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Abstract
In recent years time series data has become ubiquitous thanks to affordable sensors and ad-

vances in embedded technology. Large amount of time-series data are continuously produced

in a wide spectrum of applications, such as sensor networks, medical monitoring, finance, IoT

applications, news feeds, social networks, data centre monitoring and so on. Availability of

such large scale time series data highlights the importance of of scalable data management,

efficient querying and analysis. Meanwhile, in the online setting time series carries invaluable

information and knowledge about the real-time status of involved entities or monitored phe-

nomena, which calls for online time series data mining for serving timely decision making or

event detection. In addition, in many scenarios data generated from sensors (environmental,

RFID, GPS, etc.) are noisy and non-stationary in nature. In this thesis we aim to address these

important issues pertaining to scalable and distributed analytics techniques for massive time

series data. Concretely, this thesis is centered around the following three topics:

Managing and Querying Model-View Time Series.

As the number of sensors that pervade our lives significantly increases (e.g., environmental

sensors, mobile phone sensors, IoT applications, etc.), the efficient management of massive

amount of time series from such sensors is becoming increasingly important. The infinite

nature of sensor data poses a serious challenge for query processing even in a cloud infras-

tructure. Traditional raw sensor data management systems based on relational databases lack

scalability to accommodate large scale sensor data efficiently. Thus, distributed key-value

stores in the cloud are becoming a prime tool to manage sensor data. On the other hand,

model-view time series management, which stores the data in the form of modeled segments,

brings the additional advantages of data compression and value interpolation. However,

currently there are no techniques for indexing and/or query optimization of the model-view

sensor time series data in the cloud. In Chapter 2, we propose an innovative index for modeled

segments in key-value stores, namely KVI-index. KVI-index consists of two interval indices on

the time and sensor value dimensions respectively, each of which has an in-memory search

tree and a secondary list materialized in the key-value store. We show that the proposed

KVI-index enables to perform efficient query processing upon modeled segments.

Mining Correlations in Streaming Time Series.

The dramatic increase in the availability of data streams fuels the development of many
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distributed real-time computation engines (e.g., Storm, Samza, Spark Streaming, S4 etc.). In

Chapter 3, we focus on a fundamental time series mining task in such a new computation

paradigm, namely continuously mining dynamic (lagged) correlations in time series via a

distributed real-time computation engine. Correlations reveal the hidden and temporal

interactions across time series and are widely used in scientific data analysis, data-driven

event detection, finance markets and so on. Existing correlation mining approaches specific

for the centralized environment fail to handle the data shuffling issue in the distributed setting.

We propose the P2H framework consisting of a parallelism-partitioning based data shuffling

and a hypercube structure based computation pruning method, so as to enhance both the

communication and computation efficiency for mining correlations in the distributed context.

Learning from Noisy and Non-Stationary Data.

In numerous real-world applications large datasets collected from observations and mea-

surements of physical entities are inevitably noisy and contain outliers. Meanwhile, recently

distributed machine learning algorithms arise as powerful tools for learning massive volumes

of data. However, the outliers in such large and noisy datasets can dramatically degrade the

performance of standard distributed machine learning approaches such as regression trees.

To this end, in Chapter 4 we present a novel distributed regression tree approach that utilizes

robust regression statistics, statistics that are more robust to outliers, for handling large and

noisy data. We propose to integrate robust statistics based error criteria into the regression tree.

A data summarization method is developed and used to improve the efficiency of learning

such a robust regression tree in the distributed setting.

On the other hand, in the online and dynamic environment, besides outliers time series is

often complicated with change points due to the changing behaviour and distribution of

the data. Such outliers and change points can lead the learned models to deviate from the

underlying true patterns of data and to fail to provide reliable forecasting. In Chapter 5 we

present an adaptive gradient learning method for recurrent neural networks (RNN) to forecast

streaming time series in the presence of both outliers and change points. We explore the local

features of time series to automatically weight the gradients of the loss of the newly available

observations with distributional properties of the data in real time, such that our RNN model

is able to be robust to outliers as well as adapting to change points.

Keywords: time series data mining, distributed computing, time series data management,

recurrent neural network, robust regression, decision tree, data summarization.
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Résumé
Ces dernières années, les séries temporelles sont devenues omniprésentes grâce à des capteurs

au prix abordable et des avancés technologiques dans le domaine des systèmes embarqués.

Une grande quantité de séries temporelles sont produits en continu dans un large éventail

d’application, telles que les réseaux de capteurs, la supervision médicale, les finances, les

applications de l’Internet des choses (IoT), les flux RSS, les réseaux sociaux, la supervision des

centres de données, etc. La disponibilité de ces séries temporelles à grande échelle met en

évidence l’importance de la gestion de données à grande échelle, et d’outils d’analyse efficaces.

Par ailleurs, dans le contexte du traitement en continu, les séries temporelles contiennent des

informations et des connaissances cruciales concernant les propriétés des entités concernées

ou des phénomènes surveillés, et cela en temps réel. Ceci motive le traitement en temps réel

des séries temporelles afin de supporter une prise de décision en temps adéquat ou la détection

d’événements. De plus, dans de nombreux cas de figures, les données générées par les capteurs

(environnement, RFID, GPS, etc.) contiennent du bruit qui est, par natures, non stationnaires.

Dans cette thèse, nous nous efforçons d’apporter des solutions à ces problèmes importants

concernant les techniques d’analyse distribuées à grande échelle des séries temporelles. Plus

concrètement, cette thèse est centrée autour des trois thèmes suivants :

Gestion et requêtes sur des séries temporelles "Model-View".

Récemment, le nombre de capteurs qui nous entourent a augmenté de manière significative

(e.g., capteurs environnementaux, capteurs de smartphones, les applications de l’IoT, etc). La

gestion et le traitement efficace de ces séries temporelles massives deviennent primordiaux. La

nature infinie des données collectées par ces capteurs pose un réel défi pour le traitement des

requêtes, même dans une infrastructure telle que le cloud. Les systèmes de gestion de données

brutes traditionnels, basés sur les bases de données relationnelles manquent d’évolutivité

pour accueillir de telles quantités de données de manière efficace. Ainsi, les systèmes de

stockages distribués, basés sur des paires de clés/valeurs, et situés dans le cloud, deviennent

des outils essentiels afin de gérer les données de capteurs. D’autre part, la gestion des séries

temporelles en model-view, qui stockent les données sous forme de segments modélisées,

apporte des avantages supplémentaires comme la compression de données ou l’interpolation.

Cependant, il n’existe actuellement pas de techniques d’indexation et / ou d’optimisation

de requêtes des séries temporelles de capteurs en model-view dans le cloud. Dans le second
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chapitre, nous proposons un index innovant pour les segments modélisés dans les systèmes

de stockage basés sur les pairs clé/valeurs, à savoir KVI-index. KVI-index se compose de deux

intervalles d’indices. Un portant sur la dimension temporelle et l’autre sur la dimension des

valeurs du capteur. Chacun de ces indices est stocké en mémoire sous forme d’arbre, ainsi que

sous forme d’une liste secondaire matérialisée dans le système de stockage clés/valeurs. Nous

montrons que le KVI-index proposé permet d’effectuer un traitement efficace des requêtes

sur les segments modélisés.

Exploration de Corrélations en Flux de Séries.

L’augmentation spectaculaire de la disponibilité des flux de données encourage le développe-

ment de nombreux systèmes de gestion de données distribués en temps réel (par exemple,

Storm, Samza, Spark streaming, etc.). Dans le chapitre 3, nous nous concentrons sur une tâche

fondamentale d’extraction de données de séries temporelles dans un nouveau paradigme de

calcul, à savoir l’exploitation continue et dynamique de corrélations par un système distribué

de traitement de données en temps réel. Ces corrélations révèlent les interactions cachées

et temporelles entre séries temporelles, et sont largement utilisés dans l’analyse scientifique

des données, la détection d’événements pilotés par les données, les marchés financiers, etc.

Les approches existants de’exploration de données et data mining de corrélations, suivent an

modèle centralisé et ne parviennent pas à gérer la question de brassage de données dans le

cadre distribué. Nous proposons le framework P2H, consistant d’un brassage de données basé

sur un mécanisme qui combine parallélisme et partitionnement, et un calcul basé sur une

structure de hypercube, qui vise à améliorer à la fois la communication et de l’efficacité de

calcul pour exploiter les corrélations dans le contexte distribué.

Apprendre des données bruitées et non-stationnaires.

Dans de nombreuses applications du monde réel, grands ensembles de données collectées à

partir d’observations et de mesures des entités physiques, sont inévitablement bruyants et

peuvent contenir des valeurs aberrantes. Au même temps, des algorithmes d’apprentissage

distribués se posent comme des outils puissants pour l’apprentissage des volumes massifs

de données. Cependant, les valeurs aberrantes dans ces grands et bruyants ensembles de

données peuvent considérablement dégrader les performances des approches d’apprentissage

machine standard distribués tels que les arbres de régression. A cet effet, dans le Chapitre

4, nous présentons une approche basé sur un arbre de régression distribué qui utilise la

régression robuste et des statistiques qui sont plus robustes aux valeurs aberrantes. Nous

proposons d’intégrer des critères d’erreur statistiques robustes basés sur l’arbre de régression.

Une technique de résumé des données a été développée et utilisée pour améliorer l’efficacité

de l’apprentissage d’un tel arbre de régression robuste dans le cadre distribué. Dans le chapitre

5, nous présentons une méthode adaptative d’apprentissage de gradient pour les réseaux de

neurones récurrents (RNN) pour effectuer des prédiction de flux de séries temporelles, en pré-

sence de valeurs aberrantes. Nous explorons les caractéristiques locales des séries temporelles

pour pondérer automatiquement les gradients de la perte des observations nouvellement
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disponibles avec des propriétés de répartition des données en temps réel, de telle sorte que

notre modèle RNN est capable d’être robuste aux valeurs aberrantes, ainsi que l’adaptation au

changement des points.

Mots clefs : temps l’extraction de données de la série, informatique distribuée, le temps de gestion

des données de la série, le réseau neuronal récurrent, régression robuste, l’arbre de décision,

récapitulation des données
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1 Introduction

There is probably no pleasure equal to the pleasure of climbing a dangerous Alp; but it is a

pleasure which is confined strictly to people who can find pleasure in it.

— Mark Twain

Time series data occur naturally in countless domains including medical analysis, financial

analysis, online text, sensor network monitoring and social activity mining and are widely

used for capturing the status and dynamics of monitored entities or phenomenons. This

trend is boosted by the fact that with the decreasing hardware cost and increasing demand for

data acquisition in a variety of applications, our planet is undertaking the vast deployment of

sensors embedded in different devices that monitor various phenomena, e.g., environmental

indices, human activities, urban traffic, air pollution, and so on. For instance, the Internet of

Things (IoT) produces an enormous amount of data every day: from smart shirts for athletes

to smart meters in plants. As is shown in Figure 1.1, the amount of objects connected by IoT

and the generated data are expected to experience considerable growth and consequentially
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almost every object/entity in our daily life will have the ability to emit data. For instance, in a

typical wind power farm1, wind turbines equipped with hundreds of sensors can produce 200

terabytes of data that has to be processed in real time. Analyzing such massive data can enable

energy providers to adjust the blades to maximize output as well as forecasting with greater

accuracy and predictability. In addition, it is becoming increasingly common for companies

and organizations to collect very large amount of data over time to improve the service and

operations. For example, in the data centres of Internet companies, e.g., Google, Facebook,

Yahoo, etc., many measurements on server performance are collected every hour for each of

thousands of servers and used to identify servers that are behaving unusually. In one word,

large scale time series data processing and analytics are becoming a big issue nowadays.

(a) (b)

Figure 1.1 – (a) Growth of objects connected by IoT; (b) Growth of data created in IoT.

In the meanwhile, data analytics techniques are getting more and more distributed in the

sense that the distributed nature of diverse data sources as well as the quickly increasing

amount have led to the emergence of many distributed, fault-tolerant computation systems

for large scale data management and analysis as is shown in Figure 1.2. Conventional time

series analytics approaches intended for centralized computing environment assumes that

the volume of data needed for analysis can be fit into memory on a single machine and

therefore is inadequate for contemporary high volume and high velocity time series data in

terms of both communication and computation capacities. In addition, since most of large

datasets are collected from observations and measurements of physical entities and events,

such data is inevitably noisy and skewed in part due to equipment malfunctions or abnormal

events [65, 67, 136]. Traditional learning approaches based on the assumption of small and

clean training datasets are problematic.

1http://www.forbes.com/sites/mikekavis/2015/02/13/envision-energy-leverages-iot-technologies-to-optimize&
-renewable-energy/#789aa167f9ea
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Figure 1.2 – Typical distributed data processing systems

1.1 Motivation and Challenges

In face of the aforementioned observations in time series data analytics, a question arises

naturally: how can we leverage distributed computing for large scale time series data mining

and analytics? In this thesis, we aim to tackle this problem in three aspects: first, as large

amount of time series data is continuously generated by massive devices, there is an eminent

demand for scalable management and querying of time series for efficient analytics; second, in

the online applications where decision-making is based on the real-time produced time series,

discovering timely knowledge in data streams plays an important role, and thus an efficient

online distributed mining approach over massive time series streams is indispensable; third,

considering time series data in the real world is inevitably noisy and non-stationary, robust

learning, which enables to model the true pattern behind data, is an essential for providing

reliable forecasting.

In the following, we will elaborate on the challenges in above three aspects of distributed time

series analytics.

• Scalable Management and Querying of Model-View Time Series: In traditional rela-

tional sensor data management systems, raw discrete observations of time series yielded

by sensors are taken as the first citizen, which leads to a number of problems. On one

hand, in order to perform analysis of raw time series data, users usually adopt other

third-party modeling tools (e.g., Matlab, R and Mathematica), which involve of tedious

and time-consuming data extract, transform and load (ETL) processes [118]. Moreover,

such data analysis tools are usually used for static data sets and therefore cannot be

applied for online processing of sensor data streams. On the other hand, unbounded

data streams often have missing values and unknown errors, which also poses great

challenges for traditional raw time series data management. To this end, model-view

time series data management, which stores the data in the form of modeled segments,

has attracted more and more attention [37, 118, 131]. It brings the additional advan-

tages of data compression and value interpolation and these models can then be stored,

retrieved, and queried, as required.
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Traditional model-based sensor data management approaches mostly employ the rela-

tional data model and process queries based on materialized views [37, 131] on top of

segment models of time series data. However, as the amount of data produced by a wide

spectrum of sensing devices is exponentially increasing and the real-time production

of such sensor data requires the data management system to be able to handle high-

concurrent model-view data, this becomes difficult for traditional relational databases

to realize. To this end, recent prevalent distributed store and computing techniques

provide a promising way to manage model-view sensor data [3, 24, 35, 54, 55]. However,

currently there are no techniques for indexing and/or query optimization of the model-

view time series data in the contemporary distributed environment; full table scan is

needed for query processing in the worst case.

• Distributed Mining of Correlation in Massive Time Series Streams: Recent advances

in embedded sensor technology (e.g., smart meters, smart watches and mobile phones,

the Internet of Things) are driving a massive growth of time series streams reflecting

the real-time status of involved entities. These entities often evolve over time, influence

each other and present correlated behaviours [7, 28, 82, 154]. For instance, one entity

may cause a series of significant value or trend changes in the time series of other

entities with some time lags. Dependencies of this kind are referred to as (lagged)

correlation [22,114,143] and commonly observed in diverse scenarios including Internet

of Things [149], intercorrelated financial markets [104], climate changes of neighbouring

areas [143], social network interactions [112], and functional-dependent servers in data

centres [88, 137]. It is a fundamental piece of knowledge for a variety of applications

such as event and correlation anomaly detection, trend prediction, among others [7, 28,

82, 143].

Mining such correlations in high volume and high velocity time series streams based

on the distributed real-time computation paradigm (e.g., S4, Storm, Spark Streaming,

Samza, etc.) requires a computation and communication efficient solution. Contrary to

static time series mining on a standalone machine, in the highly dynamic environment

as new observations of time series continuously arrive, computation for detecting

correlations at a certain time instant should be finished before the subsequent new

data arrives. Otherwise the system would lag further and further over time and cannot

report timely correlation. On the other hand, the distributed environment complicates

the problem more. The observations of time series are continuously distributed into

different computing nodes of a distributed real-time computation engine and each node

has no knowledge about the timely characteristics of time series other nodes receive.

A brute-force way is that each node has to replicate and shuffle its local time series

(sliding windows) among the nodes, so as to find qualified correlations. Such a method

could generate quadratic computation and communication costs w.r.t. the number

of time series under processing at worst (i.e., similar to the idea of cross-join using
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MapReduce [107, 116]). High communication cost in the distributed context leads to

prolonged processing latency and even bottlenecks, due to the increasing time spent on

sending, receiving and parsing data [147].

• Robust Learning over Noisy and Non-stationary Data: As increasing amount of data is

collected from devices monitoring physical entities in the real world, such large scale

data is inevitably noisy and skewed in part due to equipment malfunctions and abnor-

mal events [65, 67, 76, 136]. In particular, time series yielded in monitoring applications

is usually contaminated by outliers that are abrupt observations deviating from the

behaviour of the majority [76, 134]. A typical example might be cyber-attacks, which are

often shown as anomalies in time series monitoring some measurements of network

traffic. On the other hand, real time series data often bears change points as well, which

indicate that the behaviour and hidden data distribution of the time-series significantly

vary after change points.

The effect of such noisy and non-stationary data on conventional learning (regression)

approaches is often disastrous. Ordinary (distributed) regression learning minimizes

the squared mean error objective function and outputs the conditional mean values as

predictions, which is especially problematic and sensitive to noisy data [45,65,132]. As a

consequence, learnt model can neither identify the true patterns in data, nor provide

reliable predictions [64, 65, 67, 132, 136]. Furthermore, it is very common that outliers

and change points mingle in real time series data, and it is non-trivial for the learning

process to distinguish them, namely being robust against outliers as well as quickly

adapting to the data after change points. With these challenges, robust learning, which

aims to model the true pattern and distribution of data, is essential.

1.2 Contributions

In order to address the aforementioned challenges in distributed time series analytics, in this

thesis we proposed several solutions summarized as follows.

For scalable management and efficient querying of model-view time series, our contribution

includes:

• Innovative interval index: We propose an innovative interval index for model-view

sensor data management in key-value stores, referred to as KVI-index. KVI-index is a

two-tier structure consisting of one lightweight and memory-resident binary search tree

and one index-model table materialized in the key-value store. This composite index

structure can dynamically accommodate new sensor data segments very efficiently.

• Hybrid model-view query processing: After exploring the search operations in the in-
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memory structure of the KVI-index for range and point queries, we introduce a hybrid

query processing approach that integrates range scan and MapReduce to process the

segments in parallel.

• Intersection search: We introduce an enhanced intersection search algorithm (iSearch+)

that produces consecutive results suitable for MapReduce processing. We theoretically

analyze the efficiency of (iSearch+) and find the bound on the redundant index nodes

that it returns.

• Experimental evaluation: Our framework has been fully implemented, including the

online sensor data segmentation, modeling, KVI-index and the hybrid query processing,

and it has been thoroughly evaluated against a significant number of alternative ap-

proaches. As experimentally shown based on real sensor data, our approach significantly

outperforms in terms of query response time and index updating efficiency all other

ones for answering time/value point and range queries.

The second contribution of this thesis is regarding the distributed mining of correlations over

streaming time series.

• We formally define the problem of continuously mining correlations in massive time

series based on a distributed real-time computation engine (DisCoM problem). We

propose the framework P2H, which aims to optimize both communication and compu-

tation cost for DisCoM problem.

• In P2H, we design a novel data shuffling technique parallelism-partitioning based data

shuffling, referred to as P2-data-shuffling, which is able to adaptively replicate and

shuffle the sliding window of a time series only to the computing nodes containing its

correlation partners, thereby dramatically decreasing the communication cost.

• We propose a δ-hypercube structure based correlation computation approach to prune

unnecessary computation over the data shuffled by P2-data-shuffling. Theoretical cost

analysis of the communication and computation is provided.

• Furthermore, we design a probabilistic model for correlation inference by considering

both the temporal and co-occurrence dependence of correlation occurrence in P2H.

• P2H framework and a variety of baseline approaches are implemented based on Apache

Storm, a widely used distributed real-time computation engine. Extensive experiments

on both synthetic and real datasets demonstrate the effectiveness and efficiency and ef-

fectiveness of our approach. in terms of peak capacity, communication cost, processing

latency and pruning power.
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As for robust learning over noisy and non-stationary data, we propose two approaches respec-

tively specialized for offline and online settings as:

In the offline environment where large noisy datasets are given, we focus on the distributed

regression tree, which is at the core of several highly successful distributed machine learning

models and broadly used in a wide spectrum of applications. Our objective is to enhance

the robustness as well as the training efficiency of the distributed regression tree over noisy

datasets.

• We define the distributed robust regression tree employing robust loss functions and

identify the difficulty in designing an efficient training algorithm for the distributed

robust regression tree.

• We propose a novel distributed training framework for the robust regression tree, which

consists an efficient data summarization method on distributed data and a tree growing

approach exploiting the data summarization to evaluate robust loss functions. Such

data summarization is transmitted to the master node with bounded communication

cost.

• The proposed distributed robust regression tree and baselines are implemented based

on Apache Spark. Extensive experiments on both synthetic and real datasets demon-

strate the efficiency and effectiveness of our approach.

As for the online setting, observations of time series possibly contaminated by both outliers and

change points continuously arrive and a online learning process is expected to incrementally

update the learnt model using new arriving data and to provide accurate forecasting. Long

short-term memory neural networks (LSTM), a class of recurrent neural networks, have been

proved to be an very effective tool for time series learning and forecasting [20,51,77,92,129,142]

and additionally support online learning. We present an adaptive gradient learning method

for LSTM networks [50, 51, 60], to make the streaming time series forecasting robust to outliers

and change points. The concrete contribution is listed as follows:

• We model time series with LSTM networks, and use a stochastic gradient descent (SGD)

based method to learn the model from the streaming time series. As novel observations

arrive, the model parameters are updated in an online mode according to the gradients

of the loss of the newly available data. We identify that with the standard SGD method,

outlier observations leads to the updated model deviating from the normal patterns and

producing oscillated incorrect predictions until the adverse effect is gradually corrected

by the following normal observations.
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• To solve the problem, we explore the local features of time series to weight the gradients

of the learning method with distributional properties of the local data in time series.

Such a gradient weighting mechanism enables LSTM to avoid deviating from the normal

behaviour in the presence of outliers as well as quickly adapting to changing time series.

• The experimental analysis on synthetic and real datasets demonstrates the performance

of the proposed learning method for streaming time series forecasting in the presence

of anomalies and change points.

1.3 Thesis Organization

We begin by describing scalable model-view time series data management and querying in

the the distributed environment in Chapter 2. This is followed by a presentation of the P2H

framework for online mining of correlations in massive time series streams in Chapter 3.

The robust learning topic is discussed in Chapter 4 and Chapter 5. The issue of distributed

robust regression tree is covered in Chapter 4. Then, we introduce the online robust learning

algorithm of recurrent neural networks on non-stationary and noisy time series streams in

Chapter 5. Lastly, we summarize and conclude this thesis in Chapter 6.

1.4 Selected Publications

This thesis is mainly based on the following published papers:

• T. Guo, T. G. Papaioannou and K. Aberer. Model-View Sensor Data Management in the

Cloud. IEEE International Conference on Big Data 2013 (IEEE BigData), Santa Clara,

California, USA, 2013. (Chapter 2)

• T. Guo, T. G. Papaioannou and K. Aberer. Efficient Indexing and Query Processing of

Model-View Sensor Data in the Cloud. Journal on Big Data Research, Elsevier, 2014.

(Chapter 2)

• T. Guo, S. Sathe and K. Aberer. Fast Distributed Correlation Discovery Over Stream-

ing Time-Series Data. 24th International Conference on Information and Knowledge

Management (CIKM). Melbourne, Australia, 2015. (Chapter 3)

• T. Guo, K. Kutzkov, M. Ahmed, J. Calbimonte and K. Aberer. Efficient Distributed Decision

Trees for Robust Regression. European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases (ECML/PKDD), Riva del Garda, Italy,

2016. (Chapter 4)
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• T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and K. Funaya. Robust Online Time Series Pre-

diction with Recurrent Neural Networks. IEEE/ACM SIGKDD International Conference

on Data Science and Advanced Analytics (DSAA) (to appear). Montreal, Canada, 2016.

(Chapter 5)
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2 Efficient and Scalable Querying of
Model-View Time Series Data

The more comfortable we become with being stupid, the deeper we will wade into the

unknown and the more likely we are to make big discoveries.

— Martin A. Schwartz, The importance of stupidity in scientific research

2.1 Introduction

Recent advances in sensor technology have enabled the vast deployment of sensors embedded

in user devices that monitor various phenomena for different applications of interest, e.g.,

air/electrosmog pollution, radiation, early earthquake detection, soil moisture, permafrost

melting, etc. The data streams generated by a large number of sensors are represented as time

series in which each data point is associated with a time-stamp and a sensor value. These

raw discrete observations are taken as the first citizen in traditional relational sensor data

management systems, which leads to a number of problems. On one hand, in order to perform
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analysis of the raw sensor data, users usually adopt other third-party modeling tools (e.g.,

Matlab, R and Mathematica), which involve of tedious and time-consuming data extract,

transform and load (ETL) processes [118]. Moreover, such data analysis tools are usually used

for static data set and therefore cannot be applied for online processing of sensor data streams.

On the other hand, unbounded sensor data streams often have missing values and unknown

errors, which also poses great challenges for traditional raw sensor data management.

To this end, various model-based sensor data management techniques [37, 103, 118, 131] have

been proposed. Model-view sensor data management leverage time series approximation and

modeling techniques to segment the continuous sensor time series into disjoint intervals such

that each interval can be approximated by a kind of model, such as polynomial, linear or SVD.

These models, for all the intervals, (or segment models) exploit the inherent correlations (e.g.

with time or among data streams) in the segments of sensor time series and approximate each

segment by a certain mathematical function within a certain error bound [21, 27, 38, 57, 69].

Then, one can only materialize the models of the segments instead of the raw data and harvest

a number of benefit:

First, model-view sensor data achieves compression over raw sensor data and therefore re-

quires less storage overhead [16, 36, 119]. Second, due to the sampling frequency or sensor

malfunction, there may be some missing values at some time points. If one query involves such

time points, then the relevant segment model can be used to estimate the values [16, 36, 119].

In some degree, model-view sensor data increases the data availability for query processing.

Third, there usually exist outliers in raw sensor data, which has negative effect on the query

results. Model-view sensor data removes the outliers in each interval via the segment model

and historical data on upper and lower data bounds, thereby diminishing the effect of outliers

in query results. Fourth, regarding the similarity search or pattern discovery in sensor time-

series mining, the segment-based time series representation is a powerful tool for dimension

reduction and search space pruning [27, 68, 126].

However, proposed model-based sensor data management approaches mostly employ the

relational data model and process queries based on materialized views [37, 131] on top of

the modeled segments of sensor data. Nowadays, the amount of data produced by sensors

is exponentially increasing. Moreover, the real-time production of sensor data requires the

data management system to be able to handle high-concurrent model-view sensor data from

massive sensors and this is difficult for traditional relational database to realize. To this end,

recent prevalent cloud store and computing techniques provide a promising way to manage

model-view sensor data [3, 24, 35, 54, 55].

The main focus of this paper is on how to manage the segment models of sensor data, namely

model-view sensor data with the newly emerging cloud stores and computing techniques

rather than how to explore more advanced sensor data segmentation algorithms.
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In our approach, we exploit key-value stores and the MapReduce parallel computing paradigm

[24, 49], two significant aspects of cloud computing, to realize indexing and querying model-

view sensor data in the cloud. We characterize the modeled segments of sensor time series by

the time and the value intervals of each segment [54, 55]. Consequently, in order to process

range or point queries on model-view sensor data, our index in the cloud store should excel in

processing interval data. Current key-value built-in indices do not support interval-related

operations. The interval index for model-view sensor data should not only work for static

data, but it should be dynamically updated based on the new arriving segments of sensor

data. If traditional batch-updating or periodical re-building strategy was applied here [71,121],

then the high speed of sensor data yielding might lead to a large size of the new unindexed

data, even in short time periods and to significant index updating delay as well. As a result,

the performance of queries involving both indexed and unindexed data would degenerate

greatly. Therefore, the interval index in the cloud store should be able to insert an individual

new modeled segment in an online manner.

The contributions of this paper are summarized as follows:

• Innovative interval index: We propose an innovative interval index for model-view

sensor data management in key-value stores, referred to as KVI-index. KVI-index is a

two-tier structure consisting of one lightweight and memory-resident binary search tree

and one index-model table materialized in the key-value store. This composite index

structure can dynamically accommodate new sensor data segments very efficiently.

• Hybrid model-view query processing: After exploring the search operations in the in-

memory structure of the KVI-index for range and point queries, we introduce a hybrid

query processing approach that integrates range scan and MapReduce to process the

segments in parallel.

• Intersection search: We introduce an enhanced intersection search algorithm (iSearch+)

that produces consecutive results suitable for MapReduce processing. We theoretically

analyze the efficiency of (iSearch+) and find the bound on the redundant index nodes

that it returns.

• Experimental evaluation: Our framework has been fully implemented, including the

online sensor data segmentation, modeling, KVI-index and the hybrid query processing,

and it has been thoroughly evaluated against a significant number of alternative ap-

proaches. As experimentally shown based on real sensor data, our approach significantly

outperforms in terms of query response time and index updating efficiency all other

ones for answering time/value point and range queries.

The remainder of this paper is organized as follows: Sec. 2.2 summarizes some related work
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on model-view sensor data management, interval index and index-based MapReduce opti-

mization approaches. In Sec. 2.3, we provide a brief description of sensor-data segmentation,

querying model-view sensor data and the necessity to develop interval index for managing

model-view sensor data in key-value stores. The detailed designs of our innovative KVI-index

and the hybrid query processing approach are discussed in Sec. 2.4 and 2.5 respectively. Then,

in Sec. 2.6, we present thorough experimental results to evaluate our approach with traditional

query processing ones on both raw sensor data and modeled data segments. Finally, in Sec.

2.7, we conclude our work.

2.2 Related Work

Time series segmentation is an important research problem in the areas of data approximation,

data indexing and data mining. A lot of work has been devoted to exploit different types of

models to approximate the segments of time series, such that the pruning and refinement

framework can be applied to this segment-represented time series for the pattern matching

or similarity search [27, 68]. Some other researchers proposed techniques for managing

the segment models that approximate sensor time series in relational databases. MauveDB

designed a model-based view to abstract underlying raw sensor data; it then used models to

project the raw sensor readings onto grids for query processing [37]. As opposed to MauveDB,

FunctionDB only materializes segment models of raw sensor data [131]. Symbolic operators

are designed to process queries using models rather than raw sensor data. However, both

approaches in [37] and [131] do not take into account applying indices to improve query

processing. Moreover, their proposed approach focuses on managing static dataset of time

series rather than dynamic time series.

Also, each segment of time series could be characterized by its time and value intervals. Then,

one should consider employing an interval index for processing queries over model-view

sensor data. Two common used indices for interval data are segment tree [71] and interval

tree [11]. As for segment tree, it is essentially a static data structure that needs an initialization

process to construct elementary intervals based on the initial dataset [71]. Once a new interval

outside of the domain of current segment tree arrives, the elementary intervals should be

rebuilt, which is not suitable for the real time nature of sensor data streams [71]. Regarding

the interval tree, individual interval is not divided and replicated during the insertion phase as

in the segment tree and therefore the storage overhead is linear to the number of intervals to

index [11, 19, 41]. However, it is a memory-oriented structure.

Some efforts [11, 73, 74, 121] have also been done to externalize these in-memory index data

structures. The relational interval tree (RI-tree) [73] integrates interval tree into relational

tables and transforms interval queries into SQL queries on tables. This method makes efficient

use of built-in B+-tree indices of RDBMS. Nevertheless, in this paper, we aim to design an
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interval index structure for model-view sensor data that is compatible with key-value stores

and distributed query processing in the cloud.

In [99], they proposed an approach that enables key-value stores to support query process-

ing of multi-dimensional data via integrating space filing order into row-keys, which is not

fit for interval data. An index for multi-dimensional point data is proposed in [135] based

on P2P overlay network, which is a different underlying architecture from our adopted key-

value store. The latest effort to develop interval indices in the cloud utilizes MapReduce to

construct a segment tree materialized in the key-value store [121]. This approach outper-

forms the interval query processing provided by HBase (http://hbase.apache.org/) and Hive

(http://hive.apache.org/). However, the segment tree utilized in [121] is essentially a static in-

dex, as is also the case with [71]. Therefore, an index re-building phase needs to be periodically

executed to include new data.

MapReduce parallel computing is an effective tool to process large scale of sensor data in

cloud stores, but conventional MapReduce always conducts trivial full scan on the whole

data set for the queries of any selectivity [35]. In order to enable MapReduce and indices to

collaborate for query processing, many researchers proposed to integrate index techniques

into MapReduce framework to avoid full data scan for low-selective queries [39, 40, 42, 62, 148].

One prior work is to construct a B+-tree over static data set in a distributed file system (e.g.

HDFS) and materialize the index also in HDFS [148]. Then, the query processor can process

this index file, which involves of multiple MapReduce jobs to access different layers of the tree

and therefore is not efficient enough [148]. Moreover, the proposed HDFS based B+-tree is

only effective for point data rather than interval data [148].

The authors in [39] integrate indices into each file split of the data file in HDFS, such that

mappers can use the indices to only access predicate-qualified data records in each split.

In [40], indices applicable to queries with predicates on multiple attributes were developed

by indexing different record attributes in different block replicas of data files. These two

kinds of index access methods in MapReduce are both on record-level. If we integrate an

interval index into each file split guided by this direction, the MapReduce data preparation,

starting overhead and Mapper waves are actually not decreased much and therefore the

performance does not significantly improve. On the other hand, the update in one file split

requires to rebuilt the whole local index of the split thereby having high latency for segment

insertions. In [42], a split-level index is designed to decrease MapReduce framework overhead.

As compared to above record-level indices in [39, 40], split-level indices eliminate irrelevant

file splits before launching mappers, and the data transferring and starting up overheads are

further decreased. This kind of approach is more efficient for decreasing the map function

invocations via overriding the data reader of MapReduce [39, 40], as compared to record-level

optimizations.
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2.3 Overview of model-view sensor data management

In this section, we discuss certain important issues for managing model-view sensor data

in a key-value store. First, we explain what is model-view sensor data. Then, we discuss

possible storage schemas for model-view sensor data and explain the necessity to develop a

special index for it in key-value stores. Last, we describe the query types of our focus and some

particular techniques for processing model-view sensor data queries.

2.3.1 Sensor time series segmentation

Sensor time series segmentation is a type of algorithms that fragment a time series stream

into disjoint segments, and then approximate each data segment by a mathematical function

or model, such that a specific error bound is satisfied [21, 27, 38, 57, 69]. Query processing

can then be performed on the materialized segments instead of the raw sensor data, as

in [131]. Sensor data segmentation and modeling algorithms have been extensively studied

in [21, 27, 38, 57, 69, 103]. As segmentation algorithms are not the focus of this paper, we

Figure 2.1 – Model-view time series data

only present a general framework in Alg. 1 for online time series segmentation [69], which

is used in the dataset preparation phase of our sub-sequential experimental evaluation in

Sec. 5.5. Table 2.1 summarizes the list of symbols that we employ for model segments. This

Algorithm 1 Sensor time series segmentation
Input: vt , t , /* value and associated time point of one sensor reading */ ,er r or _bound
1: if currentSeg_error( anchor , t ) < error_bound then
2: seg[anchor,t ] = segmentModel(vanchor ,· · · ,vt );
3: # /* approximate the sensor values between the time range [anchor, t ] with the specified type of model (e.g., constant,

linear, polynomial, etc.) */
4: else
5: lt =anchor;
6: lr =t-1;

SegMaterialization( seg[anchor,t ])
/* output this new produced segment seg[anchor,t ] for materialization */
anchor=t;

7: end if
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sensor time series segmentation program is invoked each time a new sensor reading comes.

It first checks if the segment model over the sensor readings from the anchor time point

to current time, namely in range [anchor, t ], satisfies the error bound. If yes, the current

segment model is updated to seg[anchor,t ]. If no, the current time t is supposed to be the

starting point anchor of a new segment. Then, output the segment seg[anchor,t−1] for the

materialization process for which our following designed index approach is responsible. The

segment seg[anchor,t−1] consists of the following information: time interval [lt ,rt ], value range

[lv ,rv ] and model formula (for instance, it could be a sequence of coefficients for each item

of one polynomial function). Under this framework, users can choose different categories

of models to approximate the sensor data in segments. For instance, a time series shown

in Fig. 2.1(a) is transformed into a sequence of linear functions with time dimension as the

independent variable, which is depicted in Fig. 2.1(b). The associated value range in Fig.

2.1(b) indicates the values one segment model can cover within the time interval. Such set of

functions, each with its associated [lt ,rt ] and [lv ,rv ] for the sensor data segments are referred

to as the model-view sensor data over the original raw sensor data observations.

Symbol Semantics
lt Beginning timestamp of one segment

model
rt Ending timestamp of one segment model
lv Minimum value of one segment model’s

value range
rv Maximum value of one segment model’s

value range
pi

0 · · ·pi
n Coefficient of each item in polynomial

model

Table 2.1 – Symbol List

2.3.2 Storage model in key-value stores

HBase overview

A table in HBase consists of a set of regions, each of which stores a sequential range partition

of the row-key space of the table [24, 49]. An HBase cluster consists of a collection of servers,

called region servers, which are responsible for serving a subset of regions of one table. The

key-based data access method of HBase is realized by a three layered B+ tree maintained

among the nodes of HBase cluster. The two upper levels referred to as the ROOT and META

regions are kept in the master node of an HBase cluster. The ROOT region plays the role of

root node of one B+ tree, while the META table maintains a mapping of the regions of a table
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Figure 2.2 – Model-view time series in HBase key value store

to region servers. The regions distributed among the other nodes constitute the lowest level

of the B+-tree index and store the real data of a table. If a region’s size exceeds a configurable

limit, HBase can dynamically split it into two sub-regions, which enables the system to grow

dynamically as data is appended. Regarding a MapReduce job on a table in HBase, the number

of mappers is equal by default to that of regions of the table to process, which means that each

mapper processes one region, as shown in Fig. 2.2. The number of reducers is configurable

programmatically. And HBase allows MapReduce to only process key-based table partitions of

interest, which can avoid trivial full-scan on a table for low-selective queries [24, 49].

Interval-index in HBase

For the model-view sensor data in the key-value store, the time interval, the value range and

the model formula (e.g. polynomial coefficients) can fully approximate one data segment.

There are different possible ways to organize row keys and columns for storing and querying

model-view sensor data.

One idea for storing segments in key-value stores could be to do it similarly to that of the raw

sensor data management system such as Open-TSDB [3], which takes the time interval of

one segment as the row key (rk). As rows are sorted on the row key in the key-value store, the

starting points of time intervals are in ascending order. Therefore, although for time range or

point queries the query processor knows when to stop the scan, it still needs to start the scan

from the beginning of the table each time. The same problem happens to the table with value

intervals as row-keys. For instance, in Fig. 2.2, when the value range is the row-key, the table is

sorted according to the left boundaries of the value ranges of model-view sensor data. For a
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value query range [9.2,10], we can make sure after the fourth segment, namely S2 with value

range [9.9,10.9], there is no qualified segment in the table. However, still scanning has to start

from the beginning of the table, since the right boundaries of the value ranges are not in order.

In summary, simply incorporating time, value interval or model coefficients into the row-key

cannot contribute to accelerating the query processing. A generic index in key-value stores

specialized for model-view sensor data is imperative. Moreover, considering that model-view

sensor data is produced in real-time, the index for model-view sensor data in key-value stores

should be able to update on the fly efficiently [49]. Since each segment of model-view sensor

data is characterized by its time and value ranges, we will concentrate on employing interval

index to index both the time and value dimension of one segment.

However, another issue for designing the interval index for model-view sensor data in key-

value stores is where to materialize the index. One possible way would be to store the index in

separated files in the distributed file system (e.g. HDFS, etc.) on top of which the key-value

store HBase is also built. In this approach, as in the work [148], each layer of the tree structure

is stored in one file. Consequently, index searching needs to invoke multiple MapReduce jobs

to iteratively process each level of the tree, which is not efficient. Another way is to integrate

one index for each region to only index the local model-view sensor data in that region, such

that mappers can first load the index to locate desired data in that region and then access

it. However, this kind of approach does not decrease data preparation and starting overhead

of MapReduce for the whole table, since still all the regions of the table are initialized to be

processed by MapReduce [39, 40]. Our proposed key-value based interval index (described

in the next section) steps out of above ideas and takes advantage of both the in-memory and

key-value parts to improve the query processing.

2.3.3 Querying model-view sensor data

Much work has been devoted to pattern discovery for time series data, but in this paper, we

focus on the following four types of fundamental queries on model-view sensor data.

• Time point query: return the value of one sensor at a specific time point.

• Value point query: return the timestamps when the value of one sensor is equal to the

query value. There may be multiple time stamps of which sensor values satisfy the query

value.

• Time range query: return the values of one sensor during the query time range.

• Value range query: return the time intervals of which the sensor values are within the

query value range. There may be multiple time intervals of which sensor values satisfy

the query value range.
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The generic process to query model-view sensor data queries comprises the following two

steps:

• Searching of qualified segments: The qualified segments are the segments whose time

(resp. value) intervals intersect the query time (resp. value) range or point. This step

should make use of an interval index to locate all the qualified modeled segments in the

segment model store.

• Model gridding: Qualified segments are too abstract and a finite set of data points are

more useful as query results for end-users [131]. Therefore, model gridding is another

necessary process [37, 131]. Model gridding applies three operations to each qualified

segment: (i) It discretizes the time interval of the segment at a specific granularity to

generate a set of time points. (ii) It generates the sensor values at the discrete time points

based on the model that approximates the segment. (iii) It filters out the sensor data

that does not satisfy the query predicates. The qualified time or value points that result

from gridding all qualified modeled segments are returned as query results.

As shown in Fig. 2.1(c), segment one S1 is found as one qualified segment for time query range

[10,70], model-gridding discretizes the time interval of S1 and evaluates the values at each

time point. Then, the qualified time-value pairs constitute the query results.

2.4 Key-Value Interval Index

We will first present the design of the two-tier model index on key-value stores and then we

will discuss the updating algorithm of the model index.

2.4.1 Structure of KVI-index

As each segment of model-view sensor data has a specific time and value range, instead of

indexing the mathematical functions of segments, our idea is to take the time and value

intervals as keys to index each segment, which allows the index to directly serve the queries

proposed in Sec. 2.3. We propose the key-value represented interval index (KVI-index) to

index time and value intervals of model-view sensor data. For a segment in Fig. 2.3(c), the

time and value intervals are respectively indexed by the KVI-index, as depicted in Fig. 2.3(a)

and (b). Our KVI-index adopts the idea from interval tree, since in-memory interval tree’s

primary-secondary structure is convenient for externalization to the key-value store [73].

Furthermore, the searching and scanning algorithm of the interval tree is suitable for the

MapReduce computing paradigm.

Our KVI-index is a novel in-memory and key-value composite index structure. The virtual
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searching tree(vs-tree) resides in memory, while an index-model table in the key-value store is

devised to materialize the secondary structure(SS) of each node in vs-tree.

In-memory structure

The in-memory virtual searching tree(vs-tree) is a standard binary search tree shown in Fig.

2.3(a). Each time (or value) interval is registered on only one node of vs-tree: the one with

which the interval first overlaps along the searching path from root. This node is defined as

the registration node τ for this interval. Each node of vs-tree has an associated secondary

structure(SS), materialized in the key-value store, which stores the substantial information of

the modeled segments registered at this node.

We apply space-partition strategy for vs-tree. The height of the vs-tree is denoted by h. We set

the value of leftmost leaf node as 0. For negative sensor data values, we use simple shifting

to have the data range start from 0 for convenience. Then, the domain of the vs-tree is [0,R]

and R = 2(h+1) −2. The value of root node is r = 2h −1. During the whole life of KVI-index,

only the root value r is kept, since, due to the lightweight computability of the space-partition,

the value of each node in the searching path from the root to the node that has the queried

point or interval can be calculated in run time. All the operations on vs-tree are performed in

memory and are thus very efficient. As the domains of time and value of the sensor data are

different, two vs-trees one for times and another for values are kept in memory simultaneously

for answering time and value queries respectively.

Figure 2.3 – Two-tier structure of KVI-index
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Index-model table

Our novel index-model composite storage schema enables one table not only to store the

modeled segments, but also to materialize the structural information of the vs-tree, i.e., the

SSs for each tree node.

The index-model table is shown in Fig.2.3(b). Each row corresponds to only one modeled

segment of sensor data, e.g., the data segment shown in the black dotted rectangle in Fig.2.3(c).

A row key consists of the node value and the interval of an indexed modeled segment at that

node. The time interval, value interval and the model coefficients are all stored in different

columns of the same row. And the SSs of each node correspond to a consecutive range of tuples

in the index-model table. For instance, the rows corresponding to the SSs of node 1, node 5

and node 13 in vs-tree are illustrated in Fig. 2.3(b). Analogously, we have two index-model

tables that correspond to time and value vs-trees respectively.

2.4.2 KVI-index updates

The complete modeled segment updating algorithm of KVI-index is shown in Alg. 2. It includes

two processes:

(1) Registration node searching: locate the node τ at which one time (value) interval [lt ,rt ]

should be registered.

(2) Materialization of modeled segments: construct the row-key based on the τ and materialize

one modeled segment’s information into the columns of the corresponding row.

Registration node searching (rSearch)

This algorithm first involves a domain-expansion process to dynamically adjust the domain of

the vs-tree according to the specific domain of the sensor data. Then, the registration node

can be found on the validated vs-tree.

Lemma 1. For a modeled segment Mi with time (value) interval [lt ,rt ] (resp. [lv ,rv ]), its

registration node lies in a tree rooted at 2�log(rt+2)�−1 −1.

Proof. The domain of one tree rooted at 2�log(rt+2)�−1 −1 is [0,2�log(rt+2)� −2]. As 2�log(rt+2)� −
2 ≥ 2log(rt+2) − 2 = rt , the registration node of interval [lt ,rt ] must be in a tree rooted at

2�log(rt+2)�−1 −1.

Lemma 2. For a modeled segment Mi with time (value) interval (lt ,rt ), if the right end-point

rt satisfies rt > R, the domain of vs-tree needs to expand.
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Algorithm 2 Time (or value) KVI-index updating
Input: [lv ,rv ], [lt ,rt ], /* value and time intervals of one modeled segment, Mi , r /* Mi denotes the coefficients of the modeled

segment
1: # /* dynamic domain expansion
2: if (rt > R) then
3: r= 2�log(rt+2)�−1-1 /* expand to new root value
4: end if
5: # /* registration node search
6: node = 2�logrt �+1-1;
7: h=log (node)-1;
8: while (h ≥ 0) do
9: if (lt ≤ node and rt ≥ node) then
10: break; /* node is the registration node
11: else
12: if (lt > node) then
13: node= node+ 2h ;
14: end if
15: if (rt < node) then
16: node= node- 2h ;
17: end if
18: end if
19: h=h-1;
20: end while
21: # /* materialized into the index-model table.
22: if the SS of node has been initialized then
23: rowkey= <node|lt |rt>
24: else
25: rowkey= <node|α>
26: end if
27: insert [lv ,rv ], [lt ,rt ], Mi into the table.

Proof. The current vs-tree’s height is h and lt ≤ r , the interval [lt ,rt ] rides over the root node r .

Assume that we do not expand the domain and hang [lt ,rt ] on r . When a new model M j with

a time (or value) interval [l
′
t ,r

′
t ] (or [l

′
v ,r

′
v ]) and l

′
t > R comes, the root value has to increase

to r
′
=2�logr

′
t +2�−1-1 (resp. r

′
=· · ·) as [l

′
t ,r

′
t ] (resp. [l

′
v ,r

′
v ]) intersects no node of current vs-tree.

Then between r and r
′
, there is one node with value 2(h+1)-1. The interval (lt ,rt ) is stored

at node r = 2h-1 and rt > 2(h+1)-2 ⇒ rt ≥ 2(h+1)-1, therefore registering the interval [lt ,rt ] on

node r contradicts with the interval registration rule.

Figure 2.4 – Registration node searching of KVI-index

Using Lemma1 and Lemma2, KVI-index is able to dynamically decide when and how to adjust
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the domain [0,R] of vs-tree. The complete rSearch can be illustrated by Fig. 2.4. When model 1

is to be inserted, the vs-tree rooted at node7 is still valid. model1 is registered at node5.

However, when model2 arrives, its right end-point, i.e., 16, exceeds the domain [0,14]. The

vs-tree is expanded having 15 as new root and the new extended domain is the area enclosed

by the dotted block in Fig. 2.4. Then, the sub-sequential model 2 and model 3 can be updated

successfully.

The rSearch process can be further optimized via adaptively adjusting the starting point

based on the interval to index. In this way, rSearch does not need to always search from

root node, thereby shortening the length of searching path. Based on Lemma 1, for one

interval (lt ,rt ), we can start to search for registration node from node r0 = 2�log tr �+1 −1 rather

than root node r , which can be referred to Line 7 in Alg. 2. Also, the nodes outside of sub-

domain [0,2�log tr+1�+1−2] of vs-tree will not become the registration node, because the interval

(t l , tr ) does not intersect with them. For example, the model4 in Fig. 2.4. The adaptive

searching finds that the subtree rooted at node 7 is the minimum one covering model4’s

interval [9,14]. Therefore, node 7 is the starting point for registration node searching and the

length of searching path is only 1.

Materialization of modeled segment

When materializing model Mi into the SS of a node τ, the row-key may be chosen in two ways:

• Upon initialization of the SS of node τ: when no modeled segment has been stored at

τ’s SS, the row key is chosen as < τ,α> for model Mi . Here, α is a postfix of row key to

indicate that this row is the starting position of τ’s SS in the table.

• Upon updating the SS of node τ: when the SS of τ has already been initialized, the time

interval [lt ,rt ] (resp. [lv ,rv ] for value interval) to be indexed will be incorporated into

the row key, i.e., < τ, lt ,rt > (resp. < τ, lv ,rv > in the index-model table for values). In

this way, different modeled segments stored in the same SS of a node do not overwrite

each other.

The selection of specific α should make sure that the binary representation of < τ,α> is in

front of any other < τ, lt ,rt >. This design is useful for query processing. For instance, if the

query processor requires to access all the modeled segments stored at registration node 5,

then we know that all the corresponding modeled segments lie in the rows within the row-key

range [< 5,α >,< 6,α >). For example, take the model1 and model2 in Fig. 2.5. First, the

KVI-index checks whether the starting modeled segments of node5 and node15, namely rows

with key < 5,α> and < 15,α>, exist. Then, the row key < 5,4,6 > is constructed for model1

as the SS of node5 has been initialized, whilst KVI-index constructs the row key < 15,α> for
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model2.

Figure 2.5 – Modeled segment materialization of KVI-index

Complexity analysis

In this section, we analyze the computational and communication complexities of updating

operation of KVI-index. The complexity analysis of KVI-index includes in-memory and key-

value part.

• In-memory

The rSearch on vs-tree can run within O(log (R)) time. The space expansion costs O(1)

time. Only the root value r of vs-tree is kept in memory. The values of other nodes on

vs-tree can be calculated due to the computability of vs-tree’s space-partition. Therefore,

the space complexity of vs-tree is O(1).

• In key-value store

The update operation on vs-tree does not generate any network I/O cost. For a n-th order

polynomial model of one sensor data segment, (2+n) put operations are conducted to

materialize one model. Therefore, the time complexity is O(1) in terms of network I/O,

as n is constant. Moreover, one segment model’s time (or value) interval and coefficients

are only materialized once into the index-model table, thus the space cost is O(N ) for

time (or value) index.
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2.5 Query Processing via KVI-index and MapReduce

For querying model-view sensor data, the searching process of qualified modeled segments

(defined in Sec.2.3) in KVI-index includes two steps:

• Intersection and point search: The intersection search on vs-tree is used for range queries,

while point search is employed for point queries. They are responsible for collecting the

nodes that accommodate qualified modeled segments in their secondary structures SSs.

• Modeled-segment filtering: Due to the rule for interval registration at the nodes of the

vs-tree, the SS of a node may contain some intervals irrelevant to queried range or point.

In KVI-index, the SSs of all nodes found by the search operation are accessed to filter

out unqualified segments.

After the above two steps, model gridding component fetches the coefficients of each qualified

modeled segment and performs gridding. Next, we first describe an enhanced intersection

search algorithm on vs-tree that benefits KVI-Scan-MapReduce query processing, introduced

later in this section. We then present the point search algorithm on vs-tree. Subsequently, we

introduce our novel hybrid KVI-Scan-MapReduce query processing. Last, we theoretically

analyze the enhanced intersection search algorithm of KVI-index.

2.5.1 Intersection and point search

Enhanced interval intersection search

Alg. 3 presents the i Sear ch+. Given a time (resp. value) range query [lt ,rt ], i Sear ch+ first

calls the rSearch to find the registration node τ of [lt ,rt ]. The nodes on the searching path

from the root node to the one preceding τ form a node set denoted by S0. The i Sear ch+ stops

at the node, which is closest to the left-end point lt . All the nodes along the left-descending

path form a node set, denoted by Sl , while the node with the minimum value in this path is

denoted by ls . Analogously, Sr is the node set from the right-descending path and rs is the

node with the maximum value in this path. Any node outside the range [ls ,rs] and the set S0

does not have any qualified modeled segments.

The traditional intersection search would return the node set C = S0 ∪Sl ∪Sr ∪ [lt ,rt ] for

further modeled-segment filtering and gridding. Our i Sear ch+ outputs the discrete node set

S0 and a consecutive range of nodes D = [ls ,rs]. For example, take the range query in Fig.

2.6(a). node7 is the registration node of query range [6,10]. The traditional i Sear ch returns

the discrete node sets shown in the solid boxes of Fig. 2.6(a), while our i Sear ch+ returns a

range of nodes [3,11] and S0 = {15}. We will see how the output of i Sear ch+ benefits the

hybrid query processing later in Subsection 2.5.2.
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Algorithm 3 i Sear ch+ of vs-tree
Input: time query range [lt ,rt ], root value r
Output: node set S0 and D

1: # /* construct S0
2: node=r;
3: h=log(r)-1;
4: while (h ≥ 0) do
5: if (lt ≤ node and rt ≥ node) then
6: break; /* node is the registration node
7: else
8: S0 = S0 ∪ node
9: if (lt>node) then
10: node= node + 2h ;
11: end if
12: if (rt<node) then
13: node= node - 2h ;
14: end if
15: h=h-1;
16: end if
17: end while
18: # /* construct D .
19: ls = 2�log (lt )�,
20: rs = R - 2�l og (R−rt )�,
21: D = [ls ,rs ]

Point search

We denote the point search by sSearch as it functions as the stabbing search of interval tree.

The sSearch is a binary search that records the nodes along the descending path. We present

the sSearch in Fig. 2.6(a). For example, when querying the sensor value of time point 24, the

node set S0 = {15,7,11,9,10} is returned by sSearch. Since there is no split searching, as in

i Sear ch+, only one node set is produced here. We denote this node set by S0 as well, so as to

facilitate the description of the hybrid KVI-Scan-MapReduce query processing that follows

next.

2.5.2 KVI-Scan-MapReduce query processing

The conventional clustered index for one-dimensional data can exactly locate a consecutive

range of qualified data. Then, the query processor just needs to do range scan on these

qualified data. However, as for querying model-view sensor data, the challenge is how to

tackle the large amount of segment models from the SSs distributed across the index-model

table. We first analyze the location distribution of the SSs of the nodes found by i Sear ch+

and sSearch in the index-model table. The characteristics of this distribution inspired us to

propose the hybrid KVI-Scan-MapReduce query processing approach.
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Figure 2.6 – Workflow of KVI-Scan-MapReduce approach. (a) i Sear ch+ and sSearch. (b) SS
location distribution for the range query. (c) Hybrid processing

SS location distribution

There are two cases for the SS distribution in the index-model table, described below.

• S0: The SSs of S0 are non-consecutive and sparsely distributed in the index-model

table. The node value is the primary part of the row-key; thus, the distance between SSs

of S0 depends on the numerical difference of node values. As S0 includes the nodes

from root node to the one preceding the τ, the intra-distances between any consecutive

nodes in S0 are 2h−i , where i = 0, · · · ,h−dτ is the position of the node in the descending

search path S0 and dτ is the depth of τ. Obviously, the intra-distances in S0 are greater

than those for other nodes below τ in the search path.

• D: The SSs of [ls ,rs] are clustered around the ones of [lt ,rt ] in the index-model table.

The SSs of [lt ,rt ] are all adjacent in the index-model table. The SSs of [ls ,rs] are bounded

by those of the sub-tree rooted at τ and the nodes in [ls ,rs] are a superset of the nodes

in [lt ,rt ]. The deeper the registration node τ is located, the tighter the set of the SSs of

[ls ,rs] over those of [lt ,rt ].

For example, take the time (or value) query range [6,10] in Fig. 2.6(a). The registration node is

node7. Then, S0 = {15} and D = [3,11]. The sub-tree rooted at node7 covers the node range

E = [0,14] and D ⊂ E . From Fig. 2.6(b), the SSs of D are clustered around those of [6,10] and

bounded by the SSs of E . However, node15’s SS is located far away from those of [3,11].

If SSs of S0 and D are processed via straightforward random access and range scan provided by

key-value stores, the entire modeled-segment filtering and gridding processes are conducted

locally at the application side. For a table of multiple or hundreds of GBs, the communication
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and computation costs are prohibitively high for the application side even for low-selective

queries.

The modeled segment filtering-gridding processing matches MapReduce’s filtering-aggregation

paradigm. Considering the research results from [39, 40, 42], for CPU non-intensive workload,

I/O cost, network latency and starting-up overhead of mappers are dominant in the execution

time of MapReduce programs. If the SSs of S0 and D are all processed by MapReduce, a lot

of time is wasted for mappers that process irrelevant SSs in the index-model table. This is

because MapReduce will access the continuous regions of the table including the SSs of nodes

between the S0 and D due to the sequential data feeding mechanism in the mapping phase.

For example, in Fig. 2.6(b), the SSs of D=[3,11] and S0={15} are distant in the table. Hence,

MapReduce will launch many unnecessary mappers for the irrelevant SSs of nodes between

11 and 15, in order to process the SSs of S0 and D.

Hybrid model filtering and gridding

As discussed above, simply using range scan or MapReduce to process SSs are both problematic.

Our idea is to design a hybrid KVI-Scan-MapReduce paradigm that combines range scan and

MapReduce for processing SSs, as follows:

• (1) S0: the height of vs-tree is bounded by log (R), and thus the amount of computation

on S0 is limited. As the SSs of S0 are sparsely distributed in the index-model table and

each SS of S0 can be considered to be a small range of clustered index, the random-

access- and range-scan-based model filtering and gridding is suitable.

• (2) D = [ls ,rs]: the successive range [ls ,rs] delimits a tight boundary of the sub-index-

model table over the relevant SSs that are suitable for processing with MapReduce.

This hybrid paradigm eliminates the Map-phase processing of SSs of irrelevant nodes between

S0 and D and the nodes between the elements of S0. Moreover, it is non-intrusive for both the

key-value store and MapReduce. Regarding the time (or value) point query, it only produces

the node set S0 without D, hence, only range-scan-based model filtering and gridding is

needed.

Suppose that the number of reducers is P and each reducer is denoted by 0, · · · ,P-1. For

range queries, the partition function f is used to assign the qualified modeled segments into

different reducers. It is designed on the basis of query time (resp. value) range [lt ,rt ] (resp.

[lv ,rv ]) and the time (or value) interval [li ,ri ] of each modeled segment i . The idea is that

each of the reducers is in charge of one even sub-range rt−lt
P . Such a partition function f is
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given in Eq. 2.1.

f (ri ) =
⎧⎨
⎩lt ≤ ri ≤ rt � (ri−lt )∗P

rt−lt
�

ri ≥ rt P −1
(2.1)

The functionalities of mappers and reducers are depicted in detail below.

• Mapper: Each mapper gets the time (resp. value) interval [li ,ri ] of one modeled segment

i to check whether it intersects with the query time (resp. value) range. For the qualified

modeled segments, the intermediate key is derived by the partition function f (ri ). The

model coefficients < p1
i , · · · , pn

i > are the value part of the intermediate key-value pair.

• Reducer: One reducer receives a list of qualified modeled segments < p1
0, · · · , pn

0 >
,< p1

1, · · · , pn
1 >, · · · . For each modeled segment < p1

i , · · · , pn
i >, the reducer invokes a

model-based gridding function to compute discrete values as query results.

Regarding the scan-based model filtering and gridding, as SSs in S0 are located in different

regions of the index-model table, the query processor makes use of thread pool to process

each SS of S0 in parallel. Fig. 2.6 shows the workflow of the hybrid KVI-Scan-MapReduce

approach. For a time (or value) range query [6,10], i Sear ch+ constructs the node set S0 = {15}

and D = [3,11]. Then, the SSs of the nodes in D are sent to MapReduce. The SS of node15,

enclosed by the bottom dot-dashed block, is processed via range scan.

2.5.3 Theoretical analysis

One point to carefully consider is that i Sear ch+ may generate redundant nodes, because the

i Sear ch+ aims to find a tight and consecutive range of SSs for MapReduce. For instance, in

Fig. 2.6(a), the SS of node4 is not accessed by the i Sear ch+, but is in the sub-table processed

by MapReduce.

Theorem 1. For a range query [lt ,rt ], the redundant nodes in [ls ,rs] returned by i Sear ch+ are

bounded.

Proof. Assume h to be the height of the registration node τ. Consider the left-descending path

from τ to the node l0 closest to lt . Let d be the depth from which the descending path turns

right, namely the value w < lt of the current node. Then, based on the i Sear ch+ algorithm, w

is the left boundary of accessed node range and w = τ−∑d
i=1 2h−i .

For a certain value of d , the worst case happens when the descending process continues to go

right until reaching l0, as the nodes between w and l0 are all redundant ones. The number of
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nodes returned by i Sear ch+ under this case is given by:

U = τ− (τ−
d∑

i=1
2h−i ) (2.2)

The nodes between τ and w are all included into the output range D of i Sear ch+. The number

of nodes returned by the conventional iSearch is given by:

V = h −d + {τ− (τ−
d∑

i=1
2h−i +

h∑
i=d+1

2h−i )} (2.3)

Therefore, the number of redundant nodes returned by i Sear ch+ is given by:

f =U −V =d +
h∑

i=d+1
2h−i −h

=d +2h−d −h −1

(2.4)

The Eq. 2.4 is a function of d and is monotonous decreasing in d ’s domain [1,h]. Consequently,

when d = 1, the function f reaches the maximum value, namely, the number of redundant

nodes from i Sear ch+ attains the maximum value fmax that is given by:

fmax = 2h−1 −h . (2.5)

As the total number η of nodes of the sub-tree of the left child of τ is 2h −1, hence

f ≤ 1

2
η− log (η+1)+ 1

2
. (2.6)

In summary, the total number of redundant nodes in the range [ls ,rs] is bounded.

The worst case happens when the endpoints lt and rt are the preceding and succeeding nodes

of τ, namely lt = τ−1 and rt = τ+1. However, for most of the cases, the redundant nodes

returned from i Sear ch+ are very limited.

2.6 Experimental Evaluation

First, we compare model-view sensor data query processing with conventional one over raw

sensor data. Then, we show that our KVI-Scan-MapReduce (KSM) approach outperforms

other model-view sensor data querying approaches. Finally, we experimentally explore the

factors that affect the performance of KVI-Scan-MapReduce.
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2.6.1 Setup

We employ accelerometer data from mobile phones as sensor data set. The size of raw sensor

data is 22 GB including 200 million data points. After modeling, the modeled segments of the

sensor data take 12 GB, while there are around 25 million modeled segments.

We developed our system using the versions of HBase and Hadoop in Cloudera CDH4.3.0. The

experiments are performed on our own cluster that consists of 1 master node and 8 slaves.

The master node has 64 GB RAM, 3 TB disk space (4 x 1 TB disks in RAID5) and 12 cores, each

of which is 2.30 GHz (Intel Xeon E5-2630). Each slave node has 6 cores 2.30 GHz (Intel Xeon

E5-2630), 32 GB RAM and 6 TB disk space (3 x 2 TB disks). Nodes are connected via 1 GB

Ethernet. In the experimental results, we refer to query selectivity as the ratio of the number of

qualified modeled segments over that of total modeled segments.
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Figure 2.7 – Sensor data updating performance

The data set contains discrete accelerometer data from mobile phones and is a sequence of

tuples each of which has one timestamp and three sensor values representing the coordinates.

The size of the raw sensor data set is 22 GB including 200 million data points. We simulate the

sensor data emission, in order to segment and update sensor data into the KVM-index in an

online manner. We implement an online sensor data segmentation component [57] applying

the PCA (piecewise constant approximation) [118], which approximates one segment with a

constant value (e.g., the mean value of the segment). Since how to segment and model sensor

data is not the focus of this paper, other sensor time series segmentation approaches could

also have been applied here. Provided that the segments are characterized by the time and

value intervals, our KVM-index and related query-processing techniques are able to manage

them efficiently in the cloud. Finally, there are around 25 million sensor data segments (nearly

15 GB) uploaded into the key-value store. Regarding the segment gridding, we choose 1 second

as the time granularity which is application-specific.
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2.6.2 Index updating

Fig. 2.7 shows the average updating time of each segment and the average insertion time of

each raw sensor data point during the data uploading phase. Both time and value index keep

relatively stable updating efficiency. The updating of the value KVI-index is a little slower than

the time KVI-index. As discussed before, since the domain of the value vs-tree is smaller than

that of the time vs-tree, the value index performs more SS updating operations (discussed in

Sec. 2.4.2) than the time index and therefore incurs more network I/O cost. The raw sensor

data insertion is the fastest but the amount of data to update is much larger than model-view

approach. This is because model-view sensor data achieves data compression over the raw

sensor data thereby decreasing the amount of data to upload.
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Figure 2.8 – Query performance comparison of raw data and model-view approaches on range
and point queries
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2.6.3 Model-view sensor data vs. raw sensor data

We create two tables, which take the time-stamp and sensor value as the row-keys respectively,

such that the query range or point can be used as keys to locate the qualified data points. Then,

the query processor invokes the MapReduce to access the large size of data points for getting

query results.

Fig. 2.8 (a), (b) and (c) present the query response times for time range, value range and

point queries respectively. As shown in Fig. 2.8 (a) and (b), the model-view approach takes

around 30% less time than the raw sensor data method for both time and value range queries.

Although the raw sensor data based methods apply MapReduce to directly access the qualified

tuples via the row-key based range scan, the amount of raw sensor data to process is much

larger than that of the model-view approach. In Fig. 2.8(c), the processing time of the raw

data based method is 2× less than that of the model-view one in time point queries, because

the raw data method can use the query time point as index key to directly access the relevant

data points, while our KSM requires to perform model filtering and gridding. For value point

queries, the model-view approach has nearly 3× less time than the raw data method. As,

normally, there is a large size of data points with the queried value, MapReduce is used to

access this qualified sensor data set. In the model-view approach, the point query processing

only uses random access and range scan to get qualified modeled segments for gridding locally,

and thus it saves the time on starting MapReduce to access data.

2.6.4 Comparison of model-view approaches

There are four baseline approaches for querying model-view sensor data, namely:

MapReduce (MR). This approach utilizes MapReduce without support from any index. It

always works on the whole index-model table to filter the qualified modeled segments in the

mapping phase and perform the model gridding in the reduce phase.

Interval tree (IT). We implemented the traditional query processing operations of the interval

tree [11, 73] by adding another table to store the SS of each node sorted by the right end-point

of intervals. Each index, time or value, has two associated tables. During the intersection or

point search on vs-tree, the query processor decides which table to access based on the relation

between the query range (or point) and the node value. In this way, the query processor can

stop scanning once it encounters one unqualified modeled segment, due to the monotonicity

of end-points of modeled segments. IT makes use of random access and range scan to

sequentially filter the qualified modeled segments and make gridding locally.

MapReduce+KVI (MRK). The idea of MRK is to leverage KVI-index to avoid having MapReduce

to process the whole table. In MRK, MapReduce is designed to work over one continuous
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sub-index-model table including all the SSs of the accessed nodes in search operations. For

instance, in Fig. 2.6(a), for a time (or value) range query [6,10], MRK invokes MapReduce to

work on the sub-table within the row-key range [< 3,α>,< 16,α>]. The same idea applies

for point queries. As compared to our hybrid KSM approach, MRK is a lightweight indexing-

MapReduce plan, as it processes many irrelevant SSs of nodes between S0 and D.

Filter of key-value store (FKV). Some key-value stores such as HBase provide a filter function-

ality to support predicate-based row selection [49]. The filter transmits the filtering predicate

to each region server and then all servers scan their local data in parallel. Afterwards, they

return the qualified tuples. Our filter-based query processing also works on the index-model

table, as the filtering predicates can be directly applied to the columns. The query processor

waits until all region servers finish scans and then it retrieves each returned qualified modeled

segment to conduct gridding locally.

Range Query

Fig.2.9 (a), (b) and (c) present the performance of time range queries. As depicted in Fig.2.9(a),

KSM outperforms MR up to 3× for the low-selective time range queries. As the query selectivity

increases, the amount of SSs for scan based processing decreases and that for MapReduce

approaches the entire table. Therefore, the response time increases and approaches that of

MR. The response time of MR increases little. As increasing query selectivity leads to ascending

gridding workload in reduce phase, these results show that the overhead from model gridding

is not dominant in MR. The response time of MRK is more than that of KSM, but less than that

of MR. As MRK utilizes the KVI-index to localize a consecutive sub-index-model table covering

all the SSs of nodes found by intersection search, it processes fewer modeled segments than

MR’s full table scanning. Yet, as compared to KSM, MRK processes more redundant modeled

segments. Moreover, as the sub-table in MRK covers a large range, the processing time of MRK

increases little for low-selective queries.

Fig.2.9(b) exhibits the performance of IT and FKV approaches. As FKV needs to wait for each

region server of HBase to finish the local data scanning, its total response time is a little longer

than that of IT approach. They both consume much more time than all MR, MRK and KSM, as

they apply sequential accessing of modeled segments.

We also analyze the number of modeled segments accessed by each approach in Fig. 2.9(c).

These experiments show how different access methods of modeled segments affect the per-

formance. MR works on the entire table, thus, the number of accessed segments is the same.

From the point of view of the application, only qualified modeled segments are returned

for gridding, thus FKV processes no redundant modeled segments and consumes the least

amount of modeled segments. Since IT scans the SS of one node until encountering an un-
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Figure 2.9 – Query performance comparison of different model-view approaches. (a)-(c): time
range queries, (d)-(f): value range queries
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qualified model, the total number of accessed segments is a little larger than that of FKV. Our

KSM processes larger number of segments than both IT and FKV due to the continuous and

redundant range of SSs found by i Sear ch+. However, the results also verify our theoretical

analysis that the amount of redundant modeled segments is bounded. MRK accesses more

segments than IT, FKV and KSM, as it adds the SSs between S0 and D to form a continuous

sub-table for MapReduce. Referring to Fig. 2.9(a) and Fig. 2.9(b), although KSM approach

consumes more segments than IT and FKV, its hybrid paradigm is the most efficient.

Fig. 2.9 (d), (e) and (f) present the value range query performance. The different query

processing approaches exhibit similar patterns as for the time range queries, so we skip the

detailed analysis.

Point Query

0.05265 9.6686 0.044384 8.7985

Figure 2.10 – Query performance of point queries

The time and value point query processing performance are shown in Fig. 2.10. IT wins both

for time and value point queries. The response time of KSM is a little greater than IT, but

outperforms the other approaches, because IT is able to access all qualified modeled segments

in one SS. However, the KSM scans the whole SS entries of a node to find the qualified ones.

Because of the invocation of MapReduce and redundant modeled segments in the sub-table,

MRK takes more time than both IT and KSM. But, as MRK does not work on the entire table as

MR does, it takes about 2× less time than MR. FKV consumes the most time as it needs to wait

for server-side full table scan before gridding operations. Since the size of the domain of the

sensor data values is smaller than that of the time domain, nodes in value vs-tree accommodate

more modeled segments than time vs-tree nodes. Thus, the response times of value point

queries of IT, FKV and KSM approaches are all more than those of time point queries. For MR
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and MRK, the processing time differences between time and value queries are insignificant, as

the time spent on model filtering and gridding is not dominant.

2.6.5 Insights into KVI-Scan-MapReduce

Searching depth

(a) Effect on i Sear ch+ (b) Effect on sequential scan

(c) Effect on MapReduce

Figure 2.11 – Effect of searching depth on the processing time

Sec. 2.6.5 discusses effect of the searching depth on the performances of in-memory i Sear ch+,

sequential scan based and MapReduce based model filtering and gridding. At last, we will see

the workload constitutions within the KVI-Scan-MapReduce paradigm in Sec. 2.6.5.

In Fig. 2.11, we present the results from time and value range queries of 10% selectivity and

10% to 50% i Sear ch+ depth. The percentage of i Sear ch+ depth here means the ratio of

registration node searching depth over the height of vs-tree in i Sear ch+. As i Sear ch+ depth
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increases, the number of SSs for range scan based model processing increases. Therefore,

the time consumed by i Sear ch+ and range scan based model processing both increases,

shown in the Fig. 2.11(a) and Fig.2.11(b). As for the MapReduce part, the deeper the level of

registration node τ is, the smaller the space covered by the sub-tree rooted at τ is. Then the

range of SSs in D is tighter over the range of SSs of query range and results in less redundant

SSs for MapReduce, which is theoretically analyzed in Sec. 2.5.3. From Fig. 2.11, we can see a

salient decreasing trend of MapReduce processing time.

Figure 2.12 – Query processing time constitution of time range queries

Workload Constitution

This experiment aims to reveal how much time the KVI-Scan-MapReduce spends on model

gridding, which is a difference of model-view approach from raw sensor data approach. Fig.

2.12 and Fig. 2.13 show the results from time and value range queries of selectivity from 10%

to 50%.

From Fig. 2.12 and Fig. 2.13, the time on model gridding accounts for 1/3 - 1/2 of the total

query processing time. As the majority of gridding work is done in the reduce phase and

the amount of qualified segment models sent to reducers depends on the query selectivity,

the time spent on model gridding increases as the query selectivity increases. If the model

gridding can adapt to users’ different requirements for query results, the performance of the

KVI-Scan-MapReduce scheme can be further optimized.
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Figure 2.13 – Query processing time constitution of value range queries

2.7 Conclusion

To the best of our knowledge, this is the first work to explore the key-value representation of an

interval index for model-view based sensor data management. Different from conventional

external-memory index structure with complex node merging and split mechanisms, our KVI-

index, resident partially in memory and partially materialized in the key-value store, is easy to

maintain in the dynamic sensor data generation environment. Moreover, we proposed a hybrid

query processing approach, namely KVI-Scan-MapReduce, integrating the KVI-index, range

scan and MapReduce for model-view sensor data in key-value stores. Extensive experiments

in a real testbed showed that our approach outperforms in terms of query response time

and index updating efficiency not only query processing methods based on raw sensor data,

but also all other approaches considered based on model-view sensor data for time/value

range and point queries. As a future work, we plan to explore how to process time and value

composite queries and join queries based on the KVI-index.
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3 Distributed Mining of Correlation
over Streaming Time Series

The world’s most powerful graphics chip: Imagination!

— Sheldon Cooper, The big bang theory

3.1 Introduction

As massive powerful and diverse sensors are penetrating into our daily life, increasing amount

of real-time data which is measured in the time series form are produced by a variety of devices

at blazing speeds (e.g., mobile phones, sensor networks, smart meters, smart home appliances

and etc.). Analogous to MapReduce ecosystems and associated distributed algorithms de-

signed for processing large-scale static data [78], many distributed, fault-tolerant and real-time

computation systems [1,2,98,152] have been developed to address the need to process massive

streaming time series. Efficiently mining meaningful and timely knowledge (e.g., correlations,

invariants, causal relations etc.) from time series based on such a new computation paradigm
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is becoming urgent, but receives little attention in the literature.

In this paper, we concentrate on an important and fundamental time series mining problem,

continuously mining and modeling correlations from massive time series via a distributed real-

time computation engine (DisCoM problem). Intuitively, two time series have a significant

correlation if they evolve similarly in a correlated pattern over time or when one is delayed by

a certain lag, as we will provide the formal definition in Section 3.3. DisCoM problem aims to

discover and model such co-evolving relations across massive time series in the real-time dy-

namic context. Such detected correlations can be leveraged for a variety of applications, such

as correlation anomaly analysis [61], pattern discovery [154], event detection [28], leadership

mining [22, 143] and so on.

Meanwhile, diverse applications need the mining and modeling of dynamic correlations as

their fundamental building blocks. In the experimental research,(e.g, climate change), min-

ing lagged correlations over sensor observations from multiple locations allows scientists to

discover from which locations events originate in time [143]. In the performance monitoring

for large-scale systems e.g. data centres, [75, 137], correlations among performance counters

(e.g., CPU, memory usage, etc.) can be used for data-driven incident diagnosis or anomaly

detection [88, 137]. For instance in Figure 3.1, time series measuring memory usage of three

servers [108] is depicted. DisCoM problem aims to discover that the memory usage in Server2

and Server3 constantly follows the variation in Server1 due to some inherent data communica-

tion or function dependency among them and to model such relations. Once it is violated,

anomaly is reported. In the finance area, by utilizing timely detected correlations to predict

the trends of stock prices, traders can spot investment opportunities at a early stage [22]. It is

also applicable in social data analysis [112].

Figure 3.1 – Lagged correlation over memory usage time series

Challenges in Real-time and Distributed Mining and Modeling of Correlations: Contrary to

static time series mining on a standalone machine, DisCoM problem in the highly dynamic
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environment is challenging in the following aspects.

• In time series mining applications, for making decisions based on the recently observed

data, users are more interested in discovering (lagged) correlations within a recent

temporal range, which is known as the maximum lag. Meanwhile, in the real-time envi-

ronment correlation computation is repeatedly performed over the latest observations

of time series, which gives rise to the sliding window fashion. As new observations of

time series continuously arrive to update sliding windows, computation at a certain

time instant should be finished before the subsequent new data arrives. Otherwise it

would lag further and further over time and the system cannot report timely correla-

tions. The system has bottlenecks in such a case [2, 147]. For instance, in data center

networks [137], the time interval for performance time series is very short, e.g. 2 seconds.

Efficiently discovering correlations from thousands of time series in such a high velocity

environment is very challenging.

• On the other hand, the distributed environment complicates the problem more. As

the observations of time series are continuously distributed into different computing

nodes of a distributed real-time computation cluster and each node has no knowledge

about the timely characteristics of time series other nodes receive, each node has to

replicate and shuffle its local time series (sliding windows) among the nodes of the

cluster so as to find qualified correlations w.r.t. its local time series. This brute-force

method could generate quadratic computation and communication costs w.r.t. the

number of time series under processing at worst (i.e., similar to the idea of cross-join

using MapReduce [107, 116]). High communication cost in the distributed context leads

to prolonged processing latency and even bottlenecks, due to the increasing time spent

on sending, receiving and parsing data [147]. Therefore, DisCoM problem requires a

both communication and computation efficient solution.

• Lastly, dynamic correlations is often temporally dependent [125, 143], and it may also

exhibit volatile behaviours during abnormal periods or events [28, 143]. Therefore, in

addition to correlation detection, the proposed framework should entail a probabilistic

model responsible for representing the dynamic nature of correlations in time series

streams, such that it can be used for correlation occurrence prediction , correlation

change detection and so on [7, 15, 28, 61]. How to efficiently maintain this model on-line

is also non-trivial.

This paper is the first work that proposes a continuously distributed mining and modeling

framework for dynamic correlations over massive time series. Previous efforts on mining

correlations either focus on static time series dataset or work in a centralized way and therefore

fail to tackle above challenges in the distributed and dynamic environment (refer to Section

2.2). Overall, this paper makes the following concrete contributions:
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• We formally define the problem of continuously mining (lagged) correlations in massive

time series based on a distributed real-time computation engine (DisCoM problem). We

propose the framework P2H, which aims to optimize both communication and computa-

tion cost for DisCoM problem.

• In P2H, we design a novel data shuffling technique parallelism-partitioning based data

shuffling, referred to as P2-data-shuffling, which is able to adaptively replicate and shuffle

the sliding window of a time series only to the computing nodes containing its correlation

partners, thereby dramatically decreasing the communication cost.

• We propose a δ-hypercube structure based correlation computation approach to prune

unnecessary computation over the data shuffled by P2-data-shuffling. Furthermore, a

quality guaranteed dimensionality-reduction method is integrated to P2H framework so as

to handle DisCoM problem over long sliding windows or large lags, .

• Furthermore, we design a probabilistic model for correlation inference by considering both

the temporal and co-occurrence dependence of correlation occurrence in P2H.

• Theoretical cost analysis for each phase in P2H framework is provided.

• P2H framework and a variety of baseline approaches are implemented based on Apache

Storm, a widely used distributed real-time computation engine. Extensive experiments

on both synthetic and real datasets demonstrate the effectiveness and efficiency and

effectiveness of our approach. in terms of peak capacity, communication cost, processing

latency and pruning power.

The rest of the paper is organized as follows. Section 3.3 introduces the problem definition

and background knowledge. We describe the proposed P2H framework in Section 3.4 and

Section 3.5. Section 3.7 provides the theoretical analysis. We perform exhaustive experimental

evaluations in Section 3.8 and offer a conclusion in Section 3.9.

3.2 Related Work

Mining lead-lag relations in a centralized way has been the focus of [32, 81, 82, 95, 114, 114,

115, 115, 117, 143, 143, 155]. They do not consider the data shuffling issue in the distributed

setting and modeling of dynamic lead-lag relations. [81, 95, 117] proposed index based ap-

proaches to mine correlations in time series datasets. Such approaches are not suitable for

our online scenairo, where the index maintenance cost incurs high processing latency as well

as communication cost in the distributed environment.

[32, 114, 115, 143, 145] focus on detecting dynamic lead-lag relations in time series streams.

All these techniques perform the pair-wise computation to detect lead-lag relations between

time series streams while our approach aims to avoid pair-wise computation in distributed
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processing of massive time series streams. Moreover, they do not take into account the data

shuffling problem in the distributed environment. [114, 115] both exploit geometric series

to approximately derive the lead-lag relations. Such approximate methods can be smoothly

integrated into our proposed framework. In this paper, we focus on mining exact lead-lag

relations. [29] is intended for sequences of discrete values while our paper focuses on numeric

time series streams. [102] proposed a dimension reduction based approach to summarise

large collections of streams. The StatStream system [155] specializes in discovering correla-

tions using a grid structure, which incurs prohibitive communication cost in the distributed

environment. Our proposed framework allows computation pruning as well as discovering

the lead-lag relation within a temporal range of interests.

Numerous distributed systems [1, 2, 98, 152] have been developed to process massive data

streams in a high-speed environment. Although these systems provide an extensive set of

operators for real-time data processing and analytics, they do not support operations on

mining and modeling the interaction in data streams, i.e., lead-lag relations in this paper.

Recently, partitioning-based approaches have attracted attention for distributed data pro-

cessing [46, 116, 138]. Such approaches process static datasets and need an aprori data pre-

scanning step to estimate the data distribution for the shuffling phase. Therefore, they are

not suitable for our online setting. [124] puts forward a geometric approach for monitoring

function values in the sensor network, which is a different computation paradigm from the

distributed real-time computation system in this paper [1, 2, 98, 152]. The data recall phase

in [56] could introduce much additional communication cost for long lags relations. [53, 56]

assumed time series are synchronised and failed to consider the fluctuation in time series. To

the best of our knowledge, no previous work addresses the modeling of lead-lag relations in

evolving entities in the distributed environment.

3.3 Preliminaries

In this section, we depict the key concepts of a distributed real-time computation engine

following the terminology in [4] and how to process time series data in such a system. Then,

we formulate the DisCoM problem.

3.3.1 Distributed Real-time Computation Engine

We focus on in-memory distributed real-time computation engine, where all data processing

operations are performed in memory In a typical cluster of a distributed real-time computation

engine [1,2,98,152], there is a master node responsible for distributing programs to computing

nodes of the cluster, monitoring the status of nodes and recovering nodes from failures. The
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computing nodes perform the real data processing.

topology is a job submitted to the cluster, which is a program-described directed acyclic graph.

The vertexes are user-defined boxes (see below) and the communication between boxes is

dictated by the edges in the topology. A topology is executed indefinitely to continuously

process tuples until it is killed. The important concepts are as follows.

• Tuple is a key-value(s) pair and the basic data unit communicated among the nodes in the

cluster.

• Box is a processing element that continuously consumes tuples it receives, processes them

according to a user-defined logic, and emits tuples to other boxes that have subscribed to

it; we denote a box by B(x). Typically, while processing a tuple, a box also modifies the key

of the tuple.

• Task is an instance of a box that is executed in a worker node. A box could have multiple

tasks run in parallel. The tuples processed by a task are referred to as the local data of this

task (local time series in this paper). Note that tasks of a box process different local data

using the same processing logic defined for that box.

• Parallelism of a box is the number of tasks executed in parallel in the cluster. This is a

user-defined parameter. The parallelism of box B(x) is denoted by p(x). The tasks of B(x)

are denoted by B(x,1), B(x,2), . . ., B(x,p(x)).

• Shuffling function is a function between two boxes, which determines to which task of

the connected box a tuple emitted from a task of the preceding box should be sent. For

instance, the by-default key-based shuffling function uses a hash function over the tuple

key to send the tuple only to the task to which the hash value of this tuple’s key is assigned.

Tuples with a certain key are always sent to the same task.

Figure 3.2 – A toy topology example of processing time series in a distributed real-time compu-
tation engine

In this paper, a time series stream is a sequence of discrete real-valued observations collected

from a sensor or an entity at a regular time interval. We use n to denote the total number of

time series streams fed to the cluster. Figure 3.2 illustrates a toy topology for processing time

series based on a distributed real-time computation engine. It consists of two boxes B(1) and

B(2) both with parallelism 2. Assume this topology is intended for processing various sensor
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data from distributed sources based on the phenomena they measure. B(1) is responsible for

continuously fetching data from sensors and emitting tuples of the form (phenomena, si ,t ),

where phenomena is the key and si ,t is the value of time series at time instant t . Then, the

tasks of B(2) are able to process for instance temperature and humidity data in parallel.

3.3.2 Problem Statement

For time series i (i ∈ {1, . . . ,n}), the sliding window of length h ending at time stamp t is denoted

by s t
i = (si ,t−h+1, · · · , si ,t ) and s t

i ∈�h (t is the latest time index). For the sake of simplicity, we

call s t
i as the sliding window of time series i at t .

In this paper, we make use of Pearson correlation to define lead-lag relations and illustrate our

P2H framework. Due to the page limit, we present in Section 3.10 that P2H framework is able

to handle lead-lag relations based on Spearman rank correlation, cosine similarity, extended

Jacard similarity as well.

Definition 3.3.1 (Pearson correlation). Pearson correlation between sliding windows s t1
i and

s t2
j from time series i and j (s t1

i , s t2
j ∈�h ). is defined as follows:

r el (s t1
i , s t2

j ) =
(s t1

i −μ(s t1
i ) ·�) · (s t2

j −μ(s t2
j ) ·�)

(h −1)σ(s t1
i )σ(s t2

j )
(3.1)

where � is an all-one vector of dimension h, σ(si ) and μ(si ) are the sample standard deviation

and mean of the elements in si , respectively.

It is a measure of the linear correlation giving a value between +1 and -1 inclusive, where +1

is total positive correlation, 0 is no correlation, and -1 is total negative correlation. If t1 = t2,

above r el (s t1
i , s t2

j ) measures the synchronised correlation between sliding windows of time

series i and j . When t1 �= t2, it reflects the lagged correlation, which is formally defined as:

Definition 3.3.2 (τ-lead-lag correlation). For a pair of time series i and j (1 ≤ i , j ≤ n), given

time instant t and lag τ, τ-lead-lag relation ρi , j (t ,τ) between time series i and j is defined as:

ρi , j (t ,τ) = r el (s t
i , s t+τ

j ) (s t
i , s t+τ

j ∈�h). i is the leader and j is the follower.

τ-lead-lag correlation ρi , j (t ,τ) measures to what extent time series i leads to a correlated

variation in time series j with time lag τ.

In reality, users are more interested in the recent data for timely decision making and thus

require to specify the maximum lag for lead-lag relations. Such maximum lag indicates the

extent to which one has to look into the past to discover leaders for current time series and is
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also interpreted as how far in advance users would like to predict the future trend based on

detected lead-lag relations [22, 115].

Now, the DisCoM problem is defined as:

Definition 3.3.3 (DisCoM Problem). Assume a distributed real-time computation engine is

processing n time-series, which are continuously distributed to different nodes of the cluster. For

each time series i.e. i , a DisCoM problem requires to

(1) continuously report the follower time series having ρi , j (t ,τ) ≥ ε and τ within a maximum

lag � ( �≥ 0 and τ≤ �);

(2) on-line maintain a probabilistic model over the detected correlations such that the probability

of correlation occurrences can be inferred.

In the above definition, ε is always assumed to be greater than zero in this paper. It can be

shown that negative ε can be treated as positive [32, 155]. Thus, without loss of generality,

henceforth we only focus on the positive threshold ε.

3.3.3 Normalization Operation

In this part, we present the normalization operation over sliding windows of time series, which

is able to transform the τ-lead-lag correlation between two sliding windows to the Euclidean

distance between normalized ones. Such a property will be harnessed by the following P2H

framework to design communication and computation optimization methods in the Euclidean

space for DisCoM problem.

For Pearson correlation, the normalized sliding window ŝ t
i is obtained via ŝ t

i = nor m(s t
i ) =

s t
i −μ(s t

i )�
h−1σ(s t

i )
[32, 155] and ŝ t

i · ŝ t
i = 1. It indicates |ŝi ,k | ≤ 1 and thus the range of variation of the

normalized sliding window is known apriori, and is independent of the variation in the original

sliding window.

Meanwhile, given two normalized sliding windows ŝ t1
1 and ŝ t2

2 of s t1
1 and s t2

2 , their Pearson

correlation can be expressed as:

r el (s t1
1 , s t2

2 ) = ŝ t1
1 · ŝ t2

2 (3.2)

such that there exists the following equation:

D2(ŝ t1
1 , ŝ t2

2 ) = 2−2 · r el (s t1
1 , s t2

2 ) (3.3)

, where D2(ŝ t1
1 , ŝ t2

2 ) = (ŝ t1
1 − ŝ t2

2 ) · (ŝ t1
1 − ŝ t2

2 ).
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Consequently, for time series i and j with correlation ρi , j (t ,τ) ≥ ε, there must be D(ŝ t
i , ŝ t+τ

j ) ≤
δ, where distanceδ is related to ε asδ=�

2(1−ε). As εdecreases, δ increases and vice versa. We

can prove that all the supported metrics (i.e., Pearson correlation, Spearman correlation, cosine

similarity, extended Jacard similarity) have associated normalization operations (limited to

the space, refer to Section 3.10 for details).

3.4 Data shuffling in P2H

This section introduces our core contribution P2H framework. The topology of P2H in the

distributed real-time computer engine is shown in Figure 3.3. Box B(pr e) is responsible for

maintaining the sliding windows of input time series, updating the normalized sliding windows

incrementally [32, 155] and emitting a tuple for each time series consisting of time series id

and the normalized sliding window at the current time instant. Between box B(pr e) and

B(cmp), we design a novel parallelism-partitioning based data shuffling (P2-data-shuffling),

which is able to adaptively replicate and shuffle a tuple sent by B(pr e) only to the tasks of box

B(cmp) containing leader sliding windows of the one contained in this tuple. Consequently,

the communication cost is dramatically reduced compared with the brute-force replicating of

sliding windows among all the tasks of B(cmp). Then, by exploiting the δ-hypercube structure

based computation pruning, box B(cmp) efficiently detects qualified correlations from the

sliding windows shuffled to each task of B(cmp) by P2-data-shuffling. Finally, box B(mdl )

aggregates the detected correlations from B(cmp) and exploits the Markov Random Field [96]

to model both the co-occurrence and temporal dependency of correlation occurrence. Users

can issue correlation inference queries through this model.

3.4.1 Parallelism-Partitioning based Data Shuffling

In this part, we describe the parallelism-partitioning based data shuffling (P2-data-shuffling)

in P2H framework.

Figure 3.3 – Topology of P2H framework.

Parallelism based Space Partitioning: Recall that the normalized sliding windows are dis-
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tributed in a bounded Euclidean space as is discussed in Section 3.3.3. Our motivation of

partitioning the space of the normalized sliding windows in P2-data-shuffling is from the

below observation.

Observation 3.4.1. Figure 3.4(a) depicts the 3-dimensional Euclidean space for normalized

sliding windows of size 3, where a certain normalized sliding window corresponds to one point

in this space. We divide the space into two parts on each dimension, thereby producing 23 = 8

partitions. Assume that each partition is handled by a unique task of box B(cmp) and the sliding

windows mapped to a certain partition are all shuffled to the task responsible for this partition.

Take the front upper-left partition with yellow-grey region for an example. For the local sliding

windows in the yellow-grey region, since they are on the boundary and could have leader

sliding windows in the neighbouring partitions, and therefore they should be replicated to such

partitions. Meanwhile, the sliding windows outside that yellow-grey region must not have

leaders from other partitions. We will formally define the yellow-grey region in this section later.

Therefore, majority of the sliding windows in a partition are shuffled once and do not need

replicating, thereby greatly decreasing the communication and computation costs.

Now let us see how to formulate above idea in P2-data-shuffling. Initially, we apply 2-way

partitioning on each dimension of the space over the normalized sliding windows and thus

obtain 2h partitions (we will compare 2-way partitioning with other methods in Section 3.7

). However, in order to associate partitions with p(cmp) tasks of box B(cmp), we should adjust

the dimensionality used for space partitioning. The need for reducing the dimensionality in

space partitioning is evaluated as follows: we compute hp = �log2(p(cmp))� and if hp ≤ h, space

partitioning only utilizes the latest hp entries of the sliding window, (e.g., (ŝi ,t−hp+1, . . . , ŝi ,t ) in

ŝ t
i ) which is sufficient for maintaining the one-to-one correspondence between partitions and

tasks of B(cmp).

Normally, hp � h, because h could be up to hundreds or more for mining significant correla-

tions (see the experiment section). It is impossible for hp > h, as it requires p(cmp) > 2h , which

is a prohibitive large value for parallelism p(cmp). In the implementation, we could set p(cmp)

as an exponential of 2 to make full use of the tasks of B(cmp).

Based on above partitioning method, the partition vector for a normalized sliding window is

defined by function fp :�h →�hp :

p t
i = fp (ŝ t

i ) = (sgn(ŝi ,t−hp+1)�|ŝi ,t−hp+1|�, ..., sgn(ŝi ,t )�|ŝi ,t |�) (3.4)

where sgn(x) extracts the sign of its argument: sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.

Since −1 ≤ ŝi ,t ≤ 1, each entry of the partition vector p t
i is either −1 or 1. Partition vector p t

i

indicates the partition where ŝ t
i locates.
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Example 3.4.1.1. In Figure 3.4(b), it depicts the space for 3D sliding windows. Suppose

p(cmp) = 4 then we have hp = 2. Since hp < 3, only dimensions t and t − 1 are used to ob-

tain 4 partitions. Each of them corresponds to one hyper-rectangle and is identified by a two

dimensional partition vector, as is shown in Figure 3.4(c). Three normalized sliding windows

( ŝ t
1, ŝ t

2 and ŝ t
3 ) respectively locate in three partitions in Figure 3.4(c). They distribute on the

surface of a hyper-sphere centred at the origin point in the space, since normalized sliding

windows have unit norms.

Figure 3.4 – Illustration of P2-data-shuffling in 3D space (best viewed in color). (a) motiva-
tion example of partitioning the space of normalized sliding windows for communication
optimization. (b) parallelism-partitioning: hyper-rectangles derived by 2-way partitioning
the space over dimension t and t −1. (c) normalized sliding window replication amongst
partitions; each partition is handled by a unique task of box B(cmp).

Data Replication and Shuffling among Partitions: In this part, we elaborate on the efficient

and adaptive replicating of time series sliding windows among the partitions. We first define

the target-partition set for a normalized sliding window during the data shuffling phase as

follows:

Definition 3.4.1 (Target-Partition Set). A set of target partition(s) denoted by Rt
i of normalized

sliding window ŝ t
i contains all the partitions which host the leaders of ŝ t

i . ŝ t
i should be only

replicated to the tasks corresponding to the partitions in Rt
i .
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Different sliding windows have different sets of target partitions. We use normalized sliding

window ŝ t
i to illustrate the following data replicating approach. In order to construct Rt

i ,

besides the partition p t
i where a ŝ t

i locates, the key is to find out the alternative partition(s)

which could have leader of ŝ t
i . Our target-partition set construction algorithm consists of two

steps:

First, we build a dimension subset H i ⊆ {t −hp +1, . . . , t } for ŝ t
i based on the following lemma.

Such a dimension subset indicates the dimension(s) along which to replicate sliding window

ŝ t
i .

Lemma 3.4.1 (Dimension Subset Selection). For a sliding window ŝ t
i in partition p t

i , a dimen-

sion k ∈ (t −hp +1, . . . , t ) is added to the set H i if and only if (2−2
√

1− ŝ2
i ,k ) ≤ δ

Proof. Given a dimension k, we first define an opposite partition of partition p t
i on dimension

k as:

p̃ t
i = (pi ,t−hp+1, . . . ,−pi ,k , . . . , pi ,t )

namely, p̃ t
i is on the opposite direction of partition p t

i only on dimension k while retains

the same values on other dimensions as p t
i . For the sake of simplicity, we will denote the

time interval of a sliding window by [1,h] and the interval for partition vector by [1,hp ] and

k ∈ {1, . . . ,hp } throughout this proof.

Then, we formulate an optimization problem to derive the minimum distance between sliding

window ŝ t
i and the one in the opposite partition p̃ t

i and then compare it with distance threshold

δ so as to determine whether dimension k should be selected. If dimension k is chosen,

the following described shuffling process will replicate this sliding window to the opposite

partition on dimension k.

minimize
x

h∑
j=1

(x j − ŝi , j )2

s.t.: x j ŝi , j ≥ 0, j = {1, . . . ,hp } \ k

x j ŝi , j ≤ 0, j = k

h∑
1

x2
j = 1

(3.5)

where x ∈�h represents a sliding window in p̃ t
i having the minimum distance to ŝ t

i . Based on

the definition of opposite partition on dimension k, the k-entry of the sliding window x in p̃ t
i

should have the opposite sign as ŝi ,k while p̃ t
i has the same sign as ŝ t

i on the other dimensions.

This gives rise to the first two constraints. The third constraint ensures that x is a normalized
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sliding window (i.e., x · x = 1).

Then, we obtain the Lagrange formula of 3.5 as:

L (x ,λ, v) =
h∑

j=1
(x j − ŝi , j )2 − ∑

j∈{1,...,hp }\k
λ j ŝi , j x j

+λk ŝi ,k xk + v(
h∑
1

x2
j −1)

(3.6)

Based on KKT conditions for optimization problem 3.5, we first derived the optimal x∗ by the

derivative of L (x ,λ, v) w.r.t. x as follows:

2x∗
j −2ŝi , j −λ j ŝi , j +2v x∗

j = 0, j = {1, . . . ,hp } \ k

2x∗
m −2ŝi ,m +2v x∗

m = 0, m = {hp +1, . . . ,h}

2x∗
k −2ŝi ,k +λk ŝi ,k +2v x∗

k = 0

(3.7)

we can obtain x∗ as follows: x∗
j = 2si , j+λ j ŝi , j

2v+2 , x∗
m = 2si ,m

2v+2 , x∗
k = 2si ,k−λk ŝi , j

2v+2 . Then, above x∗ is

introduced to the KKT conditions for the constrains in problem 3.5 to derive λ∗
k and λ∗

j as:

−λ∗
j ŝi , j

2ŝi , j +λ∗
j ŝi , j

2v +2
= 0, λ∗

j ≥ 0

λ∗
k ŝi ,k

2ŝi ,k −λ∗
k ŝi ,k

2v +2
= 0, λ∗

k ≥ 0

(3.8)

Thus, λ∗
j should be zero when ŝi , j �= 0. For λk , the optimal x∗ in the opposite partition of p t

i

on dimension k should on the hyperplane xk = 0 to attain the minimum distance between ŝ t
i

and x and therefore λ∗
k = 2. Now based on the values of λ∗

j and λ∗
k , we can obtain v∗ by using

the equality constraint in 3.5 as: v∗ =
√

1− ŝ2
i ,k −1.

So far, we can get the values of x∗ and the minimum distance between ŝ t
i and x∗ is 2−

2
√

1− ŝ2
i ,k . Lemma 3.4.1 is proved.

Second, dimension subset H i is leveraged to derive target-partition set Rt
i . Based on Lemma 3.4.1,

since H i contains the dimensions on which target partitions have opposite entries as p t
i ,

target-partition set Rt
i of ŝ t

i is built as the set of all the permutations of p t
i , such that only the en-

tries corresponding to the dimensions present in H i are permuted and the remaining are held

constant. For example, if p t
i = (−1,1,1) and H i = {2,3}, then only the 2nd and 3r d dimension

of p t
i are permuted to form Rt

i as follows: Rt
i = {(−1,−1,−1), (−1,−1,1), (−1,1,−1), (−1,1,1)}.

The above target-partition construction algorithm has the following desirable property:
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Theorem 3.4.1. For a normalized sliding window ŝ t
i in p t

i , the target-partitions in Rt
i con-

structed by above dimension subset selection and the permutation process over H i contain all

the leaders of ŝ t
i , while the partitions not present in Rt

i must not have leaders of ŝ t
i .

Proof. The proof relies on Lemma 3.4.1 and refer to Section 4.8 for details.

In summary, for each tuple emitted by box B(pr e), P2-data-shuffling checks the condition

given by Lemma 3.4.1 to generate the dimension subset H i . If H i =�, ŝ t
i is only shuffled to

the task responsible for partition p t
i . Otherwise, H i is used for creating the target-partition set

Rt
i , and ŝ t

i is replicated to the tasks corresponding to the partitions in Rt
i . Moreover, due to

the one-to-one correspondence between partitions and tasks of box B(cmp), the size of target-

partition set is bounded by parallelism p(cmp), which is a system parameter independent of n

and h.

Example 3.4.1.2. Consider Figure 3.4(c), sliding window ŝ t
3 (in blue) is contained in the par-

tition (−1,1) and both dimension t and t − 1 of ŝ t
3 are not qualified for the condition in

Lemma 3.4.1, therefore it is only shuffled to partition (−1,1). Sliding window ŝ t
1 (in green)

is qualified on dimension t, therefore in addition to partition (1,−1) where ŝ t
1 is located, it is

also replicated to partition (1,1). Likewise, ŝ t
2 is replicated to partitions (1,1) and (−1,1).

Finally, we verify the correctness and completeness of P2-data-shuffling through the following

theorem.

Theorem 3.4.2 (Correctness and Completeness of P2). Through P2-data-shuffling, each task

of box B(cmp) receives the normalized sliding windows located in the partition corresponding to

this task and the sliding windows from other partitions that are followers of this task’s local ones.

Therefore, the leaders (or followers) of each time series can be detected by the tasks of B(cmp).

Proof. Refer to Section 4.8 for details.

Adaptive Partitioning: Our P2-data-shuffling can be extended to support space partitioning

adaptive to the change of data distribution in sliding windows. his requires that the partitioning

position on each dimension could be adjusted in order to attain load balancing for partitions.

We briefly give a possible solution here and leave it for our future work. First, an additional

box responsible for monitoring the global distribution of the normalized sliding windows on

each dimension is added to the current topology. The output of this box, partition positions

on each dimension derived from the collected data distribution information, is sent to box

B(pr e) which perform the operations based on the received partition information as described

above.
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3.5 Correlation Mining in P2H

Through above steps, each task of box B(cmp) receives the normalized sliding windows shuffled

by P2-data-shuffling. In this section, we present how each task of box B(cmp) efficiently

discovers correlations from these sliding windows by using the δ-hypercube structure based

computation pruning. First, we introduce the δ-hypercube structure in Euclidean space as

well as the favourable property of it for computation pruning. A δ-hypercube structure is a

h-dimensional hypercube edges of which have length δ [46]. The δ-hypercube in which a

normalized sliding window (e.g., ŝ t
i ) is contained, is identified by its δ-hypercube vector as:

c t
i = fc (ŝ t

i ) =
(⌈

ŝi ,t−h+1

δ

⌉
, ...,

⌈
ŝi ,t

δ

⌉)
. Now we define neighbouring δ-hypercubes of c t

i as:

Definition 3.5.1 (neighbouring δ-hypercubes). The set of neighbouring δ-hypercubes of c t
i is

defined as N (c t
i ) = {c t

j | ∀k ∈ 1, . . . ,h, |ci ,k −c j ,k | ≤ 1} and c t
i ∈N (c t

i ).

Given the sliding windows mapped to different δ-hypercubes, the δ-hypercube structure has

such a desirable property for efficiently finding the sliding windows within δ distance to a

certain one (e.g. ŝ t
i ), namely the leaders of ŝ t

i , without performing pair-wise computations

[114, 115]:

Lemma 3.5.1. For a sliding window ŝ t
i in δ-hypercube c t

i , the sliding windows within δ distance

to ŝ t
i are only contained in the δ-hypercubes from N (c t

i ) . All the δ-hypercubes out of N (c t
i )

must not contain the sliding windows close to ŝ t
i within δ.

Proof. Refer to Section 3.10 for details.

Example 3.5.0.1. In the partitions over the Euclidean space of Figure 3.5(a), a blue δ-hypercube

containing normalized sliding window ŝ t
i in partition (−1,1) (blue one) is shown. The left small

figure depicts the set of the neighbouring δ-hypercubes around the blue one (the blue star

represents ŝ t
i ).

3.5.1 Correlation Computation

In this part, we propose the δ-hypercube structure based computation pruning criteria for

efficiently detecting correlations in box B(cmp).

First, in box B(cmp) each task maintains a time-stamped queue to organize the δ-hypercubes

associated with the contained sliding windows. Each entry of this queue corresponds to a

unique time instant and contains a set of δ-hypercubes having the normalized sliding windows

at this time instant. We denote the set of δ-hypercubes in the entry at time t by C t .

Then, in each task of B(cmp) we categorize its δ-hypercubes in C t into the following two types,

which will be used to derive the pruning criteria later:
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Figure 3.5 – Correlation computation. (best viewed in colour) (a) δ-hypercube (blue cubic)
containing normalized sliding window ŝ t

i (blue star) in the blue partition (−1,1) and its neigh-
bouring δ-hypercubes; inner and outer δ-hypercubes in the red partition. (b) The box task
responsible for the red partition: δ-hypercubes prior to t −2 are dropped due to the maximum
lag �= 2; The arrows between δ-hypercube set at different entries of the queue indicate the
correlation computation between them.

Definition 3.5.2 (Innerδ-hypercube). Innerδ-hypercube is the one containing the normalized

sliding windows mapped to the partition corresponding to this task.

Definition 3.5.3 (Outer δ-hypercube). Outer δ-hypercube is the one containing the normal-

ized sliding windows originally mapped to different partitions from the one corresponding to

this task, but replicated to this task by P2-data-shuffling from box B(pr e).

In order to find the qualified correlations in each task at time t , the following three lemmas

provide a step-by-step way to prune computation. The lemma below first points out the pairs

of δ-hypercubes whose contained sliding windows should be examined.

Lemma 3.5.2. The correlation computation should be performed over a pair of sliding windows

respectively from a δ-hypercube in C t and an inner δ-hypercube prior to t .

Proof. Refer to Section 3.10 for details.

For two δ-hypercubes qualified for Lemma 3.5.2 (e.g., c t
i and c t1

j , t1 < t ), the following lemma

determines whether a sliding window from c t
i has leaders in c t1

j .

Lemma 3.5.3. For a sliding window ŝ t
i from δ-hypercube c t

i , its minimum distance to a δ-

hypercube c t1
j is defined as: Dm(ŝ t

i ,c t1
j ) =

√√√√√√√h−1∑
k=0

⎧⎪⎪⎨
⎪⎪⎩

(ŝ t
i ,t−k −ct

i ,t−k ·δ)2 : ct
i ,t−k < ct

j ,t−k

0 : ct
i ,t−k = ct

j ,t−k

(ŝ t
i ,t−k −ct

i ,t−k ·δ+δ)2 : ct
i ,t−k > ct

j ,t−k

. If
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Algorithm 4 Correlation computation in each task of box B(cmp)

Input: local normalized sliding windows at time instant t , δ
1: Initialize a empty entry for C t in queue Q

2: for each received normalized sliding window ŝ t
i at time t do

3: derive c t
i =

(⌈
ŝi ,t−h+1

δ

⌉
, ...,

⌈
ŝi ,t

δ

⌉)
;

4: add ŝ t
i to the sliding window set of δ-hypercube c t

i ;
5: end for
6: drop δ-hypercube set C t−�−1 and associated sliding windows in Q

7: for each k = 1, · · · ,� do
8: for each pairs of δ-hypercubes c t and c t−k respectively from C t and C t−k do
9: if c t−k is inner hypercube and c t and c t−k are neighbouring δ-hypercubes based on

Definition 3.5.1 then
10: For ŝ t

i and ŝ t−k
j respectively from c t and c t−k :

11: if they are not purned by Lemma 3.5.3 and Lemma 3.5.4 then
12: perform correlation computation over ŝ t

i and ŝ t−k
j

13: end if
14: end if
15: end for
16: end for

Dm(ŝ t
i ,c t1

j ) > δ, there is no leader of ŝ t
i in δ-hypercube c t1

j and the correlation computation for

ŝ t
i w.r.t. c t1

j is pruned.

Proof. Refer to Section 3.10 for details.

Now if sliding window ŝ t
i is not filtered out by Lemma 3.5.3 for c t1

j , we further propose the

probabilistic estimation of correlations between ŝ t
i and any sliding window in c t1

j .

Lemma 3.5.4. Define functions max(x) and mi n(x) (x ∈�h), which respectively return the

maximum and minimum element values in x . For a sliding windows ŝ t
i in c t

i , if ŝ t1
j in c t1

j

addresses ‖ŝ t
i −mi n(ŝ t

i ) ·�‖1 ·
√

(max(ŝ
t1
j )−mi n(ŝ

t1
j ))2·l n( 1

θ
)

2h ≥ ε, then the true correlation between

ŝ t
i and ŝ t1

j is above ε with probability above 1−θ.

Proof. (Sketch) Define r = ŝ t
i −mi n(ŝ t

i )·�
‖ŝ t

i −mi n(ŝ t
i )·�‖1

(r ∈�h), such that
h∑

k=1
rk = 1, which can be thought

of as a discrete probability mass function. Based on r el (ŝ t
i , ŝ t1

j ) = ŝ t
i · ŝ t1

j and � · ŝ t1
j = 0,

ŝ t
i ·ŝ

t1
j

‖ŝ t
i −mi n(ŝ t

i )·�‖1
= r · ŝ t1

j =
h∑

k=1
rk ŝt1

j The rightmost formula of this equation can be considered
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as the expectation of random variable ŝ t1
j . Then we apply the Hoeffding bound to derive the

probabilistic bound for correlation ŝ t
i · ŝ t1

j . Refer to Section 3.10 for details.

Based on this lemma, for finding the leaders of a sliding window ŝ t
i , ‖ŝ t

i −mi n(ŝ t
i ) ·�‖1 is first

calculated. Then, the correlation estimate between any sliding window and ŝ t
i is derived in

constant time by Lemma 3.5.4. If the estimated value is above ε, we can directly report this

correlation with high confidence. Otherwise, correlation computation is performed on this

pair of sliding windows.

Algorithm 4 shows how above lemmas work together to efficiently discover correlations. Each

task of B(cmp) initializes the set of δ-hypercubes C t by assigning sliding windows at time t to

different δ-hypercubes and then drops the expired δ-hypercube set C t−l and the associated

sliding windows (line 1−6). Then, each δ-hypercube in C t is compared with the δ-hypercubes

in C t−k (k = 1, . . . ,�) by checking the conditions given in Lemma 3.5.1 and Lemma 3.5.2 (line

7−9). For two qualified δ-hypercubes, the correlation computation is performed over the

pairs of sliding windows that are not pruned by Lemma 3.5.3 and Lemma 3.5.4 (line 10−16).

and then qualified correlation are output(line 13−16).

Example 3.5.1.1. Figure 3.5(b) exhibits a correlation computation example with maximum

lag �= 2. In the task of B(cmp) corresponding to the red partition, as shown in Figure 3.5(a) local

sliding windows at time t are mapped to two δ-hypercubes c t
1 and c t

2, while sliding windows at

t −1 are assigned to two inner δ-hypercubes c t−1
3 , c t−1

5 and a outer c t−1
4 from the green partition.

All these δ-hypercubes are assigned to the respective entries in the queue based on their time

instants, as is shown in Figure 3.5(b) Based on the computation pruning lemmas the correlation

computation is only performed over pairs of sliding windows respectively from δ-hypercube c t
2

and c t−1
5 .

In the final step, all the qualified correlations that are emitted by tasks of box B(cmp) are

aggregated by box B(mdl ) to model the dynamics of correlations [22, 143].

3.5.2 Integrating Dimensionality-Reduction Techniques

The motivation of integrating dimensionality-reduction here is to overcome the curse of

dimensionality [139] incurred by long sliding windows. On the other hand, as box B(cmp)

needs to maintain the sliding windows of time series from current time instant t to t −�,

dimensionality-reduction can decrease the memory consumption in box B(cmp) and avoid

expensive I/O costs.

Now we present how to adapt a dimensionality-reduction technique, namely random projec-

tions to P2H framework. We denote such enhanced P2H as P2H+. Random projections
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have been found to be a computationally efficient, yet sufficiently accurate method for

dimensionality-reduction of high-dimensional data [5, 18, 80]. Moreover, it has proved to

be a very effective tool for both cooperative and uncooperative time series [18, 32]. (Our P2H

is also compatible with other dimensionality-reduction methods)

The main idea of random projections comes from the Johnson-Lindenstrauss Lemma [7].

The original h dimensional sliding windows can be projected into a d (d � h) dimensional

subspace through a d ×h random matrix V whose columns vi ∈�h(i = 1, . . . ,d). For instance,

the dimension-reduced sliding window of ŝ t
i is expressed as s̆ t

i =V · ŝ t
i = (ŝ t

i ·v1, · · · , ŝ t
i ·vd ) and

s̆ t
i ∈�d . We choose the sparse random projection for our real-time environment [5], which

is able to efficiently update s̆ t
i . The elements of the random matrix V are drawn from the

following distribution:

vi , j =

⎧⎪⎨
⎪⎩

+�3 wi th pr obabi l i t y 1/6

0 wi th pr obabi l i t y 2/3

−�3 wi th pr obabi l i t y 1/6

such that only 1/3 of the data as expected in a random vector vi needs to be processed.

Meanwhile, we have the following results regarding the distances preservation between

dimension-reduced normalized sliding windows.

Theorem 3.5.1 (Random Projection). [5] For any two normalized sliding windows, e.g., ŝ t
i and

ŝ t
j , when d satisfies d ≥ 4+2β

ε2/2−ε3/3 log (n), we have

(1−ε)||ŝ t
i − ŝ t

j || ≤ ||s̆ t
i − s̆ t

j || ≤ (1+ε)||ŝ t
i − ŝ t

j ||

with probability at least 1−n−β

Tasks of B(pr e) perform random projections on individual normalized sliding window and

send only these dimension-reduced sliding windows to box B(cmp) (we will see how to set d

in Section 5.5). Due to the distance preserving property as is shown in Theorem 3.5.1, P2-data-

shuffling between box B(pr e) and B(cmp) is able to work in the space of the dimension-reduced

normalized sliding windows. Then, box B(cmp) is able to organize the dimension-reduced

sliding windows using the δ-hypercube structure and performs the aforementioned algorithm

of correlation computation.
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3.6 Correlation Modeling Module

In this part, we describe the correlation relation modeling procedure for each entity. For

simplicity, we use an example entity i to illustrate the proposed model.

Correlation Occurrence Model:.

For entity i , B(mdl ) maintains a set of time instants denoted by Aτ
u , which records the time

Figure 3.6 – Observations of correlation occurrence variable o1
τ for entity 1 and lag τ ∈ {1,2,3}.

(best viewed in colour)

instants when entity i has correlation on u with lag τ. Let oi
τ = {0,1}n−1 (τ ∈ {1, . . . ,�}) denote

the random variable of entity i ’s correlation occurrence with lag τ. For the elements of oi
τ,

oi
τ,u = 1 (u ∈ N \i ) indicates entity i has correlation on entity u with lag τ. We say that the

correlation of i on entity u and v co-occurs whenever their corresponding oi
τ,u and oi

τ,v are

both one in oi
τ. For instance, in the toy example in Figure 3.6, at time instant t −1, lead-lag

detection module returns the detected occurrences in the pink area at t −1 for entity 1, which

represent a sample of o1
τ. Now, we model the temporal correlation occurrence process of

length � by the Markov chain as: P (oi
1, . . . ,oi

�
) = P (oi

1)
�−1∏
k=1

P (oi
k+1|oi

k ).

The joint distribution of oi
1 is modeled using a Markov Random Field model parameterized

through correlation co-occurrences [15, 96]:

P (oi
1) = 1

Z1
exp

{ ∑
u,v∈{N −i }

α1
u,v (oi

1,u ,oi
1,v )+ ∑

u∈{N −i }
α1

uoi
1,u

}

where Z1 is a normalizing constant. The influence co-occurrence is assessed based on two-

node cliques, namely (oi
1,u ,oi

1,v ) = 1 if both oi
1,u ,oi

1,v = 1 and zero otherwise. The α1
u,v is the

co-occurrence potential and α1
u,v =α1

v,u . α1
u is self-occurrence potential. Our model favors

co-occurrences over non co-occurrences.

Then, the correlation occurrence variable with lag k+1 conditional on the occurrence variable
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with lag k is modeled as:

P (oi
k+1|oi

k ) = 1

Zk+1
exp

{ ∑
u,v∈{N −i }

αk+1
u,v �(oi

k+1,u ,oi
k+1,v )

+ ∑
u∈{N −i }

βk+1
u �(oi

k+1,u ,oi
k,u)

} (3.9)

The termβk+1
u �(oi

k+1,u ,oi
k,u) in this model accounts for the temporal dependence of correlation

on entity u. βk+1
u is the temporal-dependence potential.

Training and Inference:.

Our correlation occurrence model is maintained in the real-time and distributed environment,

and the potential parameters above should be efficiently and continuously updated. Therefore,

we employ the empirical computation [15] to estimate the co-occurrence and temporal-

dependence potentials as follows:

αk
u,v = |Ak

u ∩ Ak
v |

t
, α1

u = |A1
u |

t
, βk+1

u = |Ak+1
u ∩ Ak

u |
t

(3.10)

where t could represent the time interval at which the potentials are updated. As a result, these

potentials are incrementally learnt in dynamic environment.

The normalizing constants in the denominators of above models are over all exponential

possible configurations for oi
k and are computational intractable. Therefore, we resort to

Gibbs sampling, a flavor of Markov Chain Monte Carlo (MCMC) method for the inference of

correlation occurrences. Gibbs sampling fixes all but one random variable, samples that one

conditioned on the others, and then repeats the process for each random variable [96]. So, all

we need are the conditional distributions as follows: (refer to Section 3.10 for the deduction)

P (oi
τ,u |{oi

1, . . . ,oi
τ}\oi

τ,u) =
exp

{ ∑
v∈{N −i−u}

ατ
u,v�(oi

τ,u ,oi
τ,v )+βτ

u�(oi
τ,u ,oi

τ−1,u)
}

1+exp
{ ∑

v∈{N −i−u}
ατ

u,v�(1,oi
τ,v )+βτ

u�(1,oi
τ−1,u)

} (3.11)

So far, the correlation occurrence models of entities are respectively maintained in different

tasks of B(mdl ). Such a probabilistic framework allows to answer a variety of queries by using

the conditional probability.
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3.7 Cost Analysis

In this part, we provide the theoretical cost analysis. Computation Cost of Box B(pr e): Statis-

tics on each time series (i.e., mean, variance) are updated in constant time. The normalized

sliding windows are updated in linear time w.r.t. the sliding window length. Computation

and Communication Cost of P2-data-shuffling : Between Box B(pr e) and B(cmp), P2-data-

shuffling only uses the first hp (hp � h) entries of each normalized sliding window to derive

relevant tasks in linear time w.r.t. hp , which is independent of h and n.

The communication cost for the sliding window of each time series is decomposed as a

product of the number of replicas produced by P2-data-shuffling and the cost of each replica

(i.e., size of a normalized sliding window or a dimension reduced sliding window). As is

shown in Subsection 3.4.1, the number of replicas for a sliding window in P2-data-shuffling

is independent of n and h and is bounded by the parallelism of box B(cmp) ( � n ). Overall,

the communication cost in P2-data-shuffling is dramatically decreased compared to the

brute-force data communication method.

Note that when the parallelism of B(cmp) is increased, the amount of data that each task

of B(cmp) deals with is decreased. This is because under the assumption of uniform data

distribution, the number of sliding windows each task processes is approximately modelled as

n( 1+δ
2 )hp , which declines as parallelism of B(cmp) increases ( 1+δ

2 < 1 ) [46, 139].

Then, we provide the following theorem regarding the 2-way partitioning in P2-data-shuffling:

Theorem 3.7.1. The 2-way partitioning over the Euclidean space of normalized sliding windows

in P2-data-shuffling achieves the minimum overall sliding window communication cost among

the partitions compared with more fine-grained partitioning (i.e., 3-way, 4-way and so on).

Proof. For p-way partitioning over the Euclidean space of normalized sliding windows (p ≥ 2),

based on the data shuffling principle among partitions (refer Section 3.4.1) and the uniform

data distribution assumption of normalized sliding windows, the amount of sliding windows

communicated among the partitions for detecting qualified lead-lag relations is modeled on

the basis of Minkowski sum [139] as:

Cost = n(
1

p
+ δ

2
)hp

2h − (2− 4
p )hp

( 2
p )hp

+n(
1

p
+δ)hp

(2− 4
p )hp

( 2
p )hp

(3.12)

The first term corresponds to the communicated sliding window replicas in the boundary

partitions. Since such partitions only replicate sliding windows to the inner partitions, the

communication cost of individual partition is modeled as n( 1
p + δ

2 )hp (which is the upper
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bound) and the number of such partitions is modeled as
2h−(2− 4

p )h

( 2
p )hp [46, 139]. On the other

hand, the inner partitions replicate sliding windows on both positive and negative directions

of relevant dimensions, therefore the number of communicated replicas of such a partition is

modeled as n( 1
p +δ)hp .

Then, replacing the number of replicas in the second term with n( 1
p +δ

2 )hp leads to the following

inequality: Cost ≥ n( 1
p + δ

2 )hp (php ). The right side of the inequality has positive first-derivative

w.r.t. p and thus attains the minimum value at p = 2. Therefore, 2-way partitioning in P2-data-

shuffling yields the minimum number of sliding windows replicas.

Computation Cost of box B(cmp): Each task of box B(cmp) performs the lead-lag relation

computation by using the δ-hypercube structure to prune computation thereby circumventing

brute-force lead-lag relation computation. In Section 5.5, we will experimentally show the

pruning power of such methods.

The communication cost between box B(cmp) and B(ag g ) depends on the number of qualified

lead-lag relations. Since this number is unknown apriori, we have to omit the analysis of

B(ag g ) and the computation cost of hash-set based duplicate removal in B(ag g ) is negligible

as well.

3.8 Experimental Evaluation

In this section, we perform extensive experimental evaluation comparing P2H and P2H+ with

baseline approaches. First, we describe the baselines and datasets in Subsection 3.8.1 and

Subsection 3.8.2. Then, the efficiency, lead-lag relation parameter sensitivity and pruning

power are respectively analysed in Subsection 3.8.3, Subsection 3.8.4 and Subsection 3.8.5.

3.8.1 Baselines

The implementations of P2H, P2H+ and baselines are done using Apache Storm. We choose

Storm here, since Storm has lower processing latency compared to other distributed real-

time computation system (e.g, S4, Spark Streaming, Samza) due to the one-at-a-time data

processing model of Storm [2]. Moreover, Storm provides flexible interfaces which allow to

develop advanced customized data processing and shuffling logics. Boxes in P2H, P2H+ and

baselines are implemented as bolts in Storm, which have user-specified number of tasks (i.e.,

parallelism). We implement the P2-data-shuffling shuffling using a custom grouping function

provided by Storm. (Our proposed P2H could also be implemented based on other distributed

real-time computation platforms.)
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Figure 3.7 – Communication cost and processing latency as a function of injection interval,
parallelisms of boxes and the number of input time series.(best viewed in colour) (a)-(f) results
on cluster dataset. (g)-(l) results on stock dataset.

Figure 3.8 – Communication cost and processing latency as a function of injection interval,
parallelisms of boxes and the number of input time series on synthetic dataset. (best viewed
in colour)

The baseline approaches are as follows:

GL: it consists of three boxes. The first box maintains the sliding windows. Between the first
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and second box, group-based data shuffling [107] is leveraged to reduce the communication

cost. The second box incrementally computes lead-lag relations over all the pair-wise time

series [115], which are aggregated and reported by the third box.

DFTL: This is a DFT (discrete Fourier Transform) based approach proposed in [155]. We

applied it to the distributed setting by building a topology consisting of three boxes. The first

box maintains the DFT series of sliding windows, which are shuffled according to the grid

structure. The second box computes the correlations to find qualified lead-lag relations and

then forwards them to the last box, where duplicate removal is performed.

RPL: This is a random projection based approach proposed in [32], which includes three

boxes. The first box performs the random projections over sliding windows and shuffles the

dimensionality-reduced sliding windows using a dimensionality-grouping method [32]. The

second box computes the lead-lag relations over the sub-sliding-windows. Then, the last box

aggregates the qualified pairs of sub-sliding-windows, checks the lead-lag relations over the

full sliding windows and reports the qualified lead-lag relations.

For the fair comparison, P2H+, DFTL and RPL have the dimension-reduced sliding windows

of the same length during the experiments.

3.8.2 Datasets and Cluster Details

One synthetic and two real datasets are used for evaluations. The synthetic dataset is generated

as follows. Given the required number of time series n, we first generate n
α seed time series.

Each seed time series is generated using a random walk model [155]. From each seed time

series si , we produce α dataset as follows:

s j ,t = γ j ,t +β j · si ,t ,

where γ j ,t and β j are real random numbers between [0,100], and β j is sampled once for each

time series s j , while γ j ,t is sampled once for each entry in time series s j . In our experiments,

we set α= 1000 and n = 20000.

The first real dataset is the Google Cluster Usage [108] data. It records extensive activities of

12K cluster nodes from a data center. We extract three parameters: CPU usage, memory usage

and disk space usage for each cluster node. The total number of extracted time series is 36K.

We denoted this dataset by cluster-data. The second dataset consists of intra day stock quotes

from the S&P 500 index and ETFs (exchange traded funds). We segment the quotes w.r.t. each

stock into 20 parts, each of which forms a time series. Totally, we obtain 19920 (996×20) time

series. We refer to this dataset as stock-data. The data is continuously and repeatedly fed into
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Storm according to a specified injection interval (we will define later) during the experiments.

Cluster Setup: The experiments are performed using a cluster consisting of 1 master and 8

slaves. The master node has 64GB RAM, 4TB disk space and 12 x 2.30 GHz cores. Each slave

node has 6 x 2.30 GHz cores, 32GB RAM and 6TB disk space. All the nodes are connected via

1GB Ethernet. All the performance metrics are computed by averaging every 20 seconds for 10

times, after the cluster reaches a stable state.

3.8.3 Analysing Efficiency

In this part, we evaluate the efficiency of the approaches by measuring the following three

metrics communication cost, processing latency and peak capacity (as we will define later) as

functions of injection interval, number of input time series (i.e., n) and parallelisms of boxes.

We choose these three parameters here, since they describe the context of a DisCoM problem.

Injection interval Δ defines the time interval between the data points of the input time series.

Parallelisms describe the available computing resource in the cluster. For the fair evaluation,

all the approaches have the same parallelism.

Communication cost is measured by the amount of basic data units communicated between

the front two boxes of each approach divided by the parallelism of the second box. Here

a data unit is a basic data type, which could be float, integer, etc. Intuitively, it reflects the

amount of data on average each task of the second box processes. As the communication cost

between the last two boxes depends on the qualified lead-lag relations and is identical for all

approaches, we omit it here. Processing latency is the average processing time for each task

of boxes considered together. Peak capacity is the maximum number of time series that an

approach can simultaneously process without causing bottlenecks in the system [2, 155]. A

bottleneck is caused when sliding windows at the current time instant have to wait (in memory)

for the sliding windows at a previous time instant to finish processing [2, 147, 155]. Bottlenecks

caused by any tasks are detected and reported by the Storm cluster UI [2].

These three metrics are measured by varying one of injection interval, number of input time

series and parallelisms within a pre-defined range, while setting the others to their basic set-up

values, namely Δ = 2sec,n = 8000 and p = 4. (the parameters of lead-lag relation, relation

threshold ε, sliding window size h and maximum lag � are set as ε= 0.7,h = 500,�= 300 in

this group of experiments. We will analysis their effects later.). As we will see below, our

distributed approach is able to process much more high-speed time series compared with

previous work [155] on a standalone machine, which processes 4000 time series with 15

seconds time interval (i.e., basic windows in [155]).

Communication Cost and Processing Latency: In Figure 3.7(a) the communication costs of
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all approaches are relatively stable w.r.t. injection interval Δ. On average, P2H and P2H+

respectively exhibits 70% and 90% less communication cost than DFTL. Due to the adjacent-

cell data shuffling base on the grid [155], DFTL yields the most communication cost. In

Figure 3.7(b) the increase of parallelism enables to have more tasks and therefore the sliding

windows distributed to each task is decreased. At the highest level of number of input time

series in Figure 3.7(c), P2-data-shuffling enable P2H to save up to 3× less communication cost

than DFTL. Because of the similar patterns shown in Figure 3.7(h-i) on stock dataset, we omit

the description here.

Figure 3.9 – Peak capacity as a function of time series injection interval and parallelisms on
real datasets. (best viewed in colour.) (a)-(b) results on cluster dataset. (c)-(d) results on stock
dataset.

Figure 3.10 – Peak capacity as a function of time series injection interval and parallelisms on
synthetic dataset. (best viewed in colour)

As for the processing latency, in Figure 3.7(d), P2H approach has nearly 1× lower latency

as compared to GL at the maximum injection interval. Because of the brute-force lead-lag
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Figure 3.11 – Sensitivity analysis of communication cost and processing latency w.r.t. lead-lag
relation threshold, sliding window size and maximum lag. (best viewed in colour). (a)-(f)
results on cluster dataset. (g)-(l) results on stock dataset.

Figure 3.12 – Sensitivity analysis of communication cost and processing latency w.r.t. lead-lag
relation threshold, sliding window size and maximum lag on synthetic dataset. (best viewed in
colour)

relation computation over pair-wise time series, GL has the maximum processing latency. In

Figure 3.7(e), as the increase of parallelisms lowers down the average amount of data each
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task processes, the processing latencies of all approaches decrease. When the number of

time series increases, the approaches with computation pruning (i.e., P2H, P2H+, DFTL and

RPL) show lower processing latencies than GL. Specifically, P2H and P2H+ respectively have

1× and 2× lower processing latency than GL at the maximum number of time series. Refer

Figure 3.7(h-i) for the results on stock dataset.

Peak Capacity: In this part, we attempt to answer the following question: how many time

series at the maximum can each approach handle in real time without causing bottlenecks

given a certain context? Therefore, this set of experiments demonstrates how peak capacity of

each approach varies with the injection interval and parallelisms in Figure 3.9.

In Figure 3.9(a) and (b), the peak capacities of all approaches increase as the injection interval

and parallelism increase. This is because the increases of these two parameters lead to

more computing resources and more available processing time interval. At the highest level

of parallelism and injection interval, P2H respectively exhibits 100% and 90% more peak

capacities than GL. As is shown in Figure 3.7, given the same number of time series P2H and

P2H+ are able to process it with less latency and therefore compared with baselines they can

process more time series under the same context.

3.8.4 Analysing Sensitivity of Lead-lag Relation Parameters

In real applications, given a certain number of time series input to the distributed real-time

computation engine with specific parallelisms, users often tune the parameters of lead-lag

relations (i.e., relation threshold ε, maximum lag � and sliding window size h) to explore

application-specific lead-lag relations. For instance, lead-lag relations above 0.6 could be

considered as strong [117, 155]. Several hundreds are enough for h so as to obtain significant

lead-lag relations [22, 107]. � depends on certain applications.

Therefore, in this set of experiments we will study how sensitive the communication and

computation cost are to the changes in the lead-lag relation parameters by varying one of

relation threshold ε, maximum lag � and sliding window size h and keeping the others as their

basic set-up values under a certain context (i.e., injection interval, number of time series and

parallelisms are set as the basic set-up as is shown in Subsection 3.8.3).

In Figure 3.11(a) and (c) the communication costs of all approaches are relatively stable w.r.t.

query threshold ε and maximum lag �. P2H and P2H+ present a little decreasing trend of

communication cost w.r.t. ε, since the amount of sliding windows shuffled among partitions

declines as ε increases, as is shown in Subsection 3.4.1. For the sliding window size h in

Figure 3.11(b), P2H+ has nearly 5× lower cost as compared to DFTL at the highest level of

sliding window size. The communication cost of P2H presents an increasing trend due to the
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lack of dimensionality-reduction.

As for the processing latency, in Figure 3.11(d) about lead-lag relation threshold ε, average

improvement in the latency of P2H w.r.t. GL is approximately 1×. When sliding window length

increases in Figure 3.11(e), the processing latencies of DFTL, RPL, P2H and P2H+ increase a

little. This is because dimension-reduction methods in these approaches need to retain more

entries when h increases [32]. Due to the incremental lead-lag relation computation, GL has

a relatively stable, but higher processing latency. In Figure 3.11(f ), all the approaches have

increasing processing latencies as maximum lag � increases. Specifically, the computation

pruning allows P2H to have about 50% lower latency as compared to GL at the maximum

lag. We omit the detailed description about the results on stock dataset, as is shown in

Figure 3.11(h-i).

3.8.5 Analysing Pruning Power

As P2H, DFTL and RPL approaches all contain computation pruning components, we evaluates

the pruning power (the higher, the better) of them in this set of experiments. Since P2H+ and

P2H share the same computation pruning mechanism, only P2H is assessed here. We also

omit GL here, since it always computes pair-wise lead-lag relations. Pruning power is defined

as the ratio of the number of leader and follower sliding window pairs that are pruned (without

having to compute values of lead-lag relations ) to the total number of lead-lag relations (i.e.,

the total number of time-series pairs by the maximum lag). Higher values of pruning power

are considered better.

We consider the pruning power under a certain context set-up (i.e. injection interval, number

of time series and parallelisms are set as basic values.) From the results in Figure 3.11, we

observe that sliding window size affects the processing latency and therefore the pruning

power could vary as it. On the other hand, ε directly affects the size of δ-hypercube and thus we

also to reveal its effect on the pruning power. The pruning power of an approach is relatively

stable across different maximum lags and we set it as the basic value.

In Table 3.1, the upper, middle and lower values in each cell respectively correspond to DFTL,

RPL and P2H. In P2H, based on the relation between ε and δ (refer Subsection 3.3.3), higher

values of ε lead to shrinking δ-hypercubes and therefore more pairs of sliding windows are

pruned. On the other hand, higher h leads to more uniform value distribution of the entries

in the normalized sliding windows [139] thereby decreasing the pruning power. We observe

in the table at the maximum ε and minimum h, P2H achieves the maximum pruning power

0.647, which is around 40% better than DFTL. Likewise, the experiments on the stock dataset

demonstrate similar results in Table 3.3.
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Table 3.1 – Pruning powers of DFTL, RPL and P2H w.r.t. lead-lag relation threshold ε and
sliding-window length h for cluster dataset.

�����ε

h
200 400 600 800 1000

0.7: DFTL 0.421 0.431 0.423 0.354 0.327
RPL 0.525 0.514 0.509 0.442 0.435
P2H 0.545 0.544 0.512 0.442 0.415

0.8: DFTL 0.447 0.445 0.452 0.426 0.397
RPL 0.535 0.544 0.511 0.448 0.435
P2H 0.632 0.587 0.548 0.559 0.442

0.9: DFTL 0.461 0.442 0.433 0.372 0.342
RPL 0.529 0.549 0.439 0.442 0.445
P2H 0.646 0.548 0.528 0.518 0.467

Table 3.2 – Pruning powers of DFTL, RPL and P2H w.r.t. lead-lag relation threshold ε and
sliding-window length h for stock dataset.

�����ε

h
200 400 600 800 1000

0.7: DFTL 0.403 0.331 0.323 0.354 0.327
RPL 0.542 0.514 0.439 0.442 0.415
P2H 0.602 0.543 0.512 0.502 0.411

0.8: DFTL 0.452 0.445 0.352 0.326 0.315
RPL 0.563 0.542 0.461 0.448 0.425
P2H 0.623 0.587 0.558 0.509 0.482

0.9: DFTL 0.457 0.442 0.363 0.374 0.338
RPL 0.593 0.549 0.439 0.422 0.415
P2H 0.676 0.648 0.528 0.454 0.457

3.8.6 Precision Measurement

In this part, we evaluate the precision and recall of P2H and P2H+ under different relation

thresholds [155]. As baseline approaches perform trivial lead-lag relation computation, they

are omitted in this group of experiments. In Table 3.4 and Table 3.5, each cell is of the form

(precision/recall). From the results, both P2H and P2H+ can achieve high precision and recall.

Due to the dimensionality-reduction, the precision of P2H+ is slightly lower than P2H. As ε

increases, more lead-lag relation computation is needed and therefore the precision increases.

3.9 Conclusion

In this paper, we investigated the DisCoM problem. by proposing P2H framework. It harnesses

P2-data-shuffling and δ-hypercube to optimize communication and computation efficiency.

P2H framework and baseline approaches are implemented based on Apache Storm. We
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Table 3.3 – Pruning powers of DFTL, RPL and P2H w.r.t. lead-lag relation threshold ε and
sliding-window length h for synthetic dataset.

�����ε

h
200 400 600 800 1000

0.7: DFTL 0.433 0.431 0.353 0.354 0.333
RPL 0.522 0.504 0.433 0.423 0.405
P2H 0.613 0.554 0.521 0.443 0.413

0.8: DFTL 0.453 0.442 0.343 0.346 0.302
RPL 0.575 0.554 0.451 0.423 0.402
P2H 0.635 0.567 0.543 0.502 0.465

0.9: DFTL 0.448 0.443 0.354 0.365 0.323
RPL 0.585 0.533 0.435 0.413 0.414
P2H 0.678 0.645 0.565 0.535 0.419

Table 3.4 – Precision and recall of P2H and P2H+ for cluster dataset.

ε 0.6 0.7 0.8 0.9
P2H 0.914/0.902 0.923/0.937 0.945/0.991 0.985/0.992
P2H+ 0.822/0.912 0.891/0.942 0.902/0.948 0.934/0.982

demonstrate the effectiveness and efficiency of our approach through extensive experiments.

3.10 Appendixes

3.10.1 Alternative Correlation Measures

Statistical Correlation: We define a generic correlation function, based on which the def-

initions of Pearson and Spearman correlations are given later. For two vectors x1 and x2

(x1, x2 ∈�h , h is the sliding window size for time series), the generic correlation function is

defined as:

cor r e(x1, x2) = (x1 −μ(x1)�) · (x2 −μ(x2)�)

(h −1)σ(x1)σ(x2)
(3.13)

where � is all one vector (� ∈�h), σ(x) and μ(x) are the sample standard deviation and mean

of the elements in x , respectively.

Then, the Pearson correlation coefficient ρp
i , j between sliding windows s t

i and s t
j of time series

i and j , which evaluates the linear relationship between two variables, is defined as follows:

ρ
p
i , j = cor r e(s t

i , s t
j ) (3.14)
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Table 3.5 – Precision and recall of P2H and P2H+ for stock dataset.

ε 0.6 0.7 0.8 0.9
P2H 0.902/0.973 0.919/0.981 0.931/0.993 0.982/0.993
P2H+ 0.843/0.903 0.882/0.936 0.901/0.939 0.944/0.987

Table 3.6 – Precision and recall of P2H and P2H+ for synthetic dataset.

ε 0.6 0.7 0.8 0.9
P2H 0.922/0.943 0.902/0.961 0.933/0.989 0.964/0.989
P2H+ 0.854/0.913 0.884/0.932 0.912/0.942 0.944/0.979

Additionally, the non-parametric Spearman’s rank-order correlation measures the strength of

monotonic relationship between two ranked variables. Compared with Pearson correlation,

Spearman’s rank correlation coefficient is more robust to outliers. We define rank vector r t
i of

sliding window s t
i is a vector of size h, the entries of which are the ranks of the corresponding

entries in the original sliding window s t
i . For instance, given s t

i = (1.3,4.6,3.7), its r t
i is (1,3,2),

since sorted elements in s t
i are (1.3,3.7,4.6). Then, Spearman correlation ρs

i , j for sliding

windows s t
i and s t

j of time series i and j is defined on r t
i and r t

j as:

ρs
i , j = cor r e(r t

i ,r t
j ) (3.15)

Now, we define a normalization function over a vector x (x ∈�h) as [155]:

x̂ = nor m(x) = (x −μ(x)�)�
(h −1)σ(x)

(3.16)

where �h is an all-one vector of size h. The vector x̂ is of unit length, namely x̂ · x̂ = 1. Then the

normalized sliding windows for Pearson and Spearman correlation are respectively defined as

ŝ t
i = nor m(s t

i ) and r̂ t
i = nor m(r t

i ) (3.17)

The correlation can also be written using the normalized sliding windows as follows: ρp
i , j =

ŝ t
i · ŝ t

j and ρs
i , j = r̂ t

i · r̂ t
j .

Note that the statistical significance test can be performed in box B(cmp) over the detected

lead-lag relations and B(cmp) only emits the significant ones.

Cosine correlation: The cosine correlation between time series st
i and st

j is widely used in

information retrieval and text mining. We adopt the similar normalization process as Pearson
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correlation to st
i and st

j and obtain:

ŝ t
i (or j ) =

st
i (or j )

‖ŝ t
i (or j )‖2

(3.18)

such that cos(θ(st
i , st

j )) = (ŝ t
i )T · (ŝ t

j ) and (ŝ t
i (or j ))T · ŝ t

i (or j ) = 1. Therefore,

D2(ŝ t
i , ŝ t

j ) = 2−2 · cos(θ(st
i , st

j )) (3.19)

Extended Jaccard Coefficient: We firs do the following deduction:

J (st
i , st

j ) =
(st

i )T · st
j

‖st
i ‖2

2 +‖st
j ‖2

2 − (st
i )T · st

j

≤
(st

i )T · st
j

‖st
i ‖2

2 +‖st
j ‖2

2 −‖st
i ‖ ·‖st

j ‖
≤

(st
i )T · st

j

‖st
i ‖ ·‖st

j ‖

(3.20)

since ‖st
i ‖2

2 +‖st
j ‖2

2 −‖st
i ‖ ·‖st

j ‖ ≥ ‖st
i ‖ ·‖st

j ‖ ≥ 0.

Applying the normalization process Eq. (3.18) to the bound in Eq. (3.20), we transform the

correlation query J(st
i , st

j ) ≥ ε to ε≤ J(st
i , st

j ) ≤ 2−D2(ŝ t
i ,ŝ t

j )

2 . We can see that Euclidean distance

between normalized sliding windows provides upper bound for Extended Jaccard Coefficient.

Based on this this property, we can use proposed P2H plus a posting filtering to exactly process

the query on Extended Jaccard Coefficient.

Euclidean distance: in processing queries on Euclidean distance, P2H works directly on the

original sliding windows without sliding window normalization process. The query threshold

is directly used for sliding window grouping and computation pruning.

3.10.2 Proof of lemmas and theorems

THEOREM 4.2 For a normalized sliding window ŝ t
i in p t

i , the target-partitions in Rt
i constructed

by above dimension subset H i selection and the permutation process over H i contain the leaders

of ŝ t
i , while the partitions not present in Rt

i must not have leaders of ŝ t
i .

Proof. The proof relies on Lemma 3.4.1. Based on Lemma 3.4.1, partitions in Rt
i derived from

H i have leader sliding windows of ŝ t
i . Through the proof of Lemma 3.4.1, the sliding windows

in the opposite partitions on the dimensions not present in H i have the distance to ŝ t
i larger

than δ, therefore the partitions not present in Rt
i have no leader sliding windows for ŝ t

i .
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THEOREM 4.3 [Correctness and Completeness of P2] Through P2-data-shuffling, each task of

box B(cmp) receives the normalized sliding windows located in the partition corresponding to

this task and the sliding windows from other partitions that are followers of this task’s local

sliding windows. Therefore, the leaders (or followers) of each time series can be found by the

tasks of B(cmp).

Proof. As the sliding windows in a partition are shuffled to the same task of box B(cmp), the

task of B(cmp) responsible for this partition is able to find the local qualified lead-lag relations.

On the other hand, for some sliding windows whose leaders are in the partition other than

where they locate, as is shown in Lemma 3.5 and Theorem 3.4.1, P2-data-shuffling is able to

send such sliding windows to the partitions having their leaders. Therefore, all the leaders of

each sliding window can be found by tasks of B(cmp).

LEMMA 5.1 For a sliding window ŝ t
i in δ-hypercube ci , the sliding windows within δ distance

to ŝ t
i are only contained in the δ-hypercubes from N (ci ) . All the δ-hypercubes out of N (ci )

must not contain the sliding windows close to ŝ t
i within δ.

Proof. For the hypercubes not present in N (c t
i ), on certain dimension(s) the distances be-

tween ŝ t
i and such hypercubes are δ at minimum. This means the distance between ŝ t

i and

the normalized sliding windows in such hypercubes are above δ.

LEMMA 5.2 The lead-lag relation computation should be performed over a pair of sliding

windows respectively from a δ-hypercube in C t and an inner δ-hypercube prior to t .

Proof. The lead-lag relation computation is only performed over a pair of sliding windows

respectively from a δ-hypercube in C t and an inner δ-hypercube prior to t . This is because

based on Theorem 4.3 the followers of sliding windows in outer δ-hypercubes prior to t in this

task are shuffled to the tasks of box B(cmp) where these outer δ-hypercubes are inner ones

and they can be detected there.

LEMMA 5.3 For a sliding window ŝ t
i from δ-hypercube c t

i , its minimum distance to a δ-

hypercube c t1
j is defined as: Dm(ŝ t

i ,c t1
j ) =

√√√√√√√h−1∑
k=0

⎧⎪⎪⎨
⎪⎪⎩

(ŝ t
i ,t−k −ct

i ,t−k ∗δ)2 : ct
i ,t−k < ct

j ,t−k

0 : ct
i ,t−k = ct

j ,t−k

(ŝ t
i ,t−k −ct

i ,t−k ∗δ+δ)2 : ct
i ,t−k > ct

j ,t−k

.

If Dm(ŝ t
i ,c t1

j ) > δ, there is no leader of ŝ t
i in δ-hypercube c t1

j and the lead-lag relation computa-

tion for ŝ t
i w.r.t. c t1

j is pruned.
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Proof. The minimum distance between a sliding window ŝ t
i and a δ-hypercube c t1

j is evaluated

by comparing δ-hypercube c t
i where this sliding window locates and c t1

j . The computation of

Dm(ŝ t
i ,c t1

j ) can be illustrated by Figure 3.13. The grey δ-hypercube represents δ-hypercube c t
i

where ŝ t
i (blue point) locates. The blue δ-hypercube represents c t1

j .

In Figure 3.13(a), c t
i and c t1

j have the same coordinate on dimension t −1, so the point in c t1
j

with the minimum the distance to ŝ t
i also has the same coordinate on dimension t−1 as ŝ t

i and

the distance at this dimension is zero. In Figure 3.13(b), c t
i and c t1

j have no same coordinates

and all dimensions are used to compute Dm(ŝ t
i ,c t1

j ). If Dm(ŝ t
i ,c t1

j ) > δ, no sliding windows in

Figure 3.13 – Distance between a sliding window and a δ-hypercube

c t1
j are close to ŝ t

i within δ.

LEMMA 5.4 Define functions max(x) and mi n(x) (x ∈ h), which respectively return the max-

imum and minimum element values in x . For a sliding windows ŝ t
i in c t

i , if ŝ t1
j in c t1

j addresses

‖ŝ t
i −mi n(ŝ t

i ) · ‖1 ·
√

(max(ŝ
t1
j )−mi n(ŝ

t1
j ))2·ln( 1

θ
)

2h ≥ ε, then the true lead-lag relation between ŝ t
i and

ŝ t1
j is above ε with probability above 1−θ.

Proof. Define r = ŝ t
i −mi n(ŝ t

i )·
‖ŝ t

i −mi n(ŝ t
i )· ‖1

(r ∈ h), such that
h∑

k=1
rk = 1, which can be thought of as a

discrete probability mass function. Based on r el (ŝ t
i , ŝ t1

j ) = ŝ t
i · ŝ t1

j and · ŝ t1
j = 0,

ŝ t
i ·ŝ

t1
j

‖ŝ t
i −mi n(ŝ t

i )· ‖1
=

r · ŝ t1
j =

h∑
k=1

rk ŝt1
j The rightmost formula of this equation can be considered as the expectation

of random variable ŝ t1
j . Then we apply the Hoeffding bound to derive the probabilistic bound

for correlation ŝ t
i · ŝ t1

j .

Based on Hoeffding bound [97], Pr( · ŝ t1
j −μ≥ a) ≤ e

−2ha2

R2 where R = max(ŝ t1
j )−mi n(ŝ t1

j ) and

μ= r · ŝ t1
j = ŝ t

i ·ŝ
t1
j

‖ŝ t
i −mi n(ŝ t

i )· ‖1
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Then, assume θ = e
−2ha2

R2 , we can derive a =−
√

R2log ( 1
θ

)
2h . Therefore, the probability of

ŝ t
i ·ŝ

t1
j

‖ŝ t
i −mi n(ŝ t

i )·�‖1
≤

a is less than or equal to θ and the lemma is proved.

Induction of the conditional probability in Gibbs sampling:

P (oi
τ,u |{oi

1, . . . ,oi
τ}\oi

τ,u) =
exp

{ ∑
v∈N −i

ατ
u,v�(oi

τ,u ,oi
τ,v )+βτ

u�(oi
τ,u ,oi

τ−1,u)
}

1+exp
{ ∑

v∈N −i
ατ

u,v�(1,oi
τ,v )+βτ

u�(1,oi
τ−1,u)

}

Proof.

P (oi
τ,u |{oi

1, . . . ,oi
τ}\oi

τ,u) =
P (oi

1, . . . ,oi
τ)

P (oi
τ,u = 1,{oi

1, . . . ,oi
τ}\oi

τ,u)+P (oi
τ,u = 0,{oi

1, . . . ,oi
τ}\oi

τ,u)

,where

P (oi
1, . . . ,oi

τ) =
1

Z1
exp

{ ∑
u,v∈N −i

α1
u,v�(oi

1,u ,oi
1,v )+ ∑

u∈N −i
α1

uoi
1,u

}
·

Π
k=1,...,τ−1

1

Zk+1
exp

{ ∑
u,v∈N −i

αk+1
u,v �(oi

k+1,u ,oi
k+1,v )

+ ∑
u∈N −i

βk+1
u �(oi

k+1,u ,oi
k,u)

}
,

P (oi
τ,u = 1,{oi

1, . . . ,oi
τ}\oi

τ,u) =
1

Z1
exp

{ ∑
u,v∈N −i

α1
u,v�(oi

1,u ,oi
1,v )+ ∑

u∈N −i
α1

uoi
1,u

}
·

Π
k=1,...,τ−2

1

Zk+1
exp

{ ∑
u,v∈N −i

αk+1
u,v �(oi

k+1,u ,oi
k+1,v )

+ ∑
u∈N −i

βk+1
u �(oi

k+1,u ,oi
k,u)

}
·

1

Zτ
exp

{ ∑
v∈N −i

ατ
u,v�(1,oi

τ,v )+βτ
u�(1,oi

τ−1,u)+
∑

y,v∈N −i−u
ατ

y,v�(oi
τ,y ,oi

τ,v )+ ∑
v∈N −i−u

βτ
v�(oi

τ,v ,oi
τ−1,v )

}
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and

P (oi
τ,u = 0,{oi

1, . . . ,oi
τ}\oi

τ,u) =
1

Z1
exp

{ ∑
u,v∈N −i

α1
u,v�(oi

1,u ,oi
1,v )+ ∑

u∈N −i
α1

uoi
1,u

}
·

Π
k=1,...,τ−2

1

Zk+1
exp

{ ∑
u,v∈N −i

αk+1
u,v �(oi

k+1,u ,oi
k+1,v )

+ ∑
u∈N −i

βk+1
u �(oi

k+1,u ,oi
k,u)

}
·

1

Zτ
exp

{ ∑
y,v∈N −i−u

ατ
y,v�(oi

τ,y ,oi
τ,v )+ ∑

v∈N −i−u
βτ

v�(oi
τ,v ,oi

τ−1,v )
}

Therefore, we put them together and eliminate the terms in common to obtain the conditional

probability.
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4 Efficient Distributed Decision Trees
for Robust Regression

It’s easy to predict the future. Just look at what you’ve been doing.

— Dandapani

4.1 Introduction

Decision trees are at the core of several highly successful machine learning models for both

regression and classification, since their introduction by Quinlan [106]. Their popularity stems

from the ability to (a) select, from the set of all attributes, a subset that is most relevant for the

regression and classification problem at hand; (b) identify complex, non-linear correlations

between attributes; and to (c) provide highly interpretable and human-readable models

[45, 101, 106, 132]. Recently due to the increasing amount of available data and the ubiquity of

distributed computation platforms and clouds, there is a rapidly growing interest in designing

distributed versions of regression and classification trees [12,14,101,122,133,150], for instance,
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the decision/regression tree in Apache Spark MLlib machine learning package1. Meanwhile,

since many of the large datasets are from observations and measurements of physical entities

and events, such data is inevitably noisy and skewed in part due to equipment malfunctions

or abnormal events [65, 67, 136].

With this paper, we propose an efficient distributed and regression tree learning framework

that is robust to noisy data with outliers. This is a significant contribution since the effect of

outliers on conventional regression trees based on the mean squared error criterion is often

disastrous. Noisy datasets contain outliers (e.g., grossly mis-measured target values), which

deviate from the distribution followed by the bulk of the data. Ordinary (distributed) regression

tree learning minimizes the squared mean error objective function and outputs the mean of

the data points in the leaf nodes as predictions, which is especially problematic and sensitive

to noisy data in two aspects [65, 67, 132]. First, during the tree growing phase (the learning

phase), internal tree nodes are split so as to minimize the square-error loss function, which

places much more emphasis on observations with large residuals [45, 65, 132]. As a result, bias

on the split of a tree node due to noisy and skewed data will propagate to descendent nodes

and derail the tree building process. Second, outliers drag the mean predictions away from

the true values on leaf nodes, thereby leading to highly skewed predictors. Consequentially,

the distributed regression tree trained on noisy data can neither identify the true patterns in

data, nor provide reliable predictions [64, 65, 67, 132, 136].

Previous methods to address robustness in the distributed regression tree fail to prevent noisy

data from deviating the splits and predictions of tree nodes. For regression problems, it can

be very difficult to spot noise or outliers in the data without careful investigation and even

harder in multivariate data sets with both categorical and numerical features [72]. Overfitting

avoidance, known as the node pruning in the context of regression trees, is a general way to

allow robustness for unseen data by penalizing the tree for being too complex. But pruning

operations cannot correct the biased splits of tree nodes [65, 67]. Ensemble methods like

RandomForest [83], RotationForest [111] and Gradient Boosted Tree [45] produce superior

results by creating a large number of trees. But outliers distributed across attributes (or

features) would still bias individual trees as well as the predictions aggregated from them.

Contributions: In this paper, we focus on enhancing the robustness of a distributed regression

tree as well as the training efficiency. Concretely, this paper makes the following contributions:

• We define the distributed robust regression tree employing robust loss functions and

identify the difficulty in designing an efficient training algorithm for the distributed

robust regression tree.

• We propose a novel distributed training framework for the robust regression tree, which

1http://spark.apache.org/docs/latest/mllib-decision-tree.html
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consists an efficient data summarization method on distributed data and a tree growing

approach exploiting the data summarization to evaluate robust loss functions.

• The proposed distributed robust regression tree and baselines are implemented based

on Apache Spark. Extensive experiments on both synthetic and real datasets demon-

strate the efficiency and effectiveness of our approach.

The organization of the paper is as follows: Section 4.2 summarizes the related work. Sec-

tion 4.3 presents the necessary background and the problem definition. Then, Section 4.4

and Section 4.5 present proposed framework and experiment results. We discuss the possible

extension in Section 4.6 and conclude the work in Section 4.7.

4.2 Related Work

To the best of our knowledge, there is no existing work on the robust loss function based

distributed regression trees in the literature, and thus we first summarize previous efforts to

handle noisy data for regression/classification trees in centralized environments, and then the

work on the distributed regression/classification trees. and the data summarization techniques

utilized in the distributed regression trees.

Robust classification/regression trees: Many methods have been proposed to handle noisy

data, but most of them concentrate on refining leaf nodes after training or purely on the

classification problem. [151] applies “smoothing” on the leaves of a decision tree but not inner

nodes. [43] assigns a confidence score to the classifier predictions rather than improving the

classification itself. Zadorny and Elkan [151], Provost and Domingos [105] and [30] improve

the classification probabilities by using regression in the leaves. Another well-known method

for dealing with noisy data is fuzzy decision trees [64, 100]. The fuzzy function may be domain

specific and require a human expert in order to correctly define it. The other type of approaches

is based on post-processing applied after a decision tree has already been built on noisy data.

John [65] proposed iterative removal of instances with outlier values. [67] requires to perform

back-ward path traversal for examined instances.

Our paper aims to improve the robustness of distributed regression trees by preventing the

outliers from influencing the tree induction phase based on robust loss functions. Above

post-processing methods can be smoothly integrated into our framework.

Distributed classification/regression trees: Our proposed approach borrows ideas from pre-

vious distributed regression tree algorithms to improve the training efficiency. But the previous

algorithms do not consider the effect of data noise and outlier issues.

Parallel and distributed decision tree algorithms can be grouped into two main categories:
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task-parallelism and data-parallelism. Algorithms in the first category [34, 127] divide the tree

into sub-trees, which are constructed on different workers, e.g. after the first node is split, the

two remaining sub-trees are constructed on separate workers. The downside of this approach

is that each worker should either have a full copy of data. For large data sets, this method

would lead to slowdown rather than speed-up.

In the data-parallelism approach, the training instances are divided among the different nodes

of the cluster. Dividing data by features [44] requires the workers to coordinate which input

data instance falls into which tree-node. This requires additional communication, which we

try to avoid as we scale to very large data sets. Dividing the data by instances [122] avoids this

problem. Instance-partitioning approach PLANET [101] selects splits using histograms with

fixed bins constructed over the value domain of features. Such static histograms overlooks

the variation of underlying data distribution as the tree grows and therefore could lead to

biased splits. [14, 133] put forward to construct dynamic histograms rebuilt for each layer of

tree nodes and used for deliberately approximating the exact splits. [14, 133] communicate

the histograms re-built for each layer of tree nodes to a master worker for tree induction. [12]

is a MapReduce algorithm which builds multiple random forest ensembles on distributed

blocks of data and merges them into a mega-ensemble. In [66] ScalParC employs a distributed

hash table to implement the splitting phase for classification problems. [90] approach uses

sampling to achieve memory efficient processing of numerical attributes for Gini impurity in

the classification tree.

In this paper, our approach falls into the instance-partition category and we build dynamic

histograms to summarize the value distribution of the target variable for the robust loss

estimation.

Data summarization in distributed classification/regression trees: Data summarization in

distributed regression trees [14, 101, 123, 133] serves for data compression to facilitate the

communication between workers and the master and supports mergeable operations for

building a global picture about the data distribution on the master to grow the tree. Meanwhile,

[14, 101, 133] build histograms over the feature value domain to provide splits candidates in

growing the tree. Our proposed data summarization borrows ideas from [14] and is able to

support efficient estimation of robust loss criteria.

4.3 Preliminaries and Problem Statement

In this part, we first present the regression tree employing robust loss functions. Then, we

describe the robust regression tree in the distributed environment and formulate the problem

of this paper.
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4.3.1 Robust Regression Tree

In the regression problem, define a dataset D = {(xi , yi )}, where xi ∈�d is a vector of predictor

features of a data instance and yi ∈� is the target variable. d is the number of features. Let

Dn ∈D denote the set of instances falling under tree node n.

Regression tree construction [106, 132] proceeds by repeated greedy expansion of tree nodes

layer by layer until a stopping criterion, e.g. the tree depth is met. Initially, all data instances

belong to the root node of the tree. An internal tree node (e.g., Dn) is split into two children

nodes respectively with data subsets DL(DL ⊂ Dn) and DR (DR = Dn −DL) by using a predicate

on a feature, so as to minimize the weighted loss criteria: |DL |
|Dn |L(DL)+ |DR |

|Dn |L(DR ), where L(·) is

a loss function (or error criteria) defined over a set of data instances.

This paper proposes the distributed regression tree employing robust loss functions to handle

noisy datasets with outliers on the target variable (the regression tree is robust to outliers in

feature space [45]). In robust regression, there are two main types of robust loss functions:

accommodation and rejection [45, 65, 128]. Accommodation approach is to define a loss

function that lessens the impact of outliers The least absolute deviation, referred to as LAD,

is an accommodation method [45, 128, 132]. It is defined on a set of data instances D as:

Ll (D) = 1
|D|

∑
(xi yi )∈D |yi − ŷ |, and ŷ = medi an(xi yi )∈D ({yi }), which returns the median of a set

of values [132]. On the other hand, rejection approach aims to restrict the attention only to

the data that seems "normal" [65]. The loss function of the rejection type is the trimmed least

absolute deviation, referred to as TLAD. It is defined as Ll (D̃), where D̃ is the trimmed dataset

of D derived by removing data instances with the τ% largest and τ% smallest target values

(0 < τ< 1) from D and thus in TLAD ŷ = medi anyi∈D̃ ({yi }).

Then, the robust regression tree in this paper is defined as:

Definition 4.3.1 (Robust Regression Tree). In a robust regression tree, an internal tree node is

split so as to minimize the weighted robust loss function |DL |
|Dn |Ll (DL)+ |DR |

|Dn |Ll (DR ), where DL

and DR are two (trimmed) data subsets corresponding to the children nodes. The leaf nodes

take the median of target values in the leaf node as the prediction value.

4.3.2 Robust Regression Tree in the Distributed Environment

In contemporary distributed computation systems [79, 123], one node of the cluster is desig-

nated as the master processor and the others are the workers. Denote the number of workers by

P . The training instance set is instance-divided into P disjoint subsets stored in different work-

ers and each worker can only access its local data subset. Let Dp be the set of data instances

stored at worker p, such that ∪P
p=1Dp =D. For p, q ∈ {1, . . . ,P }, Dp ∩Dq =� and |Dp |� |D|/P .

Denote the data instances in Dp belonging to a tree node n by Dn
p . A straightforward way to
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grow the robust regression tree layer by layer on the master is inefficient [14, 101, 123], because

splitting an internal tree node requests to repeatedly access distributed data and calculate

LAD (or TLAD) via expensive distributed sorting [14, 123], for each trial split predicate per

feature. Such a solution incurs dramatic communication and computation overheads , thereby

degrading the training efficiency and scalability [14, 132].

To this end, our following proposed distributed robust regression tree will exploit data sum-

marization [14, 101, 133], which is able to provide compact representations of the distributed

data, to enhance the training efficiency.

4.3.3 Problem Statement

As is presented above, it is non-trivial to design an efficient training approach for distributed

robust regression tree. Therefore, the problem this paper aims to solve is defined as:

Definition 4.3.2 (Training a Distributed Robust Regression Tree). Given robust lost functions

(LAD or TLAD) and training instance partitions D1, . . . ,Dp of a data set D distributed across

the workers 1, . . . , p of a cluster, training a robust regression tree in such a distributed setting

involves two sub-problems: (1) to design an efficient data summarization method for the

workers to extract sufficient information from local data and to transmit only such data sum-

marization to the master with bounded communication cost. (2) to grow a robust regression

tree on the master by estimating the robust loss function based on the data summarization.

To keep things simple, we assume that all the features are discrete or categorical. However, all

the discussion below can be easily generalized to continuous features [45], which is discussed

in Section 4.6. Therefore, a split predicate on a categorical feature is a value subset. Let Vk

represents the value set of feature k and k ∈ {1, . . . ,d}. For instance, given the set of data

instances Dn on a tree node n and a value subset on feature k, V −
k ⊂ Vk , two data subsets

partitioned by V −
k are DL = {(xi , yi )|(xi , yi ) ∈ Dn , xi ,k ∈ V −

k } and DR = Dn −DL .

Often, regression tree algorithms also include a pruning phase to alleviate the problem of

overfitting the training data. For the sake of simplicity, we limit our discussion to regression

tree construction without pruning. However, it is relatively straightforward to modify the

proposed algorithms to incorporate a variety of pruning methods [14, 45].

4.4 Distributed Robust Regression Tree

In this part, we introduce the key contribution, the distributed robust regression tree, referred

to as DR2-Tree.

84



4.4. Distributed Robust Regression Tree

Figure 4.1 – Framework of the distributed robust regression tree (best viewed in colour).

Overview: As is shown in Figure 4.1, in DR2-Tree the master grows the regression tree layer by

layer in the top-down manner. Each worker retains the split predicates of the so-far trained tree

nodes for data summarization. An efficient dynamic-histogram based data summarization

approach is designed for workers to communicate with the master (refer to Section 4.4.1). Then,

by using such approximate descriptions of data, the master is able to efficiently evaluate robust

loss functions for determining the best split of each internal tree node, thereby circumventing

expensive distributed sorting for deriving LAD/TLAD (refer to Section 4.4.2). Finally, the

master sends the new layer of tree nodes to each worker for the next round of node splitting.

4.4.1 Data Summarization on Workers

Our data summarization technique adopts the dynamic histogram, a concise and effective

data structure supporting mergable operations in the distributed setting [14, 133]. The one-

pass nature of our proposed data summarization algorithm enables it to be adaptable to

the distributed streaming learning [14] as well. Moreover, we will derive efficient robust loss

function estimation algorithm based on such data summarization in the next subsection.

During the data summarization process, worker p builds a histogram set denoted by H n
p =

{H n
r,vr

}, for each tree node on the bottom layer, e.g., node n. It summarizes the target value

distributions of Dn
p , the data instances belonging to tree node n in data partition Dp . H n

r,vr

is a histogram describing the target value distribution of data instances having value vr on

feature r in Dn
p . H n

r,vr
is a space bounded histogram of maximum β bins ( |H n

r,vr
| ≤ β ), e.g.

H n
r,vr

= {b1, . . . ,bβ}. Let count (H ) (or count (H )) be the number of data instances summarized

by a histogram H (or a histogram set H ). Each bin of a histogram is represented by a quad, e.g.

bi = (l ,r,c, s), where l and r are the minimum and maximum target values in this bin, c is the

number of target values falling under this bin and s is the sum of the target values. We will see

how such quad elements are used in growing the tree in the next subsection. The number of

bins β in the histograms is specified through a trade-off between accuracy and computational
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Algorithm 5 Data summarization on a worker

Input: data partition in this worker, e.g., Dp

Output: histogram sets {H n
p } describing the target value distribution in internal tree node n

# Bins in each histogram are maintained according to the order of bin boundaries.
# T ni

vr
: a priority queue recording the distances between neighbouring bins.

1: for each data sample (xi , yi ) in Dp do
2: search the tree built so far to locate the leaf node, e.g. ni , to which sample (xi , yi ) belongs.

3: for each feature value xi ,k of xi do
4: search for the bin bi ncl such that yi ∈ [bi ncl .l ,bi ncl .r ] by the binary search over bins

of H ni

k,xi ,k

5: if there exits such a bin bi ncl for yi then
6: only update the bin bi ncl by bi ncl .c = bi ncl .c +1, bi ncl .s = bi ncl .s + yi

7: else
8: # blower and bupper are obtained during the above search process for bi ncl .
9: blower = argmax

b j∈{bk |bk .r≤yi }
b j .r

10: bupper = argmin
b j∈{bk |bk .l≥yi }

b j .l

11: insert a new bin (yi , yi ,1, yi ) into H ni

k,xi ,k
between bin bl ower and bupper

12: insert two new neighbour-bin distances |bl ower .r − yi | and |bupper .l − yi | to the T ni
vr

13: if current |H ni

k,xi ,k
| > histogram space bound β then

14: for the pair of bins bu and bv with the minimum distance in T ni
vr

, replace the bins
bu and bv in H ni

k,xi ,k
by the merged bin as:

(min(bu .l ,bv .l ),max(bu .r,bv .r ),bu .c +bv .c,bu .s +bv .s)
15: end if
16: end if
17: end for
18: end for
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and communication costs: a large number of bins gives a more accurate data summarization,

whereas small histograms are beneficial for avoiding time, memory, and communications

overloads.

Algorithm 5 presents the data summarization procedure on each worker, which updates the

local data instances one by one to the corresponding histogram set. First, the tree node

ni in the bottom layer of the tree for a data instance (xi , yi ) ∈ Dp is found (line 1−2) and

its associated H
ni
p will be updated. For each feature value of (xi , yi ), yi is inserted to the

corresponding histogram in H
ni
p by either updating an existing bin having the value range

covering yi (line 3−6) or inserting a new bin (yi , yi ,1, yi ) to the histogram (line 7−12). Second,

if the size of the histogram exceeds the predefined maximum value β then the nearest bins are

continuously merged until addressing the limit β (line 13−16). A temporary priority structure

(e.g., T ni
vr

) is maintained for efficiently finding closest bins to merge (line 13−16). Finally,

workers only send such data summarization to the master.

Complexity Analysis: In line 2−6, the binary search over bins of a histogram takes logβ time.

Then the priority structure can support in finding the nearest bins and updating bin distances

in logβ time (line 13−16). Overall, the time complexity of Algorithm 5 is O (|Dp |d logβ). Com-

pared with the histogram building approach in [14, 133], our method circumvents the sorting

operation for updating individual data instances and improves the efficiency, as is demon-

strated in Section 5.5. The communication complexity for transmitting data summarization

of the bottom layer of nodes between the worker and master is bounded by O (max
r

(|Vr |)dβ)

independent of the size of the data partitions. For the features with high cardinality, our

data summarization can incorporate extra histograms over feature values to decorrelate the

communication cost and the feature cardinality [14, 133].

4.4.2 Tree Growing on the Master

In this part, we will first outline the tree node splitting process using the data summarization in

growing the tree. Then, we present the involved two fundamental operations in detail, namely

the histogram merging and LAD/TLAD estimation.

Tree Node Splitting: In order to find the best split of a tree node, we need a histogram set

summarizing all the data instances falling under this node. Therefore, as is presented in

Algorithm 6, a unified histogram set is built by using the histogram merging operation, which

will be described in Algorithm 7. Then, it iterates over each feature to find a split predicate

(Line 4-6), i.e., a feature value subset, so as to minimize the weighted loss as:

{v∗,V +∗,V −∗} = ar g mi n
vi ,V +,V −

L̂l (H−)
count (H−)

count (H n)
+ L̂l (H+)

count (H+)

count (H n)
(4.1)
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Algorithm 6 Tree node splitting

Input: histogram sets of tree node n from all data partitions, H n
1 , . . . ,H n

P .
Output: the split feature and associated value set for tree node n.

1: build a unified histogram set summarizing the overall target value distribution for this tree
node H n = mer g e(H n

1 , . . . ,H n
P ) by using the histogram merging operation presented in

Algorithm 7
2: for each feature k ∈ {1, . . . ,d} do
3: Sort the feature values in Vk according to the median estimations of data in the corre-

sponding histograms [132].
4: Ṽk : the sorted feature values in Vk .
5: iterate over Ṽk to find a v j and the associated feature value subsets V − = {v j | j ≤ i } and

V + = Vk −V −, so as to minimize the weighted robust loss function.
6: end for
7: return the feature and value subsets, which achieve the minimum robust loss.

where L̂l (·) is the histogram based estimation of robust loss functions (LAD/TLAD), which is

presented in Algorithm 8. H n = mer g e(H n
1 , . . . ,H n

P ), which will be described in Algorithm 7.

For a trial feature value subset, e.g. V − = {v j | j ≤ i } and V +, we need to estimate the LAD/TLAD

over the data subsets defined by V − and V +. Therefore, two temporary histograms, e.g., H−

and H+ are built by merging the histograms in H n corresponding to the feature values present

in V − and V +, i.e., H− = mer g e({H n
v j
| j ≤ i }) and H+ = mer g e({H n

v j
| j > i }) approximating the

distributions of two data subsets defined by V − and V +.

Finally, when the tree reaches the stopping depth, the predictions on the leaf nodes can be

exactly derived by accessing the distributed dataset. This step is only performed when the tree

growing phase is finished.

Histogram Merging: Our proposed histogram merging operation is a one-pass method over

the bins of histograms and creates a histogram summarizing the union of data distribution of

the two histograms. As is presented in Algorithm 6, it is mainly used in two cases: (1) build a

unified histogram set for each tree node on the bottom layer; (2) build temporary histograms

to approximate the target value distributions of two data subsets defined by a trial feature

value subset. Algorithm 7 presents the histogram merging algorithm. Two histograms H1 and

H2 are first combined in the merge-sort way. During this process, a heap is maintained to

record the neighbour-bin distances. Then, bins which are closest are merged together to form

a single bin. The process repeats until the histogram has β bins.

Complexity Analysis: In Algorithm 6 Line 2-11 scans the bins in histograms H1 and H2 once

and thus takes O (β). Line 12-14 combines the redundant bins by using the heap, which takes
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Algorithm 7 Histogram merging

Input: Two histograms, e.g., H1 and H2.
Output: A histogram H summarizing the union of data distribution in H1 and H2.

# E is a priority queue recording the distances between neighbouring bins.
1: H : merged histogram.
2: while H1 and H2 have bins do
3: bi and b j : current popped bins from H1 and H2

4: if bi .l < b j .l then
5: insert bi in H
6: else
7: insert b j in H
8: end if
9: insert the new neighbour bin distance in E .

10: end while
11: insert the remaining bins in H1 or H2 to H .
12: while |H | > histogram space bound β do
13: pop from E the pair of bins bu and bv with the minimum bin distance
14: replace the bins bu and bv in H by the merged bin

(min(bu .l ,bv .l ),max(bu .r,bv .r ),bu .c +bv .c,bu .s +bv .s)
15: end while

O (βlog (β)).

LAD/TLAD Estimation: A straightforward method to estimate LAD (or TLAD) based on a

histogram is to first make a median estimate and then to sample data in each bin of the

histogram to approximate individual absolute deviations [14,133]. Both the median estimation

and data sampling process introduce errors into the LAD (or TLAD) estimation [132].

To this end, we propose a more efficient and precise algorithm to approximate LAD and TLAD

in one-pass way. Before giving the details, we first define some notations.

Definition 4.4.1 (Quantile Bin of a Histogram). Given a histogram H = {b1, . . . ,bβ}, count (H)

the number of values this histogram summarizes and a quantile q over the summarized values,

the quantile bin bq addresses
∑

bi<bq
bi .c < count (H) ·q and

∑
bi≤bq

bi .c ≥ count (H) ·q

Definition 4.4.2 (R-Partial-Sum of a Bin). Given a bin b = (l ,r,c, s) of a histogram, R-Partial-

Sum of bin b, Sp (b,R) is defined as the sum of the R smallest values summarized in this

bin.

Recall that in the data summarization in Algorithm 5, the histogram updating process unites

neighbouring bins according to the distance of bin boundaries. This allows the bins to adapt to

the data distribution. Regarding the values summarized by a bin in a histogram (e.g., b), we can
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safely assume that they are uniformly distributed in range [b.l ,b.r ] [14]. Therefore, we provide

the lemma below, which will be used for LAD estimation, to approximate R-Partial-Sum:

Algorithm 8 LAD / TLAD Estimation

Input: A histogram H , trim ratio τ

Output: LAD or TLAD estimation.
1: s: variable to record

∑
bi>bm

bi .s − ∑
bi<bm

bi .s , st : variable to record
∑

bi>bq

bi .s − ∑
bq<bi<bm

bi .s.

# m is the index of 1/2-quantile bin; q and q are the indices of τ-quantile and (1-τ)-quantile
bins.

2: c: variable to record the current count of data instances.
3: for each bin bi in H do
4: c = c +bi .c
5: record quantile bin m, q and q when c address the corresponding conditions.
6: if 0.5-quantile bin m is found then
7: s = s +bi .s
8: else
9: s = s −bi .s

10: end if
11: if τ-quantile bin bq is found and 1/2-quantile bin bm is not found then
12: st = st −bi .s
13: else if (1-τ)-quantile bin bq is not found and 1/2-quantile bin q is found then
14: st = st +bi .s
15: end if
16: end for
17: LAD: L̂l (H) = s +bm .s −2Ŝp (bm ,R),
18: TLAD: L̂l (H ,τ) = st + Ŝp (bq ,R1)−bq .s + Ŝp (bq ,R2)+bm .s −2Ŝp (bm ,R)

Lemma 4.4.1. For a bin b = (l ,r,c, s) of a histogram and an integer R (R ≤ b.c), under the as-

sumption of the uniform distribution of values in the bin, R-Partial-Sum of bin b can be approxi-

mated by Sp (b,R)� Ŝp (b,R) =
{

b.s : R = b.c

R ·b.l +R(R −1)δ : other wi se
, whereδ= (b.s−b.r−b.c·b.l+b.l )

(b.c−2)(b.c−1) .

Proof.

Now we provide the following lemma for estimating the LAD/TLAD based on a histogram as:

Lemma 4.4.2. Given a histogram H = {b1, . . . ,bβ}, the LAD/TLAD over the data summarized by

histogram H can be exactly computed by:

(1) Ll (H ) = ∑
bi>bm

bi .s− ∑
bi<bm

bi .s+bm .s−2Sp (bm ,R), where R = �C
2 � −

∑
bi<bm

bi .c, C = count (H )

is the total number of data instances covered in histogram H, and an bm is the 1
2 -quantile bin.
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(2) Ll (H ,τ) = ∑
bm<bi<bq

bi .s − ∑
bq<bi<bm

bi .s +Sp (bq ,R1)−bq .s +Sp (bq ,R2)+bm .s −2Sp (bm ,R),

where bm, bq and bq are respectively the 1
2 , τ and (1−τ)-quantile bins, R = �C

2 � − ∑
bi<bm

bi .c,

R1 =C ·τ− ∑
bi<bq

bi .c, R2 =C · (1−τ)− ∑
bi<q

bi .c.

Proof. Limited by the space, refer to Section 4.8 for the proof details.

Lemma 4.4.2 suggests that in estimating LAD/TLAD based on a histogram, the median esti-

mation step is circumvented. Meanwhile, given the histograms LAD/TLAD can be estimated

through replacing Sp (·) in Lemma 4.4.2 by Ŝp (·) defined in Lemma 4.4.1 and exactly computing

the remaining terms. In summary, the histogram based estimation of robust loss functions

can be expressed as:

L̂l (H) = ∑
bi>bm

bi .s − ∑
bi<bm

bi .s +bm .s −2Ŝp (bm ,R) (4.2)

and

L̂l (H ,τ) = ∑
bm<bi<bq

bi .s − ∑
bq<bi<bm

bi .s + Ŝp (bq ,R1)−bq .s+

Ŝp (bq ,R2)+bm .s −2Ŝp (bm ,R)

(4.3)

where R, R1 and R2 are defined as Lemma 4.4.2.

On the basis of Lemma 4.4.2, we put forward the LAD/TLAD estimation algorithm, as is shown

in Algorithm 7. It is able to estimate LAD or TLAD in one-pass over the bins of the given

histogram. In our LAD/TLAD estimation algorithm, the only approximate part is Ŝp (b,R). Now

we provide the theoretical error bound on it:

Theorem 4.4.1. Given a bin b = (l ,r,c, s) of a histogram and R (R ≤ b.c), if R = 1 or R = b.c,

Ŝp (b,R) provided in Lemma 4.4.1 is the exact R-Partial-Sum. Otherwise, the approximation

error of R-Partial-Sum of bin b, Sp (b,R)− Ŝp (b,R) is bounded within [(R −b.c) · (b.r −b.l ),b.s−
b.c ·b.l ].

Proof. Refer to Section 4.8.

Therefore, the LAD/TLAD estimation has bounded errors as well.
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4.5 Experimental Evaluations

In this section, we perform extensive experiments to demonstrate the efficiency and effective-

ness of DR2-Tree. we first present the setup of the experiments including datasets, baselines

and the implementation environment. Then, we report the results focusing on three aspects:

the efficiency in terms of training time and speedup, the effectiveness in terms of prediction

accuracy and the data summarization performance in DR2-Tree.

4.5.1 Setup

Dataset: In the experiments, we use one synthetic and two real datasets.

Synthetic Data: Our synthetic data generator2 produces data instances with specified number

of features. For each distinct feature value combination e.g., (v1, . . . , vd ), where v1 is the value

of the first feature and d is the number of features, it generates several data instances having

such feature values and the target values sampled from a Gaussian distribution. Such Gaussian

distributions are specific w.r.t. feature-value combinations. Meanwhile, data instances with

outliers on the target variable are injected based on a Bernoulli distribution. The probability of

the Bernoulli distribution is specified through the percentage of outliers in the produced dataset

and it is set as 0.05 initially, i.e., 5% of data instances have outlier target values. The magnitude

of outlier target values is defined as the times of the Gaussian distribution mean. By default,

the magnitude is 3, which means that the target value of an outlier data instance is sampled

from a Gaussian distribution with 3 times larger mean than the mean of the corresponding

feature value combination’s distribution. The percentage and magnitude of outliers will be

tuned later in Subsection 4.5.3.

Flight Dataset: It contains the scheduled and actual departure and arrival times of flights re-

ported by certified U.S. air carriers from 1987-2008 3. It contains data instances with abnormal

values on the “arrival delay” and “departure delay” attributes, due to abnormal events, e.g.,

weather, security, etc. In our experiments, we use the attribute “ArrDelay” as the target variable

and the categorical features as the independent variables. The cardinalities of these categorical

features vary from 10 to 1032.

Network Dataset: It is a dataset provided by a major European telecommunication service

provider consisting of active measurements from probes within a residential ISP network. The

probes measure various performance fields such as the throughput, jitter and delay between

their location and chosen end-points. Furthermore, each probe and end-point are associated

with various categorical and continuous features, such as the time of the measurement, the

2https://github.com/weilai0980/DRSquare_tree/tree/master/dr2tree_src
3http://stat-computing.org/dataexpo/2009/the-data.html
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location of the endpoints and the configuration of the lines. Finally the tests cover a period of

2 days and involve 124 probes and 1314 targets. This dataset is noisy in the sense that due to

network anomalies and events, the measurements could have huge outlier values.

Baselines: ER2T is a distributed robust regression tree. SRT and DHRT are two representative

distributed regression trees in the literature [14,101,133]. ER2T: It refers to the exact distributed

robust regression tree. It builds the robust regression tree on the master by exactly calculating

the robust loss functions in a distributed way. SRT: It refers to the distributed regression

tree based on square error criteria [101] in Apache Spark machine learning tool set 4. Prior

to the tree induction, a pre-processing step is performed to obtain static and equidepth

histograms for each feature and the split points are constantly selected from the bins of such

histograms in the training phase. DHRT: It implements a single distributed regression tree

based on [133], which employs dynamic histograms [14] to summarize statistics in distributed

data for evaluating the square error split criterion on the master. In building histograms, it

requires to sort the bins each time a data instance is added to the set already represented by

the histogram [14].

In Subsection 4.5.3, we will also use random forests (RF) and gradient boosted regression trees

( GBT) in the distributed machine learning library Spark MLlib to compare with our robust

regression tree in terms of accuracy.

Implementation: Our proposed DR2-Tree and baselines are all implemented on Apache

Spark, a popular distributed data processing engine. The engine is deployed on a cluster of 23

servers, each with 16 cores (2.8GHz) and 32G of RAM.

4.5.2 Efficiency

In this group of experiments, we evaluate the efficiency of growing regression trees under

different conditions. The training time is measured as the total time for growing a tree from

the root node until the specified depth. To mitigate the effects of varying cluster conditions,

all the results have been averaged over multiple runs.

We consider four parameters to tune in this set of experiments, namely the tree depth, training

data size, maximum number of bins in data summarization and the number of workers. They

have direct effect on the training time [14, 101, 123, 133]. The experiments are performed by

varying one parameter while keeping the others as default values. By default, the maximum

number of bins is set as 500, the number of workers is 5, the depth is 6 and the size of the

training dataset is 10 million initially.

4http://spark.apache.org/docs/latest/mllib-decision-tree.html
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Figure 4.2 – Training time w.r.t. the depth of the tree. (a) synthetic dataset (b) flight dataset (c)
network dataset. (best viewed in colour)

Depth: Figure 4.2 presents the training time as a function of the training depth of the regression

tree. DR2-Tree outperforms ER2T and DHRT by 3× and 2× faster in average. In ER2T the

training time consistently takes the longest, as it computes the expensive exact median and

LAD (TLAD) in the distributed setting. SRT takes 0.5 times less time than DR2-Tree. This

is because SRT constantly summarizes the data using fixed bins and thus takes less time to

extract statistics in bins from distributed data during the training phase. But square-error

based SRT and DHRT are less robust to noisy data than DR2-Tree, which will be shown in the

next subsection.

Figure 4.3 – Training time w.r.t. the size of training dataset. (a) synthetic dataset (b) flight
dataset (c) network dataset. (best viewed in colour)

Data size: In Figure 4.3, we present the training time as a function of the size of the training

dataset, i.e., the number of data instances. Due to the one-pass nature of data summarization

and tree growing processes, the training time of DR2-Tree increases linearly, highlighting

the scalability. DHRT has a quickly increasing training time in part due to the quadratic

computation in updating histograms. DR2-Tree takes 3× and 2× less training time in average

than ER2T and DHRT.

Maximum number of bins: In Figure 4.4, we investigate the effect of the maximum number

of bins in data summarization on the training time. ER2T employs no data summarization.

In SRT, bins are built according to the cardinality of features in data. Therefore, varying the

number of bins has no effect on ER2T and SRT and in Figure 4.4 only the results of DR2-Tree
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Figure 4.4 – Training time w.r.t. the maximum number of bins in data summarization. (a)
synthetic dataset (b) flight dataset (c) network dataset. (best viewed in colour)

and DHRT are reported. The number of bins affects both the efficiency of data summarization

on workers and tree growing on the master, and thus in general the training time is positively

correlated with the maximum number of bins. At the highest level of bin numbers, the training

time of DR2-Tree is average 4 times less than DHRT.

Figure 4.5 – Training time w.r.t. the number of workers. (a) synthetic dataset (b) flight dataset
(c) network dataset. (best viewed in colour)

Number of workers: In Figure 4.5, we proceed to investigate the speedup for different num-

bers of workers. For large datasets, the communication between workers and the master is

negligible relative to the gain in the data summarization building phase. Therefore, increas-

ing the number of workers is beneficial for speeding up the training process [14]. DR2-Tree

presents 2× higher speedup than ER2T at the highest level of number of workers.

4.5.3 Effectiveness

In this part, we evaluate the prediction accuracy of DR2-Tree and baselines under different

dataset properties and regression tree set-ups. Specifically, we aim to study the effect of the

maximum number of bins, the outlier percentage and magnitude in the training dataset. The

prediction accuracy is measured by normalized root mean square error (NRMSE), so as to

facilitate the comparison between datasets. Lower values of NRMSE are considered better.

The trim ratio in DR2-Tree-TLAD is chosen within the range of [0.05,0.15] by cross-validation

in this group of experiments. The un-tuned parameters in each group of experiments are set
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as the default values in Section 4.5.2.

Figure 4.6 – Prediction accuracy w.r.t. the (a) outlier percentage and (b) magnitude in the
training dataset (best viewed in colour).

Outlier properties in the dataset: In this group of experiments, we investigate the effect of

the noise level of the training dataset, namely the outlier percentage and magnitude, on the

prediction accuracy. Since we can only manipulate the noise level of the synthetic dataset,

only the results on the synthetic dataset are reported in Figure 4.6.

In Figure 4.6(a), we increase the percentage of data instances with outlier target values while

keeping the magnitude of the outlier values as 3× of the target value mean. It is observed that

initially when the training dataset has no outliers, the accuracies of all approaches are highly

close. As the percentage of outliers increases, the accuracy difference between the square error

and robust error criterion based approaches becomes significant.

In Figure 4.6(b), we study the effect of the outlier magnitude on the accuracy. In this group of

experiments, 5% data instances have outlier target values. When the magnitude of outliers

increases, ER2T and DR2-Tree demonstrate stable accuracy and have 2 times less errors than

SRT and DHRT at the highest level of the outlier magnitude. Compared with Figure 4.6(a), we

also observe that square error based approaches are more sensitive to the outlier percentage

than to the outlier magnitude in the dataset.

Figure 4.7 – Prediction accuracy w.r.t. the maximum number of bins in data summarization.
(a) synthetic dataset (b) flight dataset (c) network dataset. (best viewed in colour)

Maximum number of bins: Figure 4.7 displays the prediction accuracy for different number
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of bins in the data summarization. As is presented in Section 4.4, the number of bins affects

the precision of error criterion estimation in DR2-Tree. Meanwhile, it should avoid setting

the number of bins too large, otherwise the training efficiency would degrade, as is shown in

Figure 4.4. Since only DR2-Tree and DHRT have tunable dynamic histograms, only the results

of them are shown.

For the noisy synthetic and network datasets, as the number of bins increases, the master in

DR2-Tree can obtain more precise data summarization based LAD/TLAD estimation and thus

yields decreasing prediction errors. DR2-Tree outperforms DHRT by around 3 times. For the

flight data, they present comparable accuracies.

Table 4.1 – Overall accuracy comparison (NRMSE).

datasets ER2T SRT DHRT DR2-Tree-LAD DR2-Tree-TLAD RF GBT
Synthetic data 0.225 0.481 0.493 0.224 0.219 0.481 0.476

Flight data 0.00882 0.00874 0.00908 0.00889 0.00890 0.00836 0.00835
Network data 0.061 0.148 0.153 0.0629 0.0581 0.145 0.181

Overall accuracy comparison: In this part, we run all the approaches by cross-validation to

achieve the best prediction accuracies for the three datasets and report the results in Table 5.2.

The synthetic dataset is set to have 5% outlier target values with magnitude 3. It shows that

robust error criterion based approaches have around 50% less error than square error based

approaches, i.e., SRT, DHRT, RF and GBT. For not so noisy data, i.e. the flight data, two

types of approaches have very comparable accuracy. Such results also demonstrate the wide

applicability of our DR2-Tree.

4.5.4 Data Summarization Performance in DR2-Tree

Communication cost of data summarization: Table 4.2 shows the average communication

cost of data summarization for a tree node between the worker and master. It is measured by

the amount of basic data units (e.g., integer, floats, etc.). We study the communication cost

variation as tree grows, since DR2-Tree employs dynamic histograms, which are rebuilt for the

new-grown bottom layer of tree nodes. From Table 4.2, we observe that the communication

Table 4.2 – Data summarization communication cost as the tree grows.

Tree depth 2 4 6 8 10
Synthetic data 12500 25000 25000 18359 17871

Flight data 560000 1120000 1120000 1225000 1050000
Network data 200000 400000 437500 412500 411500

cost increases first, then keeps relatively constant or slightly decreases, as the tree grows. This
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is because initially the data instances are assigned to small number of tree nodes and each

tree node has data summarization with histograms of full bins to summarize the data. As the

tree grows and has more nodes, the amount of data instances in each node is decreasing and

the data summarization requires less bins in histograms and therefore the communication

cost keeps relatively stable or decreases. The communication cost is different across datasets.

This is because the number of features and the size of feature value set are different for the

three datasets.

Accuracy of data summarization: In this part, we proceed to further investigate the accuracy

of the data summarization based LAD/TLAD estimation in DR2-Tree. In order to understand

the accuracy under different data distributions [14], we generate seven synthetic sets via

different kinds of probability distributions and summarize each data set by using the histogram

building approach in DR2-Tree. The probability distributions and associated parameters are

listed in Table 4.3 and Table 4.4. For each distribution, 105 data points are generated. Then, we

compare the histogram based LAD/TLAD estimation with the exact values by using the mean

absolute percentage error. It expresses the accuracy as a percentage and fits for the datasets

of different value scales. We run the process of data generation, histogram building and

LAD/TLAD estimation for several times to report average results in Table 4.3 and Table 4.4. We

Table 4.3 – LAD/TLAD estimation error w.r.t. the maximum number of bins in histograms (
two numbers in each cell respectively correspond to the mean absolute percentage errors of
LAD and TLAD. )

�����������Distribution
#Bins

200 400

Uniform ([0,100]) (0.0000410, 0.347) ( 0.0000411, 0.216)
Normal ( μ= 0, σ= 1 ) (0.571, 0.844) (0.450, 0.690)
Exponential( μ= 0.5) (0.243, 0.0753) (0.221, 0.0776)
Beta ( a = 0.5, b = 0.5) (0.0000316, 0.198) (0.0000309, 0.123)

Gama ( a = 3, b = 1) (0.118, 0.381) (0.0909, 0.184)
Lognormal (μ= 1, σ= 0.5) (0.138, 0.201) (0.0940, 0.135)

Chisquare ( v = 10) (0.243, 0.130) (0.196, 0.115)

observe that the error significantly decreases as the number of bins in histograms is increased.

For 800 number of bins, most of the errors are below 0.1. The use of a memory-bounded

data summarization in our framework naturally comes at a cost in accuracy. When the data

distribution is highly skewed, practitioners can apply alternative R-partial sum approximate

estimation based on the assumed distribution. This only changes the LAD/TLAD estimation

component while keeping the training framework intact.
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Table 4.4 – LAD/TLAD estimation error w.r.t. the maximum number of bins in histograms (
two numbers in each cell respectively correspond to the mean absolute percentage errors of
LAD and TLAD. )

�����������Distribution
#Bins

600 800

Uniform ([0,100]) (0.0000393, 0.122) (0.0000392, 0.029)
Normal ( μ= 0, σ= 1 ) (0.173, 0.403) (0.0712,0.213)
Exponential( μ= 0.5) (0.205,0.0761) (0.143, 0.0678)
Beta ( a = 0.5, b = 0.5) (0.0000315, 0.0721) (0.0000313, 0.0612)

Gama ( a = 3, b = 1) (0.0890, 0.114) ( 0.0772, 0.0983)
Lognormal (μ= 1, σ= 0.5) (0.0862, 0.101) (0.0723, 0.0975)

Chisquare ( v = 10) (0.138, 0.102) (0.078, 0.083)

4.6 Discussion

Our current version of DR2-Tree focuses on the robust regression with categorical features. It

can be smoothly extended to handle numeric or mixed features. For numeric features, besides

the histograms built on the target values in current DR2-Tree, we can integrate additional his-

tograms on the domains of numeric features [14, 101, 133] to form two-dimensional histogram

based data summarization, such that these histograms respectively provide split candidates

and error criterion estimation. Meanwhile, our data summarization has potential to support

alternative robust error criterion such as Huber loss in the future. Lastly, note that our robust

regression tree learner also supports binary (0-1) classification tasks by modeling them as

instances of logistic regression.

4.7 Conclusion

Due to the advance in data collection techniques, the availability of massive volumes of data

fuels the developments of many distributed machine learning algorithms. this information

cannot be practically analyzed on a single commodity computer because the data is too large

to fit in memory. On the other hand, such large datasets inevitably bear outliers, which could

dramatically deteriorate the performance of some data analytic approaches. To this end, In this

paper, we propose an efficient distributed robust regression tree for handling large and noisy

data. Our DR2-Tree employs a novel data summarization technique, which is able to support

both distributed information extraction and robust error criterion estimation for growing the

regression tree. Extensive experiments reveal that: (1) Our proposed DR2-Tree is robust to

datasets with various outlier percentages and magnitudes. (2) DR2-Tree exhibits comparable

accuracy as the conventional distributed regression tree for relatively clean datasets with rare

outliers. (3) DR2-Tree is much more efficient than exact robust regression and the dynamic
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histogram based regression tree [14, 133]. Such results verifies the broad applicability of our

DR2-Tree framework.

4.8 Appendixes

4.8.1 Proof of lemmas and theorems

Lemma 1. For a bin b = (l ,r,c, s) of a histogram and an integer R (R ≤ b.c), under the assump-

tion of the uniform distribution of values in the bin, R-Partial-Sum of bin b can be approximated

by Sp (b,R)� Ŝp (b,R) =
{

b.s : R = b.c

R ·b.l +R(R −1)δ : other wi se
, where δ= (b.s−b.r−b.c·b.l+b.l )

(b.c−2)(b.c−1) .

Proof. We assume that the values in a bin (e.g., b) are uniformly distributed in the value

range [b.l ,b.r ]. Then, since the sum of values in the bin is given by b.s, we can obtain the

sum of values between b.l and b.r is b.s −b.r −b.l . Meanwhile, the values in (b.l ,b.r ) can be

derived by adding incremental values over b.l . Therefore, the increments are considered as

an arithmetic series whose elements are the products of the sequence term (e.g., 1, . . . ,b.c −1)

and the unit increment value. The sum of such increments is (b.s −b.r −b.c ·b.l +b.l ). The

unit increment value is calculated as (b.s−b.r−b.c·b.l+b.l )
(b.c−2)(b.c−1)/2 , where (b.c−2)(b.c−1)/2 is the number

of unit increments derived by the sum of the arithmetic series. As a result, the R-partial sum is

approximated by the sum of the sequence of the first R increments plus the base value b.l , i.e.,

R ·b.l +R(R −1) · (b.s−b.r−b.c·b.l+b.l )
(b.c−2)(b.c−1) .

Lemma 2. Given a histogram H = {b1, . . . ,bβ}, the LAD/TLAD over the data summarized by

histogram H can be exactly computed by:

(1) Ll (H ) = ∑
bi>bm

bi .s− ∑
bi<bm

bi .s+bm .s−2Sp (bm ,R), where R = �C
2 � −

∑
bi<bm

bi .c, C = count (H )

is the total number of data instances covered in histogram H, and an bm is the 1
2 -quantile bin.

(2) Ll (H ,τ) = ∑
bm<bi<bq

bi .s − ∑
bq<bi<bm

bi .s +Sp (bq ,R1)−bq .s +Sp (bq ,R2)+bm .s −2Sp (bm ,R),

where bm, bq and bq are respectively the 1
2 , τ and (1−τ)-quantile bins, R = �C

2 � − ∑
bi<bm

bi .c,

R1 =C ·τ− ∑
bi<bq

bi .c, R2 =C · (1−τ)− ∑
bi<q

bi .c.

Proof. Assume that the target values of data instances summarized by histogram H are given

as a sorted list yi and C = count(H) is even. The median is m = yC /2+yC /2+1

2 . The exact LAD

over {yi } is computed as:
C∑

i=1
|yi −m| =

C /2∑
i=1

(m − yi )+
C∑

i=C /2+1
(yi −m) =

C /2∑
i=1

(−yi )+
C∑

i=C /2+1
yi . If

{yi } are grouped according to the bins in histogram H , we can obtain
C /2∑
i=1

(−yi )+
C∑

i=C /2+1
yi =
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j=bm−1∑
j=b1

∑
yi∈ j

(−yi )

︸ ︷︷ ︸
(a)

+
j=bβ∑

j=bm+1

∑
yi∈ j

yi︸ ︷︷ ︸
(b)

+ ∑
yi∈bm and i≤R

(−yi )

︸ ︷︷ ︸
(c)

+ ∑
yi∈bm and i>R

yi︸ ︷︷ ︸
(d)

. Item (a) and (b) in above formula can be exactly calculated by the sum

element in the corresponding bin of the histogram. Item (c) and (d) can be computed through

the R-partial-sum of the 0.5-quantile bin, namely, −Sp (bm ,R) and bm .s −Sp (bm ,R). Above

derivation also applies to the case that C is odd. The lemma is proved.

Likewise, as for TLAD assume that the target values of data instances summarized by histogram

H are given as a sorted list {yi } and C = count(H) is even. The exact Trimmed-LAD for k

trimmed dataset (k = τC ) is expressed as
C /2∑

i=k+1
(−yi )+

C−k∑
i=C /2+1

yi . By grouping the individual

values into the corresponding bins in the histogram, we can obtain
C /2∑

i=k+1
(−yi )+

C−k∑
i=C /2+1

yi =
∑

yi∈bq and i>R1

(−yi )

︸ ︷︷ ︸
(a)

+
j=bm−1∑
j=bq+1

∑
yi∈ j

(−yi )

︸ ︷︷ ︸
(b)

+
j=bq−1∑
j=bm+1

∑
yi∈ j

yi︸ ︷︷ ︸
(c)

+ ∑
yi∈bm and i≤R

(−yi )

︸ ︷︷ ︸
(d)

+ ∑
yi∈bm and i>R

(yi )

︸ ︷︷ ︸
(e)

+

∑
yi∈bq and i≤R2

(yi )

︸ ︷︷ ︸
( f )

. Then, item (a), (d), (e) and ( f ) can be respectively derived by R-partial sums

of the corresponding bins and (b) and (c) can be exactly calculated in the histogram.

Theorem 1. Given a bin b = (l ,r,c, s) of a histogram and R (R ≤ b.c), if R = 1 or R = b.c, Ŝp (b,R)

provided in Lemma 4.4.1 is the exact R-Partial-Sum. Otherwise, the approximation error of

R-Partial-Sum of bin b, Sp (b,R)−Ŝp (b,R) is bounded within [(R−b.c)·(b.r −b.l ),b.s−b.c ·b.l ].

Proof. We first derive the bounds of the exact R-partial sum and the approximate one. Based

on Lemma 4.4.1, when R = b.c , the approximate partial sum is equal to the exact value. For the

case of R < b.c, Ŝp (b,R) = R ·b.l +R(R −1)δ, where δ= (b.s−b.r−b.c·b.l+b.l )
(b.c−2)(b.c−1) . Therefore, we can

derive that R ·b.l ≤ Ŝp (b,R) ≤ R ·b.l +b.s−b.c ·b.l . For the exact value Sp (b,R), we have the first

bound below: b.s −Sp (b,R) ≤ (b.c −R) ·b.r . It holds because the sum of the remaining values,

i.e. b.s −Sp (b,R) is maximized when all the remaining values locate on the right boundary of

the bin b.r . As a result, we can obtain b.s − (b.c −R) ·b.r ≤ Sp (b,R). Similarly, the upper bound

is derived by Sp (b,R) ≤ b.s − (b.c −R) ·b.l . Now, merging the bounds of Ŝp (b,R) and Sp (b,R)

leads to the theorem.
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5 Robust Online Time Series Prediction
with Recurrent Neural Networks

Have we vanquished an enemy? None but ourselves.

—George Mallory

5.1 Introduction

Time series forecasting [10, 25, 94] is an important task in machine learning with a variety

of applications, such as cyber-network traffic prediction, web user access estimation, and

pedestrian flow prediction. Forecasting a time series is useful in e.g. reliability monitoring,

predictive maintenance and intrusion detection, and can effectively improve availability,

security, and the overall service experience. On the other hand, with the rapid growth of

various tracking and monitoring technologies, time series data in many real-world systems

arrives in a streaming fashion. Online learning methods are expected to extract the underlying

patterns from the observed time series for real-time learning and prediction.
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Due to its practical importance and technical challenges, some online forecasting methods

have been investigated in the literature, including linear methods [8, 85], ensemble methods

[93], kernel based methods [109], and Gaussian processes [144]. Recurrent neural networks

(RNNs), a class of deep learning methods particularly designed to model sequential data,

currently receive increasing attention due to the capacity on learning insightful representations

of sequences [51, 77, 129], and have been successfully applied to time series forecasting [20, 92,

142]. However in real-world applications, the time series is usually contaminated by anomalies

or outliers that are abrupt observations deviating from the behaviour of the majority. A

typical example might be cyber-attacks, which are often shown as anomalies in time series

monitoring some measurements of network traffic. In addition, the underlying patterns of

time series generally keep changing over time. For example, a newly released online service

or functionality of a website can change the probabilistic distribution of time series of user

access traffic in terms of mean, variance, correlation and period. With these challenges, the

learning methods are expected to capture the true pattern and trend of time series, namely

being robust against outliers, and enabling to quickly fit new patterns with potential change

points.

In this paper, we present an adaptive gradient learning method for long short-term memory

(LSTM) recurrent networks [50, 51, 60], to make the streaming time series forecasting robust to

outliers and change points. We model time series with LSTM networks, and use a stochastic

gradient descent (SGD) based method to learn the model from the streaming time series. As

novel observations arrive, the model parameters are updated in an online mode according to

the gradients of the loss of the newly available data. With the standard SGD method, outlier

observations will make the updated model deviate from the normal patterns and produce

oscillated incorrect predictions until the adverse effect is gradually corrected by the following

normal observations. To solve the problem, we explore the local features of time series to

weight the gradients of the learning method with distributional properties of the local data.

In particular, if a newly available observation is a potential outlier behaving differently from

the regular patterns, the corresponding gradient will be downweighted, so as to avoid leading

the online model to abruptly drift from the underlying normal patterns. Notice that the newly

observed unusual point can also be a change point. Although it behaves differently from

the majority like an anomaly, it indicates emerging patterns of time series required to learn

quickly. In this case, the corresponding gradient will be retained by a high weight and lead

the model to fit the new data in real time. Technically we introduce a weight function based

on distributional characteristics of the local data to adapt the gradients of the online SGD to

the complicated streaming time series automatically. The weight function is composed of two

components: suspicion ratio and difference value drift formulating the statistical properties of

the local data, which make the learning procedure robust to outliers and change points. The

experimental analysis on synthetic and real datasets demonstrates the performance of the

proposed learning method for streaming time series forecasting in the presence of anomalies
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and change points.

The rest of the paper is organized as follows. Section 5.2 presents related work, while Section 5.3

defines the problem to be solved and introduces the notations. In Section 5.4, we present the

proposed robust online learning method for RNN. Section 5.5 demonstrates the performance

of our method on synthetic and real datasets. Finally, the paper is concluded in Section 5.6.

5.2 Related Work

5.2.1 Modeling Time Series in the Presence of Outliers and Change Points

Many of the existing machine learning models for time series analysis focus exclusively on

either change point or outlier detection. Our paper aims to provide a recurrent neural network

based approach to handle both change points and outliers simultaneously for online learning

of time series.

[6] introduced the Bayesian change point detection framework and [113] extended it by

using the Gaussian process as the underlying predictive model. In [23] a Gaussian process

based nonparametric time series prediction model was proposed specifically for periodic time

series. [87] detected changes by utilizing relatively density ratio estimation in a batch mode,

i.e., they require the entire time series to be present. [146] employed an online discounting

learning algorithm to incrementally learn mixture and regression models. [76,134] put forward

scalable anomaly/outlier detection frameworks integrating various predictive models. [47]

and [58] provided detailed surveys on change and outlier detection.

Another line of research is to build robust models over noisy and non-stationary time series.

[48] proposed a new sequential algorithm for making robust predictions based on Gaussian

Process in the presence of change points. [9] extended traditional autoregressive moving

average (ARMA) models to the case that less strict assumptions are on the noise term for

the purpose of online time-series modeling. [110] developed time-dependent loss function

to include the information about the distribution change in time series directly in the SVM

learning process.

5.2.2 Recurrent Neural Networks for Time Series Analysis

Recurrent neural networks have recently shown promising results in a variety of applications,

especially when there exist sequential dependencies in data [31, 89, 130]. [33] proposed a

robust learning algorithm for recurrent neural networks on time series. This algorithm is based

on filtering outliers from the data first and then training the neural network on the filtered data.

Such a filtering-then-learning scheme focuses on dealing with outliers and is not suitable for

105



Chapter 5. Robust Online Time Series Prediction with Recurrent Neural Networks

online training and prediction.

Long short-term memory (LSTM) [60, 89, 141], a class of recurrent neural networks with

sophisticated recurrent hidden and gated units, are particularly successful and popular due to

its ability to learn hidden long-term sequential dependencies and to allow online training of

sequence data of indefinite duration. Some recent work [26, 84, 91] explored the performance

of LSTM in time series modeling. [84] used LSTMs to recognize patterns in multivariate time

series, especially multi-label classification of diagnoses. [26, 91] evaluated the ability of LSTMs

to detect anomalies in ECG time series. In this paper we present an LSTM online learning

method for time series forecasting in presence of both outliers and change points.

5.3 Problem Formulation

In this section, we discuss the properties and challenges of time series containing outliers and

change points, and formulate the problem to be resolved.

Time series, a sequence of data points consisting of successive measurements made over time,

often arises when monitoring dynamic processes in a variety of applications, e.g., Internet

of Things, sensor networks, and mobile computing. We denote a univariate time series by

{x1, . . . , xT }, where the subscript represents the time instant and each data point xt is a real

value. In this paper, we focus on univariate time series. The proposed method can be naturally

generalized to multivariate time series as well.

Since many time series are generated from observations and measurements of physical entities

and events, the data is inevitably anomaly-contaminated and non-stationary in the sense that

it contains both outliers and change points. An outlier in time series is a data point, which is

significantly different from the behaviour of the majority of the time-series. A change point

indicates that the behaviour and hidden data distribution of the time-series are significantly

different before and after this point. For instance, a time series might undergo a sudden shift

in its mean at a certain time. The major difference between change points and outliers is that

change points correspond to more sustained, long-term changes in time series compared to

volatile and abrupt outliers. The presence of outliers and change points can adversely affect

the time series analysis and complicate the learning process [47, 58, 76, 134].

In many cases, time series are continuously observed, and often need to be analyzed in real

time. The online learning methods are thus required, which learn and update models incre-

mentally as new data arrives, in order to better capture the timely trend and the underlying

patterns in the time series [9, 47, 63].

In this paper we focus on online time series prediction in the presence of both change points

and outliers. The work aims to incrementally learn the time series and provide robust predic-
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tions in real time. Given the observed time series of length t −1, the predicted new data point

x̂t at the next time t can be computed as:

x̂t = g (xt−1, xt−2, . . . , x1;θ∗t−1) (5.1)

g (·) is a continuous function which captures the dynamic patterns of the time series. In this

paper g (·) is modeled according to the recurrent neural network that can approximate any

function with sufficient hidden layers and nonlinear units to arbitrary precision. θ∗t−1 denotes

the parameters of the recurrent network learned with the t −1 sequential observations.

As the new data point xt arrives, we update the model by minimizing the loss function, e.g.,

the squared error:

θ∗t = argmax
θt

(xt − g (xt−1, xt−2, . . . , x1;θt ))2 (5.2)

Recursivly, the new parameters θ∗t will be used to predict the next data x̂t+1. The online

learning process is to continuously minimize the loss function over the newly available data.

We notice that, in the learning process, an outlier at time t can lead the model to deviate

from the normal patterns. Given the current model θ∗t−1, the loss of the outlier will be high.

For reducing the loss (5.2), θ∗t will deviate from the normal ones to best fit the outlier, and

produces oscillated predictions untile the adverse effect of the outlier is gradually corrected by

the following observations [33, 58, 146]. On the other hand, since a change point often leads

to a shift in data distribution and makes the current model unfit to the new data, high loss is

also expected [48, 76]. In this case, the high loss will take positive effect and lead the model to

quickly fit to the new patterns.

To meet these challenges, the online learning method is supposed to react to outliers and

change points differently. On the first hand, the online learning model should be robust to

outliers by mitigating the model deviation caused by outliers. On the other hand, it should be

able to promptly adapt to the new changed data by updating the model using the latest data,

so as to provide timely and precise predictions.

5.4 Weighted Gradient Online Learning for LSTM Neural Networks

In this section, we present the proposed online learning method for Long Short Term Memory

(LSTM) neural networks, a widely used variant of Recurrent Neural Networks (RNN). The

method is capable of performing robust predictions over time series in the presence of both

outliers and change points.
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Table 5.1 – Notations

Symbols Meaning
xt the data point at time t of the time series
x̂t the predicted value of xt by the neural network
pt p-value of xt

α significance level
w the size of the sliding window for feature extraction
ht the output of a LSTM layer at time t
ot the output gate of a LSTM layer at time t
ct the memory unit of a LSTM layer at time t

f j
t the forget gate of a LSTM neuron j at time t

i j
t the input gate of a LSTM neuron j at time t

Wt
the set of parameters of all layers in the

neural network at time t
βt gradient weight for updating the model at time t
dt difference value drift
st suspicious ratio

5.4.1 Online learning of time series

In the online process at each time instant, e.g. t , a desirable model should be able to auto-

matically retain useful past information in {x1, . . . , xt−1}, discover dependences for making

prediction x̂t and then update itself using xt . Recurrent neural networks (RNNs) are rising as a

powerful tool to model sequence data [51, 63]. They are suitable for dealing with sequential

problems due to the internal hidden states and short term memory realized by recurrent

feedback connections.

Among the variants of RNNs, it is well established that the Long Short-Term Memory (LSTM)

based networks work well on sequence-based tasks with long-term dependencies [60, 63]

by using specialized gates and memory cells in the neuron structure. The LSTM achieves

state-of-the-art results for problems spanning natural language processing, image captioning,

handwriting recognition, and genomic analysis [63, 84, 86, 130].

We present the formal definition of a neuron of a LSTM layer as follows [31, 60]. Each j -th

neuron in the LSTM layer maintains a memory c j
t at time t . The output h j

t or the activation of

this neuron is then expressed as:

h j
t = o j

t t anh(c j
t ) (5.3)

where o j
t is an output gate that modulates the amount of memory content exposure. The
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output gate is calculated by

o j
t =σ(Wo xt +Uoht−1 +Voct ) j (5.4)

where σ is a logistic sigmoid function. ht−1 and ct are respectively the vectorization of h j
t−1

and c j
t , i.e. ht−1 = {h j

t−1} and ct = {c j
t }. Vo is a diagonal matrix. Then, the memory cell c j

t is

updated through partially forgetting the existing memory and adding a new memory content

c̃ j
t :

c j
t = f j

t c j
t−1 + i j

t c̃ j
t (5.5)

where the new memory content at time t is expressed as:

c̃ j
t = t anh(Wc xt +Uc ht−1) j (5.6)

The extent to which the existing memory (i.e., at time t −1) is forgotten is modulated by a

forget gate f j
t , and the degree to which the new memory content (i.e., at time t) is added to

the memory cell is modulated by an input gate i j
t . Then, such gates are computed by

f j
t =σ(Wf xt +U f ht−1 +Vf ct−1) j (5.7)

i j
t =σ(Wi xt +Ui ht−1 +Vi ct−1) j (5.8)

Note that Vf and Vi are diagonal matrices.

Unlike the traditional recurrent neuron which overwrites its content at each time instant [31,

89], a LSTM neuron is able to decide whether to keep the existing memory via the introduced

gates. Intuitively, if it detects an important feature from an input sequence at early stage,

it easily carries this information (the existence of the feature) over a long period, thereby

capturing the hidden long-term dependencies [60, 89].

In our model for online learning of time series, a dense layer is built to connect the LSTM layer

so as to map the outputs of LSTM neurons to the target prediction. Denote by Wd and bd the

weights and biases of the dense layer. The output of the neural network is formulated as:

y = g (Wd ht +bd ) (5.9)

where g (·) is the activation function of the dense layer, e.g., t anh, si g moi d , l i near , etc. ht is

the vector of the outputs of LSTM neurons, i.e., ht = {h j
t }. Online learning of a neural network is

to continuously update the set of parameters in each layer, i.e., Wt = 〈Wo ,Uo ,Vo ,Wc ,Uc ,Wf ,U f ,

Wi ,Ui ,Wd ,bd 〉 at each time instant to minimize a loss function. Then, the prediction at time t
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of the time series by the LSTM neural network can be expressed as:

x̂t = g (xt−1, . . . , x1;Wt−1) (5.10)

LSTM neural network employs gradient decent based iterative approaches to update the

network parameters at each time instant [60, 89, 141]. The general update process can be

expressed as:

Wt =Wt−1 −η�Et (Wt−1) (5.11)

where Wt and Wt−1 represent the set of parameters W at different time instants. η is the

learning rate, Et (Wt−1) is the loss function, i.e. squared-error function, and �Et (Wt−1) is

the gradient of the loss function at Wt−1. There are many variants of gradient descent based

methods for updating the network [70, 120, 153],

Since online learning aims to continuously update the model using new arrived data, the loss

function is specified as the squared-error of one training instance without accumulating the

errors [63, 141]:

Et (Wt−1) = e2
t = (xt − x̂t )2 (5.12)

Our proposed framework below could be extended to situations where data comes on mini-

batches of data points as well.

Then, the gradient is derived as:

�Et (Wt−1) =−2(xt − x̂t )� g (xt−1, . . . , x1;Wt−1) (5.13)

where the detailed derivation of �g (xt−1, . . . , x1;Wt−1) is referred to [60, 141]. Such a gradient

descent scheme to incrementally update parameters enables the LSTM neural network to

naturally evolve with time series in the error-driven way and to adapt to changing time series

without explicit detection of change points [47].

5.4.2 Effect of Outliers and Change Points on LSTM neural networks

In this part, we first define two basic concepts. Based on statistical time series modeling

theory [10, 26, 33, 140], the set of errors {et } can be fitted to a parametric distribution, referred

to as the error reference distribution and maintained online by moving average style methods

[13, 23, 140]. During our experiments, we observe that it is reasonable to fit the errors to a

Gaussian distribution, though alternative distributions can be chosen based on applications.

The associated mean and variance are respectively denoted by μt and vt .
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Definition 5.4.1 (p-value). The p-value of data point xt , denoted by pt , is defined as the prob-

ability of obtaining a value less or equal to et under the error reference distribution N (μt , vt ),

where et = xt − x̂t . Formally, pt =Φ( et−μt�
vt

), where Φ(·) is the cumulative distribution function

of the standard normal distribution.

For the predictive model based time series analysis [23, 26, 33, 58], p-value is a fundamental

indicator for outliers or changes. Then, we further define:

Definition 5.4.2 (Suspicious and Normal Points). In the online learning process of LSTM neural

network over time series, if the p-value of a data point, e.g., xt , is lower than α or higher than

1−α ( α ∈ (0,1) ), xt is a suspicious data point indicating that it could be an outlier or a change

point. Otherwise, we call xt as a normal point. α is the confidence level.

Straightforward solutions help little:

Given the neural network learnt over time series, outliers could lead to dramatical large

prediction errors. Consequently using such outliers to update the neural network could drag

away the gradient from the previous direction and derail the so-far trained neural network,

thereby incurring unreliable prediction [33].

For instance, we use an example experiment to illustrate the effect of outliers on the LSTM

neural network. We perform the conventional online learning of LSTM neural network [141] on

a real time series from Yahoo S5 dataset1. We adopt the interleaved test-then-train framework

[47], which means that at each time instant a prediction for the next data point is performed

using the current neural network and then the network is updated when the next data point

arrives. The experiment is run at the learning rate (0.005), which achieves the least prediction

error (i.e., RMSE). For the details of the experiment setup, refer to Section 5.5.

We can observe in Figure 5.1(b) that outliers incur oscillated prediction around them. One

possible solution might be to skip the neural network update [33] when a new coming data

point is considered as a suspicious point by Definition 5.4.2. However, such an approach

would not necessarily help for the reasons below.

Recall that we focus on modeling time series with both outliers and change points. Both an

outlier and a change point could lead to the identification of suspicious points. For instance,

Figure 5.2 shows the p-values at each time instant during the learning process of LSTM neural

network in the experiment as Figure 5.1. It is observed that outliers, change points and some

regular points are flagged as suspicious points. It is difficult to distinguish them from each

other in such a noisy and non-stationary environment [13, 47].

1 https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
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Figure 5.1 – Effect of outliers on the LSTM neural network. (a) the original time series (b)
online prediction results. (best viewed in colour)

Figure 5.2 – The observed time series (top) and p-values of data points in the time series
modeled by conventional online learning of LSTM neural network (bottom) (best viewed in
colour). The vertical dotted line in the top figure indicates the possible change point. Red
points in the bottom figure represent the time instants identified as suspicious points.
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Meanwhile, when a real change point is misclassified as an outlier and removed from the

neural network update, the data points immediately following the change point would then

likely be regarded as outliers as well, since they follow the new distribution after the change

point [13, 17]. Simply skipping such data points results in important information being lost to

the LSTM updating. It could delay the learning towards the new data distribution after the

change point and significantly degrade the performance of LSTM neural network afterwards.

Integrating change point detection into LSTM will hardly help as well. Most of change point

detection techniques are the instances of the following framework: at time instant t statistical

tests [13, 17, 47, 87] are performed over two data subsets, the intermediate past data points

{xi }i=t−m1,...,t−1 and the intermediate future data points {xk }k=t+1,...,t+m2 to measure the dis-

similarity, so as to determine whether t is a change point. Therefore, it requires to accumulate

data to locate a change point in the history. In this paper, we consider the setting where the

learning process of LSTM neural network is supposed to response to individual data points

online, so as to adapt to data changes promptly and provide timely prediction.

5.4.3 Weighted Gradient Online learning of LSTM for time series

In this part, we present a novel online learning algorithm for LSTM neural network to be

capable of making robust prediction over time series in the presence of both outliers and

change points.

Overview: We propose the weighted gradient online learning algorithm, referred to as WG-

Learning. The key idea is to leverage local features, which are extracted from a sliding window

over time series, to dynamically weight the gradient, i.e. Eq. (5.13), at each time instant for

updating the current neural network. Intuitively, if a suspicious point is highly possible to

be an outlier based on local features, the corresponding gradient is down-weighted, so as

to avoid deviating the so-far trained LSTM neural network from the current underlying data

distribution. Otherwise, if it is believed to be a change point, the associated gradient is retained

by a high weight, such that the LSTM model can quickly adapt to the new data.

A common characteristic of time series analysis is that temporal continuity plays a key role

[76, 110, 134, 140]. In this sense, time forms the contextual variable with respect to which all

analysis is performed. Therefore, our WG-Learning maintains a sliding window over the time

series and associated p-values for the data points in the sliding window.

As is shown in Figure 5.3 which outlines the work-flow of our WG-Learning, if the data point at

the current time instant is a suspicious point based on Definition 5.4.2, two features presented

below are extracted from the sliding window and took into account to weight the gradient used

in updating the LSTM neural network at this time instant. For instance, at time t , the local fea-
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Figure 5.3 – Work-flow of WG-Learning based LSTM neural network in online learning of time
series

tures w.r.t. data point xt are discovered in {xt−w , xt−w+1, . . . , xt−1} and {pt−w , pt−w+1, . . . , pt−1}.

w is the length of the sliding window (for the extension of adaptive windows, please refer to

Section 5.4.4).

Then, in WG-Learning formally the neural network is updated by the following formula:

Wt =Wt−1 −η · {βt �E(Wt−1)} (5.14)

where βt is the time-varying gradient weight based on the features extracted from data, which

will be defined below. Previous adaptive learning rate approaches [120, 153] fail to take

into account the data characteristics in updating parameters of the neural network. Before

presenting the details, we first summarize the benefits of our approach for learning noisy and

non-stationary time series as follows:

• Reduced impact of outliers as a sudden increase of the prediction error - our WG-

Learning provides reliable and smooth prediction robust to outliers as well as avoiding

volatile huge prediction errors.

• Adaptability to changing data - the dynamic gradient weighting mechanism in WG-

Learning enables to retain useful information in updating the neural network for con-

verging to changed data.

• Reduction of the overall prediction errors.

Next, we will first present the features and then how to leverage them to weight the gradient.

Suspicion Ratio.

The suspicion ratio is formulated based on the following observation: outliers are rare events

in time series [58, 140, 146] and would lead to the limited appearance of suspicious points

in the sliding window; however, when change point happens, the neural network needs to
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consume some data after the change point for adapting to the new hidden distribution and

therefore may yield high proportion of suspicious points in the beginning. Therefore, the ratio

of suspicious points in the sliding window can be a factor in weighting the gradient.

Now we give the formal definition. In the sliding window w.r.t. time t , {xt−w , xt−w+1, . . . , xt−1},

the suspicion ratio is defined as:

st =

t−w∑
i=t−1

�{pi>1−α or pi<α}

w
(5.15)

where �{·} is the indicator function.

Suspicion ratio is positively correlated with the gradient weight. On the first hand, the less the

suspicion ratio in the sliding window, the more likely the suspicious point xt is to be an outlier.

Even if it is a change point in reality, the subsequent data points after this change point are

highly possible to be suspicious points and thus lead to increased gradient weight in updating

the model. It will not significantly delay the convergence of our neural network on changed

data.

On the other hand, when the suspicion ratio is high, i.e., the suspicious points appear fre-

quently in the sliding window, further investigation is required. This is because it is possible

that some outliers just occur in the sliding window or such suspicious points are due to a

real change point. In such a case, additional features should be considered for weighting the

gradient weight.

Difference Value Drift.

In this part, we introduce the second feature, difference value drift. This novel feature helps to

“amplify” the difference between outliers and change points from the perspective of the value

domain of time series, thereby providing enhanced information to adjust the gradient weight.

First, we extract the normal and suspicious points from the sliding window at time t , i.e,

{xt−w , . . . , xt−1} and respectively denote them by a set Nt = {xk |k ∈ {t −w, . . . , t −1},α≤ pk ≤
1−α} and a set St = {xk |k ∈ {t −w, . . . , t −1}, pk > 1−α or pk <α}. |Nt | and |St | represent the

numbers of data points in the sets.

Then, we define the neighbours of a normal point in the sliding window as:

Definition 5.4.3 (Neighbours of a Normal Point). The left and right neighbours of a normal

point xi are the most recent two normal data points before and after xi in the sliding window:

fl (xi ) = xmax{k:k<i ,xk∈Nt } and fr (xi ) = xmin{k:k>i ,xk∈Nt }.

Now we are ready to introduce the proposed difference value, which is novel in the sense that
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it is derived by a bi-directional differencing process and has two forms respectively specific for

normal and suspicious points as follows:

• For a suspicious point (e.g., xk ) in the sliding window, the difference value is the average

of absolute changes between xt and its intermediate preceding and succeeding data

points, i.e. xk−1 and xk+1, no matter whether they are normal points or not. (if any of the

two points are out of the sliding window, only one-side change is taken as the difference

value).

• For a normal points (e.g., xi ) in the sliding window, the difference value is evaluated

as the average difference between xi and its two neighbours, which are defined in

Definition 5.4.3, such that it captures the normal pattern of time series without the effect

of potential outliers and change points.

The motivation behind the difference value is as follows. Differencing is an important tool

in time series analysis [140], which helps to stabilize the mean of a time series by removing

changes in the level of a time series. On the first hand, outliers are often abrupt and violate

changes w.r.t. the intermediate preceding and succeeding normal points, thereby yielding

high difference values [58, 110]. Even if outliers occur consecutively, their difference values

could present abnormal fluctuating patterns compared with the normal data points. On the

other hand, for the suspicious points resulting from a change point, they are under the new

data distribution and expected to adhere to the property of normal time series as well, i.e.,

having reasonable magnitudes in difference values.

Based on above analysis, we give the formal definition of the difference value drift. At time

instant t , difference value drift dt between suspicious and normal points in the sliding window

is defined as:

(xt −xt−1)+ ∑
xk∈St

(|xk −xk−1|+ |xk −xk+1|)∑
xi∈Nt

(|xi − fl (xi )|+ |xi − fr (xi )|)
|Nt |

|St |+1
(5.16)

This is a relative metric to evaluate the discrepancy between the average difference values of

normal and suspicious points in the sliding window. The higher the value of the difference

value drift, the more probable the suspicious points are to be outliers.

The proposed two features above are complementary by providing different views to weight

the gradient in updating the neural network. Now we can define the gradient weight βt in
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(5.14) integrating the suspicion ratio and the difference value shift as:

βt =λ ·e−dt�{dt ≥γ} + (1−λ) · st (5.17)

where λ ∈ [0,1] is the parameter to control the importance of the two features in the weight.

The term e−dt�{dt ≥γ} models the difference value drift in a bounded range [0,1]. Parameter γ

represents the prior belief about the normal difference value drift. e−dt�{dt ≥γ} gives full weight,

i.e., 1 when dt is below γ. Otherwise, the more the value of dt , the more probable it is that

outliers occur and thus the decreasing weight is given to the gradient, as dt increases.

As for online prediction, a particular feature of time series modeling is that a target data point

at a certain time instant will become the predictor of future data points. For instance, at time t ,

predictors (xt−1, xt−2, . . . , x1) are used to make prediction on t and update the model together

with xt . Then, xt will be used to predict values on time t +1, . . . and so on. The problem with

such a procedure is that if xt is an outlier and thus flagged as a suspicious point, the prediction

based on xt is biased, though the model is maintained properly in WG-Learning.

Therefore, we propose to use the forecasting from the learnt neural network to replace sus-

picious points for the subsequent prediction based on the idea of sequence modeling with

RNN [52]. Formally, the prediction process is now expressed as:

x̂t = g (x̃t−1, x̃t−2, . . . , x̃1;Wt−1) (5.18)

where ∀k ∈ {1, . . . , t −1},

x̃k =
{

x̂k as (5.10) xk is a suspicous point

xk otherwise

5.4.4 Discussion

Our proposed WG-Learning can be extended to perform outlier and change point detection

with ease. Since our WG-Learning is able to provide robust prediction, we can integrate

additional sub-windows into the sliding window to model the error distributions of normal

behaviours in time series [13]. Then, the statistics extracted from sub-windows is leveraged to

perform various statistical test [13, 17, 47] to locate the occurrences of change points. For the

suspicious points not identified as change points, they are reported as outliers.

As for the size of the sliding window, we can adapt time-varying windowing techniques [17, 47]

to our WG-Learning, so as to dynamically adjust the window size sufficient for summarizing

the error distribution of the current neural network.
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5.5 Experimental Analysis

In this section, we conduct extensive experiments to demonstrate the prediction performance

of the proposed method WG-Learning.

5.5.1 Experiment Setup

Datasets: we use both synthetic and real datasets for the evaluation.

Synthetic: this synthetic dataset is produced based on a time series generator [6]. It generates

segments of time series by randomly sampling the mean μi , variance vi , trend slop ui and

length li specific for each segment i from the prior, μi ∈ [0,100], vi ∈ [10,30], ui ∈ [−0.5,0.5]

and length li ∈ [500,1000]. The data points in each segment are then the samples from the

Gaussian distribution with the corresponding mean and variance plus the trend component.

The number of points in each segment is the sampled length. In this way, we obtain time series

with change points, which are the boundaries between segments. Outliers are injected into

each segment based on a Bernoulli distribution specified by β and thus li ·β is the expected

number of outliers in the segment of time series. β is chosen as 0.01. The magnitude of outliers

is defined as the times of the variance of the segment. By default, the magnitude is 10, which

means that the value of an outlier data point is sampled from a Gaussian distribution with 10

times larger mean than the mean of the corresponding segment.

YSyn: the synthetic time series is from Yahoo’s S5 dataset2. The dataset consists of both real and

synthetic time-series. We use the time series in A4Benchmark containing synthetic outliers

and change-points. The synthetic time-series have varying noise and trends with pre-specified

seasonalities.

YReal: the real time series is from the A1Benchmark data in Yahoo’s S5 dataset. The time series

representing the metrics of various Yahoo services contains both outliers and change points.

Baselines: We compare the proposed method with three baselines.

RLSTM: this refers to the conventional real-time current learning (RTRL) of LSTM neural net-

works [141]. It updates the network directly using the newly available data without considering

the effect of outliers and change points.

SR-LSTM: it stands for the online learning of LSTM with suspicious point removal based on

the idea of [33]. Specifically, once a suspicious point is detected, SR-LSTM skips the model

update on this point. This method may circumvent the adverse effect of outliers, but could

lead to loss of useful information for changing patterns.

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
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(a) Synthetic dataset (b) YSyn dataset (c) YReal dataset

Figure 5.4 – Online one-step ahead prediction (best viewed in colour). The figures in each
column respectively visualize the observed time series, and the predicted ones with the
baselines and the WG-Learning. The proposed method provides a smooth prediction resistant
to outliers and change points.
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ELSTM: this baseline is based on [23] to integrate both outlier and change point detection

into LSTM. It uses the statistical control chart (e.g., EWMA) [13, 23] to monitor the distribution

of prediction errors. Based on the monitored statistics, for a suspicious outlier, the model is

updated by using a recent normal point, while it is trained as usual when the point is identified

as a change point.

SR-LSTM and ELSTM have the confidence level parameter in common with WG-Learning,

and they are all set to 0.05 as usual in typical statistical tests [13, 76]. Additionally, ELSTM has a

parameter, the moving average weight with the usual recommendation range [0.1,0.3] [13]. In

the experiments below, we set it to 0.2. The size of sliding window in WG-Learning is set as 20.

λ and γ are respectively set to 0.8 and 5

We use the same LSTM model for the baselines and the proposed method in the experiments.

In particular, the number of layers is 3, and the number of nodes (neurons in LSTM layer) is

400. The mean squared error is chosen as the loss function. The L2 regularization with 0.0001

penalty is used. Nesterov momentum is adopted as the optimizer. Our WG-Learning and

baselines are implemented based on Theano3.

Evaluation Metric: We evaluate the predictive performance of WG-Learning and baselines

in terms of root mean square error (RMSE) excluding the outliers. Lower values of RMSE

are considered better. At each time instant, we perform one-step ahead prediction using the

online model and then update the model when the new data point arrives.

5.5.2 Experiment Results

Table 5.2 shows the prediction results on each dataset. WG-Learning outperforms the baselines

in all datasets by tracking the variation of time series and resisting to outliers. We observe

that for the datasets with large outliers e.g., YReal, WG-Learning significantly outperforms

RLSTM. For the datasets (Synthetic and YSyn) having medium outliers, WG-Learning still

achieves better results. SR-LSTM and ELSTM occasionally get better than RLSTM depending

on datasets. For the very dynamic dataset, e.g., YSyn and YReal, SR-LSTM has higher errors

than RLSTM, this could be because the aggressive update skipping mechanism of SR-LSTM

leads to missing useful information.

Figure 5.4 visualizes the predictive performance of the online model for the time period with

complex outliers and change points in each dataset. The top plots of Figure 5.4 visualize the

observed time series of the datasets Synthetic, YSyn and YReal. The red points represent the

outliers and the vertical dotted lines indicate change points. YReal has no explicit change

points and thus no vertical line is shown in the corresponding figure. The other plots of

3http://deeplearning.net/software/theano/
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Table 5.2 – Prediction accuracy on synthetic and real datasets (RMSE).

����������approach
dataset

Synthetic YSyn YReal

RLSTM 11.01 562.56 10104.24
SR-LSTM 10.03 669.63 13816.99

ELSTM 10.31 660.02 13789.21
WG-Learning 9.62 502.79 8928.92

Figure 5.4 show the predicted time series using the three baselines and WG-Learning.

Figure 5.5 – Gradient weights of WG-Learning on each dataset(best viewed in colour): the
observed time series (top) and the corresponding weights (bottom).

From Figure 5.4, we can observe that in dataset Synthetic, our WG-Learning is able to catch the

details of time series as well as promptly adapting to the data after change points. Meanwhile,

WG-Learning can circumvent the adverse effect of outliers by sticking to the underlying

patterns of the time series. It indicates that the weighted gradients of WG-Learning are

indeed effective. On the contrary, RLSTM suffers from the outliers by presenting predictions

having oscillations around outliers as is shown in the second row of Figure 5.4. Compared

with WG-Learning, the prediction of SR-LSTM and ELSTM resembles a sliding average and
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may loss details of the time series, though they present robust prediction compared with

RLSTM. Meanwhile, SR-LSTM and ELSTM are lagged on change points. In ELSTM, a change

point is detected when the data points following it incur sufficient change in prediction

errors [13, 17, 47]. This means in the online learning, there is a delay in change point detection,

and thus ELSTM may miss the update of changing data points. With similar tendency, our

WG-Learning provides consistent robustness and adaptiveness on datasets YSyn and YReal.

In addition, we investigate the weighted gradients of WG-Learning. We record the gradient

weight at each data point (i.e., βt in Eq. (5.14)) during the online learning process and visualize

them associated with the observed time series in Figure 5.5. We can observe that: most of the

gradient weights are close to one at the regular points, and in turn the model can be normally

updated in an online fashion. However gradient weights are much less than one at the detected

outliers, which avoid deviating the model from the underlying patterns of the time series. On

the other hand, gradient weights at the detected change points are mostly retained close to

one, such that WG-Learning is able to adapt to the new patterns in real time.

5.6 Conclusion

In this paper we propose an adaptive gradient learning method for recurrent neural networks

(RNN) in the context of online learning problem. The WG-Learning aims to incrementally

learn the streaming time series and provide robust predictions adapting to the changing

patterns as well as resisting to outliers. In the WG-Learning, we introduce the weighted

gradient to the online SGD for the RNN models, based on the local features of time series. The

method enables to update the RNN models with downweighted gradients for outliers while full

gradients for change points. The predictive performance of the WG-Learning in the extensive

experiments on both synthetic and real datasets verifies the superiority of the WG-Learning

over the baselines.
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6.1 Conclusion

In this thesis we focus on distributed time series analytics. Particularly, we propose in-depth

solutions for three topics of distributed time series analytics, i.e., scalable management and

querying of model-view time series, distributed mining of correlation in massive time series

streams and robust learning over noisy and non-stationary data.

For the first time, we explore the key-value representation of an interval index for model-view

time series data management. Different from conventional external-memory index structure

with complex node merging and split mechanisms, our KVI-index, resident partially in memory

and partially materialized in the key-value store, is easy to maintain in the dynamic sensor data

generation environment. Moreover, we proposed a hybrid query processing approach, namely

KVI-Scan-MapReduce, integrating the KVI-index, range scan and MapReduce for model-view

data in key-value stores. Extensive experiments in a real testbed showed that our approach

outperforms in terms of query response time and index updating efficiency not only query

processing methods based on raw sensor data, but also all other approaches considered based

on model-view sensor data for time/value range and point queries. As a future work, we plan

to explore how to process time and value composite queries and join queries based on the

KVI-index.

For the topic of time series data mining, we investigated the problem of mining correlations

in time series streams. Due to the lack of efficient solution to this problem in contemporary

distributed stream processing environment, we put forward the P2H framework. It harnesses

P2-data-shuffling and δ-hypercube to optimize communication and computation efficiency.

P2-data-shuffling is able to adaptively replicate and shuffle the sliding window of a time se-

ries only to the computing nodes containing its correlation partners, thereby dramatically

decreasing the communication cost. We evaluate the proposed P2H framework against several
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distributed baselines adapted from conventional correlation mining approaches. The results

demonstrate that our P2H approach scales better than baselines in the sense that it can simul-

taneously process more time series streams without bottlenecks due to the communication

and computation efficiency.

Regarding robust learning on noisy and non-stationary data, we proposed two solutions re-

spectively for the online and offline data analytics. On one hand, we propose an efficient

distributed robust regression tree for handling large and noisy datasets. Our DR2-Tree em-

ploys a novel space-bounded data summarization technique, which is able to support both

distributed information extraction and robust error criterion estimation for growing the robust

regression tree. Extensive experiments reveal that: (1) Our proposed DR2-Tree is robust to

datasets with various outlier percentages and magnitudes. (2) DR2-Tree exhibits comparable

accuracy as the conventional distributed regression tree for relatively clean datasets with rare

outliers. (3) DR2-Tree is much more efficient than exact robust regression and the dynamic

histogram based regression tree [14, 133]. Such results verifies the broad applicability of our

DR2-Tree framework.

On the other and, for streaming time series bearing both outliers and change points, which

is quite common in reality, we propose an adaptive gradient learning method for recurrent

neural networks (RNN), referred to as WG-Learning, in the context of online learning problem.

The WG-Learning aims to incrementally learn the streaming time series and provide robust

predictions adapting to the changing patterns as well as resisting to outliers. In the WG-

Learning, we introduce the weighted gradient to the online SGD for the RNN models, based

on the local features of time series. The method enables to update the RNN models with

downweighted gradients for outliers while full gradients for change points. The predictive

performance of the WG-Learning in the extensive experiments on both synthetic and real

datasets verifies the superiority of the WG-Learning over the baselines in terms of prediction

accuracy.

6.2 Future Directions

We identify that our work presented in this thesis can be further extended in the ways as

follows:

Model-View Time Series: As a future work, we plan to explore how to process time and value

composite queries and join queries based on the KVI-index. Meanwhile, our current KVI-index

has to replicate the data for indexing both time and value dimensions and thus we expect to

improve the space efficiency by proposing some ways to avoid this data duplication.

Distribution Mining of Time Series Streams: The correlations in the time series of evolv-
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ing entities is often temporally dependent [125, 143], and may also exhibit quite volatile

behaviours during abnormal periods or events [28, 143]. Therefore, in addition to the mining

of correlations, our current approach entails a probabilistic model responsible for represent-

ing the dynamic nature of correlations, such that it can be used for inferring correlations

occurrences [7, 15, 28]. One way is to exploit the Markov Random Field to model both the

co-occurrence and temporal dependency of correlation occurrences in time series streams.

However, such a modeling method cannot capture the strength of correlations and thus detect

events relevant to the correlation strength. We can further extend the correlation modeling via

stochastic neighbour em- bedding [59, 61]. Then, such a model can be used for correlation

change or anomaly analysis.

Robust Learning: The proposed distributed robust regression tree in this thesis can be

strengthened from two perspectives. First, since the bins in the histograms of data sum-

marization is dynamically built based on the data, they approximate the data distribution.

During the tree growing phase, it is possible that not all the internal tree nodes have corrupted

data. Therefore, we can exploit the distribution of the bins in the domain of the target variable

to evaluate the skewness of data and then to adaptively choose between conventional and ro-

bust statistics. Such a mechanism enables to avoid missing useful information while retaining

the robustness in the tree growing phase. Second, the current space bounded histogram in the

data summarization lacks deterministic error bound on the robust statistic estimation. We

can resort to quality-guaranteed data structures to enhance the data summarization.

Regarding the RNN based online learning of time series streams, we figure out two directions

to strengthen our current approach as well. On one hand, current error reference distribution

is maintained by the exponential weighted moving average, which takes time to gradually

erase the effect of old data in face of change points. We could extend this by applying the idea

in concept drift detection to segment the error series and to only keep the up-to-date segment

for estimating the latest reference distribution, such that a set of recent forecasting errors

representing the current performance of RNN is obtained. On the other hand, for the value

difference drift used in weighting the gradient, our current approach requires a threshold

parameter to determine the normal drift or not. We could make this step more data-adaptive

and avoid parameter tuning by online maintaining a value difference distribution and then

utilize the probability of value difference to weight the gradient.
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change points and outliers

Mentor: Zhao Xu

• Analysed the performance of the Long-Short-Term-Memory Neural Network,
a popular variant of RNN on time series with change points and outliers.

• Proposed a weighted-gradient online learning framework for LSTM neural
networks to perform robust learning and prediction for non-stationary time
series.

• Implemented the proposed approach and baselines based on Keras and Ten-
sorFlow and verified the precision of the proposed approach through extensive
experiments.

Effiicent distributed robust regression tree

Mentors: Konstantin Kutzkov, Mathias Niepert, Mohamed Ahmed

• Analysed the source code of regression tree and random forest algorithms in
the distributed machine learning tool, Apache Spark MLlib and spotted the
weak points to improve for efficient robust regression.

• Designed distributed regression trees employing various robust loss functions
(e.g., MSE, Trimmed-MSE, LAD, MAD).

• Proposed a data summarization based distributed training framework to im-
prove the learning efficiency of the distributed robust regression tree.

• Developed the proposed approaches and baselines based on Apache Spark.
• Evaluated against a variety of baselines including tree ensembles in Apache
Spark MLlib and demonstrated the superiority of the proposed approach in
both efficiency and effectiveness.

Distributed Information Systems Laboratory, EPFL
Graduate Research Assistant, November 2011 - Now.
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Convolutional-LSTM Neural Network for semantic trend mining in
temporal data

• Semantic trend mining aims to discover the meaningful trend associated with
the duration in temporal data.

• Proposed a hybrid Convolutional-LSTM neural network, which comprises a
convolution neural network based segmentation and feature learning module
and a LSTM based trend dependency model.

• Implementing the proposed approach and baselines based on TensorFlow.

Distributed mining of statistical information for streaming time series

• Extended state-of-the-art stream statistics (i.e., single stream statistic, cross-
correlation) query algorithms to the distributed stream processing environ-
ment.

• Designed a hypercube partitioning and affine transformation based continu-
ously statistical correlation mining algorithm for distributed time series.

• Proposed a Markov Random Field based approach to model the dynamic
cross-correlations for prediction and event detection.

• Implemented the proposed approach and baselines in Apache Storm, a dis-
tributed real-time computation system.

• Achieved 1.5× improvements over baselines in terms of the peak capacity of
the system.

OpenIoT - Open source cloud solution for the Internet of Things

• Designed a hybrid in-memory and key-value store index structure (KVI-
index) for managing model-view sensor data in the cloud.

• Developed KVI-index based sensor value and time query processing algo-
rithms.

• Implemented the proposed query processing approach using Hadoop MapRe-
duce and HBase.

• Demonstrated order of magnitude improvements over querying distributed
raw data in terms of response time.

OpenSense - Community-based sensing using wireless sensor network
technology

• Proposed a PCA (principle component analysis) and dynamic clustering based
feature selection approach.

• Designed an on-line and adaptive time series segmentation algorithm using
the dynamic selected features.

• Evaluated the proposed approach using a real dataset from mobile sensors
and achieved .

Autonomous Robot Laboratory, SJTU
Graduate Research Assistant, November 2008 - February 2011.

Perceptive information processing for the active sensing system in
mobile robots

• This project aimed at on-line processing various sensor data (vision, laser,
audio) for action decision of the autonomous robot in less-structured envi-
ronments.

• Designed a subjective Bayesian decision based method to assess and predict
information uncertainty.

• Proposed a heuristic search algorithm based on the extracted information for
action decision.

Service robots for the elderly and disabled people
Supported by the National High Technology Research and Development Program
of China 11.2008-7.2009
Sensor data processing algorithm for human detection and localization.
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• Utilized computation geometry to extract features from real-time laser data
on an auto-mobile robot.

• Developed an Adaboost based human-detection algorithm by using the ex-
tracted features.

• Proposed Kalman Filter based real-time human tracking approach.

Awards

• Travel grant in ACM CIKM 2015
• Travel grant in IEEE International Conference on Big Data 2015
• Travel grant in IEEE International Conference on Big Data 2013
• 9th place in Swiss Helvetic Coding Contest, EPFL, Switzerland, 2012
• Three Successive Championships in RoboCup China Open Tournament, 2008,
2009, 2010
The RoboCup is the world’s largest robotics and artificial intelligence competition.

• Silver Award in the 33th ACM International Collegiate Programming Contest,
Asia Regional Hangzhou Site, China Open Contest (Top 12 out of 115), 2008

• Honourable Award in the 32th ACM International Collegiate Programming Con-
test, Asia Regional Nanjing Site, 2007

• Second Prize in Mathematical Contest in Modelling(MCM), the Consortium for
Mathematics and Its Application of the United States America, 2007

• National First Prize in China Undergraduate Mathematical Contest in Modelling
(Top 5%), 2006

Professional

Service • Reviewer: IEEE Transactions on Services Computing, Journal of Location Based
Services, International Journal of Geographical Information Science, Journal
of Expert Systems with Applications, Journal of Artificial Intelligence Review,
Journal of Robotics and Autonomous Systems, Journal of Web Technologies.
International Semantic Web Conference 2013.

• External reviewer: IEEE BigData Congress 2016, ICDM 2015, ICDE 2014, IEEE
BigData 2014, IEEE MDM 2014, VLDB 2012, ICDCS 2011.

Teaching

Experience • 2015 Teaching Assistant, Analysis
• 2014 Teaching Assistant, Distributed Information Systems
• 2013 Teaching Assistant, Dynamic Systems
• 2012 Teaching Assistant, Programming

Supervised

Master Project • 2016 Master Thesis Project, TreNet: Learning the Trend in Temporal Data via
Hybrid Neural Networks

• 2016 Master Thesis Project, Activity-based Intelligence
• 2016 Master Semester Project, Online Learning of LSTM Neural Network
• 2014 Master Semester Project, Distributed Intersection Join for Multivariate
Model-view Sensor Time Series

• 2013 Master Thesis Project, Performance Prediction for Clusters in Data Centers

Technical Skills

• Distributed Computing Platforms: Hadoop MapReduce, HBase, Apache Storm,
Apache Spark.

• Machine Learning Tool-sets: Apache Spark MLlib, Scikit-learn.
• Deep Learning Libraries: Keras, TensorFlow, Theano.
• Programming Languages: C/C++, Java, Python, Visual C++, Matlab, Scala.

English: Fluent. Chinese: Native languageLanguages
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