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Abstract—Boolean SAT solving can be used to find a minimum-
size logic network for a given small Boolean function. This paper
extends the SAT formulation to find a minimum-size network
under delay constraints. Delay constraints are given in terms of
input arrival times and the maximum depth. After integration
into a depth-optimizing mapping algorithm, the proposed SAT
formulation can be used to perform logic rewriting to reduce
the logic depth of a network. It is shown that to be effective
the logic rewriting algorithm requires (i) a fast SAT formulation
and (ii) heuristics to quickly determine whether the given delay
constraints are feasible for a given function. The proposed
algorithm is more versatile than previous algorithms, which is
confirmed by the experimental results.

I. INTRODUCTION

Multi-level logic synthesis [1], [2] aims at finding a multi-
level network representation for a given Boolean single- or
multi-output function. The input function can be given as a truth
table, a two-level representation, a binary decision diagram,
or a poorly optimized logic network. The goal is to find a
logic network of better quality while considering different cost
functions. Typical cost functions are, e.g., area (i.e., the number
of logic gates), depth (i.e., the size of the critical path), or
energy. In many applications, a small depth is of particular
interest. Minimizing networks under depth constraints is the
focus of this paper.

Logic rewriting [3], [4] based on cut enumeration [5] and
k-LUT mapping [6] is one of the most effective optimization
techniques for logic networks. k-LUT mapping computes a
cover of the logic network with Boolean functions with at
most k inputs, called LUTs. k-LUT mapping can be used in
technology mapping, e.g., for FPGAs, where one is interested
in a cover with few LUTs or a short critical path. But in
logic rewriting the LUTs are mapped back into logic networks.
Therefore, one is interested in LUTs that optimize the delay
or area of the subnetworks.

Lazy man’s synthesis (LMS, [7]) is a logic rewriting
technique that aims at optimizing depth. The approach is based
on two observations: (i) many logic synthesis tools can produce
optimal or near-optimal networks, and (ii) larger circuits are
composed of smaller ones, which also need to be optimal or
near-optimal in order to obtain good global results. LMS first
mines these smaller subnetworks by enumerating all cuts [5]
in the available designs that have been optimized using state-
of-the-art synthesis tools. The subnetworks are recorded in a
database, which is used by k-LUT mapping to find replacements
for individual k-cuts.

LMS is a fast and effective approach to depth optimization in
logic networks. But LMS suffers from several shortcomings. It
is practically limited to 6 input functions, since for larger input

sizes too many functions exist and the size of the database
blows up. For similar reasons, it does not take input arrival
times into account nor can it deal with incompletely-specified
functions. Finally, separate databases are required when dealing
with different elementary gates. Currently databases constructed
by LMS are based on two-input gates without XOR and XNOR
(in other words, the elementary gates are the same as in And-
inverter graphs, AIGs).

We propose a high-effort depth-optimization approach called
Busy Man’s Synthesis (BMS), to overcome these shortcomings.
Instead of using a precomputed database, BMS computes
optimal subnetworks for k-LUTs on the fly during mapping.
BMS finds the delay-optimum networks by taking into ac-
count input arrival times that are computed using the current
partial mapping. Among the delay-optimum networks, BMS
guarantees to find a network with the smallest number of gates
thereby also providing network with good area cost.

Clearly, BMS consumes substantial runtime since minimum
networks are computed by the SAT solver on the fly. However,
computational time is less important if one can achieve provably
delay-optimal networks. Two aspects are important to make
BMS effective. First, one needs a fast algorithm to find an
optimum network quickly if the given delay constraints are
realizable. Second, one needs checkers to determine that no
network can exist if the delay constraints are too restrictive.
We use the SAT solver to implement a fast algorithm that can
find an optimum network under realizable delay constraints.
Our SAT formulation is based on a formulation to find
area-optimum logic networks [8]. We extend it by adding
clauses characterizing delay constraints and use CEGAR
(counterexample-guided abstraction refinement) to simplify
the SAT formulas and reduce solving time. The consistency
checkers to prove infeasible delay constraints use structural
arguments, such as the maximum number of possible gates in
a network and techniques based on functional decomposition.
Our experiments show that the BMS outperforms state-of-the-
art logic rewriting for depth optimization, including LMS.

II. PRELIMINARIES

A Boolean network for a function of n inputs x1, . . . , xn is
a sequence of gates (xn+1, . . . , xn+r) with

xi = xj(i) ◦i xk(i), for n+ 1 ≤ i ≤ n+ r. (1)

That is, each gate combines two previous gates or inputs with
j(i) < k(i) < i using ◦i, which is one of the 16 binary
operations [9]. For single-output functions, the last gate xn+r

is considered the network’s output. For multi-output networks,
each gate could potentially be an output. We call a function
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Fig. 1. Example network

normal, if f(0, . . . , 0) = 0. A Boolean network represents a
normal function if all of its gate functions are normal.

Example 1: Fig. 1 shows an example network with three
inputs consisting of two gates: x4 = x1∧x2 and x5 = x3⊕x4.
The network has two outputs, g1 = x4 and g2 = x5.

We refer to the number of gates r as the area of the network.
The delay is the length of the longest shortest path between
primary inputs and primary outputs. The length of a path is
measured in terms of the number of gates on the path.

Example 2: The delay of the logic network in the example
is 2 as both gates are on the path from x1 or x2 to g2.

We can assume different input arrival times for the inputs of
the logic network. This is especially important if we consider
subnetworks in the context of a larger network. They influence
the overall delay of the network. We refer to δi as the input
arrival time of input xi. When computing the delay, the input
arrival time needs to be added to the length of the path.

Example 3: Assume δ1 = 0, δ2 = 0, and δ3 = 2. Then, the
delay of the network is 3, since now the path from x3 to g2

has length 3.

III. OVERVIEW OF THE ALGORITHM

This section provides an overview of BMS. The algorithm
uses dynamic programming to determine the best delay at each
node of the subject graph [6], [10]. The nodes are considered
in a topological order and the arrival time of at a node is
computed assuming the best arrival times at the inputs of a cut
are known. To compute the best arrival time at the node, the
set of the node’s cuts is computed. The cuts are considered in
some order, and the best result for each cut is computed. The
best result at the node is found as the smallest arrival time
possible when using one of the node’s cuts.

The Boolean function f : Bn → B of each cut is derived
as a truth table and given to the SAT-based minimum-network
computation algorithm, together with the best arrival times
δ1, . . . , δn of the cut inputs. The algorithm is outlined in
Algorithm 1. The SAT solver enumerates different logic
structures that can be used to implement the given function
and chooses the minimum one that guarantees the minimum
arrival time at the output given the arrival times at the inputs.

The entry point of the SAT-based algorithm is procedure
‘FindFastestNetwork’ which receives as input an n-variable
cut function f and input arrival times δ = δ1, . . . , δn. Cut
enumeration in the mapping algorithm guarantees that the
function functionally depends on all its inputs. The procedure
determines the optimum delay by starting from a known-
feasible one, referred to as ∆. If the network for a specific
delay does not exist, the delay is relaxed and the existence of

1 Function FindFastestNetwork(f : Bn → B, δ)
2 set ∆← ComputeStartDelay();
3 while N ′ ← FindSmallestNetwork(f, δ,∆) do
4 set N ← N ′;
5 set ∆← ∆− 1;
6 end
7 return N ;

8 Function FindSmallestNetwork(f : Bn → B, δ,∆)
9 if InfeasibleDelay(f, δ,∆) then return false;

10 foreach r ∈ {n− 1, n, n+ 1, . . . } do
11 if InfeasibleGates(f, δ,∆, r) then return false;
12 if N ← FindNetwork(f, δ,∆, r) then return N ;
13 end

14 Function FindNetwork(f : Bn → B, δ,∆, r)
15 set S ← SATSolver();
16 AddVariables(S, f, δ,∆, r);
17 if !AddDepthConstraints(S, δ,∆, r) ∨ !Solve(S) then
18 return false;
19 if !AddGateConstraints(S, f, r) ∨ !Solve(S) then
20 return false;
21 return ExtractNetwork(S);

Algorithm 1: Functions to find delay-optimum networks

the networks is checked again. The process continues until a
network exists for some delay constraint. The obtained networks
are size-optimum, i.e., they require the minimal number of
gates for the given delay constraints.

The function ‘FindSmallestNetwork’ ensures this, which
gets as input f , δ, and ∆. Size-optimality is ensured by first
checking whether a network exists with r = n− 1 gates and
then increasing r until a network can be found. However,
it may be possible that no network exists that satisfies the
delay constraints. Two heuristics apply checks that can find
violating constraints: ‘InfeasibleDelay’ is applied initially once
and checks whether the current delay constraints rule out a
network; ‘InfeasibleGates’ is applied in each iteration of the
loop. It takes the current number of gates r into account. These
checks may not be accurate all the time. They can return false
positives, i.e., the check decides that the delay constraints are
feasible even when they are not. The checks must not return
false negatives, because this will compromise the optimality.
Whenever the checks cannot imply that the constraints are
inconsistent, the SAT solver is used to check whether there
exists a network given r gates.

The function ‘FindNetwork’ creates a SAT solver, and
adds the necessary variables and constraints. Details on how
variables and constraints are encoded inside the SAT solver are
given in the next section. But at this point we already remark
that instead of solving all constraints at once, we first check
whether a satisfying assignment can be found only for the depth
constraints. These do not have to take f into consideration;
and if no satisfying solution can be found for the constraints,
the function can exit early. If a satisfying solution is found, the
function continues by checking the remaining constraints. Note
that the SAT solver may already be able to derive UNSAT
while adding constraints.

In order to make Algorithm 1 applicable for practical
examples, two requirements are essential: (i) all SAT calls
must be fast, i.e., ideally less than a second, which requires ef-
fective encodings and/or case-splitting, and (ii) the consistency



checkers must be highly accurate, i.e., they should not generate
a lot of false positives as these lead to unnecessary SAT calls.
In fact, it is important to stress that both requirements are
equally important and build an ideal combination to solve
the problem. Without the consistency checkers, the algorithm
would spend most of its time in unnecessary SAT solving,
which can make the overall algorithm one or two magnitudes
slower. Likewise, without the SAT solver one needs to resort
to time consuming and ineffective enumerative algorithms to
find a network structure that satisfies the given constraints.

IV. FINDING OPTIMUM NETWORKS WITH SAT
A. Knuth’s Algorithm

Inspired by the work of Kojevinok et al. [8] and Éen [11],
Knuth [12] has proposed a SAT based formulation to find an
optimum normal Boolean network for functions g1, . . . , gm
depending on n variables. Note that considering normal
functions is not restrictive when considering single-output
functions. If a function is not normal, we simply find the
optimum network for the inverted function and invert the root
gate. The idea is to use a SAT solver to check whether there
exists a normal Boolean network of r gates that realizes the
given functions. This formulation involves variables for indexes
1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t < 2n:

xit : tth bit of xi’s truth table
ghi : [gh = xi]

sijk : [xi = xj ◦i xk] for 1 ≤ j < k < i

fipq : ◦i(p, q) for 0 ≤ p, q ≤ 1, p+ q > 0

(2)

In other words, ghi is true, if function gh is represented by
gate xi. The variable sijk is true, if the operands of gate xi are
xj and xk. Finally, the variable fipq is true, if the operation of
gate xi evaluates to true for the input assignment (p, q). Since
we consider normal Boolean functions, also each gate maps
(0, 0) 7→ 0 which allows us to disregard xi0 and fi00 for all i.

Example 4: We illustrate the formulation by showing which
assignments to the variables represent the Boolean network
x4 = x1 ∧ x2, x5 = x3 ⊕ x4 with g1 = x4 and g2 = x5 (see
Fig. 1).

The xit variables encode the global function of each gate
in terms of a truth table. Since n = 3 and r = 2, the gate
index i ranges from 4 to 5 and there are 7 truth table bits from
position 1 to 7.

t = 7 6 5 4 3 2 1
x4t = 1 0 0 0 1 0 0
x5t = 0 1 1 1 1 0 0

There are four ghi variables, of which two are assigned 1
to indicate which output corresponds to which gate.

g14 = 1, g15 = 0, g24 = 0, g25 = 1

There are three variables s4jk and six variables s5jk and
from each of these sets of variables one variable is assigned 1.

k = 2 3 4
s41k = 1 0
s42k = 0
s51k = 0 0 0
s52k = 0 0
s53k = 1

Finally, the fipq variables encode the truth tables for the
AND and XOR operation.

p, q = 1, 1 0, 1 1, 0
f4pq = 1 0 0
f5pq = 0 1 1

Due to the encoding of the variables, only a few clauses are
necessary. The main clauses describe how the truth tables of
each gate are computed based on the assignments to the sijk
and fipq variables. For 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i the
clauses are(

sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄)
)
→ (fibc ⊕ ā) =

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)) (3)

and have up to five literals. The semantics can readily be
observed from the first line in the equation: If gate xi has xj
and xk as children, the simulation values for truth table row t
at xj is a, at xk is b, and at xi is c, then the function at gate
xi must evaluate to a for the input pair (b, c). Note that a, b, c
are constants in (3) and therefore control the polarity of the
respective variables. The whole clause or some literals may be
omitted in some cases. For example, if b = c = 0, we have
fi00 = 0 in the last term. If a = 0, the whole clause is omitted,
otherwise only the term. Also, xjt and xkt are constants if
j ≤ n and k ≤ n, respectively.

Let t = (t1 . . . tn)2 in binary encoding. Then the clauses

(ḡhi ∨ (x̄it ⊕ gh(t1, . . . , tn))) (4)

constrain the output values to the gates they point to. The
constraints

∨n+r
i=n+1 ghi ensure that each output is realized by

the network and the constraints
∨i−1
k=2

∨k−1
j=1 sijk ensure that

each gate has two operands.
These constraints are required to make the algorithm work.

Additional constraints are not necessary but helpful to reduce
the search space for the SAT solver, which brings down the
solving time significantly. Further constraints can be used to
indicate that each gate is used at least once (i.e., there is no
gate with empty fan-out) and that no two gates realize the same
operation on the same operands (i.e., the network is structurally
hashed). Constraints to break symmetries are also helpful: One
can enforce that gates appear in co-lexicographic order if they
are independent of each other and one can enforce an order
on symmetric variables. The reader is referred to the original
reference [12] for the details on these additional constraints.

We integrated the SAT formulation into a CEGAR loop.
That is, we don’t constrain the whole truth table using the
constraints in (3) but check after every satisfying assignment
whether the network derived from the assignment is equal to
the specification. If that is not the case, we can compute a
counter-example which is then used to add clauses for (3)
and (4). Eventually, the SAT formulation becomes unsatisfiable
implying that there is no network that can realize the input
function or the computed network realizes the input function.

B. Encoding Delay Constraints
We extended the synthesis algorithm from the previous

section to consider delay constraints and input arrival times.
The extension allows for using a SAT solver to check whether
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Fig. 2. Stair-decomposition

there exists a Boolean network with r gates that realizes the
n-variable functions g1, . . . , gm with a maximum delay of at
most ∆ assuming the input arrival times δ1, . . . , δn. Since logic
rewriting is computing the delay and input arrival times based
on the logic level, all values are integers.

The idea is to assign a minimum depth to each gate and then
constrain the maximum depth of the output gates. To encode
the depth at each gate we make use of the order encoding [13],
[12]. In the order encoding, a value x in the range 0 ≤ x ≤M
is represented by M variables xl for 1 ≤ l ≤ M where
xl = [x ≥ l]. We have x = x1 + x2 + · · · + xM , i.e., the
bitstring derived by xj has x ones followed by (M − x) zeros.
The clauses

(x̄l+1 ∨ xl) (5)

for 1 ≤ l < M ensure this property.
Example 5: If M = 4, we can represent the values

x = 0, 1, 2, 3, 4 by the bitstrings 0000, 1000, 1100, 1110, 1111,
respectively.

For the integration of delay constraints into the SAT
formulation, we associate a value di with each gate to represent
a lower bound on the delay of the gate xi with n < i ≤ n+ r.
The value is in the range 0 ≤ di ≤ δmax + (i − n) where
δmax = max{δ1, . . . , δn} is the greatest input arrival time.
Next, we can encode each di in the order encoding using
variables dli for 1 ≤ l ≤ δmax + (i− n).

We add clauses to propagate the depth limits according to
the wiring of the network. Clauses

δmax+j−n∧
l=1

(s̄ijk ∨ d̄lj ∨ dl+1
i )∧

δmax+k−n∧
l=1

(s̄ijk ∨ d̄lk ∨ dl+1
i ) (6)

for 1 ≤ j < k < i ensure that the minimum delay of gate xi is
larger by at least one compared to the minimum delay of the
children, xj and xk. For j ≤ n, the value of dlj is the constant
value [δj ≥ l]. The same applies to values of dlk for k ≤ n.

Finally, we add constraints ḡhi ∨ d̄∆+1
i for primary outputs.

If a gate is a primary output, its depth must be less or equal
to the maximum depth ∆. Note that this constraint only needs
to be added if ∆ < δmax + (i− n); otherwise, the maximum
depth constraint cannot be violated.

V. DETECTING INFEASIBLE CONSTRAINTS

Since our algorithm to find optimum networks is used in the
inner loop of the mapping algorithm, we can make assumptions
about the input function f given to ‘FindFastestNetwork’: f
is normal, i.e., f(0, . . . , 0) = 0 and depends on all its inputs.

Input : Function f : Bn → B and indexes i1, . . . , is
Output : True, if f is stair-decomposable w.r.t. indexes

1 set µ← 2n − 1;
2 foreach i ∈ {i1, . . . , is} do
3 switch IsTopDecomposable(f, µ, xi) do
4 case ∧ set µ← µ ∧ xi;
5 case ∨, ⊂ set µ← µ ∧ x̄i;
6 case ⊕ set f ← f ⊕ xi;
7 case false return false;
8 endsw
9 end

10 Function IsTopDecomposable(f, µ, x)
11 if (f ∧ µ) ⊆ (x ∧ µ) then return ∧;
12 if (f ∧ µ) ⊆ (x̄ ∧ µ) then return ⊂;
13 if (x ∧ µ) ⊆ (f ∧ µ) then return ∨;
14 if (fx ∧ µ) = (f̄x̄ ∧ µ) then return ⊕;
15 return false;

Algorithm 2: Functions to find delay-optimum networks

We check trivial cases, in which f = 0 or f = x1 as a
preprocessing step. Consequently, f has at least two inputs
and therefore the network requires at least one gate.

In the following, we list checks that are performed to detect
whether delay constraints are feasible for the given function
f(x1, . . . , xn). We first list checks that work independently
from the number of gates and only take the input arrival times
δ1, . . . , δn and the maximum arrival time ∆ into account.

A. Check for Infeasible Delay Constraints
A trivial check is that no network can exist if one of the

input arrival times is at least as high as the delay.
Lemma 1: There cannot exist a network for f if δmax ≥ ∆.
More complicated checks require the use of functional

decomposition. We say that f is stair-decomposable w.r.t.
variables xi1 , . . . , xis , if there exists a partition of the input
variables {x1, . . . , xn} = {xi1 , . . . , xis} ∪ {xj1 , . . . , xjt} and
functions g1, . . . , gs, h such that

f(x1, . . . , xn) =

g1(xi1 , g2(xi2 , . . . , gs(xis , h(xj1 , . . . , xjt)) . . . )). (7)

In other words, f is realized by a network, as depicted in
Fig. 2. Note that this network must be optimum for f for any
optimum network of h.

Lemma 2: If there are input arrival times δi1 , . . . , δis such
that δil = ∆ − l for 1 ≤ l ≤ s, then a network for f exists
only if f is stair-decomposable w.r.t. xi1 , . . . , xis .

Example 6: Assume f(x1, x2, x3, x4) with δ1 = δ3 =
0, δ2 = 3, and δ4 = 4 and ∆ = 5. Then, a network for f only
exists if it can be decomposed as g1(x4, g2(x2, h(x1, x3))),
i.e., f is stair-decomposable w.r.t. x4 and x2.

Algorithm 2 checks whether a function f permits a stair-
decomposition xi1 , . . . , xis . The variables are derived from the
input arrival times. For each variable in order, it is checked
whether f is top-decomposable. That is, for the first variable,
we check whether we can write f = xi1 ◦ g for some ◦ ∈
{∧,⊂,∨,⊕}. (Note that xi1 ⊂ g = x̄i1 ∧ g.) Then, we need to
check whether g is top-decomposable w.r.t. the next variable
xi2 and so on. However, g may not be completely specified as
some of the truth values are masked by xi1 . We capture this by
using a mask µ that acts as the care set for g. Also, note that



Input : Input arrival times δ1, . . . , δs, delay ∆
Output : upper bound rmax on the number of gates

1 set s← 1, l← ∆, a← n, rmax ← 0;
2 while (s > 0) ∧ (l > 0) ∧ (2a > s) do
3 for i ∈ {1, . . . , n} do
4 if δi = l then
5 s← s− 1, a← a− 1;
6 l← l − 1;
7 rmax ← rmax + s;
8 s← 2s;
9 end

10 end
11 return rmax;

Algorithm 3: Determining maximum number of gates

instead of using the name g, we use f to refer to the current
function in Algorithm 2. The algorithm is illustrated by the
following example. Note that we use ‘∗’ as don’t care symbol.
For example, instead of writing f = 1100 and µ = 1010, we
just write f = 1∗0∗.

Example 7: Let us check with Algorithm 2 whether f =
0001 1110 0000 0000 is stair-decomposable w.r.t. x4, x3, x2.
The algorithm performs the following checks and updates to f .
x4 = 1111 1111 0000 0000 ⊇ f f ← 0001 1110 ∗∗∗∗ ∗∗∗∗
fx3 = f̄x̄3 = 0001 0001 ∗∗∗∗ ∗∗∗∗ f ← 1110 1110 ∗∗∗∗ ∗∗∗∗
x2 = 1100 1100 1100 1100 ⊆ f f = ∗∗10 ∗∗10, ∗∗∗∗ ∗∗∗∗
Hence, f is stair-decomposable w.r.t. the given variables.

Further checks are possible using the notion of stair-
decomposable functions.

Lemma 3: Let f be stair-decomposable w.r.t. xi1 , . . . , xis
with arrival times as in Lemma 2. Also, let there be another
input different from xis with the same arrival time δis . There
can only exist a network for f , if n = s+ 1.

In this case, the other input represents function h in Fig. 2
and therefore any other input cannot be part of the network.

If f is stair-decomposable and therefore possibly permits
some logic network representation, one can find an optimum
circuit for h (see Fig. 2) instead for f . Also, h may have a lot
of don’t care assignments as indicated by Example 3, making
the search easier.

Other checks based on functional decomposition are possible,
which are only illustrated by means of an example. Let f
be a 6-variable function in which the inputs x1, x2 and x3

have input arrival times 4, the other ones less than 4 and
we want to find a network with maximum delay 6. Then,
f can only be realized if there exists a decomposition f =
h(g1(x1, x2, x3), g2(x4, x5, x6)).

B. Check for Infeasible Gate Constraints

The depth imposes an upper bound on the number of gates:
in the worst case f is a binary tree with 2∆ − 1 gates. But we
can do much better when taking the input arrival times into
account. They act as cut-off points in the binary tree.

Example 8: We illustrate the upper bound computation using
a 4-variable function f , a maximum delay ∆ = 5 and input
arrival times 3, 2, 2, and 0. The full binary tree has 31 gates.
But if we cut off branches for the inputs with arrival times 3
and 2 the upper bound reduces to 18 (see Fig. 3(a)).

However, when some inputs are used as cut-off points,
fewer inputs remain that have an influence on the maximum
number of remaining gates. In the example, the network

(a) (b)

Fig. 3. Maximum number of gates for delay constraints

has four inputs, and three inputs have already been fixed
(see Fig. 3(a)), therefore, the number of gates is highly
overestimated. Algorithm 3 shows a heuristic for a better
estimation based on cut-off points and remaining inputs. In the
algorithmic description, s is the number of gates in the current
level, l is the current level, and a is the number of available
nodes. Whenever an input can be used as a cut-off point (line
4), the number of current gates per level and available nodes
is decreased by 1. The number of current gates is accumulated
for the maximum number of gates rmax (line 7) and doubled
after every iteration (line 8). Algorithm 3 computes six gates as
the upper bound for the network in Example 8 (see Fig. 3(b)).

VI. EXPERIMENTAL RESULTS

This section presents experimental results. We implemented
our approach in ABC [15] as command ‘if -u’. Three other
depth-optimization commands in ABC are similar to this one:
SOP balancing (‘if -g’, [14]), DSD balancing (‘if -x’), and
LMS (‘if -y’, [7]). We applied all four approaches to the
combinational ISCAS benchmarks. It is worth noting that
LMS’s database is constructed using the ISCAS benchmarks
(besides other benchmark libraries) and therefore LMS yields
near-optimum results for these benchmarks.

Table I lists the results. We used k = 6 as cut size. For
each delay optimization technique, we list the number of
gates and the global depth after optimization as well as the
runtime consumed. Each command inputs an AIG and returns
a delay-optimized AIG, while our approach returns a network
of arbitrary two-input gates, possibly containing XOR gates.
Supporting XORs is not only a strength of the algorithm,
compared to the other techniques, but is in fact necessary for
BMS to be effective. If one permits XOR gates in the SAT
formulation (using blocking clauses for the fipq variables),
the runtime decreases significantly in XOR-rich networks. Of
course, having XORs in the resulting networks is a main reason
for having better depth of the resulting networks. By restricting
the SAT formulation to find AIGs, the resulting depth is the
same as that computed by LMS, since the database used by
LMS is computed using the ISCAS benchmarks.

Some subnetworks are very difficult for the SAT solver to
handle. In order to keep the runtimes reasonable, we aborted
SAT calls after 400 000 conflicts (see, e.g., [12]). Further, when
the call to ‘FindNetwork’ is aborted in ‘FindSmallestNetwork’
for some r, we retry to find a network by setting r to the
maximum number of gates (see Section V-B) and then decrease
r until no network can be found or the search is aborted. This
can help find a network, since satisfiability calls are often faster
than unsatisfiability calls in these optimization approaches [16].
The procedure may not guarantee size optimality, which is
acceptable because we focus on depth optimization.



TABLE I
EXPERIMENTAL RESULTS

Benchmark SOP balancing [14] DSD balancing LMS [7] BMS

gates depth runtime gates depth runtime gates depth runtime gates depth runtime cuts aborts

c432 202 20 0.01 134 23 0.02 208 20 1.16 211 20 1908.92 7902 4
c499 412 14 0.05 414 15 0.04 414 13 1.26 232 9 5079.43 28509 2
c880 382 14 0.03 322 20 0.04 373 14 1.20 341 14 16213.83 18786 35
c1355 412 14 0.05 414 15 0.04 402 13 1.26 242 9 1894.19 29595 0
c2670 607 15 0.08 581 17 0.08 618 14 1.18 606 14 7617.23 34007 28
c3540 1063 27 0.16 961 32 0.18 1014 27 1.33 1020 22 21297.38 77575 73
c5315 1388 21 0.20 1341 26 0.21 1364 19 1.73 1361 16 133345.26 95124 186
c6288 2792 63 0.11 2874 87 0.32 2684 55 1.87 2274 46 66558.42 163153 355
c7552 1594 17 0.38 1535 25 0.42 1511 17 2.10 1293 16 209267.97 150817 302

Out of the three techniques we used in the comparison, LMS
leads to the best results. Therefore, we use LMS as the baseline
for comparison in other experiments. The results show that the
depth can be further reduced for all but three benchmarks. For
these three, c432, c880, and c2670, the depth is the same as
obtained by LMS, but in two cases the area is better. Only for
c432 LMS is better than BMS. The best delay improvements
are obtained for c499, c1355, c3540, and c6288.

BMS as currently implemented is significantly slower than
other methods. This is because other approaches consider only a
subset of feasible subnetworks, while BMS enumerates through
all subnetworks to find a depth-optimum one. However, in order
to show the efficiency of BMS despite its high runtime, we
report in the last two columns the number of cuts enumerated
by the LUT mapper and the number of cuts aborted after hitting
the resource limit of 400 000 conflicts. As an example, in c499
the SAT solver aborted only twice after considering 28 509
cuts. For these two functions, it cannot be guaranteed that the
optimum subnetwork has been found, but for the functions of
all other cuts this guarantee can be given. In fact, for c1355
the SAT solver was able to find the exact optimum for all
29 595 enumerated cuts, thereby guaranteeing a local minimum
for 6-LUT mapping. This is a strong statement for a logic
optimization algorithm.

VII. CONCLUSION

We presented a high-effort depth-reducing logic rewriting
algorithm called Busy Man’s Synthesis (BMS). The algorithm
is implemented on top of a technology mapper. A novel SAT-
based method is used to compute a depth-optimal implemen-
tations of Boolean functions of k-cuts enumerated by the
mapper while taking input arrival times into account. Besides
an efficient SAT-based algorithm, high-quality checkers of the
feasibility of delay constraints are also essential for a robust
implementation. Our experiments show that high-quality results
are often produced and local optimality is achieved with enough
computational effort—this is a novelty for logic rewriting
algorithms. The runtime of the approach grows proportional
to the number of cuts, and is therefore also applicable to large
networks. Our experiments showed that for 6-input functions
the SAT-based algorithm rarely aborted. We expect to scale
the algorithm to 7-input and 8-input functions by doubling and
quadrupling the resource limit for the SAT solver, respectively.

Future work will include making the algorithm more efficient
by exploiting satisfiability don’t cares, which can be computed

by the mapper for Boolean functions of each cut, and by
using NPN classification to reduce the number of functions
evaluated by the SAT solver. Further, we need to strengthen the
constraint feasibility checkers using functional decomposition
or by computing better upper bounds.
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