Files

Abstract

Traditional methods of synthesis of metal-oxide gas sensing materials for semiconductor sensors are based on wet sol-gel processes. However, these processes lead to the formation of hydroxyl groups on the surface of oxide particles being responsible for the strong response of a sensing material to humidity. In this work, we investigated the possibility to synthesize metal-oxide materials with reduced sensitivity to water vapors. Dry synthesis of SnO2 nanoparticles was implemented in the gas phase by spark discharge, which allowed us to produce powder with specific surface area of about 40 m2/g after additional annealing at 610 °C. The drop of sensor resistance does not exceed 20%, when air humidity increases from 40 to 100%, whereas the response to 100 ppm of hydrogen is of a factor of 8 with very short response time of about 1 s.

Details

Actions

Preview