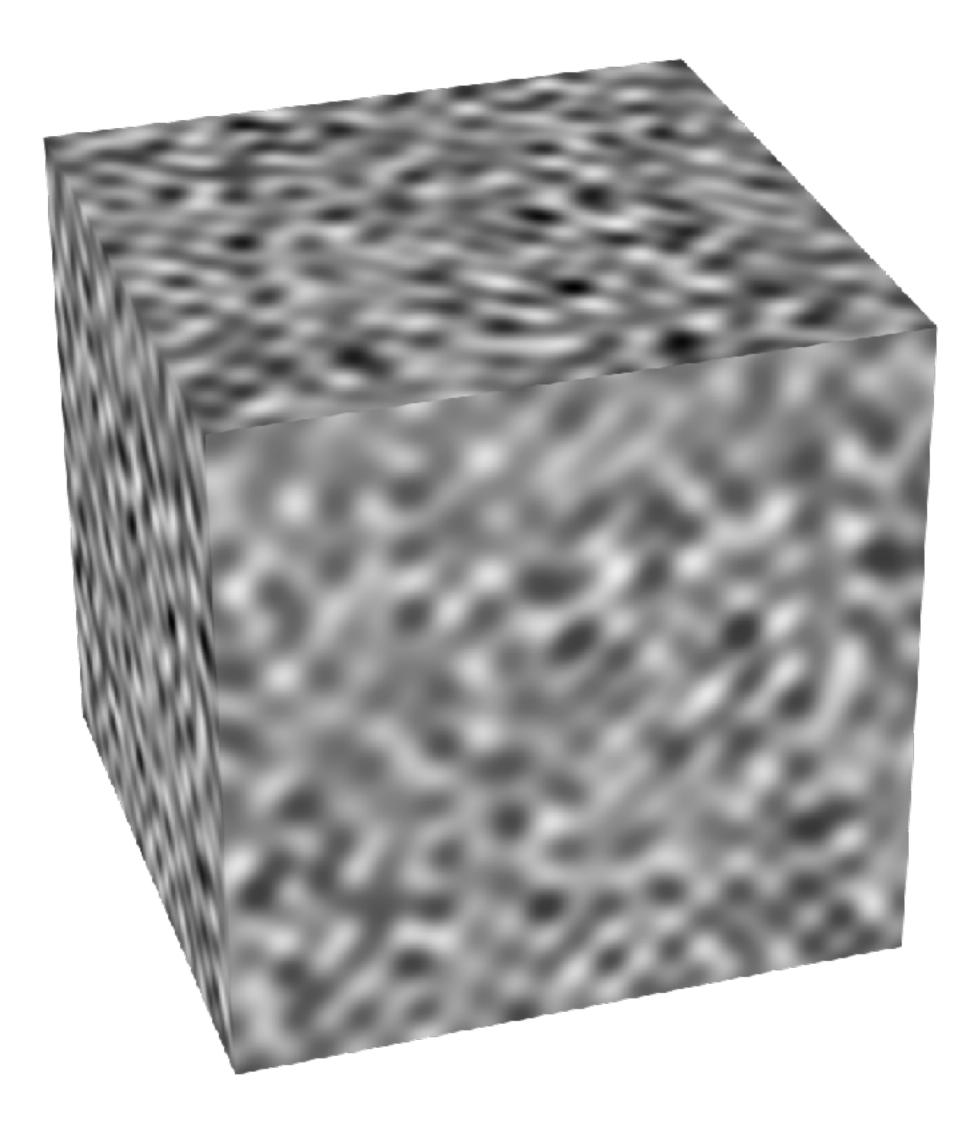
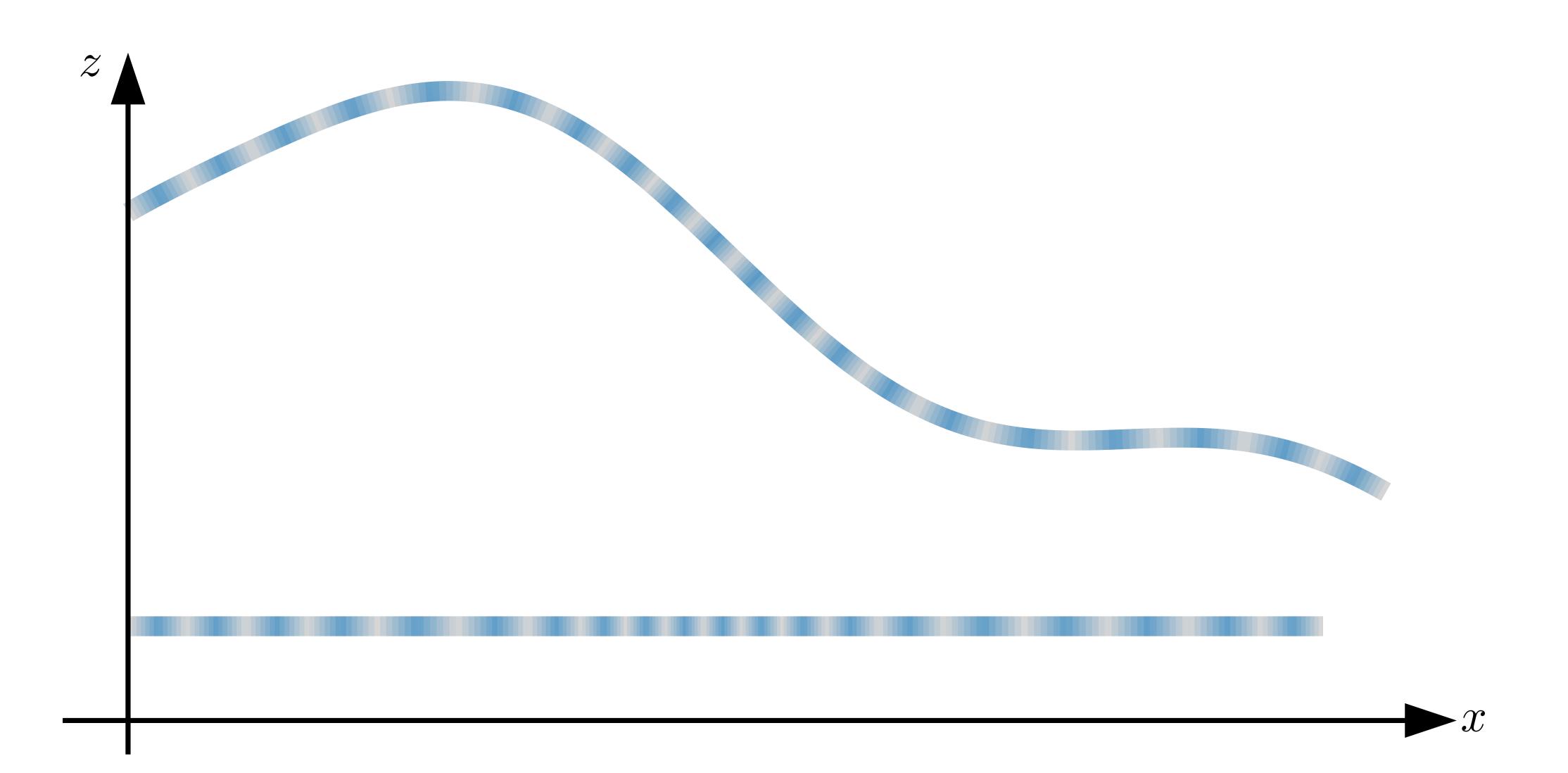


Shape from bandwidth The 2-D orthogonal projection case

Adam Scholefield, Benjamín Béjar Haro and Martin Vetterli

Bandwidth



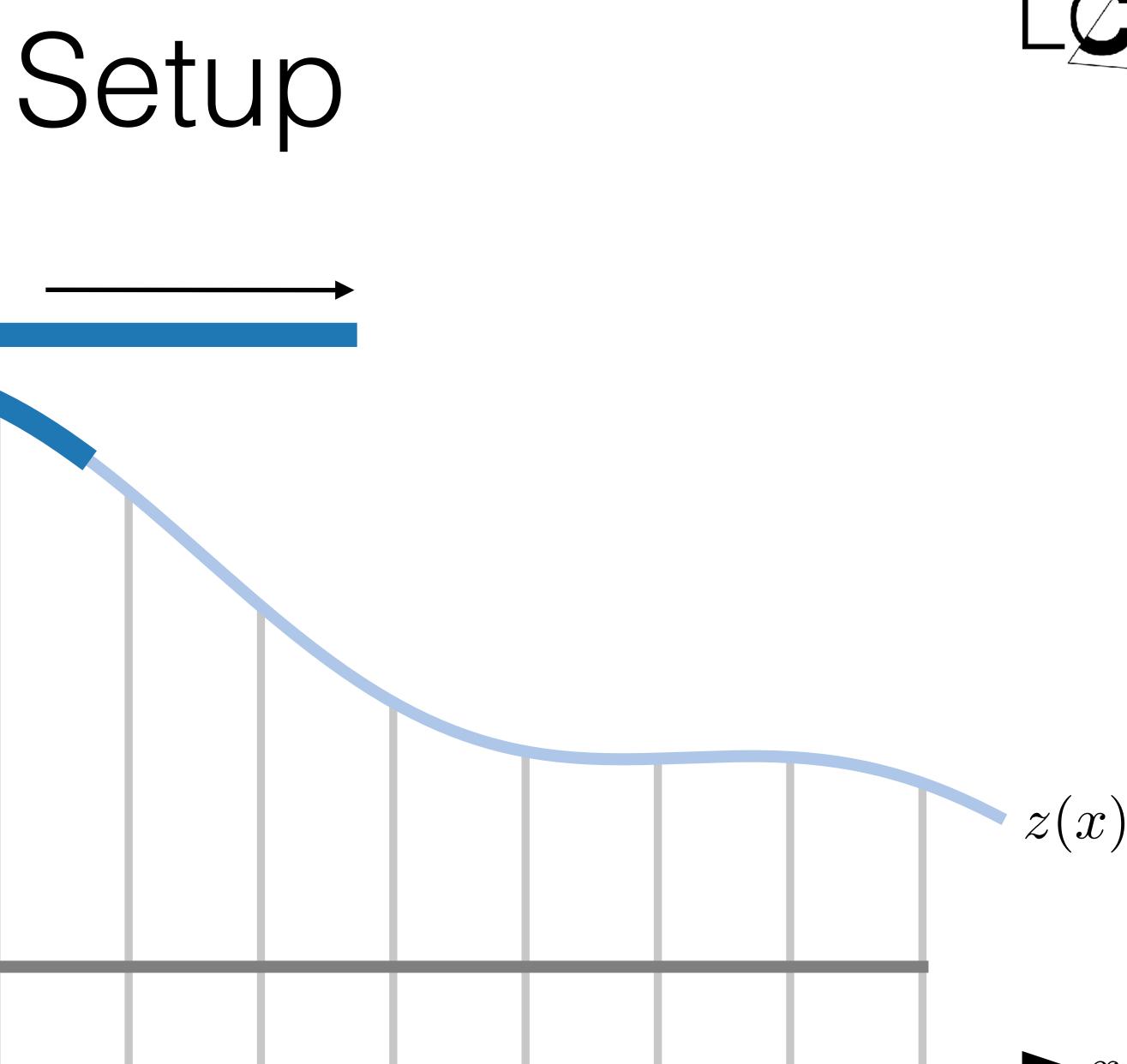


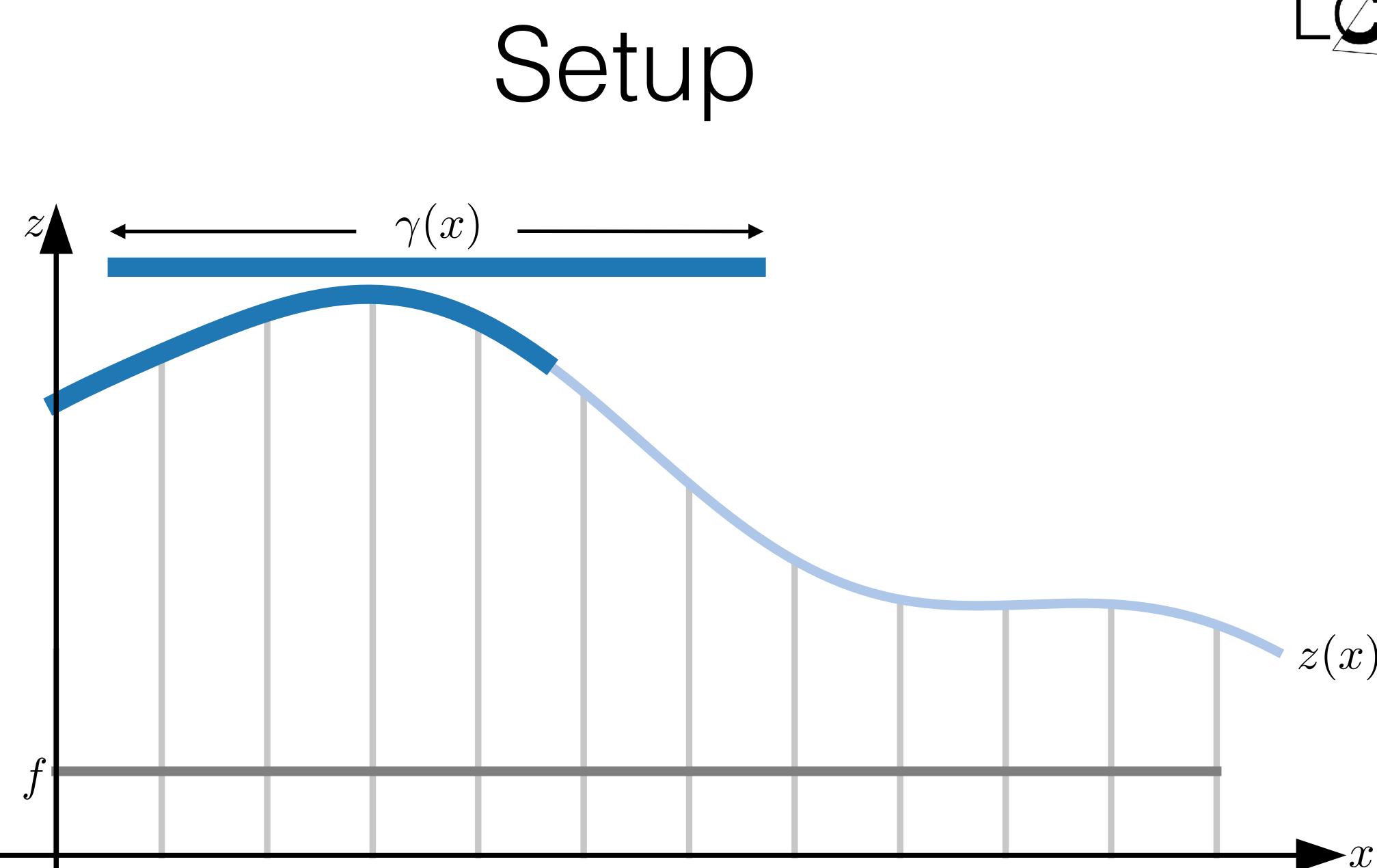
Outline

- Problem setup
- Algorithm overview:
 - Observation to arc-length
 - Arc-length to surface (ambiguities)
- Uniqueness result
- "Practical" experiment
- Conclusions and future work

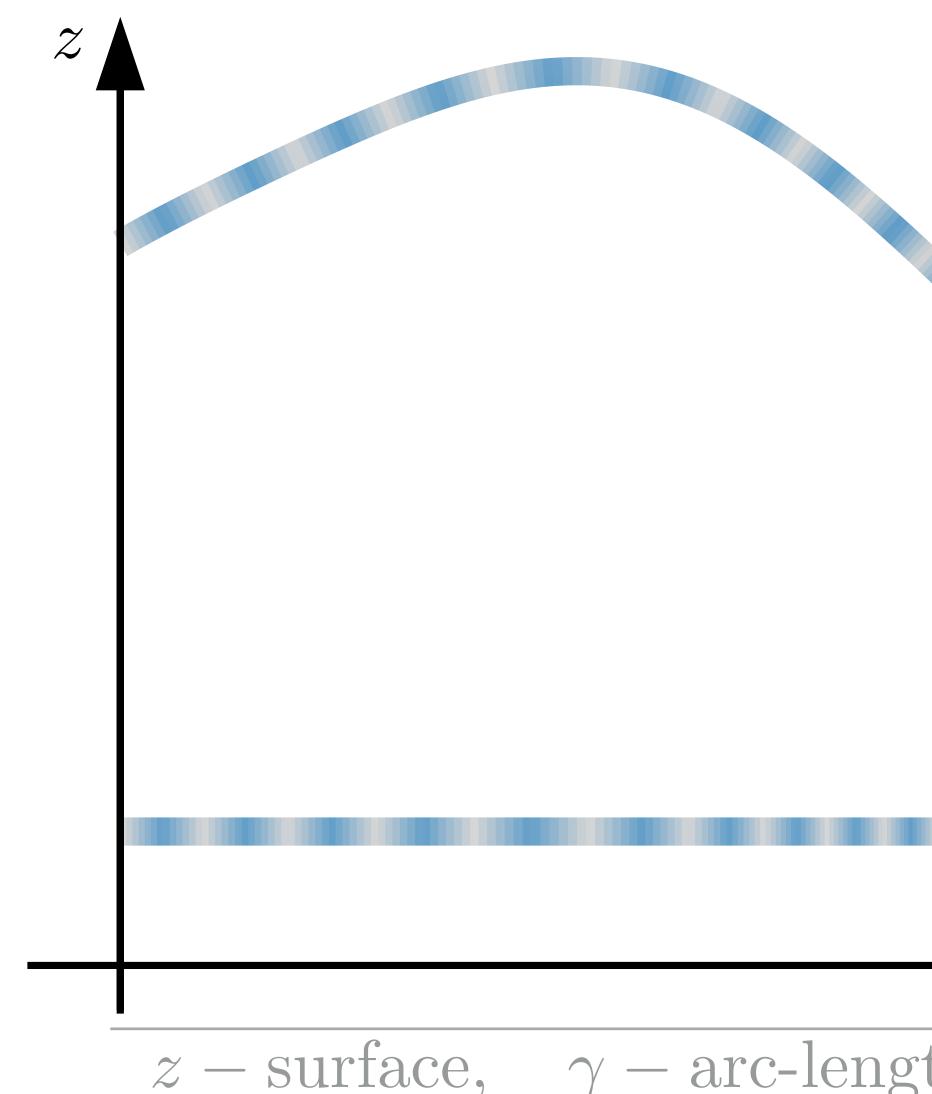
Setup



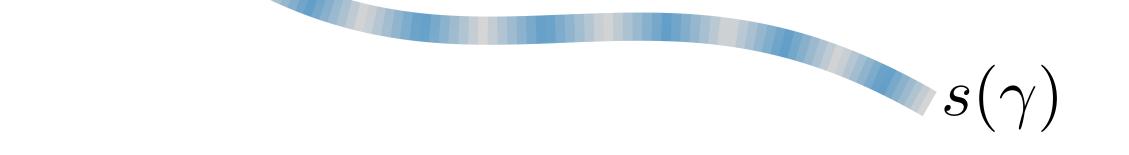






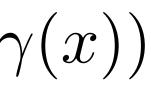


Setup



$$u(x) = s(r)$$

 ${\mathcal X}$



7

Algorithm overview

Observation to arc-length

$$\mathcal{F}[u(x;x_0)] = \frac{1}{\gamma'(x_0)}S$$

s has bandwidth $B \Rightarrow u(x; x_0)$ has bandwidth $\gamma'(x_0)B$

$$z - surface, \gamma - arc-lengt$$

 $u(x) = s(\gamma(x))$

 $u(x; x_0) := s(\gamma(x_0) + \gamma'(x_0)(x - x_0))$

 $S\left(\frac{\omega}{\gamma'(x_0)}\right)e^{j\omega(\gamma(x_0)/\gamma'(x_0)-x_0)}$

th, s - texture, u - observed

Observation to arc-length

$$\mathcal{F}[u(x;x_0)] = \frac{1}{\gamma'(x_0)}S$$

s has bandwidth $B \Rightarrow u$ has local bandwidth $\gamma'(x_0)B$ at x_0

$$z - surface, \gamma - arc-lengt$$

 $u(x) = s(\gamma(x))$

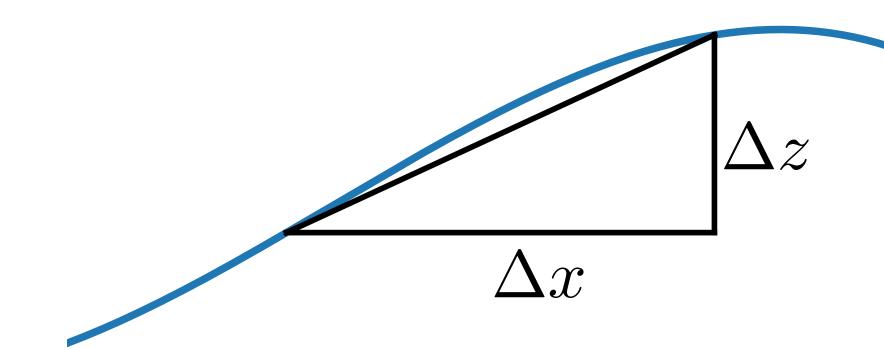
 $u(x; x_0) := s(\gamma(x_0) + \gamma'(x_0)(x - x_0))$

 $S\left(\frac{\omega}{\gamma'(x_0)}\right)e^{j\omega(\gamma(x_0)/\gamma'(x_0)-x_0)}$

th, s - texture, u - observed

s has bandwidth $B \Rightarrow u$ has local bandwidth $\gamma'(x_0)B$ at x_0

z(x)



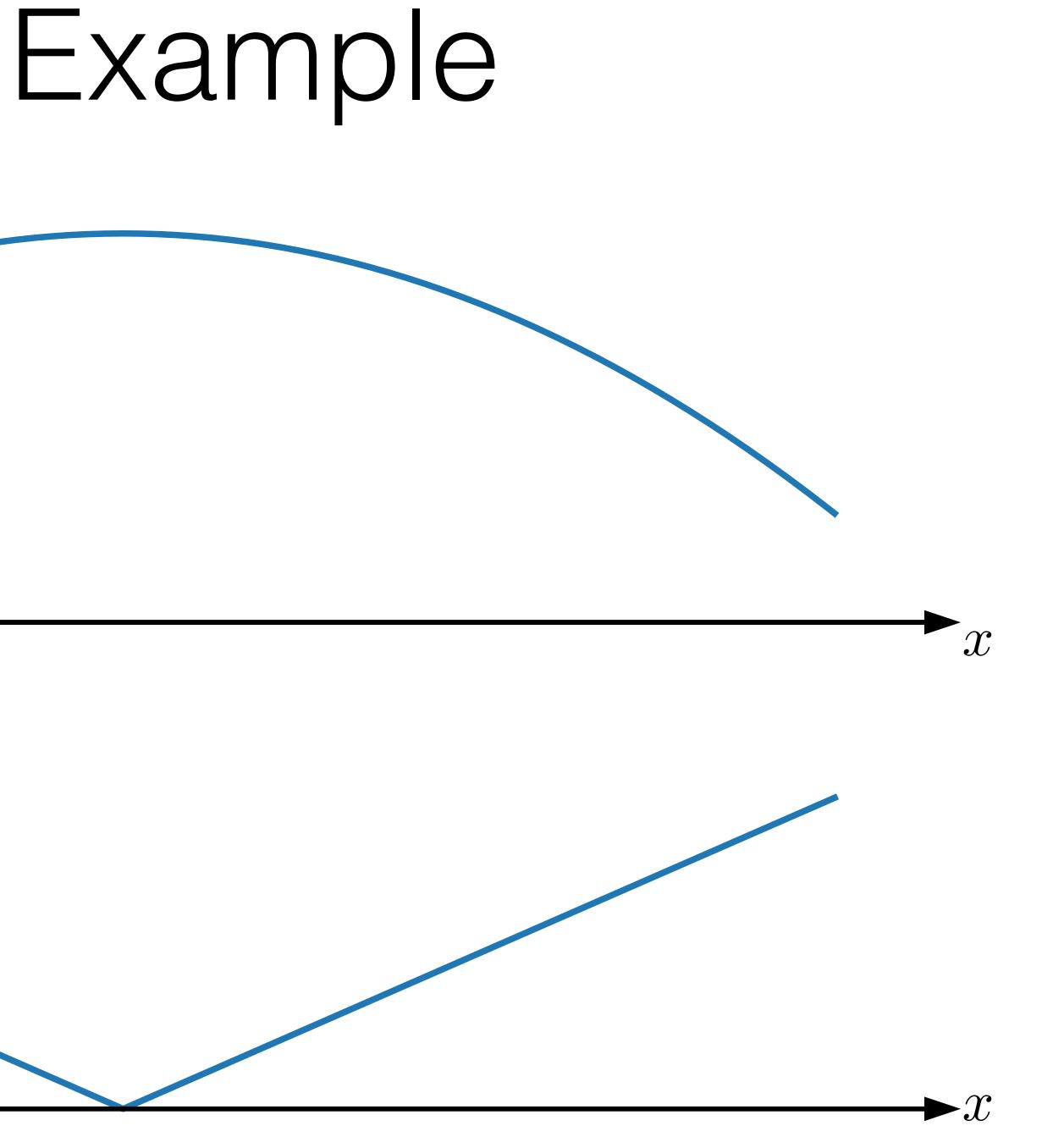
 $\left(\frac{d\gamma}{dx}\right)^2 = 1 + \left(\frac{dz}{dx}\right)^2$

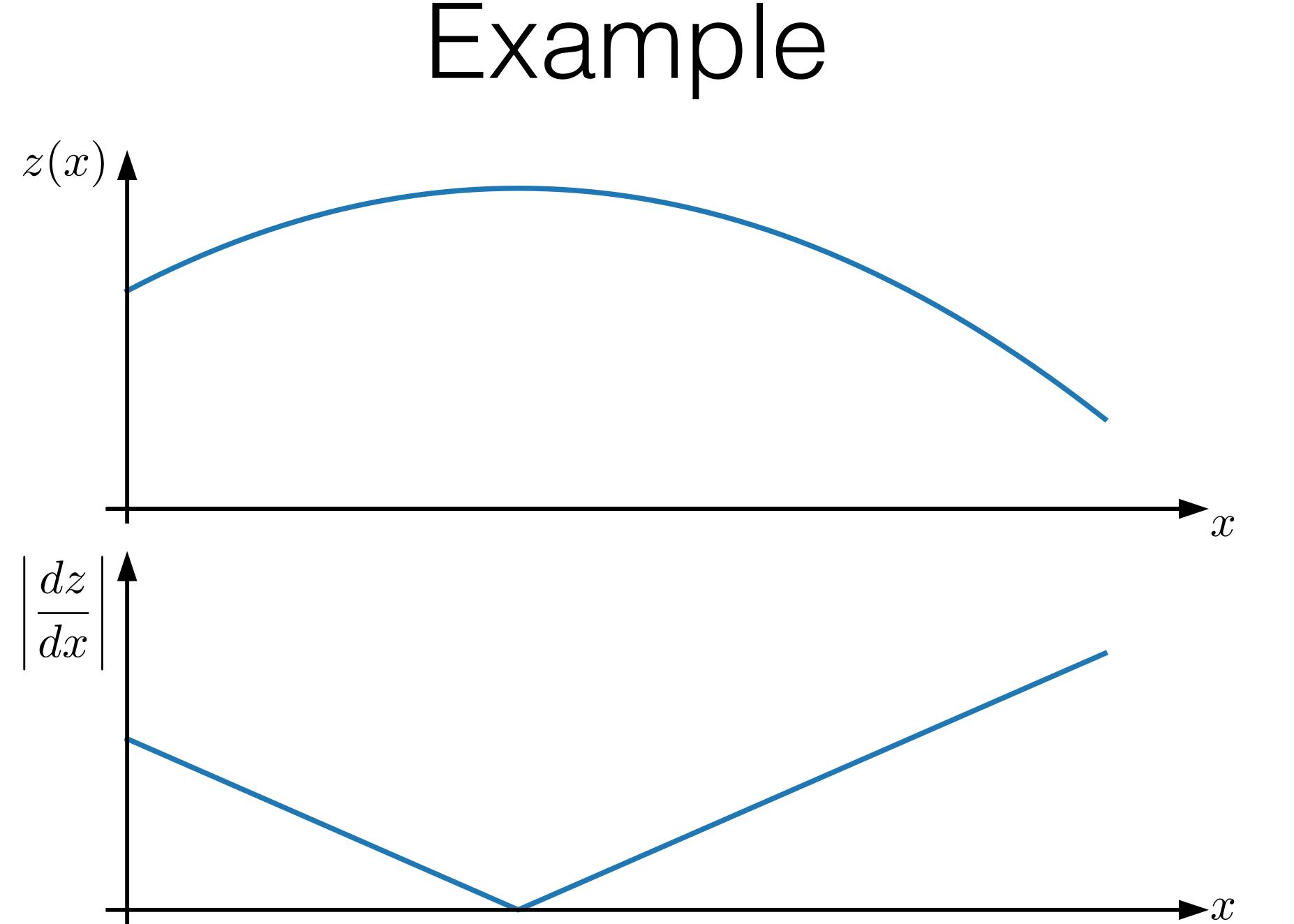
 $z - surface, \gamma - arc-length, s - texture, u - observed$

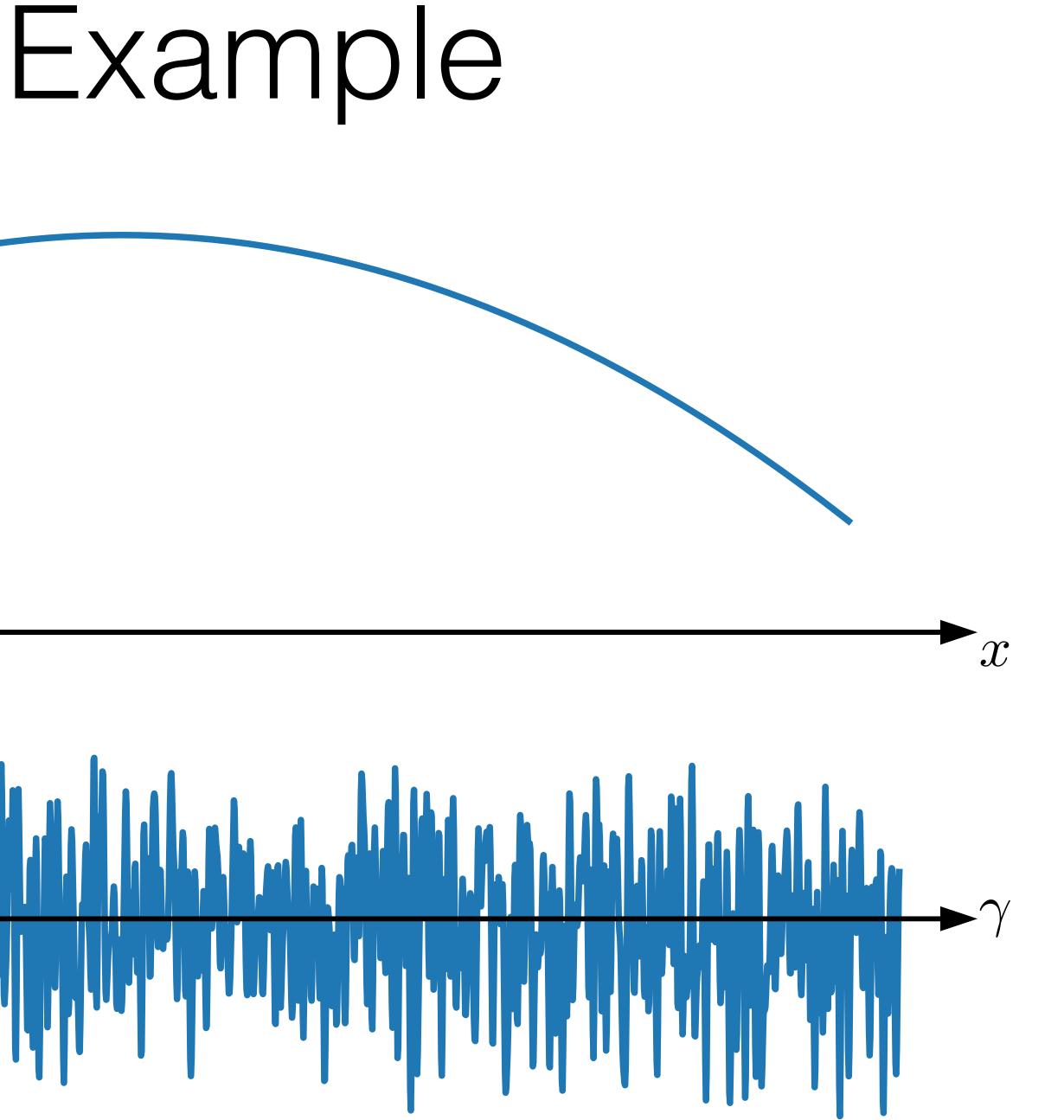
Arc-length to surface gradient

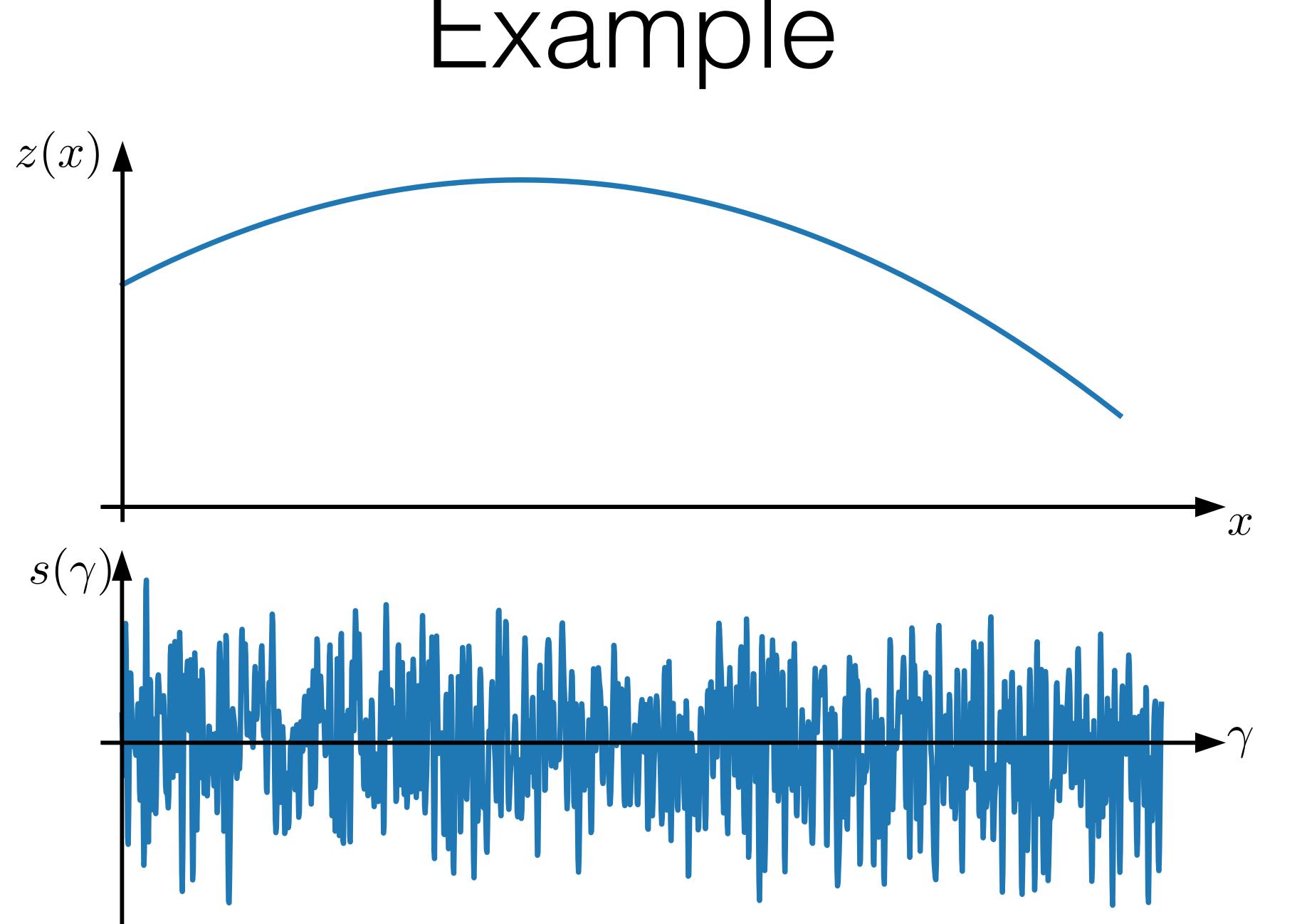
 $(\Delta \gamma)^2 = (\Delta x)^2 + (\Delta z)^2$

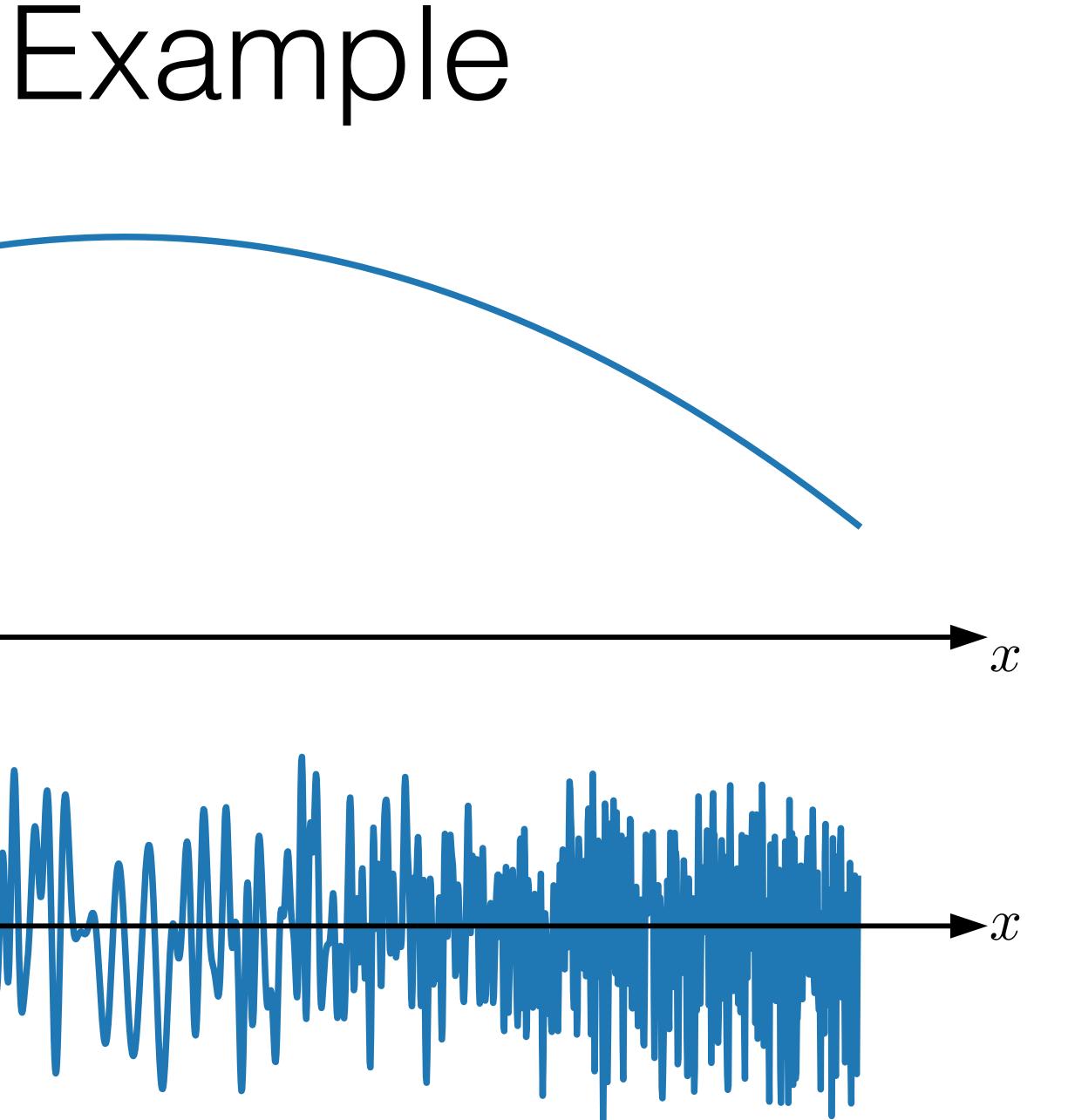
$$\left|\frac{dz}{dx}\right| = \sqrt{\left(\frac{d\gamma}{dx}\right)^2 - 1}$$

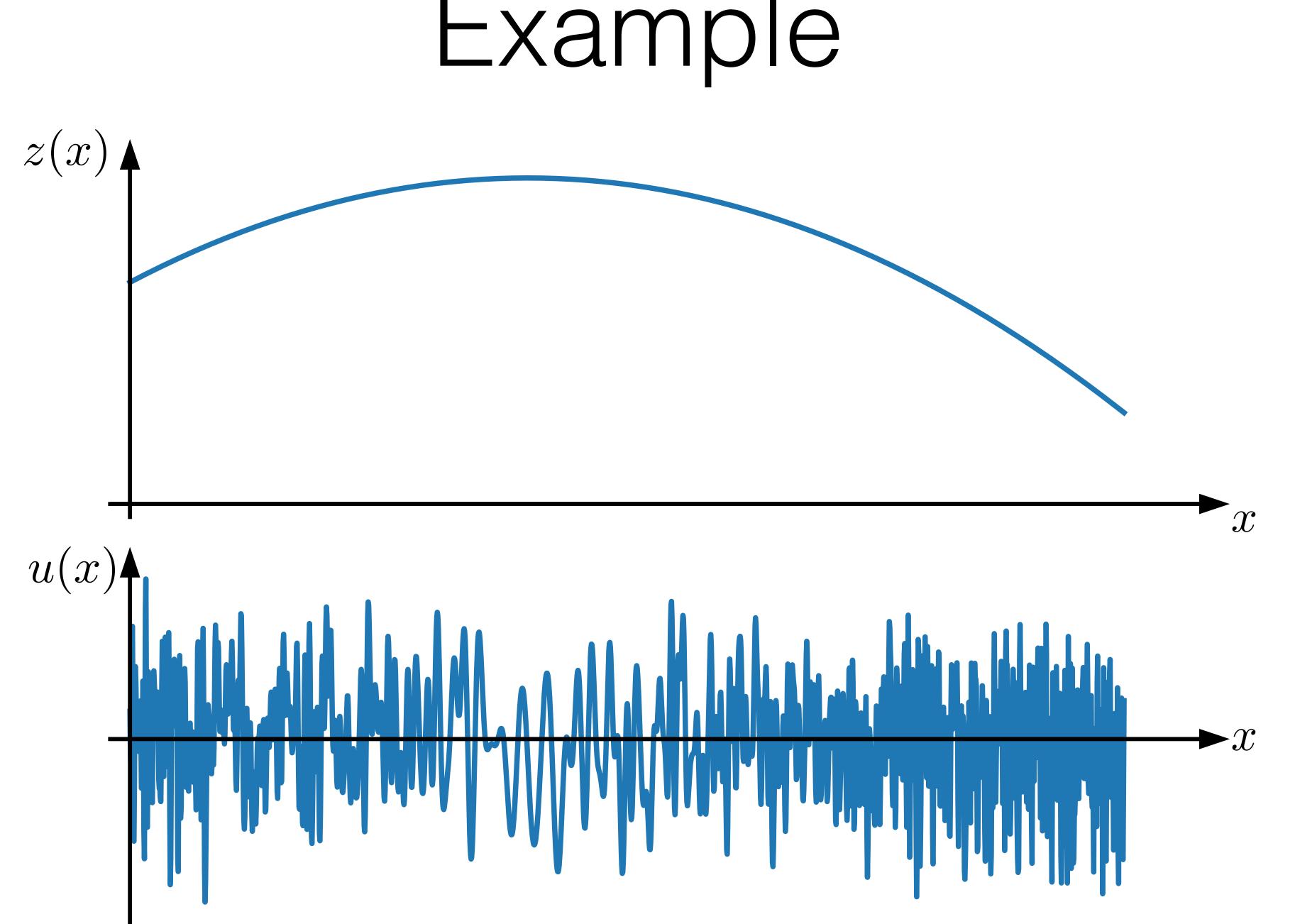


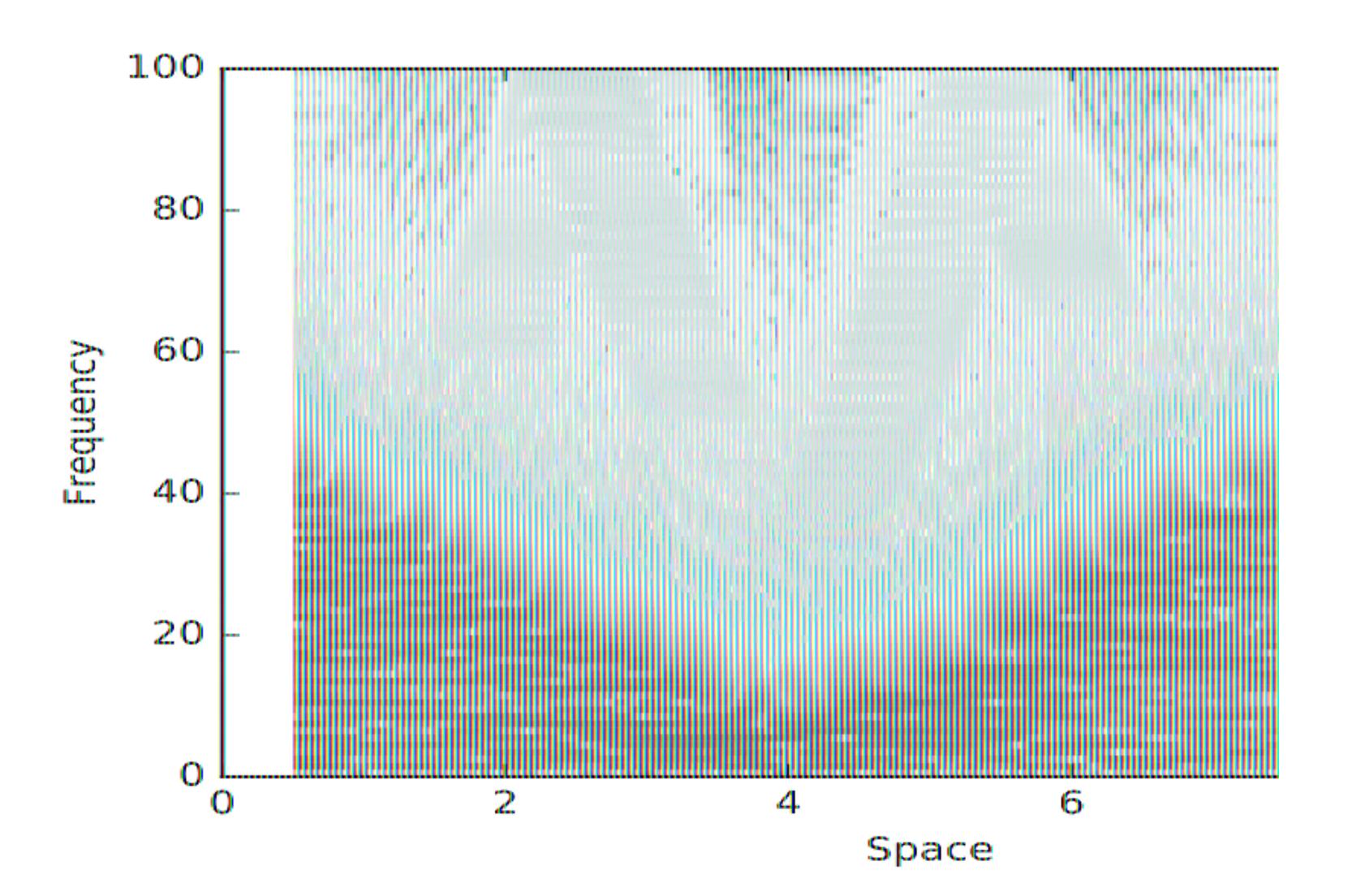




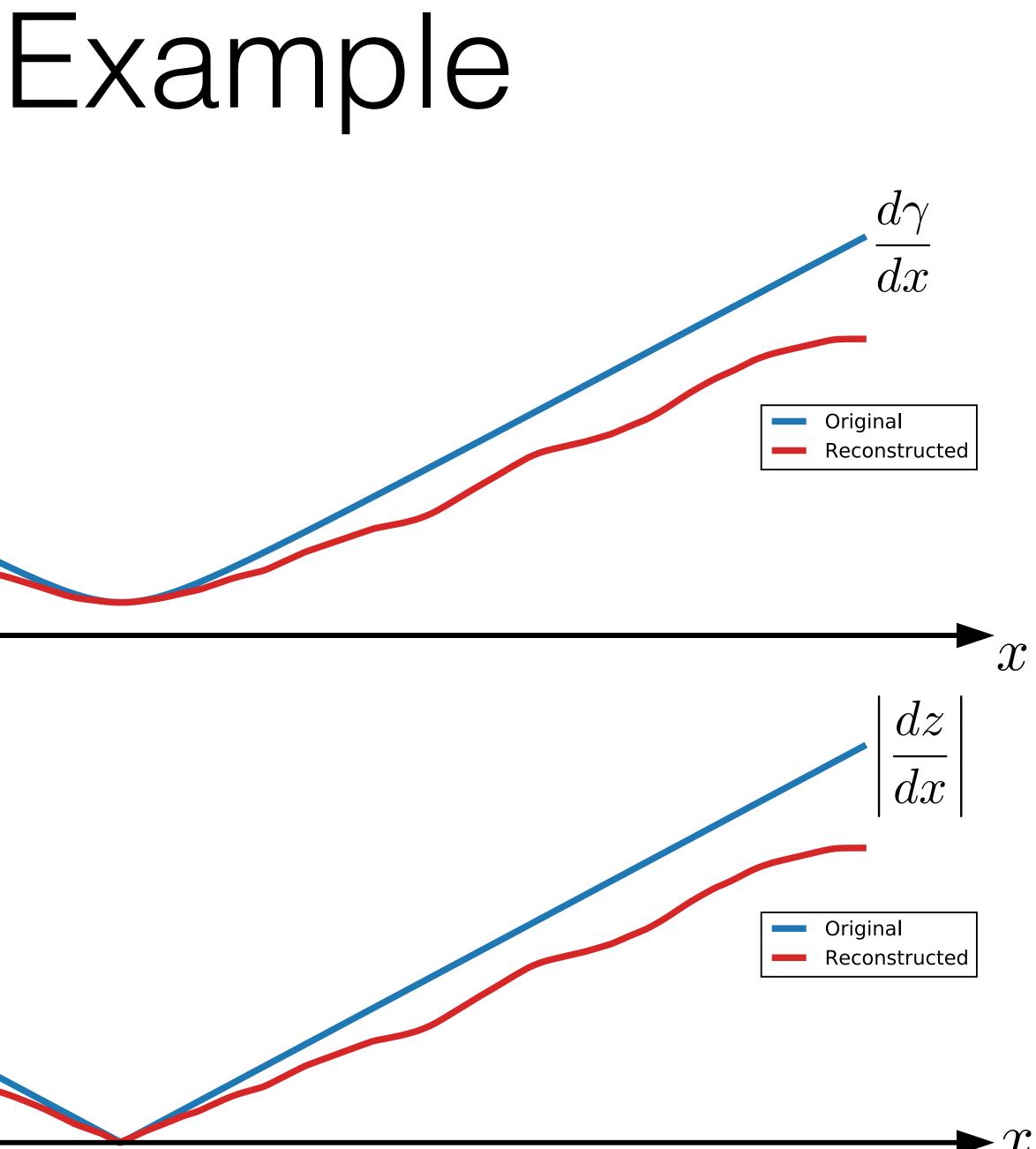


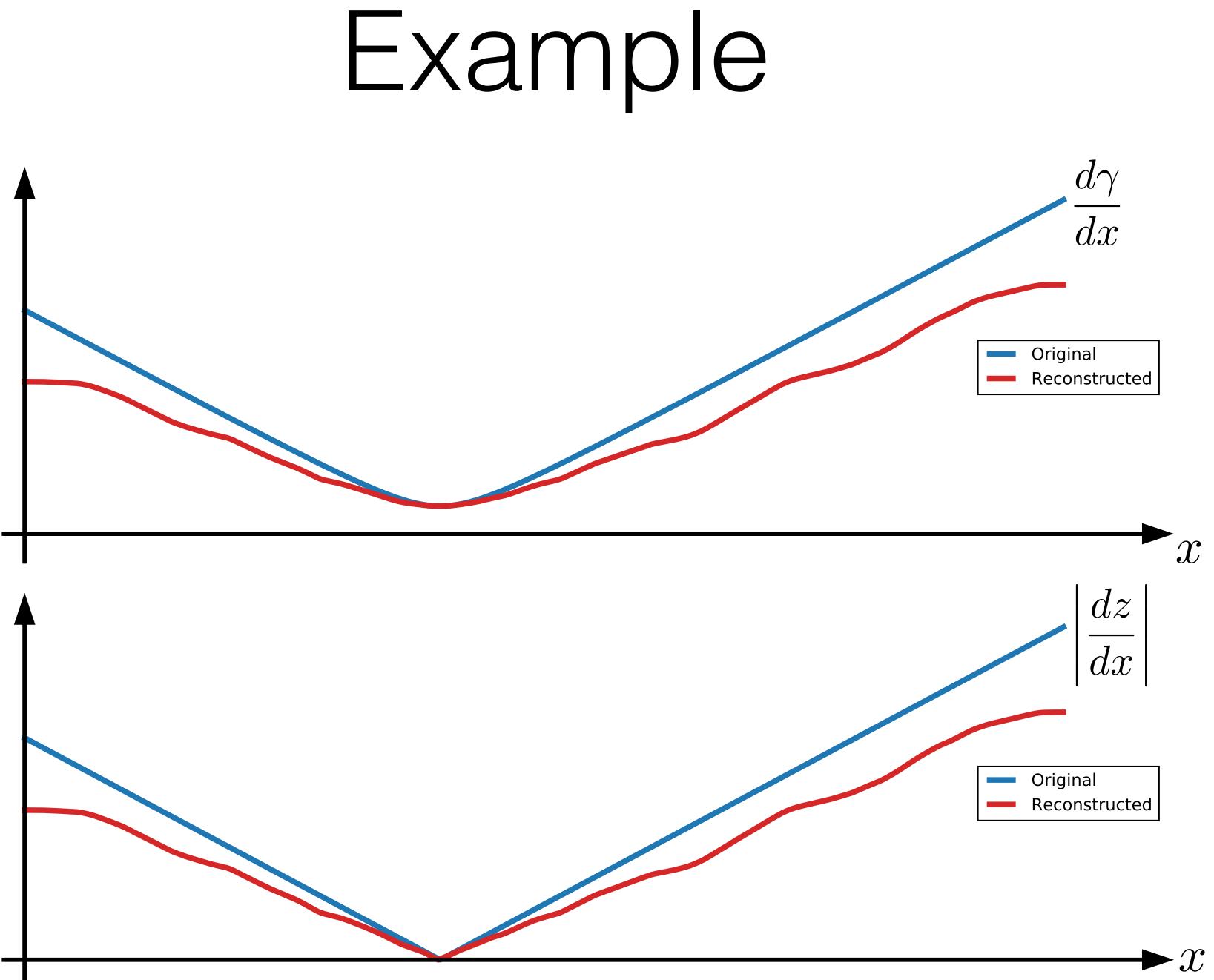


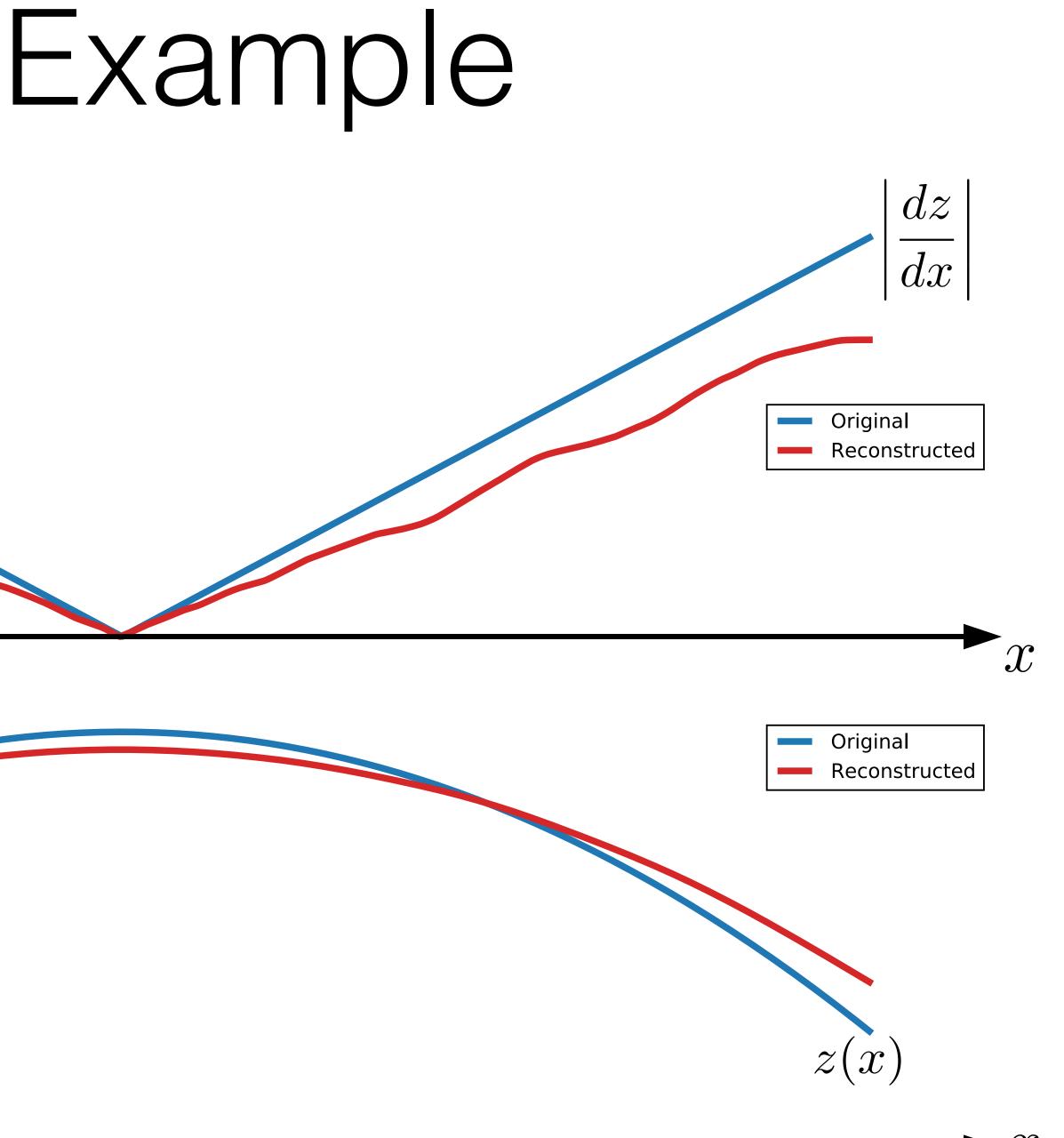


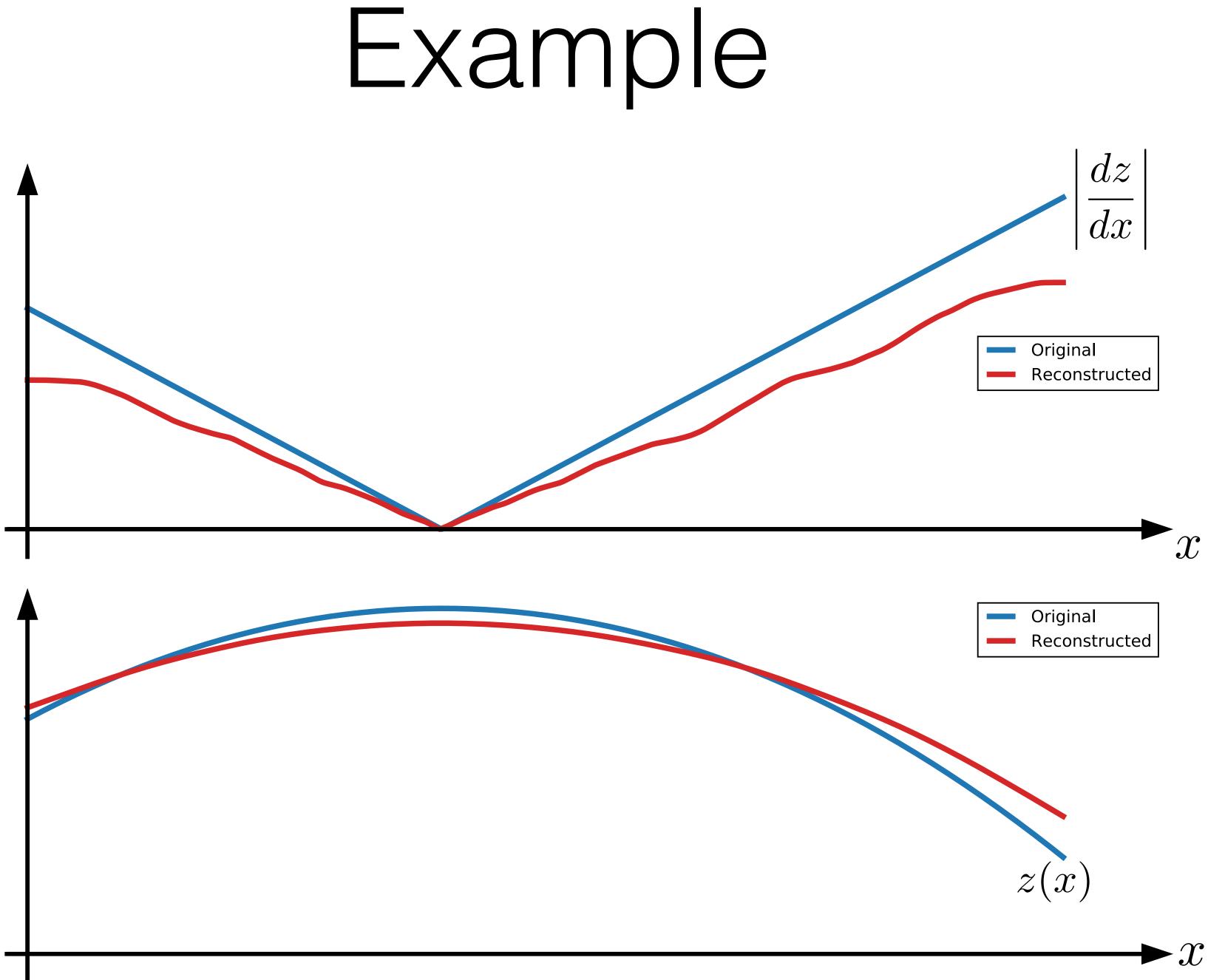


Example



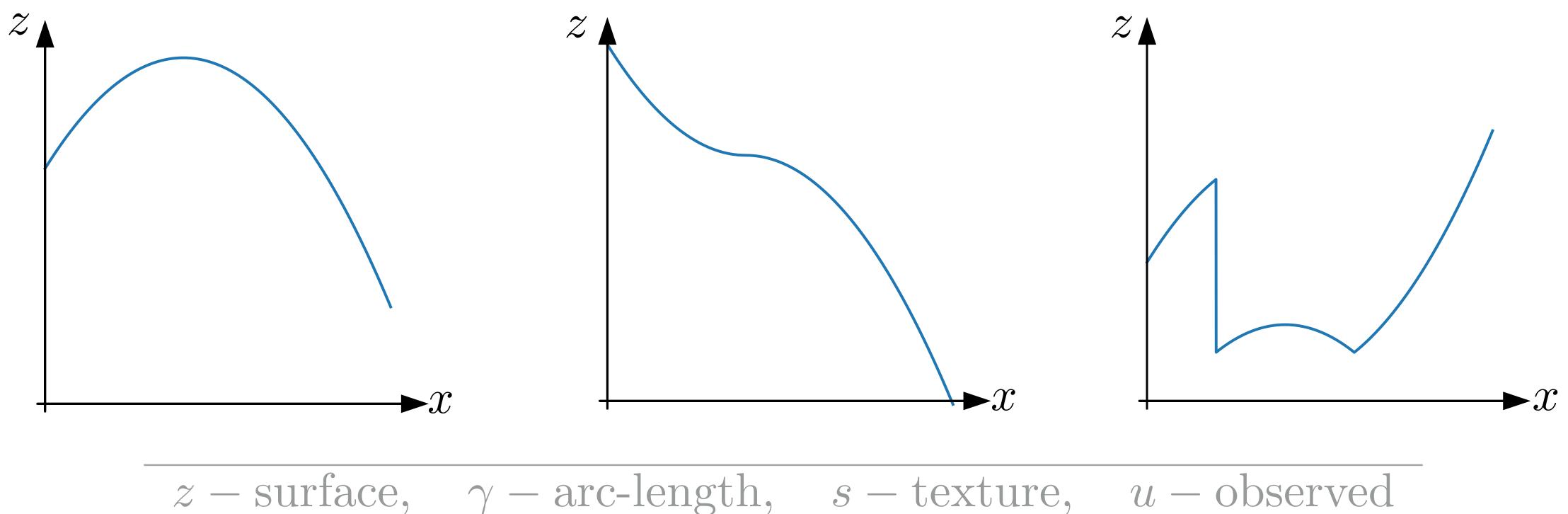






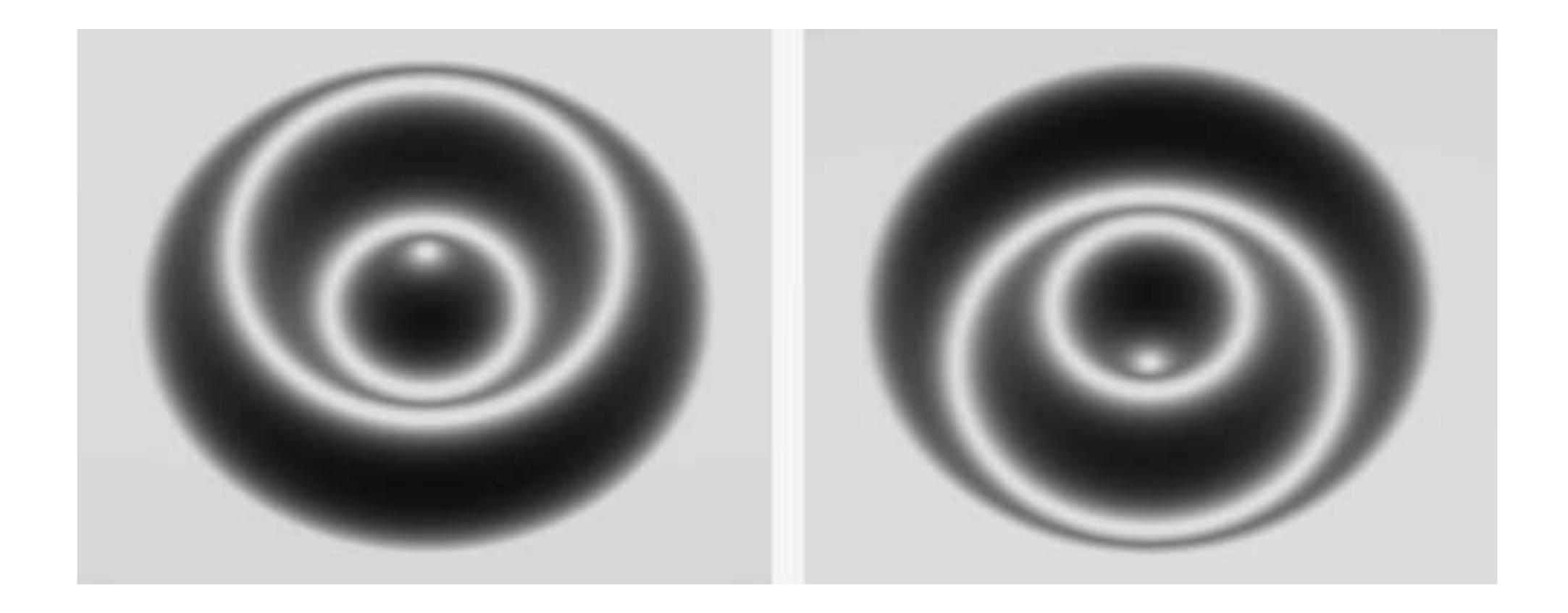
Arc-length to surface (ambiguities)

Arc-length to surface



 $\left(\frac{d\gamma}{dx}\right)^2 = 1 + \left(\frac{dz}{dx}\right)^2 \quad \Rightarrow \quad \hat{z}(x) = \int_{x_{min}}^x \left|\frac{dz}{dx'}\right| dx'$

Perceptual biases



Liu, Todd. "Perceptual biases in the interpretation of 3D shape from shading", 2004.

Algorithm

1. Compute spectrogram of observed signal 2. For each spatial value, estimate local BW 3. Divide local BW by minimum observed BW 4. Calculate $\left|\frac{dz}{dx}\right| = \sqrt{\left(\frac{d\gamma}{dx}\right)^2 - 1}$

- 5. Reconstruct all surfaces in the equivalence class

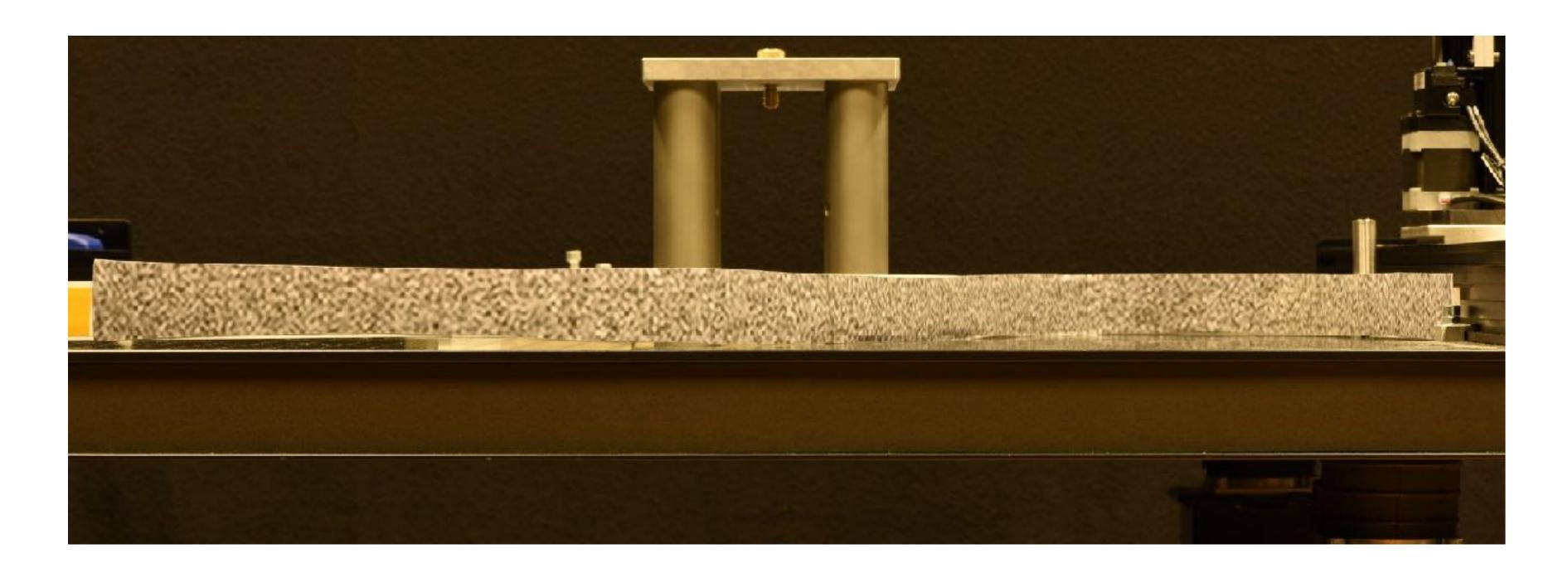


Uniqueness from Clark's conjecture

Conjecture (Clark 1989). A warped bandlimited signal will be bandlimited if and only if the warping is affine.

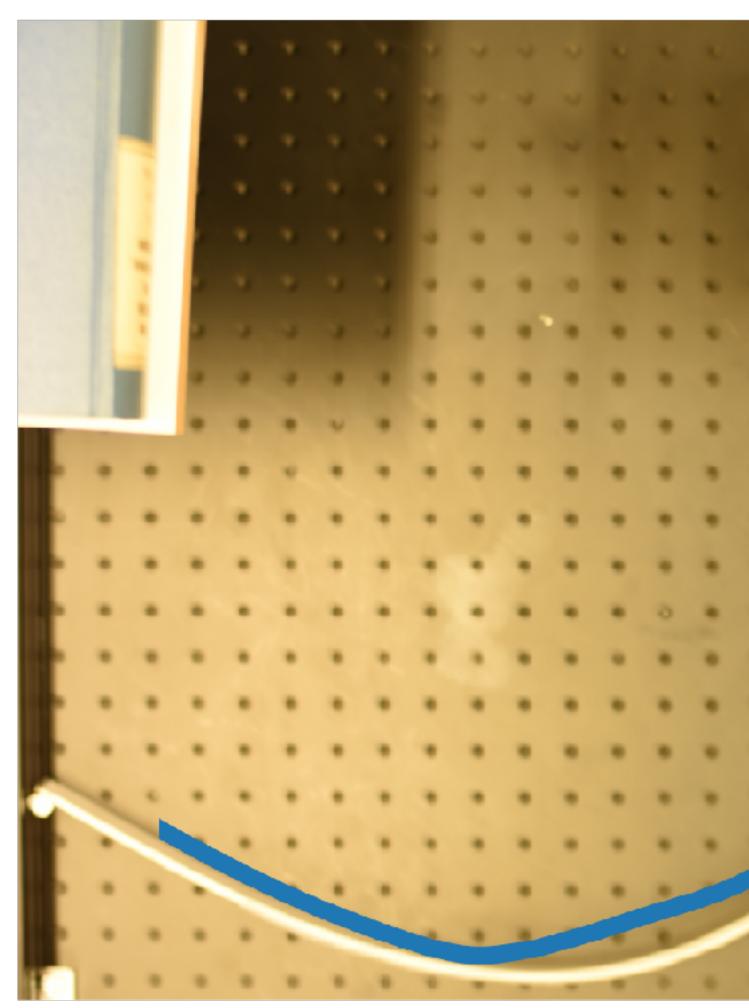
Theorem (Xia and Zhang 1992). The conjecture is true if we restrict the warping to be entire on an interval.

Counter example (Azizi et. al. 1999). Yves Meyer came up with a peculiar counter-example.



Intensity

					1		2										•		•	•	•										1			
																						۳.	1				1		-					
																							۰.			1	1			1				20
																	-		1	2												\mathbf{A}		1.1
																	•	*	*	•	•		٠	•	9	-							-	ine .
																																	1	
																						۳.			A	*							-	
				4																-			-											
		-																					K			-	-							
										-	-													1										
				-																												•		
															1							Ε.		•		•		*	•	*	•	•	-	
			•	•	•		•	•	•	•	•	•	•	•	•				•				1	*	•	*	*	*	•	*	*	•	*	
			•	•	•	•	•	•	•	•	•	•	•							•	2			٠		٠	٠	*	*	*				
	•		•	٠	•	•	•	•	•	•		٠	٠							•	1			*		*	*	*		*	*	*		
			٠	٠	*				*		٠	٠										*		*	*		*	*			*			
			•																		4													
	-																																	
				-																														
																-	1																	
									-				-		and the																			
11			•								-	-							me.															



	0	•	•	*	•	٥'						-	-	-		1		
1	•	•	•	•	•	•				1	Ϊ.							1
ł	•	•	1	D	•	•		•		7								λ.
1	•	•		•	•	•	1		9							N		
1	.0	•	•	•	•	٥'		1		7	•							
	•	•	•	•						•	•	•	•	•				
									1	•	•	•	•	٠	٠	٠		
							Ľ	7	•	•	٠		•	٠	•	•	N	
							Z		٠	٠	٠	٠	٠	٠	٠	٠	4	۹.
							/			٠	٠	٠	٠	٠	٠	•		
			•					٠	•	•	٠	•	•	•	•	•		
•	•	•	•	•	F.	4	•	•	•	•	•	•	•	•	•	•		
٠	•	•	•				•	•			•	•	*	•	•	•	-	
					7			•	•	•	•	•	1	•	•	•	•	21
					1			٠		1	•	•	•	•	•	•	•	11
			1								•	•	•	•		•	•	211
		2						•	٠	•	•	•	•	•	•	•	•	
			*							٠	•	•	•			•	•	
2												•	•				•	
1																		11
			-	٠									•				*	

Conclusions and future work

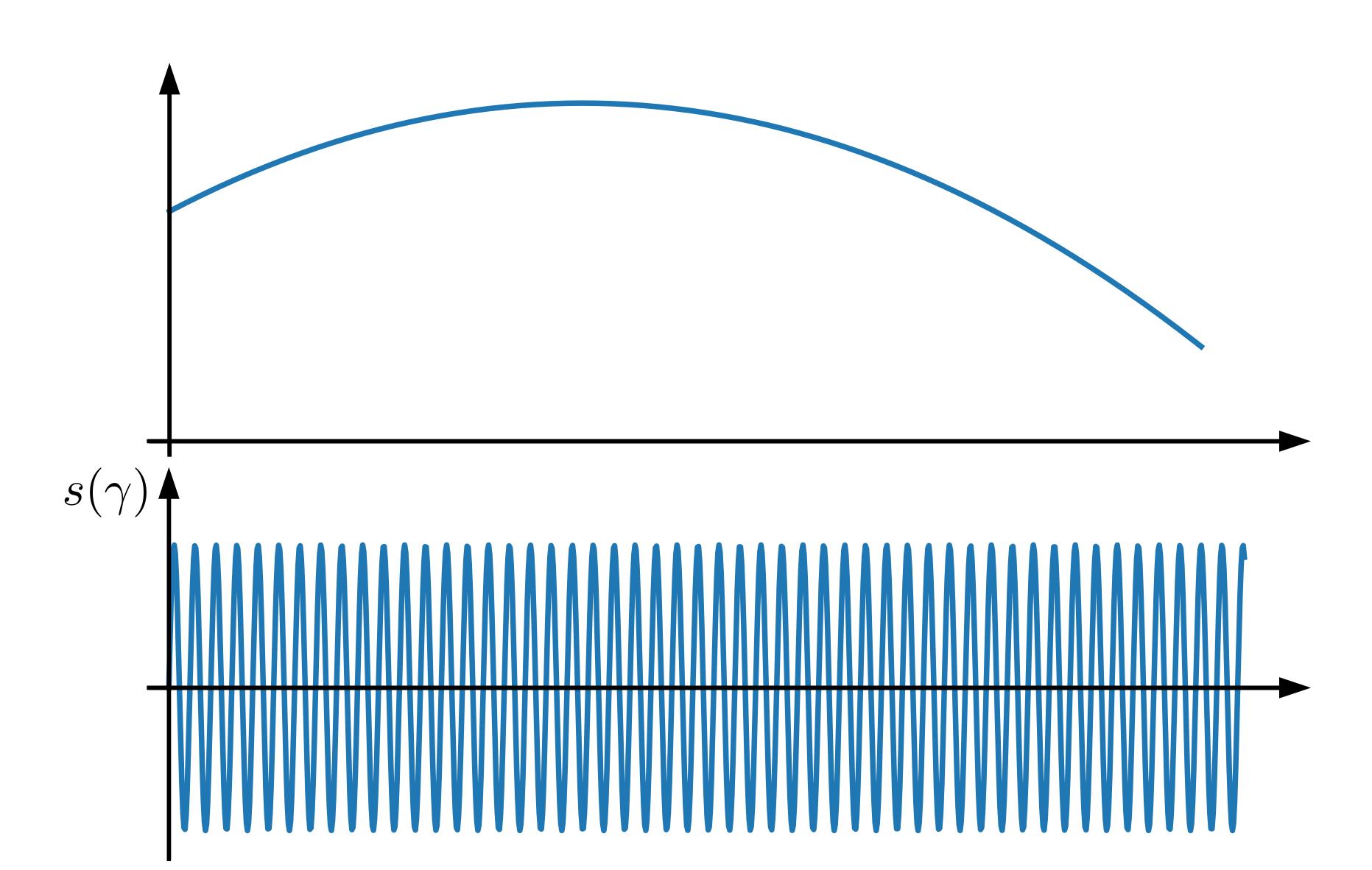
Basic algorithm to retrieve surface from bandwidth

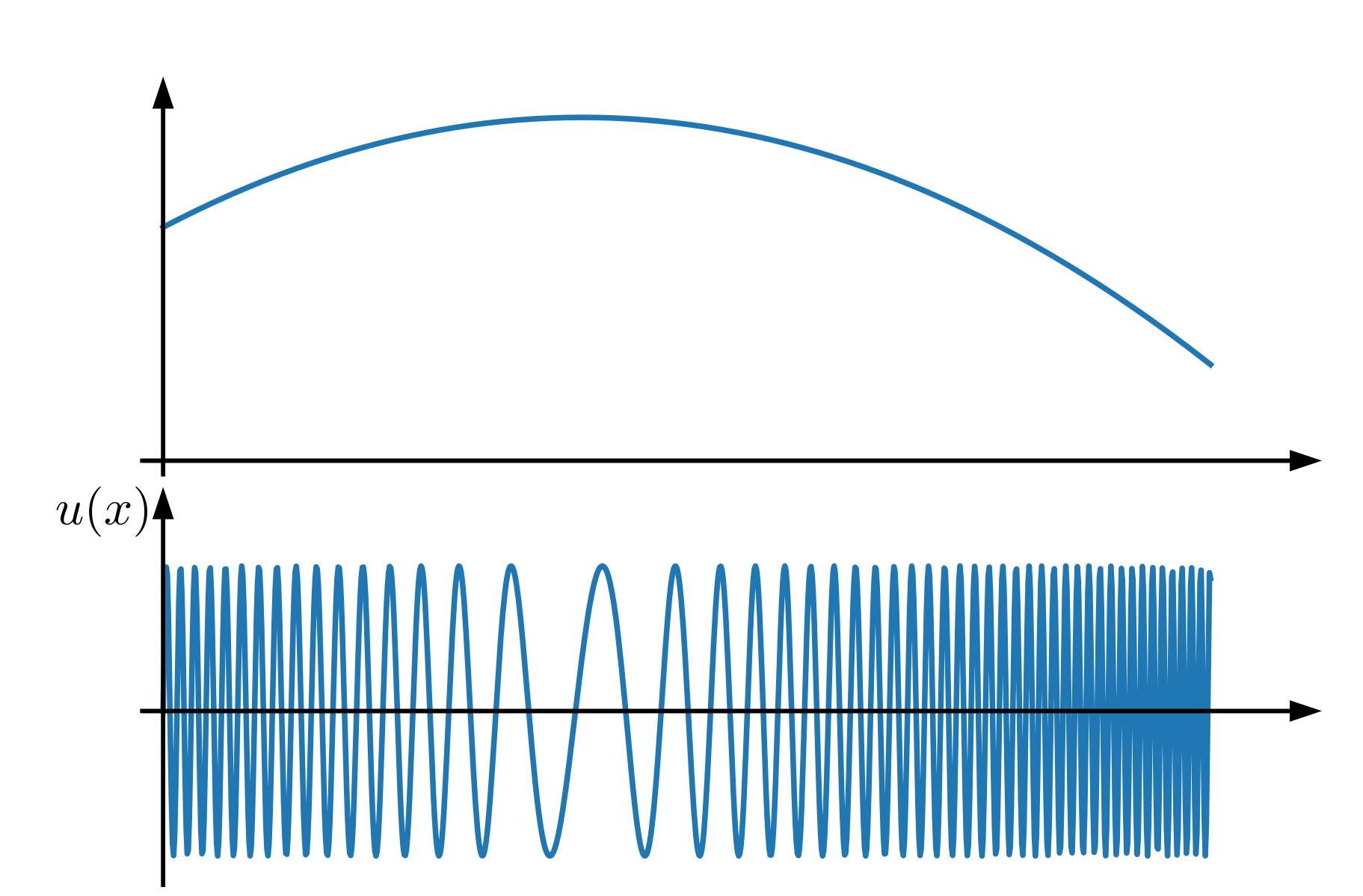
Future work

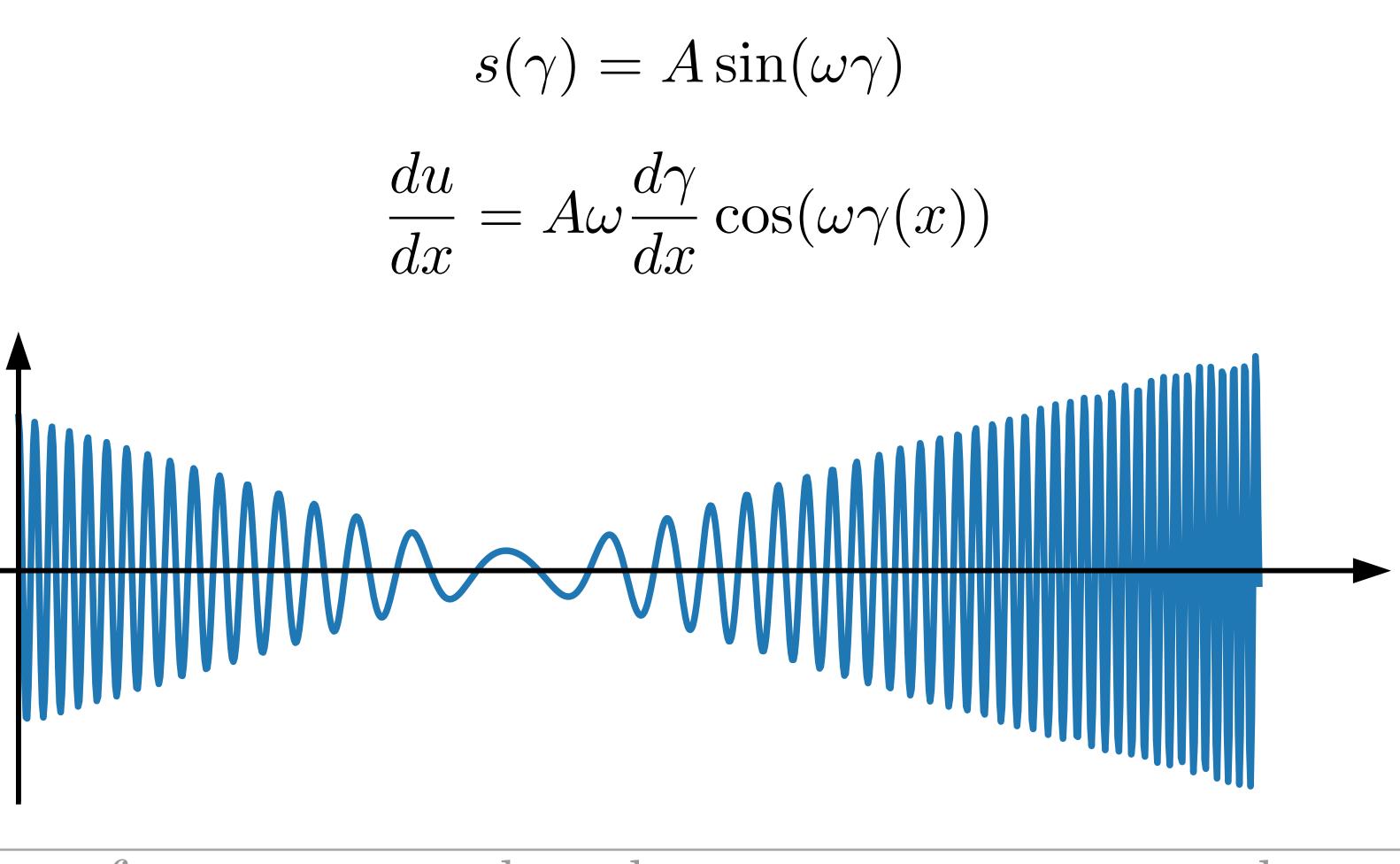
- Extensions Central projection and 3D
- Algorithmic improvements window size ...
- Sampling
- Uniqueness and recovery guarantees
- Related calibration, structured light depth sensing ...

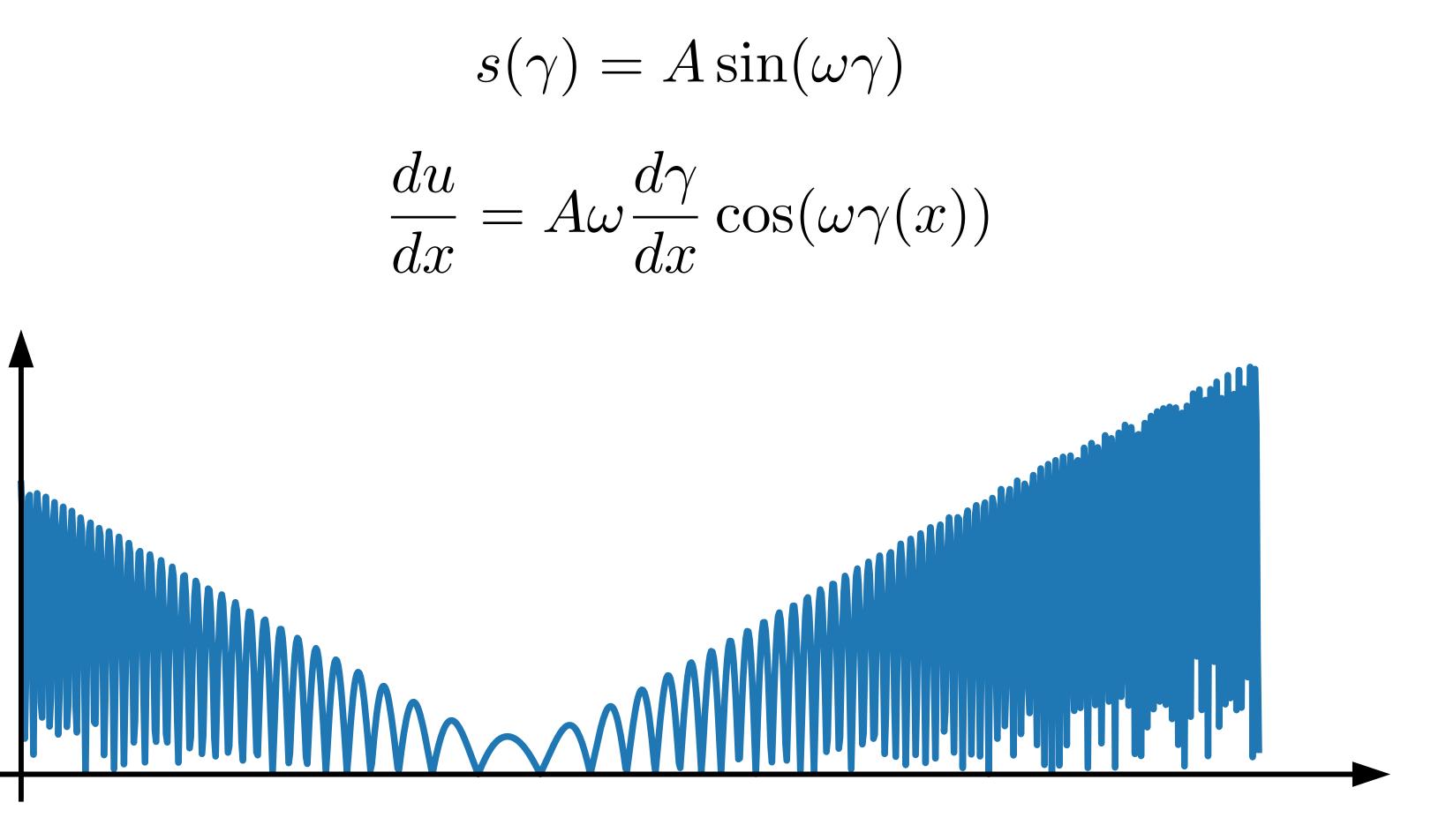
Thank you

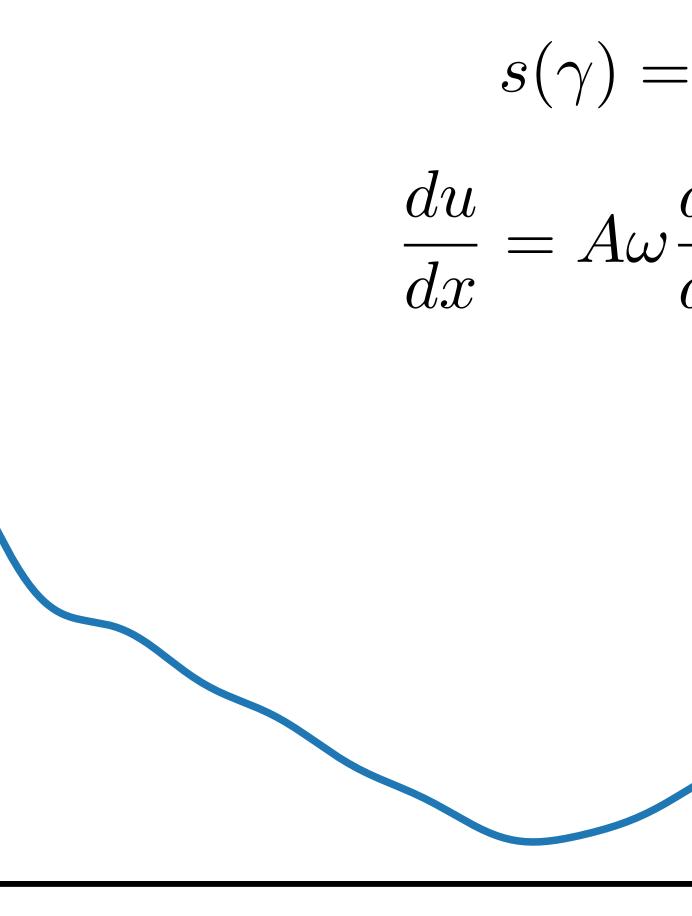
An IPython notebook is available reproducing all the results of the paper: <u>https://infoscience.epfl.ch/record/224065?ln=en</u>











 $s(\gamma) = A\sin(\omega\gamma)$

 $\frac{du}{dx} = A\omega \frac{d\gamma}{dx} \cos(\omega\gamma(x))$

