Abstract

In this paper we consider a linear system structured into physically coupled subsystems and propose an innovative distributed control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. Our method hinges on the availability of a decentralized stabilizing regulator for the unconstrained system and provides a two-layer controller for each subsystem. Upper controllers receive planned state trajectories from neighboring subsystems and exploit the notion of tubes (Langson et al., 2004) for achieving robustness of stability with respect to coupling. Lower controllers generate planned trajectories using Model Predictive Control (MPC) independently of the other subsystems. The proposed control scheme is arguably easier to design and apply than existing distributed controllers with similar features. A comparison of the proposed approach with existing centralized and distributed MPC regulators is conducted using an illustrative example.

Details

Actions