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Algorithm overview



Observation to arc-length
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Arc-length to surface gradient

z � surface, � � arc-length, s� texture, u� observed
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Arc-length to surface 
(ambiguities)
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Perceptual biases

important statistical regularity in the natural environ-
ment that can influence the perception of 3D shape in-
volves the distribution of surface curvatures. Because all
solid objects are globally convex, convex surface patches
are statistically more common than concave surface
patches, and observers can apparently exploit this reg-
ularity for interpreting the structure of ambiguous sha-
ded images. That is to say, they are more likely to
perceive surfaces as convex rather than concave (Hill &
Bruce, 1994; Langer & B€ulthoff, 2001).

A particularly compelling demonstration of these
biases has recently been reported by Langer and
B€ulthoff (2001). They showed observers shaded images
of globally convex or concave surfaces with a stucco-like
texture that could face upward or downward and could
be illuminated either from above or from below. On
each trial a surface was presented together with a small
probe point to mark one of its local regions, and
observers were required to indicate whether the desig-
nated region appeared to be concave or convex. The
results revealed that observers were biased to perceive
the depicted surfaces as being globally convex, with a
globally upward orientation and illuminated from
above, and that all three of these biases had roughly the
same strength. An especially interesting aspect of these
results is that the overall accuracy of observers’ judg-

ments was only 51%. This suggests that they were unable
to make use of other available sources of information
for determining the sign of curvature, such as shadows,
occlusion contours or perspective, and that their judg-
ments were determined entirely by perceptual biases.

In presenting their results, Langer and B€ulthoff raised
an interesting caveat concerning the potential generality
of these findings. A somewhat unusual aspect of their
stimuli is that the surface undulations the observers were
asked to judge had a much higher spatial frequency than
has been used by other researchers for the study of 3D
shape from shading, and this may have affected the
relative detectability of some possible sources of infor-
mation about the local pattern of relief. For example,
when the scale of surface structure becomes sufficiently
small, it may be difficult to reliably distinguish cast and
attached shadows, or to identify the attached sides of
smooth occlusion contours.

In an effort to further address this issue, the research
described in the present article was designed to exam-
ine the perception of surface curvature from photo-
realistic shading patterns of a large scale visual
environment. The goals of this research were twofold:
First, to assess how the perceived sign and magnitude
of surface curvature are influenced by the presence or
absence of potential information from cast shadows,
specular highlights, indirect illumination and smooth
occlusion contours; and second, to evaluate the relative
strengths of the overhead illumination and global
convexity biases with varying amounts of visual
information that could potentially specify the correct
sign of curvature.

2. Experiment 1

2.1. Methods

2.1.1. Apparatus
The experiment was conducted using a Dell Precision

420 PC with a GeForce3 graphics card and a 53.34 cm

Fig. 2. Perceptual inversion of textured surfaces. These two images are identical in all respects except that they are presented in opposite orientations.
Although there is no smooth shading in these images, the change in orientation causes the apparent sign of relief to become inverted, in exactly the
same way as in Fig. 1. This is most likely due to a perceptual bias to interpret the overall surface slant so that depth increases with height in the image
plane (see Reichel & Todd, 1990).

Fig. 1. Perceptual inversion of shaded surfaces. These two images are
identical in all respects except that they are presented in opposite
orientations. This change in orientation causes the apparent sign of
relief to become inverted, so that the image on the left appears to have
a small bump in its center, whereas the one on the right appears to
have a small dimple.

2136 B. Liu, J.T. Todd / Vision Research 44 (2004) 2135–2145

Liu, Todd. “Perceptual biases in the interpretation of 3D shape from shading”, 2004. 20



Algorithm

1. Compute spectrogram of observed signal 

2. For each spatial value, estimate local BW 

3. Divide local BW by minimum observed BW 

4. Calculate 

5. Reconstruct all surfaces in the equivalence class
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Uniqueness from 
Clark’s conjecture

Conjecture (Clark 1989). A warped bandlimited signal 
will be bandlimited if and only if the warping is affine. 

Theorem (Xia and Zhang 1992). The conjecture is true 
if we restrict the warping to be entire on an interval. 
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Counter example (Azizi et. al.1999). Yves Meyer 
came up with a peculiar counter-example. 
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Conclusions and  
future work

• Basic algorithm to retrieve surface from bandwidth

Future work 

• Extensions - Central projection and 3D 

• Algorithmic improvements - window size … 

• Sampling 

• Uniqueness and recovery guarantees 

• Related - calibration, structured light depth sensing …



An IPython notebook is available reproducing all the results of the 
paper: https://infoscience.epfl.ch/record/224065?ln=en

Thank you

https://infoscience.epfl.ch/record/224065?ln=en
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Sinusoidal texture
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