen in Fig. 2.13b,

θ and ϕ are constructed such that the magnetic field lines appear straight on flux surfaces.

Some advantages concerning the expression of the safety factor in such coordinate system

was already mentioned (and this is related to the simpler definition of B ·∇. The equilibrium

magnetic field can be convieniently written in Clebsch form:

B =∇ϕ×∇ψp (s)+∇ψt (s)×∇θ. (2.56)

The covariant form of the magnetic field is:

B = Bs∇s + J (s)∇θ− I (s)∇ϕ, (2.57)

where J(s) and I (s) are respectively the toroidal and poloidal current fluxes. Introducing the

coordinate system jacobian
	

g = (∇s ×∇θ ·∇ϕ)−1 and noting that ∇s, ∇ψt , ∇ψp all lie in the

same direction, then forming the dot product of eqs. 2.56 and 2.57 gives:

B 2 =
ψ′

p J −ψ′
t I

	
g

. (2.58)

Note that
	

g B 2 is a flux surface quantity in this coordinate system. Moreover it follows from

eq. 2.56 that the parallel wave vector now takes the simple form:

i k∥ =
ψ′

t	
g B

(
ι
∂

∂θ
+ ∂

∂ϕ

)
(2.59)

The TERPSICHORE code outputs the equilibrium quantities as Fourier decomposition in the

poloidal and toroidal direction, i.e. under the form as eqs. 2.46. Note that this representation is

constrained by the so-called stellarator symmetry [49] to which the Boozer coordinate system

employed here is restricted.
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(a) ANIMEC coordinates.
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2π

(b) Boozer coordinates.

Figure 2.13: Comparison of field lines trajectories on a given flux surface of a tokamak equilib-
rium in ANIMEC and Boozer coordinates systems.

The LEMan code

The 3D full wave code LEMan (Low-frequency ElectroMagnetic wAve propagatioN) was written

in order to solve the propagation of low frequency MHD waves. LEMan covers the Alfvén

domain up to the ion cyclotron frequency (ω≤ωci ). The electromagnetic wave propagation

problem mentioned in section 2.2.1 is reformulated in this code in terms of vector and scalar

potentials (resp. A and φ̃) under the Coulomb Gauge choice (∇· A = 0):

∇2 A +k2
0ε · A + i k0ε̂ · φ̃=−4π

c
jant (2.60a)

∇·
(
ε ·∇φ̃

)
− i k0∇· (ε̂ · A) =−4πρant (2.60b)

In these equations, jant and ρant are the source terms appearing in eqs. 2.34a and 2.34d.

As introduced in section 2.2.1, ε refers to the plasma dielectric tensor. In the first version of

the LEMan code, the dielectric tensor elements were derived from the cold plasma model [50].

The code was then extended in order to compute the dielectric tensor with the warm plasma

model [51]. The contribution of the hot particles modelled by the bi-Maxwellian function

to the dielectric tensor was later added [52, 53] and made possible self-consistent inclusion

of the LEMan code into the SCENIC package. It is clear that, in this framework, the dielectric

tensor elements carrying the contribution of the hot particles depend on the characteristic

parameters of the bi-Maxwellian model, namely N (s), T⊥(s), T∥(s) and Bc . Detailed derivation

of the dielectric tensor elements for these various models can be found in Ref. [30] and in the

appendices of Refs. [52, 54]. In the derivation of the warm and hot dielectric tensor elements

the expansion has been truncated to the lowest order in Larmor radius. Therefore only electron

Landau damping and fundamental ion cyclotron resonance are resolved.
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The wave field computed by LEMan is then used by the VENUS-LEVIS code to resolve wave-

particle interactions via Monte Carlo operators. These operators require in particular the

electric field components E+,− and the wave numbers k∥,⊥. The parallel wave number is

usually well approximated in tokamaks by the relation k∥ � nϕ

R , where R is the major radius

and nϕ is the considered toroidal mode for the wave description. The mode spectrum of

ICRF waves in tokamaks will be further discussed in section 3.1. However such an expression

does not take into account the upshift due to the poloidal magnetic field. Also, as it shall

be discussed, this relation assumes decoupling between the toroidal modes comprising the

wave spectrum. This assumption is however not valid in three-dimensional configurations. A

method to evaluate k∥ which is valid in 3D and consistently include the poloidal upshift was

proposed in Ref. [53]. Remembering that in Fourier space k∥ is a differential operator that can

be applied to the scalar potential φ̃, one can show that:

|k∥|2 =
∣∣∣∣ ψ′

t

φ̃B
	

g

(
ι
∂φ̃

∂θ
+ψ′

t
∂φ̃

∂ϕ

)∣∣∣∣
2

(2.61)

It is also convenient to derive with the same method the perpendicular wave vector:

|k⊥|2 =
∣∣∣∣g ss 1

φ̃

∂φ̃

∂s

∣∣∣∣
2

+
∣∣∣∣ 1

g ss

1

φ̃σB
	

g

(
μ0 J

∂φ̃

∂ϕ
+μ0I

∂φ̃

∂θ

)∣∣∣∣
2

(2.62)

The VENUS-LEVIS code

The VENUS-LEVIS code [19] implements a formulation of the first order guiding centre drift

equations (GCDE) [12] in general curvilinear coordinates. The GCDE are a system of four

equations for the guiding centre position Xg c and the parallel gyro-radius ρ∥:

Xg c = v∥
B∗

B∗
∥
+ E∗ ×B

BB∗
∥

, (2.63a)

ρ∥ =
E∗ ·B∗

BB∗
∥

, (2.63b)

where:

B∗ = B +ρ∥∇×B , (2.64a)

E∗ = E −
(
μ

q
+ v∥ρ∥

)
∇B −ρ∥

∂B

∂t
. (2.64b)

The VENUS-LEVIS code employs a Runge-Kutta method of order 4 to solve these equations in

time. In the SCENIC framework the curvilinear Boozer coordinates are employed in VENUS-LEVIS
for consistency with the ICRF wave field given by LEMan . In eq. 2.64b, E contains contribu-

tions from a slowly varying electric field arising from plasma rotation, neoclassical transport in

stellarators or MHD waves. The evaluation of the equilibrium magnetic field in eq. 2.64a and

other equilibrium quantities required solving the GCDE by employing a special spline-Fourier
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representation using explicitly the Fourier coefficients computed by TERPSICHORE , and a

cubic spline representation for the radial variable. This method, explained in detail in Ref. [19],

brings a level of numerical accuracy and computer resources optimisation which are crucial

for the stellarator simulations presented in Chapters 3.6 and 4.6. The VENUS-LEVIS code is

typically used to evolve minority species ions in a background plasma composed of majority

species ions and electrons. The minority ion markers interact with the background species

via Coulomb collisions and with the ICRF wave field via resonant wave-particle interaction.

These interplays are modelled with Monte Carlo operators. The collision operator is derived

from the Fokker-Planck equation and is consistent with the operator introduced in Ref. [55].

The slowing down and pitch angle scattering of the markers on the Maxwellian background

species s is implemented by kicks in kinetic energy and pitch angle λ= v∥/v :

Δλ=−∑
s
νs
λλΔt +Rλ

√(
1−λ2

)∑
s
νs
λ
Δt , (2.65a)

ΔE =−∑
s

2νs
EΔt

(
E −

(
3

2
+ E

νs
E

dνs
E

dt
Ts

))
+2RE

√∑
s
νs

E TsEΔt . (2.65b)

In these equations, νs
λ,E denote the pitch angle scattering and slowing down frequencies

respectively, Ts is the temperature of the species s and Rλ,E = ±1 are random signs. The

Monte Carlo operator for the resonant ICRF wave-particle interaction is similar to the one

described in Ref. [37]. This operator models the heating of resonant particle as a quasi-linear

diffusion in velocity space and is consistent with the initial work found in Ref. [56]. The ICRF

operator implemented in the VENUS-LEVIS code is the same as the one used in the former

VENUS code [53]. If the Doppler shifted resonance condition 2.41 (with n 
= 0) is fulfilled, the

marker receives kicks in perpendicular and parallel velocity:

Δv⊥ = 〈Δv2
⊥〉

2v⊥
+R

√
2〈Δv2

⊥〉, (2.66a)

Δv∥ =
k∥
ωc

v⊥Δv⊥, (2.66b)

with:

〈Δv2
⊥〉 =α

q2

m2 τ
2
∣∣∣∣E+ J0

(
k⊥v⊥
ωc

)
+E− J2

(
k⊥v⊥
ωc

)∣∣∣∣2 . (2.67)

Equation 2.67 is the standard expression for the absolute squared of the change in the perpen-

dicular velocity resulting from the wave-particle interaction, and is directly derived from the

quasi-linear theory. In this equation, E+,− are the wave electric field polarised components

introduced in section 2.2.2, J0,2 are Bessel functions of the first kind, α is a constant factor

ensuring a constant power deposition. R is a uniformly distributed random number in the in-

terval [0,1]. The interaction time between the wave and particle is given by τ. A discussion on

this parameter is found in Ref. [57] and is taken into account in VENUS-LEVIS implementation.

It is important to mention here that the form of the Monte Carlo operator allows modelling

not only of the heating of the resonant particles (which involves a predominant increase of the
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perpendicular energy (eq. 2.66a)), but also the change in the particles orbit due to interaction

in the parallel direction (eq. 2.66b). The latter is responsible for radial transport of resonant

particles. This effect was introduced in Ref. [58] and will be further discussed in sections 3.4

and 5.2.2.

Fitting on the bi-Maxwellian and the iteration process

The VENUS-LEVIS code evolves the minority species ion markers in time and takes into ac-

count the confining magnetic field computed by ANIMEC /TERPSICHORE , the ICRF wave field

computed by LEMan and the inter-species Coulomb collisions. In typical minority heating sce-

narios (e.g. a D rich plasma with 5% H minority), a fast ion tail arises in the energy distribution,

above a few hundred keV for tokamak plasmas, because of the ICRF wave-particle interaction.

In addition, a large fraction of the markers remains thermal under the predominant influence

of slowing down by collisions. An example of the total distribution obtained at the end of a

VENUS-LEVIS run under these conditions was shown earlier in Fig. 2.12. It is reminded here

that because of the large anisotropy developed by the fast tail, the markers forming this part

of the distribution are best represented with a bi-Maxwellian model. Therefore, a splitting

method is required in order to separate the markers in the thermal part of the distribution from

the fast tail. The splitting procedure was introduced in Ref. [53] and consists of comparing the

kinetic energy Ei of each marker with the electron temperature at the markers radial position

si :

if: Ei > xTe (si ) ⇒ marker i is in fast tail,

else: marker i is in thermal bulk.

In this criterion, x is a constant which is must be adjusted for each simulation. The thermal

bulk distribution is well modelled by a Maxwellian distribution. Therefore the contribution to

the MHD equilibrium and wave field from the thermal minority markers is accounted for by

introducing the density, pressure and temperature of the thermal bulk into the MHD balance

equation and the dielectric tensor. The 0th (density nth) and 2nd (pressure pth) order velocity

moments of the Maxwellian distribution are computed with a Particle-In-Cell method applied

to the thermal marker distribution:

nth(s) = 2π
∫
θ

∫
ϕ

∫
E

∫
λ

dθdϕdEdλ
	

g v FM
(
s,θ,ϕ,E

)/∫
θ

∫
ϕ

dθdϕ
	

g (2.68a)

= ∑
i∈Υt

wi

ΔV
(2.68b)

pth(s) = 2π
∫
θ

∫
ϕ

∫
E

∫
λ

dθdϕdEdλ
	

g v E FM
(
s,θ,ϕ,E

)/∫
θ

∫
ϕ

dθdϕ
	

g (2.69a)

= ∑
i∈Υt

Ei wi

ΔV
(2.69b)

37



Chapter 2. Equilibrium, heating and fast particles: the basis of the SCENIC package

where
	

g and
	

g v are respectively the configuration and velocity space jacobian, wi is the

numerical weight of the considered marker, Υt defines the ensemble of markers in thermal

bulk (Ei < xTe (si ), radially located in the interval [s − Δs
2 ; s + Δs

2 ] with Δs the radial bin width,

and ΔV is the plasma volume contained in this interval. The temperature of the thermal bulk

Tth is simply obtained by the relation pth = nthTth which is valid for Maxwellian distribution.

The numerical evaluation of the moments of the bi-Maxwellian distribution is also based on a

Particle-In-Cell method. However it is not as straightforward to obtain the relevant quantities

that will be read by ANIMEC and LEMan , namely the anisotropy A(s) = T⊥(s)/T∥(s), ph(s), T∥(s)

and N (s). First the hot particle density, as well as parallel and perpendicular pressures are

needed:

nh (s,θ,ϕ
)= ∑

i∈Υ f

wi

δV
, (2.70)

ph
∥
(
s,θ,ϕ

)= ∑
i∈Υ f

v2
∥wi

δV
, (2.71)

ph
⊥
(
s,θ,ϕ

)= ∑
i∈Υ f

v2
⊥

2

wi

δV
. (2.72)

In these equations, Υ f denotes the ensemble of fast particles (Ei > xTe (si ) which are located in

the three-dimensional bin of volume δV defined by the intervals [s− Δs
2 ; s+ Δs

2 ], [θ− Δθ
2 ;θ+ Δθ

2 ],

[ϕ− Δϕ
2 ;ϕ+ Δϕ

2 ]. The temperature anisotropy is found by inverting the relation [53]:

ph
⊥

ph
∥
= M(s, A,B), (2.73)

with:

M(s, A,B) =
{

A B
Bc

(1− A(1−B/Bc )−1 if B > Bc ,

A B
Bc

(1+A(1−B/Bc ))2−5(A(1−B/Bc ))3/2+(A(−B/Bc ))7/2

(1−A2(1−B/Bc )2)(1+A(1−B/Bc )−2(A(1−B/Bc )))5/2 if B < Bc .
(2.74)

The result of this inversion has to be flux surface averaged so that A is a flux function. The

anisotropy A and the parallel pressure ph
∥ can be injected in eqs 2.50, 2.51 and 2.52 to obtain:

ph(s) =
〈

ph
∥
(
s,θ,ϕ

)
p(s)H(s,B)

〉
, (2.75a)

N (s) =
〈

ph
∥
(
s,θ,ϕ

)
p(s)C (s,B)

〉
, (2.75b)

T∥(s) =
〈

ph
∥
(
s,θ,ϕ

)
N (s)H(s,B)

〉
, (2.75c)

where the angular brackets stand for flux surface averaging. There parameters, along with a

choice of Bc , completely determine the model of the anisotropic distribution function. Equa-
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tions 2.73 (inversion for A), and 2.75 are computed by a dedicated routine in the VENUS-LEVIS
code and are then read by ANIMEC and LEMan . The MHD equilibrium and wave field are

updated to take into account the heating of the minority distribution. Several iterations be-

tween ANIMEC /TERPSICHORE , LEMan , and VENUS-LEVIS are performed until a self-consistent

distribution function is obtained, i.e. until no reasonable change in the heated distribution

function appears between successive iterations. This iterative process will be more clearly

illustrated in chapters 2.4 and 4.6.

2.4 Summary

In this chapter, the plasma physics principles relevant for the understanding and usage of the

SCENIC code package was presented. The SCENIC modelling tool is probably unique in the

sense that it can resolve fundamental ICRF heating scenarios including consistent finite orbit

width effects, warm plasma effects and fully three-dimensional configurations.

In the following chapters, the modelling capabilities of the SCENIC package will be demon-

strated. It should also appear that, throughout this thesis, no significant development in the

physical basis SCENIC has been made, but the code has been used successfully to explore

novel three-dimensional equilibrium configurations, in particular the W7-X stellarator, and

ICRF fundamental heating scenarios.
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3 Two-Dimensional configurations:
ICRF for sawtooth control experi-
ments in the JET tokamak
In this chapter we present how SCENIC has been used for the interpretation of experimental

scenarios. The experiments at stake were conducted in the JET tokamak where ICRF minority

heating was mainly used for controlling MHD activity. An important aspect of using ICRF

waves in these experiments was the question of the antenna phasing. This terminology

relates to the working of the physical RF antenna, which is the actual heating source, and

the preferred direction of propagation of the excited wave in the plasma. The concept and

the corresponding modelling method employed in this work will be described in detail in

section 3.1. The experimental signals obtained during the JET experimental pulse #84497

where sawteeth were controlled by ICRF heating serve as the basis of our modelling presented

here. The corresponding numerical profiles and equilibrium will be discussed in section 3.2.

We study a deuterium rich plasma where the resonant species is Hydrogen introduced at 5%

concentration
(

nH
ne

)
. In section 3.3, the self-consistent distribution function of the heated H

ions obtained for various antenna phasings are presented. As it shall be seen, the antenna

phasing may result in an asymmetric wave power spectrum which in turn causes a radial

displacement of resonant ions. This so-called RF particle pinch, introduced in Ref. [58] and

further discussed in Refs. [57, 59, 60], will be presented in section 3.4. The generation of

ICRF fast ion population in these experiments were aimed at controlling the amplitude and

the period of the sawtooth instability. A brief description of this MHD instability and an

explanation of the control method employed will be given in section 3.5.

3.1 Antenna setup

The fast wave used for ICRF applications is coupled to the plasma by an external excitation

source. The ICRF antenna system which generates this excitation is composed of straps

on which a current density flows. Tokamak antennae are usually located on the LFS of the

machine for better accessibility to power sources. As desribed in 2.2.2, the fast wave dispersion

relation predicts a cutoff at the LFS. Therefore, the excited wave must first tunnel through

an evanescent layer before propagating into the plasma. The plasma-wave coupling can be

optimised by placing the antenna as close as possible to the plasma boundary or by puffing
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some gas in front of the antenna. The physics of the plasma-wave coupling is complicated not

only by the interaction with the edge plasma but also by the antenna structure (e.g. housing,

Faraday screen) and geometry. This active field of research usually involves sophisticated

modeling tools such as TOPICA [61] in order to describe precisely the 3D antenna elements. The

antenna solution is then are either coupled to a reduced plasma model or to a full-wave code

such as TORIC [62]. A somewhat opposite approach is adopted in SCENIC and similar other

codes (e.g. SELFO [57], EVE [63]). A simplified antenna model is implemented and the wave

propagation and absorption, and the fast ion response is carefully treated. In the following we

shall describe how one can take advantage of the toroidal symmetry to conveniently represent

the antenna excitation, how this procedure is practically implemented in the LEMan code and

how various antenna configurations commonly used in tokamak plasma scenarios can be

resolved.

General antenna model

The antenna system can be simplified as a current sheet flowing on a metallic strap located

at s = sant . This radial position can be realistically viewed as a pseudo-flux surface outside

the last closed flux surface. The spatial extension of the antenna can therefore be described

independently in all directions (radial, poloidal and toroidal). This convenient representation

is adopted for example in the EVE code [63] and reads:

jant = I0	
g
δ (s − sant )σθ(θ)σϕ(ϕ)eant . (3.1)

In eq. 3.1, I0 is a constant dictating the excitation amplitude,
	

g is the coordinate system

jacobian. The antenna poloidal and toroidal properties are respectively described by σθ(θ)

and σϕ(ϕ). eant is the direction in which the current density flows. This antenna description

becomes useful when one considers the mode coupling of the fast wave which depends on

the equilibrium plasma geometry. In tokamak plasmas the poloidal modes of the fast wave

are strongly coupled because of the inherent poloidal asymmetry of the equilibrium. This

coupling is taken into account by the introduction of a poloidally localised simulated antenna

as explained in the following. Tokamak plasmas can be approximated to be axisymmetric

allowing no coupling between the toroidal modes of the fast wave. In this case, it is therefore

valid to consider each toroidal mode of the excitation spectrum independently from one

another. Each of these modes can be computed by letting the antenna surround the plasma in

the toroidal direction such that one can make use of the Fourier series decomposition of the

σϕ function:

σϕ(ϕ) =
∞∑

n=−∞
σnei nϕ. (3.2)

The σn coefficients contain all the toroidal features of the antenna such as the geometry and

the phasing, which will be detailed in the following. The antenna current density can therefore

42



3.1. Antenna setup

be written as:

jant = I0	
g
δ (s − sant )σθ(θ)

∞∑
n=−∞

σnei nϕeant (3.3)

= I0

∞∑
n=−∞

σn j ant ,nei nϕ (3.4)

= I0

∞∑
n=−∞

jant ,nei nϕ. (3.5)

The decoupling of toroidal modes also allows for the Fourier decomposition of the wave

electric field:

E (s,θ,ϕ) = I0

∞∑
n=−∞

En(s,θ)ei nϕ = I0

∞∑
n=−∞

σnE n(s,θ)ei nϕ. (3.6)

In 3.6, E n is the electric field that is usually from wave code calculation. Moreover the power

coupled by the antenna to the plasma can be written as [50]:

Pant = i

2

∫
s

∫
θ

∫
ϕ

dsdθdϕ
	

g jant ·E∗

= i

2

∫
s

∫
θ

∫
ϕ

dsdθdϕ
	

g
∞∑

n=−∞
I0σn j ant ,nei nϕ ·

∞∑
n′=−∞

I0σ
∗
n′E

∗
n′e−i n′ϕ

= I 2
0

∞∑
n=−∞

∞∑
n′=−∞

i

2

∫
s

∫
θ

∫
ϕ

dsdθdϕ
	

g |σn |2 j ant ,n ·E
∗
n′ei (n−n′)ϕ. (3.7)

After integrating over ϕ in 3.7, only the n = n′ terms remain because of the oscillating term

ei (n−n′)ϕ so that:

Pant = I 2
0

∞∑
n=−∞

|σn |2 i

2

∫
dsdθ

	
g j ant ,n ·E

∗
n = I 2

0

∞∑
n=−∞

|σn |2Pant ,n . (3.8)

The imaginary component of Pant corresponds to the resistive coupled power, i.e. the actual

absorbed power by the plasma. Eq. 3.8 is relevant for identifying a particular toroidal mode

that contributes dominantly to the wave spectrum. Each antenna configuration can be

characterised by the values of the |σn |2 coefficients as we shall see in Fig. 3.2.

Implementation in LEMan

This procedure appears to allow a straightforward computation of each Fourier component

of the electric field via a wave code, including a consistent reconstruction of the antenna

configuration, i.e. using the σn coefficients. However it is not convenient to implement directly

in LEMan the σϕ function as given by eq. 3.2. The first reason is that if one wants to compare

different antenna geometry and/or phasing, a direct implementation will imply that all toroidal

modes have to be re-computed for each investigated antenna configuration. Secondly, the

representation of the antenna current density given by eq. 3.1 cannot be easily implemented
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into the LEMan code. Indeed, eq. 3.1 assumes that the current sheet flowing on the antenna

straps is located in the vacuum region surrounding the plasma. This representation requires

the implementation of feeders which take into account the circulation of the excitation current

and ensures charge conservation. The LEMan code is written in the Boozer flux coordinate

system which limits the investigated domain to span from the magnetic axis up the plasma last

closed flux surface, i.e. the vacuum region between the plasma and the wall is not accessible.

The modelled antenna is therefore artificially placed inside the last few closed surface of the

plasma volume and a perfect plasma-wave coupling is assumed. The antenna is defined

in LEMan by the current density jant in (2.60a). The general expression for jant is obtained

by assuming zero charge accumulation in the antenna circuit, and thus takes the following

divergence-free form [50]:

jant =∇s ×∇ς(s,θ,ϕ). (3.9)

In eq. (3.9), ς(s,θ,ϕ) is a function describing the localisation and the extension of the antenna

excitation and reads :

ς
(
s,θ,ϕ

)= ςs (s)ςθ (θ)ςϕ
(
ϕ
)

. (3.10)

Eq. (3.10) allows one to define the antenna localisation and extension in each direction

independently:

ςs(s) =
(
1−

(
2

s − s1

s2 − s1
−1

)2)2

B

(
s − s1

s2 − s1

)
(3.11a)

ςθ(θ) =
(
1−

(
2
θ−θ1

θ2 −θ1
−1

)2)2

B

(
θ−θ1

θ2 −θ1

)
(3.11b)

ςϕ(ϕ) = ei nϕ. (3.11c)

In eq. (3.11), s1,2, θ1,2 define the antenna spatial boundaries, n is the considered antenna

toroidal mode and B is the box function defined as:

B(x) =
{

1 if x ∈ [0,1]

0 elsewhere.
(3.12)

The amplitude of the raw electric field Ẽn computed by LEMan for each n has to be to rescaled

so that the total electric field given by eq. 3.6 is consistent with the antenna toroidal properties

and the desired input RF power. A possible rescaling method consists of considering that the

electric for each mode n couples 1W of power to the plasma:

E n = Ẽn√
ℑ(∫dV jant · Ẽ∗

n
) . (3.13)

Each electric field amplitude E n is multiplied the coefficient I0σnei nϕ given by Eq. 3.6. The
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summation of these fields give the total electric. This method will be applied in the next

paragraph to illustrate the difference between the commonly used antenna phasing (see Fig.

3.2). It is also important to mention that this separation of the toroidal mode numbers is not

possible when dealing with a three-dimensional equilibrium. An appropriate method will be

explained in section 4.5.1.

Modelling of the JET A2 antenna system

The JET tokamak is equipped with the so-called A2 antennae [64]. Each of these antennae

are composed of localised straps carrying currents of the same amplitude but of different

phases. The phase shift φi applying to i th strap of width Δϕi located at ϕi is used to change

the dominant direction of the wave vector with respect to the plasma current. The main

phasing patterns applied to the JET A2 antenna in plasma heating scenarios are the so-called

dipole, +90◦ and -90◦ phasings. These designations correspond to the phase shift introduced

between two adjacent current straps as illustrated in Fig. 3.1.

Figure 3.1: Schematic view of the A2 antenna geometry and current straps phasings.

Based on the simplified model of the A2 antenna given in Fig. 3.1, the toroidal variation of the

current density can be written:

σϕ =
√

2π

4

4∑
i=1

1√
Δϕi

B

(
ϕ−ϕi

Δϕi

)
eiφi . (3.14)

The Fourier decomposition of this expression gives the σn coefficients introduced in eq. 3.2

and necessary for the wave field reconstruction of a given antenna configuration. By virtue of
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the Fourier series decomposition:

σn = 1

2π

∫
σϕe−i nϕdϕ

σn =
4∑

i=1

√
Δϕi

8π
sinc

(
nΔϕi

2

)
ei(φ j−nϕi ), (3.15)

equation 3.15 leads to the excitation spectra illustrated in Fig. 3.2. It should be pointed

out that this corresponds to the excitation spectra in the vacuum. It is possible to take into

account the evanescence of the excitation modes in the scrape-off layer with a back-of-the-

envelope correction. The corresponding plasma spectra depend on the scrape-off layer

physical properties and can be obtained by wave-plasma coupling calculations. A simplified

but yet satisfactory approach to approximate the plasma spectra consist of weighting the

contribution of each toroidal mode with a decaying factor e−k∥d (k∥ � nϕ/Rant , with Rant the

antenna radial position in the cylindrical coordinate system, and d is the antenna-plasma

distance), i.e.:

σ
pl asma
ϕ (ϕ) =σϕ(ϕ)e−k∥d . (3.16)

Moreover, note that +90◦ and -90◦ phasings display asymmetric excitation spectrum as sug-

gested by the large peaks around respectively nϕ =−13 and nϕ = 13. These phasings are used

in order to produce an ICRF wave travelling respectively in the co- and counter- direction with

respect to the magnetic field. Considering the plasma spectra seen in Fig. 3.2 (dashed lines), it

is reasonable for the sake of this illustration to only retain the modes |n| < 53. Figures 3.2b,

3.2d and 3.2f show a reconstruction of the left-handed electric field around the midplane for

the different phasings. It is seen that the antenna localisation is retrieved and a privileged

direction of propagation, i.e. sign of k∥, arises for the +90◦ and -90◦ phasings. In practice, only

one or two modes which contribute the most to the power spectrum are often sufficient. For

SCENIC calculations such as those illustrated here for +90◦, -90◦ and dipole phasings, the wave

can be sufficiently modelled for many applications with only, nϕ =−13, nϕ = 13, nϕ =±27. In

section 3.4 the impact of the wave directivity on the particle orbits will be discussed.
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Figure 3.2: Left: Vacuum and plasma spectra for +90◦, dipole and -90◦ phasings normalised to
1W of input power. Right: Left-handed electric field component E+ [a.u.] around the torus
midplane.
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3.2 JET pulse #84497: profiles and equilibrium

The sawtooth control experiments conducted in the JET tokamak in 2013 demonstrated short-

ening of the sawtooth period with the three phasings discussed in section 3.1. The equilibrium

reconstruction which is the basis for the following SCENIC simulations used experimental data

for JET pulse #84497. This pulse employed +90◦ but the plasma configuration is very similar

to the other pulses for which −90◦ and dipole phasings were used. The thermal temperature

and density profiles used here were obtained experimental measurement averaged between

54.7s and 55.7s, and are displayed in Fig. 3.3. The assumptions and limitations intrinsic of the
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Figure 3.3: Density and temperature radial profiles of the background deuterium ions and
electrons.

SCENIC package led to certain adaptation of the data. In particular as discussed in Chapter 1.4,

SCENIC does not allow for an up-down asymmetric plasma, therefore the plasma equilibrium

shape that was first obtained from EFIT [5, 6] had to be reshaped. Figure 3.4a compares the

LCFS as given by EFIT and the one used in the SCENIC simulations. The SCENIC LCFS matches

the EFIT solution as close as possible while maintaining the up-down symmetry. Moreover the

MHD equilibrium reconstruction with ANIMEC may bring some difficulties if one wants to use

the exact same profiles as given by EFIT, depending on whether the rotational transform or the

toroidal current density profile is used. In JET experiments, the latter can be estimated with

reasonable accuracy via Motional Stark Effect spectroscopy diagnostic. However this diagnos-

tic was not available for the pulses investigated here and consequently only an estimation

of the safety factor profile is available. ANIMEC can of course compute the MHD equilibrium

corresponding to an input q profile, but the SCENIC iterative procedure requires inclusion of

the fast ion contribution in order to update the MHD state with the fast ions contributions. It

does not seem feasible to compute directly the effect of the minority ion distribution func-

tion on the safety factor. On the other hand, a direct output of the VENUS-LEVIS code is the

correction to the toroidal current density which corresponds to the following moment of the
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minority ion distribution function:

jh =
∫

Zh qvϕ f (x , v )dv (3.17)

It is therefore more convenient to use the background toroidal current density as an input

for the equilibrium calculation and to correct it by this moment at each iteration. Another

advantage of using the toroidal current density over the q profile is the possibility to account

for the drag effect from the background electrons and ions on the fast ion generated current.

Indeed, and as discussed in Refs. [65, 66], the background electrons and ions respond to the

collisions with fast ions by the generation of current densities. In that case, a drag current

must be subtracted from the fast ion current obtained with eq. 3.17. An estimation of the

resulting fast ion current can be found in Refs. [65, 66] and reads:

jdr ag = jh

⎛
⎝1− Zh

Ze f f
−

mh
∑

i Zi ni (1− Zi
Ze f f

)

Zh
∑

i ni mi
+1.46

√
r

R0
A(Ze f f )

(
Zh

Ze f f
− mh

∑
i ni Z 2

i

Zh Ze f f
∑

i ni mi

)⎞⎠
(3.18)

In eq. 3.18, the index h refers to the fast ion species, and index i designates the background

ion species (i.e. main ionic species and impurities, etc). The corresponding EFIT calculation

for the q profile, shown in Fig. 3.4b, increases rapidly towards the separatrix. The ANIMEC code

has to be first run with this q profile in order to compute the corresponding toroidal current

density which is displayed in Fig. 3.4c (dotted line).
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Figure 3.4: Comparison of the main equilibrium data given by EFIT and used for the SCENIC
simulations. The current density plotted with a dotted line in (c) was obtained by ANIMEC
calculations based on the EFIT q profile.

It is seen that this toroidal current density profile takes negative values throughout a significant

portion of the plasma volume. This change of sign may be due to the constraint imposed on

the LCFS for the equilibrium calculation. It is assumed in the modelling reported here that

this change in sign is not physical and the toroidal current density in this region is artificially

reshaped so that it remains positive in the confined volume and reaches 0 at s = 1. This

fine-tuning of the current density is made under the constraint of keeping the q=1 surface

approximatively at the same radial position as in the EFIT calculation. The resulting current

density is displayed by the solid line in Fig. 3.4c. The ICRF wave frequency is set to 37.2MHz

such that the unshifted fundamental cyclotron resonance of Hydrogen ions is slightly located

on the HFS of the q = 1 surface. This configuration is representative of the experiments in

which in the resonance position was swept through the q = 1 surface. A different antenna

setup relative to the one illustrated in section 3.1 has been used. The corresponding mode

numbers that have been employed to represent the phasing configurations are given in table

3.1. Using the same mode number in absolute value between dipole and the asymmetric

phasings ensures that the Doppler broadened resonance layer is comparable in all three cases.

It was seen in Fig. 3.2, that a dipole phasing typically that the dominant on each side of the

spectrum is about twice as much as the dominant mode of the ±90◦ phasings. However, a

dipole phased wave can be, theoretically at least, generated by the use of the two antennae:

one set at +90◦ and the other at -90◦.
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3.3. Self-consistent distribution functions

Phasing -90◦ +90◦ Dipole
Mode number +17 -17 +17,-17

Table 3.1: Mode numbers used for the following SCENIC simulations.

3.3 Self-consistent distribution functions

In this section the self-consistent distribution functions obtained by SCENIC simulations

and the effect of antenna phasing are described. Figure 3.5 shows for each phasing the time

evolution of the mean energy per particle which is defined as:

〈E〉 = 1

N

∫
1

2
mv2 f (x , v )dxdv (3.19)

where N is the total number of H ions:

N =
∫

f (x , v )dxdv (3.20)

As described in [53], the saturation of this quantity in time is a measurement of the converged

state of the minority ion distribution function. In this figure, the coloured squared illustrate

the SCENIC iterative procedure: the markers time evolution is stopped, the fast component of

the distribution is fitted on the bi-Maxwellian model, the corresponding moments are used

by ANIMEC and LEMan to update the ideal MHD equilibrium and the fast wave propagation

properties. The time during which the markers are evolved between each iteration is taken

in this case as 2/3 of the slowing down time on electrons. This characteristic time appears as

a convenient time scale for simulation of fast ions since it is almost constant for ions up to

few MeV and it is also the shortest Coulomb interaction time with the background species.

It is seen in Fig. 3.5 that around 10 to 12 iterations are required for good convergence of

the minority distribution function. The self-consistent solutions are obtained in the present

calculations after 5 simulated slowing down time. Let us point out that shorter iterations

may lead to the self-consistent solution after a smaller simulated time t/τse and this does

not correspond to the physical taken for the establishment the ICRF heated ion distribution.

More physical quantities can be extracted from the simulated markers distribution. The

physical energy distribution is obtained by integrating the numerical markers distribution

over configuration space and pitch-angle so that:

	
E f (E)dE =

∫
s

∫
θ

∫
ϕ

∫
λ

f (s,θ,ϕ,E ,λ)
	

g dsdθdϕ
	

g v dλdE (3.21)

where
	

g and
	

g v are respectively the configuration and velocity space jacobian. Numerically,

this function is obtained by binning the energy domain and summing the weight contribution

w j of each marker. An energy bin E is defined by an energy grid point Ei and a width dE :
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E = [Ei − dE
2 ,Ei + dE

2 ]

√
Ei f (Ei )dE = ∑

j ;E j∈E

w j (3.22)

Denoting N the number of modelled physical particles, the markers numerical weight is

normalised so that:∫∞

0

	
E f (E)dE = N (3.23)

Fig. 3.6 shows the tail energy distribution functions obtained for the three phasing cases. It

is seen that a longer fast ion tail is generated with the +90◦ phased wave: the distribution

function contains a non-negligible fraction of ions above 600keV and up to 1MeV. However, a

the -90◦ phasing case shows a larger fraction of ions within 200keV−600keV. This explains the

ordering of the curves of the mean energy per particle in Fig. 3.5. However, the consequence

of the employed phasing on the mean energy reached by the fast ions is not necessarily easy to

predict because other parameters in particular the resonance position and the thermal profile

complicates the picture.

3.4 RF induced particle pinch

As presented in section 3.1, the phase shift between the current densities flowing in the

antenna straps can be used to produce a wave that propagates toroidally in the co- (+90◦) or

counter-current direction (−90◦). It was shown in Ref. [58] that toroidally propagating ICRF

waves induce a net radial drift of resonant particles which can be summarised as follows.

The RF wave-particle interaction causes a change in the magnetic moment (equivalently

v⊥) of resonant particles such that on average these particles become trapped and their

bounce tips align with the resonant layer. To understand the RF-pinch mechanism, let us

consider a resonant trapped particle being reflected at the resonance position. The bounce
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tip position, i.e. where the parallel velocity vanishes, can be expressed as a function of the

toroidal momentum Pϕ:

|ψb | = −ψb = Pϕ

q
. (3.24)

As previously mentionned, one can approximate the problem by considering only the dom-

inant mode number in order to calculate the effect of the wave on the particle distribution

function. The wave’s electric field takes the simple form: E = Ẽei(nϕϕ−ωt). Following Ref. [58]

the change in the toroidal momentum δPϕ after each wave-particle interaction can be related

to the change in energy δE :

δPϕ = nϕ

ω
δE � k∥Rant

ω
δE . (3.25)

In Eq. 3.25, ω is the RF wave frequency. After many interactions, the change in the toroidal

momentum subsequently results, on average, in a radial displacement of the trapped particles

bounce tips along the resonant layer. It is seen from eq. 3.24 and 3.25 that co-current (resp.

counter-counter) travelling waves for which k∥ < 0 (k∥ > 0) cause an inward (outward) radial

displacement of the trapped particles bounce tips. Note that we considered a trapped particle

for the sake of this description, but the toroidal momentum of passing resonant particles are

also affected by interaction with the wave, and therefore also experience the pinch effect. An

indication of the RF-pinch phenomenon is seen from pressure distribution along the vertical

direction (and integrated along the radial direction) in Fig. 3.7 which shows that in the +90◦

case, the pressure profile is more peaked towards the mid-plane. Moreover, -90◦ phased wave

produces a broader profile than the other phasings. In addition, since dipole phasing employs

both a co- and a counter-travelling waves, both effects are present and the corresponding

moments show a mixture of these two ambivalent effects. These features are also retrieved on

Fig. 3.8 which show the flux surface averaged fast ion pressures.
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The resonant particles type of orbit can be strongly affected depending on the employed

phasing. In particular, as a co-current travelling wave will push the bounce tips closer to

each other, it is expected that the orbit of some trapped resonant particles will convert into

passing orbits. On the contrary, the resonant trapped particle bounce tips are moved radially

outward under the influence of a counter-current travelling wave, which may cause the outer

leg of banana orbits to intersect the wall, leading to fast particle losses. It is expected that

these effects may be more or less pronounced depending on the resonance position but also

the energy transmitted to the resonant particles which typically depends on the minority

concentration and the RF input power. This will be discussed and illustrated in more detail in

Chapter 4.6 in which the Three-Ion species scheme, involving resonant species at very low

concentrations (0.1%), is discussed.

3.5 Sawtooth control

Plasma core MHD instabilities can cause severe degradation of the magnetic confinement

of tokamak plasmas. This is the case of the internal kink mode which is located at q = 1

surface. It can be shown that the plasma resistivity is then responsible for the diffusion of the

magnetic flux beyond the q = 1 surface which is associated with magnetic lines reconnection

and redistribution of the plasma contained within the q = 1 surface through a larger plasma

volume. This redistribution occurs on very short time scale. Even though models have

been established (e.g. [67, 68]), the exact dynamics of the sawtooth crash remain unclear.

However the consequences of this event are well known and was first reported in Ref. [69]. In

particular, the thermal and the safety factor profiles are strongly affected. Some experimental

observations show that after the sawtooth crash the safety factor is above unity throughout

the whole plasma volume, and temperature and density profile are flattened in the core

region. These sudden changes are followed by a relaxation phase which tends to restore

the equilibrium profiles and in particular the q = 1 surface. Favourable conditions for the

driving of the internal kink mode are met again and the periodic phenomenon of sawtooth

cycles is observed. The length of the sawtooth period is of concern because long sawteeth are

known [70, 71] to often end in triggering of large Neoclassing Tearing Modes and eventually

plasma disruption. In ITER, these events are predicted to be very large and have to be avoided

because ITER is designed to tolerate only a few large disruptions throughout its lifetime. It

was pointed out in Ref. [72] that possible sources of stabilisation or de-stabilisation of the

internal kink mode, i.e. lengthening or shortening of the sawtooth period, involve energetic

ion populations. It is expected that trapped fusion born alpha particles will have a stabilising

effect in ITER and future fusion reactors. Auxiliary control methods for destabilising the

internal kink mode and avoiding the deleterious consequences of large sawtooth crashes

in these machines are then required. Experiments showed that a possible method is to use

ICRF waves in order to generate a fast ion population which shortens the sawtooth period. To

understand the role of fast ions on the internal kink mode and sawteeth, one can write in the
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3.5. Sawtooth control

ideal limit [73] the growth rate of the internal kink mode γI , which defines its stability:

γI /ωA =−πδŴ /s1, (3.26)

where ωA is the Alfvén frequency and s1 the magnetic shear at the q = 1 surface. δŴ is the

normalised energy functional associated with the internal kink mode. An early interpretation

for the experimental observations was given in Ref. [74]. According to this model, the onset of

the sawtooth instability requires an increase of the magnetic shear at the q = 1 such that:

sc < s1, (3.27)

where sc is a critical shear value proportional to δŴ . SCENIC allows the calculation of the shear

profile affected by the fast ion driven current. Such calculations take into account the drag

current in eq. 3.18 and are displayed in Fig. 3.9. It is seen, regardless of the employed antenna

phasing, that the shear value at the q = 1 surface is in fact decreased. In that case the shear

mechanism predicts a stabilisation of the internal kink mode. However this is in contradiction

with the experimental results reported in [75] which are the basis of the modelling presented

in this chapter. Indeed it was observed that the sawtooth period was efficiently shortened and

their amplitude decreased with all three phasings. Therefore the mecanism of Eq. 3.27 cannot

be invoked here to explain the observed change in the sawtooth activity.
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Figure 3.9: ICRF induced fast ion current profiles and the corresponding magnetic shear near
the resonance layer. The dotted line refers to the resonance position mapped onto the outer
midplane. The dashed lines show the position of the q=1 surface with and without the effect
of the fast ion current.

Using a hybrid kinetic-MHD model, it can be shown [73, 75, 76] that a passing particle popula-
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tion displaying strong asymmetry in velocity space brings a significant negative contribution

to δŴ in eq. 3.26. In this framework the fast ions contribution to δŴ is:

δWh =−1

2

∫
d3xξ∗ ·

(
−∇·δPh

)
(3.28)

where ξ is the plasma displacement and δPh is the pressure tensor derived from the fast ion

distribution function. It is shown in Ref. [73] that δWh becomes strongly negative if the fast

ion distribution displays a particular asymmetry in velocity space. The condition can be

associated with a gradient in the fast passing ion current Jh . Indeed, it can be shown that

when the resonance position approaches the q = 1 surface:

δWh ∝− d

dr
Jh (3.29)

The fast passing ion current profile computed by SCENIC for the dipole phasing case is seen

(see Fig. 3.10a) to possess such a favourable gradient for destabilisation. The outboard mid-

plane velocity distributions at, and on both sides of the resonance position (also shown in Fig.

3.10) display strong asymmetry in particular in the passing region of phase-space.
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Figure 3.10: Current generated by the fast passing ions for the dipole phasing case. The
positions for the computation of the contours of the distribution function are shown in (a).
The straight white lines in the contour plot show the local trapped-passing boundary.

The destabilising contribution from the ICRF fast ions can be confirmed by appropriate

stability calculations. The ICRF distribution obtained with SCENIC and the NBI distribution

from TRANSP [77] for the +90◦ phasing case was passed to the stability code HAGIS [78] which

computes the corresponding δWh . Fig. 3.11 shows how δWh varies as the resonance position

is displaced with respect to the q = 1 surface. The MHD contribution was calculated with the

MISHKA code [79]. It is seen that the ICRF fast (computed by SCENIC ) bring a large destabilising

contribution to the internal kink and is even stronger than the stabilisation from NBI ions

around the resonance position. The ICRF distribution obtained with the SELFO code was also
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used by HAGIS and displays also a strong destabilising component to the internal kink mode,

and a useful benchmark between SCENIC and SELFO. Considering the current state of the

known physics at stake here, these calculations indicate that the fast ion mechanism is a valid

explanation for the experimental observations.

Figure 3.11: The contributions from the NBI ions, the ideal MHD and the ICRF fast ions to the
internal kink mode stability as a function of the relative radial distance between the resonance
and the q = 1 surface.

3.6 Summary

In this chapter the SCENIC package was applied to a JET axisymmetric tokamak case for the

interpretation of experimental sawtooth control results. The modelling of the ICRF antenna

in the SCENIC framework has been described and the crucial notion of antenna phasing, or

equivalently the wave direction of propagation, for ICRF heating scenarios has been intro-

duced. It was also seen that the physical dimension of the antenna (e.g. strap width and

spacing, plasma-antenna distance) must be accounted for in ICRF modelling task because

it determines the toroidal mode spectrum to consider. In the SCENIC simulations, only the

dominant modes are taken into account in the wave calculation. It is important to mention

that the selected toroidal mode for the wave calculation dictates the value of the parallel wave

number k∥, consequently influencing the width of the Doppler shifted resonance position

given by the resonance condition ωant −k∥v∥ −Ωc = 0.

The JET plasma pulse #84497 was the basis of the simulations presented in this chapter. The
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experimental data, in particular the safety factor profile and the shape of the LCFS, had to be

adjusted in order to be used in the framework of SCENIC . It might be possible [80] to adapt the

formulation of the wave solver LEMan to benefit from the advantages of the Boozer coordinate

system regarding the wave equation while including more shaping effects (i.e. breaking the

stellarator symmetry) in the equilibrium calculation. However, this rather challenging task, in

particular from the numerical point of view, remains to be explored.

The self-consistent distribution functions with−90◦, +90◦ and dipole phasings were computed.

A detailed analysis shows that a larger fast ion population is generated with the −90◦. However,

the RF-pinch effect which pushes the bounce tips of resonant trapped particles respectively

inward (outward) for +90◦ (−90◦). The radial profiles of velocity moments are more peaked

and higher in amplitude at the resonance position when a +90◦ phased wave is used. There

does not seem to be a precise scaling for the prediction of the actual range energy to be

reached by the fast ions with respect to the employed wave phasing. This question is worth

investigating further. In particular, the resonance position and the shape of the thermal profile

is expected to influence the wave electric field profile and also the Coulomb collision processes

which in turn partly dictate the fast tail formation.

Finally, ICRF fast ion simulations performed with SCENIC show that the shear mechanism

of Ref. [74] predicts stabilisation of the internal kink mode by fast ions in contradiction with

the sawtooth control experimental observations. The coupling of these simulations with the

stability code HAGIS showed that the asymmetry in the velocity distribution can explain the

observed shortening of the sawteeth period. ICRF minority heating is therefore an efficient

tool for controlling the sawtooth activity. Given some flexibility of the ICRF system apparatus

in current and future tokamaks the destabilising contribution of the generated fast ions can be

deposited on the q = 1 surface causing shorter and smaller sawtooth crashes and consequently

avoiding the triggering of confinement degrading Neoclassical Tearing Modes. It should be

noted that fast ion orbit widths, and the RF pinch effect, are crucial ingredients for this

mechanism, making SCENIC the perfect tool for quantifying the effect.
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4 Three-Dimensional configurations:
Particle confinement and heating in
the Wendelstein 7-X stellarator
In this chapter, the SCENIC package is used to study the confinement and the generation of

fast ions in the Wendelstein 7-X stellarator. In section 4.1, we shortly review the stellarator

concept and the various stellarator magnetic configurations that have been studied and built

since the seminal work from L. Spitzer in the 1950s. The W7-X equilibrium configurations

that were used in this thesis are presented in section 4.2. In addition, the concept of quasi-

isodynamicity is discussed with mathematical considerations in order to better understand

the confinement of collisionless particles in W7-X. In section 4.3, the mechanisms causing the

losses of such particles are introduced. VENUS-LEVIS simulations of an NBI-like population

are presented in section 4.4 and illustrates the loss channel previously described. In section

4.5, the possibility to generate a fast ion population in W7-X with an ICRF minority heating

scenario is investigated. The particle losses under ICRF conditions are carefully studied.

4.1 Stellarator overview

The tokamak has been for a long time the most promising configuration for magnetic confine-

ment fusion reactors. The construction of these machines are somewhat simplified by their

inherent toroidal symmetry. As already mentioned in section 2.1.4, this symmetry also offers

good collisionless particle confinement. However the confining helical magnetic field can exist

in tokamaks only if a high current is circulating in the plasma. This current is in turn a source

of large MHD instabilities and in case of rapid loss of confinement is the cause of deleterious

disruption events. In his very famous paper published in 1958 [81], L. Spitzer exposed the

stellarator concept which consists of generating the poloidal magnetic field component, and

therefore a rotational transform, without the circulation of toroidal plasma current. The main

advantages of this design compared to the tokamak is the intrinsic possibility of steady-state

operation and the absence of most of confinement degrading MHD instabilities. The first

machines built under the Matterhorn Project led by Spitzer in Princeton had the shape of a

figure-8 and only used toroidal coils to generated the confining magnetic field. These ma-

chines inspired the construction of other stellarators outside the U.S., in particular in Germany

and Japan. Various coil configurations were investigated. The twist of the magnetic field line
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is generated in part by the use of continuous helical coils in heliotrons (Japan) and other

classical stellarators of the Wendelstein series (Germany). A set of toroidal and poloidal coils

can be arranged as shown in Ref. [82] in order to create the Heliac configuration on which the

TJ-II stellarator in Spain is built.

It is seen that the magnetic configuration in all these devices leads to low machine perfor-

mance and in particular a rather poor confinement of collisionless trapped particles. The high

level neoclassical transport at low collisionality is caused by to the lack of symmetry in the equi-

librium. It was shown in Ref. [83] that there exists, at least mathematically, a class of magnetic

configurations in which all trapped particles are confined. In these so-called “omnigenous”

configurations, the net radial drift of trapped particles would essentially be non-existing. The

amplitude of a perfectly omnigenous magnetic field would only depend on the radial flux

variable B = B(ψ). However it was shown in Ref. [84] that such configurations do not exist in

toroidal devices with closed magnetic surfaces and with a non-vanishing magnetic field on

axis. Omnigenity therefore appears as a very constraining condition but there is another way

to design stellarator fields with good confinement properties. It is formally shown in Ref. [85]

that there exists a subset of omnigenous fields which is of particular interest for stellarators.

These fields must display a certain symmetry that the three-dimensional configuration does

not seem to allow at first glance. Such fields are usually mathematically constructed by the

use of coordinate systems in which the field lines appear straight on flux surfaces and the

guiding centre equations of motion only depend on the amplitude of the magnetic amplitude

(and not on its direction). The Boozer coordinate system (s,θ,ϕ) mentioned in section 2.3.2

meets these criteria and is typically used for studying stellarator magnetic fields. In such a

coordinate system, a magnetic field is omnigenous if it contains a symmetry of the type:

B = B(s, Mθ−Nϕ), (4.1)

where, M and N are integers. This equation means that the magnetic field amplitude depends

essentially on the radial variable and a helical angle χ = Mθ− Nϕ. Therefore there is an

ignorable variable which would ensure the confinement of trapped particles, similarly to

axisymmetric tokamak field for which the cylindrical angle (toroidal angle of symmetry) is

ignorable. This exact type of symmetry is however not possible to achieve in realistic machines.

Therefore we usually refer instead to “quasi-symmetric” stellarators. Here, the prefix “quasi”

has a dual meaning in the sense that (1) the symmetry of the field is in a way hidden in the

Boozer representation while full three-dimensionality still appears in Cartesian representation,

and that (2) the symmetry cannot be realised in the entire plasma volume [86]. The type of

symmetry that one attempts to approach can be classified by the choice of the integers M and

N in eq. 4.1. If M = 0, the magnetic field is quasi-poloidally symmetric and the spectrum of

the Fourier decomposition given in eq. 2.46a is typically dominated by the components B0,0,

B0,1, B0,2. Since the non-poloidally symmetric components, e.g. B1,1, are usually small but

non vanishing, one understands the “quasi”-poloidally symmetric designation. The Quasi-

Poloidal Stellarator (QPS) [87] which was designed at the University of Tennessee and the

Oak Ridge National Laboratory was based on this concept. Similarly, quasi-axisymmetric
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fields are obtained when one aims at approaching the configuration N = 0. The National

Compact Stellarator eXperiment (NCSX) that was intended to be built in Princeton, was based

on this configuration but its construction was halted in 2008. The Evolutive STELlarator

of Lorraine (ESTELL) [88, 89], currently under design in France, is also based on the quasi-

axisymmetric configuration. The Helically Symmetric eXperiment (HSX) [90], in operation

in Madison, is a quasi-helically symmetric stellarator (M = 1, N = 1). This configuration

was introduced in Ref. [91]. As already mentioned, perfectly quasi-symmetric field (in the

sense of eq. 4.1) can not be achieved and small deviations from the symmetry can lead

to substantial fast particle confinement degradation. Therefore it is preferential to relax

the quasi-symmetric constraint and to optimise a reactor relevant stellarator field following

precise criteria which are enumerated in Ref. [92]. The Helias configuration and subsequently

the design of the Wendelstein 7-X (W7X) stellarator was obtained by such an optimisation

procedure. A description of a typical W7-X equilibrium will be shown later in section 4.2.1 and

it will be seen mathematically that W7-X is quasi-omnigenous, because the net radial drift of

most of trapped particles can be shown to be vanishing in the vicinity of the magnetic axis.

In addition, since these particles drift poloidally, as seen earlier in Fig. 2.8, W7-X belongs to

the so-called quasi-isodynamic class of stellarators. Following the optimisation calculations

described in Ref. [92], the quasi-isodynamic Helias configuration is therefore designed to

display reactor relevant features such as steady-state operation, good fast particle confinement,

good MHD stability and small bootstrap current. Extrapolations of the W7-X configuration are

foreseen as a good candidates for stellarator fusion reactors [93].

4.2 The Wendelstein 7-X stellarator

4.2.1 Adiabatic invariant and quasi-isodynamicity

Due to the inherent problems of designing stellarator fields with quasi-symmetry, the quasi-

isodynamic approach gives up on trying to find an ignorable (symmetric) helical angle, but

instead optimises confinement over many bounce times. As will be seen in this section, cross

field radial motion is cyclical, providing contours of the longitudinal invariant J are closed

over a poloidal cross section. In stellarators, the confinement of energetic trapped particles

is of special concern because their radial drift may cause them to escape the last closed flux

surface (LCFS) before de-trapping occurs. For thermal particles the collision frequency would

be sufficiently high to de-trap particles and change their orbit topology to a confined passing

orbit. However assuming the typical collision time of fast particles like alphas in a reactor is

long compared to their confinement time, their confinement mainly relies on minimising the

radial drift averaged over many bounces. The drift optimisation is based on the calculation

of the longitudinal adiabatic invariant, often, lowest order J0. This quantity is a function

of phase space and one way to represent it is to consider the radial and poloidal locations
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(
ψb ,θb

)
of the bounce or transit points for fixed E and Br e f :

J
(
ψb ,θb ,E ,Br e f

)=∮
v∥dl . (4.2)

where the integral path is taken along a particles complete bounce(trapped) or transit(passing)

trajectory. This quantity can also be expressed in the magnetic coordinate system
(
ψ,θ,ϕ

)
using an adiabatic expansion:

J
(
ψb ,θb ,E ,Br e f

)�J0
(
ψb ,θb ,E ,Br e f

)
(4.3)

As discussed in Ref [22], the lowest order in the guiding center approximation appropriate

for J0, the element dl is calculated along the field line path. In an action-angle variable

formalism, J0 contains information such as the bounce or transit time, but also the radial and

poloidal deviation of the bounce or transit points from the field line. The bounce or transit

time is simply:

T = ∂J0

∂E
. (4.4)

The change in the variable ψ and θ after a complete bounce or a transit are then respectively:

Δψ=
∮

bounce
dϕ

dψ

dϕ
= ∂J0

∂θ
, (4.5)

Δθ =
∮

bounce
dϕ

dθ

dϕ
=−∂J0

∂ψ
. (4.6)

The radial and poloidal drift velocity over one bounce period is thus:

〈ψ̇〉b = Δψ

T
=−

∂J0

∂θ

∂J0

∂E

, (4.7)

〈θ̇〉b = Δθ

T
=−

∂J0

∂ψ

∂J0

∂E

. (4.8)

In an optimised stellarator such as W7-X, the longitudinal adiabatic invariant is almost a flux

surface quantity for most of the trapped particles:
∂J0

∂θ � 0. Therefore the radial drift along the

bounce averaged motion of trapped particles vanishes to lowest order. In this approximation

these particles mostly drift poloidally and remain confined on time scales larger that the

typical slowing down time. There will nevertheless usually be some net radial excursion over

one bounce time for fields that are not quasi-symmetric. Nevertheless, if ∂J0/∂θ can itself be

periodic, such that a particle undergoes periodic drift motion (without in that time leaving the

plasma), the particle will be confined. All that is required is that a particle, over many bounces,

executes an orbit such that J0 is closed in the poloidal plane.
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In W7-X, drift optimised magnetic configurations are ensured by high thermal pressure. The

expression for J0 for trapped particles is:

J0 =
∮

bounce
mv∥dl f

=
	

2mE
∮

bounce

√
1− B

Br e f
dl f . (4.9)

Here dl f is an infinitesimal field line element length which can be written from the field line

equation:

dl f

B
= dϕ

B ·∇ϕ . (4.10)

As the toroidal magnetic flux is given by:

Φtor
(
ρ
)=∫ρ′=ρ

ρ′=0

∫θ=2π

θ=0

∫ϕ=2π

ϕ=0

	
g B ·∇ϕdρ′dθdϕ, (4.11)

in a straight field line flux coordinate system, the field line element length reads:

dl f =	
g B

dϕ

Φ′
tor

, (4.12)

where,
	

g = (∇s ×∇θ ·∇ϕ)−1 is the coordinate system jacobian. It then follows:

J0 =
	

2mE
∮

bounce

√
1− B

Br e f

	
g B

dϕ

Φ′
tor

(4.13)

= 2
	

2mE
∫ϕ2

ϕ1

√
1− B

Br e f

	
g B

dϕ

Φ′
tor

. (4.14)

where ϕ1 and ϕ2 are the toroidal position of the bounce points. From this expression it is

possible to numerically evaluate the contours of J0 for different 〈β〉 as will be illustrated in

the next section.
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4.2.2 Magnetic configuration

W7-X has been optimised in part to confine energetic trapped particles over their slowing

down time scale. Confinement has been designed to be best for a high 〈β〉 MHD equilibrium.

The 〈β〉 limit for stability in W7-X is about 5% [24]. Therefore, operating at a high 〈β〉 value,

i.e. around 4% would ensure both plasma stability and fast particle confinement. In such

configurations, a given particle trapped in one of the five magnetic toroidal mirrors will mostly

drift poloidally, the radial drift being low due to small geodesic curvature. The flexibility of the

coil system on W7-X grants access to a broad range of magnetic equilibrium configurations,

which are characterised by a mirror ratio value [94, 95] defined as :

mr = Bϕ=0 −Bϕ=π/5

Bϕ=0 +Bϕ=π/5
. (4.15)

Here we investigate the high-mirror magnetic configuration with mr=8.7%. The equilibrium

used has been calculated using the fixed boundary version of the ANIMEC code [10,11] having a

volume-averaged β of 4%. Such a 〈β〉 value would be roughly consistent with a central density

of 1.5×1020m−3 and a central temperature of 4keV as achieved in transport simulations for

W7-X with ECRH input powers above 5MW (for an example with 〈β〉 = 4.5% with 8MW ECRH,

140GHz O2-mode [96]). The density and temperature profiles used in this work are analytic

estimations and are displayed in Fig.4.1.

Figure 4.1: Density and temperature profiles used for the equilibrium reconstruction.

Poloidal cross sections of this equilibrium are displayed in Fig. 4.2 and show the toroidal

variation of the equilibrium magnetic field amplitude. The ANIMEC code [10, 11] was used in

order to reconstruct a high-mirror (mr = 8.7%) and a standard (mr = 4%) equilibrium. These

configurations were chosen in order to emphasize the issues related to ICRF wave propagation
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and absorption under particular toroidal variation of the equilibrium magnetic field. In

particular, the amplitude of the toroidal gradient in the magnetic field amplitude can be such

that the lowest |B | value in the bean shaped cross section is higher than the highest |B | value

in the triangular cross section. Therefore, as seen in Fig. 4.2 for the high-mirror configuration,

there is no particular |B | value present at all toroidal positions. The consequence of this is that

no ICRF wave frequency can be chosen such that a resonance will be found inside the plasma

at all toroidal angles.

Figure 4.2: Poloidal cross sections of W7-X equilibria used (top: standard configuration, bot-
tom: high-mirror configuration). Colours indicate the amplitude of the equilibrium magnetic
field. Dashed white lines show the location of the iso-B surface corresponding to 2.6T (top)
and 2.5T (bottom) respectively.

The high mirror configuration is considered to investigate the contours of J0 with a low and

high 〈β〉 value and with Br e f = 2.42T. Figure 4.3 shows the poloidal closure of J0 over most

of the cross section for 〈β〉 = 4% which leads to a reduction of trapped particle radial drifts.

The contours for a 〈β〉 = 1% is obtained by keeping the same pressure profile but reducing

the central pressure. This low 〈β〉 case shows poor closure of J0. However it is impossible to

ensure poloidal closure of J for all ranges of trapped particles, and over the entire plasma

volume. As a consequence particle loss channels still exist and are described in the next

section.
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Figure 4.3: Contours of constant J0 for Br e f = 2.42T and two values of 〈β〉.

4.3 Particle loss channels

Losses of alpha particles will be of primary concern for a future fusion reactor. Of most con-

cern will be collsionless losses of particles still at or near their birth energy. Monte Carlo

simulations of alpha particles in quasi-isodynamic and quasi-symmetric configurations were

first presented in Ref. [97] and showed that the quasi-isodynamic design appears to be the best

candidate for a reactor design. Additional efforts for understanding the collisionless dynamics

of fast ions in quasi-isodynamic equilibria have been carried out. Losses induced by colli-

sionless stochastic diffusion of fast ions was introduced in Ref. [97] and further developed in

Ref. [23]. In addition, favourable conditions for unconfined collisionless orbits were discussed

in Ref. [98]. The magnetic field curvature was shown to contribute significantly to the radial

excursion of trapped particles. However, collisionality must also be considered in fast ion

confinement studies since it is known to contribute to neoclassical transport of particles in

general [99]. Recently, further numerical studies on fast ion confinement in W7-X configu-

rations were presented in Ref. [95]. The latter work showed the effect of various magnetic

equilibrium configurations on fast ions generated by neutral beam injection (NBI) at 〈β〉 = 2%.

It was concluded that NBI may not be an efficient way to produce a fast particle population

mostly because of rather poor beam penetration and rapid loss of injected particles. In this

section, a description of the loss channels acting on a fast particle population is presented.

4.3.1 Stochastic diffusion losses

Stochastic diffusion of fast ions in optimised stellarators has been described in Ref. [23].

This diffusion process concerns transitioning particles, described in 2.1.3. The stochastic

diffusion mechanism is as follows: a particle is able to change its orbit class (locally passing
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Figure 4.4: Phase portrait of locally passing/trapped particles in a given toroidal period of
W7-X. Note that the features of a non-linear pendulum are retrieved.

to locally trapped or vice-versa) if it crosses the phase-space separatrix between libration

(locally trapped) and rotation (locally passing) as illustrated by the schematic phase portrait in

Fig. 4.4. This separatrix crossing implies a non adiabatic change in the particle motion [100].

However, an adiabatic treatment of the particle motion is still valid as long as the particle

remains sufficiently far from the separatrix. In that case the particle motion can still be

characterised by a longitudinal adiabatic invariant J for both the locally trapped and the

locally passing motion. After multiple separatrix crossings, the adiabatic invariant associated

with, for instance, the libration motion accumulates random jumps ΔJ which ultimately

causes a stochastic diffusion in J -space. In Ref [23] it was noted that each jump in J causes

a radial displacement Δψ=ΔJ
∂ψ
∂J . This associated radial diffusion time is usually rather long

compared to other loss mechanisms. Therefore it is expected that stochastic radial diffusion

will act on initially well confined weakly collisional transitioning fast particles.

4.3.2 Drift induced losses

Inspection of eqs. (4.7) and (4.8) shows that reducing trapped particle losses can be achieved

by ensuring that these particles avoid regions where 〈ψ̇〉b is enhanced compared to 〈θ̇〉b . The

unfavourable regions can be identified in terms of equilibrium parameters. Considering no

radial electric field and a static equilibrium field, the guiding centre of a particle of mass m
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and charge q will drift perpendicularly to the magnetic field line with a drift velocity:

vD = b×
(
μ

q
∇B + v∥ρ∥Bκ

)
/B∗

∥ . (4.16)

Where ρ∥ = mv∥/qB , b = B/B , B∗
∥ = b · (B +ρ∥∇×B

)
and κ = −b × (∇×b) = b · ∇b is the

magnetic field line curvature. The latter can be used to relate the equilibrium configuration

to the particle losses pattern. The field lines lie on curved magnetic flux surfaces, and in

particular [14], the field line curvature is composed of a normal and a geodesic curvature. The

field line curvature can be written :

κ= κn
∇s

|∇s| +κg
B ×∇s

|B ×∇s| , (4.17)

where s =Φtor /Φtor,ed g e is a flux surface label and serves as radial coordinate in the magnetic

coordinate system (s,θ,ϕ). From the definition of κ and assuming MHD force balance and

nested flux surfaces, one can show that:

κ= ∇⊥B

B
+μ0

p ′∇s

B 2 , (4.18)

with p ′ = dp
ds , so that the bounce averaged radial drift depends only on κg :

∮
bounce

vD · ∇s

|∇s|dt =
∮

bounce
−
(
μ

q
+ v∥ρ∥

)
B

B∗
∥
κg dt , (4.19)

κg = 1
	

g B 2
√

g ss

(
∂B

∂θ
Bϕ− ∂B

∂ϕ
Bθ

)
. (4.20)

It appears clearly (as is well known) that particles with bounce trajectories mostly located in

regions with negative geodesic curvature drift radially outwards and eventually escape the

plasma if the geodesic curvature does not change sign over the particles trajectory before

it reaches the edge. This reflects regions where J contours are not closed, i.e. geodesic

curvature over the orbit does not complete a full period. Examples of such unconfined orbits

are illustrated in Fig. 4.5. There are various types of "bad" curvature regions in W7-X. As seen

in Fig. 4.5b, certain isosurfaces of B may exhibit narrow tubes with large radial extension and

encapsulating a volume of negative curvature. In that case a trapped particle may fall into one

of these tubes along its bounce trajectory and would quickly drift out of the plasma volume.

Those tubes can be regarded as leaks in regions of phase space which mostly contain well

confined particles. The avoidance of such tubes would mitigate this loss channel and might be

worthwhile to be considered as an additional criterion in stellarator optimisation with respect

to fast particle confinement.
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(a) Unconfined trapped particle running along lowest ϕ value of the
B = Br e f = 2.22T surface (shown in green).

(b) Unconfined trapped particle running along lowest ϕ value of the Br e f = 2.4T
surface (shown in green).

Figure 4.5: Examples of unconfined localised particle orbits. The particle guiding centre drift
trajectory is traced in each case and is seen to bounce between surfaces of constant B = Br e f .
The color of the trajectory is representative of the local magnetic geodesic curvature sign (blue:
κg < 0, red: κg > 0).
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4.3.3 Effects of Coulomb collisions

In the presence of collisions, fast ions slow down on the background plasma, causing collisional

transport that redistributes them radially. Additionally, as fast ions slow down by colliding

with the thermal ions and electrons, they also experience pitch-angle scattering. Therefore a

rearrangement of the distribution of particles in phase space occurs that leads to collisional

trapping and de-trapping. Deeply trapped particles are expected to be generated by this

process and before this particular fraction of the particle population can de-trap, they might

experience a significant net outward radial drift because of the mechanism described in the

previous subsection. In that sense, collisions give favourable conditions for drift induced

losses. This mechanism will be clearly identified by simulations results in Section 4.4.

4.3.4 Effects of ICRF heating

The ICRF acceleration occurs via a diffusive process in velocity space that results in a net

increase of the resonant particles energy and magnetic moment after crossing the resonant

layer multiple times. It is recalled that for trapped particles, the amplitude of the ambient

magnetic field for which the parallel velocity vanishes is given by:

Br e f =
E

μ
= B

(
1+

v2
∥

v2
⊥

)
. (4.21)

After the wave-particle interaction, a resonant particle’s perpendicular and parallel velocity is

modified as:

v||,⊥ → v||,⊥+Δv||,⊥. (4.22)

The ICRF wave-particle interaction occurs predominantly in the direction perpendicular to

the magnetic field, so that after many interactions, in eq. (4.22): Δnet v⊥ �Δnet v||. Inspection

of eq. (4.21) under this condition shows that the net energy transfer from the wave to the

particle decreases its Br e f value until Br e f = Bc = mωant /q , where ωant is the wave frequency

provided by the antenna excitation. Therefore the ICRF wave is a source of particle trapping

and hence in typical 3D configurations, ICRF resonance leads to an enhancement of the drift

induced losses. Most of these loss channels described in this section are observed in the

VENUS-LEVIS simulations presented in 4.5.2.

4.4 NBI distribution function

In this section, the particle guiding centre orbit solver VENUS-LEVIS and its dedicated NBI

module [101] are used to generate and evolve an NBI relevant population in a W7-X high

mirror equilibrium. The distribution of lost particles is carefully analysed in order to identify

the contribution of each of the loss channels previously discussed.
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4.4.1 Initial distribution

In this section, VENUS-LEVIS simulations of fast ions generated by the dedicated NBI module

[101] are presented. 147456 markers are generated by this module. Each marker’s initial

location in phase space (position and velocity) and weight are computed with respect to

ionisation and charge exchange processes with the background plasma [102]. The guiding

centre orbit solver of VENUS-LEVIS is then used to evolve these markers in time. The simulated

particles are deuterium ions at 60keV, 30keV and 20keV and are followed for 1.92×10−2s. The

validity of the guiding centre approximation for such particles in the equilibrium presented

in this work can be checked by evaluating the ratio of the particle gyroradius with the scale

length of the magnetic field variation [103]. As shown on Fig. 3.7 of Ref. [104], this ratio barely

exceeds 10% in most of the W7-X plasma for a 3.5MeV alpha particle. The guiding centre

approximation can therefore be considered valid in this study. It is important to mention

that it is not intended to model an NBI experiment which would involve continuous injection

of fast ions. Instead, special attention is given to the dynamics of fast particles with energy

representative of a neutral beam population. Furthermore, it is not intended that the model

used should reproduce the W7-X NBI system in its exact geometry. However the injection

angles (i.e. the angle between the ϕ= 0 plane and the beam line of sight) were set so that the

initial distribution in pitch-angle λ= v/v|| is relevant with the normal and tangential PINIs

injecting in the co- and counter direction with respect to the equilibrium toroidal magnetic

field, as seen in Fig. 4.6a. An important feature of the initial population for the loss channel

analysis is shown by the distribution in μ/E = 1/Br e f plotted in Fig. 4.6b: the fraction of deeply

trapped particles, i.e. with 1/Br e f > 1/mi nϕ=0B � 0.4 is almost vanishing. It is reminded

that the locally passing-trapping boundary depends on the considered drift surface. As the

initial marker distribution spans radially across the whole plasma volume, it is not possible

to identify a unique passing-trapped boundary. However, an adequate way to estimate the

proportion of deeply trapped and deeply passing particles is to consider the inverse of the

minimum and of the maximum of the magnetic field amplitude in the bean shaped cross

section. These values are plotted in Fig. 4.6b by the two dotted lines. Collisional trapping

effects described in 4.3.3 will be easily emphasised simply by comparing the initial and the

final fraction of particles with 1/Br e f > 1/mi nϕ=0B � 0.4. The initial spatial distribution of the

markers is shown in Fig. 4.7.
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Figure 4.6: Initial pitch angle and 1/Br e f distribution. The dotted lines display the values
corresponding to the minimum (left) and the maximum (right) of the magnetic field amplitude
in the bean shaped cross section.
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Figure 4.7: Initial marker distribution in space resulting from the ionisation and charge
exchange processes calculations.

4.4.2 Lost particle distribution analysis

The marker population is evolved under slowing down and pitch angle scattering conditions.

In VENUS-LEVIS these processes come from the interaction between the fast ions and the

background species, i.e no self collisions of the fast ions are considered. The simulation

comprises only the confined plasma volume, and as such a marker is recorded as lost as soon

as it crosses the LCFS. Figure 4.8 shows the cumulative number of lost markers over time. The

loss history is similar for the three investigated initial energies. Markers that cross the LCFS

before t = 1ms correspond to first orbit losses while losses after 1ms arise from a combination

of the collisional and drift induced losses. The latter losses appear to be continuing steadily

even after times comparable to the slowing down time of the fast ions. As we will see later,

these thermalised particles are ultimately confined with the addition of a radial electric field.
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Figure 4.8: Particle losses over time for different injected energy. Two loss regimes appear: first
orbit losses (<1ms) and collisional/drift losses (>1ms).
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Figure 4.9: Toroidal position of lost markers over time in collisional conditions. First orbit
losses clearly appear and display a different pattern for co- and counter- injected particles.
After many bounce (or transit) times, the same loss pattern is observed in each toroidal period
for a given energy injection. Dashed lines correspond to the boundaries between each toroidal
period. Ellipses show examples of particular toroidal positions for loss of particles.

These distinct loss regimes can be also distinguished in Fig. 4.9 which displays the toroidal

position at which a marker is lost with respect to its confinement time. These two types of

losses are described separately.

First and multiple orbit losses. Fast particles born sufficiently close to the last closed flux

surface and with a sufficiently large orbit width may escape the confined plasma volume

during their bounce or transit motion. First orbit losses are observed when particles leave

the confined volume before completing their bounce motion. In a mirror machine such as

W7-X, one may also define multiple bounce (but early) losses since injected trapped particles
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can have a positive bounce average radial drift and leave the plasma only after bouncing a

few times. First and multiple orbit losses can be seen by the stripe pattern in Fig. 4.9 and

illustrated in Fig. 4.10. Multiple orbit losses are typical for stellarator machines and cannot be

observed in tokamaks because of the orbit symmetry.

Collisional and drift induced losses. Coulomb collisions with the thermal ions and electrons

will not only be responsible for slowing down of particles but also for pitch angle scattering.

Therefore collisions can be considered as a source of particle trapping and de-trapping. It is

recalled that the fraction of initially deeply trapped particles is nearly vanishing, but as seen in

Fig. 4.11 the population of particles lost after 1ms consists mostly of trapped particles.

(a) First orbit losses

(b) multiple orbit losses

Figure 4.10: Example of first and multiple orbit losses. �: initial positions, •: bounce tips, ×:
lost positions.
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Figure 4.11: Particle losses as a function of their pitch angle variable μ/E .

Particles that can be identified as being in a deeply trapped state and being lost after 1ms

represent 53% of the total number of losses after that time (the second peak on the dash-

dotted line in Fig. 4.11). This means that not only will particles undergo collisional transport

(diffusion in position space) but also wander in and out of the trapped region of phase space via

pitch angle scattering (diffusion in velocity space). During the time in which particles remain

deeply trapped they experience a net outward radial drift as described in 4.3.2. Additionally,

the two peaks in Fig. 4.11 are retrieved at particular toroidal positions in Fig. 4.9 where dense

clouds of points are observed in particular locations of each toroidal segment. These locations

corresponds to local magnetic wells in which particles are locally trapped due to collisions

and where they drift out until they exit the plasma. The losses located in the middle of each

toroidal segment can be explained by the local magnetic variation around the triangle cross

section as seen in Fig. 4.2. A second loss region appears at the entry of the toroidal segments.

However, by virtue of the stellarator symmetry [49], local magnetic wells that are found around

a
(
θ,ϕ

)
region appear also around

(−θ,−ϕ) since:

I0B
(
ρ,θ,φ

)= B
(
ρ,−θ,−φ) , (4.23)

where I0 is the symmetry operator defined in Ref. [49]. This operator transforms the covariant

components of B , since it is a stellarator symmetric vector field as follow:

I0
[
Bs ,Bθ,Bϕ

]= [−I0Bs , I0Bθ, I0Bϕ

]
. (4.24)

Partial derivatives are transformed as:

I0

[
∂

∂s
,
∂

∂θ
,
∂

∂φ

]
B =

[
∂

∂s
,− ∂

∂θ
,− ∂

∂φ

]
I0B , (4.25)

It then follows from (4.20),(4.24) and (4.25) that the geodesic curvature transforms under

stellarator symmetry into:

κg
(
s,θ,ϕ

)=−κg
(
s,−θ,−ϕ) . (4.26)
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Hence, the toroidal asymmetry in the loss pattern can be explained by the changed sign of

the geodesic curvature when moving from a local magnetic well location to its sellarator

symmetric location. This is confirmed in Fig. 4.12 which shows the geodesic curvature map

on the LCFS and the contours of 1/B .

Figure 4.12: Lost particles position in a chosen toroidal segment in the θ−ϕ plane (green
dots). Circles emphasise stellarator symmetric local magnetic wells. Colors show the geodesic
curvature amplitude on the LCFS.

4.4.3 Effects of a radial electric field

In this section, the effects of a neoclassically resolved radial electric field are investigated. A

radial electric field (Er ) arises from the ambipolarity condition for the neoclassical particle

transport of background electrons and ions adding a predominantly poloidal E ×B drift to the

particles motion. Therefore it is expected that such an electric field will increase the poloidal

drift motion of trapped particles and improve their confinement. The E ×B induced velocity
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drift reads as:

vE×B = E ×b

B∗
∥

= Er

|∇s|BB∗
∥
	

g

(
Bθeϕ−Bϕeθ

)
(4.27)

Inspection of eqs. (4.27) and (4.16) indicates that the improvement in the particle confinement

by the E ×B poloidal drift is less effective for high energy particles. The radial electric field

profile used in the following corresponds to the so-called ion-root regime [24] and is displayed

in Fig. 4.13a. The profile is extracted from a NBI-heating scenario where 5.5MW of NBI-power

is absorbed by a plasma with an electron density of 8× 1019m−3 calculated with the 1-D

transport code NTSS described in [105]. Note that the specific form of the radial electric field

profile depends on the experimental scenario (heating scenario, density, anomalous transport).

The specific Er -profile here serves as an example to investigate its effect in principle. Figure

4.13b shows an example of how the inclusion of vE×B helps to confine a trapped particle that

would otherwise escape the plasma if only the drifts (4.16) are resolved. The same initial fast

ion population as in the previous section was evolved in the presence of this radial electric

field.
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(a) Radial electric profile Er resolved by
neoclassical calculation.

(b) Confinement effect due to the vE×B .

Figure 4.13: Radial electric field profile and its effect on a trapped particle orbit.

A scan in the radial electric field amplitude was performed in order to analyse its effect on

the fast ion confinement. Figure 4.14 shows the particle loss fraction over time with varying

radial electric field amplitude and initial energy (left to right). Here 100% Er is the correct

level of radial electric field according to neoclassical calculations. It is seen that the fast ion

confinement is strongly enhanced. More precisely the number of lost particles saturates

with time for a sufficiently high electric field amplitude. In particular, as expected, 20keV
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ions experience a larger enhancement in their confinement, and for a realistic electric field

amplitude the losses due to the 3D equilibrium configuration stop over times comparable with

the particles slowing down time. Furthermore, the radial deposition profile of the injected

fast ions is affected by the inclusion of Er . As seen in Fig. 4.15, for larger electric fields the

distribution is more peaked in the central region. Moreover, the edge distribution tends

to drop with increasing Er because of the reduced radial transport. Figures 4.14 and 4.15

show that the radial electric field has a strong influence on the fast ions dynamics in W7-X

plasmas. As a concluding remark, this section has shown that future studies concerning fast

ion confinement and generation (in particular in W7-X) should include a realistic equilibrium

radial electric field at least if the energy of the typical particle is not very large. Indeed, the

amplitude of the E ×B drift is independant to the particles energy contrary to the ∇B and

curvature drifts (see eqs. 2.20, 2.22 and 2.23). At high energy the effect of the radial electric

field becomes negligible compared to the the ∇B and curvature drifts.
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Figure 4.14: Particle lost fraction over time for various radial electric field amplitude and
injection energy: a)60 keV, b)30 keV, c)20 keV.
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Figure 4.15: Radial deposition profile for various injection energy and radial electric field
amplitude at t = 1.92×10−2s.
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4.5 ICRF distribution function

Sustaining fusion reactions in a magnetic confinement device requires to maintain the plasma

temperature to a few keV. In addition to the auxiliary plasma heating methods which are

necessary to reach these temperatures, fusion born α particles represent a substantial source

of heating. The confinement of these particles for a duration comparable to their slowing

down is therefore of primary concern for the design of future fusion reactors. The quasi-

isodynamic stellarator concept is seen as a suitable candidate for a future fusion reactor.

The task W7-X is to demonstrate the good confinement of α particles. An auxiliary source

of fast ions with energy between 50 to 100 keV is therefore required in W7-X. Indeed, ions

in that range of energy would mimic the behaviour of α particles in a reactor-size quasi-

isodynamic stellarator. In this section, the possibility of producing fast ions using an ICRF

minority heating scheme in W7-X is addressed. A localised antenna model is adopted in

order to account for the three-dimensional structure of the equilibrium. The analysis of the

resulting ICRF particle distribution function provides an understanding of the particle loss

mechanisms. The generation of tails associated with ICRF heating in W7-X standard and

high-mirror configurations is investigated.

4.5.1 Antenna setup and wave deposition

In three-dimensional plasmas, the antenna treatment applied in section 3.1 cannot be per-

formed because of the strong coupling that also exists between the toroidal modes. In this

case, the antenna can be modelled with the following σ function:

ς
(
s,θ,ϕ

)= ∏
X=s,θ,ϕ

(
1−

(
2

X −X1

X2 −X1
−1

)2)2

B

(
X −X1

X2 −X1

)
(4.28)

Such a model does not give as much flexibility on the current straps phasing as the model

implemented for two-dimensional equilibrium, but allows the localisation of the antenna

excitation with realistic geometry. The W7-X ICRF antenna system to be installed for operation

phase (OP) 1.2 is described in Ref. [106] and is used to the model the current density in a

realistic configuration. The excitation model is applied to solve for the fast wave deposition

in a W7-X Deuterium rich plasma with 0.5% Hydrogen minority. The central density and

temperature were respectively set to n0 = 1.55×1020m−3 and T0 = 4.5keV for the standard

equilibrium and n0 = 1.5×1020m−3 and T0 = 4keV for the high-mirror configuration. These

values of density and temperature were chosen in order to ensure a converged equilibrium

with 〈β〉 � 4% for each configuration. The excitation frequency was respectively set to 38.1MHz

and 39.6MHz for the high-mirror and standard mirror cases. The right-handed wave electric

field amplitude around the midplane is displayed in Fig. 4.16. These wave fields were obtained

from calculations with the LEMan code performed on the IFERC-HELIOS supercomputer in

Rokkasho, Japan. The Fourier decomposition of the wave propagation problem with the

localised antenna model (eq. 4.28) required the use of 1024 mode pairs. It is worth mentioning
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that better resolved calculations would be obtain with increasing number of mode pairs but

would involve increasing computational resource consumption. The computation of each

wave field presented in Fig. 4.16 consumed 1152 node hours and used up to 256 GB of memory.

As previously described in ref. [107], the localisation of the antenna excitation is seen in the

toroidal dependency of the electric field. The modeled antenna is located in the toroidal period

spanning the domain ϕ= [0,2π/5], and is the locus of the highest electric field amplitude. The

other toroidal periods are further from the excitation source and display reduced electric field

amplitude. The five-fold symmetry breaking is explained by considering the damping of the

wave as it travels toroidally and crosses the resonant layers. Figure 4.16 also illustrates the

effect of the magnetic configuration on the wave propagation. As mentioned in section 4.2.2,

the resonance layer disappears from the confined plasma volume in certain regions of the

high-mirror configuration. Therefore the wave is not absorbed continuously as it propagates

toroidally, and as a result the amplitude is not strongly damped toroidally.
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Figure 4.16: Right-handed electric field amplitude distribution (log scale) around the midplane
[a.u.] for the standard (top) and the high-mirror (bottom) W7-X configuration.
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4.5.2 Confined and lost particle distribution analysis

Confined particles

The VENUS-LEVIS code [19] is used to resolve the guiding centre orbits of the H minority ions.

Monte Carlo operators [55] are implemented in order to compute the Coulomb collisions with

the thermal ions and electrons and the ICRF wave-particle interaction [108]. The electric field

and wave numbers computed by the LEMan code where the localised antenna model is used.

The simulated ICRF power is set to 1.5MW which corresponds to a realistic power under the

assumption of perfect antenna-plasma coupling. The energy transfer to and from the minority

ions is given particular attention. It is important to state that the wave energy is considered

to be absorbed uniquely by the minority species. However, given the minority concentration

used (0.5%) and the choice of the plasma ion species, a non negligible fraction of the power is

expected to be absorbed by the Deuterium ions by second harmonic wave-particle interaction.

As mentioned earlier, it is not our intention to provide fully realistic ICRF heating scenario

simulations but instead the principle of generating and confining a fast particle population

with ICRF heating in a high density stellarator plasma is investigated. A thermal population

of 2′097′152 H markers is initialised in both equilibria. The minimum energy for the marker

initialisation was set to 1keV because only the behaviour of supra-thermal particles are of

interest in this work. These markers are evolved for a time equivalent to a fourth of a slowing

down time. The resulting energy distribution functions are displayed in Fig. 4.17. A case that

has been obtained from a SCENIC simulation of a JET plasma run for a fourth of a slowing down

time with 1.5MW power is also shown comparison. As described in [108] and as illustrated in
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Figure 4.17: Distribution function in energy of confined vs lost minority ions for the two
investigated W7-X configurations compared with a JET case. Dashed lines show the lost
particle energy distribution, which for the JET case is seen to be negligible and comparable to
the confined particles for the W7-X cases.

Fig. 4.18, a splitting of the tail and the thermal bulk of the final distribution can be performed
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in minority ICRF heating scenarios. In typical SCENIC simulations, the hot component of

the particle distribution is fitted to the bi-Maxwellian model described in Ref. [44], and the

corresponding moments are then used to update the plasma equilibrium and the ICRF wave

deposition consistently with the hot particle contribution [108]. Several iterations between the

3 components of the SCENIC package allows the computation of a self-consistent distribution

function. However, the fast component of the distributions for the W7-X cases of Fig. 4.17
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Figure 4.18: ICRF distribution and its corresponding hot component obtained from a JET
equilibrium.

are nearly vanishing. This can mainly be explained by the high density of W7-X plasmas. It is

known from [32] and [41] that the minority energy range scales like 1/n2
e . The SCENIC iteration

scheme cannot straightforwardly be applied using the usual procedure applied for tokamaks,

but the particle distribution can still be analysed. Moreover, it is seen in Fig. 4.17 that the

distribution of lost particles, i.e. particles which cross the LCFS, represents a significant

fraction of the initial distribution: ∼ 12% of the markers are lost during those simulations.

The markers have the same numerical weight, so that the fraction of lost markers represents

the same number of lost particles. The amount of losses in a similar scenario applied to an

axisymmetric JET tokamak plasma is nearly vanishing mainly because of the symmetry of

trapped particle orbits in such a configuration. Note that changing the equilibrium from a

standard to a high-mirror configuration seems only to affect the wave deposition pattern

as seen in Fig. 4.16. Indeed, the change in the fast ion tail and the lost particle distribution

appears to be negligible. Therefore, the analysis of the loss channels under ICRF conditions

carried out in the next section focuses on the high-mirror configuration. It will be seen later

however that the losses can be reduced significantly by including neoclassically resolved

electric fields.
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Lost particles

The most significant loss channels introduced in Section 4.3 act predominantly on trapped

particles. Figure 4.19 correlates the amount of lost markers for a given pitch angle variable

1/Br e f =μ/E . In this figure, the vertical dotted lines locate the particular value 1/max B |φ=0

and 1/mi n B |φ=0. These lines give an estimation of the fraction of deeply passing and deeply

trapped particles. As suggested in Section 4.3, pitch angle scattering produced by Coulomb

collisions can generate deeply trapped particles which escape the confined volume via the

drift induced loss mechanism. This mechanism explain the loss pattern observed when no

ICRF heating is applied (dashed line in Fig. 4.19). It is seen that the losses practically do not

affect passing particles. On the other deeply trapped particles localised around the triangular

cross section experience significantly this loss mechanism as seen by the peak in the region

1/Br e f > 1/mi n B |φ=0. In addition to this effect, the ICRF wave absorption brings resonating

particles into a locally trapped state, therefore increasing the fraction of particles experiencing

drift induced losses. In Fig. 4.19, this is illustrated by the first (small) peak in the dash-dotted

line. The corresponding Br e f value for this peak matches the chosen value of Bc for this

simulation. This is caused by the alignment mechanism of the particles bounce tip with the

resonant layers described in section 4.3.
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Figure 4.19: Number of lost markers as a function of their pitch angle variable μ/E . All markers
located to the left (resp. right) of 1/max B |φ=0 (resp. 1/mi n B |φ=0) are deeply passing (resp.
trapped). The peak on dash-dotted line at μ/E = 0.4 corresponds to 1/Bc .

The choice of Bc , and therefore of the ICRF frequency, has then a direct impact on the fraction

of lost particles. Figure 4.20 compares the number of lost markers for different values of Bc ,

showing significant increases as Bc decreases from 2.5T to 2.4T and to 2.22T . As expected

from the trapping mechanism described earlier, the largest peak in the number of lost markers

is observed at 1/Br e f = 1/Bc .
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μ/E = 1/Bref
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Figure 4.20: Number of lost markers as a function of their pitch angle variable μ/E for various
ICRF frequencies. The location of peaks corresponding to enhanced particle losses due to ICRF
moves from μ/E = 0.4 (Bc = 2.5T ) to μ/E � 0.416 (Bc = 2.4T ) and to μ/E = 0.45 (Bc � 2.22T )

The change in the ICRF frequency also changes the toroidal region covered by the resonant

layer which in turn influences the number of particles in the trapped region of phase-space.

Indeed, for lower values of Bc , e.g. 2.22T , the resonant layers are mostly located around the

triangle cross section. In this case, the resonant particles’ motion converts into a toroidally

trapped state which causes these particles to bounce between two poloidally closed isosur-

faces (i.e. that entirely cover the θ = [0,2π] domain) at B = Bc = Br e f . These particles can

strongly experience the drift induced loss channel described earlier. Locally passing particles

are usually well magnetically confined as it has been previously described. On the other hand

confining deeply trapped and energetic particles using only the magnetic equilibrium struc-

ture is one of the main challenges of the quasi-isodynamic stellarator configuration because

their bounce averaged poloidal drift motion, especially at high energies, may not compensate

their outward radial drift. As it was mentioned in section 4.3 where eq. (4.19) was defined,

these deeply trapped particles are lost because their trajectory is mostly located in regions of

negative geodesic curvature. On the other hand, higher values of Bc , e.g. 2.5T , correspond to

resonant layers mostly located around the bean-shaped cross section. As seen in Fig. 4.21, the

isosurfaces B = Bc = Br e f are poloidally open (isosurfaces that do not span the entire poloidal

domain θ = [0,2π]) for Bc = 2.5T at s = 0.25. Therefore particles interacting with the ICRF

wave are moved towards a helically trapped state, i.e. they can become locally passing by

collisionless de-trapping. The drift induced loss mechanism is consequently less efficient for

this fraction of trapped particles, thus explaining the reduced number of lost markers with

increasing value of Bc as observed in Fig. 4.20.

The loss patterns are also marked by the wave localisation. It is seen in Fig. 4.22 that the losses

are enhanced in the toroidal period containing the antenna (and to a lesser extent the adjacent

one) compared to the losses in the other periods. As expected from the drift induced loss

mechanism, particle losses are toroidally localised around local magnetic wells as seen from

the black curve in Fig. 4.22. It is expected that pitch-angle scattering provided by Coulomb

collisions re-distributes particles in phase-space until they eventually trap in a local magnetic
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Figure 4.21: Contours of constant |B | in the θ−ϕ plane at s = 0.25. The large peaks seen in
figs. 4.19 and 4.20 correspond to particle trapped between poloidally closed isosurfaces of B
(e.g. 2.22T).
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Figure 4.22: Number of lost markers with respect to their toroidal position. If the antenna
was not localised, the total number of lost markers is expected to be higher than in the work
presented here.

well and possibly drift out of the plasma. In addition to this redistribution, ICRF heating traps

particles in particular magnetic wells which corresponds to the chosen frequency, or Bc value.

Finally, there is a remarkable asymmetry in the loss patterns observed in each single period

(e.g., a peak at the entrance of each period not found at the other end of the period) which was

explained in Ref. [109] by the stellarator anti-symmetric feature of the geodesic curvature.
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4.5.3 Effect of a radial electric field

The radial electric field profile introduced in section 4.4.3 is now used to study the principle

effects of Er on the distribution function of lost particles and the fast tail generation. The

guiding centre simulation presented in section 4.5.2 with Bc = 2.5T is re-run with the inclusion

of Er . The high equilibrium background density and the relatively low ICRF heating power

dictate that the minority ions remain mostly thermal and therefore undergo strong E ×B drift.

For low ICRF heating power (where energies and hence ∇B and curvature drifts are relatively

small) such as 1.5MW, the number of lost markers represents a negligible fraction of the initial

markers population as seen in Fig. 4.23.
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Figure 4.23: Distribution functions in energy
of lost minority ions with various ICRF power
levels in W7-X. The dashed blue case does
not include Er .
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Figure 4.24: Distribution functions in en-
ergy of confined minority with various ICRF
power levels in W7-X. The dotted line shows
for comparison the distribution obtained the
JET plasma simulation introduced in sec-
tion 4.5.2 (with 1.5MW of power).

The fraction of fast ions in the total minority species distribution function remains relatively

low for 1.5MW. As is well known [32], the energy range reached by the minority species scales

with the coupled ICRF power PRF . It is seen from Fig. 4.23 that the particle losses follow

roughly the same scaling because higher kicks to the particles’ perpendicular velocity increase

inevitably the radial drift, see eq. (4.19). Distribution functions of confined particles resulting

from the scan in PRF is shown in Fig. 4.24. The possibility of generating fast ions at higher

heating power is observed for these cases where the radial electric field assists confinement.

As PRF increases, the fast ion tail of the distribution grows and becomes similar to the JET-like

simulation introduced in section 4.5.2 for PRF = 6MW. However, this amount of coupled

power, under the assumption of perfect wave-plasma coupling, is well above the expected

maximum available power during OP1.2 [106]. Therefore the minority ICRF heating scheme

does not appear to be suitable for fast ion generation in W7-X.
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4.6 Summary

In this chapter, the dynamics of fast ions produced by NBI and ICRF minority heating have

been explored. Fast particle loss channels have been identified. First the stochastic radial

diffusion described in Ref. [23] is expected to play a significant role for high energy (i.e. low

collisional) particles confined for a long time. Losses of NBI populations were seen to exhibit

two regimes. The first one involves first and multiple orbit losses. The second regime is

explained by a drift induced loss mechanism. In this regime, Coulomb collisions will cause

classical transport but more importantly will generate deeply trapped particles via pitch angle

scattering. Trapped particles generated by this scattering process are mostly transported

outside the plasma by the drift induced loss channel.

The possibility of generating a fast ion tail with minority ICRF heating has been assessed. The

investigation of NBI ions helped to understand the particle losses observed under ICRF heating

conditions. Simulations obtained with the 3D full-wave code LEMan show that the localisation

of the antenna system induces a wave deposition that breaks the five fold periodicity of W7-X.

This wave field has been used with the guiding centre orbit VENUS-LEVIS in order to resolve

the wave-particle interaction. The particle loss patterns characterising the investigated ICRF

heated W7-X plasma scenarios have been assessed. Particle losses are mostly due to a drift

induced loss mechanism. Pitch angle scattering produced by Coulomb collisions is a source of

particle trapping and de-trapping and consequently enhances the drift induced losses. ICRF

heating is also found to enhance this loss channel because the wave-particle interaction in the

perpendicular direction is a source of particle trapping. Consequently, the toroidal positions

of lost particles are influenced by the wave localisation.

The effects of a radial electric computed by neoclassical transport simulations have been

considered. The inclusion of the E ×B drift leads to a more complete description of the

particle dynamics and shows a strong reduction of the losses in both NBI and ICRF heating

simulations. However, this does not appear to be sufficient for producing a fast ion tail

distribution for experimental fast particle confinement studies with 1.5MW of coupled ICRF

power. Regardless of the heating scheme, it seems reasonable that fast ions will be mostly

located in the toroidal period containing the antenna and the one adjacent to it because of

the RF trapping effect.
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The most used ICRF scenario in fusion devices is known as the minority heating scheme [32].

Applied to JET tokamak plasmas, this scheme generates fast minority ions with energies

above 100keV as seen in chapter 2.4. ICRF waves are seen as a possible substantial source of

fast ion generation in W7-X, potentially with typical energies (in the tail of the distribution)

of around 50-100 keV. The possibility of using fundamental minority heating in W7-X was

discussed in chapter 3.6. It was found that under relevant ICRF conditions (spatially localised

antenna and 1.5MW of input power) significant loss of particles are observed and the fast

ion tail, usually found in axisymmetric tokamak scenarios, is nearly vanishing. Even though

the particle losses were seen to significantly decrease in simulations by the inclusion of a

radial electric field originating from the ambipolar diffusion of background electrons and ions,

the formation of a fast ion tail remains hindered by the high plasma density. An important

aspect to take into account in the elaboration of efficient ICRF fast ion generation scenarios

is the waves electric field polarisation at the resonance position. In typical minority heating

schemes, the polarisation is dictated by the ionic species, and thus limits the amount of

coupled power to the minority ions as discussed in Ref. [41]. In the latter work, the three-

ion species scheme was presented as a scenario that optimises the wave polarisation at the

resonant species position and offers tremendous potential for fast generation with moderate

input RF power. In this chapter we first present in section 5.1 the working principle of the

three-ion species scheme. Numerical results obtained with the full wave code LEMan applied

to an axisymmetric configuration are presented, and in particular display the key features

of this ICRF scheme. In section 5.2, simulations of the three-ion species scheme obtained

with the SCENIC package applied to an axisymmetric configuration are presented. The effect

of varying the ICRF antenna phasing on the self-consistent 3He ion distribution function is

addressed. The possibility of generating fast ions with the three-ion species scheme applied

to a high-mirror W7-X configuration is discussed in section 5.3. Conclusions are drawned in
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section 5.4.

5.1 The three-ion species scheme

In this section, we review the working principles of the three-ion species scheme. As explained

in Ref. [41] (to which the reader is referred for a detailed discussion about this scheme’s

principles and applications), this scheme requires the presence of two main ion species in the

plasma. A third ion species, whose purpose is to absorb the wave energy at the fundamental

ion-cyclotron resonance, is introduced in low concentration. The relative concentration of

each species dictates the behaviour of the plasma dielectric tensor and hence of the local fast

wave dispersion relation. If one defines as n⊥ and n∥ the refractive indices in the perpendicular

and parallel direction to the magnetic field lines, εR , εL and εS the dielectric tensor elements

as given by Stix in ref. [32], the dispersion relation for the fast wave reads:

n2
⊥ =

(
εR −n2

∥
)(
εL −n2

∥
)

(
εS −n2

∥
) . (5.1)

In the vicinity of the L-cutoff, the term
(
εL −n2

∥
)

approaches zero such that the electric field

component E− which rotates in the same direction as the electrons is almost vanishing. In

this region, the electric field component E+ which accelerates resonant ions therefore carries

almost all of the wave energy. The fast wave L-cutoff position is mainly dependent on the

ion species concentration. The prerequisite for maximising the absorbed power on the third

ion species is then to find the appropriate plasma mixture such that this cutoff is located in

the low-field side (LFS) vicinity of this species’ fundamental cyclotron resonance position. A

typical JET-like plasma equilibrium is initially chosen in order to verify that the full-wave code

LEMan is able to model the scheme. The plasma modelled here consists mainly of a mixture

of hydrogen and deuterium. The third species is 3He with a concentration as low as 0.1%.

The electron density and temperature profiles used result from analytic estimates and read:

ne = [3.6×(1−r 2)+0.4]×1019m−3, Te = [3×(1−r 2)3/2+1]keV where r is the normalised minor

radius. The magnetic axis is located at R0 = 2.96m and the central magnetic field strength

is B0 = 3.2T. We model the JET ICRF spectrum with a single toroidal wave mode number

(nϕ = 27) which is propagating in the plasma at a frequency f = 32.5MHz. The choice of

frequency yields an on-axis 3He fundamental resonance. Figure 5.1 shows the fraction of

power absorbed by each species in the plasma when varying the H concentration for this test

case. A peak of 3He absorption clearly appears around [H ] = nH
ne

� 70% which is in accordance

with optimal mix calculations established in [41].
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Figure 5.1: Fraction of power deposited on
each species for varying H concentration.

Figure 5.2: Local dispersion relation given by
eq. 5.1. Evanescent and propagative regions
respectively appear in blue and red. Cutoffs
appears as white lines at the border of these
regions. The black dashed lines shows the
fundamental 3He resonant position.

The full-wave code LEMan [50, 51] is used to compute the dispersion relation given by eq. (5.1)

which is showed in fig. 5.2. The plasma mix in this case is [H ] = 68%,[D] = 31.8%,[3He] = 0.1%.

As seen in fig. 5.2, the 3He fundamental cyclotron resonance position is in the vicinity of the

L-cutoff confirming that this configuration is favourable for the three-ion species scheme. Fig.

5.1 also suggests that in the absence of other impurities, only electrons absorb a significant part

of the RF power. As discussed in Ref. [41], an efficient absorption of RF power by 3He ions was

computed with the TORIC, EVE and TOMCAT codes. Therefore a scan in 3He concentration is

performed with the LEMan code and is shown in Fig. 5.3. It is important to mention that the

LEMan code is missing the power absorption by electrons via Transit Time Magnetic Pumping

[32]. Therefore it expected that the LEMan code underestimates the electron damping in

scenarios where this branch is expected to dominate, typically for two-ion species scenarios

with very low or high minority concentration. However, Fig. 5.3 is in good agreement with

results from Ref. [41]: 3He concentration for maximal power absorption is around 0.1%.
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Figure 5.3: Fraction of absorbed power on 3He and electrons with varying 3He concentration.

5.2 Two-dimensional modelling: JET-like axisymmetric plasma

In this section, the SCENIC [53] package is applied to resolve fast ion distribution func-

tions using the (3He )-D-H ICRF scenario applied to a JET-like axisymmetric plasma. The

VMEC/ANIMEC code [11] is used to construct an ideal MHD equilibrium based on typical

JET tokamak plasma geometry and the density and temperature profiles mentioned in the

previous section. We will apply two different antenna phasings. The phasing has been shown

to play an important role in particular on the resonant ion orbits due to the RF particle pinch.

This effect has been discussed in [57, 58], and experimental observations have been reported

in [59, 60]. The direction of the RF-pinch (inward or outward) can be controlled by the use of

a toroidally asymmetric excitation spectrum. The effect of this phasing on the energy range

reached by the resonant ions and the type of orbits are described next.

5.2.1 Fast ion distribution function calculations

The interfacing of the codes composing the SCENIC package aims at solving iteratively the

equilibrium state, the wave deposition, and the 3He ion distribution function, until a self-

consistent converged solution is obtained. The MHD equilibrium and the dielectric tensor

calculations require some knowledge of the moments of the resonant ion distribution function.

The heated ion distribution function usually develops a fast tail and therefore cannot be

entirely modelled as a Maxwellian distribution. As described in more detail in Ref. [53],

the resonant ion distribution function is split into thermal and fast components, which are

respectively fitted onto a Maxwellian and a bi-Maxwellian model [44]. In the simulations
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Figure 5.4: Mean energy per particle as a function of time normalised to the slowing down
time on electrons τse = 0.18s.

presented here, the fast ion tail represents the most significant part of the marker distribution.

The thermal part is mainly comprised of particles that were numerically re-injected in the

plasma in a thermal state after having crossed the last closed flux surface. Considering the

fraction and the energy range of the fast ions, it is assumed that only the fast component of the

distribution significantly affects the plasma equilibrium and dielectric tensor. Therefore, only

this component has been taken into account in the iteration scheme. Saturated solutions have

been obtained for the antenna phasings most relevant for typical JET ICRF scenarios: dipole

(nϕ =±27) and +90◦ (co-current travelling wave: nϕ =−13). Figure 5.4 shows that the mean

energy per 3He particle saturates with time for each phasing after a few iterations, indicating a

converged self-consistent distribution function is obtained. The converged 3He distribution

functions for the two antenna phasings obtained with SCENIC for 3MW of ICRF power are

shown in Fig. 5.5. It is seen that fast ions in the MeV range are generated in both cases. The

distribution function of a typical minority heating (MH) scenario (deuterium rich plasma

with 5% hydrogen minority) with the same equilibrium profiles and input power conditions is

shown for comparison. The significant potential of generating fast ions with moderate ICRF

power clearly appears.
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Figure 5.5: Saturated energy distribution functions of 3He ions for dipole and +90◦ phasings
using three-ion species scheme, and +90◦ phasing using a minority scheme in JET.

(a) Dipole (b) +90◦

Figure 5.6: Fast ion pressure profiles (Pa) for each investigated antenna phasing in JET. The
red dashed line represents the unshifted resonance position for 3He ions.
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5.2.2 RF-pinch effect

It is seen from Figs. 5.4 and 5.5 that using +90◦ phasing allows the generation of a larger fast

ion tail than for dipole phasing. This can be explained mainly by two arguments. Firstly, the

+90◦ phased wave features a lower |k∥| value (which can be approximated by |nϕ|/R) than the

dipole phased wave. Therefore the absorption layer width is smaller in the +90◦ phasing case

and consequently contains a higher power density than in the dipole case. Secondly, one has

to consider the inward radial transport of resonant ions interacting with a co-current travelling

ICRF wave. It was shown in Ref. [58] that RF wave-particle interaction not only result in kicks

in the resonant particles’ energy ΔE but also in the toroidal momentum Pϕ =−qψ+mv∥Bϕ/B

which reads:

ΔPϕ = nϕ

ω
ΔE (5.2)

In eq. 5.2 ω is the RF wave frequency. In the VENUS-LEVIS code [19] which solves for the fast

ion distribution function, the wave-particle interaction is resolved by Monte-Carlo operators

that acts on the particles parallel and perpendicular velocities [53]. The kick in the parallel

velocity reproduces the change in the toroidal momentum approximated by eq. 5.2.The

magnetic moment of resonant particles is also affected by the interaction, such that on average

resonant particles become trapped and their bounce tips align with the resonance layer. The

change in the toroidal momentum subsequently results, on average, in a radial displacement

of the trapped particles bounce tips along the resonance layer. It is seen from eq. 5.2, and the

definition of Pϕ, that co-current (resp. counter-counter) travelling waves induce an inward

(outward) RF-pinch. The energy range reached by the fast ions (observable in Fig. 5.5) suggests

a strong RF-pinch effect. As seen in Fig. 5.6, +90◦ phasing produces strong on-axis peaking of

the fast ion pressure, while dipole phasing spreads the fast ion pressure vertically along the

resonance layer. In both cases, the pressure profile gives an insight into the classes of orbits

that the resonant particles comprise. This can be addressed more precisely by collectively

examining the resonant particles toroidal momentum Pϕ and the pitch angle variable Λ= μ
E B0

(here Λ can be seen as a measure of a particles bounce tip position with respect to the on-axis

magnetic field). In Refs. [110] and [20] these variables are used in order to draw a classification

of guiding centre orbit types. Fig. 5.7 shows how the resonant particles are distributed in the

Λ−Pϕ plane. The ICRF-induced particle trapping, and the resulting alignment of the particle

bounce tips with the resonant layer causes the concentration of particles around the Λ= 1 line.

It is seen in Fig. 5.7b that +90◦ phasing pushes the particles to the left-hand side of the Λ−Pϕ

plane bringing the particles bounce tips closer to the magnetic axis. A significant fraction of

the resonant particles are then able to escape the trapped region and enter the barely passing

region of phase space. These highly energetic particles are consequently well confined in the

plasma. It is seen that for the dipole phasing simulation, more regions of the Λ−Pϕ diagram

are populated. This can be explained by the fact that the wave-particle interaction with a

dipole phased antenna is modelled by including two wave fields with a positive (nϕ = 27)

and a negative mode number (nϕ = −27) carrying the same fraction of ICRF power. This

wave modelling technique, described in Ref. [63], is made possible by the absence of coupling

95



Chapter 5. Exploring a new ICRF scenario : the three-ion species scheme

between the wave toroidal mode numbers in axisymmetric configurations. The nϕ = −27

component acts in a similar way as the +90◦ phased wave, i.e. it induces an inward RF-pinch to

particles, and thus is responsible for the population of barely passing particles seen in Fig. 5.7a.

On the other hand, the nϕ = 27 component induces an outward RF-pinch of particles which

causes an increase in the trapped particle population. In addition, this pinch effect tends to

push resonant particles towards the right-hand side of the Λ−Pϕ plane causing the generation

of trapped particles with large orbit width. These orbits potentially cross the last closed surface

resulting in a higher particle loss rate compared to the +90◦ case. This combined effect of

RF-pinch and finite orbit width on the distribution function in phase-space, and in particular

on the lost fraction, shows the importance of accounting for finite orbit width in simulations of

the three-ion species scheme. Simulations with a -90◦ phased wave, corresponding to nϕ = 13

were also conducted. However the significant particle loss rate produced by the outward RF

pinch and the large orbit width brought difficulties in the convergence of the distribution

function.

(a) Dipole (b) +90◦

Figure 5.7: Distribution (#) of resonant 3He particles in Λ−Pϕ plane. Note that Pϕ has been
normalised for plotting convenience (q is the particles charge and ψ0 is the poloidal flux on
axis). The dashed and solid lines highlight respectively the trapped-passing boundary and the
Λ= 1 position.

5.2.3 Collisional power transfer

The guiding centre orbit following code VENUS-LEVIS [19] includes the Coulomb interactions

between the fast ions and the background electrons and ions. The interaction time between the
3He markers and the background species computed by VENUS-LEVIS relies on the derivation

of the associated Monte Carlo operator based on Ref. [55]. Figure 5.8 shows the energy

dependency of the interaction time between 3He ions and background electrons, hydrogen

and deuterium ions. It was seen in the previous section that the energy of the simulated 3He

ions are mostly above 1MeV. In that energy range, slowing down on electrons is the dominant

Coulomb interaction. In comparison, the pitch angle scattering process on background

species is around two orders of magnitude slower. This also suggests that the fast ion tail of the
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distribution functions is highly anisotropic. Moreover, and as expected, Figure 5.9 indicates

that most of the collisional power resulting from slowing down interactions is transferred to

background electrons. The collisional power deposition profile (Fig. 5.9) and the ICRF power

deposition profile (Fig. 5.10) are noticeably affected by the RF-pinch effect on fast ions. It

is seen that the ICRF power, and consequently the collisional power density transferred to

electrons, are strongly peaked on axis for +90◦ phasing compared to the dipole case. Figure 5.9

already suggests that the dipole scheme can be used in tokamak plasma experiments to peak

the central electron temperature. The fast ion simulations presented here could be coupled

to transport calculations in order to estimate more quantitatively the impact of this scenario

on the background thermal profiles. The peaking of the electron temperature profile can be

beneficial for instance for enhancing the transport of impurities, such as Tungsten, out of the

plasma core [111].

Figure 5.8: Interaction time for slowing down
(black lines) and pitch angle (blue lines) scat-
tering of 3He ions on background species.
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Figure 5.9: Density of collisional power on
each species. Dashed lines: +90◦ phasing;
solid lines: dipole phasing.
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Figure 5.10: Density of ICRF power on the 3He ions for each investigated antenna phasing.
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Figure 5.11: Dispersion relation (n2
⊥ given by eq. 5.1 obtained with the three-ion species

applied to W7-X

5.3 Three-dimensional modelling: Wendelstein 7-X plasma

As previously mentioned, it was shown in Ref. [112] that minority heating scenarios may not

be suitable for generating a large fast ion population mainly because of the high collisionality

which prevents tail formation. In this section, the SCENIC code package is applied to a W7-X

configuration in order to assess the possibility to use the three-ion species scheme as an

alternative to minority heating. A high-mirror magnetic equilibrium is considered with the

following density and temperature profiles expressed in terms of normalised toroidal flux s:

ne = 1.5×1020
(
0.9× (1− s10)2 +0.1

)
[m−3] and Te = 4×103(1−s)[eV]. These profiles ensure that

〈β〉 � 4% which is necessary to achieve a quasi-omnigeneous equilibrium and consequently

good fast particle confinement.

As suggested in Refs. [109, 112], a radial electric field arising from an ion-root regime [96] is

included in the following calculations in order to assist the confinement of the heated ions. A
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favourable plasma mix for the three-ion species scheme has been identified [41] as [H ] = 68%,

[D] = 31.8%, [3He] = 0.1%. The corresponding dispersion relation is given in Fig. 5.11 and

shows that, as required by the scheme, the L-cutoff is in the vicinity of the 3He resonance

position. This three-ion pecies scenario will be compared with a minority heating scheme that

uses the same thermal profiles and MHD equilibrium. Previous [112] SCENIC calculations

of minority heating in a D-rich W7-X plasma featured H minority with [H ] = 0.5%. However,

lowering [H ] for increasing the efficiency of fast-ion generation is restricted by degeneracy

between the resonance frequency for H minority and second harmonic D majority ions:

ωcH = 2ωcD . In fact, in high-density plasmas of W7-X most of the RF power is absorbed by D

majority ions instead of H minority ions, reducing further the potential of this scenario for fast-

ion studies. In contrast, using 3He as a minority (as it is done in the following minority scheme)

has an advantage of avoiding the degeneracy with the harmonic resonance for majority ions.

Minority heating of 3He in H or 4He plasmas cannot be made effective at arbitrarily low 3He

concentrations. The efficiency of the single-pass plasma absorption strongly depends on

the 3He concentration. TOMCAT modelling suggests that the single-pass damping by ions is

maximised at [3He] � 2%.

Figure 5.12a compares the energy distribution functions obtained for both scenarios. No clear

fast ion tail comparable to what is usually observed in tokamak calculations appears in either

of these scenarios. As a consequence, the contribution from the fast ion to the ideal MHD

equilibrium and the wave propagation could not clearly be assessed and the usual iterative

procedure of the SCENIC package could not be applied in the calculations presented in this

section. It is nevertheless seen that the three-ion species scheme produces a fast ion tail

which reaches energy range above 100keV. In contrast, the minority heating distribution

function is mostly thermal and the fast ion tail (50−100keV) is nearly non-existent. Precisely,

the number of particles above 50keV obtained with the minority heating scenario reaches

3.36×1014, whereas 6.40×1015 particles are recorded in this range for the three-ion species

scheme. Particle orbits with energy below 50keV are largely affected by the E ×B drift arising

from the inclusion of the radial electric field. Therefore diffusion of thermal particles is the

main loss channel in this case. Figure 5.12b shows the energy distribution of the recorded lost

particles in the case where the three-ion species scheme is applied. It is seen that the energy

range of lost particles is well above thermal energy. This suggests that the resonant particles

are sufficiently accelerated such that their kinetic energy becomes large enough to overcome

confinement. As a final remark, even if these calculations show indications that the three-ion

species is more suitable than minority heating scenarios for the task of generating fast ions in

W7-X, it is emphasised that the fast ions of the confined distribution still represent, in both

cases, a small fraction of the total distribution function. It seems that for the case of W7-X the

typical thermal profiles, and the three-dimensional structure of the equilibrium significantly

influence the tail formation process and consequently the heated ion distribution function in

velocity space. More detailed analysis and conclusions on these aspects will be given in future

work.
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5.4 Summary and conclusions

The work presented here shows modelling of the three-ion species scheme that was first

introduced in [41]. Two- and three-dimensional plasma equilibria were considered in order to

asses the potential of the three-ion species scheme in JET and W7-X plasmas. The SCENIC code

package has been used and its suitability for the modelling of this scheme has been successfully

demonstrated. It was shown that in a JET-like plasma, fast ions easily reach the MeV range of

energy. As expected, varying the antenna phasing changes the direction of the RF induced

particle pinch. This effect is even more pronounced for the low 3He concentration used in this

scheme, implying large energy transfer during the resonant wave-particle interaction. It was

seen that for co-current travelling ICRF waves is employed, the inward pinch causes the orbits

of resonant trapped ions to typically convert into passing orbits (which are better confined).

Consequently the establishment of the fast ion tail is assisted by the pinching of the fast ions

towards the magnetic axis where the collisionality is lower and the wave absorption is higher.

Estimation of the collisional power distribution indicates that co-travelling wave schemes

may be used for the peaking of electron temperature profile (via localisation of the heated

particules and Coulomb energy transfer) and may consequently help to increase the outward

impurity transport. On the other hand using a dipole phased wave applies in addition an

outward pinch to resonant particles. Such a finite orbit effect can cause the loss of resonant

particles as they receive energy from the wave. The outward drift and the high loss rate reduce

the mean energy of the resonant ion distribution and also causes the collisional power on

the background species to be deposited in non-central plasma regions. Overall the fast ion

distribution generated for both considered phasings show a more significant potential for

fast ion generation than a typical minority heating scheme. SCENIC simulations indicate that

the three-ion species scheme in W7-X high mirror plasma would be more appropriate than a

minority heating scheme for the generation of fast ions in this stellarator.
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6.1 Summary

The numerical resolution of an auxiliary generated fast ion population in two- and three-

dimensional configurations has been addressed. The SCENIC code package is a flexible tool

for solving self-consistently the MHD equilibrium, the ICRF wave propagation and the fast

ion distribution. In this section we shall summarise the main results found in the previous

chapters.

The physical concepts necessary for the description the SCENIC code package and the under-

standing of the results obtained throughout this thesis were explained in chapter 1.4. This

was followed by chapter 2.4 where SCENIC was used for the study of ICRF minority heating

scenario in an axisymmetric JET tokamak plasma. It was seen that the toroidal symmetry

of the configuration greatly simplifies the modelling of the ICRF antenna excitation. The

absence of coupling between the waves toroidal modes allows the simulation of each of these

modes separately. In practice one can only consider the modes that dominate the power

spectrum. Full SCENIC simulations were performed with various antenna phasings (+90◦,

−90◦ and dipole). The converged ICRF distribution functions were passed on to the HAGIS
code in order to study the stability of the m = n = 1 internal kink mode. SCENIC and HAGIS
calculations showed that the shear mechanism usually invoked could not explain the sawteeth

triggering observed in the dedicated JET experiments. These numerical results indicate that

the asymmetry in the fast ion distribution function is more likely to be responsible for the

destabilisation of the internal kink mode and consequently of the shortening of the sawteeth

period.

The loss channels acting on fast particles in the Wendelstein 7-X stellarator were explained in

chapter 3.6. Low collisional and transitioning particles are expected to experience stochastic

radial diffusion. As we mainly focused on NBI-like ion populations with moderate energy, and

the generation of fast ions with ICRF heating from a thermal population, this loss channel

does not play a significant role in the presented work. The drift induced losses caused by the

magnetic fields three-dimensional structure, i.e. the combined effect of negative geodesic
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curvature and magnetic field amplitude oscillations, is seen to be the main channel of particle

losses. Coulomb collisions are found to enhance this mechanism via pitch-angle scattering.

The application of ICRF heating increases also the particle losses because the trapped fraction

is enhanced. These ICRF induced losses can be decreased when the resonance position is

displaced so that it is predominantly located towards the bean-shaped cross-section of the

equilibrium. In such a configuration, the fraction of localised particles, i.e. trapped between

the main mirrors, is decreased. It was also seen that the inclusion of a radial electric field,

which restores the ambipolar diffusion of background electrons and ions, reduces significantly

the particle losses observed in ICRF and NBI simulations. It is important to keep in mind

that the induced E ×B drift will affect the trajectory of fast particles up to a certain energy

level. Indeed the amplitude of this drift does not depend on the particles energy contrary to

the ∇B and curvature drifts. It is therefore crucial to include such an effect in a numerical

investigation into the generation of fast ions from an initially thermal population in W7-X.

However an important point to note is that α particles in a reactor sized Helias stellarator

are not expected to be affected by this radial electric field. Finally the high plasma density

required to obtain a quasi-isodynamic equilibrium is a major hindrance to the high energy tail

formation. In the simulations presented here, no significant fast ion population was observed

with a minority heating scheme.

The newly developed three-ion species ICRF scheme was simulated for the first time with

SCENIC and the results were presented in chapter 4.6. It was verified that the LEMan code is

able to retrieve the key features of this scheme. The three-ion species scenario was tested in a

JET-like tokamak plasma. It was found that MeV ions are easily produced with +90◦ and dipole

phasings. The RF induced particle pinch is particularly strong due to high energy wave-particle

interaction. The inward pinch caused by the +90◦ phased wave tends to convert the energetic

resonant particles from trapped to passing. The confinement of energetic particles is seen

to be enhanced in this case. The application to a W7-X plasma showed that the three-ion

species produces more fast ions than a typical minority heating scheme. Though it is stated

that a three-ion species scheme should be considered in the experimental campaign, the high

energy ions produced suffer from enhanced losses due to the weakening effect of the E ×B

drift, and the fact that W7-X is not perfectly optimised.

6.2 Outlook

As described at the beginning of this thesis and illustrated in the previous chapters, the SCENIC
code package is composed of three main numerical codes. Each of these codes deals with

different aspects of plasma physics (MHD equilibrium, ICRF wave propagation, fast particle

motion) that SCENIC interconnects. Therefore, developments and benchmarking of various

kinds can easily be foreseen for the near future.

The ANIMEC code offers the possibility of calculating free-boundary equilibria. This feature

would become particulary interesting for the investigation of the effects of ICRF heating on
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the last closed flux surface (LCFS). Indeed, the ICRF heat deposition can in some cases be

strongly localised in the vicinity of the LCFS, e.g. ICRF minority heating in a high-mirror

W7-X configuration. A significant increase of the fast ion pressure is to be expected in these

regions and consequently some modification of the local MHD equilibrium. However if such

calculations were to be performed with the full SCENIC iteration procedure, particular care

should be taken regarding the mapping of the markers position in the curvilinear coordinate

system.

As seen in section 4.5.1 concerning the ICRF modelling in W7-X configurations, the spatial

localisation of the antenna breaks the periodicity of the machine in terms of wave deposition.

In addition to the consequences of this on plasma heating in general, the improvements

to the ICRF model taking into account such toroidal variation, e.g. in the equilibrium and

the dielectric tensor via a modification to the bi-Maxwellian function (eq. 2.44), should be

considered in the future.

In the particle losses study presented in chapter 3.6, particles crossing the LCFS were con-

sidered as lost and no re-entry calculation was performed. This limitation is inherent to the

flux coordinate system in which the SCENIC package is written. Some preparatory work is in

progress in order to extend the simulated volume in the vacuum region and up to the first

wall. Such an extension will allow the calculation of heat deposition by fast particle losses on

plasma-facing components. In addition, some particles crossing the LCFS will then be able

to re-enter the plasma in a realistic manner. These calculations is an important feature of

the ASCOT code and comparitive studies would be very useful for the validation of the SCENIC
implementation. Moreover, the antenna model in the LEMan code could then be placed in the

vacuum region and no longer within an edge region of the plasma as it is currently done. In

that case, as the vacuum region is evanescent for the fast wave, it will be possible to model the

tunnelling of the fast wave from the antenna into the plasma.

Such simulations could be also coupled to transport calculation modules in order to estimate

the self-consistent radial electric field in ICRF heated W7-X plasmas.

Recent comparisons with similar wave codes indicate that the LEMan code strongly underesti-

mates the ICRF wave absorption by electrons. This is typically observed in a minority heating

scheme with very low concentration (≤ 1%) where electron damping computed by wave codes

such TOMCAT or TORIC dominates over minority damping. This can be partly explained by

the fact that LEMan only includes electron Landau and ion cyclotron damping in the power

deposition calculations. Inclusion of Transit Time Magnetic Pumping (TTMP) effects may

help to resolve discrepancies in the absorbed power calculations. A benchmark exercise with

other wave codes will therefore be necessary in order to validate the correct implementation

of TTMP damping in LEMan .

The dielectric tensor implementation in LEMan is also being revised in order to take into

account higher cyclotron harmonic damping. Such an extension will allow the modelling of

e.g. second harmonic majority plasma heating. This kind of important code upgrade will also
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require significant benchmarking.

A benchmark effort against the SELFO was initiated after the first implementation of the ICRF

Monte Carlo operator. This comparitive study must be extended in particular to include

relevant boundary conditions to the quasi-linear diffusion coefficient implemented in SELFO
as described in Ref. [57].

Peculiar features of the minority ions energy distribution function were seen during the

modelling of ICRF scenarios where the power absorbed is particularly high (minority heating

with low concentration (� 1%) and high power (� 12MW), and three-ion species scheme in

tokamak plasma). Indeed, secondary fast ion tails are observed and display a bump-on-tail

feature in the energy distribution. These kinds of numerical results indicate that the quasi-

linear theory from which the ICRF Monte Carlo operator is derived, is no longer valid for the

considered scenario. Proper investigation on the limit of validity of the quasi-linear model

should be performed. Development of adequate modelling of ICRF scenarios for which the

quasi-linear is not applicable, is therefore required. Two possible modelling methods are

foreseen:

1. One could exploit the capacity of VENUS-LEVIS to resolve the full-orbit motion of fast

ions and include directly in the corresponding equation of motions the RF wave electric

field. This task may be hindered by numerical issues since full-orbit resolution calcula-

tions are not as numerically efficient in Boozer coordinates as in ANIMEC coordinates.

In the case where the numerical precision in Boozer coordinates cannot be improved,

full-orbit simulations should be run in ANIMEC coordinates. This would require the

projection of the RF wave field from Boozer to ANIMEC coordinates. Here again, some

numerical precision issues may be expected.

2. A novel implementation for the resolution of the ICRF wave-particle interaction was

proposed in Ref. [113]. A so-called 51/2-D model gives, in addition to the time evolution

of the guiding centre coordinates (Xg c ,ρ∥), equations for the time evolution of the

resonant particles magnetic moment and the phase difference between the particles

gyro-phase and the RF wave electric field phase. This model requires the expansion of

the guiding centre drift equation to the second order in Larmor radius. Conveniently,

second order corrections were recently implemented in the VENUS-LEVIS code [114].

The development of scenarios for auxiliary generation of fast ions in the W7-X stellarator

should be continued. The three-ion species scheme was shown in chapter 4.6 to be a very

promising tool to generate a large fast ion tail in such high density plasmas. Investigations

of this scenario in W7-X configurations should be pursued. In addition, it would be worth

exploring the possibility of generating fast ion via RF beam acceleration. This scenario could

be first modelled in an axisymmetric plasma for validation. The full SCENIC iterative process

could be applied since the beam population can be well approximated by the bi-Maxwellian

as soon as slowing down and RF absorption are established.
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6.2. Outlook

In addition to the study of fast ion generation scenarios, it is important to characterise in

detail the tail formation process in W7-X. Indeed, it appears that the tail formation process

in W7-X is not only hindered by the high plasma density but also fundamentally affected by

the three-dimensionnal nature of the equilibrium, i.e. the inherent wave propagation issues

and particle loss channels. Techniques enhancing the formation of significant fast ion tails in

W7-X should be further investigated.
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