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Abstract—We present AlGaN/GaN nanostructured Schottky 

barrier diodes (SBDs) on silicon substrate with high breakdown 
voltage (Vbr) and low reverse leakage current (IR), based on a 
hybrid of tri-anode and tri-gate architectures. The fabricated 
SBDs presented a small turn-on voltage (Von) of 0.76 ± 0.05 V since 
the tri-anode architecture formed direct Schottky contact to the 
2-dimensional electron gas (2DEG). The reverse characteristic 
was controlled electrostatically by an embedded tri-gate transistor, 
instead of relying only on the Schottky barrier. This resulted in 
low IR below 10 and 100 nA/mm at large reverse biases up to 500 
and 700 V, respectively. In addition, these devices exhibited 
record Vbr up to 1325 V at IR of 1 µA/mm, rendering an excellent 
high power figure-of-merit (FOM) of 939 MW/cm2 and 
demonstrating the significant potential of nanostructured GaN 
SBDs for future efficient power conversion. 
 

Index Terms—GaN, Schottky diode, tri-gate, tri-anode, 
breakdown, leakage current. 

I. INTRODUCTION 
ith the rapid development of GaN power transistors on 
silicon substrate, GaN lateral SBDs are attracting large 

attention [1]-[12] since they can be easily and monolithically 
integrated with such transistors, reducing parasitic inductances, 
which is highly desirable for future efficient and low-cost 
power converters. However, conventional AlGaN/GaN lateral 
SBDs suffer from high Von, large IR, and poor Vbr. Sophisticated 
schemes have been proposed to overcome these issues such as 
recessed anodes [1] and field plates [2]. However, the reverse 
blocking performance of GaN SBDs, such as Vbr and IR, is still 
much inferior than in state-of-the-art GaN transistors. These are 
general limitations of SBDs even in other semiconductors. 
When defining Vbr at a leakage current of 1 µA/mm, 
GaN-on-silicon transistors have presented values over 1400 V 
[13], while only a few SBDs with Vbr over 500 V have been 
reported [2],[4],[11],[12], and the highest value up to date is 
about 900 V [2].  

Novel nanostructured AlGaN/GaN SBDs based on a hybrid 
combination of tri-anode and tri-gate architectures have been 
proposed [14] and investigated in our previous studies [15],[16], 
which yielded a reduced Von, an improved ideality factor, a 
diminished IR, and an enhanced heat dissipation of the SBDs, at 
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the expense of a larger Ron and a smaller current capability. In 
addition, the potential of this architecture for high-voltage 
power SBDs has not been presented. In this work, we 
demonstrate hybrid tri-anode power SBDs with state-of-the-art 
on-state and reverse-blocking performances. The fabricated 
SBDs presented a small Von of 0.76 ± 0.07 V since tri-anode 
formed Schottky contact directly to the 2DEG. The integrated 
tri-gate transistor in the SBD largely improved the reverse 
blocking performance of the device. A record Vbr of 1325 V (at 
IR =1 µA/mm) among GaN lateral diodes on silicon was 
achieved, along with a high power FOM of 939 MW/cm2. The 
IR of the SBDs was below 10 and 100 nA/mm at blocking 
voltages up to 500 and 700 V, respectively, which was more 
than 2 orders of magnitude smaller than up-to-date 
high-voltage GaN lateral SBDs.    
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Fig. 1. (a) Schematic of the fabricated tri-anode SBDs. Cross-sectional 
schematics of (b) the tri-gate region along line AA’ and (c) the tri-anode region 
along line BB’. (d) Top-view SEM image of the fabricated hybrid tri-anode 
SBDs. (e) Zoomed-in SEM image of the tri-gate and tri-anode regions.  
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II. DEVICE FABRICATION 
The AlGaN/GaN epitaxy in this work consisted of 3.75 µm 

of buffer, 0.3 µm of un-doped GaN (u-GaN) channel, 23.5 nm 
of AlGaN barrier and 2 nm of u-GaN cap layer. A schematic of 
the hybrid tri-anode SBD is shown in Fig. 1(a). The anode was 
formed by a combination of a tri-gate transistor and a tri-anode 
SBD in series (cross-sectional schematics are shown in Fig. 1(b) 
and (c)). The device fabrication started with e-beam 
lithography to define the mesa and nanowires, which were then 
etched by Cl2-based inductively coupled plasma and followed 
by ohmic metal deposition and rapid thermal annealing. The 
height (h) of the nanowires was 166 nm, and the width (w) 
varied from 100 to 1000 nm while the spacing (d) was fixed at 
200 nm. Then 20 nm of Al2O3 was deposited by atomic layer 
deposition and selectively removed in tri-anode region. Finally 
the entire anode was formed by Ni/Au, which was later used as 
the mask for wet-etching of the Al2O3 in access and ohmic 
regions. Figure 1(d) and (e) show the top-view SEM images of 
the SBD and the hybrid tri-anode, respectively. The device 
characteristics such as Ron, forward current (IF) and IR were 
normalized by device width (60 µm). The error bars presented 
in all results were determined from measurements on up to 10 

separate devices of the same kind. 

III. Results and Discussion 
The impact of w on the Ron and IR of the tri-anode SBDs is 

presented in Fig. 2(a). The observed reduction of Ron with w 
increasing from 100 to 400 nm is mainly attributed to the 
increasing filling factor (FF = w / (w + d)), which preserved 
more 2DEG in the tri-gate region and hence reduced the 
resistance of the integrated tri-gate transistors. After w reached 
400 nm (FF = 66.7%), the Ron saturated regardless of the 
increasing w, or equivalently the FF, at about 10.2 ± 0.45 
Ω·mm, and the IR, taken at V = -10 V, kept reducing with 
decreasing w due to the enhanced gate depletion of the 
integrated tri-gate transistor with narrower nanowires. With w 
below 400 nm, the IR of all tri-anode SBDs was below 10 
nA/mm at a bias of -10 V, and a w of 400 nm yielded a good 
balance between IR and Ron. The IR and If of the tri-anode SBDs 
with w of 400, 200 and 100 nm are plotted in Fig. 2(b) and (c) 
versus anode voltage (V), respectively, with their detailed 
characteristics listed in Tab. 1. The tri-anode SBDs with w of 
100 nm exhibited IR of 0.15 ± 0.13 nA/mm, which is, to the best 
of our knowledge, the smallest leakage current for GaN lateral 
SBDs up to date. 

Figure 3(a) presents the IR of the tri-anode SBDs versus V. 
All devices exhibited very small IR below 10 and 100 nA/mm 
with V up to about 500 and 700 V, respectively.  For V below 
400 V, the IR of the tri-anode SBDs with w of 200 and 100 nm 
was close or below the measurement limit of our setup, hence 
large oscillations in current were observed. The best Vbr 
measured at IR = 1 µA/mm was 1140, 1325 and 1075 V for the 
tri-anode SBDs with w of 400, 200 and 100 nm. We have not 
observed a clear dependence of the Vbr on w in this work, and 
the difference in Vbr was likely impacted by local variations in 
oxide quality or possible fabrication misalignments. 
Nevertheless, the IR profile was quite consistent up to 900 V 
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Fig. 2. (a) Ron and IR (at -10 V) of tri-anode SBDs with different w. (b) Reverse 
and (c) forward I-V characteristics of the tri-anode SBDs with w of 400, 200 and 
100 nm, normalized by device width of 60 µm. 

TABLE 1 
SUMMARY OF TRI-ANODES WITH DIFFERENT NANOWIRE WIDTHS 

w = 400 nm w = 200 nm w = 100 nm

Von
(V, at 1 mA/mm)

0.76 ± 0.07 0.76 ± 0.05 0.73 ± 0.06

Ron
(Ω·mm) 10.3 ± 0.4 11.0 ± 0.6 13.1 ± 0.8

IF
(mA/mm, V = 5V) 355 ± 10 332 ± 13 275 ± 13

IR
(nA/mm, V = -10V)

3.03 ± 1.02 0.96 ± 0.81 0.15 ± 0.13
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Fig. 3. (a) Reverse-bias characteristics of the tri-anode SBDs versus anode bias 
for different w and (b) comparison of IR of the tri-anode SBD (w = 200 nm) and 
state-of-the-art high-voltage GaN lateral SBDs on silicon. The IR for SBDs with 
w of 200 and 100 nm was likely around or below the measurement limit of our 
setup. 
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among all devices with w from 100 to 400 nm, as well as their 
hard breakdown voltage at around 1400 - 1550 V. 

The reverse leakage current of the tri-anode SBDs (w = 200 
nm) was much lower than that from state-of-the-art 
high-voltage GaN-on-silicon lateral SBDs (with hard 
breakdown voltage beyond 1000 V) in the literature, as plotted 
in Fig. 3(b). For reverse voltages below 500 V, the IR of the 
tri-anode SBD was about 2 orders of magnitude lower with 
respect to the smallest IR [9] among these references and over 4 
orders of magnitude as compared to the reference SBD with the 
highest reported hard Vbr [1]. Most of the references presented 
IR beyond 100 nA/mm and 1 µA/mm at V of -100 and -650 V, 
respectively. In contrast, the IR of the tri-anode SBD did not 
reach 100 nA/mm until -725 V and was as small as 41 nA/mm 
at -650 V. Such significant reduction in IR can potentially 
improve the reliability of the device, and more importantly, 
reduce the off-state power dissipation and increase the 
efficiency of power converters. The off-state power dissipation, 
calculated using Power = IR × V, varied from 0.31 - 78 mW/mm 
at -650 V for the reference SBDs, while that of the tri-anode 
SBD was several orders of magnitude smaller, below 0.03 
mW/mm. 

The tri-anode SBDs presented in Fig. 3 were benchmarked 
against state-of-the-art GaN lateral diodes on silicon substrate, 

as shown in Fig. 4. Two commonly used definitions of Vbr for 
GaN power devices were adopted, taken at IR = 1 mA/mm and 1 
µA/mm. In the benchmark considering Vbr at IR = 1 mA/mm 
(Fig. 4(a)), the tri-anode SBDs with w of 400, 200 and 100 nm 
exhibited high power FOMs of 1355, 1255 and 865 MW/cm2, 
respectively, which are comparable to the best results for GaN 
lateral diodes on silicon and even other substrates [4],[18],[19]. 
Since 1 mA/mm is a large leakage current level to define the Vbr 
for power devices, 1 µA/mm level is becoming more 
commonly used to compare more fairly the blocking 
performance of power devices. Figure 4(b) shows the 
benchmark with Vbr at IR = 1 µA/mm. The Vbr for all reference 
devices was re-calculated based on the reported data, following 
the definition of Vbr at IR = 1 µA/mm. The tri-anode SBDs with 
w of 400, 200 and 100 nm presented FOM values of 747, 939 
and 518 MW/cm2. These are high FOM values with record Vbr 
among up-to-date GaN lateral power diodes on silicon, which 
in addition to the low turn-on voltage, low IR and small 
on-resistance, reveal the extraordinary potential of 
nanowire-based approaches for GaN power electronics.  

IV. CONCLUSION 
In this work we demonstrated high voltage and low leakage 

AlGaN/GaN tri-anode SBDs with integrated tri-gate 
transistors. The SBDs exhibited a small Von of 0.76 ± 0.05 V 
due to the tri-anode structure. The embedded tri-gate transistor 
enabled electrostatic control over the leakage current in 
addition to the Schottky barrier, leading to ultra-low IR below 
100 nA/mm at reverse bias of 700 V, and high Vbr up to 1325 V 
(1 µA/mm). These results confirm the superb potential of the 
hybrid tri-anode SBDs for future high-efficiency power 
conversion systems, and offer a technology platform to 
improve the reverse blocking in lateral SBDs even in other 
materials. 
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