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Abstract 9 

A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target 10 

levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-11 

dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation 12 

has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. 13 

Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-14 

dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity 15 

demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in 16 

the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid 17 

and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering 18 

grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical 19 

hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines 20 

and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential 21 

of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering 22 

stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct 23 

grid integration of non-dispatchable renewable energy technologies.  24 
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1 Introduction 28 

Integrating renewable energy technologies into the electricity grid is gradually getting popular due to rapid depletion 29 

of fossil fuel resources and global concerns on greenhouse gases emissions and nuclear energy. Several countries 30 

have their own goals with different time lines in this regard.  For example, Germany has a goal to cover 50% of the 31 

generation system using renewable energy by 2030 [1], while in Finland it is 38% by 2020 [2]. Switzerland is 32 

expected to phase-out nuclear energy by 2035 by increasing the energy efficiency and the share of renewable energy 33 

sources. In Sri Lanka, it is expected to increase the share of non-conventional renewables, such as SPV and wind 34 

energy, up to 20% by the end of 2020. Recent studies highlight that distributed generation using solar PV (SPV) and 35 

wind energy is promising to foster the renewable energy penetration in the market  [3], [4].  36 

Energy systems fully driven using renewable energy sources is a dream that wider community of researchers try to 37 

make a reality [5]–[9]. Replacing dispatchable energy sources driven by fossil fuel through distributed SPV, wind 38 

and biomass/bio energy sources is the major challenge in this context. Mismatch in time of peak demand and 39 

generation due to stochastic nature of wind speed and solar radiation as well as of electricity demand makes the 40 

renewable energy integration process difficult [10], [11]. Integration of dispatchable energy sources, energy storage 41 

and converting into hybrid renewable energy systems is a cost effective approach in increasing the reliability during 42 

the renewable energy integration process. Further, this helps to amalgamate energy sources with higher seasonal 43 

variation in energy potential [12], [13] with less impact to the grid. More importantly, this is the starting point of 44 

minimizing the contribution of dispatchable energy sources based on fossil fuels, which makes existing energy 45 

systems more eco-friendly and sustainable [10], [14]. However, optimum designing of such energy systems is a 46 

challenging task. 47 

Several research groups have focused on optimizing grid-integrated hybrid energy systems which Fathima and 48 

Palanisamy [15] provide a review of the major recent works. Two different approaches can be used in this context to 49 

optimize the system design and dispatch simultaneous.  50 

1) Energy system is expected to operate in finite set of states (finite state machines) in which operating 51 

conditions for the dispatchable energy sources and storage is defined. Subsequently, state transfer function 52 

is optimized along with the energy system (sizing problem) based on the objective functions considered 53 

[16]–[19]. 54 
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2) Optimum operating conditions for dispatchable energy sources and storage is obtained for each time step 55 

considering these as decision space variables [20]–[24]. This can be further classified into two groups, 56 

depending whether dispatching is optimized as time depended small scale problems or globally as a unique 57 

large size problem as explained in Ref. [25].  58 

Both these methods are coming with their strengths and weaknesses. The first method can consider non-linear 59 

models (considering valve point effect etc) easily for energy conversion processes without simplification and present 60 

performance of the system (for 8760 time steps) with less computational time. However, the number of possible 61 

states that the system could operate increases exponentially with the complexity of the energy flow within the 62 

system (especially for poly-generation with multiple dispatchable energy sources and storages). Second method is 63 

more suitable when considering complex energy systems with multiple dispatchable sources and storage. However, 64 

computational time and the resources required become extremely high when using this method. According to Evins 65 

[22] optimization time can reach up to seven days when considering second method while Pruitt et al [24] report that 66 

there are limitations in handling a time horizon due to the increase of decision space variables. Further, simple 67 

linearization of objective functions can influence the results of the optimization problem significantly [26]. Hence, 68 

designing energy systems with simple energy flow such as hybrid energy systems and grid tied hybrid energy 69 

systems tends to use the first method while the second method is used for ploy-generation [20]–[24].  70 

The first part of the manuscript introduces a novel optimization algorithm to design grid integrated electrical hubs 71 

extending the first method based on finite states. Electrical hub is a simplified version of multi-energy hubs (amply 72 

studied in recent literature considering its operation [27]–[31] and design optimization [22]). The electrical hub 73 

consists of wind turbines, SPV panels, battery bank and an Internal Combustion Generator (ICG) which is designed 74 

to operate as a grid-tied hybrid energy system. Finite state machines have been amply used to optimize energy 75 

systems with similar architecture to electrical hubs and hybrid energy systems which are operating both stand alone 76 

and grid integrated modes [18], [19], [32]–[35] (including previous works of the authors [17], [36]). In previous 77 

studies of the authors, [17], [36], multi objective optimization and multi criterion decision making related to stand-78 

alone hybrid energy systems were taken into discussion without any grid interactions. A comprehensive review 79 

about optimization techniques used on this regard can be found in Ref. [37]. Grid integrated hybrid energy with a 80 

similar architecture to electrical hubs have been also optimized by extending the dispatch strategy used to optimize 81 

stand-alone systems [38], [39]. As a result, the state of the charge of the battery bank and the price of electricity in 82 
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the grid has not been considered in the dispatch strategy although these factors can significantly influence the cash 83 

flow of the system according to Ref. [40], [41]. Number of states that system could operates increase notably when 84 

considering the energy storage, dispatchable energy sources and grid interactions simultaneously. In order to address 85 

this issue, this study introduces a novel bi-level dispatch strategy coupling fuzzy logic and finite state machines in 86 

order to optimize system design along with dispatch strategy. Fuzzy logic has been amply used in dispatch 87 

optimization of hybrid energy systems [42]–[45] which is considered as one of the most promising techniques by the 88 

recent review on energy management strategies for hybrid energy systems [46]. However, for the best of author’s 89 

knowledge fuzzy logic has not been used for dispatching to support design optimization (system sizing) before, 90 

which can be used as an attractive method to address the limitations in the existing design optimization process.  91 

The second part of the manuscript presents a detailed assessment on the potential of electrical hubs to integrate SPV 92 

and wind energy with a minimum impact to the grid (making the energy system to be autonomous while minimize 93 

the energy export and import to and from the grid). Integrating higher fractions of non-dispatchable renewable 94 

energy technologies while operating at higher autonomy levels (minimum grid interactions) is a difficult task [47], 95 

[48]. According to Ueckerd et-al [49] direct integration of higher fractions of non-dispatchable renewable energy 96 

sources above 30% is beyond the reach due to the limitations in the grid. A quantitative and qualitative analysis 97 

about the potential of integrated energy systems (such as electrical hubs) to extend the SPV and wind energy 98 

integration (with minimum impact to the grid) is missing in literature besides its timely importance. This moves 99 

beyond design optimization where detailed assessment of the electrical hub is required. To achieve this objective, 100 

Pareto optimization is conducted in this study considering Levelized Energy Cost (LEC) and Grid Interaction (GI) 101 

level (extending the definitions in Ref. [47], [48] ) as objective functions. Decision space variables related to the 102 

system sizing problem and variables of the dispatch strategy are considered as decision space variables to be 103 

optimized. Sensitivity of the mode of grid interactions (importing and exporting electricity from the grid), the price 104 

of electricity and the curtailments in the grid and role of ICG and energy storage on SPV and wind energy 105 

integration are taken as the aspects to be assessed.  106 

The manuscript is arranged in the following manner; a novel method to optimize electrical hubs is proposed in the 107 

first part of the manuscript extending existing methods to optimize grid integrated hybrid energy systems. The 108 

second part is devoted to evaluate the potential of electrical hubs to increase the SPV and wind energy contribution 109 

with a minimum impact to the electricity distribution grid considering the recent and future changes in the grid.  110 
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2 Overview of the problem  111 

This section provides an overview about the concept of electrical hub within the framework of distributed generation 112 

under section 2.1 and system configuration considered for the electrical hub in Section 2.2. A detailed overview 113 

about the novel computational model developed to design electrical hubs is also taken into discussion in this section 114 

(2.3) mapping it into different parts of the manuscript. Main parts of the computational model and interconnection 115 

among components is illustrated in Section 2.3.        116 

2.1) Distributed generation to electrical hubs 117 

It is a challenging task to use distributed renewable energy sources in order to deliver the distributed demand. This 118 

needs to be achieved through several steps as demonstrated in Fig. 1. Distributed demand should be identified: 119 

building performance simulation tools such as EnergyPlus [50] or CitySim [51] can be used to calculate the 120 

distributed demand. Clustering the demand helps to locate “demand centers” where the distributed energy systems 121 

will be located [52]. Hence, clustering the distributed demand is followed by building energy modeling as shown in 122 

Fig. 2. Simultaneously, it is important to assess the potential of renewable energy sources being parallel to the 123 

demand simulation. This is usually achieved in two steps. First, energy maps are used to identify the promising 124 

renewable energy technologies (qualitatively). Afterwards, a detailed analysis (quantitatively) is conducted to gather 125 

the basic time series data for the selected energy technologies (which were identified as promising energy 126 

technologies during the first step).  127 

Designing distributed energy systems consists of two processes i.e., designing the energy systems and designing the 128 

grid. This study only focuses on the energy system, therefore operation and maintenance of the utility grid is not 129 

considered. The method which is introduced in this study can be used to assess the potential of renewable energy 130 

integration in virtual power plants, smart micro-grids, grid-tied hybrid energy systems with minor modifications in 131 

boundary conditions, and the computational model [53]–[55] which are similar in operation.   132 

2.2) System configuration of the electrical hub  133 

The Electrical hub, considered in this paper consists of two non-dispatchable energy sources: solar PV panels and 134 

wind turbines, as well as one dispatchable energy source; an Internal Combustion Generator (ICG) (Fig. 2). 135 

Moreover, a battery bank is used as the energy storage. The battery bank is used to absorb the fluctuations of 136 

renewable energy generation and demand of the electrical hub. As shown in Fig. 2, the electrical hub interacts with 137 
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the main utility grid (which is called as the grid hereafter) whenever it is required to cater the demand. Grid 138 

curtailments are considered for both import and export electricity to and from the electrical hub and real time price is 139 

considered from the Energy Service Provider when interacting with the grid which differentiate the present study 140 

from a simple grid connected hybrid energy systems. The electrical hub responds to the price signals of the grid 141 

when determining the operation strategy. 142 

 

Solar Energy

Wind Energy

Hydro Power

Biomass/bio-energy

Geothermal

Clustering the 
demand

Qualitative mapping 
of renewable energy

Quantitative mapping 
of renewable energy

Determining 
distributed demand    

Collecting basic data

Designing electrical hub

Boundary of the electrical hub 
considered

Distributed demand

Energy System

Main Utility Grid Overview of the electrical 
hub  143 

Fig. 1 Overview of the design problem  144 

 145 

Fig. 2 Overview of the electrical hub 146 
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2.3) Overview of the developed design tool  147 

Design optimization of electrical hubs consists of several interconnected steps. Energy System design process starts 148 

with collecting basic techno-economic data, renewable energy potentials, demand profile and information related to 149 

the grid. Main objective of the computational model is to optimize the design and control strategy based on the 150 

objective functions considered. Variables related to the system configuration (capacity of wind turbines, SPV panels, 151 

battery bank, ICG and the type of wind turbine and SPV panels used for the design) and dispatch strategy are 152 

considered as the decision space variables in the optimization algorithm. Levelized Energy Cost (LEC) and Grid 153 

Integration (GI) level are considered as objective functions and power supply reliability and grid curtailments are 154 

used as constraints in the optimization. A computational tool is developed which consist of several parts as shown in 155 

Fig.3.   156 

 157 

Fig. 3 Outlook of the computational tool 158 

The first part of the computational model is used to calculate the energy generation of renewable energy 159 

technologies (SPV panels and wind turbines) as shown in Fig. 3. A mathematical model is developed to present the 160 

energy conversion process in each system component towards achieving this objective. The task of the simulation 161 

block is to compute performance indicators that are used to formulate objective functions being connected to the 162 

mathematical models. In order to achieve this, energy flow (energy conversion through the path) of the system is 163 

evaluated considering the hourly time series of the renewable power generation, demand and electricity price in the 164 
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grid. Time series simulation is amply used in energy system optimization in order to evaluate the performance of the 165 

system throughout the year[16], [17], [22].   166 

Sizing and selection of the system components affect the energy flow considerably and need to be considered in 167 

modelling. This makes the optimization block to be sandwiched between two blocks (i.e. Collecting Data and 168 

Mathematical Model). Mathematical model will present the energy conversion process of each system device. 169 

Computational model for wind turbines and SPV panels will generate a time series of hourly power generated using 170 

the computational model which is transferred to the Simulation block as shown in Fig. 3. Similarly, mathematical 171 

models for energy storage and ICG are used in evaluating the energy flow being coupled with the dispatch strategy. 172 

An extended explanation about each block is provided in sections 3, 4 and 5. 173 

 174 

3 Mathematical model for the electrical hub 175 

The mathematical model developed in this work consists of several parts devoted to analyze the energy and cash 176 

flow of the system, grid interactions and power supply reliability. This is used to formulate LEC and Grid 177 

Integration (GI) level which are considered as objective functions (FϵƑ: set of objective functions) to be optimized 178 

Power supply reliability is considered as a constraint as defined in Section 3.3. Decision space represents variables 179 

of the system design and operation (dispatch strategy); the system design variables consist of the type (technology) 180 

of SPV panels, wind turbines and the capacities of SPV panels, wind turbines, ICG and battery bank in the optimum 181 

system design (NϵƝ: set of decision space variables related to system design). This section formulates the time 182 

series of renewable power generation using SPV and wind based on the corresponding values of the decision space 183 

variables.  184 

3.1 Energy flow model 185 

The main objective of the energy flow model is to evaluate the power generation and energy conversion processes 186 

within the system as discussed in Section 2.3. A brief description of the computational model which is used to 187 

determine the electricity generation through the dispatchable/non-dispatchable sources and the other energy 188 

conversion processes is presented in this section. 189 

 190 
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3.1.1 Modeling non-dispatchable energy technologies 191 

Time series of hourly solar radiation on a horizontal plane for the considered location are obtained from the closest 192 

meteorological station.  These values are used to calculate the solar radiation on a tilted plane that comprises the 193 

SPV panels (e.g. Gt
β
) using an anisotropic diffuse solar radiation model. A detail description of the corresponding 194 

model is given in Ref. [56]. Thereafter, a semi empirical formula proposed by Durisch et al. [26] is used to 195 

determine the energy efficiency of the SPV panels SPV

t  for time step ):( yeartheinhoursallofsetTtt   according 196 

to Eq 1.  197 
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In Eq. 1, AM is the air mass value [27] and SPV

t  is the solar cell temperature. Standard values for 
0G , SPV

0 , AM0 199 

are taken respectively as 
0G = 1000 Wm

-2
, SPV

0 = 25
o
C and  AM0 = 1.5.  Parameter values of  SPVp , SPVq , SPVr , 200 

SPVs , SPVm , SPVu  for different SPV technologies, such as mono-crystalline, polycrystalline and amorphous silicon 201 

cells, are taken from Ref. [57]. The hourly power supply from the SPV panels SPV

tP  is calculated according to Eq. 2. 202 

SPVA  and )( SPVSPV NN  represent the area of a single SPV panel as well as the number of SPV panels.  203 

TtNAGP SPVSPVSPV

tt

SPV

t  ,                   (2) 204 

Similar to the energy conversion model of the SPV panels, the energy flow model for wind turbines consist of two 205 

main components: i) a model to evaluate the wind speed at the hub level of the wind turbine and ii) a model to 206 

evaluate the electrical power generation from wind turbines. Hourly wind speed at 10 m anemometer height is used 207 

to calculate wind speed at hub level (vt) of the wind turbine using a power law approximation. 208 

Performance of the wind turbine can be modelled mainly using two different types of models turbine according to 209 

Thapar et al. [58]. These are wind turbine models based on the presumed shape and wind turbine models based 210 

actual shape of the performance curve of wind turbine. Thapar et-al [58] shows that the latter is more accurate in 211 

many applications. This study is using the second method. In this method, the “power curve” of the wind turbine, 212 

provided by the manufacturer is taken and the wind turbine is modeled using ns number of cubic spline interpolation 213 

functions, considering ns+ 1 points from the power curve given by the manufacturer  [59], [60] according to Eq. 3.  214 
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 219 

In Eq. 3, w

ia , w

ib , 
w

ic , and w

id  are coefficients of the polynomial function which vary depending on the “power 220 

curve”. vR, vCI, vCO and PR denote rated wind speed, cut-in wind speed, cut-off wind speed and rated power of the 221 

wind turbine. Finally, net power generation (
W

tP ) is calculated using Eq. 4.  222 

TtPP W
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W

t  , N  )(v 
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In Eq. 4, )( WW NN  denotes the number of wind turbines which is optimized using the optimization algorithm, 224 

~
W

tp denotes power generated by one wind turbine calculated using the power curve and losses-W  accounts for other 225 

losses that take place in the energy conversion. 226 

3.1.2 Modeling dispatchable energy technologies 227 

The battery bank and the Internal Combustion Generator (ICG) are used to store and supply the dispatchable energy 228 

requirement. Hourly energy requirement from the dispatchable energy source and storage is determined by the 229 

dispatch strategy which is illustrated in detail in Section 4. Fuel consumption of the ICG ( ICG

tF ) is calculated based 230 

on hourly power generation from ICG ( ICG

tP ) according to Eq. 5. Fuel consumption is usually computed using linear 231 

relationship of load factor [61]. A fourth order polynomial function of load factor (based on the performance curve 232 

of the ICG provided by the manufacturer) is used to model [35], [61], [62] the fuel consumption in this study in 233 

order to improve the accuracy of the calculations. 234 
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In this equation, ICG

ka , ICG

kb , ICG

kc , ICG

kd and ICG

ke are taken from the performance curve of the k
th

 ICG, )( kk , 236 

obtained from the optimization algorithm. In this equation, yt denotes the operating load factor of ICG which is 237 

calculated using fuzzy logic controller according to Section 4.1.  Life time of the ICG is considered based on the 238 

operating time of the ICG. Based on that, number of replacement for the ICG is calculated which is used for the cost 239 

model.  240 

State of Charge (SOC) of the battery bank is determined using finite state machines as describes in Section 4.2. 241 

Capacity of the battery bank N
Bat

 (N
Bat

ϵƝ) is optimized using the optimization algorithm. Self-discharge rate of the 242 

battery bank is taken as 0.02% of the charge level. The Rain-Flow Algorithm [63] is used to determine the life time 243 

of the battery bank depending on the number of charge/discharge cycles. Based on that number of replacement for 244 

the battery bank, life cycle cash flow for the energy storage is calculated.  245 

3.2 Grid interaction level 246 

The electricity grid is a critical infrastructure which is vulnerable to cascade failures [64]. Strong interactions via 247 

both importing and exporting electricity are discouraged from a perspective of grid stability. Stability of the grid is 248 

considered in two different steps in the design process of the grid integrated energy system [43]. Firstly, curtailments 249 

for grid interactions are introduced. Due to hourly, daily and seasonal changes in both electricity demand and 250 

renewable energy supply, it is difficult to determine these parameters which should ideally be dynamic. Hence, grid 251 

curtailments are introduced as an upper bound for the energy interactions with the grid in this work. Secondly, a 252 

method is used to minimize the net interactions considering either importing or exporting energy from the grid or 253 

both. The two methods can be used as a performance indicator to evaluate the autonomy level of the system. It is 254 

important to note that these methods cannot replace the technical procedures used to access and monitor the stability 255 

and performance of the grid, which need to be carried out after the optimization of the system design.   256 

The maximal limit for grid interaction (both to and from) is limited to EGLim (i.e., the maximal power units that can 257 

be sold to the grid within a time step) and IGLim (e.g., the maximal power units that can be purchased from grid 258 

within a time step) belonging to the first category. Three different performance indicators are used in this study to 259 

measure the interaction with the grid which are developed based on [48], [65]. The first indicator, GIIG is based on 260 

the total electricity amount purchased from the grid (Eq. 6). This indicator depicts the support of the grid to maintain 261 

the reliability level of the electrical hub. The second indicator, GIEG is the total energy amount that is sold or 262 



12 

 

exported to the grid (Eq. 7). With the integration of renewables, selling electricity to the grid becomes essential in 263 

order to minimize the operating cost of the system; though, excess transfer of electricity can reduce the stability of 264 

the grid. Finally, energy flows in both directions are considered as the third indicator (GIIEG) as shown in Eq. 8.  265 
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 In these equations, ELD

tP  denotes electricity demand of the electrical and IG

tP  and EG

tP denotes the power imported 269 

and exported to and from the grid. The formulation for both these parameters depends on operating state. For an 270 

example EG

tP  can be defined according to Eq. 9 for a one simple operating state i.e. State 3 (described in Section 271 

4.2) which is different in other operating states.  272 

TtELDPPP t

ICG

t

RE

t

EG

t  ,                   (9) 273 

In this equation, 
tELD  and RE

tP   denote electricity load demand of the application and renewable power generation (274 

W

tP + SPV

tP ).   275 

            276 

3.3 Power supply reliability of the hub 277 

Power supply reliability is calculated in this study using the loss of load probability (LOLP) model used in Ref. 278 

[66]–[69]. Loss of power supply (LPS) is considered to be occurring whenever power generation within the system 279 

is less than the demand (according to Eq. 10); and the mismatch cannot be supplied by both battery bank (due to the 280 

limitations in energy storage) and grid (due to the grid curtailments).   281 

TtIGPPPELDLPS Lim

MaxBat

t

ICG

t

RE

ttt   ,                          (10) 282 

MaxBat

tP   denotes maximum power flow from the battery depending upon the state of charge. 283 
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LOLP presents the probability that loss of power supply can occur due to the limitations in the generation when 284 

catering the demand for the time period considered. 
 Tt

tLPS  presents the expected loss of energy, or energy not 285 

supplied for the time period considered (8760 hours). LOLP presents the LPS as a fraction of total demand 286 

according to Eq. 11 which is used as the performance indicator to evaluate the power supply reliability.  287 
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3.4 Life Cycle Cost Model  289 

The developed Life Cycle Cost (LCC) model evaluates the cash flows taking place during different time periods of 290 

the project. The cost model consists of three components: i) the Initial Capital Cost (ICC), ii) a Fixed Annual Cash-291 

flow (FAC) and iii) Variable Annual Cash-flow (VAC). The ICC of system components comprises the purchase and 292 

installation costs for the systems components.  The ICC of the whole system is determined considering the initial 293 

financial investment of the wind turbines, the SPV panels, the battery bank, the ICG and the power electronic 294 

equipment (such as DC/AC converters and inverters).  295 

VAC includes the replacement cost of the battery bank, ICG and inverters, which depends on operating conditions, 296 

operating hours and life expectancy. Replacing time for the battery bank is calculated as described in Section 2.1.2.  297 

The present value of VAC (VACPV) is subsequently calculated. The Net Present Value (NPV) of the system 298 

comprises of all the cash flows mentioned above. Finally, NPV is used to calculate Levelized Energy Cost (LEC) 299 

considering the ELD of the electrical hub. 300 

 301 

4 Novel dispatch strategy and simulation 302 

Seasonal variations of the renewable energy potential, demand and the dispatch strategy of the system notably 303 

influence the system sizing [70]. Hence, simulation of the system, considering hourly variation of renewable energy 304 

potential, grid conditions and demand is vital. Meanwhile, power generation using dispatchable energy sources and 305 

energy interactions with storage and grid need to be carried out in an optimum way. This mean that dispatch strategy 306 

needs to be optimized with the system simultaneously. A bi-level dispatch strategy is introduced in this section 307 
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which is used in order to achieve this task along with the decision space variables used to optimize dispatch strategy 308 

(dϵƊ: set of decision space variables for system control ). Section 4.1, introduces the primary algorithm based on 309 

fuzzy logic and Section 4.2 introduces the secondary algorithm based on finite state machines. Hourly simulation of 310 

the system based on the dispatch strategy generates the time series of hourly fuel consumption and SOC which are 311 

used to calculate the costs related to ICG and the life time of battery bank, system reliability and the grid integration 312 

levels.  313 

4.1 Primary level dispatch strategy 314 

The dispatch strategy consists of two main steps as explained in Fig. 4 (marked in blue and green). In the first step, 315 

the operating state (load factor) of the ICG (yt) is determined based on two input variables xt
1
 and xt

2
 representing 316 

normalized depth of Discharge (DoD) of the battery bank and the normalized load mismatch between demand and 317 

the renewable energy generation (Eq. 12).  318 
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              (12) 319 

The depth of discharge of the battery bank is calculated in a similar way using the SOC battery bank. Normalized 320 

values of DOD are designated by xt
2
 similar to Eq. 12. 321 

Takagi-Sugino method [71]–[73] is used in this study to load factor of the ICG. Fuzzy implication R
l
 for l

th
 fuzzy 322 

subspace is defined according to Eq. 13 323 

R
l
: If gl(x

1
t, is A

1
 ….. x

k
t is A

k
) then yt = h(x

1
t, x

2
t,… x

k
t, )              (13) 324 

In this equation, x
1
t - x

k
t (xϵχ: set of all input variables of the fuzzy controller) denotes premise input variables for 325 

the fuzzy controller for the time interval t ( Tt  ),yt denotes output variable of the fuzzy logic controller whose 326 

value is inferred. A
l
 denotes the fuzzy sets having a linear membership function representing a fuzzy subspace where 327 

rule R
l
 can be applied. yt

l
   is calculated for implication rule R

l
 using Eq. 14 using the function h

l
 in the consequence. 328 

 yt
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l
 + w1
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where w0
l
, w1

l
 ((w ϵW: set of decision space variable related to fuzzy controller ( DW  )) denotes coefficient 330 

determined by the system designer. yt
l
 is further simplified considering the two inputs according to Eq. 15   331 

yt
l
 = (w1

l
 x

1
t + w2

l
 x

2
t)/ (w1

l
+ w2

l
)                (15) 332 
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Fig. 4: Flow chart of the Dispatch Strategy considering the operation of internal combustion generator, battery bank 334 

and grid interactions  335 
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Finally, yt is calculated using center of gravity method according to Eq. 16 where μl denotes the membership 336 

function value for the corresponding rule R
l
. 337 
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                   (16) 338 

An extended description of this method can be found in Ref. [74]–[77] . The weight coefficients corresponding to all 339 

the nine subspaces (wϵW) are optimized using the optimization algorithm considering these as decision space 340 

variables. After determining the ICG operating state, the net power generated in the electrical hub is determined by 341 

combining both the non-dispatchable and dispatchable energy sources. The mismatch between demand and power 342 

generated is calculated afterwards. Load factor of the ICG is adjusted whenever the excess power generation is 343 

larger than the available storage capacity of the battery bank and EGLim. In the case of demand being larger than the 344 

generated power, Load Mismatch (LM) is calculated which is the difference between demand and power generated. 345 

The load mismatch is used to determine the operating state of secondary level dispatch strategy.  346 

 347 

4.2 Secondary level dispatch strategy  348 

Eight main operating system states are identified for the second stage of the dispatch strategy based on the 349 

conditions of the input variables for the rule based controller as well as curtailments for grid interactions (Fig. 5). A 350 

short description about the critical parameters (l ϵ L:(L⊂D): set of all decision space variables related to secondary 351 

level controller) used to optimize the state transfer is presented in Table 1 followed by a graphical presentation in 352 

figure Fig. 6. 353 

The first four operating states corresponds to instances where generation (combining wind, SPV and ICG) is less 354 

than the demand of the electrical hub. In State 1, corresponds to the instances where price of electricity in grid is 355 

higher ( IG

tGI  ) > LimBD and EG

tGI < LimBTG) and it is economical to take the mismatch from battery bank. 356 

Discharging the battery bank minimizes its life time, especially when reaching lower SOC levels.  In order to 357 

overcome this problem, a minimal SOC level, which can be reached during the discharging process (SOCmin), is 358 

determined using the optimization algorithm.  359 
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 360 

Fig. 5 Operating states of the system 361 

When the cost of electricity in the grid increases further, it is economical to discharge the battery bank ( IG

tGI > 362 

LimBD and EG

tGI  > LimBTG) and sell electricity to the grid while supplying the mismatch between demand and 363 

generation. System moves to State 2 in such instances.  However, discharging battery bank may lead to instances 364 

where electrical hub needs to purchase electricity at a larger price from the grid at a later stage. In addition, depth of 365 

discharge of the battery bank needs to be considered since it reduces the lifetime of the battery bank. Hence, 366 

minimal SOC for the battery discharging process (SOCMin,G) needs to be determined through the optimization 367 

algorithm. 368 

The system operates at State 3, when the price of grid electricity is cheaper ( IG

tGI  < LimBD and LimGTB < IG

tGI  ). 369 

Load mismatch between demand and generation is taken from the grid in State 3. When the price of grid electricity 370 

goes down further ( IG

tGI  < LimBD and LimGTB > IG

tGI  ), it is economical to charge the battery bank using the grid 371 

electricity. However, as the charging of the battery bank from the grid reduces their storage capacity for renewable 372 

energy, a set point (SOCSet) is introduced as the maximum limit for charging (instead of a full charging the battery 373 

bank), similar to the set point in the combined dispatch strategy for hybrid energy systems. SOCSet is optimized 374 
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taking upper bound as the maximum state of charge and lower bound as the SOCMin,G using the optimization 375 

algorithm. 376 

Table 1 Brief description about the variables in the dispatch strategy (l ϵ L (L ⊂D)) 377 

  378 

State 5-8 correspond to instances where generation is in excess compared to the demand. System moves into State 5 379 

when price of grid electricity is low ( EG

tGI  < LimBC and LimGTB < IG

tGI  ) where excess generation is directed to 380 

battery bank. When the price of grid electricity is quite low it is economical to charge the batteries from the grid 381 

after charging the battery bank from excess power generated ( EG

tGI  < LimBC and LimGTB > IG

tGI  ). State 7 382 

corresponds to instances where cost in the grid is competitive compared to charging batteries.  In such instances, 383 

excess generated will be directed to the grid. When the price of electricity in the grid increases further, it is 384 

economical to discharge the battery bank in addition to directing excess electricity generated ( EG

tGI  > LimBC and 385 

EG

tGI  > LimBTG). However, all these energy interactions need to take place considering the storage limitations of 386 

battery bank, EGLim and IGLim which makes the energy interactions more complicated. The logic flow diagram used 387 

in the secondary level dispatch strategy consists of 18 states which are based on the main eight states described.   388 

Acronym 

used 

Description 

LimBC Critical cost for  GCEG(t) above which selling the excess power generated to the grid 
is economical compared to battery charging 

LimBD Critical cost for  IG

tGI below which purchasing power from grid 

is economical compared to battery discharging 

LimGTB Critical cost for IG

tGI  below which purchasing power from grid to charge battery 

bank is economical 
LimBTG Critical cost for  GCEG(t) above which selling stored energy to grid is economical 

SOCmin Critical SOC of the battery bank below which discharging is not economical to cater 

the load mismatch 

SOCMin,G  Critical SOC of the battery bank below which it is not economical to discharge and/or 

to sell the stored energy to grid 

SOCSet Maximum state of charged to be reached when charging the battery bank using the 

grid  
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 389 

Fig. 6: Selection of the decision space variables for the battery bank  390 

4.3 Time Series meteorological and demand data for simulation 391 

The hourly average values of wind speed, global horizontal solar irradiation and ambient temperature data are 392 

required for the simulation.  393 

5 Optimization of the system design and dispatch strategy 394 

Designing electric hubs integrated to the grid is challenging due to a number of reasons as discussed before. A 395 

heuristic algorithm has been amply used in the literature [19], [32]–[34], [39], [79]–[81] and shown to be much 396 

efficient when optimizing these systems when compared to enumerative methods [82] which are used in existing 397 

software such as Homer [83]. A detailed comparison of these methods can be found in recent reviews on hybrid 398 

energy system designing [80], [84]. This study is using a heuristic algorithm to optimize the system design and 399 

dispatch strategy which can handle non-linear objective functions efficiently. This section illustrates optimization 400 

algorithm used in this study along with the decision space variables considered for the optimization which are 401 

introduced in Section 3 and 4, objective functions considered for the optimization defined in Section 3 and the 402 

constraints.  403 

5.1 Decision space variables  404 

Determining the optimal capacities of the system components as well as the type of components is the main 405 

objectives of the optimization algorithm. Basic system components are selected according to Table 2: their 406 
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corresponding type and capacity are also determined using the same optimization algorithm. Six decision space 407 

variables are used to represent the whole system configurations. 408 

Optimizing the dispatch strategy is another part of the optimization algorithm. The operation of the ICG and the 409 

battery bank need to be optimized together with the grid interaction. Both load mismatch and battery bank SOC are 410 

used to determine the state of operation of the ICG. The weight coefficients defined in Section 4.1 are optimized 411 

using the same algorithm. Three parameters are used to manage the energy flow to the battery bank according to its 412 

State of Charge (SOC) as illustrated in Fig. 6. SOCMin is optimized considering a SOC range of [0.3, 0.5]. Critical 413 

parameters for battery charging and discharging are optimized considering upper and lower bounds as shown in Fig. 414 

6. Similarly four variables are used to control the grid interaction as explained in Section 3.3. A. total number of 19 415 

decision space variables are selected to represent the state transfer function, with their span is defined according to 416 

Table 2.  417 

Table 2: Specific ranges of the decision space variables  418 

 419 

 420 

 421 

Variable Lower bound Upper bound Interval Description 

SPV Type (
NTY-SPV

) 0 3 1 

Mono-crystaline, 

Polycrystaline and 

Amorphous
1 

# SPV Panels NSPV 0 120 1 0-30
1
 kW  

Type of Turbines (N
TY-W

) 0 2 1 1, 5 kW 

# Wind Turbines  0 15 1 1-75
2
 kW 

# Battery banks 0 20 1 0-240
3
 kWh 

ICG Capacity (kVA) 0 15 0.5 0-7.5 kVA 

Wi,j  (weight matrix) 0% 100% Continuous  

SOCMin 30% 50% Continuous  

SOCMin,G SOCMin 70% Continuous  

SOCset SOCMin,G 100% Continuous  

LimBC 0% 100% Continuous  

LimGTB 0% LimBC Continuous  

LimBD 0% 100% Continuous  

LimBTG LimBD 100% Continuous  
1 0.5 kW maximum capacity 

2Maximum capacity considering component selected with maximum capacity 
3Each battery bank having 12 kWh capacity 
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5.2 Objective functions and constraints considered  422 

The goal of this study is to maximize the autonomy of the system in renewable energy integration process while 423 

minimizing its cost. It is a multi-objective optimization task where two objective functions need to be minimized 424 

simultaneously. All three indicators introduced in Section 3.2 are used as the objective functions along with LEC 425 

introduced in Section 3.4. LOLP is considered as a constraint (defined in Section 3.3) in the optimization algorithm. 426 

List of objective functions considered considering different scenarios are presented in Table 3.  427 

Table 3: List of Objective functions considered 428 

 429 

 430 

5.3 Optimization algorithm 431 

As discussed in Section 2.3, optimization algorithm is closely connected with the mathematical model and 432 

simulation of the system. The computational model and lifecycle simulation which map decision space variables 433 

into the objective space are described in detail in Sections 2, 3 and 4. Fig. 7 presents the simplified flow diagram of 434 

the optimization algorithm used in this study. The optimization algorithm starts with the random creation of decision 435 

vectors including variables related to system design and operation strategy which will create the initial population. 436 

Subsequently, set of vectors selected as the initial population is mapped to the objective space through the 437 

computational model and the life cycle simulation presented in Section 3 and Section 4 which will provide the 438 

Scenario
* 

Objective Function 1-  

Objective Function 2  

(F1-F2) 

Sensitivity Constraints 

A LEC-Grid Interactions 

considering imports (GIIG) 
Not considered 

Loss of load 

probability  

(LOLP)  

 

 

 

 

A LEC-Grid Interactions 

considering Exports (GIEG) 
Not considered  

A LEC-Grid Interactions 

considering imports (GIIEG) 
Not considered  

B LEC-Grid Interactions 

considering imports (GIIG) 

Grid curtailments considering 30%, 60% and 90% 

of the peak demand 

B LEC-Grid Interactions 

considering imports (GIIG) 

Market price of SPV panels and wind turbines 

considering 10%, 20% and 30% reduction 

B LEC-Grid Interactions 

considering imports (GIIG) 

Market price of grid electricity considering 10%, 

20% and 30% reduction  

 

*Pareto fronts in Scenario A corresponds to Section 6.2 and Section B corresponds to Section 6.3 
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values for the objective functions (FϵƑ) and constraints. Initial archive is created from the non-dominant set of 439 

solutions in the population according to the criterion defined by Deb et-at [85].  A Steady ε-State Evolutionary 440 

Algorithm [86] is used in this study for updating of archive and reproduction of the population which is proven as a 441 

method to maintain the diversity while reaching the final set of Pareto solutions within short period of time. 442 

Polynomial mutation operator [87] and simulated binary crossover operator [88] are used along with differential 443 

evolutionary operators [77]–[79]in the reproduction of the population. Constraints for the optimization algorithm are 444 

handled at two different levels: constraint tournament method [87] is used to handle the constraints in the 445 

optimization algorithm and loss of load probability is considered as a constraint while states of the control system 446 

were defined to handle the constraints due to grid curtailments. A computer program is written in C++ using Visual 447 

studio plat form. Computational time for the Pareto front depends on the objective functions selected and the 448 

number of generations considered; on average computational time was two hours for both Scenario A and B in this 449 

study.  450 

Reproduction of Population 
(Crossover and Mutation)

System Simulation

Evaluate
1) Objective Functions

· LEC
· Grid Interactions

2) Constraints Violation 
· Unmet load fraction 

Update Population

Update Archive

Generation of initial 
population

Stop

Check no of 
Generations 
Achieved?

Hourly Renewable 
Energy Potential

Hourly Electricity 
Load Demand

Initialize the Archive

Selecting Members from 
Archave and Population

Real time price in 
grid

Start

 451 

Fig. 7 Optimization algorithm for electrical Hubs 452 
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5.4) Convergence patterns for the optimization Process  453 

Evolutionary algorithm has been amply used in recent past when optimizing energy systems. When it comes to multi 454 

objective optimization you need to guarantee the diversity of the Pareto front while guaranteeing that you reach the 455 

optimum [92]. Hence, convergence pattern of the Pareto front is usually presented to get an understanding of the 456 

progress of the optimization with number of generations in the optimization algorithm. Fig. 8 presents the 457 

convergence pattern for LEC-GIIG Pareto front. It is clear that Pareto front is well settled when reaching 200000 458 

generations (which is used for all the other optimization problems). 459 
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Fig. 8 Convergence pattern of the Pareto front 461 

 462 

6 Results and discussion 463 

Selecting optimum combination of energy technologies, storage becomes vital in integrating SPV and wind energy 464 

into electrical hubs. Autonomy of the system needs to be maximized in integrating renewable energy technologies 465 

while minimizing the lifecycle cost of the system. Pareto fronts obtained in Section 5 considering LEC and grid 466 

integration level is useful in this regard. These Pareto fronts are used in this section to analyze 467 

1) sensitivity of imports, exports and both to lifecycle cost, energy mix and renewable energy utilization of the 468 

system 469 

2) sensitivity of grid curtailments and market conditions on renewable energy integration    470 
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Accordingly, this section is divided into three parts. A brief overview about the case study is presented in Section 471 

6.1. The impact of grid interactions on electrical hub and energy flow is discussed in Section 6.2. Section 6.3 is 472 

devoted to a sensitivity analysis of other techno-economical parameters impacting the results.  473 

6.1 Overview about the case study 474 

The site of Hambantota, a south coastal city of Sri Lanka, was considered for this study due to its strong wind and 475 

solar energy potential. All the aforementioned meteorological data are issued from the corresponding local 476 

meteorological station. The demand of a particular application is highly specific to the latter. In this study, demand 477 

is considered to vary according to the load variation suggested by the IEEE system reliability committee [78]. Load 478 

profiles are generated following a summer-weekly demand since seasonal demand variations are trivial in Sri Lanka 479 

being located near to the equator.  480 

The cost of electricity is a function of time in a smart grid, depending from several factors. A hypothetical cost 481 

function is considered for the hourly electricity prices based on the demand in the region. Hourly electricity price is 482 

assumed to be proportional to the electricity consumption in the region, a maximal cost of electricity being reached 483 

at the peak hours of the demand. The price for selling electricity to the grid is considered to be proportional to the 484 

purchasing price of electricity from the grid. A sensitivity analysis of the impact of the cost of electricity function on 485 

the optimal solution was subsequently carried out. The effect of demand curve and the profile of grid cost on 486 

optimum system design are to be presented in future publications.   487 

6.2 Sensitivity of grid interactions and energy mix  488 

The support of the grid is essential to maintain the power supply reliability of the electrical hub with the integration 489 

of renewable energy sources, while minimizing the lifecycle costs. Maximizing the autonomy of the electrical hub is 490 

important when considering the grid. Therefore, the lifecycle cost and the autonomy of electrical hub  may become 491 

conflicting, meaning that it can be difficult to optimize both of them simultaneously. A Pareto front presents all the 492 

possible combination of solutions, which are optimal and non-dominant between each other. It helps the system 493 

designers to better understand the characteristics of the system accounting for the changes at the grid integration 494 

level.  495 
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Three different performance indicators were introduced in this study to assess the grid integration level, as defined 496 

in Section 3.3.  Three Pareto fronts are computed taking levelized energy cost (LEC) and grid integration (LEC-GI) 497 

as objective functions, considering the import and export limits for the grid interactions as 50% of the peak demand 498 

of the hub. The Pareto fronts which are calculated and plotted in Fig. 9 correspond to the three different methods for 499 

grid interactions with LEC. LEC-GIIG  denotes Pareto front obtained considering LEC and electricity imports from 500 

grid corresponding to Eq. 4 and LEC-GIIG denotes Pareto front obtained considering LEC and electricity exports 501 

(Eq. 5). Finally, LEC-GIIEG Pareto front considers interactions in both modes along with LEC as objective functions. 502 

A significant reduction in the (LEC) is observed when moving from one Pareto front to the other. The LEC is rather 503 

low throughout LEC-GIEG (exporting) Pareto front compared to the other two. LEC notably increases in LEC-GIIEG 504 

Pareto front when grid interactions are less than 5% which is the same for LEC-GIEG. Set of solutions in LEC-GIIEG 505 

Pareto front follows the trend of LEC-GIIG when grid interactions are greater than 5%. These variations are mainly 506 

due to the differences of power generation mix and modes of grid interactions which are taken into discussion in 507 

next two 508 

paragraphs.  509 

 510 

 511 

Fig. 9: Pareto fronts obtained for three different performance indicators of the grid interaction with  Levelized 512 

Energy Costs  513 
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In order to analyze the import, export and both interactions with the grid simultaneously, GIIG, GIEG and GIIEG are 514 

plotted for three Pareto fronts considering all the modes of interactions with grid as a percentage of annual demand ( 515 

Fig. 10). Among the three Pareto fronts, percentage exports to the grid (GIEG) remains almost constant in LEC-GIIG 516 

Pareto front. Meanwhile, GIIG gradually reduces in with the increase of grid interactions in LEC-GIEG Pareto front. 517 

However, GIIEG is notably high (above 45%) in LEC-GIEG Pareto front when compared to LEC-GIIG Pareto front. 518 

This result in higher LEC in LEC-GIIG Pareto front compared to LEC-GIEG which is observed in Fig. 9. Energy 519 

flows of the LEC-GIIEG Pareto front reveals that the total interactions with the grid (GIIEG) are notably lower for the 520 

LEC-GIIEG Pareto front compared to the two others Pareto fronts. A lower GIIEG value indicates less energy 521 

interactions with the grid. This implies that the electrical hub tends accordingly to operate as a standalone system in 522 

this case where variations of the renewable energy supply and the demand are absorbed by the system itself resulting 523 

higher LEC due to the less interactions with the energy market through the grid.  524 

 525 

Fig. 10: Comparison of the energy interactions with the grid (import, export and both) for three Pareto fronts (LEC-526 

GIIG, LEC-GIEG, LEC-GIIEG from left to right) obtained considering LEC and grid interactions 527 

Analyzing the power generation within the electrical hub from SPV panels and the wind turbines is one of the main 528 

goals of the study. Design solutions from LEC-GIIG (System A) and LEC-GIIEG (System B) Pareto fronts are 529 

selected in order to achieve this objective. The power generation from the non-dispatchable energy sources (SPV 530 

panels and wind turbines), the dispatchable energy source (ICG) as well as the total electrical power generated are 531 

plotted for both systems in Fig. 11 as a fraction of total annual demand of the electrical hub. From the two Pareto 532 
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fronts, it can be argued that the grid integration of wind and solar energy technologies through the electrical hubs is 533 

achieved in a satisfactory way being more than 60% of the annual demand of the hub. System B shows annual wind 534 

and solar energy contributions larger than 100% (as a percentage of total annual demand). Minimal contributions 535 

from SPV and wind turbines reach 80% for System A in the corresponding Pareto front. More importantly, there are 536 

instances in which SPV and wind contributions are larger than the annual electricity demand, the electrical hub 537 

operating as an “Energy plus” (generating more than the annual demand) system in both cases. However, it is 538 

important to analyze the Wasted Renewable Energy (WRE) due to limitations in energy storage and grid 539 

curtailments along with the generation to get a proper overview of the system.  540 
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Fig. 11: Power generation using ICG, SPV panels and wind turbines for optimal systems in the LEC-GIIG and LEC-543 

GIIEG Pareto fronts (left System A and right System B) 544 

When considering the WRE of System A, it is clear that around 30- 40% renewable energy generated will be lost 545 

due to limitations in storage and grid interactions which reach up to 20% in System B. In addition, around 15% of 546 

the generation within the system is exported in System A. Considering the generation, WRE and fraction exported to 547 

the grid; around 60-85% of the demand of the electrical hub is catered using non-dispatchable energy sources. 548 

Considering the economic scenario (lowest LEC) it reaches around 60%. This is a major achievement when 549 

compared to the level of non-dispatchable renewable energy contribution in present cases which will be around 20-550 
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30% [49] in direct integration to grid. This clearly demonstrates the potential of electrical hub to integrate non-551 

dispatchable renewable energy sources. Nonetheless, it is important to highlight that utilizing renewable energy is a 552 

major challenge in electrical Hubs although higher integration levels can be achieved.  553 

Both plots show that the ICG plays a major role whenever grid interaction is weak. For System B, a dispatchable 554 

energy source is essential in order to minimize the grid interactions further and to operate in an autonomous way. An 555 

electrical hub based only on non-dispatchable energy sources and energy storage is not economically sound when a 556 

perfect autonomy is targeted. Contributions from the ICG are gradually mitigated with the increase of grid 557 

interaction, reaching a condition where it is economically justified to operate the system without it.  558 

6.21 Role of dispatchable source and storage 559 

Eight systems were picked-up at different locations of the two Pareto fronts showing GIIG close to each other and 560 

tabulated in Table 4. Power generation mix of the electrical hub and interactions with the grid are tabulated as the 561 

percentage of the annual demand from the electrical hub. All the design solutions show SPV and wind energy 562 

generation larger than 67% of the annual demand of the electrical hub, which is a significant figure compared to the 563 

current low penetration of renewable energy sources. Contribution from the ICG does not show a major change in 564 

the set of solutions from LEC-GIIG Pareto front. Nonetheless, power generation from ICG increases from 11% up to 565 

32% in the case of minimizing the grid interactions in LEC-GIIEG Pareto front. 566 

The two Pareto fronts show a notable difference in the battery bank size:  in LEC-GIIG Pareto front the capacity of 567 

battery bank has increased from 84 to 156 kWh when moving from A-IG to D-IG while it has increased from 156 to 568 

228 kWh when moving from A-IEG to  D-IEG. In contrast, Renewable Energy Capacity (REC) varies from 52.75 569 

kW to 56.75 KW in the design solutions of LEC-GIIG Pareto front while it varies from 20.75 kW to 41.5 kW in the 570 

LEC-GIIEG Pareto front. Higher renewable energy integration is taken place as a result of higher grid integration 571 

level which is notably high in LEC-GIIG Pareto front compared to the other. However, wasted renewable energy is 572 

quite high in solutions of LEC-GIIG Pareto front when compared to solutions of LEC-GIIG Pareto front. This 573 

indicates that although grid assists the renewable energy integration, battery bank play a major role in maximizing 574 

utilization of renewable energy. 575 

 576 
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Table 4: Configuration and energy flow analysis for different electrical hub systems from LEC-GIIG LEC-GIIEG  577 

 578 

A notable increase in energy storage and contribution from ICG results sudden price increase in LEC when moving 579 

from LEC-GIIG Pareto front to LEC-GIIEG Pareto front.  On the other hand, the battery bank capacity remains 580 

comparable for the design solutions of the LEC-GIIEG Pareto front although a 20% reduction in ICG power 581 

generation is observed with an increase of grid interactions. To conclude, the battery bank can be economically 582 

justified if it absorbs the fluctuations of renewable energy sources and the demand providing higher grid interactions 583 

occurs, leading to a different role for an ICG integrated in an electrical hub.  584 

6.2 Sensitivity of grid curtailments, energy market and market price of RE technologies 585 

A Pareto multi-objective optimization is conducted in this section, considering LEC and GIIG as objective functions, 586 

to evaluate the sensitivity of grid curtailments of 30%, 60% and 90% of the maximal demand for the electrical hub. 587 

The optimization is conducted for both importing and exporting electricity to and from the electrical hub. The Pareto 588 

fronts for these grid curtailments are presented in Fig. 12 (three Pareto fronts corresponding to three cases are 589 

plotted in the same diagram). Generation mix and the grid interactions of each Pareto front are plotted separately.    590 

The results show that increasing the upper limit for grid curtailments allow tight energy interactions with the energy 591 

market which result in a notable reduction in LEC. GIIG varies from 10-20% to 60-70% with the increase of upper 592 
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C-IG 0.206 0.61 14.47 28.01 100.25 17.17 31.60 52.75 132 3.5 

D-IG 0.213 0.00 16.58 24.40 111.38 17.44 36.68 56.75 156 4.5 
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A-IEG 0.188 5.01 6.26 44.28 55.69 11.49 10.24 37.25 156 3.5 

B-IEG 0.192 1.77 7.75 41.57 66.83 11.61 14.07 41.5 156 3.5 

C-IEG 0.204 0.62 5.67 46.09 55.69 12.93 9.69 37.75 180 4 

D-IEG 0.286 0.00 0.01 56.93 11.14 31.79 0.00 20.75 228 5 
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curtailments for grid interactions. More importantly, power generation in the electrical hub, through wind turbines 593 

and SPV panels, is notably increased when considering as a percentage of annual demand. This clearly demonstrates 594 

that the electrical hubs actively participate to the energy market while playing a role in generating the supply of the 595 

micro-grid with an increase of the grid interaction limits. Widening the grid curtailments minimizes the role of the 596 

ICG, as shown on the Fig. 12. Finally, it can be concluded that grid curtailments notably influence the energy mix of 597 

the electrical hub.  598 
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Fig. 12: LEC-grid integration Pareto front with 30%, 60% and 90% upper bounds for grid interactions (Left had side 600 

Pareto fronts) and corresponding generation mix (Right hand side top to bottom 90% to 30% grid curtailments) and 601 

energy interactions with grid 602 
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The influence of a reduction in market price for both wind turbines and SPV panels was assessed in this study 603 

simultaneously, instead of conducting a detailed study and considering each component separately (Fig. 13). LEC-604 

GIIG Pareto fronts are obtained considering a 10%, 20% and 30% (taken as P, Q, R respectively) price reduction in 605 

SPV panels and wind turbines. A notable reduction in LEC is observed with a drop of market prices for both 606 

renewable energy technologies, as shown in Fig. 13. Sensitivity bars are introduced assuming a 10% relative 607 

increase or reduction in the analysis of the Pareto front. Sensitivity bars indicate that uniform reduction in LEC is 608 

observed with 10% (P) price reduction in renewable energy components. A notable reduction in LEC is observed 609 

when moving from P to Q and subsequently to R which is uniform throughout the Pareto front.  610 

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24  Present case

 10 % Reduction (P)

 20 % Reduction (Q)

 30 % Reduction (R)

L
E

C
 (

$
)

Grid interaction level  GI
IG

 (%)
 611 

Fig. 13: Sensitivity analysis of market prices of wind turbines and SPV panels on the LEC-GIIG Pareto front  612 

Finally, Pareto multi objective optimization is conducted considering LEC-GIIG assuming a 10%, 20% and 30% 613 

reduction in the hourly cost of energy profile. Pareto fronts obtained from the optimization are presented in Fig. 14. 614 

It can be observed that the LEC rises with a reduction of the COE. This looks particularly the case for a 30% and 615 

20% cost of energy reduction for instances grid interaction is lower than 25%. This can be explained by using the 616 

energy interactions with the grid (Fig. 10). The set of optimal systems located in the LEC-GIIG Pareto front 617 

maintains strong interactions with the grid by selling to the main grid the excessive amount of renewable energy 618 

produced by the electrical hub (refer Fig. 10). In most of the instances, the power generation within the system is 619 
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larger than the demand. Hence, a reduction in the electricity prices in grid has a negative influence for the investors. 620 

However, with the expected cost reduction of renewable energy technologies and a larger access to the energy 621 

market, these systems can become attractive in other parts of the world where the energy market is more 622 

competitive. 623 
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Fig. 14: Sensitivity analysis of market prices of the cost of energy in the grid on the LEC-GIIG Pareto front 625 

Conclusions 626 

This focuses on evaluating the potential of electrical hubs in integrating non-dispatchable renewable energy 627 

technologies such as SPV panels and wind turbines with minimum impact to grid. A novel optimization algorithm in 628 

introduced with the support of a bi-level dispatch strategy to optimize electrical hubs considering both real time 629 

price and curtailments for import and export in the grid. A gray model based on fuzzy logic is introduced to control 630 

the operation of ICG in the primary algorithm while finite automata theory is used to in the secondary algorithm to 631 

control the energy interactions with grid and battery bank. Finally, multi objective optimization is conducted 632 

considering LEC and grid integration level.    633 

The results obtained from the Pareto analysis shows that electrical hub can help to increase the share of wind and 634 

SPV generation beyond 60% of the annual demand of the electrical hub. From an economic perspective, the 635 
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assessment of the energy system shows that limitations for purchasing electricity from the grid are more critical than 636 

selling: this is promising when one considers the present grid architecture. Furthermore, larger grid interaction 637 

curtailments increase the LEC of the system and hinder the integration of renewable energy sources to the grid. The 638 

LEC-GIIG Pareto front indicates that electrical hubs can actively participate to the energy market by generating 639 

quantities of electricity far larger than the demand of the electrical hub. However, an autonomous operation of 640 

electrical hubs is not encouraged, as it notably increases the electrical power generation by the ICG minimizing the 641 

SPV and wind integration. In conclusion, it can be stated that electrical hub is effective in increasing the non-642 

dispatchable renewable energy share with minimum impact to the grid when considering present Sri Lankan context. 643 

Nonetheless, limitations in the initial capital investment need also to be addressed in this prospect, especially for 644 

developing countries like Sri Lanka, which is a real challenge for solar and wind energy. 645 

Nomenclature  646 

 647 

Sets: 

t ϵ T :set of all hours in the year 

 

FϵƑ: set of objective functions 

 

NϵƝ: set of decision space variables related to system 

design 

 

dϵƊ: set of decision space variables related to control 

system (D : W U L) 

 

w ϵW: set of decision space variable related to fuzzy 

controller ( DW  ) 

 

l ϵ L: set of all decision space variables related to 

secondary level controller (L⊂D) 

 

s ϵ S: set of system components 

 

Decision space variable: 

SPVN  Number of  SPV Panels 

N
TY-SPV 

Type of SPV Panel 

WN  Number of  wind turbines 

N
TY-

W Type of wind turbine 

N
Bat 

Number of battery banks 

k Type of ICG 

wij weight matrix for fuzzy rules 

LimBC limit cost for battery charge 

LimBD limit cost for battery discharge 

LimGTB limit cost for battery charge from grid 

LimBTG limit cost for battery discharge to grid 

SOCmin minimum state of charge 

SOCMin,G minimum state of charge when discharging 

to grid 

SOCSet maximum state of charged to be reached 

when charging from grid 

 

Other variables used in the model: 

CRF  Capital Recovery Factor 

DOD Depth of Discharge  
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FAC  Fixed Annual Cash-flow 

FACGI  cash flow for grid integration 

ICC  Initial Capital Cost 

SPV

t  SPV cell temperature 

PV

t  Efficiency of SPV panels 

ICG

tF  Fuel consumption by ICG 



tG  Global tilted solar irradiation on SPV panel 

tLPS  Loss of power supply 

MaxBat

tP    maximum power flow from the battery 

EG

tP  Units exported to the grid 

ELD

tP  Electricity demand of the micro grid at time 

step t 

ICG

tP  Power generation by ICG 

IG

tP  Units imported from the grid 

RE

tP  Power generated using renewables 

SPV

tP  Power generated from SPV panels 

W

tP  Power generated from wind turbines 

x
k
t Inputs to the fuzzy controller 

yt Operating load factor of ICG 

R
l
  l

th
 implication rule for the fuzzy controller 

 

Input Parameters for the model: 

β  tilt angel of SPV panels 

losses-W General power losses in wind turbine 

AM Air Mass 

ASPV  collector area of one SPV panel 

ELDt  Electricity Load Demand 

EG

tGC  COE for selling electricity to MUG    

IG

tGC   COE for purchasing electricity from MUG 

PR Rated power of the turbine 

vCI Cut-in wind speed of the turbine   

vCO Cut-off wind speed of the turbine 

vR  Rated wind speed of the turbine 

vt Wind speed at hub level of wind turbine 

 

Objective functions used: 

LEC  Levelized Energy Cost 

GIEG Grid Integration level considering exports 

GIIG Grid Integration level considering imports 

GIIEG Grid Integration level considering both 

imports and exports 

 

Constraints used: 

EGLim Maximal units sold to the grid 

IGLim  maximum units purchased from the grid 

LOLP Loss of Load Probability 

 

Other acronyms used 

ESP Energy Service Provider 

GI Grid Interactions  

ICG  Internal Combustion Generator 

SPV  Solar PV 

SOC State of charge of battery bank 

t time step 

OM Operation and maintenance cost 

WRE Waste of Renewable Energy 

GC Grid Cost for electricity
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