
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Y. Le Boudec, président du jury
Prof. J. Sifakis, Dr S. Bliudze, directeurs de thèse

Prof. R. De Nicola, rapporteur
Prof. F. Arbab, rapporteur

Prof. R. Guerraoui, rapporteur

A Semantic Framework for Architecture Modelling

THÈSE NO 7325 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 20 JANVIER 2017

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LA CONCEPTION RIGOUREUSE DES SYSTÈMES
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Eduard BARANOV

Acknowledgements
This thesis is the result of an interesting and challenging part of my life. It would not be
possible without help of many people. I would like to use this opportunity to express my
gratitude to them.
I would first like to thank my advisor, Prof. Joseph Sifakis, for giving me an opportunity to
pursue a PhD in his lab and to explore interesting problems in system design. He provided
his guidance and expertise throughout my work. During the PhD I was always inspired by
his vision and motivation. I am very grateful to my co-advisor, Dr. Simon Bliudze, for his
constant support. He always had time for answering questions and for exchanging ideas. His
help with paper writing was invaluable. I’m also grateful for his support in my search of
future position. I was extremely lucky to have such mentors.
I would like to thank Prof. Farhad Arbab, Prof. Rocco De Nicola and Prof. Rachid Guerraoui
for agreeing to be the jury members of my PhD defence. They generously provided their time
to read this work and gave invaluable feedback. I would also like to thank Prof. Jean-Yves
Le Boudec who served as a jury president.
I would like to thank Anastasia Mavridou for our collaboration on several papers resulted
in a very nice theory that served as a basis for the last part of the thesis. I would like to
thank other members of RISD lab Alina Zolotukhina, Stefanos Skalistis, Wang Qiang, Wajeb
Saab and Alena Simalatsar for their help during these years, especially for their feedback
on presentation dry-runs. They made my time in the lab a great experience. I would also
like to thank Ariane Staudenmann for her organisational support. Additional thanks for the
office with the view on the Geneva lake and Alps.
Last, but not least, I’m very grateful to my parents for their unconditional love, belief and
support throughout my entire life. Thank you very much!

i

Abstract
Architectures are common means for organising coordination between components in order
to build complex systems and to make them manageable. They allow thinking on a higher
plane and avoiding low-level mistakes. Architectures provide means for ensuring correctness-
by-construction by enforcing global properties characterising the coordination between
components. In this work, we consider the following questions of architecture modelling:
1) how to model architectures; 2) how to compose them if several properties enforced by
different architectures are required; 3) how to specify architectures styles that generalise the
notion of architectures and represent families of architectures satisfying the same property.
An architecture can be considered as an operator that, applied to a set of components,
builds a composite component meeting a characteristic property. The underlying concepts
of components and their interaction originate from the BIP framework.
This thesis is structured in two parts. In the first part, we study the expressiveness of
glue operators in the BIP framework. We provide results for classical BIP glue and for
several modifications obtained by relaxing the constraints imposed on priority models.
We also study an alternative semantics of BIP glue based on the offer predicate. It meets
fundamental properties required from component-based frameworks, namely compositionality,
incrementality, flattening and modularity. We provide the comparison with the classical BIP
semantics and the algorithm for the synthesis of connectors from the interaction logic used
to describe coordination constraints.
In the second part, we define architectures and propose an architecture composition operator.
We study their properties and prove that the composition operator preserves safety properties
of its operands. The alternative glue semantics presented in the first part of the thesis
allows to extend architectures with priorities. For the specification of architecture styles,
we propose configuration logics. We provide a sound and complete axiomatisation of
the propositional configuration logic as well as decision procedures for checking that an
architecture satisfies a given logical specification. To allow genericity of specifications,
we study higher-order extensions of the propositional configuration logic. We illustrate
with examples the specification of various architecture styles. We provide an experimental
evaluation using the Maude rewriting system to implement the decision procedure for
configuration logics. Additionally, we study the relation between the architecture composition
operator and the composition of configuration logic formulas.

Keywords: component-based design, correctness-by-construction, architecture, BIP, compos-
ability, architecture style.

iii

Résumé
Les architectures sont des moyens communs pour l’organisation de la coordination entre
composants en vue de construire des systèmes complexes et de les rendre gérables. Elles
permettent de raisonner à un niveau d’abstraction supérieur et d’éviter les erreurs de bas
niveau. Les architectures fournissent un moyen pour assurer que les systèmes développés sont
corrects par construction en imposant des propriétés globales caractérisant la coordination
entre les composants. Dans ce travail, nous considérons les questions suivantes, liées à
la modélisation d’architectures : 1) comment modéliser les architectures ; 2) comment les
composer si plusieurs propriétés imposées par des architectures différentes sont nécessaires ;
3) comment spécifier des styles architecturaux qui généralisent la notion d’architectures et
représentent des familles d’architectures satisfaisant la même propriété. Une architecture peut
être considérée comme un opérateur qui, appliqué à un ensemble de composants, construit
un composant composite satisfaisant une propriété caractéristique. Les concepts sous-jacents
de composants et de leur interaction sont à l’origine du framework BIP.
Cette thèse est structurée en deux parties. Dans la première partie, nous étudions l’expressi-
vité des opérateurs colle dans le framework BIP. Nous fournissons des résultats pour la version
classique de colle BIP et pour plusieurs modifications obtenues par l’assouplissement des
contraintes imposées sur les modèles de priorité. Nous étudions aussi une sémantique alterna-
tive de colle BIP sur la base du prédicat de l’offre. Elle satisfait des propriétés fondamentales
requises par les frameworks à base de composants, à savoir compositionnalité, incrémentalité,
aplatissement et modularité. Nous fournissons une comparaison avec la sémantique BIP
classique et l’algorithme de synthèse des connecteurs de la logique d’interaction utilisé pour
décrire les contraintes de coordination.
Dans la deuxième partie, nous définissons des architectures et proposons un opérateur de
composition d’architectures. Nous étudions ses propriétés et prouvons que l’opérateur de
composition conserve les propriétés de sécurité de ses opérandes. La sémantique alternative
de colle BIP présentée dans la première partie de la thèse permet d’étendre les architectures
aux priorités. Pour la spécification de styles architecturaux, nous proposons des logiques
de configuration. Nous fournissons une axiomatisation solide et complète de la logique de
configuration propositionnelle ainsi que des procédures de décision pour vérifier qu’une
architecture satisfait une spécification logique donnée. Pour permettre la généricité des spé-
cifications, nous étudions des extensions de la logique de configuration propositionnelle à des
ordres supérieurs. Nous illustrons la spécification de différents styles architecturaux avec des
exemples. Nous fournissons une évaluation expérimentale en utilisant le système de réécriture
Maude pour mettre en œuvre la procédure de décision pour les logiques de configuration.

v

Acknowledgements

De plus, nous étudions la relation entre l’opérateur de composition d’architectures et la
composition des formules logiques de configuration.

Mots-clés : conception à base de composants, développement correct par construction,
architecture, BIP, composabilité, style architectural.

vi

Preface
The main results of this thesis were originally presented in the following papers:

• Eduard Baranov, Simon Bliudze. A note on the expressiveness of BIP. In Proc. of
Combined 23rd International Workshop on Expressiveness in Concurrency and 13th
Workshop on Structural Operational Semantics (EXPRESS/SOS 2016), EPTCS 222,
pp. 1-14, 2016.

• Anastasia Mavridou, Eduard Baranov, Simon Bliudze and Joseph Sifakis. Configuration
logics: Modelling architecture styles. In Journal of Logical and Algebraic Methods in
Programming, 2016.

• Anastasia Mavridou, Eduard Baranov, Simon Bliudze and Joseph Sifakis. Configuration
logics: Modelling architecture styles. In Proc. of Formal Aspects of Component
Software (FACS 2015), LNCS 9539, pp. 256–274, 2015.

• Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber and Joseph Sifakis. A
General Framework for Architecture Composability. In Formal Aspects of Computing,
vol. 28, issue 2, pp. 1–25, Springer, 2015.

• Eduard Baranov, Simon Bliudze. Offer semantics: Achieving compositionality, flat-
tening and full expressiveness for the glue operators in BIP. In Science of Computer
Programming, vol. 109, pp. 2–35, 2015.

• Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber and Joseph Sifakis. A
General Framework for Architecture Composability. In Proc. of the 12th International
Conference on Software Engineering and Formal Methods (SEFM 2014), LNCS 8702,
pp. 128–143, 2014.

• Eduard Baranov, Simon Bliudze. Extended Connectors: Structuring Glue Operators in
BIP. In Proc. of the 6th Interaction and Concurrency Experience (ICE 2013), EPTCS
131, pp. 20–35, 2013.

I was also involved in the work on architecture diagrams presented in

• Anastasia Mavridou, Eduard Baranov, Simon Bliudze and Joseph Sifakis. Architecture
diagrams: A graphical language for architecture style specification. In Proc. of the 9th
Interaction and Concurrency Experience (ICE 2016), EPTCS 223, pp. 83–97, 2016.

vii

Contents
Acknowledgements i

Abstract (English/Français) iii

Preface vii

List of figures xi

List of tables xiii

1 Introduction 1
1.1 BIP Component Framework . 4
1.2 Theory of architectures . 5
1.3 Contributions . 7

2 Background and Related Work 9
2.1 Properties of Glue . 9
2.2 Classical BIP . 13

2.2.1 Classical semantics . 13
2.2.2 Representations of interaction model 17

2.3 Offer Semantics for BIP . 24
2.4 Related Work . 27

2.4.1 Expressiveness of glue . 27
2.4.2 Architecture modelling . 30

3 Expressiveness of BIP Glue 33
3.1 Expressiveness of BIP Glue in Classical Semantics 34
3.2 Transformation of systems in classical semantics into offer semantics 41

3.2.1 Transformation not depending on component set 44
3.2.2 Transformation not using activation port typings 47
3.2.3 Transformation using activation ports typings 49
3.2.4 Hierarchical systems . 52

3.3 Extensions of Interaction Model Representations 54
3.3.1 Refinement of extension . 55
3.3.2 Normalisation of extended algebras . 59

ix

Contents

3.3.3 Simplification of systems of causal rules 62
3.4 Connector Synthesis Example . 64
3.5 Discussion . 68

4 Architecture Composability 71
4.1 Architecture operator . 71
4.2 Composition of architectures . 74

4.2.1 Hierarchical composition of architectures 77
4.2.2 Partial application of architectures . 79

4.3 Property preservation . 83
4.4 Including priorities in architectures . 85
4.5 Case study: control of an elevator cabin . 89
4.6 Discussion . 91

5 Configuration Logics 93
5.1 Propositional configuration logic . 94

5.1.1 Properties of PCL . 97
5.1.2 Normal form and axiomatisation of PCL formulas 108
5.1.3 Checking satisfaction of formulas . 114

5.2 Higher order extensions of PCL . 115
5.2.1 First-order configuration logic . 116
5.2.2 Monadic second-order configuration logic 122
5.2.3 First-order configuration logic with ordered components 125

5.3 Implementation of decision procedure . 127
5.4 Composition of architecture styles . 129
5.5 Discussion . 133

6 Conclusion and Future Work 135

Bibliography 144

x

List of Figures
1.1 Master/Slave architectures. 3
1.2 Lattices of interactions, configurations and configuration sets. 7

2.1 Components for Example 2.2.11. 16
2.2 Basic connector examples. 20

3.1 BIP system that cannot be flattened. 34
3.2 Component for Example 3.1.2. 36
3.3 Component for Proposition 3.1.3. 37
3.4 System inexpressible in offer semantics. 42
3.5 Components for Theorem 3.2.4. 43
3.6 Algorithm for glue transformation. 45
3.7 First set of components and composite system for Example 3.2.8. 46
3.8 Second set of components and composite system for Example 3.2.8. 46
3.9 Components and composite system for Example 3.2.13. 49
3.10 Components and composite system for Example 3.2.18. 51
3.11 Components and composite system for Example 3.2.22. 53
3.12 Components and composite system for Example 3.2.23. 54
3.13 A pair of equivalent causal interaction trees. 55
3.14 Main module for Example 3.4.1. 65
3.15 Causal interaction trees for Example 3.4.1. 68
3.16 Connectors corresponding to trees from Figure 3.15. 68
3.17 Expressiveness relation between composition operators. 69
3.18 Expressiveness relation for components satisfying Property 3.2.5. 69

4.1 Components and coordinator for Example 4.1.3. 72
4.2 Composite component for Example 4.3.4. 84
4.3 Projections of reachable states of components for Example 4.3.6. 85
4.4 Atomic components for elevator example. 89
4.5 Coordinating components for the elevator example. 90

5.1 Master/Slave architectures. 95
5.2 Correspondence between the lattices of PIL and PCL. 101
5.3 Correspondence between negation and complementation of interaction formulas.104
5.4 PCL lattice. 107

xi

List of Figures

5.5 Rewriting system for computing the normal form. 109
5.6 Procedure for computing the normal form. 110
5.7 Algorithm for checking satisfaction of formulas. 114
5.8 Star architecture. 118
5.9 Pipes and Filters architecture. 119
5.10 Blackboard architecture. 120
5.11 Request/Response architecture. 121
5.12 Ring architecture. 123
5.13 Linear architecture. 123
5.14 Grid architecture. 124
5.15 Performance of the decision procedure for architecture styles. 128
5.16 Architecture diagram. 133

xii

List of Tables
2.1 Correspondence between BIP and 3-colouring model of Reo. 29

3.1 Systems of causal rules for Example 3.4.1. 67

xiii

1 Introduction

Modern software systems are inherently concurrent. They consist of components running
simultaneously and communicating with each other through message passing or shared
objects. Concurrency is the main cause of the immense complexity of the systems. Analysis
of such systems requires considering all possible interleavings of the operations executed by
components. Thus, the complexity is exponential in the number of components making the
verification infeasible.

An alternative approach is based on building systems that are correct by construction.
Rigorous system design [94] achieves correctness by applying a sequence of semantic preserving
transformations to obtain an implementation from high-level model preserving the desired
properties along the way. Rigorous system design relies on the existence of a unifying
component-based framework with formal semantics. A component-based framework can be
considered as an algebraic structure generated by components and a set of coordination
mechanisms which we call glue operators. Components are abstract building blocks providing
basic functionality that can interact with each other. They are characterised by their
behaviour and their interface defining interaction points with environment. The notion
“component” can cover a very large spectrum, ranging from programs and labelled transition
systems, through OSGi bundles and browser plug-ins, to systems of differential equations,
etc.

Glue operators specify coordination between components, i.e. how components are allowed
to interact. They are usually expressed as a set of connections with or without some
coordination components. Connections can represent simple interaction mechanisms like
function calls or broadcast as well as more complex ones including protocols and schedulers.
They specify two aspects of an interaction: control flow defining synchronisation constraints
and data-flow defining how the data is transferred during the interaction. Glue is the set
of all glue operators in the component-based framework. It is desirable that glue has the
following properties:

• Incrementality. It allows viewing sub-systems in separation. Given a glue operator for

1

Chapter 1. Introduction

the whole system, incrementality allows extracting operators that coordinate smaller
sub-systems.

• Flattening. It requires the set of glue operators to be closed under composition and it
is complementary to incrementality. Flattening allows replacing a hierarchy of glue
operators for different sub-systems with a single operator.

• Compositionality. It requires glue operators to preserve component equivalence and
allows replacing a component with an equivalent one.

Glue is characterised by its expressive power showing what coordination mechanisms (and
possible composed systems) are expressible within the framework.

We distinguish two approaches to system design [24]. In an architecture-based approach
coordination constraints are described in a purely declarative manner and they can be
defined to a large extent independently from components that build the system. This
approach requires expressive coordination mechanisms that are capable to describe complex
communication protocols. It provides higher abstraction level and consequently stronger
correctness-by-construction. In an architecture-agnostic approach components are not
distinguished from coordination mechanisms. Systems consist of components, some of them
provide basic functionality while others ensure coordination. Component interactions are
described within its behaviour via function calls, imports etc.. This approach is more error
prone, but allows performance optimisations. The distinction between two approaches can
be illustrated with Calculus of Communicating Systems (CCS) [81] and Communicating
Sequential Processes (CSP) [65]. CCS has a single parallel composition operator, while CSP
has a parametrised composition operator defining actions that must synchronise. CCS-like
process algebras and most of the programming languages use the architecture-agnostic
approach. The architecture-based approach is adopted by various architecture description
languages. In [3, 5], authors provide a classification of coordination mechanisms as exogenous
or endogenous which is similar to the distinction between architecture-based and architecture-
agnostic approaches.

One of the important advantages of the architecture-based approach is the easiness of
extraction of reusable solutions. In modern system design approaches, computer systems
are never built from scratch. Engineers intensively reuse building blocks and solutions, e.g.
libraries, design patterns and communication protocols. Components can specify reusable
blocks while architectures represent reusable solutions or coordination mechanisms. In
rigorous system design an architecture can be considered as an operator that applied to a
set of components builds a composite one meeting a characteristic property.

Architectures depict design principles: paradigms that can be understood by all, they
allow thinking on a higher plane and avoiding low-level mistakes. They provide means
for ensuring correctness-by-construction by enforcing global properties characterising the
coordination between components. Using architectures largely accounts for our ability to

2

m1

s1

m2

s2

S2S1

M1 M2

m1 m2

s1 s2

M2

S1

M1

S2

m2

s2

m1

s1

S1 S2

M1 M2

m2

s1 s2

m1

S1 S2

M1 M2

Figure 1.1 – Master/Slave architectures.

master complexity and develop systems cost-effectively. System developers extensively use
libraries of reference architectures ensuring both functional and non-functional properties,
for example fault-tolerant architectures, architectures for resource management and QoS
control, time-triggered architectures, security architectures and adaptive architectures.

Many languages have been proposed for architecture description such as architecture descrip-
tion languages, e.g. [68, 71, 58, 99], coordination languages, e.g. [36, 37, 7], and configuration
languages [74, 97, 60]. All these works rely on the distinction between behaviour of individual
components and their coordination in the overall system organisation. Informally architec-
tures are characterised by the structure of the interactions between a set of typed components.
The structure is usually specified as a relation, e.g. connectors between component ports.
Component-based frameworks can be easily adapted to specify architectures.

Nonetheless, the field of software architecture remains relatively immature [57]. A lot of
foundational issues remain open. We still lack theory and methods for combining architectures
in principled and disciplined fully correct-by-construction design flows.

A theory of architectures must address fundamental questions among which the following
are of particular importance:

• How to model architectures? The framework for architecture modelling has to have
formal semantics and should be usable with a variety of components.

• How to combine architectures? In a design process, it is often necessary to combine
more than one architectural solution on a set of components to achieve a global property.
The composition of solutions has to preserve all characteristic properties of composed
architectures. Architecture composability is a very basic and common problem faced
by system designers. Manifestations of lack of composability are also known as feature
interaction in telecommunication systems [35].

• How to specify families of architectures? For a single property, there might exist
several architectures satisfying it. Consider a simple example: an architecture should
be applied to 4 components, two “masters” and two “slaves”, and each slave has to
interact with one master. Figure 1.1 shows 4 possible architectures: two slaves can
interact with the same master or they can interact with two different masters.

3

Chapter 1. Introduction

A plethora of approaches exists for specification of architectures. For instance, patterns
[56, 66] are commonly used for specifying architectures in practical applications. Specifications
of architectures are easy to produce, however they lack formal semantics and their meaning
may not be clear. The development of a formal framework for architecture modelling requires
the rigorous definition of the notion of architectures as well as the rigorous underlying
component-based design framework.

1.1 BIP Component Framework

We choose BIP [19] as the underlying theory of components and their interaction. BIP is a
component framework rooted in well-defined operational semantics that proposes an expres-
sive and elegant notion of interaction models for component composition. Interaction models
can be studied as sets of Boolean constraints expressing interactions between components.
BIP has been fully implemented in a language and a supporting toolset, including compilers
and code generators [14]. BIP relies on the separation of concerns: components cannot define
communication constraints while glue is stateless and cannot perform computations.

Components in BIP are modelled as Labelled Transition Systems (LTS). Transitions are
labelled by ports, which are used for synchronisation with other components. An interface
of the component is the set of its ports. Composition operators defining communication
between components are obtained by combining interaction and priority models. Operational
semantics of the BIP glue operators is defined by Structural Operational Semantics (SOS)
[90] rules. An SOS rule has a form

premises

conclusion
,

where “premises” is a set of state predicates on the components composing the system, while
“conclusion” is a state predicate on its global state. A rule is interpreted as follows: if all
premises are satisfied, then the conclusion is satisfied. The various SOS formats differ in the
type of predicates that can be used for either the premises or the conclusion. For the BIP
glue, we use a format that is a restriction of GSOS [25], to which we refer as BIP-like SOS.

An interaction model γ is a set of interactions. Each interaction is a subset of ports of the
composed components. A composite component can execute a transition labelled by a ∈ γ

iff all components involved in a can execute the corresponding transitions labelled by the
actions composing a, whereas other components do not move. Several interaction can be
enabled in the same state introducing non-determinism that can be reduced by a priority
model. A priority model π is a strict partial order on the interaction model. A priority rule
(a, b) ∈ π (we write a ≺ b) forbids the composite component to execute transitions labelled
by a from all states where a transition labelled by b is available.

Since interaction models are sets of sets of ports, they can be characterised by a propositional

4

1.2. Theory of architectures

interaction logic (PIL)—a Boolean algebra on the set of ports of the composed components.
The semantics of the interaction logic is defined via satisfaction relation |=i= between
interactions and formulas. Each PIL formula represents exactly the set of interactions
corresponding to Boolean valuations of ports satisfying the formula. In [22], the authors
showed the relation between interaction model and interaction logic and provided a procedure
for interaction synthesis from Boolean constraints. Thus, BIP interaction model can be
specified in two ways: imperatively with interactions and declaratively with PIL. The former
simplifies reasoning about actions the system can perform, while the latter allows reasoning
about properties imposed by the glue.

However, PIL does not allow one to encode the priority model. In order to address this issue,
a modification of the semantics of BIP glue operators was proposed in [23]. Components
are extended with an offer predicate defining, for each state, the set of offered ports, i.e. all
ports that are used in labels of the outgoing transitions from the state. A priority between
interactions a ≺ b is defined in this modification as follows: a can be enabled only when at
least one port of b is not offered. In order to accommodate the modification of the priority
semantics, interactions are extended with two additional parts: an activation support and a
negation support that can reduce the set of states the interaction can be enabled. They define
ports that have to be offered or not offered, respectively, in order to enable the interaction.
Extended interactions allow to include priority constraints in interaction model through
requiring ports of the higher priority interaction to be not offered. Glue operators in this
modification consist of a single interaction model. PIL can also be extended allowing to
synthesise extended interactions and to define the whole glue including priorities.

1.2 Theory of architectures

We use BIP concepts of components and their interactions for architecture modelling. An
architecture A is a solution to a specific coordination problem characterised by a property
ΦA. The application of the architecture A = (C, PA, γ), where C is a set of coordinating
components and γ is a configuration—a set of BIP interactions—over a set of ports PA, to a
set of components B with the corresponding interfaces is the composite component A(B) =
γ(C,B) that satisfies the characteristic property ΦA. The characteristic property ΦA assigns
the meaning to the architecture that can be informally understood without the need for
explicit formalisation (e.g. mutual exclusion, scheduling policy, clock synchronisation).

Communication between components may vary for different properties. For instance, for
distributed architectures, interactions are point-to-point by asynchronous message passing.
Other architectures adopt a specific topology (e.g. ring architectures, hierarchically structured
architectures). Properties could also require state to keep track of previous events. Thus, the
restriction of a configuration to be stateless has to be compensated by using the additional
set of components C for coordination.

The PIL representation of configurations allows a simple definition of the composition

5

Chapter 1. Introduction

operator ⊕: the composition of two architectures has coordinating components and ports of
both operands and its configuration is defined by the conjunction of operands PIL formulas.
The composition operator is associative and commutative. Furthermore, it is idempotent on
the deterministic components. The composition operator preserves safety properties: for two
architectures A1 and A2 enforcing respectively safety properties Φ1 and Φ2, the architecture
A1 ⊕ A2 enforces Φ1 ∧ Φ2.

An architecture implicitly defines the number of components it is applied to. For example,
architectures in Figure 1.1 are defined specifically for four components. One way to generalise
architectures is to define a generic architecture that can be applied to any number of
components. This can be done by using component types and higher-order interaction logics
that involve quantification over component variables.

Nevertheless, a property can be enforced by different architectures that are applicable to the
same number of components. Figure 1.1 shows four different Master/Slave architectures for
two Masters and two Slaves. It is impossible to specify all of them with a single architecture
or a single generic architecture.

An architecture style is a family of architectures sharing common characteristics such as the
type of the involved components and the topology induced by their coordination structure.
The relation between architectures and architecture styles is similar to the relation between
programs and their specifications. Thus, architectures are specified with configurations
while architecture styles with configuration sets. The hierarchy of domains is summarised as
follows. Given a set of ports, we consider three different lattices:

The lattice of interactions. An interaction is a subset of ports of the integrated compo-
nents. Its execution implies that all components involved in the interaction have to
synchronously execute actions associated with the ports of the interaction.

The lattice of configurations. Configurations are sets of interactions defining interaction
models of BIP and characterising architectures.

The lattice of configuration sets. Sets of configurations characterise architecture styles.

Figure 1.2 shows the three lattices for P = {p, q}. For the lattice of configuration sets, we
show only how it is generated.

We specify architecture styles with configuration logic. Propositional configuration logic
(PCL) is a powerset extension of PIL. Its formulas are generated from the formulas of PIL
by using the operators union � , intersection � , complementation ¬ and coalescing +. To
avoid ambiguity, we refer to the formulas of the configuration logic that syntactically are
also formulas of the interaction logics as interaction formulas. The semantics of PCL is
defined via a satisfaction relation |= between configurations and formulas. An interaction
formula f represents any configuration consisting of interactions satisfying it; that is γ |= f

6

1.3. Contributions

(a) I(P) = 2P (b) C(P) = 2I(P) (c) CS(P) = 2C(P)

Figure 1.2 – Lattices of interactions (a), configurations (b) and configuration sets (c) for
P = {p, q}.

if, for all a ∈ γ, a |=i=f . For set-theoretic operators we take the standard meaning. The
meaning of formulas of the form f1 + f2 is all configurations γ that can be decomposed into
γ1 and γ2 (γ = γ1 ∪ γ2) satisfying, respectively, f1 and f2. The formula f1 + f2 represents
configurations obtained as the union of configurations of f1 with configurations of f2.

The following simple example illustrates the difference between PIL and PCL. For P =
{p, q, r, s}, the monomial p ∧ q ∧ r specifies in interaction logic the interactions {p, q} and
{p, q, s}. In configuration logic, it specifies all configurations built from these interactions,
i.e.

{
{p, q}

}
,
{
{p, q, s}

}
and

{
{p, q}, {p, q, s}

}
.

Similarly to architectures, PCL formulas are defined for a specific number of components.
Higher-order configuration logics allow to specify architecture styles for any number of
components. First-order logic formulas involve quantification over component variables. We
also consider a monadic second-order logic involving quantification over variables for sets of
components that allow to express some interesting topological properties, e.g. the existence
of cycles of interactions.

1.3 Contributions

This thesis summarises the following contributions:

• In Chapter 3, we study the expressiveness of the classical and the offer semantics of
BIP. We show that the BIP glue does not have full expressiveness w.r.t. BIP-like
SOS, i.e. there exist glue operators expressible in BIP-like SOS, but inexpressible
in the classical BIP. We characterise a subclass of BIP-like SOS glue operators that
can be expressed by hierarchical composition of the BIP glue operators. We discuss
possible modifications of the priority semantics allowing to recover full expressiveness.
We show that, in general, the classical semantics and the offer semantics of BIP are
incomparable, i.e. there exist glue operators that are expressible in one semantics and
inexpressible in another semantics. Nevertheless, we provide a hierarchy of constraints
on components that allows to establish the correspondence between the classical and

7

Chapter 1. Introduction

the offer semantics. In particular, if transition labels of all components consist of a
single port (a constraint taken in the BIP implementation [17]), then the offer semantics
is strictly more expressive than the classical one. For the offer semantics, in order to
support the theory of architectures, we extend representations of the BIP interaction
model allowing to define extended interactions with activation and negative support.
We extend the synthesis procedure of extended interactions from Boolean constraints.

• In Chapter 4, we define architectures as operators that applied to a set of components
build composite ones. An architecture consists of a configuration with a set of coordi-
nating components. We define a composition operator and study its properties. We
show that hierarchical application of architectures coincide with their composition. In
addition, we study partial application of architectures. We show that safety properties
defined as a state predicate are preserved by the composition operator. We also show
that the offer semantics allows to include priorities in architectures.

• In Chapter 5, we define configuration logics for the specification of architecture styles.
We provide a full axiomatisation of the propositional configuration logic and a normal
form similar to the disjunctive normal form in Boolean algebras. The existence of
such normal form implies the decidability of formula equality and the satisfaction of
a formula by an architecture model. To allow genericity of specifications, we study
first-order and monadic second-order extensions of the propositional configuration logic.
First-order configuration logic formulas involve quantification over component variables.
Monadic second-order logic formulas involve additionally quantification over sets of
components. It is needed to express some interesting topological properties, e.g. the
existence of cycles of interactions. We also study the extension of the first-order logic
with ordered components, where we assume that components in models are ordered
and use simple constraints based on this order. We illustrate with examples that
some interesting styles can be specified in this extension without using second-order
logic. The decision procedure for satisfaction of a formula by an architecture model
has been implemented in Maude tool for the propositional logic. In addition, we
study the relation between the architecture composition operator and conjunction of
configuration logic formulas.

8

2 Background and Related Work

2.1 Properties of Glue

Fundamentally, each component-based design framework can be viewed as a triple (A, σ,).
Here, A is an algebraic structure generated by a component type B [18] and a set G =⋃∞

n=0(An → A) of glue operators for all arities n:

A ::= B | f(C1, . . . , Cn) , with B ∈ B, C1, . . . , Cn ∈ A and f ∈ G . (2.1)

We call the elements of A systems and the elements of B components. The structure A
represents the set of all systems constructible within the framework. Component type B
defines the nature of the components manipulated by the framework.

The second element of the triple defining a component-based framework is the semantic
mapping σ : A → B, which assigns to each system its meaning in terms of the component
type B. The semantic mapping must be consistent in the following sense:

for all B ∈ B , σ(B) = B . (2.2)

A trivial consequence of (2.2) is that the application of σ is idempotent, i.e. σ
(
σ(C)

)
= σ(C),

for all C ∈ A. The semantic mapping is called structural, if it is defined by associating to
each n-ary glue operator f : An → A a corresponding operator f̃ : Bn → B and putting

for all C1, . . . , Cn ∈ A and f ∈ G , σ
(
f(C1, . . . , Cn)

) def= f̃
(
σ(C1), . . . , σ(Cn)

)
. (2.3)

Finally, 	 ⊆ A × A is an equivalence relation, which allows comparing systems in terms, for
example, of their functionality, observable behaviour or capability of interaction with the
environment. The equivalence relation must respect the semantics:

for all C1, C2 ∈ A , σ(C1) = σ(C2) =⇒ C1 	 C2 . (2.4)

9

Chapter 2. Background and Related Work

Again, a trivial consequence of (2.2) and (2.4) is that a system is always equivalent to its
semantics: C 	 σ(C), for all C ∈ A. In the remainder of the thesis, we assume that (2.2)
and (2.4) do hold.

Glue operators used to compose systems in a component-based design framework must
possess the following properties [93].

Incrementality
This property represents a generalised form of associativity. It requires that it be possible to
view the sub-systems of a system in separation:

for all i ∈ [1, n], C1, C2, . . . , Cn ∈ A and f ∈ G , there exist g, h ∈ G such that
f(C1, C2, . . . , Cn) 	 g

(
Ci, h(C1, . . . , Ci−1, Ci+1, . . . , Cn)

)
. (2.5)

Flattening
This property is complementary to incrementality. It requires that, for any system obtained
by hierarchically applying two glue operators to a finite set of sub-systems, there must exist
an equivalent system obtained by applying a single glue operator to the same sub-systems:

for all i, j ∈ [1, n] (i ≤ j), C1, C2, . . . , Cn ∈ A and f, g ∈ G , there exists h ∈ G
such that f

(
C1, . . . , Ci−1, g(Ci, . . . , Cj), Cj+1, . . . , Cn)

)
	 h(C1, . . . , Cn) . (2.6)

In other words, G must be closed under composition. Flattening enables model transforma-
tions, e.g. for optimising code generation or component placement on multicore platforms
[26, 30].

Compositionality
This property requires that glue operators preserve the equivalence of their operands:

for all i ∈ [1, n], C1, . . . , Cn, C ′
i ∈ A and f ∈ G ,

Ci 	 C ′
i =⇒ f(C1, . . . , Ci, . . . Cn) 	 f(C1, . . . , C ′

i, . . . Cn) . (2.7)

Another version of this property, which we will call relaxed compositionality, only requires
that individual glue operators respect component equivalence:

for all i ∈ [1, n], B1, . . . , Bn, B′
i ∈ B and f ∈ G ,

Bi 	 B′
i =⇒ f(B1, . . . , Bi, . . . Bn) 	 f(B1, . . . , B′

i, . . . Bn) . (2.8)

10

2.1. Properties of Glue

Notice that, combined with flattening, this relaxed notion of compositionality is already
quite strong: essentially, compositionality allows replacing sub-systems, whereas relaxed
compositionality with flattening allow replacing components in B.

Modularity
By combining the requirement that the equivalence relation 	 must respect the semantics of
the framework (2.4) with compositionality (2.7), we obtain a special case that is important
enough to be considered a separate property:

for all i ∈ [1, n], C1, . . . , Cn ∈ A and f ∈ G ,
f(C1, . . . , Ci, . . . , Cn) 	 f(C1, . . . , σ(Ci), . . . , Cn) . (2.9)

Compositionality and modularity are related to the concepts of encapsulation and infor-
mation hiding from object-oriented programming. Component-based frameworks provide
a disciplined mechanism for restricting access to component’s data, exposing only those
elements that are explicitly used for communication, e.g. shared memory and buffers used
for receiving messages from the environment. However, in order to provide full modularity,
designers must have the possibility to bundle several components together with the con-
necting glue operators into a new component in order to hide from the user the details of
the component implementation. This achieves two main goals: 1) the use of the component
cannot rely on the specifics of its implementation, allowing the component to be replaced
with an alternative solution; 2) components can be delivered to the user without disclosing
the details of complex solutions constituting intellectual property of the designer.

One can make the following observations about the relations between compositionality and
modularity:

1. Compositionality implies modularity and relaxed compositionality.

2. Modularity and relaxed compositionality together imply compositionality:

Proof. Without loss of generality, let i = 1; for all C1, . . . , Cn, C ′
1 ∈ A and f ∈ G , we

have σ(C1) 	 C1 	 C ′
1 	 σ(C ′

1) and, consequently,

f(C1, . . . , Cn) 	 f
(
σ(C1), . . . , σ(Cn)

)
	 f

(
σ(C ′

1), . . . , σ(Cn)
)
	 f(C ′

1, . . . , Cn) .

3. If the semantic mapping is structural and its defining operators f̃ , for all f ∈ G , have
relaxed compositionality, then the framework has compositionality:

Proof. Without loss of generality, let i = 1; for all C1, . . . , Cn, C ′
1 ∈ A and f ∈ G , we

11

Chapter 2. Background and Related Work

have

f(C1, . . . , Cn) 	 σ
(
f(C1, . . . , Cn)

)
= f̃

(
σ(C1), . . . , σ(Cn)

)
	 f̃

(
σ(C ′

1), . . . , σ(Cn)
)

= σ
(
f(C ′

1, . . . , Cn)
)
	 f(C ′

1, . . . , Cn) .

Expressiveness
In [21], a notion of glue expressiveness was proposed. To determine whether one set of glue
operators is more expressive than another, authors compared their respective sets of systems
composable from the same components. We consider three flavours of expressiveness. Given
a set of operators O ⊆ ⋃∞

n=0(Bn → B), we denote On = O ∩ (Bn → B).

Definition 2.1.1. The component-based framework (A, σ,) has strong expressiveness1

w.r.t. O iff,

for all B1, . . . , Bn ∈ B, for all o ∈ On, there exists õ ∈ G , such that
σ(õ(B1, . . . , Bn)) = o(B1, . . . , Bn) .

Definition 2.1.2. The component-based framework (A, σ,) has strong full expressiveness
w.r.t. O iff,

for all o ∈ On, there exists õ ∈ G , such that, for all B1, . . . , Bn ∈ B,
σ(õ(B1, . . . , Bn)) = o(B1, . . . , Bn) .

Definition 2.1.3. The component-based framework (A, σ,) has (weak) full expressiveness
w.r.t. O iff,

for all o ∈ On, there exists õ ∈ G [Z1, . . . , Zn], such that, for all B1, . . . , Bn ∈ B,
σ(õ[B1/Z1, . . . , Bn/Zn]) = o(B1, . . . , Bn) ,

where G [Z1, . . . , Zn] is the set of expressions on variables Z1, . . . , Zn obtained by hierarchically
applying the glue operators from G ; whereas õ[B1/Z1, . . . , Bn/Zn] ∈ A is the component
obtained by substituting in õ the variables Zi by components Bi, for all i ∈ [1, n].

One can make the following observations about the relations between expressiveness flavours:

• Strong full expressiveness is the strongest property: it implies both strong expressiveness
and weak full expressiveness.

• Weak full expressiveness and flattening together imply strong full expressiveness.
1It was called strong expressiveness preorder in [21].

12

2.2. Classical BIP

Proof. From weak full expressiveness we have

∀o ∈ On. ∃õ ∈ G [Z1, . . . , Zn]. ∀B1, . . . , Bn ∈ B.

σ(õ[B1/Z1, . . . , Bn/Zn]) = o(B1, . . . , Bn) .

Flattening allows to find a glue operator õ1 ∈ G , such that

õ1(B1, . . . , Bn) 	 õ[B1/Z1, . . . , Bn/Zn].

Thus,

∀o ∈ On. ∃õ1 ∈ G [Z1, . . . , Zn]. ∀B1, . . . , Bn ∈ B.

σ(õ1(B1, . . . , Bn)) = σ(õ[B1/Z1, . . . , Bn/Zn]) = o(B1, . . . , Bn) .

2.2 Classical BIP

BIP is a component framework for constructing concurrent systems by superposing three
layers of modelling: Behaviour, Interaction and Priority. BIP is based on the separation of
concerns between coordination and computation, which is essential for component-based
design of concurrent systems. This separation allows systems to be built from units processing
sequential code insulated from concurrent execution issues. The isolation of coordination
mechanisms allows global treatment and analysis. The BIP component framework has been
implemented in a language and a tool-set [14].

2.2.1 Classical semantics

In the classical BIP semantics [62, 19], components are modelled by Labelled Transition
Systems.

Definition 2.2.1. A component is a labelled transition system (LTS) B = (Q, P,−→), where
Q is a set of states, P is a set of ports and −→ ⊆ Q × 2P × Q is a set of transitions labelled
by sets of ports, such that only self-loops can be labelled by the empty set of ports, i.e.
(q, ∅, q′) ∈−→ implies q = q′. We call P the interface of B.

For q, q′ ∈ Q and a ∈ 2P , we write q
a−→ q′ iff (q, a, q′) ∈−→. A label a ∈ 2P is active in

a state q ∈ Q (denoted q
a−→), iff there exists q′ ∈ Q such that q

a−→ q′. We abbreviate
q � a−→ def= ¬(q a−→).

Intuitively, transitions labelled by ∅ represent idling: a component that remains idle should
not change state, hence the restriction to self-loops. Notice that we distinguish idling from
unobservable internal transitions, which we do not model explicitly. To model unobservable

13

Chapter 2. Background and Related Work

transitions, one can use a reserved label, e.g. τ or ε, and restrict the ways it can be
synchronised with other transitions. This is the approach traditionally taken in the literature
[82, 65].

Component equivalence is defined through a bisimulation relation.

Definition 2.2.2. Let B1 = (Q1, P1, −→1) and B2 = (Q2, P2, −→2) be two components, and
let R ⊆ Q1 × Q2 be a binary relation.

• R is a simulation iff, for all q1Rq2, q1
a−→1 q′

1 implies q2
a−→2 q′

2 for some q′
2 ∈ Q2 such

that q′
1Rq′

2.

• R is a bisimulation iff both R and R−1 are simulations.

Definition 2.2.3. Two components Bi = (Qi, Pi,−→i), for i = 1, 2, are equivalent if P1 = P2,
and B1 and B2 are bisimilar, i.e. there exists a bisimulation relation R ⊆ Q1 × Q2 total on
both Q1 and Q2.

Glue operators are defined using interaction and priority models. Their semantics are given
in terms of Structural Operational Semantics (SOS) rules [90] following a certain restricted
sub-format of GSOS [25]. The semantics of interaction models is given by rules involving
only positive premises, whereas that of priorities introduces additional negative premises.
The intuition behind is clear: an enabled interaction can be fired only if all higher-priority
interactions are disabled.

Note 2.2.4. In the rest of the thesis, whenever we speak of a set of components Bi =
(Qi, Pi, −→i), for i ∈ [1, n], we assume that all Pi and Qi are pairwise disjoint, i.e. i �= j

implies Pi ∩ Pj = Qi ∩ Qj = ∅. We denote P
def=

⋃n
i=1 Pi. We will drop the indices on

transition relations and denote them by −→, whenever the indices are clear from the context.

Definition 2.2.5. An interaction is a set of ports a ⊆ P .

Definition 2.2.6. An configuration is a set of interactions γ ⊆ 2P .

Definition 2.2.7. An interaction model is a configuration γ ⊆ 2P . The component
γ(B1, . . . , Bn) is defined by the LTS (Q, P,−→γ), with Q =

∏n
i=1 Qi and the transition

relation −→γ inductively defined by the rule

a ∈ γ
{

qi
a∩Pi−−−→ q′

i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
}

q1 . . . qn
a−→γ q′

1 . . . q′
n

, (2.10)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}.

Intuitively, this means that an interaction a allowed by the interaction model γ can be fired
when all components involved in a are ready to fire the corresponding transitions. All the

14

2.2. Classical BIP

components that are not involved in a remain in their current state. Notice that, when the
interaction model allows idling, i.e. ∅ ∈ γ, the composed component has a self-loop labelled
by ∅ in every state. The fact that components can have idling self-loops does not introduce
any ambiguity in the interpretation of (2.10), since, by Definition 2.2.1, q

∅−→ q′ implies q = q′.

Definition 2.2.8. For a component B = (Q, P,−→), a priority model is a strict partial order
(transitive and irreflexive relation) π ⊆ 2P × (2P \ {∅}) (we write a ≺ b as a shorthand for
(a, b) ∈ π). We put π(B) def= (Q, P,−→π), with the transition relation −→π inductively defined
by the rule

q
a−→ q′

{
q � b−→

∣∣∣ a ≺ b
}

q
a−→π q′

. (2.11)

Intuitively, this means that an interaction can be fired only if no higher-priority interaction
is enabled. Notice that we exclude the priority a ≺ ∅. Indeed, if idling is allowed by the
interaction model, it will always be possible, effectively suppressing interaction a in all states.
If this is the desired outcome, then a should rather be removed from the interaction model.
Furthermore, such a priority could induce a kind of “disguised deadlock”, when an interaction
is suppressed in favour of doing nothing (cf. also Lemma 2.2.13).

Note 2.2.9. The rules (2.10) and (2.11) defining the semantics of BIP operators require
that a partition

⋃n
i=1 Pi = P be defined, but not on the specific components B1, . . . , Bn.

We are now in position to introduce the BIP glue operators.

Definition 2.2.10. An n-ary BIP glue operator is a triple
(
(Pi)n

i=1, γ, π
)
, where (Pi)n

i=1 are

disjoint sets of ports and, denoting P
def=
⋃n

i=1 Pi, the remaining two elements γ ⊆ 2P and
π ⊆ γ × γ are, respectively, interaction and priority models on P . (In the remainder of the
thesis, we omit the sets of ports (Pi)n

i=1 when they are clear from the context.)

To simplify the notation, we denote the component obtained by applying the glue operator(
(Pi)n

i=1, γ, π
)

to sub-components B1, . . . , Bn, by πγ(B1, . . . , Bn). Furthermore, when π = ∅,
we write directly γ(B1, . . . , Bn), omitting π.

Notice that both interaction and priority models can be neutral. Indeed, a neutral interaction
model over the set of ports P is the set 2P of all possible interactions. A neutral priority
model is empty with none of the interactions having higher priority than any other. Thus,
both interaction and priority models are also considered as BIP glue operators on their own.

Example 2.2.11. Consider the two components B1 and B2 shown in Figure 2.1 (left) with
P1 = {p, q} and P2 = {r}, and put γ = {p, q, r, qr} and π = {q ≺ r}.2 The glue operator

2To simplify the notation, we use the juxtaposition γ = {p, q, r, qr} instead of the set notation γ ={
{p}, {q}, {r}, {q, r}

}
for interactions. Similarly, we directly write π = {q ≺ r} instead of π = {(q, r)}.

15

Chapter 2. Background and Related Work

p q

B1
p q

1 2 3

r

B2
r

1 2

p rq

πγ(B1, B2)

r q

p
r

rp

q

qr

32

31 22

21 12

11

Figure 2.1 – Components for Example 2.2.11.

defined by the combination of the interaction model γ and the priority model π is given by
the following four rules:

q1
p−→ q′

1

q1q2
p−→ q′

1q2
,

q2
r−→ q′

2
q1q2

r−→ q1q′
2

,
q1

q−→ q′
1 q2

r−→ q′
2

q1q2
qr−→ q′

1q′
2

,
q1

q−→ q′
1 q2 � r−→

q1q2
q−→ q′

1q2
. (2.12)

The composed component πγ(B1, B2) is shown in Figure 2.1 (right). The dashed arrow
21 q−→ 31 shows the transition present only in γ(B1, B2), but not in πγ(B1, B2). Solid arrows
show the transitions of πγ(B1, B2).

Among the transitions labeled by q, only the transition 22 q−→ 32 is enabled and not
21 q−→ 31. Indeed, the negative premise in the fourth rule of (2.12), generated by the priority
q ≺ r, suppresses the interaction q when a transition labeled r is possible in the second
component.

It is important to observe that the rules in (2.12) are obtained by composing rules of forms
(2.10) and (2.11). In particular, the fourth rule is obtained by the following derivation:

q ∈ γ q1
q−→ q′

1 q2 = q′
2

q1q2
q−→γ q′

1q′
2

r �∈ γ ∨ q2 � r−→

q1q2 � r−→γ

(*)

q1q2
q−→π q′

1q′
2

.
(2.13)

The sub-derivation (*) in (2.13) is obtained by negating the premises of the instance of (2.10)
with a = r. This is possible because the transition relation in γ(B1, B2) is defined by (2.10)
inductively, i.e. it is the minimal transition relation satisfying (2.10).

In (2.12), we have simplified (2.13) by removing premises, whereof satisfaction does not
depend on the state of the operand components: q ∈ γ (satisfied in all states) and r �∈ γ

(dissatisfied in all states), and by replacing q′
2 with q2. Notice that the priority q ≺ r affects

the behaviour of the composed system only because r ∈ γ. Indeed, if r did not belong to γ,
the premise r �∈ γ would always be satisfied independently of the state of the system.

16

2.2. Classical BIP

Notice that, after the simplification by removing the constant premises all rules used to
define the semantics of BIP glue operators follow the format (a restriction of GSOS [25]):

{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qj �
bk

j−−→
∣∣∣ j ∈ J, k ∈ Kj

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (2.14)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}, J, Kj ⊆ [1, n] and, for each j ∈ J and k ∈ Kj , bk
j ∈ 2P

j .
We refer to this format (2.14) as BIP-like SOS.

Let us now recall an important property of the BIP glue operators with the classical semantics,
which was originally shown in [62]: the application of a priority model does not introduce
deadlocks.

Definition 2.2.12. For a component B = (Q, P,−→), a state q ∈ Q is a deadlock iff
∀a ⊆ P, q � a−→.

Lemma 2.2.13 ([62]). Let Bi = (Qi, Pi,−→), for i ∈ [1, n], be a set of components, γ and
π be respectively interaction and priority models on P =

⋃n
i=1 Pi. A state q ∈ ∏n

i=1 Qi is a
deadlock in πγ(B1, . . . , Bn) if and only if it is a deadlock in γ(B1, . . . , Bn).

Proof. The “if” implication is trivial. To prove the “only if” implication, assume that, for
some a ∈ γ, we have q

a−→γ . Let b ⊆ P be an interaction, maximal w.r.t. π, such that b ∈ γ,
a ≺ b and q

b−→γ . If such b exists, holds q
b−→π. Otherwise holds q

a−→π. In both cases, q is not
a deadlock in πγ(B1, . . . , Bn).

Notice that this proof does not rely on π being a strict partial order. The lemma can be
generalised to any acyclic relation π ⊆ γ × γ.

2.2.2 Representations of interaction model

In this subsection, we briefly recall the syntax and the semantics of different representations
of the BIP interaction model. All representations are parametrised by a set of ports P .
Below, we assume that a set of ports P is given, such that 0, 1 �∈ P .

Algebra of Interactions
The Algebra of Interactions is an auxiliary representation which is used to define the
interaction semantics of other algebras. The elements of this algebra can be bijectively
mapped to interaction models, i.e. subsets of 2P .

Syntax. The syntax of the Algebra of Interactions, AI(P), is defined by the following
grammar:

x ::= 0 | 1 | p ∈ P | x · x | x + x , (2.15)

17

Chapter 2. Background and Related Work

where ‘+’ and ‘·’ are binary operators, respectively called union and synchronisation. Syn-
chronisation binds stronger than union.

As follows from the interaction semantics given below, the additive identity element 0
represents blocking, since it does not authorise any interaction. The multiplicative identity
element 1 corresponds to the empty interaction, which represents idling (see the discussion
after Definition 2.2.1).

Semantics. The semantics of AI(P) is given by the function ‖ · ‖ : AI(P) → 22P :

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
{
{p}
}

,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,

‖x1 · x2‖ =
{

a1 ∪ a2

∣∣∣ a1 ∈ ‖x1‖, a2 ∈ ‖x2‖
}

,

(2.16)

for p ∈ P , x1, x2 ∈ AI(P). Terms of AI(P) represent sets of interactions between the ports
P .

The corresponding equivalence relation on AI(P) is defined as follows: two terms x, y ∈ AI(P)
are equivalent x 	 y iff ‖x‖ = ‖y‖. Sound and complete axiomatisation of AI(P) with
respect to the semantic equivalence is provided in [19]. In a nutshell, (AI(P), +, ·, 0, 1) is a
commutative semi-ring idempotent in both + and ·.

The semantics of the following representations are defined through the Algebra of Interactions:
for a representation A(P), its semantics is defined by the function |·| : A(P) → AI(P). The
function ‖·‖ : A(P) → 22P is obtained by the composition of |·| : A(P) → AI(P) and
‖·‖ : AI(P) → 22P . For the following representations, equivalence relations induced by ‖·‖
and |·| coincide, since the axiomatisation of AI(P) is sound and complete with respect to 	.

Algebra of Connectors
The Algebra of Connectors provides an algebraic formalisation for structuring the interaction
models. It underlies the graphical notation (e.g. Figure 2.2) and the syntax of the Algebra
of Connectors is used in the BIP language.

Syntax. The syntax of the Algebra of Connectors, AC(P), is defined by the following
grammar:

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x + x ,

(2.17)

for p ∈ P , and where ‘+’ is a binary operator called union, ‘·’ is a binary operator called

18

2.2. Classical BIP

fusion, and brackets ‘[·]’ and ‘[·]′’ are unary typing operators. Fusion binds stronger than
union.

Union has the same meaning as union in AI(P). Fusion is a generalisation of the synchro-
nisation in AI(P). Typing is used to form typed connectors: ‘[·]’ defines synchrons that
require synchronisation with other ports in order to interact and ‘[·]′’ defines triggers that
can initiate an interaction.

In order to simplify the notation, we will omit brackets on 0, 1, and ports p ∈ P , as well as
‘·’ for the fusion operation.

Definition 2.2.14. In a system with a set of ports P , connectors are elements of AC(P).

The operations of the Algebra of Connectors satisfy the following axioms.

• Union ‘+’ is associative, commutative, idempotent and has the identity element 0.

• Fusion ‘·’ is associative, commutative and has the identity element 1. It is idempotent
on monomial connectors, i.e., for any x ∈ AC(P), not involving the union operation,
we have x · x = x.

• Typing ‘[·]∗’ satisfies the following axioms, for x, y, z ∈ AC(P) and [·]α, [·]β ∈
{
[·]′, [·]

}
arbitrary typings (trigger or synchron):

1. [0] = [0]′,
2. [[x]α]β = [x]β,
3. [x + y]α = [x]α + [y]α,
4. [x]′[y]′ = [x]′[y] + [x][y]′.

Complete axiomatisation of AC(P) with respect to the semantic equivalence is provided in
[20].

Semantics. The semantics of AC(P) is given by the function | · | : AC(P) → AI(P) (we use
the

∑
and

∏
notation for the union and fusion of multiple terms of AC(P)):

|[p]| = p , |x1 + x2| = |x1| + |x2| ,
∣∣∣∣∣

n∏
i=1

[xi]
∣∣∣∣∣ =

n∏
i=1

|xk| , (2.18)∣∣∣∣∣∣
n∏

i=1
[xi]′

m∏
j=1

[yj]

∣∣∣∣∣∣ =
n∑

i=1
|xi|

⎛⎝∏
k �=i

(
1 + |xk|

) m∏
j=1

(
1 + |yj |

)⎞⎠, (2.19)

for n > 0, m ≥ 0, x1, . . . , xn, y1, . . . , ym ∈ AC(P) and p ∈ P ∪ {0, 1}.

Example 2.2.15. Consider a system consisting of three components: a sender with port p

and two receivers with ports q and r, respectively. We illustrate with the following examples
the specification of various interaction patterns.

19

Chapter 2. Background and Related Work

p q r

(a) Rendezvous pqr

p q r

(b) Broadcast p′qr

p q r

(c) Atomic broadcast p′[qr]

p q r

(d) Causal chain p′[q′r]

Figure 2.2 – Basic connector examples.

• Rendezvous between the components defines strong synchronisation and it is specified
by a single interaction pqr involving all components.

• Broadcast defines weak synchronisation among the sender and any number of the
receivers: {p, pq, pr, pqr}.

• Atomic broadcast ensures that either all or none of the receivers are involved in the
interaction: {p, pqr}.

• Causal chain ensures that second receiver can participate in the interaction only if the
first one participates: {p, pq, pqr}.

Figure 2.2 shows four graphical representations of connectors for the interaction patterns
above. Triggers are denoted by triangles, whereas synchrons are denoted by bullets. The
syntax of the four connectors is given in the sub-figure captions.

Algebra of Causal Interaction Trees
The Algebra of Causal Interaction Trees serves as pivot for transformations between all
other algebraic representations. It makes explicit the causal dependencies between ports
contributing to the interactions. In particular, this algebra allows efficient computation of
the Boolean representation for connectors and, conversely, the synthesis of connectors from
Boolean formulas.

Syntax. The syntax of the Algebra of Causal Interaction Trees, T(P), is given by the
following grammar:

t ::= a | a → t | t ⊕ t , (2.20)

where a ∈ AI(P) is an interaction, i.e. 0, 1 or a synchronisation of ports (without the
use of the union operator), and ‘→’ and ‘⊕’ are respectively the causality and the parallel
composition operators. Causality binds stronger than parallel composition. Notice that a
causal interaction tree can have several roots.

“Atomic” strongly synchronised interactions in the nodes of a causal interaction tree are
the building blocks for the interactions provided by the connector. The causality operator
defines a dependency between two interactions: a → b means that for b to participate in

20

2.2. Classical BIP

the overall interaction, a must also participate. The parallel composition allows to combine
interactions without introducing dependencies: any combination of a and b can participate
in a ⊕ b.

The causality operator is right- (but not left-) associative, for interactions a1, . . . , an, we
have a1 → (a2 → (· · · → an) . . .)) = a1 → a2 → · · · → an. We call this construction a causal
chain.

Semantics. The semantics of T(P) is given by the function | · | : T(P) → AI(P):

|a| = a , |a → t| = a
(
1 + |t|

)
, |t1 ⊕ t2| = |t1| + |t2| + |t1| |t2| , (2.21)

where a ∈ 2P ∪ {0, 1} is an interaction and t, t1, t2 ∈ T(P).

A sound axiomatisation of T(P) is provided in [22].

Propositional Interaction Logic
The Propositional Interaction Logic (PIL), studied in [20, 22], is a Boolean algebra used to
characterise interactions between components.

Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P .

Conjunction and implication are defined as usual:

φ1 ∧ φ2
def= (φ1 ∨ φ2) ;

φ1 ⇒ φ2
def= φ1 ∨ φ2 .

To simplify the notation, we omit conjunction in monomials, e.g. writing pqr instead of
p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following satisfaction relation.
For an interaction a ⊆ P we define a |=i=φ iff φ evaluates to true for the valuation p = true,
for all p ∈ a, and p = false, for all p �∈ a. | · | : PIL(P) → AI(P), where PIL(P) is the
Boolean algebra over the set of port variables P , is defined by |φ| def=

∑
a|=

i=φ
a the union (in

terms of the Algebra of Interactions) of the interactions satisfying φ.

The operators meet the usual Boolean axioms. The equivalence 	 induced by | · | coincide
with the Boolean equivalence.

An interaction a can be associated to a characteristic monomial ma =
∧

p∈a p ∧∧p�∈a p such
that a′ |=i=ma iff a′ = a.

21

Chapter 2. Background and Related Work

Example 2.2.16. The interaction patterns from Example 2.2.15 can be expressed in PIL
as follows:

• Strong synchronisation is represented by the monomial pqr.

• Broadcast is represented by the formula p, which can be expanded to pqr∨pqr∨pqr∨pqr.

• Atomic broadcast can be characterised by the formula pq r ∨ pqr.

• Causal chain can be characterised by the formula (r ⇒ q) ∧ (q ⇒ p), which can be
expanded to pq r ∨ pqr ∨ pqr.

Definition 2.2.17. For an interaction model γ ⊆ 2P over a set of ports P , its characteristic
predicate is a disjunction of characteristic monomials for all interactions in γ:

φγ =
∨
a∈γ

(∧
p∈a

p ∧
∧
p�∈a

p
)
.

A predicate φ uniquely defines an interaction model γφ such that ‖φ‖ = γφ.

Systems of Causal Rules
Systems of Causal Rules represent an intermediate structure between causal interaction trees
and PIL formulas. They directly encode the causality information explicit in the causal
interaction trees, by transforming causality relations into dual Horn clauses. Apart from
supporting connector synthesis, they provide a convenient way for expressing properties to be
enforced by the glue operators. Causal rules have also served as basis for the macro-notation
used to specify the glue in Dy-BIP—a dynamic flavour of BIP [29].

Definition 2.2.18. A causal rule is a PIL formula of the form E ⇒ C. The effect E is
either a constant true or a port variable p ∈ P . The cause C is either a constant, true or
false, or a disjunction of interactions, i.e.

∨n
i=1 ai where, for all i ∈ [1, n], ai are conjunctions

of positive port variables.

Note 2.2.19. Notice that a1 ∨ a1 a2 = a1, and therefore causal rules can be simplified by
replacing p ⇒ a1 ∨ a1 a2 with p ⇒ a1. We assume that all causal rules be simplified by this
absorption rule.

Definition 2.2.20. A system of causal rules is a set R = {p ⇒ xp}p∈P ∪{true}. The meaning
of the system of causal rules R coincide with the meaning of the PIL formula obtained by
conjunction of causal rules in R, i.e. | · | : CR(P) → AI(P), where CR(P) is the set of all
systems of causal rules over the set of port variables P , is defined by: |R| = |φR| =

∑
a|=

i=φR

a,

where φR =
∧

p∈P ∪{true}(p ⇒ xp).

22

2.2. Classical BIP

Transformations between representations of interaction models

Transformations AC(P)
τ
�
σ

T(P), T(P)
R
� CR(P) and CR(P) � PIL(P) were defined in [22]

and have been shown to respect 	. Below, we briefly recall them.

τ : AC(P) → T(P) is defined recursively by putting

τ(p) = p , τ

(
[x]′

n∏
i=1

[yi]
)

= τ(x) →
n⊕

i=1
τ(yi) , τ

(
[x1]′[x2]′

)
= τ(x1) ⊕ τ(x2) ,

τ
(
[y1][y2]

)
=

m1⊕
i=1

m2⊕
j=1

a1
i a2

j →
(
t1
i ⊕ t2

j

)
, where τ(yk) =

mk⊕
i=1

ak
i → tk

i , for k = 1, 2 .

σ : T(P) → AC(P) is defined recursively by putting

σ(a) = [a] , σ(a → t) = [a]′ [σ(t)] , σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (2.22)

R : T(P) → CR(P) is defined by putting

R(t) = {p ⇒ cp(t)}p∈P ∪{true} , (2.23)

where the function cp : T(P) → B[P] is defined recursively as follows. For a ∈ 2P (with
p �∈ a) and t, t1, t2 ∈ T(P), we put

cp(0) = false , ctrue(0) = false ,

cp(p → t) = true , ctrue(1 → t) = true ,

cp(pa → t) = a , ctrue(a → t) = a ,

cp(a → t) = a ∧ cp(t) ,

cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2) , ctrue(t1 ⊕ t2) = ctrue(t1) ∨ ctrue(t2) .

Observe that this transformation associates to each port p ∈ P a causal rule p ⇒ C, where C

is the disjunction of all prefixes leading from roots of t to some node containing p, including
the ports of this node other than p.

The transformation CR(P) → T(P) consists of two steps. First, we saturate the system of
causal rules. Definition 2.2.21, below, defines the notion of a saturated system for causal
rules formally. Intuitively, saturation consists in making all causal rules self-contained in
terms of information about the constraints imposed by the system.

Definition 2.2.21. A system of causal rules {pi ⇒ xi}n
i=1 is saturated iff, for all i ∈ [1, n],

xi = xi[xj/pj], where xi[xj/pj] is obtained by substituting xj for pj in xi, for all j �= i.

For a given system of causal rules R = {pi ⇒ xi}n
i=1, we denote by RS the corresponding

saturated system.

23

Chapter 2. Background and Related Work

In [22] it was shown that R and the corresponding RS are equivalent.

Given a saturated system of causal rules RS = {p ⇒ xp}p∈P ∪{true} with xp =
∨mp

i=1 ap
i , we

build an auxiliary set

Y = {pap
i | p ∈ P, i ∈ [1, mp]} ∪ {atrue

i | i ∈ [1, mtrue]} (2.24)

by taking all monomials from the causes of the rules conjuncted with the corresponding
effects. As shown in [22], this set comprises all “atomic” interactions allowed by the system
of causal rules, sets of ports that can only appear together within a valid interaction. An
inclusion tree, built from the elements of the set Y , is a corresponding causal tree for the
system of causal rules.

The transformation CR(P) → PIL(P) is straightforward: for a given system of causal rules
R = {pi ⇒ xi}n

i=1, the corresponding PIL formula is
∧n

i=1(pi ⇒ xi).

The transformation PIL(P) → CR(P) consist in boolean transformations of the PIL formula
to the format similar to causal rules. In order to compute the causal rules for a given PIL
formula ϕ, we take its conjunctive normal form (CNF) ϕ = C1 ∧ C2 ∧ · · · ∧ Cn with, for
k ∈ [1, n], Ck =

∨
i∈Ik

pi ∨ ∨j∈Jk
pj , where Ik ∩ Jk = ∅, and pi, pj ∈ P for all i ∈ Ik and

j ∈ Jk. Then, we rewrite every clause Ck, with Jk �= ∅, as a disjunction of dual Horn
clauses Ck =

∨
j∈Jk

(
pj ∨∨i∈Ik

pi

)
. By distributivity, we obtain a representation of ϕ as a

disjunction of dual Horn formulas and, after combining the clauses with the same negative
variable, ϕ = R1 ∨ R2 ∨ · · · ∨ Rm with, for k ∈ [1, m],

Rk =
∧

i∈Ĩk

⎛⎜⎝pi ∨
∨

j∈J̃k,i

aj

⎞⎟⎠ =
∧

i∈Ĩk

⎛⎜⎝pi ⇒
∨

j∈J̃k,i

aj

⎞⎟⎠ ,

where, for all i ∈ Ĩk, pi ∈ P t and, for all j ∈ J̃k,i, aj is false, true, or a conjunction of positive
variables. For a positive clause Ck =

∨
i∈Ik

pi (Jk = ∅), we have Ck = (true ⇒ Ck) and
p = (p ⇒ false). Thus, each Rk is a system of causal rules. Notice that this transformation
returns a set of systems of causal rules from a single PIL formula.

2.3 Offer Semantics for BIP

In [23], authors proposed a modification of the BIP glue that keeps the information about the
active ports of atomic (see Definition 2.3.1 below) components throughout the composition
process. In order to have a structural semantics for this modification, the notion of component
was enriched.

Definition 2.3.1. An extended component is a quadruple B = (Q, P,−→,↑), where (Q, P,−→)
is an LTS and ↑ is an offer predicate on Q × P , such that q↑p holds (a port p ∈ P is offered
in a state q ∈ Q) whenever there is a transition from q containing p, that is (∃a ∈ 2P : p ∈

24

2.3. Offer Semantics for BIP

a∧q
a−→) ⇒ q↑p. If the converse implication also holds, i.e. (∃a ∈ 2P : p ∈ a∧q

a−→) ⇐⇒ q↑p,
we call the extended component atomic.

The offer predicate extends to sets of ports: for a ∈ 2P , q ↑ a
def=
∧

p∈a q ↑ p. Notice that

q↑∅ ≡ true. We denote q � ↑a
def= ¬(q↑a) =

∨
p∈a q � ↑p.

Notice that, for any component, an offer predicate can be defined that makes it atomic
[23]. Thus, our notion of atomicity is weaker than the intuitive one. For instance, if a
composed component is obtained by putting in parallel two atomic components without
any coordination constraints, we consider it as one atomic component. In other words, we
use the offer predicate to make explicit part of the information about the transitions of the
atomic components that is lost when these are composed by a restrictive operator.

Definition 2.3.2. Two extended components Bi = (Qi, Pi,−→i,↑i), with i = 1, 2, are
equivalent if P1 = P2 and there exists a bisimulation relation R ⊆ Q1 × Q2, total on both Q1

and Q2, such that the offer predicates coincide on bisimilar states, i.e. for all (q1, q2) ∈ R

and p ∈ P1, holds q1 ↑1 p ⇔ q2 ↑2 p.

In [23], a more general set of composition operators have been considered. They are defined
by the rules in the following format:

{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qk � ↑bl
k

∣∣∣ k ∈ K, l ∈ Lk

} {
qj ↑cj

∣∣∣ j ∈ J
}

q1 . . . qn
a−→ q′

1 . . . q′
n

,

(2.25)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}, J, K, Lk ⊆ [1, n] and cj ∈ 2P
j , bl

k ∈ 2P
k , for all j ∈ J , k ∈ K

and l ∈ Lk. In (2.25), there are three types of premises respectively called firing, negative and
activation premises. Firing and activation premises are collectively called positive. Notice
that q ↑ c1 ∧ q ↑ c2 = q ↑ c1c2. Hence one activation premise per component is sufficient to
define any inference rule.

The above set of composition operators can be translated into BIP terms by generalising
interaction models. For a set of ports P , we denote Ṗ

def= {ṗ | p ∈ P} and P
def= {p | p ∈ P}.

We call the elements of P , Ṗ and P respectively activation, firing and negative port typings.

Definition 2.3.3. An extended interaction is a subset a ⊆ P ∪Ṗ ∪P . An extended interaction
model is a set of extended interactions γ ⊆ 2P ∪Ṗ ∪P .

For a given extended interaction a, we define the following sets of ports:

• act(a) def= a ∩ P , the activation support of a,

• fire(a) def= {p ∈ P | ṗ ∈ a}, the firing support of a,

25

Chapter 2. Background and Related Work

• neg(a) def= {p ∈ P | p ∈ a}, the negative support of a.

Extended interactions allow us to incorporate priorities into interaction models and, therefore,
also extend the theory of algebraic representations of interaction models to encompass
priorities.

Definition 2.3.4. Let Bi = (Qi, Pi, −→,↑)3, with i ∈ [1, n] and P =
⋃n

i=1 Pi, be a set of
components. Let γ ⊆ 2P ∪Ṗ ∪P be an extended interaction model. The composition of {Bi}n

i=1

with γ is a component γ(B1, . . . , Bn) def= (Q, P,−→γ ,↑γ) with Q =
∏n

i=1 Qi, the offer predicate
↑γ defined, for all p ∈ P , by putting q1 . . . qn ↑γ p

def⇐⇒ ∃i ∈ [1, n] : qi ↑p and the transition
relation −→γ inductively defined by the rule

a ∈ γ
{

qi
fire(a)∩Pi−−−−−−→ q′

i

}
i∈I

{
qi = q′

i

}
i�∈I{

qi ↑
(
act(a) ∩ Pi

)}n

i=1

{
qi � ↑p

∣∣∣ p ∈ neg(a) ∩ Pi

}n

i=1

q1 . . . qn
fire(a)−−−−→γ q′

1 . . . q′
n

,
(2.26)

where I = {i ∈ [1, n] |fire(a) ∩ Pi �= ∅}.

It is clear, by comparing (2.25) and (2.26), that any BIP glue operator with the offer
semantics can be represented by an interaction model with extended interactions.

It is important to observe that, as stated by Lemma 2.3.5 below, sets of interactions can
have redundancies.

Lemma 2.3.5. Let γ1 ⊆ 2P ∪Ṗ ∪P be a set of extended interactions, γ2 = γ1 ∪ {a}, with
a ⊆ P ∪ Ṗ ∪ P such that there exists an interaction b ∈ γ1, b ⊆ a and fire(b) = fire(a).
Then γ1(B1, . . . , Bn) = γ2(B1, . . . , Bn).

Proof. According to rule (2.26) any transition generated by the extended interaction a can
also be generated by the extended interaction b. Thus, a does not impact the behaviour of
the composed system, and γ1(B1, . . . , Bn) = γ2(B1, . . . , Bn).

Intuitively, this lemma states that any extended interaction allowing the same transition
in the composed component as another extended interaction, but under more restrictive
conditions, cannot impact the composed system and, therefore, can be removed from the
extended interaction model.

An algebra of Boolean formulas B[P, Ṗ] over activation variables P and the firing variables
Ṗ was proposed as a representation of the extended interaction model in [23]. The algebra
has the additional axiom:

ṗ ⇒ p, for all p ∈ P . (2.27)
3 As in Remark 2.2.4, we omit the indices on ↑ , whenever they are clear from the context.

26

2.4. Related Work

Note 2.3.6. A valuation of an activation variable p ∈ P indicates whether the port p is
active, i.e. the corresponding component has an enabled transition containing p in its label,
whereas a valuation of a firing variable ṗ ∈ Ṗ indicates whether the corresponding port p

will participate in the next interaction. A formula in B[P, Ṗ] defines the constraints on the
firing of ports, based on their activation: in a given global state of the system, the valuations
of the activation variables are determined by the enabled transitions of the components; a
valuation of the firing variables that complements the valuation of the activation ones in such
a manner, that the overall valuation satisfies the formula, defines an admissible interaction
(for formal presentation, see [23]). Obviously, a port cannot participate in an interaction if it
is not active, justifying axiom (2.27).

For an interaction a = {ṗi}i∈I ∪{pj}j∈J ∪{pk}k∈K , the characteristic monomial is associated

ϕa
def=

∧
i∈I

ṗi ∧
∧

i∈P \I

ṗi ∧
∧
j∈J

pj ∧
∧

k∈K

pk . (2.28)

A formula associated to a glue operator is then the disjunction of formulas associated to
interactions defining the extended interaction model.

Notice that the formulas that we obtain in this manner are in firing-full Disjunctive Normal
Form (DNF), i.e. each firing variable appears in a positive or negative form in each monomial.
The firing variables that appear in the negative form are precisely those, for which the
respective ports do not appear in the firing premises of the corresponding rule.

In the opposite direction, given a formula ϕ ∈ B[P, Ṗ], we consider its firing-full DNF where
each monomial represents an extended interaction.

Definition 2.3.7. Let γ ⊆ 2P ∪Ṗ ∪P be an extended interaction model. Its characteristic
predicate ϕγ : B[P, Ṗ] → B is defined by

ϕγ
def=

∨
a∈γ

(∧
p∈fire(a)

ṗ ∧
∧

p�∈fire(a)
ṗ ∧

∧
p∈act(a)

p ∧
∧

p∈neg(a)
p
)

2.4 Related Work

2.4.1 Expressiveness of glue

A number of paradigms for unifying component composition have been studied in [11, 12, 52].
These achieve unification by reduction to a common low-level semantic model. Coordination
mechanisms and their properties are not studied independently of behaviour. This is also
true for the numerous compositional and algebraic frameworks [55, 92, 96, 16, 65, 82, 79]. A
comparative survey of various coordination languages has been carried out in [87]. Most of
these frameworks are based on a single operator for concurrent composition. This entails

27

Chapter 2. Background and Related Work

poor expressiveness, which results in overly complex architectural designs. In contrast,
BIP allows expression of general multiparty interaction and strictly respects separation of
concerns. Coordination can be studied as a separate entity that admits a simple Boolean
characterisation that is instrumental for expressing composability.

A first framework formally capturing meanings of expressiveness for sequential programming
languages and taking into account not only the semantics but also the primitives of languages
was provided in [53]. It allows formal reasoning about and distinguishing between core
elements of a language and syntactic sugar. Although a number of studies have taken a similar
approach in the context of concurrency, we will only point to [61] and the references therein.
The key difference of our approach lies in the strong separation between the computation
and coordination aspects of the behaviour of concurrent systems. Indeed, we consider that
all sequential computation resides within the components of the system that are not subject
to any kind of modification. Thus, we focus on the following question: what system behaviour
can be obtained by coordination of a given set of concurrent components? In particular, this
precludes the expression of parallel composition by choice operators, as in the expansion law
[82]. Such notion of expressiveness was proposed in [21].

An extensive overview of SOS formats is provided in [85], including some results comparing
their expressiveness. More results comparing different formats of SOS can be found in [84].
The expressiveness property is closely related to the translation between languages. One of
the definitions of encoding compared with other approaches can be found in [98]. It should
be noted, however, that the above mentioned separation of concerns principle also leads to a
very simple rule format. Indeed, the format that we consider is a small subset of GSOS. Our
focus is more on the expressiveness of coordination mechanism provided by BIP, than on
that of the various SOS rule features.

Though it is not the focus of this thesis, it is also important to mention works comparing BIP
with various connector frameworks. A comparative study of three connector frameworks—tile
model [32], wire calculus [95] and BIP [15]—was presented in [34]. Recent work [49] relates
BIP and Reo. Due to the fact that BIP glue is stateless, it was extended with coordinating
components in order to encode Reo connectors, thus relating Reo connectors with BIP
architectures. From the operational semantics perspective, all these comparisons only take in
account operators with positive premises. In particular, priority in BIP is not considered. It
would be interesting to see whether using “local” offer predicate instead of “global” priorities
of the classical BIP could help generalising this work.

The approach used in [22] for the Boolean encoding of connectors is close to that used for
computing flows in Reo [4] connectors in [43], where it is further extended to data flow. In [70],
the authors discuss the extension of the coloring semantics of Reo [41] from the 2-colouring
to the 3-colouring model. This extension is necessary to account for context-dependencies.
For example, as suggested by its name, a LossySync channel can loose data provided on
its source end. However, the semantics of Reo channels requires that this happens only if
there is no take requests on the sink end of the channel. Context-dependency is encoded by

28

2.4. Related Work

Table 2.1 – Correspondence between valuations of port variables in BIP and colours in the
3-colouring model of Reo.

p ṗ BIP Reo
true true active and firing data flows
true false active, but not firing no flow due to absence of take requests
false false not active no flow due to absence of write requests

duplicating all connector nodes: to each base node they associate a dual context node with
complementary flow constraints. This is very similar to our use of firing and negative port
typings to encode priority. Furthermore, in [70], one reads: “Whereas 2-coloring models can
express synchronisation, they cannot express context-dependency: to model context-sensitive
connectors, three colors seem necessary.” This observation reflects very closely our use
of the additional axiom ṗ =⇒ p in B[P, Ṗ]. Indeed, this axiom excludes the valuation
ṗ = true, p = false, leaving only three possible valuations of the two variables. It seems that
the correspondence between BIP notions of activation and firing and colours in the Reo
3-colouring model can be established as summarised in Table 2.1. This suggests that our
notion of activation port typings could also be used in Reo to define nodes that allow the
flow of data only if data is available (but will not be consumed) on an additional “control”
channel. The authors of [27] model context-dependency with a subclass of guarded automata.
Transition labels of these automata consist of two parts: a guard that requires ports to be
offered or not offered and a set of firing ports. Two properties required from labels, namely
reactivity and uniformity, correspond, respectively, to the axiom ṗ =⇒ p and Lemma 2.3.5.

Connector synthesis for the offer semantics, presented in Section 3.4, is an extension of
the procedure in [22]. Other methodologies for synthesis of component coordination have
been proposed in the literature, e.g. connector synthesis in [6, 8, 67]. Both approaches are
very different from ours. In [6], Reo circuits are generated from constraint automata [10].
This approach is limited, in the first place, by the complexity of building the automaton
specification of interactions. An attempt to overcome this limitation is made in [8] by
generating constraint automata from UML sequence diagrams. In [67], connectors are
synthesised in order to ensure deadlock freedom of systems that follow a very specific
architectural style imposing both the interconnection topology and communication primitives
(notification and request messages). Our approach, focuses on the properties (expressed as
glue constraints) that do not bear computation, which allows us to reduce a very hard and,
in general, undecidable problem of synthesising controllers [91] to a tractable one.

Finally, we should mention that the offer predicate used in our formalism has, indeed, some
similarity with the concept of barbs [83]. Although, in [83], the barbs do not appear to be
used in the premises of the SOS rules defining the semantics of the processes, it would be
interesting to further explore this relation.

29

Chapter 2. Background and Related Work

2.4.2 Architecture modelling

Various architecture description languages have been proposed for architecture modelling,
for example [71, 31, 2, 86, 99, 1]. However, some of them do not even have formal semantics
and none of them consider a question of architecture composability. Existing research on
architecture composability deals mainly with resource composability for particular types
of architectures, e.g. [79]. The feature interaction problem is how to rapidly develop and
deploy new features without disrupting the functionality of existing features. It can be
considered as an architecture composability problem to the extent that features can be
modelled as architectural constraints. A survey on feature interaction research is provided
in [35]. Existing results focus mainly on modelling aspects and checking feature interaction
by using algorithmic verification techniques with well-known complexity limitations. Our
work takes a constructive approach. It has some similarities to [63] which presents a formal
framework for detecting and avoiding feature interactions by using priorities. Nonetheless,
these results do not deal with property preservation through composition. Similarly, existing
work on service interaction mainly focuses on modelling and verification aspects, e.g. [47, 77].
In [48], it is shown that under mild assumptions composition of Reo connectors coincides with
architecture composition, thus allowing one to extend the results of property preservation to
the Reo context.

Among the formal approaches for representing and analysing architecture descriptions, we
distinguish two main categories:

• Extensional approaches, where one explicitly defines every object that is needed for the
specification, i.e. the connections inducing interactions among the components. All
connections, other than the ones specified, are excluded. Most architecture description
languages, for instance SOFA [71], Wright [2], XCD [86], adopt this approach.

• Intentional approaches, where one does not explicitly specify all the connections among
the components, but these are derived from a set of logical constraints, formulating the
intentions of the designer. Specifications are defined as conjunctions of logical formulas.
This approach is taken in [39] and it is often used for characterising architecture styles,
for example [58].

The modelling of architectures presented in Chapter 4 allows using both extensional and
intentional approaches and configuration logics described in Chapter 5 can even combine
them in a single specification of an architecture style.

An architecture style typically specifies a design vocabulary, constraints on how that vocab-
ulary is used and semantic assumptions about that vocabulary [57]. Constraints may be
about the allowed interactions between components, e.g. strong synchronisation between
components. Semantic assumptions concern the behaviour of the involved components, e.g.
loss-less channel, server etc.

30

2.4. Related Work

A plethora of approaches exist for characterising architecture styles. For instance, patterns are
very commonly used for this purpose. Patterns in [46, 66] incorporate explicit constructs for
architecture modelling. Nonetheless, they lack formal semantics and they are not amenable
to analysis.

Configuration logics presented in Chapter 5 has similarities, but also significant differences,
with the use of Alloy [69] and OCL [100] for intentional specification of architecture styles,
respectively, in ACME and Darwin [58, 60] and in UML [28]. Our approach achieves a strong
semantic integration between architectures and architecture styles. Moreover, configuration
logic allows a fine characterisation of the coordination structure by using n-ary connectivity
predicates. On the contrary, the connectivity primitives in [58, 60, 100] are binary predicates
and cannot tightly characterise coordination structures involving multiparty interaction. To
specify an n-ary interaction, these approaches require an additional entity connected by n

binary links with the interacting ports. Since the behaviour of such entities is not part of
the architecture style, it is impossible to distinguish, e.g., between an n-ary synchronisation
and a sequence of n binary ones.

Both Alloy and OCL rely on first-order logics extended with some form of the Kleene closure
operator that allows to iterate over a transitive relationship. In particular, this operator
allows defining reachability among components. It is known that the addition of the Kleene
closure increases the expressive power w.r.t. a first-order logic [72]. To the best of our
knowledge, the expressiveness relation between a first-order logic extended with Kleene
closure and a corresponding monadic second-order logic remains to be established.

A large body of literature studies transformations or reconfigurations of architectures.
Although this work focuses mainly on dynamic reconfiguration of architectures, they can be
used to extensionally define architecture styles: a style admits all the configurations that
can be obtained by reconfigurations. In [40, 42, 38], the authors propose reconfiguration
logic for Reo connectors. Authors of [33, 73, 75] use graph grammars, originating in [64, 76],
to define reconfigurations of architectures. The main limitations, outlined already in [76],
are the following: 1) the difficulty of understanding the architecture style defined by a
grammar; 2) the impossibility of combining several styles in a homogeneous manner; 3) graph
grammars are restricted to be context-free, making impossible the specification of certain
styles (e.g. trees with unbounded number of components or interactions, square grids). To
some extent, the latter two are addressed, respectively, by considering architecture views
[88] and synchronised hyperedge replacement [54] or context-sensitive grammars [51, 102].

31

3 Expressiveness of BIP Glue

BIP glue in the classical semantics does not possess all desired properties defined in Sec-
tion 2.1. It has incrementality: a composed system πγ(B1, B2, . . . Bn) can be represented
as πγ(B1, π′γ′(B2, . . . Bn)), where γ′ = {a \ P1 | a ∈ γ}, P1 is the interface of B1 and π′ is
empty. The classical BIP semantics defined by (2.10) and (2.11) is structural. Furthermore,
since both rule schemata follow the GSOS format, they preserve bisimilarity [25], i.e. the
classical BIP semantics has relaxed compositionality and, consequently, compositionality.

Example 3.1.1, below, shows that BIP glue operators in the classical semantics do not possess
flattening: in general, when combined hierarchically BIP glue operators in the classical
semantics cannot be flattened w.r.t. any bisimilarity-compatible equivalence.

The same Example 3.1.1 shows that BIP glue in the classical semantics does not have strong
full expressiveness w.r.t. BIP-like SOS (2.14) either. The hierarchy of BIP glue operators in
Example 3.1.1 can be defined by a set of rules in the format (2.14)

{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qj �
bk

j−−→
∣∣∣ j ∈ J, k ∈ Kj

}
q1 . . . qn

a−→ q′
1 . . . q′

n

,

but cannot be expressed as a combination of an interaction and a priority models. In
Section 3.1, we show that BIP glue in the classical semantics does not possess even weak full
expressiveness w.r.t. BIP-like SOS, explain the source of the expressiveness limitation and
show relaxations allowing to obtain weak and strong full expressiveness.

Contrary to the classical semantics, BIP glue in the offer semantics has flattening and strong
full expressiveness w.r.t. SOS rules in the format (2.25):{

qi
a∩Pi−−−→ q′

i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qk � ↑bl
k

∣∣∣ k ∈ K, l ∈ Lk

} {
qj ↑cj

∣∣∣ j ∈ J
}

q1 . . . qn
a−→ q′

1 . . . q′
n

.

BIP glue in the offer semantics possess all properties identified in Section 2.1. Notice that

33

Chapter 3. Expressiveness of BIP Glue

p q
1

2

q p

r s
3

4

s r

t

6

5
t

t

g

f

{

{
p ≺ r

{p, q, s, rt}

{p, q, s, r}

∅

B1 B2

B3

(a) Composed system.
s

s

rt
rt

rt

s

s

q qppq q

rt

p p

245

136146

246

135

235

145

236

(b) Composed LTS (in dashed, the transitions
suppressed by the priority model).

Figure 3.1 – BIP system that cannot be flattened.

the format (2.25) differs from the BIP-like SOS (2.14). Premises of the former require ports
to be offered or not offered, while all premises of the latter are defined with interactions.
In Section 3.2, we show that BIP glue in the classical semantics and BIP glue in the offer
semantics are, in general, incomparable and study the constraints on components allowing
the offer semantics to obtain strong expressiveness and strong full expressiveness w.r.t. the
classical semantics.

In Section 3.3 and in Section 3.4, we extend interaction model representations and connector
synthesis procedure for extended interaction models. This allows to synthesise connectors
with priorities from the Boolean constraints.

3.1 Expressiveness of BIP Glue in Classical Semantics

In this section, we consider full expressiveness of the classical semantics of BIP w.r.t. the set
O of operators defined as pairs

(
(Pi)n

i=1, R), where n is the arity of the operator, (Pi)n
i=1 are

pair-wise disjoint sets of ports and R is a set of BIP-like SOS rules in the format (2.14).

Example 3.1.1. Consider the composed system f(g(B1, B2), B3) (Figure 3.1(a)), with
the glue operator g defined by the interaction model γ1 = {p, q, r, s} and priority model
π1 = {p ≺ r}, and the glue operator f defined by the interaction model γ2 = {p, q, s, rt}
and the empty priority model. The behaviour of the composite component is shown in
Figure 3.1(b) with the transitions, suppressed as the result of applying priority in g, shown
as dashed arrows. Composing the rules corresponding to these operators as shown in (2.13),

34

3.1. Expressiveness of BIP Glue in Classical Semantics

we obtain the four rules

p ∈ γ1 ∩ γ2 q1
p−→ q′

1 (q2 � r−→ ∨ r �∈ γ1)
q1q2q3

p−→ q′
1q2q3

,
q ∈ γ1 ∩ γ2 q1

q−→ q′
1

q1q2q3
q−→ q′

1q2q3
,

s ∈ γ1 ∩ γ2 q2
s−→ q′

2
q1q2q3

s−→ q1q′
2q3

,
r ∈ γ1 rt ∈ γ2 q2

r−→ q′
2 q3

t−→ q′
3

q1q2q3
rt−→ q1q′

2q′
3

. (3.1)

Assume that an interaction model γ and a priority model π are such that πγ(B1, B2, B3)
is equivalent to f(g(B1, B2), B3). By the first rule in (3.1), the transition 14x

p−→ 24x is
possible in (f ◦ g)(B1, B2, B3), for any x ∈ {5, 6}. Hence, p ∈ γ. Clearly, 136 is a deadlock
state in (f ◦ g)(B1, B2, B3). Hence, 136 must be a deadlock state in πγ(B1, B2, B3) and, by
Lemma 2.2.13, also in γ(B1, B2, B3), which is not possible, since all the premises of the rule

p ∈ γ q1
p−→ q′

1

q1q2q3
p−→ q′

1q2q3
,

corresponding to p in the semantics (2.10) of γ, are satisfied for q1 = 1 and q′
1 = 2. Thus,

we conclude that, with the classical BIP semantics, there is no glue operator h, such that
f
(
g(B1, B2, B3)

)
	 h(B1, B2, B3), i.e. BIP with the classical semantics does not have the

flattening property.

Flattening is not possible due to the fact that the information used by the priority model
refers only to interactions authorised by the underlying interaction model. All information
about transitions enabled in sub-components is lost (cf. r �∈ γ1 in the last premise of the
first rule in (3.1)).

Simplifying (3.1) by removing the constant premises, we obtain a set of rules in the format
(2.14)

q1
p−→ q′

1 q2 � r−→
q1q2q3

p−→ q′
1q2q3

,
q1

q−→ q′
1

q1q2q3
q−→ q′

1q2q3
,

q2
s−→ q′

2
q1q2q3

s−→ q1q′
2q3

,
q2

r−→ q′
2 q3

t−→ q′
3

q1q2q3
rt−→ q1q′

2q′
3

,

(3.2)

defining an operator in O that cannot be expressed as a BIP glue operator in the classical
semantics, which shows that this semantics does not have strong full expressiveness.

Furthermore, the example below shows that the classical semantics of BIP does not have
even weak full expressiveness.

Example 3.1.2. Consider a composition operator defined by the following two rules:

q1
p−→ q′

1 q1 � r−→
q1

p−→ q′
1

,
q1

r−→ q′
1 q1 � p−→

q1
r−→ q′

1
, (3.3)

35

Chapter 3. Expressiveness of BIP Glue

1

3

2

p r

p p

r r

Figure 3.2 – Component for Example 3.1.2.

applied to the component in Figure 3.2. Assume that there exists a hierarchy of BIP glue
operators, such that their application to the component in Figure 3.2 results in an equivalent
composite component. States 1 and 2 of the composite component have outgoing transitions
p and r, respectively, thus all interaction models in the glues have to contain both interactions
p and q. State 3 of the composite component is a deadlock. Interaction models do not
forbid any transition from this state and priority models cannot introduce deadlock by
Lemma 2.2.13. This contradicts the assumption and, consequently, the set of rules (3.3) is
not expressible in BIP.

The two fundamental reasons for the lack of expressiveness are related to the definition of
the priority model:

• the information used by the priority model refers only to interactions authorised
by the underlying interaction model—all information about transitions enabled in
sub-components is lost;

• the priority model π must be a strict partial order.

As we explain below, among these two reasons, the first one is easily addressed to achieve
weak, rather than strong, full expressiveness, whereas the second one presents the main
difficulty.

Characterisation of operators expressible with a hierarchy of BIP glues
Consider an n-ary operator o : LTSn → LTS defined by (Pi)n

i=1 and the set of rules

{
qi

al∩Pi−−−→ q′
i

∣∣∣ i ∈ I l
} {

qi = q′
i

∣∣∣ i �∈ I l
} {

qj �
bl

j,k−−−→
∣∣∣ j ∈ J l, k ∈ K l

j

}
q1 . . . qn

al

−→ q′
1 . . . q′

n

, for l ∈ [1, m],

(3.4)

where, as above, I l =
{
i ∈ [1, n]

∣∣ al ∩ Pi �= ∅
}
. For an interaction a ∈ {al | l ∈ [1, m]}, denote

Ra
def= {l ∈ [1, m] | a = al} the set of rules with the conclusion labelled by a. Clearly, for the

interaction a to be inhibited by the negative premises, one such premise must be involved
for each rule in Ra. We denote by j : Ra � J the choice mappings j : Ra → ⋃m

l=1 J l, such

36

3.1. Expressiveness of BIP Glue in Classical Semantics

0

i1

i2

ik

mj

cj
ik

cj
i1 cj

i1

cj
i2

cj
ik

cj
i2

p
j
2p

j
1 p

j
m

Figure 3.3 – Component for Proposition 3.1.3.

that j(l) ∈ J l, for all l ∈ Ra.1

We define the inhibiting relation π ⊆ 2P × 2P (where P =
⋃n

i=1 Pi) by putting

π =
m⋃

l=1

{
(al, b)

∣∣ b =
⋃

s∈R
al

bs
j(s),k(s), for some j : Ral � J, k(s) ∈ Ks

j(s)
}

. (3.5)

The following two propositions show that the expressibility of the operator o in BIP depends
on the existence of cycles in its inhibiting relation.

Proposition 3.1.3. If π has cycles, then the operator o cannot be realised by any hierarchical
composition of BIP glue operators.

Proof. Consider a cycle in the inhibiting relation π : a1 ≺ a2 ≺ · · · ≺ al ≺ a1.

Let P =
⋃n

j=1 Pj , where Pj = {pj
1, . . . , pj

m}. Let cj
i = ai ∩ Pj for i ∈ [1, l], j ∈ [1, n] and

Cj =
{
cj

i

∣∣ cj
i �= ∅

}
. For each j consider a component as shown in Figure 3.3. There are no

transitions from state 0; from each state i, such that cj
i �= ∅, there is a single transition

to state mj with labels cj
i ∈ Cj , respectively, and loop transitions in state mj with labels

cj
i ∈ Cj .

The composition of such components with the operator o allows a single transition ai from
the state q1 . . . qn, where qj = i if cj

i �= ∅ or qj = 0 otherwise. In order to allow these
transitions, an interaction model of a BIP glue must contain all ai. In the state q1 . . . qn,
with qj = mj , all interactions a1, . . . , al are available. The operator o forbids all of them
from this state. Interaction models of BIP glues allow all these interactions and priority
models cannot introduce deadlock in this state Lemma 2.2.13. Thus, this system is not
expressible in BIP.

Proposition 3.1.4. If π is acyclic, then the operator o can be realised by a hierarchical
composition of BIP glue operators.

1The notion of choice mappings could also be defined as a co-product of mappings {l} → J l from singleton
subsets {l} ⊆ Ra.

37

Chapter 3. Expressiveness of BIP Glue

Proof. Since π is acyclic, we can associate a depth d(a) to each interaction a involved in π

as the length of the longest path leading to a in the directed acyclic graph defined by π.
Denote d

def= maxa d(a). Furthermore, for i ∈ [1, d], denote πi
def= {(a, b) ∈ π | d(a) = i − 1}.

Clearly all πi are strict partial orders. Furthermore, πi ⊆ π ⊆ γ1 × γ1, for all i ∈ [1, d], and

γ1 = γ2 ∪
m⋃

l=1

{ ⋃
s∈R

al

bs
j(s),k(s)

∣∣∣ j : Ral � J, k(s) ∈ Ks
j(s)

}
,

γ2 =
{
al
∣∣ l ∈ [1, m]

}
.

Hence, for all i ∈ [1, d], (γ1, πi) is a BIP glue operator.

The operator o is equivalent to the composition (γ2, ∅) ◦ (γ1, πd) ◦ · · · ◦ (γ1, π1). We show
that for any set of components Bi = (Qi, Pi,−→), with i ∈ [1, n], holds

σ
(
γ2
(
πdγ1

(
. . . π1γ1(B1, . . . , Bn)

)
. . .
))

= o(B1, . . . , Bn).

We denote

Bo = o(B1, . . . , Bn) , Bπγ = σ
(
γ2
(
πdγ1

(
. . . π1γ1(B1, . . . , Bn)

)
. . .
))

.

The sets of states and ports of these components are the same, thus we only need to check
that their transitions coincide.

Let q1 . . . qn
a−→ q′

1 . . . q′
n in Bo. This means that, among the rules defining o, i.e. for some

l ∈ [1, m], there is a rule

{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I l
} {

qi = q′
i

∣∣∣ i �∈ I l
} {

qj �
bl

j,k−−−→
∣∣∣ j ∈ J l, k ∈ K l

j

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (3.6)

such that qi
a∩Pi−−−→, for all i ∈ I, and qj �

bl
j,k−−−→ for all j ∈ J l, k ∈ K l

j . By construction both γ1

and γ2 contain a. Hence, a is enabled in the state q1 . . . qn of γ1(B1, . . . , Bn) and in the same
state of Bπγ , provided that it is not disabled by any of priorities π1, . . . , πd. Thus, we have
to show that no interaction available from this state has higher priority. By construction,
priority rules that contain a in the left-hand side can appear only in πd(a)−1, thus other
priority models cannot block a. Priority rules of the form a ≺ b have b =

⋃
s∈Ra

bs
j(s),k(s), for

some j : Ra � J and k(s) ∈ Ks
j(s). Since all the premises of (3.6) are satisfied in q1 . . . qn,

interaction bl
j(l),k(l) is disabled. Hence, b is also disabled. Thus q1 . . . qn

a−→ q′
1 . . . q′

n in Bπγ .

Let q1 . . . qn
a−→ q′

1 . . . q′
n in Bπγ . This means that both γ1 and γ2 contain the interaction a.

38

3.1. Expressiveness of BIP Glue in Classical Semantics

Therefore, by the construction of γ2, there is at least one rule{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qj � bj,k−−−→
∣∣∣ j ∈ J, k ∈ Kj

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (3.7)

among the rules defining o. Furthermore, the priority model πd(a)−1 contains priorities
of the form a ≺ b, with b =

⋃
s∈Ra

bs
j(s),k(s), for all j : Ra � J and k(s) ∈ Ks

j(s). Notice
that a priority rule b ≺ c, such that a ≺ b, cannot appear in priorities π1, . . . , πd(a)−1 since
d(b) ≥ d(a) + 1. Assume that none of the rules defining o, with the conclusion labelled
by a, applies in q1 . . . qn

a−→ q′
1 . . . q′

n. This necessarily means that each of these rules has a
negative premise that is not satisfied. Let b =

⋃
s∈Ra

bs
j(s),k(s) with bs

j(s),k(s), for all s ∈ Ra,
being the labels of dissatisfied premises. Then b is an enabled interaction in γ1(B1, . . . , Bn),
such that a ≺ b and b cannot be blocked by priorities π1, . . . , πd(a)−1. Consequently, b is
enabled in πd(a)−1γ1

(
. . . π1γ1(B1, . . . , Bn) . . .

)
and blocks a, which contradicts the assumption

q1 . . . qn
a−→ q′

1 . . . q′
n in Bπγ . Hence, there is at least one rule of the form (3.7) in the definition

of o with all premises satisfied in q1 . . . qn and, therefore, q1 . . . qn
a−→ q′

1 . . . q′
n in Bo.

Thus, we conclude that BIP has weak full expressiveness w.r.t. the class of BIP-like SOS
operators with acyclic inhibiting relations.

Expressiveness of BIP with relaxed priority model
In [13], the following notion of relaxed priority model have been proposed.

Definition 3.1.5. Let P be a set of ports. A relaxed priority model on P is a relation
π ⊆ 2P × (2P \ {∅}). A relaxed BIP operator is a triple

(
(Pi)n

i=1, γ, π), with P =
⋃n

i=1 Pi,
such that γ ⊆ 2P \ {∅} is an interaction model and π ⊆ γ × γ is a relaxed priority model.

The semantics of relaxed priority models is defined exactly as that of classical priority models,
by (2.11). Notice that we do not require the relation π to be acyclic. If all interactions
involved in a cyclic dependency in π are enabled simultaneously, they block each other,
potentially introducing a deadlock.

Given a BIP-like SOS operator o, we consider its inhibiting relation π (see (3.5)) and the
interaction models γ1, γ2 as in the proof of Proposition 3.1.4. Since π ⊆ γ1 × γ1, the operator
(γ1, π) is a relaxed BIP operator. The operator o is then equivalent to the composition
(γ2, ∅) ◦ (γ1, π), where π is considered as a relaxed priority model.

Proposition 3.1.6. For any set of components Bi = (Qi, Pi,−→), with i ∈ [1, n], holds

σ
(
γ2
(
πγ1(B1, . . . , Bn)

))
= o(B1, . . . , Bn) .

39

Chapter 3. Expressiveness of BIP Glue

Proof. For a set of components Bi = (Qi, Pi, −→), with i ∈ [1, n], denote

Bo = o(B1, . . . , Bn) , Bπγ = σ
(
γ2
(
πγ1(B1, . . . , Bn)

))
.

The sets of states and ports of these components are the same, thus we only need to check
that their transitions coincide.

Let q1 . . . qn
a−→ q′

1 . . . q′
n in Bo. This means that, among the rules defining o, i.e. for some

l ∈ [1, m], there is a rule

{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I l
} {

qi = q′
i

∣∣∣ i �∈ I l
} {

qj �
bl

j,k−−−→
∣∣∣ j ∈ J l, k ∈ K l

j

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (3.8)

such that qi
a∩Pi−−−→, for all i ∈ I, and qj �

bl
j,k−−−→ for all j ∈ J l, k ∈ K l

j . By construction both
γ1 and γ2 contain a. Hence, a is enabled in the state q1 . . . qn of γ1(B1, . . . , Bn) and in the
same state of γ2

(
πγ1(B1, . . . , Bn)

)
, provided that it is not disabled by the priority π. Thus,

we have to show that no interaction available from this state has higher priority. Priority
rules in π that contain a are of the form a ≺ b, with b =

⋃
s∈Ra

bs
j(s),k(s), for some j : Ra � J

and k(s) ∈ Ks
j(s). Since all the premises of (3.8) are satisfied in q1 . . . qn, interaction bl

j(l),k(l)

is disabled. Hence, b is also disabled. Thus q1 . . . qn
a−→ q′

1 . . . q′
n in Bπγ .

Let q1 . . . qn
a−→ q′

1 . . . q′
n in Bπγ . This means that both γ1 and γ2 contain the interaction a.

Therefore, by the construction of γ2, there is at least one rule{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qj � bj,k−−−→
∣∣∣ j ∈ J, k ∈ Kj

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (3.9)

among the rules defining o. Furthermore, the priority model π has to contain priorities of
the form a ≺ b, with b =

⋃
s∈Ra

bs
j(s),k(s), for all j : Ra � J and k(s) ∈ Ks

j(s). Assuming now
that none of rules defining o, with the conclusion labelled by a, applies in q1 . . . qn

a−→ q′
1 . . . q′

n.
Since q1 . . . qn

a−→ q′
1 . . . q′

n in Bπγ , this necessarily means that each of these rules has a
negative premise that is not satisfied. Let b =

⋃
s∈Ra

bs
j(s),k(s) with bs

j(s),k(s), for all s ∈ Ra,
being the labels of dissatisfied premises. Then b is an enabled interaction, such that a ≺ b,
which contradicts the assumption q1 . . . qn

a−→ q′
1 . . . q′

n in Bπγ . Hence, there is at least one
rule of the form (3.9) in the definition of o with all premises satisfied in q1 . . . qn and, therefore,
q1 . . . qn

a−→ q′
1 . . . q′

n in Bo.

Thus, we conclude that BIP with relaxed priority models has weak full expressiveness w.r.t.
the set of all BIP-like SOS operators.

Notice that the relaxed priority model does not allow recovering strong full expressiveness.

40

3.2. Transformation of systems in classical semantics into offer semantics

For instance, consider the operator defined by the single rule

q1
p−→ q′

1 q1 � r−→
q1

p−→ q′
1

, (3.10)

applied to the component in Figure 3.2. The composite component has a single transition
1 p−→ 3. The interaction model of BIP cannot contain r, as it is not possible to exclude
transition 2 r−→ 3 with a priority model. The transition 3 p−→ 3 has to be excluded by the
priority model, however it cannot use r in the priority relation.

Further relaxation of the definition of the BIP operator by removing the restriction π ⊆ γ ×γ

requires a slight modification of the semantics. Clearly, the component γ(B1, . . . , Bn) does
not have transitions that are not in γ and priority rules that can be applied to this component
are in γ × γ. Thus, we need to apply interaction and priority models simultaneously. The
semantics of the simultaneous application of an interaction model γ and a priority model π

is defined by putting σ(πγ(B1, . . . , Bn)) def= (Q, P,−→πγ), with Q =
∏n

i=1 Qi and the minimal
transition relation −→πγ inductively defined by the set of rules

⎧⎨⎩
{

qi
a∩Pi−−−→ q′

i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qj � b∩Pj−−−−→
∣∣∣ b ∈ Ka

}
q1 . . . qn

a−→πγ q′
1 . . . q′

n

∣∣∣∣∣∣ a ∈ γ, j : Ka � [1, n]

⎫⎬⎭ ,

(3.11)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}, Ka = {b|a ≺ b} and j : Ka � [1, n] is a choice mapping
j : Ka → [1, n], such that, for all b ∈ Ka, holds b ∩ Pj(b) �= ∅.

With this relaxation we obtain strong full expressiveness, since the operator o is then clearly
equivalent to (γ2, π).

Proposition 3.1.7. For any set of components Bi = (Qi, Pi,−→), with i ∈ [1, n], holds

σ
(
πγ2(B1, . . . , Bn)

)
= o(B1, . . . , Bn) .

Notice that the relaxation of the definition of BIP glue operators, by removing the restriction
π ⊆ γ × γ but requiring π to be a strict partial order (the application is defined by a set of
rules (3.11)), does not recover even weak full expressiveness w.r.t. BIP-like SOS operators.
Indeed, Example 3.1.2 is still inexpressible.

3.2 Transformation of systems in classical semantics into of-
fer semantics

In [23], it was shown that the expressiveness of BIP glue in the classical and in the offer
semantics are incomparable. The system in Example 3.1.2 can be expressed in offer semantics
with an extended interaction model γ = {ṗr, ṙb}. Example 3.2.1 shows a system in classical

41

Chapter 3. Expressiveness of BIP Glue

ba

ab

a b

c

c

2 3

1

4

{a, b, ab, c}
c ≺ ab

Figure 3.4 – System inexpressible in offer semantics.

semantics that is inexpressible in offer semantics. For the sake of simplicity and in order
to better distinguish the BIP glues considered in the classical and in the offer semantics,
we will refer to the former through pairs consisting of an interaction model γ ⊆ 2P and a
priority model π ⊆ 2P × (2P \ {∅}); the latter will be given by extended interaction models
γ ⊆ 2P ∪Ṗ ∪P . Recall that in the classical semantics interactions that do not appear in
the interaction model have no effect, when used in the priority model. Therefore, in this
section, we will assume that all interactions appearing in a priority model also belong to the
corresponding interaction model.

Example 3.2.1. Consider a system built from two components, in the classical semantics,
shown in Figure 3.4. The interaction model is {a, b, ab, c} and priority model is {c ≺ ab}.
Since, classical priority semantics refers to the activation of an interaction, in the composite
system the interaction c is available at the state 14, and not available at the state 24. In the
offer semantics, all three ports are offered in both states 14 and 24 of this system. Therefore,
these states are indistinguishable and c is available or inhibited in both states simultaneously.

Note 3.2.2. In the remainder of this chapter, we will compare composed systems in the
classical and the offer semantics obtained by applying glue operators to the same set of
components. To simplify the presentation, we will assume that the predicate ↑ ⊆ Q × P is
also defined, in the classical semantics, on atomic components as in Definition 2.3.1 and,
for composited systems as in Definition 2.3.4. Notice that this unambiguously defines the
offer predicate in both cases. Hence, we will not explicitly provide it in the examples of
this section. Furthermore, sets of states and ports of composite systems, as well as the
corresponding offer predicates do not depend on the glue operator used to obtain them.
Therefore, to prove that two composite components coincide, we will only have to check
that their respective transition relations are equal. (Indeed, in this context, bisimilarity and
equality coincide.) The following lemma shows that it is not necessary to consider target
states of transitions and it is sufficient to compare labels of outgoing transitions for each
state of composed systems.

Lemma 3.2.3. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of components and let
P =

⋃n
i=1 Pi. Let πγ and γ′ be glue operators on P in the classical and the offer semantics,

respectively. Then, for composed systems (Q, P,−→c,↑) = πγ(B1, . . . , Bn) and (Q, P,−→o,↑
) = γ′(B1, . . . , Bn), the following holds: for any state q and for any transition label a, if
q

a−→c ⇔ q
a−→o then {q′ | (q, a, q′) ∈−→c} = {q′ | (q, a, q′) ∈−→o}.

42

3.2. Transformation of systems in classical semantics into offer semantics

bc

bc
cb

3

1

2

∅

∅

(a) ∅ ≺ b

ba

a

a b

2 3

1

(b) a ≺ b, a �= ∅ and b ⊆ a

ba

a

a b
b\a

2 3

1

(c) a ≺ b, a �= ∅ and b �⊆ a

Figure 3.5 – Components for Theorem 3.2.4.

Proof. If q � a−→c then q � a−→o and both sets are empty.

If q
a−→c then there is an interaction a ∈ γ and no priority rule forbids the transition a from

the state q. By (2.10) (q, a, q′) ∈ −→c iff for all i ∈ [1, n], qi
a∩Pi−−−→ q′

i, if a ∩ Pi �= ∅, and qi = q′
i

otherwise. At the same time q
a−→o and there is an interaction a′ ∈ γ′, such that fire(a′) = a.

By (2.26), (q, a, q′) ∈ −→o iff for all i ∈ [1, n], qi
fire(a′)∩Pi−−−−−−−→ q′

i, if fire(a′) ∩ Pi �= ∅, and qi = q′
i

otherwise. Since a = fire(a′), {q′ | (q, a, q′) ∈−→c} = {q′ | (q, a, q′) ∈−→o}.

If a priority model of a glue operator is empty, then such glue operator can be easily
transformed into an operator in the offer semantics. However, for any non-empty priority
model, there exists a set of components, such that the transformation of this glue operator
into the offer semantics is not possible.

Theorem 3.2.4. Let πγ be a glue operator on a set of ports P in the classical semantics,
such that γ contains at least two non-empty interactions and π has at least one priority
a ≺ b with a �= b. There exists a set of atomic components Bi = (Qi, Pi,−→,↑), for i ∈ [1, n],
where ⋃n

i=1 Pi = P , such that, for any extended interaction model γ′ in the offer semantics,
the composed systems would not be equivalent, i.e. for (Q, P,−→c) = πγ(B1, . . . , Bn) and
(Q, P,−→o,↑) = γ′(B1, . . . , Bn) holds −→c �= −→o.

Proof. Let a ≺ b, with a �= b, be a priority in π. There are three cases. If a = ∅, let B1 be
the component in Figure 3.5(a) with c ∈ γ, c �= b and c �= ∅ (such c exists by the assumption
of the theorem). Recall that a ≺ ∅ is not a valid priority. Therefore, we only have to
consider two other cases, where neither a nor b are empty interactions: if b ⊆ a, let B1 be
the component in Figure 3.5(b); otherwise let B1 be the component in Figure 3.5(c). The
proof below applies identically to all three cases.

States 1 and 2 offer the same sets of ports. There is a transition a from both states. However,
transition b is available only in the state 1. Let P1 be a set of ports in B1. Consider a second
atomic component B2 =

(
{∗}, P \ P1, {∗ p−→ ∗ | p ∈ P \ P1},↑

)
, such that the union of sets of

ports of B1 and B2 is equal to P . Both πγ and γ′ can be applied to the pair of components
(B1, B2). In the composed component, transition a is available in the state 2∗, but not
available in the state 1∗. Since these states offer the same ports, for any glue operator in the
offer semantics transition a is either available in both states or in none of them.

43

Chapter 3. Expressiveness of BIP Glue

We are now in position to define three classes of components, for which it is possible to
generate an equivalent system in the offer semantics. The first class of components is
characterised by Property 3.2.5. For any glue operator in the classical semantics there exists
a glue operator in the offer semantics, such that their applications to any set of components
satisfying Property 3.2.5 result in equivalent composite systems. Thus, when applied to the
class of components satisfying Property 3.2.5, BIP glue in the offer semantics has strong full
expressiveness with respect to glue in the classical semantics (Definition 2.1.2). For the two
remaining classes of components, the transformation for any glue operator exists, but depends
on the set of components. Components from the first of these two classes characterised by
Property 3.2.11 allow a transformation without activation port typings. Finally, components
characterised by Property 3.2.15 allow a transformation using activation port typings. If
allowed components are from any of these two classes, BIP glue in offer semantics has strong
expressiveness with respect to the glue in classical semantics (Definition 2.1.1).

Below, we use the following notations: for a ∈ 2P , we denote ȧ
def= {ṗ | p ∈ a} and a

def=
{p | p ∈ a}.

3.2.1 Transformation not depending on component set

Consider a class of components satisfying the following property:

Property 3.2.5. Let L be a set of transition labels of a component B. For any state q of
the component B and any a ∈ L \ {∅}, holds q↑a ⇒ q

a−→.

For any system, such that the component of all its sub-systems belong to this class, any
glue operator in the classical semantics can be transformed into a glue operator in the offer
semantics. Applying the initial and the generated glue operators to any set of components
from this class would result in two equal composite systems.

Given an interaction model and a priority model, the algorithm in Figure 3.6 computes
an extended interaction model, corresponding to the same interaction and priority models
considered in the offer semantics. In particular, all interactions, generated starting from
an interaction a, have the firing support fire(a′) = a, since no firing ports are added after
initial generation of the set I.

Lemma 3.2.6. Let Bi = (Qi, Pi,−→,↑) for i ∈ [1, n] be a set of components satisfying Prop-
erty 3.2.5. Let (Q, P,→,↑) = πγ(B1, . . . , Bn) be a composite system, with γ an interaction
model and π a priority model. Then, in any state q ∈ Q, any offered interaction a in γ is
active in (Q, P,→,↑) if and only if it is not inhibited by a priority:

(
�b ∈ γ : a ≺ b ∧ q

b−→γ
)
⇔ q

a−→π . (3.12)

Proof. ⇐ is straightforward by (2.11).

44

3.2. Transformation of systems in classical semantics into offer semantics

Input: A glue operator in the classical semantics: an interaction model γ and a
priority model π.

Output: A glue operator in the offer semantics: an extended interaction model γ′.
1. I := {ȧ | a ∈ γ};
2. for each (a ≺ b) ∈ π
3. m := b \ a;
4. for each c ∈ I, such that fire(c) = a
5. C := {c p | p ∈ m};
6. I := (I \ {c}) ∪ C;
7. γ′ := I;

Figure 3.6 – Algorithm transforming a glue operator in the classical semantics into a glue
operator in the offer semantics.

⇒: Since, for all i ∈ [1, n], components Bi satisfy Property 3.2.5, qi ↑ (a ∩ Pi) ⇒ qi
a∩Pi−→.

Hence, by (2.10), for any a ∈ γ, q ↑ a ⇒ q
a−→γ . By (2.11), �b ∈ γ : a ≺ b ∧ q

b−→γ implies
q

a−→π.

Theorem 3.2.7. Let πγ be a glue operator on a set of ports P in the classical semantics and
let γ′ be a glue operator obtained by applying the algorithm in Figure 3.6. Let Bi = (Qi, Pi,−→
,↑), for i ∈ [1, n], be a set of components satisfying Property 3.2.5, and ⋃n

i=1 Pi = P . Then
for (Q, P,−→c,↑) = πγ(B1, . . . , Bn) and (Q, P,−→o,↑) = γ′(B1, . . . , Bn) holds −→c = −→o.

Proof. 1) q
a−→o =⇒ q

a−→c: Since q
a−→o, there is an interaction a′ ∈ γ′, having fire(a′) = a.

By construction, the generation of a′ started from the interaction a ∈ γ. Since q
a−→o,

q ↑ fire(a′) and q � ↑ neg(a′). For any b, such that a ≺ b, we have b ∩ neg(a′) �= ∅ and,
consequently, q � b−→c, since at least one port of b is not available. By Lemma 3.2.6, we have
q

a−→c.

2) q
a−→c =⇒ q

a−→o: Since q
a−→c, for all b ∈ γ, such that a ≺ b, holds q � b−→c. By Lemma 3.2.6,

if all ports of b are offered at the state q, then either b is enabled or some b′ : b ≺ b′ is
enabled. The priority model is a partial order and, in particular, is transitive. Hence, a has
to be suppressed due to availability of b or b′. Thus, at least one port of b is not offered at
the state q. Let pb ∈ b be a port, such that q � ↑pb. Consider a set of ports c, constructed
by choosing one such port pb for each priority rule a ≺ b (the same port can be used for
different rules). By construction of γ′, we have a′ = ȧ ∪ c ∈ γ′. Thus, fire(a′) = a and, for
all p ∈ neg(a′), q � ↑p. Hence, by Definition 2.3.1, q

a−→o.

Example 3.2.8. Consider γ = {pr, qs, rt} and π = {pr ≺ qs, pr ≺ rt} in the classical
semantics. The algorithm in Figure 3.6 generates an equivalent extended interaction model.
In the first step, the set I = {ṗṙ, q̇ṡ, ṙṫ}. Considering the first priority rule pr ≺ qs, we have
m = qs \ pr = qs. For each interaction in I with firing support pr, we generate a set of new
interactions, thus from the interaction ṗṙ we obtain a pair of interactions ṗṙq and ṗṙs. The
new set I = {ṗṙq, ṗṙs, q̇ṡ, ṙṫ}. For the second priority rule pr ≺ rt, we have m = rt \ pr = t.

45

Chapter 3. Expressiveness of BIP Glue

4

5

st

r2

3

r q

q s tp

p
1

(a) Set of components

rt
qs

pr

124 125

134 135

(b) Composite system

Figure 3.7 – First set of components and composite system for Example 3.2.8.

5

t

2

p
q

p

p q s

3

4
s

r
r

r

t
6

1

(a) Set of components

rt

rt
pr

pr

pr

qsqs rt

rt

135

245 246

136 236

146145

235

(b) Composite system

Figure 3.8 – Second set of components and composite system for Example 3.2.8.

There are two interactions in I with firing support pr: ṗṙq and ṗṙs. The algorithm adds t

to both of them and the final glue in the offer semantics is γ′ = {ṗṙq t, ṗṙs t, q̇ṡ, ṙṫ}.

Consider components in Figure 3.7(a). All of them satisfy Property 3.2.5. Applying glues
in the classical and in the offer semantics we obtain equal composite components. Their
behaviours are shown in Figure 3.7(b). Transitions qs and rt are available in the states 124
and 135 respectively in both composite components. Ports p and r are offered in the states
134 and 135. The priority rule pr ≺ rt forbids the transition pr in the state 135, thus in
the system in the classical semantics this transition is available only in the state 134. In
the system in the offer semantics in the state 134 ports q and t are not offered, thus the
interaction ṗṙq t allows a transition from this state, whereas in the state 135 t is offered and
none of the interactions allows a transition pr from this state.

Consider components in Figure 3.8(a) and the same glue. All of them also satisfy Prop-
erty 3.2.5. Applying glues in the classical and in the offer semantics we obtain equal composite
components. Their behaviours are shown in Figure 3.8(b). Transitions qs and rt are available
simultaneously in both composite components, since they depend only on availability of
the corresponding ports. There are transitions qs from states 135 and 136, transitions rt

from states 135, 145, 235 and 245. Ports p and r are offered in all states. The priority rules
forbids transition pr from all states where qs or rt are available, thus there are transitions
pr from states 146, 236 and 246. In the system in the offer semantics the interaction ṗṙq t

allows transitions pr from states 236 and 246, the interaction ṗṙs t allows transitions pr from
the state 146.

Theorem 3.2.9. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], and n ≥ 2 be a set of components,

46

3.2. Transformation of systems in classical semantics into offer semantics

such that at least one of them violates Property 3.2.5, and let P =
⋃n

i=1 Pi. There exists
πγ, a glue operator on P in the classical semantics, such that for the glue γ′ computed by
the algorithm in Figure 3.6, and for (Q, P,−→c,↑) = πγ(B1, . . . , Bn) and (Q, P,−→o,↑) =
γ′(B1, . . . , Bn) holds −→c �= −→o.

Proof. Without loss of generality, we assume that B1 violates Property 3.2.5. Thus there
is a state q1 and a transition a, such that q1 ↑ a and q � a−→. Let b be a transition from a
state q2 in B2. Let γ = {a, b} and π = {b ≺ a}. The algorithm in Figure 3.6 computes
γ′ = {ȧ} ∪ {ḃ p | p ∈ a \ b}. The transition labelled b is available in the state q1 . . . qn of
(Q, P,−→c), but it is not available in the state q1 . . . qn of (Q, P,−→o,↑), since all ports of a

are offered in this state.

Notice that components in this class allow to represent any BIP-like SOS composition
operator (2.14) as a set of SOS rules in the format (2.25) without “positive” premises i.e. in
the format:{

qi
a∩Pi−−−→ q′

i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qk � ↑bl
k

∣∣∣ k ∈ K, l ∈ Lk

}
q1 . . . qn

a−→ q′
1 . . . q′

n

. (3.13)

Proposition 3.2.10. For any BIP-like n-ary SOS composition operator o there exists an
operator õ represented as a set of SOS rules in the format (3.13), such that for any set of
components B1, . . . , Bn satisfying Property 3.2.5 holds: õ(B1, . . . , Bn) = o(B1, . . . , Bn).

Proof. We obtain operator õ by replacing all premises qj �
bk

j−−→ with q � ↑bk
j in all rules of the

operator o. By Property 3.2.5, q � a−→ ⇒ q � ↑a. Thus, if in a state a transition is allowed by
a rule of the operator o, it is also allowed by a corresponding rule of the operator õ. By
Definition 2.3.1, q � ↑a ⇒ q � a−→. Thus, if in a state a transition is allowed by a rule of the
operator õ, it is also allowed by a corresponding rule of the operator o.

3.2.2 Transformation not using activation port typings

Let us now consider the class of components satisfying the following property:

Property 3.2.11. Let L be a set of transition labels of B. For any state q, such that
Sq

def= {a ∈ L \ {∅} | q ↑a ∧ q � a−→} �= ∅, the following holds: for any state q′ �= q, such that
∃ a ∈ Sq : q′ a−→, there exists a port p, such that q′ ↑p and q � ↑p.

Intuitively, this property means the following. Assume there is a state that offers an
interaction a, which does not correspond to an enabled transition, e.g. a is a proper subset
of a label of an enabled transition. Assume, furthermore, that there is also a state that
actually has an enabled transition labelled by a. Then Property 3.2.11 requires that these
two states be distinguishable by considering whether some other port p is offered or not.

47

Chapter 3. Expressiveness of BIP Glue

If the Property 3.2.11 holds for a set of components, we can build a composite system
in the offer semantics without using activation port typings. Let Bi = (Qi, Pi,−→,↑), for
i ∈ [1, n], be a set of components, let P =

⋃n
i=1 Pi and let πγ be a glue operator on P in the

classical semantics. We start the transformation by applying the algorithm in Figure 3.6.
This algorithm generates an extended interaction model γ′′ in the offer semantics. However,
this property is weaker than Property 3.2.5 and composed components πγ(B1, . . . , Bn) and
γ′′(B1, . . . , Bn) can be not equal. A transition relation of the former composite component
can contain transitions, which are not present in the latter one. For each such transition a

from the state q we add the interaction ȧb to the interaction model, where b = {p | q � ↑p}.
The application of the final extended interaction model γ′ results in an equivalent composite
system.

Theorem 3.2.12. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of components, such that
all of them satisfy Property 3.2.11 and let P =

⋃n
i=1 Pi. Let πγ be a glue operator on P in

the classical semantics. Let γ′ be an extended interaction model generated in the way it was
shown above. Then for (Q, P,−→c,↑) = πγ(B1, . . . , Bn) and (Q, P,−→o,↑) = γ′(B1, . . . , Bn)
holds −→c = −→o.

Proof. 1) q
a−→o =⇒ q

a−→c: By construction, if q
a−→o, then there exists an interaction a′ ∈ γ′,

such that fire(a′) = a and neg(a′) = {p | q � ↑p}. There are two possibilities for the moment,
when a′ was added to γ′. Let γ′′ be the extended interaction model computed by the
algorithm in Figure 3.6.

If a′ ∈ γ′′, the proof is similar to the one in Theorem 3.2.7. By construction, the generation
of a′ started from interaction a ∈ γ. Since q

a−→o, we have q ↑a and q � ↑neg(a′). For any b,
such that a ≺ b, we have b ∩ neg(a′) �= ∅ and, consequently, q � b−→c, as at least one port of b

is not available. Thus, q
a−→c.

If a′ was added during the second step of the computation above, a′ could have been added
to γ′ only if there is a state q′ = q′

1 . . . q′
n in the composite system (Q, P,−→c,↑), such that

q′ a−→c and neg(a′) = {p | q′ � ↑p}. Assume that q = q1 . . . qn � a−→c. Since q
a−→o, we have q ↑a.

Thus, a was forbidden by the application of some priority rule a ≺ b and q
b−→c. Since q′ a−→c,

we also have q′ � b−→c. If q′ � ↑b, then there exists p ∈ b, such that q′ � ↑p, so p ∈ a′ and q � a−→o. If
q′ ↑b then there exists a component Bi, such that q′

i ↑(b ∩ Pi) and q′
i � b∩Pi−−−−→. Then qi ↑(b ∩ Pi)

and, by Property 3.2.11, there exists a port p, such that q′
i � ↑p and qi ↑p. Consequently, q′ � ↑p

and q↑p, so p ∈ a′ and q � a−→o, which contradicts the assumption q � a−→c.

2) q
a−→c =⇒ q

a−→o: By construction of γ′, either the extended interaction model γ′′, obtained
after the application of the algorithm in Figure 3.6, contains an interaction generating this
transition in the composite system, or an additional interaction is added to γ′ that makes
this transition present in the composite system.

Example 3.2.13. Consider components in Figure 3.9(a) and a glue operator in the classical
semantics with γ = {p, pq, q, rt, s} and π = {s ≺ p}. Both components satisfy Property 3.2.11.

48

3.2. Transformation of systems in classical semantics into offer semantics

p q

r

s

t

s tpq

rr
q

p 21

3
4

5

(a) Set of components

rtrt

q

q

pq

pq

p

p

s s

15 25 35

14 3424

(b) Composite system

Figure 3.9 – Components and composite system for Example 3.2.13.

The behaviour of the composite system in the classical semantics is shown in Figure 3.9(b).
The algorithm in Figure 3.6 generates the extended interaction model γ′′ = {ṗ, ṗq̇, q̇, ṙṫ, ṡp}.
If we apply γ′′ to the components in Figure 3.9(a), the composite component would not
contain a transition s from the state 14 (dashed in Figure 3.9(b)), as port p is offered at this
state. Thus, we need to add an interaction to the extended interaction model, in order to
make this transition available, but no other transitions should be added. The interaction
ṡr adds the transition s from the state 14 in the composite component and it does not add
a transition from the state 24, since r is offered at the state 24. Thus, the final extended
interaction model is γ′ = {ṗ, ṗq̇, q̇, ṙṫ, ṡp, ṡr}.

Theorem 3.2.14. For any set of components Bi = (Qi, Pi, −→,↑) for i ∈ [1, n] and n ≥ 2,
such that at least one of Bi violates Property 3.2.11, there exists a glue operator πγ on
P =

⋃n
i=1 Pi in the classical semantics, such that the composed system πγ(B1, . . . , Bn) cannot

be expressed through the offer semantics without using the activation port typings.

Proof. Without loss of generality, assume that B1 violates Property 3.2.11. Thus, there
exists a state q1 and a transition a, such that q1 ↑a and q1 � a−→ and there exists a state q′

1,
such that q′

1
a−→ and all ports which are not offered in q1 are also not offered in q′

1.

Let b be some transition label of the component B2, and let q2 be a state, such that q2
b−→.

Let γ = {a, b} and π = {b ≺ a}. In a composite system πγ(B1, . . . , Bn), a transition labeled
by b is available from the state q1q2 . . . qn, but not available from the state q′

1q2 . . . qn.

Assume that there exists an extended interaction model γ′ without activation port typings,
such that γ′(B1, . . . , Bn) = πγ(B1, . . . , Bn). In order to have a transition labelled by b from
the state q1 . . . qn, γ′ has to contain the interaction ḃc, where c ⊆ {p | q1 � ↑p}. However, this
interaction allows a transition b from the state q′

1q2 . . . qn, which contradicts the assumption
of the existence of γ′.

3.2.3 Transformation using activation ports typings

We now consider the class of components characterised by the following property:

49

Chapter 3. Expressiveness of BIP Glue

Property 3.2.15. For any two states q1, q2 in the component, {p | q1 ↑p} = {p | q2 ↑p} implies
{a �= ∅ | q1

a−→} = {a �= ∅ | q2
a−→}.

Proposition 3.2.16. Property 3.2.11 implies Property 3.2.15.

Proof. Consider a component with two states q1 and q2 violating Property 3.2.15 and
assume that Property 3.2.11 holds for this component. We have {p | q1 ↑p} = {p | q2 ↑p}
and {a �= ∅ | q1

a−→} �= {a �= ∅ | q2
a−→}. Without loss of generality, there exists a �= ∅, such

that q1
a−→ and q2 � a−→. Since q1

a−→, we also have q1 ↑a and, consequently, q2 ↑a. Therefore,
a ∈ Sq2 (see Property 3.2.11). By Property 3.2.11, we then have {p | q1 ↑p} �= {p | q2 ↑p},
contradicting our assumption.

Let Bi = (Qi, Pi, −→,↑), for i ∈ [1, n], be a set of components satisfying Property 3.2.15
and let πγ be a glue operator on P in the classical semantics. Consider an initially empty
extended interaction model γ′. To each state q of each component, we associate a set
χ(q) = {p | q↑p} ∪ {p | q � ↑p}. Notice, that since sets of ports of components are pairwise
disjoint, χ(q) and χ(q′) are disjoint if q and q′ are states of different components. Let (Q, P,→
,↑) = πγ(B1, . . . , Bn) be a composite system. To each state q1 . . . qn ∈ Q, we associate a set
χ(q1 . . . qn) =

⋃n
i=1 χ(qi). For each transition q1 . . . qn

a−→ q′
1 . . . q′

n of the composite system,
we add to γ′ the extended interaction ã = {ṗ | p ∈ a} ∪ {p | p ∈ χ(q1 . . . qn), p �∈ a} (notice
that, for all such extended interactions ã, we have fire(ã) ∪ act(ã) ∪ neg(ã) = P). The
theorem below shows that γ′(B1, . . . , Bn) is equivalent to (Q, P,→,↑).

Theorem 3.2.17. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of components satisfying
Property 3.2.15 and let P =

⋃n
i=1 Pi. Let πγ be a glue operator on P in the classical semantics.

Let γ′ be an extended interaction model obtained as above. Then, for composite components
(Q, P,−→c,↑) = πγ(B1, . . . , Bn) and (Q, P,−→o,↑) = γ′(B1, . . . , Bn), holds −→c = −→o.

Proof. 1) q
a−→o =⇒ q

a−→c: By (2.26), q
a−→o implies the existence of an extended interaction

a′ ∈ γ′, such that fire(a′) = a. Recall that, for all ã ∈ γ′, we have fire(ã)∪act(ã)∪neg(ã) =
P . Hence, (2.26) also implies fire(a′) ∪ act(a′) = {p | q↑p} and neg(a′) = {p | q � ↑p}. By
construction, each extended interaction a′ ∈ γ′ corresponds to some transition q′ a−→c q′′

(see the algorithm above). Hence, a ∈ γ. Furthermore, by construction of γ′, we also have
fire(a′) = a, fire(a′) ∪ act(a′) = {p | q′ ↑p} and neg(a′) = {p | q′ � ↑p}. Therefore, {p | q↑p} =
{p | q′ ↑p} and, denoting q = q1 . . . qn and q′ = q′

1 . . . q′
n, we have {p | qi ↑p} = {p | q′

i ↑p}, for
all i ∈ [1, n]. By Property 3.2.15, for any i ∈ [1, n], holds {b �= ∅ | qi

b−→} = {b �= ∅ | q′
i

b−→}.
By (2.10) and (2.11), we then have {b | q b−→c} = {b | q′ b−→c} in (Q, P,−→c,↑). Since q′ a−→c, we
conclude that q

a−→c.

2) q
a−→c =⇒ q

a−→o: By construction, q
a−→c implies a′ = {ṗ | p ∈ a}∪{p | p ∈ χ(q), p �∈ a} ∈ γ′

(with fire(a′) = a). By definition of χ, we have q ↑p, for all p ∈ act(a′), and q � ↑p, for all
p ∈ neg(a′), thus q

a−→o.

50

3.2. Transformation of systems in classical semantics into offer semantics

5

6

st

s t

r

rp q

2

31

pq
pq

p p
4

(a) Set of components

p

ss

pq

pq

p
rtrt s

pq

p

pq

p

145 245 345

146 246 346

(b) Composite system

Figure 3.10 – Components and composite system for Example 3.2.18.

Example 3.2.18. Consider components in Figure 3.10(a) and a glue operator in the
classical semantics defined by γ = {p, pq, rt, s} and π = {rt ≺ p}. Both components satisfy
Property 3.2.15. The behaviour of the composite system in the classical semantics is shown
in Figure 3.10(b). This system cannot be expressed in the offer semantics without activation
port typings. There should be a transition rt from the state 146, but any interaction allowing
it would also allow a transition rt from the state 246, as all ports, which are not offered in
the state 146, are also not offered in the state 246.

In order to transform the system into one in the offer semantics we associate a set χ to each
state as follows:

χ(145) = {p, q, r, s, t}, χ(245) = {p, q, r, s, t}, χ(345) = {p, q, r, s, t},

χ(146) = {p, q, r, s, t}, χ(246) = {p, q, r, s, t}, χ(346) = {p, q, r, s, t}.

Now, we start generating γ′ considering all transition labels in the composed system. From
the state 145, there are transitions pq and s, thus we take interactions ṗ q̇ r s t and ṡ p q r t.
From the state 146, there are transitions pq and rt, hence we add interactions ṗ q̇ r s t and
ṙ ṫ p q s. Proceeding similarly for the remaining states, we obtain γ′:

{ṗ q̇ r s t, ṡ p q r t, ṗ q̇ r s t, ṙ ṫ p q s, ṗ r s q t, ṗ r t q s, ṡ p r q t}.

Noticing that s and t are mutually exclusive and p, r are offered in all states, this extended
interaction model can be simplified to γ′′ = {ṗ q̇, ṗ q, ṡ, ṙ ṫ q}.

Theorem 3.2.19. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n] and n ≥ 2, be a set of components,
such that at least one of them violates Property 3.2.15, and let P =

⋃n
i=1 Pi. There exists a

glue operator in the classical semantics with an interaction model γ and a priority model π,
such that the system πγ(B1, . . . , Bn) cannot be expressed in the offer semantics.

Proof. Without loss of generality assume that B1 violates Property 3.2.15. Thus, there is a
pair of states q1 and q′

1, such that {p|q1 ↑p} = {p|q′
1 ↑p} and q1

a−→, while q′
1 � a−→. Let b be

a transition from a state q2 in B2. Let γ = {a, b} and π = {b ≺ a}. A composite system
πγ(B1, . . . , Bn) cannot be expressed in the offer semantics.

51

Chapter 3. Expressiveness of BIP Glue

Consider two states q1q2 . . . qn and q′
1q2 . . . qn. In the system πγ(B1, . . . , Bn), transition b is

forbidden from the first state by the priority rule, but b is allowed from the second state.
However, sets of offered ports from both states are equal. Thus, for any interaction b′, such
that fire(b′) = b, either b′ can be allowed from both states or it is forbidden from both states.
These states cannot be distinguished in the offer semantics, which implies that the system
πγ(B1, . . . , Bn) cannot be expressed in the offer semantics.

3.2.4 Hierarchical systems

In hierarchical systems, glue operators can be applied not only to atomic components,
but also to composite ones. If we consider components that satisfy Property 3.2.11 or
Property 3.2.15, application of any glue operator results in a composite component of the
same class.

Proposition 3.2.20. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of components, such
that all of them satisfy Property 3.2.11 and let P =

⋃n
i=1 Pi. Then, for any interaction

model γ on P and for any priority model π on P , the composite component πγ(B1, . . . , Bn)
satisfies Property 3.2.11.

Proof. Assume that πγ(B1, . . . , Bn) violates this property. There are two states q = q1 . . . qn,
q′ = q′

1 . . . q′
n and a transition a, such that q ↑ a, q � a−→, q′ a−→ and there exists no port

p, such that q′ ↑ p and q � ↑ p. Since q � a−→, for some i ∈ [1, n], qi ↑ a ∩ Pi and qi � a∩Pi−−−−→.
Since Bi satisfies Property 3.2.11 and q′

i
a∩Pi−→, there exists p, such that qi � ↑p and q′

i ↑p. By
Definition 2.3.1, q � ↑p and q′ ↑p. Thus, states q and q′ cannot violate Property 3.2.11.

Proposition 3.2.21. Let Bi = (Qi, Pi,−→,↑), for i ∈ [1, n], be a set of components, such
that all of them satisfy Property 3.2.15, and let P =

⋃n
i=1 Pi. Then, for any interaction

model γ on P and for any priority model π on P , the composite component πγ(B1, . . . , Bn)
satisfies Property 3.2.15.

Proof. Assume that πγ(B1, . . . , Bn) violates this property. Thus, there are two states
q = q1 . . . qn and q′ = q′

1 . . . q′
n, such that {p|q ↑ p} = {p|q′ ↑ p} and {a|q a−→} �= {a|q′ a−→}.

By Definition 2.3.1, we can deduce that, for i ∈ [1, n], holds {p|qi ↑ p} = {p|q′
i ↑ p}. Since

all B1, . . . , Bn satisfy Property 3.2.15, we have {a|qi
a−→} = {a|q′

i
a−→}, for i ∈ [1, n].

Consequently, if only the interaction model is applied, {a|q a−→} = {a|q′ a−→} by (2.10).
The priority model can only remove transitions from these states simultaneously, as the sets
of outgoing transitions are equal. Thus, states q and q′ cannot violate Property 3.2.15.

Propositions 3.2.20 and 3.2.21 show that composition of components with glue operators
in the classical semantics preserves, respectively, Properties 3.2.11 and 3.2.15. Therefore,
for an application of a hierarchical glue operator in the classical semantics to a set of
atomic components, all satisfying the same property (recall that Property 3.2.11 implies

52

3.2. Transformation of systems in classical semantics into offer semantics

p q
1

2

q p

r s
3

4

s r

t

6

5
t

t
p ≺ r

{p, q, s, r}

B1 B2

B3

(a) Set of components

q

q

rr s s

p

13

2414

23

(b) Composite system

Figure 3.11 – Components and composite system for Example 3.2.22.

Property 3.2.15), we can iteratively construct the corresponding operator in the offer
semantics. We start at the lowest level of operator hierarchy, i.e. from the atomic components.
Since atomic components satisfy one of the properties, the corresponding glue operator in
the offer semantics can be generated and the composite component also satisfies the property.
Repeating this reasoning for the operators on higher levels, we obtain the corresponding
hierarchy of glues in the offer semantics.

In general, glue operators do not preserve Property 3.2.5.

Example 3.2.22. All components in Figure 3.11(a) satisfy Property 3.2.5. The application
of the glue operator defined, in the classical semantics, by the interaction model γ = {p, q, r, s}
and the priority model π = {p ≺ r} to B1 and B2 results in the composite component B.
Its behaviour is shown in Figure 3.11(b). In the state 13, p is offered, since it is offered by
B1, however, it is forbidden by the priority model. If we consider a glue operator on the
next level of hierarchy with γ = {p, q, r, s, t} and π = {t ≺ p} that can be applied to B and
B3, the algorithm in Figure 3.6 will generate an incorrect extended interaction model (see
the next example).

For any component, Property 3.2.5 implies Property 3.2.11. Thus, hierarchical systems
with atomic components that satisfy Property 3.2.5 can always be transformed into offer
semantics, but the algorithm in Figure 3.6 can only be applied to the lowest level of hierarchy.

Example 3.2.23. Consider components and glue operators from the previous example. For
the first level of hierarchy the algorithm in Figure 3.6 generates the extended interaction
model γ′

1 = {ṗr, q̇, ṙ, ṡ}. The composite component B (Figure 3.11(b)) does not satisfy
Property 3.2.5, but it satisfies Property 3.2.11. Thus, the extended interaction model
on the second level of hierarchy can be generated. If we consider components B and B3

(Figure 3.12(a)) and a glue operator on the next level of hierarchy defined by γ = {p, q, r, s, t}
and π = {t ≺ p}, the application of the algorithm in Figure 3.6 will generate an incorrect
extended interaction model. The final composite system in the classical semantics is shown
in Figure 3.12(b). The algorithm in Figure 3.6 generates the extended interaction model

53

Chapter 3. Expressiveness of BIP Glue

q rp s t

6

5
t

t

q

q

rr s s

p

13

2414

23

B3

B

(a) Set of components

qq q qp p

s s

s s

r r

r r

t
t

t
t tt

135

235 236

146145

245 246

136

(b) Composite system

Figure 3.12 – Components and composite system for Example 3.2.23.

γ′′
2 = {ṗ, q̇, ṙ, ṡ, ṫ p}. Two transitions t from the state 135 (dashed in Figure 3.12(b)) are

present in the system in the classical semantics, as interaction p is not available in this state.
However, p is offered at this state and interaction ṫ p does not allow transitions from this
state. The extended interaction model has to be enlarged with the interaction ṫ q s, which
allows transitions t from the state 135 and does not add transitions from the state 145, as s

is offered at that state. Thus, the hierarchy of extended interaction models γ′
1 = {ṗ r, q̇, ṙ, ṡ}

and γ′
2 = {ṗ, q̇, ṙ, ṡ, ṫ p, ṫ q s} generates the equivalent composite system.

3.3 Extensions of Interaction Model Representations

Algebras representing BIP interaction model (Section 2.2.2) do not involve priority model
and, consequently, cannot synthesise full BIP glue from Boolean constraints. The BIP
offer semantics allows to replace a combination of interaction and priority models with an
extended interaction model. In this section, we extend the algebras so that they could
represent extended interaction model, thus allowing to synthesise connectors with priorities
from Boolean constraints.

Recall that, for any algebra A(P) in Section 2.2.2, we define the equivalence on A(P) by
putting, for x, y ∈ A(P), x 	 y iff ‖x‖ = ‖y‖, where ‖·‖ : A(P) → 22P is the interaction
semantics of the algebra. As a simple corollary of the results in [21], ‖x‖ = ‖y‖ is equivalent
to ‖x‖(B) = ‖y‖(B), for any finite family of components B (where ‖x‖(B) denotes the
application of an interaction model ‖x‖ to the set of components B). However, this is not
the case for extended interaction models, where ‖x‖ = ‖y‖ implies ‖x‖(B) = ‖y‖(B), for any
finite family of components B, but the converse implication does not hold (cf. Lemma 2.3.5).

Definition 3.3.1. Let A(P) be an algebra, ‖·‖ : A(P) → 22P . Two terms x, y ∈ A(P) are
equivalent x ∼ y iff, for any finite family of components B, ‖x‖(B) = ‖y‖(B).

The Algebra of Interactions, AI(P), extends in a straightforward manner. Indeed, it is
sufficient to consider AI(P ∪ Ṗ ∪ P) with the equivalence ∼.

54

3.3. Extensions of Interaction Model Representations

ṗ

q

ṙ ṡ

ṗ

q ṙ q ṡ

Figure 3.13 – A pair of equivalent causal interaction trees.

We can now similarly extend the other algebras. The interaction semantics of the causal
interaction trees |·| : T(P) → AI(P) is transposed without any change to |·| : T(P ∪ Ṗ ∪P) →
AI(P ∪ Ṗ ∪ P). Similarly, the functions τ : AC(P) → T(P) and σ : T(P) → AC(P) are
transposed identically to AC(P ∪ Ṗ ∪ P) and T(P ∪ Ṗ ∪ P). The same goes for the mapping
R(t) associating to a causal interaction tree t ∈ T(P) the corresponding system of causal
rules [22]. The only difference is that in CR(P ∪ Ṗ ∪P) we introduce the following additional
axiom: ṗ ⇒ p, for all p ∈ P (cf. the discussion leading up to (2.27)).

The first consequence of this extension is that, rather than extending the existing graphical
representation of connectors, it can be used as is to express priorities and activation conditions
(the use of the offer predicate in the positive premises of the rule (2.26)) by adding a trivalued
attribute to ports: firing, activation and negative. It is important to observe the difference
between, on one hand, adding an attribute to ports and, on the other hand, modifying the
typing operator (synchron vs. trigger typing), since the latter is applied at each level of the
connector hierarchy, whereas the former is applied to ports, that is only at the leaves of the
connector.

Example 3.3.2. Let P = {p, q, r, s} and consider the (non-extended) interaction model
γ = {p, q, pr, ps, prs} and the priority model π = {pr ≺ q, ps ≺ q, prs ≺ q}. The glue operator
πγ can be equivalently represented in the extended algebras as follows. The corresponding
extended interaction model is {ṗ, q̇, ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ}, which can be represented by the
union of two extended connectors: q̇ + ṗ′[q′ ṙ ṡ] or, equivalently, q̇ + ṗ′[ṙ q][ṡ q]. The causal
interaction trees corresponding to the second summands in these connectors are shown in
Figure 3.13.

3.3.1 Refinement of extension

When we use x, y ∈ AI(P ∪Ṗ ∪P) to compose components in offer semantics (Definition 2.3.4),
‖x‖(B) = ‖y‖(B) does not imply x = y. AI axioms are not complete (although still sound)
with respect to ∼, since this equivalence is weaker than 	. Consequently, on T(P ∪ Ṗ ∪ P),
∼ is also weaker than 	.

Example 3.3.3. Let P = {p, q, r, s} and consider the T(P ∪Ṗ ∪P) trees shown in Figure 3.13.

55

Chapter 3. Expressiveness of BIP Glue

The left causal interaction tree in Figure 3.13 defines a redundant interaction. Indeed,

‖ṗ → q → (ṙ ⊕ ṡ)‖ = {ṗ, ṗ q , ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ } .

Although the interaction ṗ q does contain a firing port ṗ, it is redundant (Lemma 2.3.5). We
conclude, therefore, that the causal interaction trees in Figure 3.13 are equivalent, since

‖ṗ → (q ṙ ⊕ q ṡ)‖ = {ṗ, ṗ q ṙ , ṗ q ṡ , ṗ q ṙ ṡ } .

The above example illustrates the idea that the nodes of causal interaction trees, which do
not contain firing ports, can be “pushed” down the tree.

Another notable case leading to redundant interactions corresponds to trees containing
contradictory port typings. For example, either of the two equivalent trees p → ṗ and p ṗ

authorises the interaction p ṗ. However, when considered in the context of the rule (2.26),
this interaction generates two conflicting premises qi

p−→ q′
i and qi � ↑p. Thus, this instance

of the rule (2.26) does not authorise any transitions and the interaction p ṗ can be safely
discarded. This example corresponds to the additional axiom ṗ ⇒ p imposed in [23] on the
Boolean formulas in B[P, Ṗ]. Similarly, redundant interactions appear when a tree contains
other distinct port typings of the same port: p and p, generating conflicting premises qi ↑p

and qi � ↑p; p and ṗ, whereof the former generates the premise qi ↑p redundant alongside the
premise qi

p−→ q′
i generated by the latter.

Below, we provide a set of axioms reducing interaction redundancy. We enrich axioms for
T(P ∪ Ṗ ∪ P) from [22] by adding some new ones, specific for the trivalued port attribute.

Axioms.

1. For all p ∈ P and a ⊆ P ∪ Ṗ ∪ P , such that a �= ∅,

(a) a · 0 = 0,

(b) a · 1 = a, for a �= 0,

(c) ṗ · p = ṗ (cf. the additional axiom ṗ ⇒ p in B(P ∪ Ṗ)),

(d) ṗ · p = p · p = 0.

2. Parallel composition, ‘⊕’, is associative, commutative, idempotent, and its identity
element is 0.

3. a → 0 = a, for all a ⊆ P ∪ Ṗ ∪ P .

4. 0 → t = 0, for all t ∈ T(P ∪ Ṗ ∪ P).

5. ap → b = ap → bp for all a, b ⊆ P ∪ Ṗ ∪ P , p ∈ P ∪ Ṗ ∪ P .

56

3.3. Extensions of Interaction Model Representations

6. c → a → b → t = c → ab → t for all a, b, c ⊆ P ∪ Ṗ ∪ P , such that fire(a) = ∅, and
t ∈ T(P ∪ Ṗ ∪ P).

7. a → (t1 ⊕ t2) = a → t1 ⊕ a → t2, for all a ⊆ P ∪ Ṗ ∪ P , t1, t2 ∈ T(P ∪ Ṗ ∪ P).

Axioms 1 equalise redundant interactions due to contradictory port typings, whereas Axiom 5
propagates ports down in order to find contradictory port typings. Axiom 6 eliminates the
nodes with empty firing support. Axioms 2, 3, 4 and 7 are the same as in [22]. The two
remaining axioms from [22] are replaced by Lemmata 3.3.6 and 3.3.7.

Proposition 3.3.4. The equivalence relation ∼ on T(P ∪ Ṗ ∪ P) is a congruence.

Proof. The proof is the same as for T(P) [22]. For any two trees t1, t2 ∈ T(P ∪ Ṗ ∪ P)
and for any context C(z) ∈ T(P ∪ Ṗ ∪ P ∪ {z}), we have to show that the equivalence
t1 ∼ t2 implies C(t1/z) ∼ C(t2/z), where C(ti/z) is the tree obtained, by replacing in C(z)
all occurrences of z by ti. Since the semantics T is compositional, structural induction
on the context C(z) proves the proposition. Thus, we need to prove two implications:
t1 ∼ t2 ⇒ (a → t1) ∼ (a → t2) and t1 ∼ t2 ⇒ (t1 ⊕ t) ∼ (t2 ⊕ t).

• Let γi
def= ‖a → ti‖ = ‖a(1 + |ti|)‖ = {a} ∪ {a ∪ ai | ai ∈ ‖ti‖}, for i ∈ {1, 2}. Consider

a set of components B1, . . . , Bn. For γ1(B1, . . . , Bn) and γ2(B1, . . . , Bn), their sets of
states and ports, as well as the corresponding offer predicates, coincide. We have to
check that so do their transition relations.

Let q1 . . . qn
fire(b)−−−−→ q′

1 . . . q′
n in γ1(B1, . . . , Bn). Thus, there is an interaction b ∈ γ1,

such that qj
fire(b)∩Pj−−−−−−→ q′

j if fire(b) ∩ Pj �= ∅ and qj = q′
j otherwise, q ↑ act(b) and

q � ↑p for all p ∈ neg(b). If b = a, then b ∈ γ2, and, since all conditions are satisfied,
q1 . . . qn

fire(b)−−−−→ q′
1 . . . q′

n in γ2(B1, . . . , Bn). If b �= a then b = a ∪ a1, where a1 ∈ ‖t1‖.
Notice that q1 . . . qn ↑ act(a) ∪ act(a1) and q1 . . . qn � ↑ p for all p ∈ neg(a) ∪ neg(a1).
However, this does not necessary mean that q1 . . . qn

fire(a1)−−−−−→, since, for some component
Bj , it could be qj

fire(a∪a1)∩Pj−−−−−−−−−→, but qj � fire(a1)∩Pj−−−−−−−−→. Consider a set of components
B′

1, . . . , B′
n that has the same states, interfaces and offer predicates as B1, . . . , Bn

but their transition relations have extra transitions qj
fire(a1)∩Pj−−−−−−−→ q′

j , for j ∈ [1..n], if
fire(a1) ∩ Pj �= ∅ (if Bj already has this transition, then Bj = B′

j). These additional

transitions ensure q1 . . . qn
fire(a1)−−−−−→ in ‖t1‖(B′

1, . . . , B′
n). Since t1 ∼ t2, q1 . . . qn

fire(a2)−−−−−→
in ‖t2‖(B′

1, . . . , B′
n) for some a2 ∈ ‖t2‖, such that fire(a1) = fire(a2) and, consequently,

fire(a ∪ a1) = fire(a ∪ a2). By (2.25), q1 . . . qn ↑ act(a2) and q1 . . . qn � ↑ p for all
p ∈ neg(a). Recalling that q1 . . . qn ↑ act(a), q1 . . . qn � ↑ p for all p ∈ neg(a2) and

qj
fire(a∪a2)∩Pj−−−−−−−−−→ q′

j if fire(b)∩Pj �= ∅, all premises for the interaction a∪a2 are satisfied

and q1 . . . qn
fire(a∪a2)−−−−−−→ q′

1 . . . q′
n in γ2(B1, . . . , Bn). The proof that for any transition

in γ2(B1, . . . , Bn) there is a transition in γ1(B1, . . . , Bn) is similar.

57

Chapter 3. Expressiveness of BIP Glue

• Let γi
def= ‖ti ⊕ t‖ = ‖ti‖∪‖t‖∪{ai∪a|ai ∈ ‖ti‖, a ∈ ‖t‖}. Consider a set of components

B1, . . . , Bn. For γ1(B1, . . . , Bn) and γ2(B1, . . . , Bn), their sets of states and ports, as
well as the corresponding offer predicates, coincide. We have to check that so do their
transition relations.

Let q1 . . . qn
fire(b)−−−−→ q′

1 . . . q′
n in γ1(B1, . . . , Bn). Thus, there is an interaction b ∈ γ1,

such that qj
fire(b)∩Pj−−−−−−→ q′

j if fire(b) ∩ Pj �= ∅ and qj = q′
j otherwise, q ↑ act(b) and

q � ↑ p for all p ∈ neg(b). If b ∈ ‖t‖, then b ∈ γ2 and q1 . . . qn
fire(b)−−−−→ q′

1 . . . q′
n in

γ2(B1, . . . , Bn). If b ∈ ‖t1‖, then q1 . . . qn
fire(b)−−−−→ in ‖t1‖(B1, . . . , Bn). Since t1 ∼ t2,

q1 . . . qn
fire(b)−−−−→ in ‖t2‖(B1, . . . , Bn) and, consequently, in γ2(B1, . . . , Bn). If b = a1 ∪ a

for some a1 ∈ ‖t1‖ and a ∈ ‖t‖, then the proof is similar to the case a → t. We
consider components B′

1, . . . , B′
n, such that q1 . . . qn

fire(a1)−−−−−→ in ‖t1‖(B′
1, . . . , B′

n). Since
t1 ∼ t2, q1 . . . qn

fire(a2)−−−−−→ in ‖t2‖(B′
1, . . . , B′

n) for some a2 ∈ ‖t2‖. All premises for the
interaction a∪a2 are satisfied in the state q1 . . . qn, therefore q1 . . . qn

fire(a2∪a)−−−−−−→ q′
1 . . . q′

n

in γ2(B1, . . . , Bn). The proof that for any transition in γ2(B1, . . . , Bn) there is a
transition in γ1(B1, . . . , Bn) is similar.

We have shown that for t1 ∼ t2 holds a → t1 ∼ a → t2 and t1 ⊕ t ∼ t2 ⊕ t. Thus, we can
conclude that for any context C(z), C(t1/z) ∼ C(t2/z).

Notice that the same example as in [19] illustrates the fact that neither ∼ nor 	 are
congruences on AC(P ∪ Ṗ ∪ P). Indeed, we clearly have p′ ∼ p and p′q �∼ pq, for any distinct
p, q ∈ P ∪ Ṗ ∪ P .

Proposition 3.3.5. The above axiomatisation is sound with respect to ∼.

Proof. Since, by Proposition 3.3.4, the equivalence relation ∼ is a congruence, it is sufficient
to show that all axioms respect ∼. This is proved by verifying that the semantics for left
and right sides coincide.

Axioms 2, 3, 4 and 7 are the same as in [22]. Hence, their respective left- and right-hand
sides are related by 	, which is stronger than ∼. Axiom 1(a) and Axiom 1(b) are trivial.
Axiom 1(c) is a consequence of Lemma 2.3.5. In the Axiom 1(d), both pairs p and p, and ṗ

and p produce conflicting premises in the rule (2.26) and, therefore, do not generate any
transitions. For the Axiom 6, we have

‖c → a → b → t‖ = {c, a c, a b c} ∪ {a b c a2 | a2 ∈ ‖t‖} , (3.14)
‖c → ab → t‖ = {c, a b c} ∪ {a b c a2 | a2 ∈ ‖t‖} . (3.15)

Hence, ‖c → a → b → t‖ = ‖c → ab → t‖ ∪ {ac}. Since c ⊆ ac and fire(a) = ∅, we conclude,
by Lemma 2.3.5, that the two causal interaction trees are equivalent: c → a → b → t ∼ c →
ab → t.

58

3.3. Extensions of Interaction Model Representations

For the Axiom 5, we have ‖ap → b‖ = {ap, abp} = ‖ap → bp‖. Thus, ap → b 	 ap → bp,
which implies ap → b ∼ ap → bp.

Notice that, for the soundness of Axiom 6, it is essential that a is not a root node, since applica-
tion of Lemma 2.3.5 is made possible by the presence of the interaction c ∈ ‖c → a → b → t‖.
For a counter-example, consider two interaction trees p → q̇ and pq̇. The former allows
self-loops in states of a composed system, where p is not offered, whereas the latter does not.

Lemma 3.3.6. For all a, b ⊆ P ∪ Ṗ ∪P , such that fire(b) = ∅, holds the equality a → b = a.

Proof. a → b = a → b → 0 → 0 = a → b · 0 → 0 = a → 0 → 0 = a (Axioms 3, 6)

Lemma 3.3.7. For all a ⊆ P ∪ Ṗ ∪ P and t ∈ T(P ∪ Ṗ ∪ P), holds the equality a → 1 →
t = a → t.

Proof. For t = 0, the statement of this lemma is a special case of Lemma 3.3.6 with b = 1.
If t �= 0, it can be represented as a parallel composition of non-zero trees t =

⊕n
i=1 ri → ti,

with ri ⊆ P ∪ Ṗ ∪ P . By Axioms 6 and 7, we have

a → 1 → t =
n⊕

i=1
(a → 1 → ri → ti) =

n⊕
i=1

(a → ri → ti) = a →
n⊕

i=1
(ri → ti) = a → t .

Lemma 3.3.8. For all a, bi, c ⊆ P ∪ Ṗ ∪ P , such that fire(a) = ∅ and ti ∈ T(P ∪ Ṗ ∪ P),
holds the equality

c → a →
n⊕

i=1
(bi → ti) = c →

n⊕
i=1

(abi → ti) .

Proof. As above, applying Axioms 6 and 7, we have

c → a →
n⊕

i=1
(bi → ti) =

n⊕
i=1

(c → a → bi → ti) =
n⊕

i=1
(c → abi → ti) = c →

n⊕
i=1

(abi → ti) .

3.3.2 Normalisation of extended algebras

As it was shown in Example 3.3.3, causal interaction trees can contain nodes generating
redundant interactions. These nodes can be removed by consecutively applying semantics-
preserving transformations based on the axioms of the Algebra of Causal Interaction Trees.

Definition 3.3.9. A causal interaction tree t ∈ T(P ∪ Ṗ ∪P) is in normal form if it satisfies
the following properties:

59

Chapter 3. Expressiveness of BIP Glue

1. All nodes of t except roots have non-empty firing support.

2. In any causal chain of t a port p can appear more than once only in the form
ap → · · · → bṗ, where a, b ⊆ P ∪ Ṗ ∪ P and p ∈ P .

In the proof of Proposition 3.3.10 below, we provide a constructive procedure for normalising
causal interaction trees.

Proposition 3.3.10. Every causal interaction tree t ∈ T(P ∪ Ṗ ∪ P) has a normal form
t = t̃ ∈ T(P ∪ Ṗ ∪ P).

Proof. Consider t ∈ T(P ∪ Ṗ ∪ P). We start by computing t1 = t with all nodes, except
potentially the roots, having non-empty firing support.

Let a be a non-root node of t with fire(a) = ∅, such that the tree s rooted in a does not
have any nodes with empty firing support. If s is empty, that is a is a leaf, then remove a

from the tree (Lemma 3.3.6). Otherwise, let c be the parent of a, which exists since a is not
a root and move the parallel composition operator up using Axiom 7:

c →
(

(a → s) ⊕
n⊕

i=1
ti

)
= (c → a → s) ⊕

(
n⊕

i=1
c → ti

)
. (3.16)

The sub-tree s can be further decomposed as s =
⊕n

i=1(bi → si), so, by Lemma 3.3.8, we
have

c → a → s = c → a →
n⊕

i=1
(bi → si) = c →

n⊕
i=1

(abi → si) . (3.17)

Each of nodes abi has non-empty firing support, since fire(bi) �= ∅ by the choice of a.
Substituting (3.17) into (3.16) and applying Axiom 7, we obtain(

c →
n⊕

i=1
(abi → si)

)
⊕
(

n⊕
i=1

c → ti

)
= c →

((
n⊕

i=1
abi → si

)
⊕

n⊕
i=1

ti

)
.

In the resulting tree, there is one node with empty firing support less than in t. Hence,
repeating this procedure as long as there are such nodes, we will compute a tree t1, where all
nodes except roots have non-empty firing support. This computation is confluent, since the
order is irrelevant among causally independent nodes, whereas among causally dependent
ones it is fixed by the algorithm.

Consider a causal chain ap̃ → · · · → bp̂ within t1, with p̃ and p̂ being two typings of the
same port. If p̃ = p and p̂ = ṗ, there is nothing to do, since such dependencies are allowed

60

3.3. Extensions of Interaction Model Representations

by Definition 3.3.9. Otherwise, we propagate p̃ down by applying Axiom 5:

ap̃ → c1 → · · · → ck → bp̂ = ap̃ → c1p̃ → · · · → ck → bp̂ = . . .

= ap̃ → c1p̃ → · · · → ckp̃ → bp̂p̃ .

Case 1: p̃ = p̂ or both p̃, p̂ �= p. We apply Axioms 1(c) and 5:

ap̃ → c1p̃ → · · · → ckp̃ → bp̂p̃ = ap̃ → c1p̃ → · · · → ckp̃ → bp̃

= ap̃ → c1 → · · · → ck → b .

Case 2: p̃ �= p̂ and either p̃ = p or p̂ = p. We apply Axioms 1(d), 3 and 5:

ap̃ → c1p̃ → · · · → ckp̃ → bp̂p̃ = ap̃ → c1p̃ → · · · → ckp̃ → 0 =
= ap̃ → c1 → · · · → ck → 0 = ap̃ → c1 → · · · → ck .

To compute t̃, we apply this transformation to all relevant causal chains within t1.

When synthesising connectors from causal interaction trees, their complexity can be reduced
by tree normalisation. Furthermore, since semantics-preserving transformations can be
applied in both directions, a normal form on causal interaction trees induces a normal form
on connectors.

Definition 3.3.11. A connector x ∈ AC(P ∪ Ṗ ∪ P) is in normal form iff x = σ(t), where t

is a causal interaction tree in normal form and σ is the function defined in (2.22).

The following proposition is a direct consequence of the definitions of the normal form of
causal interaction trees and function σ.

Proposition 3.3.12 (Normal form for connectors). A connector x ∈ AC(P ∪ Ṗ ∪ P) in
normal form has the following properties:

1. Nodes at every hierarchical level of the connector, except the bottom one, have at least
one trigger.

2. Each node at the bottom hierarchical level is a strong synchronisation of pairwise
distinct ports.

3. Every node at the bottom hierarchical level without firing ports has only triggers as
ancestors.

Proof. By the definition of normal form there exists a causal interaction tree t in normal
form, such that x = σ(t).

61

Chapter 3. Expressiveness of BIP Glue

1. Nodes at every hierarchical level of the connector, except the bottom one, are obtained
by one of the two rules σ(a → t) = [a]′ [σ(t)] or σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′. Both of
them create at least one trigger.

2. By (2.22), nodes at the bottom hierarchical level are nodes of the causal interaction
tree in normal form. Thus, they are strong synchronisations of pairwise distinct ports.

3. A node at the bottom hierarchical level without firing ports can only be obtained from
a root of the tree t. A non-trigger ancestor of a can be obtained only from a causality
operator b → a, which is not possible for a root.

3.3.3 Simplification of systems of causal rules

The port typings in the algebraic representations of extended interaction models increase
the complexity of systems of causal rules: without additional simplifications, the number of
rules in the system is essentially tripled. The goal of this sub-section is to prove that we can
consider only rules with firing port typings or true as effects and other rules can be removed
as redundant.

The generation of systems of causal rules from Boolean formula starts with φ ∈ B[P ∪ Ṗ]
with additional axiom ṗ ⇒ p. This formula is transformed into conjunctive normal form
(CNF). At this point we change the domain to consider φ as a formula from B[P ∪ Ṗ ∪ P]
with two additional axioms: ṗ ⇒ p and p XOR p. Syntactically, the formula φ remains exactly
the same, whereas semantically, we consider the negative occurrences of variables from P ,
i.e. p with p ∈ P , as positive occurrences of variables from P (recall that P = {p | p ∈ P}).
Thus, seen as a formula from B[P ∪ Ṗ ∪ P], φ only has firing port variables in negative form.
All other variables appear only in positive form.

We then proceed exactly as in [22]: we have φ′ = C1 ∧ C2 ∧ · · · ∧ Cn with, for k ∈ [1, n],
Ck =

∨
i∈Ik

pi ∨ ∨j∈Jk
pj , where Ik ∩ Jk = ∅, pi ∈ P ∪ Ṗ ∪ P and pj ∈ Ṗ for all i ∈ Ik and

j ∈ Jk. We can now rewrite every clause Ck, with Jk �= ∅, as a disjunction of dual Horn
clauses Ck =

∨
j∈Jk

(
pj ∨∨i∈Ik

pi

)
. By distributivity, we obtain a representation of φ′ as a

disjunction of dual Horn formulas and, after combining the clauses with the same negative
variable, we obtain φ′ = R1 ∨ R2 ∨ · · · ∨ Rm with, for k ∈ [1, m],

Rk =
∧

i∈Ĩk

⎛⎜⎝pi ∨
∨

j∈J̃k,i

aj

⎞⎟⎠ =
∧

i∈Ĩk

⎛⎜⎝pi ⇒
∨

j∈J̃k,i

aj

⎞⎟⎠ ,

where, for all i ∈ Ĩk, pi ∈ Ṗ ∪ true and, for all j ∈ J̃k,i, aj is false, true, or a conjunction of
positive variables. Thus, each Rk is a system of causal rules, with only firing variables in the
effects.

62

3.3. Extensions of Interaction Model Representations

The algorithm synthesising causal interaction trees from systems of causal rules (see Sec-
tion 2.2.2) expects that the input system is complete in the sense that it should have one
rule for each port variable. Thus, for each p ∈ P ∪ P the rule p ⇒ true has to be added to
the system. However, the rules with non-firing effects do not impose additional constraints
on the system. Theorem 3.3.13 shows that such rules do not affect the causal interaction
tree generated from the system of causal rules. Therefore, the synthesis algorithm remains
correct, even when simplified by excluding all causal rules with effect p ∈ P ∪ P .

Theorem 3.3.13. Let R be a system of causal rules over P ∪ Ṗ ∪ P , where all rules with
the effect p ∈ P ∪ P have the form p ⇒ true, and let R′ be a set of causal rules containing
only rules from R with effects p ∈ Ṗ ∪ true. Then, the causal interaction trees, generated for
R and R′ with the procedure described in Section 2.2.2, are equivalent with respect to ∼.

Proof. The construction of causal interaction trees consists of two steps: saturation of the
system of causal rules and building the tree. Clearly, rules of the form p ⇒ true do not affect
the saturation of other rules. On the other hand, such rules are saturated to p ⇒ C, where
C is the saturated cause of the rule with the effect true.

Let Y and Y ′ be the auxiliary sets (2.24) containing monomials of the causes composed
with the effects of the corresponding rules, for R and R′ respectively. Clearly, Y ′ ⊆ Y

and Y \ Y ′ ⊆ {pc | p ∈ P ∪ P , c ∈ Y ′ ∪ {∅}}.2 Hence, in the inclusion tree corresponding
to R, elements of Y \ Y ′ can generate additional nodes compared to the inclusion tree
corresponding to R′. Every such node necessarily appears in a context of the form c →
pc →⊕

(pcqi → ti) for some port variables qi and sub-trees ti. However, by Axioms 1 and 6,
c → pc →⊕

(pcqi → ti) = c →⊕
(pcqi → ti), which is a fragment of the tree corresponding

to R′.

The complexity of causal interaction tree synthesis algorithm [22] greatly depends on the
number of rules in the system. Indeed, the saturation phase consists in substituting each
port in the cause part of each rule with the cause of the corresponding rule, where this port
is the effect. This is repeated until a fixpoint is reached. Theorem 3.3.13 removes two thirds
of the rules, thus greatly reducing the synthesis complexity.

We have shown above that, while synthesising causal interaction trees from Boolean formulas,
we can discard rules with non-firing effects in the intermediate systems of causal rules.
Theorem 3.3.14 below shows that we can also discard rules with non-firing effects, when
generating systems of causal rules from causal interaction trees, thus considerably reducing
the obtained Boolean formulas.

Theorem 3.3.14. Consider a causal interaction tree t ∈ T(P ∪Ṗ ∪P) and a system of causal
rules R(t) = {p ⇒ Cp(t)}p∈P ∪Ṗ ∪P ∪{true} obtained by the transformation R : T(P ∪ Ṗ ∪ P) →
CR(P ∪ Ṗ ∪ P) described in Section 2.2.2. Let R̃(t) = {p ⇒ Cp(t)}p∈Ṗ ∪{true} be a system of

2 It is possible that c = ∅ if the rule for the effect true is true ⇒ true. Recall that the empty interaction
corresponds to 1 in the algebra of Causal Interaction Trees.

63

Chapter 3. Expressiveness of BIP Glue

causal rules, obtained from R(t) by omitting rules for port variables in P ∪ P . Then holds
the equivalence R(t) ∼ R̃(t).

Proof. Recall that the application of the transformation R : T(P) → CR(P) described in
Section 2.2.2 to a tree t ∈ T(P) gives a system of causal rules of the form p ⇒ C, where C is
a DNF Boolean formula and each monomial is a conjunction of the nodes on the way from a
root of t to p (some prefix in t leading to p, excluding p).

R̃(t) has less constraints than R(t). Hence, it allows more interactions, i.e. ‖R(t)‖ ⊆ ‖R̃(t)‖.
Let a ∈ ‖R̃(t)‖ \ ‖R(t)‖, i.e. there exists p ∈ P ∪ P , such that p ∈ a and the rule p ⇒ C1 is
violated by a. First of all, notice that this implies immediately that a �= ∅. Furthermore, we
have ∅ ∈ ‖R(t)‖ ⇔ ∅ ∈ ‖R̃(t)‖. Let ã = a \ p.

Assume that ã /∈ ‖R̃(t)‖, i.e. there exists q̇ ∈ Ṗ and a rule (q̇ ⇒ C2) ∈ R̃(t), such that q̇ ∈ ã

and the rule q̇ ⇒ C2 is violated by ã. This rule is not violated by a. Hence, C2 = pC ′
2 and,

consequently, p lies on all prefixes in t, leading to q̇. a ∈ ‖R̃(t)‖ and q̇ ∈ ã ⊆ a, thus there is
at least one prefix in t, leading to q̇ and contained in a. As p lies on this prefix, the rule
(p ⇒ C1) is satisfied by a, contradicting the conclusion above. Therefore our assumption
is wrong and ã ∈ ‖R̃(t)‖. Notice that ã is a proper subset of a (i.e. ã ⊂ a and ã �= a) and
fire(ã) = fire(a).

If ã �∈ ‖R(t)‖, we can apply the same reasoning to ã to obtain ˜̃a ∈ ‖R̃(t)‖, a proper subset of
ã with fire

(˜̃a) = fire(ã) = fire(a) and so on. Thus, we obtain a strictly decreasing (in terms
of set inclusion) chain of extended interactions belonging to ‖R̃(t)‖, each having the firing
support fire(a). Since ‖R̃(t)‖ is finite, this chain must also be finite. Let a′ ∈ ‖R̃(t)‖ be the
last (smallest) element in the chain. Again, a′ is a proper subset of a and fire(a′) = fire(a).
Since a′ is the last element of the chain, we deduce that the above reasoning cannot be
applied to it, which means that a′ ∈ ‖R(t)‖.

Thus, for all a ∈ ‖R̃(t)‖ \ ‖R(t)‖, there exists a′ ⊆ a, such that fire(a′) = fire(a) and
a′ ∈ ‖R(t)‖. Hence, by Lemma 2.3.5, we have ‖R̃(t)‖(B) = ‖R(t)‖(B), for any finite family
of components B, i.e. R(t) ∼ R̃(t).

3.4 Connector Synthesis Example

In order to synthesise AC(P ∪ Ṗ ∪P) connectors from B[P ∪ Ṗ] constraints, one must perform
the following steps.

1. Take the conjunction of all the constraints;

2. By adding the axioms ṗ ⇒ p and p XOR p, transform the obtained formula into a set of
systems of causal rules over P ∪ Ṗ ∪ P , as described in the previous section;

3. Saturate the obtained systems of causal rules;

64

3.4. Connector Synthesis Example

on
off
off

err

b
on off b

1

2

3

Figure 3.14 – Main module for Example 3.4.1.

4. Convert each saturated system of causal rules into a causal interaction tree;

5. Normalise all trees;

6. Generate corresponding connectors from causal interaction trees.

This procedure is illustrated by the following example.

Example 3.4.1. Consider a system providing some given functionality in two modes: normal
and backup. The system consists of four modules: the Backup module A can only perform
one action a; the Main module B (Figure 3.14) can perform an action b corresponding to
the normal mode activity, it can also be switched on and off , as well as perform an internal
(unobservable) error transition err; the Monitor module M is a black box, which performs
some internal logging by observing the two actions a and b through the corresponding ports
al and bl; finally, the black box Controller module C takes the decisions to switch on or off
the main module through the corresponding ports onc and offc, furthermore, it can perform
a test to check whether the main module can be restarted.

We want to synthesise connectors ensuring the properties below (encoded by Boolean
constraints).

• The main and backup actions must be logged: ȧ ⇔ ȧl and ḃ ⇔ ḃl ;

• Only Controller can turn on the Main module: ȯn ⇔ ˙onc ;

• When Controller switches off, the Main module must stop operation: ˙offc ⇒ ˙off and
ḃ ⇒ ˙offc ;

• Controller can only test the execution of Backup: ˙test ⇒ ȧ ;

• Backup can only execute when Main is not possible: ȧ ⇒ b ∨ ˙off ;

• Main can only switch off when ordered to do so or after a failure: ˙off ⇒ b ∨ ˙offc ;

In order to compute the required glue, we take the conjunction of the above constraints
together with the progress constraint ȧ ∨ ḃ ∨ ȯn ∨ ˙off ∨ ˙test ∨ ȧl ∨ ḃl ∨ ˙offc ∨ ˙onc stating that
at every round some action must be taken. Notice that, combined with the above constraints,
the progress constraint can be immediately simplified by absorption to ȧ ∨ ḃ ∨ ȯn ∨ ˙off . In

65

Chapter 3. Expressiveness of BIP Glue

order to simplify the resulting connectors, we also use part of the information about the
behaviour of the Main module, namely the fact that on, on one hand, and b or off , on the
other, are mutually exclusive: on ⇒ b ∧ off . We obtain the following global constraint:

(ȧ ⇒ ȧl b ∨ ȧl
˙off) ∧ (ȧl ⇒ ȧ) ∧ (ḃ ⇒ ḃl

˙offc) ∧ (ḃl ⇒ ḃ)
∧ (˙off ⇒ b ∨ ˙offc) ∧ (˙offc ⇒ ˙off) ∧ (˙test ⇒ ȧ) ∧ (ȯn ⇒ ˙onc)

∧ (˙onc ⇒ ȯn) ∧ (on ⇒ b off) ∧ (ȧ ∨ ḃ ∨ ȯn ∨ ˙off) .

Recall now that causal rules must have the form p ⇒ C, where p ∈ Ṗ ∪ {true} and C is a
DNF Boolean formula on P ∪ Ṗ ∪ P without negative firing variables or a logical constant.
A system of causal rules is a conjunction of such clauses. Among the constraints above,
there are two that do not have this form: on ⇒ b off and ḃ ⇒ ḃl

˙offc. We rewrite them as
on ∨ b off and ḃ ∨ ḃl

˙offc, and distribute over the conjunction of the rest of the constraints.
Finally, we implicitly apply the additional axioms ṗ ⇒ p and p XOR p and, making some
straightforward simplifications, obtain a disjunction of three systems of causal rules. In
Table 3.1, these systems are shown in the first column and their corresponding saturated
equivalents are shown in the second column.

The corresponding auxiliary sets (2.24) obtained by combining the effects with the causes
are then:

{
ȧ ȧl b off, ȯn ˙onc b off ȧ ȧl b off ˙test

}
,
{
ḃ ḃl on

}
,{

ȧ ȧl bon, ȧ ȧl bon ˙test, ˙off bon, ˙off ˙offc on, ȧ ȧl
˙off ˙offc on, ȧ ȧl

˙off ˙offc on ˙test
}

.

T(P ∪ Ṗ ∪ P) trees, shown on Figure 3.15, are obtained by normalising the inclusion trees
corresponding to these sets. Applying (2.22) we obtain AC(P ∪ Ṗ ∪ P) connectors in
Figure 3.16.

In terms of classical BIP, one can, for example, easily distinguish here two priorities:
x a al ≺ b bl and x off ≺ b bl for all x not containing off offc. In general, priorities are
replaced by local inhibitors. In this example, these appear to characterise states of the Main
module. For instance, ȧ ȧl b off defines possible interactions involving a al when neither b

nor off are possible, i.e. in state 1 (see Figure 3.14).

66

3.4. Connector Synthesis Example

Table 3.1 – Systems of causal rules for Example 3.4.1.

true ⇒ ȧ b off ∨ ȯn b off true ⇒ ȧ ȧl b off ∨ ȯn ˙onc b off

ȧ ⇒ ȧl b ∨ ȧl
˙off ȧ ⇒ ȧl b off

ȧl ⇒ ȧ ḃ ⇒ false ȧl ⇒ ȧ b off ḃ ⇒ false
ȯn ⇒ ˙onc ḃl ⇒ ḃ ȯn ⇒ ˙onc b off ḃl ⇒ false
˙onc ⇒ ȯn ˙off ⇒ false ˙onc ⇒ ȯn b off ˙off ⇒ false
˙test ⇒ ȧ ˙offc ⇒ ˙off ˙test ⇒ ȧ ȧl b off ˙offc ⇒ false

true ⇒ ḃ ḃl on true ⇒ ḃ ḃl on

ȧ ⇒ ȧl b ∨ ȧl
˙off ȧ ⇒ false

ȧl ⇒ ȧ ḃ ⇒ true ȧl ⇒ false ḃ ⇒ ḃl on

ȯn ⇒ false ḃl ⇒ ḃ ȯn ⇒ false ḃl ⇒ ḃ on

˙onc ⇒ ȯn ˙off ⇒ b ∨ ˙offc ˙onc ⇒ false ˙off ⇒ false
˙test ⇒ ȧ ˙offc ⇒ false ˙test ⇒ false ˙offc ⇒ false

true ⇒ ȧ on ∨ ˙off on true ⇒ ȧ ȧl b on ∨ ˙off ˙offc on ∨ ˙off b on

ȧ ⇒ ȧl b ∨ ȧl
˙off ȧ ⇒ ȧl b on ∨ ȧl

˙off ˙offc on ḃ ⇒ false
ȧl ⇒ ȧ ḃ ⇒ false ȧl ⇒ ȧ b on ∨ ȧ ˙off ˙offc on ḃl ⇒ false
ȯn ⇒ false ḃl ⇒ ḃ ˙off ⇒ b on ∨ ˙offc on ȯn ⇒ false
˙onc ⇒ ȯn ˙off ⇒ b ∨ ˙offc

˙offc ⇒ ˙off on ˙onc ⇒ false
˙test ⇒ ȧ ˙offc ⇒ ˙off ˙test ⇒ ȧ ȧl b on ∨ ȧ ȧl

˙off ˙offc on

67

Chapter 3. Expressiveness of BIP Glue

ȧ ȧl b off

˙test

⊕ ȯn ˙onc b off

(a) First tree

ḃ ḃl on

(b) Second tree

˙off ˙offc on

ȧ ȧl

˙test

⊕

ȧ ȧl b on

˙test

⊕ ˙off b on

(c) Third tree

Figure 3.15 – Causal interaction trees for Example 3.4.1.

ȧ offbȧl ˙test ȯn ˙oncoff b off

(a) First connector

ḃ ḃl on

(b) Second connector

on ˙test ˙off bȧ bȧl

˙test˙offc on

ȧ ȧl on

˙off

(c) Third connector

Figure 3.16 – Connectors corresponding to trees from Figure 3.15.

3.5 Discussion

The expressiveness relation between BIP, its modifications and operators defined by SOS
rules3 can be summarised as follows:

• BIP glue in classical semantics (denoted as “BIP” in Figure 3.17 and Figure 3.18)
does not have even weak full expressiveness w.r.t. BIP-like SOS (2.14) (“BSOS”) (cf.
Example 3.1.2).

• BIP glue in classical semantics has weak full expressiveness w.r.t. BIP-like SOS with
acyclic inhibiting relations (“BSOSa”) (cf. Proposition 3.1.4).

• BIP glue with relaxed priority model (“RBIP”) has strong full expressiveness w.r.t.
BIP-like SOS (cf. Proposition 3.1.7).

• BIP glue in offer semantics (“OBIP”) has strong full expressiveness w.r.t. SOS rules in
the format (2.25) (“FNWSOS”).

• BIP-like SOS is incomparable with SOS rules in the format (2.25) [23].
3 In this chapter we have considered the same sets of components (cf. 3.2.2) that can be used to build

systems, the same semantics mapping and the same equivalence relation. Thus, instead of saying that
component-based framework has some kind of expressiveness w.r.t. the set of operators, we directly say that
one set of operators or glue has some kind of expressiveness w.r.t. another set of operators.

68

3.5. Discussion

BIP

BSOS

BSOSa

FNSOS

FNWSOS OBIPRBIP

w

Figure 3.17 – Expressiveness relation between composition operators.

BIP

BSOS

BSOSa

FNSOS

FNWSOS OBIP

RBIP

w

Figure 3.18 – Expressiveness relation for components satisfying Property 3.2.5.

• SOS rules in the format{
qi

a∩Pi−−−→ q′
i

∣∣∣ i ∈ I
} {

qi = q′
i

∣∣∣ i �∈ I
} {

qk � ↑bl
k

∣∣∣ k ∈ K, l ∈ Lk

}
q1 . . . qn

a−→ q′
1 . . . q′

n

, (3.18)

defined in [23] is less expressive than BIP-like SOS [23], i.e. it does ot have weak full
expressiveness w.r.t. BIP-like SOS. We denote SOS rules in the format (3.18) with
“FNSOS”.

• BIP glue in classical semantics and BIP glue in offer semantics are incomparable (cf.
Examples3.1.2 and 3.2.1). Notice that the same examples can be used to show that
BIP glue in classical semantics is incomparable with SOS rules in the format (3.18).

These relations are illustrated in Figure 3.17. Arrows connect less expressive sets of operators
with more expressive ones; double-headed arrows connect sets that have strong full expres-
siveness (or weak full expressiveness if there is a mark “w”) w.r.t. to each other; dashed lines
connect incomparable sets. The figure shows two extra relations since BIP-like SOS with
acyclic inhibiting relation and SOS rules in the format (3.18) are sub-formats of BIP-like
SOS and SOS rules in the format (2.25), respectively.

Considering a class of components satisfying Property 3.2.5, we can transform BIP glue in the
classical semantics into the offer semantics by the algorithm in Figure 3.6. Within this class,
any system in the classical semantics is expressible in the offer semantics. Proposition 3.2.10
shows that any BIP-like SOS operator can be represented as an operator in the format
(3.18). Assuming that components satisfy Property 3.2.5 expressiveness relations between
composition operators are summarised in Figure 3.18.

69

4 Architecture Composability

In this chapter, we show how architectures can be modelled and combined. An architecture
is defined as an operator that applied to a set of components builds a composite one. It
consists of a configuration with a set of coordinating components. For the sake of simplicity,
we use BIP interaction model (cf. Definition 2.2.7) to specify configurations throughout
this chapter. In Section 4.4, we show that the results are also valid for extended interaction
model (cf. Definition 2.3.4).

Architectures can be intuitively understood as enforcing constraints on the global state
space of the system [23, 101]. From this perspective, architecture composition can be
understood as the conjunction of their respective constraints. Propositional Interaction
Logic as a representation of BIP interaction model allows to define composition in a simple
manner: the composition operator returns an architecture with coordinating components of
all operands and a conjunction of PIL formulas representing operands’ interaction models.
This composition operator is commutative and associative. Furthermore, it is idempotent if
all coordinating components are deterministic.

An architecture is a solution to a specific coordination problem characterised by a property.
Any property can be decomposed as the conjunction of safety and liveness properties. The
composition operator preserves safety properties: for two architectures with characteristic
safety properties Φ1 and Φ2, their composition has a characteristic property Φ1 ∧ Φ2. Some
results on liveness properties preservation are provided in [9], however they are out of the
scope of this thesis.

The results are illustrated in the case study in Section 4.5.

4.1 Architecture operator

An architecture can be seen as a composition operator that transforms a set of components
into a new composite component. It generalises BIP interaction models, by introducing
stateful coordinating components. The interface of an architecture is a set of ports that

71

Chapter 4. Architecture Composability

work

sleep

b1 f1

B1

f1b1

work

sleep

b2 f2

B2

f2b2

taken

free

C12

b12 f12

b12 f12

(a) (b)

Figure 4.1 – Components (a) and coordinator (b) for Example 4.1.3.

comprises both the ports of the coordinating components and additional dangling ports that
must belong to operand components, to which the architecture is applied.

Definition 4.1.1. An architecture is a tuple A = (C, PA, γ), where C is a finite set of
coordinating components with pairwise disjoint sets of ports, PA is a set of ports, such that⋃

C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model over PA.

An architecture A can be applied to any set of components B that contains all dangling ports
of A. Intuitively, an architecture enforces coordination constraints on the components in B.
The interface PA of an architecture A contains all ports of the coordinating components C and
some additional ports, which must belong to the components in B. In the application A(B),
the ports belonging to PA can only participate in the interactions defined by the interaction
model γ of A. Ports that do not belong to PA are not restricted and can participate in any
interaction. In particular, they can join the interactions in γ (see (4.1) below).

Definition 4.1.2. Let A = (C, PA, γ) be an architecture and let B be a set of components,
such that

⋃
B∈B PB ∩ ⋃C∈C PC = ∅ and PA ⊆ P

def=
⋃

B∈B∪C PB. The application of an
architecture A to the components B is the component

A(B) def=
(
γ
� 2P \PA

)
(C ∪ B) , (4.1)

where, for interaction models γ′ and γ′′ over disjoint domains P ′ and P ′′ respectively,

γ′
� γ′′ def= {a′ ∪ a′′ | a′ ∈ γ′, a′′ ∈ γ′′}

is an interaction model over P ′ ∪ P ′′.

Notice that, when the interface of the architecture covers all ports of the system, i.e. P = PA,
we have 2P \PA = {∅} and the only interactions allowed in A(B) are those belonging to γ.

Example 4.1.3. Consider the components B1 and B2 in Figure 4.1(a). In order to ensure
mutual exclusion of their work states, we apply the architecture A12 = ({C12}, P12, γ12),
where the component C12 is shown in Figure 4.1(b), P12 = {b1, b2, b12, f1, f2, f12} and
γ12 =

{
∅, b1b12, b2b12, f1f12, f2f12

}
.

72

4.1. Architecture operator

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only possible
interactions are those explicitly belonging to γ12. Assuming that the initial states of B1

and B2 are sleep, and that of C12 is free, neither of the two states (free, work, work) and
(taken, work, work) is reachable, i.e. the mutual exclusion property (q1 �= work) ∨ (q2 �=
work)—where q1 and q2 are state variables of B1 and B2 respectively—holds in A12(B1, B2).

Let B3 be a third component, similar to B1 and B2, with the interface {b3, f3}. Since
b3, f3 �∈ P12, the interaction model of the application A12(B1, B2, B3) is γ12
�

{
∅, b3, f3

}
.

(We omit the interaction b3f3, since b3 and f3 are never enabled in the same state and,
therefore, cannot be fired simultaneously.) Thus, the component A12(B1, B2, B3) is the
unrestricted product of the components A12(B1, B2) and B3. The application of A12 enforces
mutual exclusion between the work states of B1 and B2, but does not affect the behaviour
of B3.

For the proofs of the results provided in the rest of this chapter, it will be convenient to
assume that an architecture has precisely one coordinating component, i.e. C = {C}. In
most cases, this can be done without loss of generality by noticing that the proof argument
can be repeated for all coordinating components, since an architecture can have only a finite
number of such. However, this assumption can be formalised explicitly by the following
lemma.

Lemma 4.1.4. Let A = (C, PA, γ) be an architecture and denote by γC
def= {a ∩ PC | a ∈ γ},

with PC =
⋃

C∈C PC , the projection of γ onto the ports of the coordinating components of A.
Consider an architecture A′ = ({C ′}, PA, γ), where C ′ = γC(C). For any set of components
B, satisfying the conditions of Definition 4.1.2, we have A(B) = A′(B).

Proof. First of all, notice that PC′ = PC . Hence, the conditions of Definition 4.1.1 are satisfied
and A′ is indeed an architecture. Furthermore, B satisfies the conditions of Definition 4.1.2
w.r.t. A′. Hence, the component A′(B) is well defined.

Clearly the state spaces and interfaces of both components coincide. Thus, we only have
to prove that so do the transition relations. Let us assume that C = {C1, . . . , Cm} and
B = {B1, . . . , Bn}. We will use q̃i, q̃′

i to denote the states of Ci and qi, q′
i to denote the states

of Bi.

By Definition 4.1.2, a transition q̃1 . . . q̃mq1 . . . qn
a−→ q̃′

1 . . . q̃′
mq′

1 . . . q′
n is possible in A(B) iff

a �= ∅ and

1. for i ∈ [1, m], q̃i

a∩PCi−−−−→ q̃′
i is possible in Ci, or a ∩ PCi = ∅ and q̃i = q̃′

i ;

2. for i ∈ [1, n], qi

a∩PBi−−−−→ q′
i is possible in Bi, or a ∩ PBi = ∅ and qi = q′

i ;

3. a ∈ γ
� 2P \PA ;

73

Chapter 4. Architecture Composability

where P =
⋃

B∈B∪C PB.

Similarly, the above transition is possible in A′(B) iff a �= ∅ and

1. q̃1 . . . q̃m
a∩PC′−−−−→ q̃′

1 . . . q̃′
m is possible in C ′, or a ∩ PC′ = ∅ and q̃i = q̃′

i, for all i ∈ [1, m] ;

2. for i ∈ [1, n], qi

a∩PBi−−−−→ q′
i is possible in Bi, or a ∩ PBi = ∅ and qi = q′

i ;

3. a ∈ γ
� 2P \PA ;

If a ∩ PC′ �= ∅, the transition in condition 1 above is possible in C ′ iff

4. a ∩ PC′ ∈ γC and,

5. for i ∈ [1, m], q̃i

a∩PCi−−−−→ q̃′
i is possible in Ci, or a ∩ PCi = ∅ and q̃i = q̃′

i.

Consider a ∈ γ
� 2P \PA . Since PC′ = PC ⊆ PA, we have a ∩ PC′ = a ∩ PC = (a ∩ PA) ∩ PC.
Since a ∩ PA ∈ γ, we have a ∩ PC′ ∈ γC , which concludes the proof.

4.2 Composition of architectures

Architectures can be intuitively understood as enforcing constraints on the global state
space of the system [23, 101]. More precisely, component coordination is realised by limiting
the allowed interactions, thus enforcing constraints on the transitions components can take.
From this perspective, architecture composition can be understood as the conjunction of
their respective constraints. This intuitive notion is formalised by the following definition.

Definition 4.2.1. Let Ai = (Ci, PAi , γi), for i = 1, 2, be two architectures and let ϕγ1 , ϕγ2

be characteristic predicates (Definition 2.2.17) of γ1, γ2, respectively. The composition of
A1 and A2 is an architecture A1 ⊕ A2 = (C1 ∪ C2, PA1 ∪ PA2 , γϕ), where ϕ = ϕγ1 ∧ ϕγ2 and
γϕ = ‖ϕ‖ is an interaction model defined by the predicate ϕ.

The following lemma states that the interaction model of the composed component consists
precisely of the interactions a such that the projections of a onto the interfaces of the
composed architectures (A1 and A2, resp.) belong to the corresponding interaction models
(γ1 and γ2, resp.). In other words, these are precisely the interactions that satisfy the
coordination constraints enforced by both composed architectures. In particular, as we
will show in Theorem 4.3.5, this means that, for two architectures A1, A2 and a set of
components B, the execution traces allowed by A1 ⊕ A2 on B are those that are allowed by
both A1 and A2, which guarantees the preservation of safety properties by the composition
of architectures.

74

4.2. Composition of architectures

Lemma 4.2.2. Consider two interaction models γi ⊆ 2Pi , for i = 1, 2, and let ϕ = ϕγ1 ∧ϕγ2 .
For an interaction a ⊆ P1 ∪ P2, a ∈ γϕ iff a ∩ Pi ∈ γi, for i = 1, 2. More specifically,
γϕ = {a1 ∪ a2 | a1 ∈ γ1, a2 ∈ γ2, a1 ∩ P2 = a2 ∩ P1}.

Proof. Let v(p) = (p ∈ a) be a valuation P1 ∪ P2 → B corresponding to a. We have
a |=i=ϕγ1 ∧ϕγ2 iff (ϕγ1 ∧ϕγ2)(v) = true, which is equivalent to ϕγ1(v) = true and ϕγ2(v) = true.
Consider a restriction v′ : P1 → B of v to P1, defined by putting ∀p ∈ P1, v′(p) = v(p). Since
the variables p ∈ P2 \ P1 do not appear in ϕγ1 , we have ϕγ1(v) = true iff ϕγ1(v′) = true, i.e.
a ∩ P1 ∈ γ1. The same holds for a ∩ P2 ∈ γ2.

Thus, for a ∈ γϕ, a ∩ Pi ∈ γi (i ∈ {1, 2}) and, trivially, (a ∩ P1) ∩ P2 = (a ∩ P2) ∩ P1.

For any a1 ∈ γ1 and a2 ∈ γ2, such that a1 ∩ P2 = a2 ∩ P1, holds (a1 ∪ a2) ∩ P1 = a1 and
(a1 ∪ a2) ∩ P2 = a2. Consequently, a1 ∪ a2 ∈ γϕ.

Remark 4.2.3. Every interaction allowed by A1 ⊕ A2 must comprise both an interaction
allowed by A1 and an interaction allowed by A2. To allow architecture A1 to progress
independently from A2, one must have ∅ ∈ γ2 and vice-versa.

Lemma 4.2.4. Consider a set of components B and two architectures Ai = (Ci, PAi , γi),
for i = 1, 2. Let q̃1q̃2q

a−→ q̃′
1q̃′

2q′ be a transition in (A1 ⊕ A2)(B), where, for i = 1, 2,
q̃i, q̃′

i ∈ ∏C∈Ci
QC and q, q′ ∈ ∏B∈B QB. Then, for i = 1, 2, if a ∩ (PAi ∪ P) �= ∅, then

q̃iq
a∩(PAi

∪P)
−−−−−−−→ q̃′

iq
′ is a transition in Ai(B), where P =

⋃
B∈B PB.

Proof. By Lemma 4.1.4, we can assume that each of the two architectures has only one
coordinating component, i.e. Ci = {Ci}, for i = 1, 2.

By Definition 4.2.1, a ∩ (PA1 ∪ PA2) |=i=ϕγ1 ∧ ϕγ2 . By Lemma 4.2.2, a ∩ PA1 ∈ γ1. Hence,

ã
def= a ∩ (PA1 ∪ P) =

(
a ∩ PA1

)
∪
(
a ∩ (P \ PA1)

)
∈
(
γ1
� 2P \PA1

)
.

By the assumption of the lemma, ã �= ∅. Furthermore, since q̃1q̃2q
a−→ q̃′

1q̃′
2q′, we have by

(2.10),⎧⎨⎩q̃1
a∩PC1−−−−→ q̃′

1, if a ∩ PC1 �= ∅,

q̃1 = q̃′
1, if a ∩ PC1 = ∅,

and, for i ∈ [1, n],

⎧⎨⎩qi
a∩Pi−−−→ q′

i, if a ∩ Pi �= ∅,

qi = q′
i, if a ∩ Pi = ∅.

Since PC1 ⊆ PA1 , we have ã ∩ PC1 = a ∩ PC1 . Similarly, for any i ∈ [1, n], Pi ⊆ P , hence
ã ∩ Pi = a ∩ Pi. Thus, all premises of the instance of the rule (2.10) for ã in A1(B) are
satisfied and we have q̃1q

ã−→ q̃′
1q′ in A1(B). For A2(B), the result is obtained by a symmetrical

argument.

Proposition 4.2.5. Architecture composition ⊕ is commutative and associative; it is idem-
potent if all coordinating components are deterministic; Aid =

(
∅, ∅, {∅}

)
is its neutral

75

Chapter 4. Architecture Composability

element, i.e. for any architecture A, we have A ⊕ Aid = A. Furthermore, for any component
B, we have Aid(B) = B.

Proof. Commutativity and associativity follow from the corresponding properties of set
union and boolean conjunction. Suppose we have two architectures A = A′. As illustrated
by Lemma 4.1.4, this does not necessarily mean that their sets of coordinating components
coincide. However, if all involved coordinating components are deterministic, then, in any
state of (A ⊕ A′)(B), both architectures will impose the same restrictions, enabling the
same interactions between the coordinating and operand components. Hence, we have
(A ⊕ A′)(B) = A(B) = A′(B). Since this holds for any set of components B, we conclude
that A ⊕ A′ = A = A′. The properties of Aid follow immediately from the definitions of
architecture application and composition.

Notice that, by (4.1), for an arbitrary set of components B with P =
⋃

B∈B PB, we have
Aid(B) =

(
2P
)
(B).

Example 4.2.6. Building upon Example 4.1.3, let B3 be a third component, similar to B1

and B2, with the interface {b3, f3}. We define two additional architectures A13 and A23 similar
to A12: for i = 1, 2, Ai3 = ({Ci3}, Pi3, γi3), where, up to the renaming of ports, Ci3 is the same
as C12 in Figure 4.1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and γi3 =

{
∅, bibi3, b3bi3, fifi3, f3fi3

}
.

The characteristic predicate of γ12 is:

ϕγ12 = b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

= (b1 ⇒ b12) ∧ (f1 ⇒ f12) ∧ (b2 ⇒ b12) ∧ (f2 ⇒ f12) (4.2)
∧ (b12 ⇒ b1 XOR b2) ∧ (f12 ⇒ f1 XOR f2) ∧ (b12 ⇒ f12) .

Intuitively, the implication b1 ⇒ b12, for instance, means that, for the port b1 to be fired, it
is necessary that the port b12 be fired in the same interaction [22].

By considering, for ϕγ13 and ϕγ23 , expressions similar to (4.2), it is easy to compute ϕγ12 ∧
ϕγ13 ∧ ϕγ23 as the conjunction of the following implications:

b1 ⇒ b12 ∧ b13 , f1 ⇒ f12 ∧ f13 , b12 ⇒ b1 XOR b2 , f12 ⇒ f1 XOR f2 , b12 ⇒ f12 ,

b2 ⇒ b12 ∧ b23 , f2 ⇒ f12 ∧ f23 , b13 ⇒ b1 XOR b3 , f13 ⇒ f1 XOR f3 , b13 ⇒ f13 ,

b3 ⇒ b13 ∧ b23 , f3 ⇒ f13 ∧ f23 , b23 ⇒ b2 XOR b3 , f23 ⇒ f2 XOR f3 , b23 ⇒ f23 .

Finally, the interaction model γ123 for A12 ⊕ A13 ⊕ A23 is:

γ123 =
{
∅, b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23

}
.

Notice that this interaction model is different from the union of the interaction models of

76

4.2. Composition of architectures

the three architectures. For any interaction a ∈ γ123, a ∩ Pij ∈ γij , for ij ∈ {12, 13, 23} (cf.
Lemma 4.2.2).

Assuming that the initial states of B1, B2 and B3 are sleep, whereas those of C12, C13 and
C23 are free, one can observe that none of the states (·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work)
and (·, ·, ·, ·, work, work) are reachable in (A12 ⊕ A13 ⊕ A23)(B1, B2, B3). Thus, we conclude
that the composition of the three architectures, (A12 ⊕ A13 ⊕ A23)(B1, B2, B3), enforces
mutual exclusion among the work states of all three components. In Section 4.3, we provide
a general result stating that architecture composition preserves the enforced state properties.

4.2.1 Hierarchical composition of architectures

The following proposition establishes a link between the architecture composition as defined
in the previous section and the usual notion of functional composition.

Proposition 4.2.7. Let B be a set of components and let A1 = (C1, PA1 , γ1) and A2 =
(C2, PA2 , γ2) be two architectures, such that 1) PA1 ⊆ P1

def=
⋃

B∈B∪C1 PB and 2) PA2 ⊆ P2
def=⋃

B∈B∪C1∪C2 PB. Then A2
(
A1(B)

)
is defined and equal to (A1 ⊕ A2)(B).

Proof. Clearly, the state spaces and interfaces of both components coincide. Thus we only
have to prove that so do the transition relations. By Lemma 4.1.4, we assume C1 = {C1},
C2 = {C2} and B = {B1, . . . , Bn}.

By Definition 4.1.2 a transition qC1qC2q1 . . . qn
a−→ q′

C1q′
C2q′

1 . . . q′
n is possible in A2

(
A1(B)

)
iff

a �= ∅ and

1. qC2

a∩PC2−−−−→ q′
C2 is possible in C2, or a ∩ PC2 = ∅ and qC2 = q′

C2 ;

2. qC1q1 . . . qn
a∩P1−−−→ q′

C1q′
1 . . . q′

n is possible in A1(B), or a ∩ P1 = ∅ and qC1q1 . . . qn =
q′

C1q′
1 . . . q′

n;

3. a ∈ γ2
� 2P2\PA2 .

If a ∩ P1 �= ∅, the transition in condition 2 above is possible in A1(B) iff

4. qC1

a∩PC1−−−−→ q′
C1 is possible in C1, or a ∩ PC1 = ∅ and qC1 = q′

C1 ;

5. for i ∈ [1, n], qi

a∩PBi−−−−→ q′
i is possible in Bi, or a ∩ PBi = ∅ and qi = q′

i;

6. a ∩ P1 ∈ γ1
� 2P1\PA1 .

Similarly, the above transition is possible in (A1 ⊕ A2)(B) iff a �= ∅ and

77

Chapter 4. Architecture Composability

1. for i = 1, 2, qCi

a∩PCi−−−−→ q′
Ci

is possible in Ci, or a ∩ PCi = ∅ and qCi = q′
Ci

;

2. for i ∈ [1, n], qi

a∩PBi−−−−→ q′
i is possible in Bi, or a ∩ PBi = ∅ and qi = q′

i;

3. a ∈ γA1⊕A2
� 2P2\(PA1 ∪PA2).

Thus, to prove the proposition it is sufficient to show that a ∈ γA1⊕A2
� 2P2\(PA1 ∪PA2) iff
a ∈ γ2
� 2P2\PA2 and a ∩ P1 ∈ γ1
� 2P1\PA1 .

For a ⊆ P2, we have a ∈ γA1⊕A2
� 2P2\(PA1 ∪PA2) iff a∩ (PA1 ∪PA2) ∈ γA1⊕A2 , i.e. a∩ (PA1 ∪
PA2) |= ϕγ1 ∧ϕγ2 . By Lemma 4.2.2, this is equivalent to a∩ (PA1 ∪PA2)∩PA1 = a∩PA1 ∈ γ1

and a ∩ (PA1 ∪ PA2) ∩ PA2 = a ∩ PA2 ∈ γ2. Since a ⊆ P2, we have a ∩ PA2 ∈ γ2 iff
a ∈ γ2
� 2P2\PA2 . Finally, since PA1 ⊆ P1, we have a∩PA1 ∈ γ1 iff a∩P1 ∈ γ1
� 2P1\PA1 .

The first condition in Proposition 4.2.7 states that A1 can be applied to the components in
B (cf. Definition 4.1.2). Similarly, the second condition states that A2 can be applied to
A1(B). Note that, when PAi ⊆ ⋃B∈B∪Ci

PB holds for both i ∈ {1, 2}—for i = 1, this is the
first condition of Proposition 4.2.7—and none of the architectures involves the ports of the
other, i.e. PAi ∩

⋃
C∈Cj

PC = ∅, for i �= j ∈ {1, 2}, then the two architectures are independent
and their composition is commutative: A2

(
A1(B)

)
= (A1 ⊕ A2)(B) = A1

(
A2(B)

)
.

The following proposition shows that the application of an architecture only affects the
components that have ports belonging to its interface. Components that do not involve such
ports are not affected, even if they interact with the operand components of the architecture.
In Proposition 4.2.8, such potential interactions are modelled by applying the architecture
A2, which also provides a context for the comparison of the resulting systems. In the special
case, where such independent components do not interact with the architecture operands,
one can consider A2 = Aid.

Proposition 4.2.8. Let B1,B2 be two sets of components, such that B1 ∩ B2 = ∅. Let A1 =
(C1, PA1 , γ1) and A2 = (C2, PA2 , γ2) be two architectures, such that PA1 ⊆ P1

def=
⋃

B∈B1∪C1 PB

and PA2 ⊆ P2
def=
⋃

B∈B1∪B2∪C1∪C2 PB. Then A2
(
A1(B1, B2)

)
= A2

(
A1(B1),B2

)
.

Proof. As in the proof of Proposition 4.2.7, we notice that the sets of states and interfaces
are equal in both composed components, thus we only have to prove the equality of transition
relations. By Lemma 4.1.4, we assume C1 = {C1} and C2 = {C2}. Furthermore, let
B1 = {B1, . . . , Bk} and B2 = {Bk+1, . . . , Bn}. We then have P1 = PC1 ∪ ⋃k

i=1 PBi and
P2 = PC1 ∪ PC2 ∪⋃n

i=1 PBi .

Assume that we have a transition qC1qC2q1 . . . qn
a−−→ q′

C1q′
C2q′

1 . . . q′
n in A2

(
A1(B1,B2)

)
.

All components can make their corresponding transitions and a can be represented as
a = aC2 ∪ aγ1 ∪ a1, where aC2 ⊆ PC2 , aγ1 ∈ γ1 and a1 ∈ 2P1\PA1 . As PBi ∩ PBj = ∅, for
all i �= j ∈ [1, n], all the ports of B2 that belong to a are in a1. Let a1 = aB2 ∪ a2, where

78

4.2. Composition of architectures

aB2 = a∩⋃n
i=k+1 PBi . Then either aγ1 ∪a2 = ∅ or it is enabled in A1(B1). Hence, interaction

a = aC2 ∪ aγ1 ∪ a2 ∪ aB2 is enabled in A2
(
A1(B1),B2

)
.

Assume that interaction a is enabled in A2
(
A1(B1),B2

)
. It can be represented as a =

aC2 ∪aγ1 ∪a2∪aB2 . Then interaction aγ1 ∪a2∪aB2 is enabled in A1(B1, B2) and, consequently,
a is enabled in A2

(
A1(B1,B2)

)
in the corresponding state.

Intuitively, Proposition 4.2.8 states that one only has to apply the architecture A1 to those
components that have ports involved in its interface. Notice that, in order to compare the
semantics of two sets of components, one has to compose them into compound components,
by applying some architecture. Hence, the need for A2 in Proposition 4.2.8. As a special
case, one can consider the “most liberal” identity architecture Aid (see Proposition 4.2.5).
Aid does not impose any coordination constraints, allowing all possible interactions between
the components it is applied to.

Example 4.2.9. Example 4.2.6 can be generalised to an arbitrary number n of components
by repeating the architecture application pairwise. However, this solution requires n(n−1)/2
architectures, and so does not scale well. Instead, we apply architectures hierarchically.

Let n = 4 and consider two architectures A12, A34, with the respective coordination compo-
nents C12, C34, that respectively enforce mutual exclusion between B1, B2 and B3, B4 as in Ex-
ample 4.2.6. Assume furthermore, that an architecture A enforces mutual exclusion between
the taken states of C12 and C34. It is clear that the system A

(
A12(B1, B2), A34(B3, B4)

)
ensures mutual exclusion between all four components (Bi)4

i=1. Furthermore, by the above
propositions,

A
(
A12(B1, B2), A34(B3, B4)

)
= A

(
A12
(
B1, B2, A34(B3, B4)

))
= A

(
A12
(
A34(B1, B2, B3, B4)

))
= (A ⊕ A12 ⊕ A34)(B1, B2, B3, B4) .

4.2.2 Partial application of architectures

Notice that the main condition, limiting the application of Proposition 4.2.7 and Proposi-
tion 4.2.8, is that the architectures must be applicable, i.e. every port of the architecture
interface must belong to some component. Below we lift this restriction by introducing the
notion of partial application. We generalise Definition 4.1.2 for architectures A = (C, PA, γ)
applied to sets of components B, such that PA �⊆ ⋃B∈B∪C PB. This means that the architec-
ture enforces constraints on some ports which are not present in any of the coordinating
or base components. In other words, the system obtained by applying the architecture to
the set of components B is not complete. The result can then itself be considered as an
architecture where the coordinating component is the one obtained by applying to B ∪ C the
projection of interactions in γ.

Definition 4.2.10. Let A = (C, PA, γ) be an architecture and B be a set of components. Let
P =

⋃
B∈B∪C PB . A partial application of A to B is an architecture A[B] def= ({C ′}, P ∪PA, γ
�

79

Chapter 4. Architecture Composability

2P \PA), where C ′ def= (γP
� 2P \PA)(C ∪ B) with γP = {a ∩ P | a ∈ γ} and the operator
� as
in Definition 4.1.2.

Notice that an architecture obtained by partial application has precisely one coordinating
component C ′. It is also important to notice that the interaction model in A[B] is not the
same as in the definition of C ′. On the other hand, if PA ⊆ P (as in Definition 4.1.2), we
have γP = γ and A[B] =

(
{A(B)}, P, γ
� 2P \PA

)
.

Lemma 4.2.11. Let B be a set of components and A = (C, PA, γ) be an architecture, such
that PA ⊆ ⋃B∈B∪C PB. Then A(B) = A[B](∅).

Proof. Follows immediately from Definitions 4.1.2 and 4.2.10.

Proposition 4.2.12. Let B1 and B2 be two sets of components, such that B1 ∩ B2 = ∅, and
let A = (C, PA, γ) be an architecture. Then A[B1 ∪ B2] =

(
A[B1]

)
[B2].

Proof. Clearly the interfaces of both architectures coincide. Furthermore, since the two
architectures are obtained by partial application, each has only one coordinating component
(see Definition 4.2.10). Thus, we have to show that the coordinating components and the
interaction models of both architectures coincide.

Let P1 =
⋃

B∈C∪B1 PB and P2 =
⋃

B∈C∪B2 PB. By Definition 4.2.10, the interaction models
of A[B1 ∪ B2] and

(
A[B1]

)
[B2] are, respectively γ
� 2(P1∪P2)\PA and

(
γ
� 2P1\PA

)

� 2P2\PA .

Since 2P1\PA
� 2P2\PA = 2(P1∪P2)\PA , we conclude that the interaction models coincide.

It is also clear that the state spaces and interfaces of both coordination components coincide.
Thus, we only have to show that so do the transition relations. Let us consider the
coordinating components of the two architectures. By Definition 4.2.10, we have

A[B1 ∪ B2] =
(
{C12}, PA ∪ P1 ∪ P2, γ
� 2(P1∪P2)\PA

)
,

with C12 =
(
γP1∪P2
� 2(P1∪P2)\PA

)
(C ∪ B1 ∪ B2) ,

where γP1∪P2 = {a ∩ (P1 ∪ P2) | a ∈ γ} . (4.3)

Similarly,

A[B1] =
(
{C1}, PA ∪ P1, γ
� 2P1\PA

)
,

with C1 =
(
γP1
� 2P1\PA

)
(C ∪ B1) , where γP1 = {a ∩ P1 | a ∈ γ} and (4.4)

(A[B1])[B2] =
(
{C2}, PA ∪ P1 ∪ P2, γ
� 2(P1∪P2)\PA

)
,

with C2 =
(
γP1∪P2
� 2(P1∪P2)\PA

)
({C1} ∪ B2) . (4.5)

Since the interaction models and the constituent atomic components of C12 and C2 coincide,
any transition allowed in C2 is also allowed in C12. Hence, to prove that C12 = C2, we

80

4.2. Composition of architectures

have to show that any interaction allowed in C12, after projection, is allowed in C1. Notice,
further, that the interface of C1 is P1, whereas those of C2 and C12 are both P1 ∪ P2.

Consider a ∈ γP1∪P2
� 2(P1∪P2)\PA . By definition of
�, a = a1 ∪ a2, with a1 ∈ γP1∪P2

and a2 ⊆ (P1 ∪ P2) \ PA. By (4.3), we have a1 = ã1 ∩ (P1 ∪ P2) with some ã1 ∈ γ. We
deduce that a1 ∩ P1 = ã1 ∩ (P1 ∪ P2) ∩ P1 = ã1 ∩ P1 and, therefore a1 ∩ P1 ∈ γP1 . Since,
a ∩ P1 = (a1 ∩ P1) ∪ (a2 ∩ P1) and a2 ∩ P1 ⊆ ((P1 ∪ P2) \ PA) ∩ P1 = P1 \ PA, we have
a ∩ P1 ∈ γP1
� 2P1\PA . Thus, the part of a relevant to the atomic components comprising
C1 belongs to the interaction model in (4.4). By (2.10), we conclude that any transition
labelled by a in C12 is also a transition of C2.

Proposition 4.2.12 generalises Proposition 4.2.8. In order to generalise Proposition 4.2.7, we
first define the application of one architecture to another, by putting

A1[A2] def= (A1 ⊕ A2)[∅] . (4.6)

Lemma 4.2.13. For any set of components B and any architectures A1 and A2, we have
(A1 ⊕ A2)[B] = (A1[B] ⊕ A2)[∅] = (A1 ⊕ A2[B])[∅].

Proof. We only prove (A1 ⊕ A2)[B] = (A1[B] ⊕ A2)[∅]. The other equality is symmetrical.

Let Ai = (Ci, PAi , γi), for i = 1, 2, and A1[B] = ({C ′
1}, P ′

A1 , γ′
1). Let P1 =

⋃
B∈B∪C1 PB and

P2 =
⋃

B∈B∪C1∪C2 PB.

Clearly the interfaces of both architectures coincide. Furthermore, since the two architectures
are obtained by partial application, each has only one coordinating component (see Defini-
tion 4.2.10). Thus we have to show that the coordinating components and the interaction
models of both architectures coincide.

Let us consider the characteristic predicates of the interaction models. Notice, first, that for
any two interaction models γ′ ⊆ 2P ′ and γ′′ ⊆ 2P ′′ , over disjoint sets of ports P ′ ∩ P ′′ = ∅,
one has (cf. Definition 4.1.2)

ϕγ′ ∧ ϕγ′′ ≡ ϕγ′
�γ′′ . (4.7)

Denote the interaction model of A1[B] by γ′
1 = γ1
� 2P1\PA1 . Clearly, ϕ(

2P1\PA1
) = true.

Hence, by (4.7), we have ϕγ′
1
≡ ϕγ1 ∧ ϕ(

2P1\PA1
) ≡ ϕγ1 and, consequently, the characteristic

predicate of the interaction model of (A1[B] ⊕ A2)[∅] is ϕγ′
1
∧ ϕγ2 ≡ ϕγ1 ∧ ϕγ2 . By a similar

argument, we can conclude that the characteristic predicate of the interaction model of
(A1 ⊕ A2)[B] is also ϕγ1 ∧ ϕγ2 . Since the interfaces of the two architectures coincide, this
implies that so do their interaction models. We denote the interaction model in question by
γ12. Recall that ϕγ12 ≡ ϕγ1 ∧ ϕγ2 .

81

Chapter 4. Architecture Composability

Let us consider the coordinating components of the two architectures. By Definition 4.2.10,
we have

(A1 ⊕ A2)[B] =
(
{C12}, P2 ∪ PA1 ∪ PA2 , γ12
� 2P2\(PA1 ∪PA2)) ,

with C12 =
(
γP2

12
� 2P2\(PA1 ∪PA2))(C1 ∪ C2 ∪ B) , (4.8)
where γP2

12 = {a ∩ P2 | a ∈ γ12} .

Similarly,

A1[B] =
(
{C1}, P1 ∪ PA1 , γ1
� 2P1\PA1

)
,

with C1 =
(
γP1

1
� 2P1\PA1
)
(C1 ∪ B) , where γP1

1 = {a ∩ P1 | a ∈ γ1} and (4.9)

(A1[B] ⊕ A2)[∅] =
(
{C2}, P2 ∪ PA1 ∪ PA2 , γ12
� 2P2\(PA1 ∪PA2)) ,

with C2 =
(
γP2

12
� 2P2\(PA1 ∪PA2))({C1} ∪ C2) . (4.10)

Notice that the interaction models and the constituent atomic components in (4.8) and (4.10)
coincide. Therefore, any transition allowed in C2 is also allowed in C12. Hence, to prove that
C12 = C2, we have to show that any interaction allowed in C12, after projection, is allowed in
C1. Notice, further, that the interface of C1 is P1, whereas those of C2 and C12 are both P2.

Consider a ∈ γP2
12
� 2P2\(PA1 ∪PA2). By definition of
�, a = a1 ∪ a2 with a1 ∈ γP2

12 and
a2 ⊆ P2 \ (PA1 ∪ PA2) ⊆ P1 \ PA1 . By (4.8), we have a1 = ã1 ∩ P2 with some ã1 ∈ γ12.
Since ϕγ12 ≡ ϕγ1 ∧ ϕγ2 , by Lemma 4.2.2, we have ã1 ∩ PA1 ∈ γ1 and ã1 ∩ P1 ∈ γP1

1 .
Notice that P1 ⊆ P2. Hence a1 ∩ P1 = ã1 ∩ P2 ∩ P1 = ã1 ∩ P1 ∈ γP1

1 . We conclude that
a ∩ P1 = (a1 ∩ P1) ∪ (a2 ∩ P1) = (a1 ∩ P1) ∪ a2 ∈ γP1

1
� 2P1\PA1 . Thus, the part of a relevant
to the atomic components comprising C1 belongs to the interaction model in (4.9). By (2.10),
we conclude that any transition labelled by a in C12 is also a transition of C2.

As a consequence of Lemma 4.2.13, we immediately obtain the following generalisation of
Proposition 4.2.7.

Proposition 4.2.14. For any set of components B and any architectures A1 and A2, we
have A2

[
A1[B]

]
= A1

[
A2[B]

]
.

Proof. By (4.6) and Lemma 4.2.13, we have

A2
[
A1[B]

]
=
(
A2 ⊕ A1[B]

)
[∅] = (A1 ⊕ A2)[B] =

(
A1 ⊕ A2[B]

)
[∅] = A1

[
A2[B]

]
.

Notice, furthermore, that (4.6) generalises Definition 4.2.10. Indeed, to a given set of
components B, we can associate the architecture AB

def= Aid[B] (cf. Proposition 4.2.5). By

82

4.3. Property preservation

(4.6) and Lemma 4.2.13, we obtain, for any architecture A,

A[AB] = A
[
Aid[B]

]
= (A ⊕ Aid[B])[∅] = (A ⊕ Aid)[B] = A[B] .

Thus, partial application of an architecture to a set of components can be considered a
special case of the application of an architecture to another architecture.

The results of the last two subsections provide two ways for using architectures at early
design stages, by partially applying them to other architectures or to components that are
already defined. An architecture restricts the behaviour of its arguments, which can be both
components and other architectures.

4.3 Property preservation

In this section, unless explicitly stated otherwise, we consider a set of architectures A1, . . . , Am

and a set of operand components B. For each component we define an initial state q0, i.e.
a component is defined as a quadruple B = (Q, q0, P, −→) with q0 ∈ Q. For a set of
indices I ⊆ [1, m], we will denote by

⊕
i∈I Ai the composition of all architectures with

indices in I. This is well-defined, since ⊕ is associative and commutative. In particular,⊕
i∈[1,m] Ai

def= A1 ⊕ . . . ⊕ Am.

Throughout this section we use several classical notions, which we recall here.

Definition 4.3.1. Let B = (Q, q0, P, −→) be a component. A finite or infinite sequence
q0 −→ a1q1 −→ a2 · · · −→ akqk · · · is a path fragment in B. If in addition q0 = q0, then it is also
a path. A state q ∈ Q is reachable iff there exists a finite path in B terminating in q. A path
fragment is reachable iff its first state is reachable.

Definition 4.3.2. Let B = (Q, q0, P, −→) be a component. A safety property (in the rest
of this section, simply property) of B is a state predicate Φ : Q → B. We write q |= Φ iff
Φ(q) = true. A property Φ is initial if q0 |= Φ; it is reachable iff there exists a possibly empty
path q0 −→ a1q1 −→ a2 · · · −→ anqn, such that qn |= Φ.

The main idea of our approach is that an architecture enforces its characteristic property
on the set of its operand components. From this point of view, the set of coordinating
components is not relevant, neither are their states. Thus, to talk about properties enforced
by architectures, we consider properties on the unrestricted composition of the operand
components as formalised by the following definition.

Definition 4.3.3 (Enforcing properties). Let A = (C, PA, γ) be an architecture; let B be
a set of components and Φ be an initial property of their parallel composition Aid(B) (see
Proposition 4.2.5). We say that A enforces Φ on B iff, for every state q = (qb, qc) reachable
in A(B), with qb ∈ ∏B∈B QB and qc ∈ ∏C∈C QC , we have qb |= Φ.

According to the above definition, when we say that an architecture enforces some property

83

Chapter 4. Architecture Composability

swt

wsfssf wst

swfsst

wwf

wwt

b2b12f2f12

f1f12

b1b12

b1b12

f1f12

b2b12f2f12

Figure 4.2 – Composite component A12(B1, B2) for Example 4.3.4.

Φ, it is implicitly assumed that Φ is initial for the coordinated components. Below, we omit
mentioning this explicitly.

Example 4.3.4. Consider again the mutual exclusion in Example 4.1.3. States sleep and
free in components B1, B2 and C12 are initial. Component A12(B1, B2) is shown in Figure 4.2
(we abbreviate sleep, work, free and taken to s, w, f and t respectively). Clearly A12

enforces on {B1, B2} the mutual exclusion property Φ12 = (q1 �= w) ∨ (q2 �= w), where q1 and
q2 are state variables of B1 and B2 respectively.

Theorem 4.3.5. Let B be a set of components; let Ai = (Ci, PAi , γi), for i = 1, 2, be two
architectures enforcing on B the properties Φ1 and Φ2, respectively. The composition A1 ⊕A2

enforces on B the property Φ1 ∧ Φ2.

Proof. Again, by Lemma 4.1.4, we can assume that each of the two architectures has only
one coordinating component, i.e. Ci = {Ci}, for i = 1, 2. We also denote, for i = 1, 2,
Pi = PCi ∪ ⋃

B∈B PB.

The initiality of Φ1 ∧ Φ2, is trivial: both Φ1 and Φ2 are initial, hence q0 |= Φ1 ∧ Φ2.

Consider a path q̃0
1 q̃0

2q0 a1−→ q̃1
1 q̃1

2q1 a2−→ · · · ak−→ q̃k
1 q̃k

2qk in (A1 ⊕ A2)(B), where q0, . . . , qk ∈∏
B∈B QB and q̃0

i , . . . , q̃k
i ∈ QCi , for i = 1, 2. By Lemma 4.2.4, q̃0

1q0 a1∩P1−−−−→ q̃1
1q1 a2∩P1−−−−→

· · · ak∩P1−−−−→ q̃k
1qk is a path in A1(B). (If, for some i ∈ [1, k], ai ∩ P1 = ∅, the corresponding

transition can be omitted from the path.) Thus the state q̃k
1qk is reachable in A1(B). Since

A1 enforces Φ1 on B, this implies that qk |= Φ1. Symmetrically, qk |= Φ2, which concludes
the proof.

Example 4.3.6. In the context of Example 4.2.6, consider the application of architectures
A12 and A23 to the components B1, B2 and B3. The former enforces the property Φ12 =
(q1 �= w) ∨ (q2 �= w) (the projections of reachable states of A12(B1, B2, B3) onto the state-
space of the atomic components are shown in Figure 4.3(a)), whereas the latter enforces
Φ23 = (q2 �= w) ∨ (q3 �= w) (the projections of reachable states of A23(B1, B2, B3) onto the
state-space of the atomic components are shown in Figure 4.3(b)). By Theorem 4.3.5, the
composition A12 ⊕ A23 enforces Φ12 ∧ Φ23 = (q2 �= w) ∨

(
(q1 �= w) ∧ (q3 �= w)

)
, i.e. mutual

exclusion between, on one hand, the work state of B2 and, on the other hand, the work
states of B1 and B3 (see Figure 4.3(c)). Mutual exclusion between the work states of B1 and
B3 is not enforced. Furthermore, it is easy to check that A12 ⊕ A23 ⊕ A13 enforces mutual

84

4.4. Including priorities in architectures

wss

wsw

sws sss

sww ssw

b3f3 f3b3f3 b3f 2f
12
f 3

b 2b
12
b 3

f1 f12 f3
b1 b12 b3

b2b12 b1b12

f1f12f2f12

b2b12 b1b12

f1f12f2f12

(a) A12(B1, B2, B3)

ssw

wsw

sws sss

wws wss

b1f1 f1b1f1 b1f 2f
23
f 1

b 2b
23
b 1

f3 f23 f1
b3 b23 b1

b2b23 b3b23

f3f23f2f23

b2b23

f3f23f2f23

b3b23

(b) A23(B1, B2, B3)

ssw

wsw

sws sss

wss

b1b12

b3b23

f3f23

f3f23

f1f12

b2b12b23

b3 b23 b1 b12 f1f12
b3b23

f2f12f23
f3 f23 f1 f12 b1b12

(c) (A12 ⊕ A23)(B1, B2, B3)

Figure 4.3 – Projections of reachable states of Example 4.3.6 components onto Aid(B1, B2, B3)
(for ease of reading, we omit the transitions indicated by dotted blue arrows).

exclusion between the work states of B1, B2 and B3 as Φ12 ∧ Φ13 ∧ Φ23 =
(
(q1 �= w) ∧ (q2 �=

w)
)
∨
(
(q1 �= w) ∧ (q3 �= w)

)
∨
(
(q1 �= w) ∧ (q3 �= w)

)
.

4.4 Including priorities in architectures

The definition of architectures does not include BIP priority model. Interaction priorities
can only be imposed by coordinating components and only when the involved components
are all deterministic. In Chapter 3, we have shown that both interactions and priorities can
be modelled with extended interaction model in the BIP offer semantics. The modelling of
architectures with extended interaction models allows to include priorities in architectures.
In this section, we consider that all components are extended with the offer predicate (cf.
Definition 2.3.1), i.e. B = (Q, q0, P, −→ ,↑).

Recall that for a set of ports P we have firing Ṗ , activation P and negative P port typings.

Definitions of extended architectures, their application and composition are similar to the
non-extended ones.

Definition 4.4.1. An extended architecture is a tuple A = (C, PA, γ), where C is a finite set
of coordinating components with pairwise disjoint sets of ports, PA is a set of ports, such
that

⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA∪ṖA∪PA is an extended interaction model.

Definition 4.4.2. Let A = (C, PA, γ) be an extended architecture and let B be a set of
components, such that

⋃
B∈B PB ∩⋃C∈C PC = ∅ and PA ⊆ P

def=
⋃

B∈B∪C PB . The application

85

Chapter 4. Architecture Composability

of an extended architecture A to the components B is the component

A(B) def=
(
γ
� 2Ṗ \ṖA

)
(C ∪ B) , (4.11)

where,
� is defined as in Definition 4.1.2.

Ports that do not belong to PA are not restricted and can be fired alongside the interactions
in γ.

Example 4.4.3. Consider again the components B1 and B2 in Figure 4.1(a). In order to
ensure mutual exclusion of their work states, we apply the architecture A12 = (∅, P12, γ12),
where P12 = {b1, b2, f1, f2} and γ12 =

{
∅, ḃ1f2, ḃ2f1, ḟ1, ḟ2

}
.

The interface P12 of A12 covers all ports of B1 and B2, hence, the only possible interactions
are those explicitly belonging to γ12. None of the components can take a transition bi if the
second component is in the state work, since fj , for j �= i, is offered in this state. Assuming
that the initial states of B1 and B2 are sleep, the state (work, work) is unreachable. Notice
that we do not need a coordinating component contrary to Example 4.1.3.

In order to define the composition operator, we use characteristic predicates of extended
interaction models (cf. Definition 2.3.7).

Definition 4.4.4. Let Ai = (Ci, PAi , γi), for i = 1, 2, be two extended architectures and let
ϕγ1 , ϕγ2 be characteristic predicates (Definition 2.3.7) of γ1, γ2, respectively. The composition
of A1 and A2 is an extended architecture A1 ⊕ A2 = (C1 ∪ C2, PA1 ∪ PA2 , γϕ), where ϕ =
ϕγ1 ∧ ϕγ2 and γϕ = ‖ϕ‖ is an extended interaction model defined by the predicate ϕ.

Lemma 4.4.5 is a generalisation of Lemma 4.2.2. It characterises the extended interaction
model of the architecture composition. If none of the composed architectures has negative
or activation ports in their interaction models, then Lemma 4.4.5 and Lemma 4.2.2 coincide.
In the general case, for extended architectures Ai = (Ci, PAi , γi), for i = 1, 2, a projection
of an extended interaction a of the interaction model of A1 ⊕ A2 onto P1 (resp. P2) might
not belong to γ1 (resp. γ2). Nevertheless, γ1(resp. γ2) has to contain a less restrictive
extended interaction b with the same firing support as the projection of a, i.e. b ⊆ a and
fire(b) = fire(a) ∩ P1 (resp. P2).

Lemma 4.4.5. Consider two extended interaction models γi ⊆ 2Pi, for i = 1, 2, and let
ϕ = ϕγ1 ∧ ϕγ2. For an extended interaction a ⊆ P1 ∪ Ṗ1 ∪ P1 ∪ P2 ∪ Ṗ2 ∪ P2, a ∈ γϕ iff for
i = 1, 2, there exists ai ∈ γi such that ai ⊆ a and fire(ai) = fire(a) ∩ Pi. Assuming that
γ1, γ2 and γϕ do not contain redundant extended interactions (cf. Lemma 2.3.5),

γϕ =

⎧⎪⎪⎨⎪⎪⎩a1 ∪ a2

∣∣∣∣∣∣∣∣
a1 ∈ γ1, a2 ∈ γ2,

fire(a1) ∩ P2 = fire(a2) ∩ P1,

act(a1) ∩ neg(a2) = neg(a1) ∩ act(a2) = ∅

⎫⎪⎪⎬⎪⎪⎭ .

86

4.4. Including priorities in architectures

Proof. Let v(p) be any valuation P1 ∪ P2 ∪ Ṗ1 ∪ Ṗ2 → B corresponding to a, such that
v(ṗ) = (p ∈ fire(a)), v(p) = true, for all p ∈ fire(a) ∪ act(a) and v(p) = false, for all
p ∈ neg(a). Contrary to the proof of Lemma 4.2.2 there can be several valuations, since
v(p) can take any value for p �∈ fire(a) ∪ act(a) ∪ neg(a).

We have a |=i=ϕγ1 ∧ ϕγ2 iff (ϕγ1 ∧ ϕγ2)(v) = true, which is equivalent to ϕγ1(v) = true and
ϕγ2(v) = true. Consider a restriction v′ : P1 ∪ Ṗ1 → B of v to P1 ∪ Ṗ1 defined by putting,
for p ∈ P1 ∪ Ṗ1, v′(p) = v(p). Since the variables p ∈ (P2 ∪ Ṗ2) \ (P1 ∪ Ṗ1) do not appear
in ϕγ1 , we have ϕγ1(v) = true iff ϕγ1(v′) = true for any valuation v(p) corresponding to
a. Thus, there exists an extended interaction a1 ∈ γ1 such that fire(a1) = fire(a) ∩ P1,
act(a1) ⊆ act(a) ∩ P1 and neg(a1) ⊆ neg(a) ∩ P1, i.e. a1 ⊆ a. The same holds for γ2.

Consider two extended interactions a1 ∈ γ1, a2 ∈ γ2, such that fire(a1) ∩ P2 = fire(a2) ∩ P1

and act(a1) ∩ P2 ∩ neg(a2) = neg(a1) ∩ act(a2) = ∅. For an interaction a1 ∪ a2 and for
i ∈ {1, 2}, holds ai ⊆ a and fire(ai) = fire(a) ∩ Pi. Thus, a1 ∪ a2 ∈ γϕ.

For any extended interaction a ∈ γϕ, there exist a1 ∈ γ1 and a2 ∈ γ2, such that ai ⊆ a and
fire(ai) = fire(a)∩Pi, for i ∈ {1, 2}. Trivially, fire(a1)∩P2 = fire(a)∩P1∩P2 = fire(a2)∩P1.
Assume that there exists p ∈ act(a1) ∩ neg(a2), such that both p ∈ a and p ∈ a. In this
case a can never be enabled, so a is redundant and can be removed from γϕ. Thus
act(a1) ∩ neg(a2) = ∅ and, similarly, neg(a1) ∩ act(a2) = ∅. If a �= a1 ∪ a2, then, by
the reasoning in the previous paragraph, a1 ∪ a2 ∈ γϕ and fire(a) = fire(a1 ∪ a2). Since
a1 ∪ a2 ⊂ a, by Lemma 2.3.5, a is redundant and can be removed from γϕ.

Example 4.4.6. Mutual exclusion between two components Bi and Bj can be enforced
by the extended architecture Ai,j = (∅, Pi,j = {bi, fi, bj , fj}, γi,j = {∅, ḃifj , ḃjfi, ḟi, ḟj})
(cf. Example 4.4.3). Mutual exclusion between three components can be enforced by a
composition of extended architectures A1,2 ⊕ A1,3 ⊕ A2,3. Their characteristic predicates,
simplified by the axiom ṗ ⇒ p, are

ϕγ12 =ḃ1 ḃ2 ḟ1 ḟ2 ∨ ḃ1ḃ2 ḟ1 f2 ∨ ḃ2ḃ1 ḟ2 f1 ∨ ḟ1ḃ1 ḃ2 ḟ2 ∨ ḟ2ḃ1 ḃ2 ḟ1

ϕγ13 =ḃ1 ḃ3 ḟ1 ḟ3 ∨ ḃ1ḃ3 ḟ1 f3 ∨ ḃ3ḃ1 ḟ3 f1 ∨ ḟ1ḃ1 ḃ3 ḟ3 ∨ ḟ3ḃ1 ḃ3 ḟ1

ϕγ23 =ḃ2 ḃ3 ḟ2 ḟ3 ∨ ḃ2ḃ3 ḟ2 f3 ∨ ḃ3ḃ2 ḟ3 f2 ∨ ḟ2ḃ2 ḃ3 ḟ3 ∨ ḟ3ḃ2 ḃ3 ḟ2.

Conjunction of the ϕγ12 with ϕγ13 is equal to

ḃ1 ḃ2 ḃ3 ḟ1 ḟ2 ḟ3 ∨ ḃ3ḃ1 ḃ2 ḟ2 f1 ∨ ḟ3ḃ1 ḃ2 ḟ1 ḟ2 ∨ ḃ2ḃ1 ḃ3 ḟ3 f1 ∨ ḟ2ḃ1 ḃ3 ḟ1 ḟ3 ∨ ḃ1ḃ2 ḃ3 ḟ1 f2 f3

∨ ḃ2ḃ3ḃ1 ḟ2 ḟ3 f1 ∨ ḃ2ḟ3ḃ1 ḃ3 ḟ2 f1 ∨ ḟ1ḃ1 ḃ2 ḃ3 ḟ2 ḟ3 ∨ ḃ3ḟ2ḃ1 ḃ2 ḟ3 f1 ∨ ḟ2ḟ3ḃ1 ḃ2 ḃ3 ḟ1.

Notice that the composition of two architectures ensures mutual exclusiveness of components
B1, B2 and of components B1, B3, but allows to fire b2 and b3 simultaneously provided

87

Chapter 4. Architecture Composability

that component B1 is not in the working state. The conjunction of all three characteristic
predicates is:

ḃ1 ḃ2 ḃ3 ḟ1 ḟ2 ḟ3 ∨ ḃ1ḃ2 ḃ3 ḟ1 f2 f3 ∨ ḟ1ḃ1 ḃ2 ḃ3 ḟ2 ḟ3 ∨ ḃ2ḃ1 ḃ3 ḟ2 f1 f3

∨ ḃ3ḃ1 ḃ2 ḟ3 f1 f2 ∨ ḟ2ḃ1 ḃ2 ḃ3 ḟ1 ḟ3 ∨ ḟ3ḃ1 ḃ2 ḃ3 ḟ1 ḟ2.

Finally, it is straightforward to obtain an extended interaction model:

γ1,2,3 = {∅, ḃ1f2 f3, ḃ2f1 f3, ḃ3f1 f2, ḟ1, ḟ2, ḟ3}.

Notice that a projection of ḃ1f2 f3 onto P2,3 is f2 f3 which is not in the extended interaction
model γ2,3, however, for ∅ ∈ γ2,3, ∅ ⊂ f2 f3 and fire(∅) = fire

(
f2 f3

)
.

The rest of the results presented in Sections 4.2 and 4.3 can be easily generalised to extended
architectures. Rather than reproduce all of them we only show the generalisation of the
main result (Theorem 4.3.5).

Lemma 4.4.7. Consider a set of components B and two extended architectures Ai =
(Ci, PAi , γi), for i = 1, 2. Let q̃1q̃2q

fire(a)−−−−→ q̃′
1q̃′

2q′ be a transition in (A1 ⊕ A2)(B), where, for
i = 1, 2, q̃i, q̃′

i ∈ ∏C∈Ci
QC and q, q′ ∈ ∏B∈B QB. Then, for i = 1, 2, if fire(a)∩(PAi ∪P) �= ∅,

then q̃iq
fire(a)∩(PAi

∪P)
−−−−−−−−−−→ q̃′

iq
′ is a transition in Ai(B), where P =

⋃
B∈B PB.

Proof. By Lemma 4.1.4, we can assume that each of the two architectures has only one
coordinating component, i.e. Ci = {Ci}, for i = 1, 2.

By Definition 4.4.4, a ∩ (ṖA1 ∪ PA1 ∪ PA1 ∪ ṖA2 ∪ PA2 ∪ PA2) |=i=ϕγ1 ∧ ϕγ2 . By Lemma 4.4.5,
there exists a1 ∈ γ1, such that fire(a) ∩ PA1 = fire(a1) and a1 ⊆ a. Hence,

fire(a)∩(PA1∪P) =
(
fire(a)∩PA1

)
∪
(
fire(a)∩(P \PA1)

)
= fire(a1)∪

(
fire(a)∩(P \PA1)

)
and ã

def= a1 ∪
(
fire(a) ∩ (P \ PA1)

)
∈
(
γ1
� 2Ṗ \ṖA1

)
. By the assumption of the lemma,

fire(ã) �= ∅. Furthermore, since q̃1q̃2q
ȧ−→ q̃′

1q̃′
2q′, we have by (2.26),⎧⎨⎩q̃1

fire(a)∩PC1−−−−−−−→ q̃′
1, if fire(a) ∩ PC1 �= ∅,

q̃1 = q̃′
1, if fire(a) ∩ PC1 = ∅,

and q̃1 ↑act(a) ∩ PC1 , q̃1 � ↑neg(a) ∩ PC1 ;

for i ∈ [1, n],

⎧⎨⎩qi
fire(a)∩Pi−−−−−−→ q′

i, if fire(a) ∩ Pi �= ∅,

qi = q′
i, if fire(a) ∩ Pi = ∅.

and qi ↑act(a)∩Pi , qi � ↑neg(a)∩Pi .

Since PC1 ⊆ PA1 , we have ã ∩ (ṖC1 ∪ PC1 ∪ PC1) = a ∩ (ṖC1 ∪ PC1 ∪ PC1). Similarly, for any
i ∈ [1, n], Pi ⊆ P , hence ã ∩ (Ṗi ∪ Pi ∪ Pi) = a ∩ (Ṗi ∪ Pi ∪ Pi). Thus, all premises of the

88

4.5. Case study: control of an elevator cabin

up up

dn dn

s1 s2 ups0 dn

s0 s1 s2

(a) Elevator Engine E

o c

o

c

(b) Elevator Door D

is ic fsfc

is

ic

ic
fs

fc

(c) Caller Sys-
tem CS

Figure 4.4 – Atomic components for elevator example.

instance of the rule (2.26) for ã in A1(B) are satisfied and we have q̃1q
fire(ã)−−−−→ q̃′

1q′ in A1(B).
For A2(B), the result is obtained by a symmetrical argument.

This lemma generalises Lemma 4.2.4. Theorem 4.4.8 shows the preservation of safety
properties by the composition of extended architectures. Its proof is identical to the one of
Theorem 4.3.5 up to the reference to the Lemma 4.4.7 instead of Lemma 4.2.4 and the use
of firing support of interactions in the path fragment.

Theorem 4.4.8. Let B be a set of components; let Ai = (Ci, PAi , γi), for i = 1, 2, be
two extended architectures enforcing on B safety properties Φ1 and Φ2, respectively. The
composition A1 ⊕ A2 enforces on B the property Φ1 ∧ Φ2.

Proof. By Lemma 4.1.4, we can assume that each of the two architectures has only one
coordinating component, i.e. Ci = {Ci}, for i = 1, 2. We also denote, for i = 1, 2,
Pi = PCi ∪ ⋃

B∈B PB.

The initiality of Φ1 ∧ Φ2, is trivial: both Φ1 and Φ2 are initial, hence q0 |= Φ1 ∧ Φ2.

Consider a path q̃0
1 q̃0

2q0 fire(a1)−−−−−→ q̃1
1 q̃1

2q1 fire(a2)−−−−−→ · · · fire(ak)−−−−−→ q̃k
1 q̃k

2qk in (A1 ⊕ A2)(B), where
q0, . . . , qk ∈ ∏B∈B QB and q̃0

i , . . . , q̃k
i ∈ QCi , for i = 1, 2. By Lemma 4.4.7, q̃0

1q0 fire(a1)∩P1−−−−−−−→
q̃1

1q1 fire(a2)∩P1−−−−−−−→ · · · fire(ak)∩P1−−−−−−−→ q̃k
1qk is a path in A1(B). (If, for some i ∈ [1, k], fire(ai)∩P1 =

∅, the corresponding transition can be omitted from the path.) Thus the state q̃k
1qk is

reachable in A1(B). Since A1 enforces Φ1 on B, this implies that qk |= Φ1. Symmetrically,
qk |= Φ2, which concludes the proof.

4.5 Case study: control of an elevator cabin

We illustrate our results with the case study adapted from the literature [50, 89], which models
an elevator in a building with three floors. Control of the elevator cabin is modelled as a set of
coordinated atomic components shown in Figure 4.4. Each floor of the building has a separate
caller system, which allows floor selection inside the elevator and calling from the floor. Ports
ic and fc, respectively, represent calls made within the elevator and calls from a floor. Ports

89

Chapter 4. Architecture Composability

m1 c1 o1 s1

s1

m1

c1

o1
m1

(a) C1

m2 d2 e2

d2

e2m2

(b) C2

do3 dc3 nf 3 add3 sub3

nf 3

sub3
add3

nf 3

do3 do3 do3

dc3 dc3

add3

dc3

sub3

(c) C3

req4

fn4fr4

fr4 fn4req4

(d) C4

Figure 4.5 – Coordinating components for the elevator example.

is and fs represent cabin stops in response to these calls. Furthermore, port names m, c, o,
do, dc, s, dn, up and nf stand, respectively, for “move”, “close”, “open”, “door open”, “door
close”, “stop”, “move down”, “move up” and “not full”. For the coordinating components of
the architectures in the case study, we will use super-indices to show explicitly which port
belongs to which coordinating component, as in s1 for the port “stop” of coordinator C1

(see Figure 4.5(a)). Caller system components and their ports are indexed by floor numbers.
We denote B = {E, D, CS0, CS1, CS2} the set of atomic components. To enforce required
properties, we successively apply and compose architectures.

In order to provide the basic functionality of the elevator, we apply to B the architecture
A1 =

(
{C1}, P1, γ1

)
. Component C1 is shown in Figure 4.5(a). P1 contains all ports of C1

and all ports of B. γ1 comprises the empty interaction ∅ and the following interactions (for
i ∈ [0, 2]):

• Door control: o o1, c c1,

• Floor selection control: fci, ici,

• Moving control: si s1 fsi, si s1 isi, up m1, dn m1.

The system A1(B) provides the basic elevator functionality, i.e. moving up and down,
stopping only at the requested floors and door control. Architecture A1 enforces the safety
property: the elevator does not move with open doors.

Nonetheless, A1(B) allows the elevator to stop at a floor, and then to leave without having
opened the door. The property “if the elevator stops, it has to open doors before continue
moving” can be enforced by architecture A2 = ({C2}, P2, γ2) where C2 is shown in Fig-
ure 4.5(b), P2 = {e2, d2, m2, c1, m1, s0, s1, s2}, and γ2 = {∅, c1e2, m1m2} ∪ {sid

2 | i ∈ [0, 2]}.
This grants priority to the door controller after a “stop” action. By Proposition 4.2.7,
A2(A1(B)) = (A1 ⊕ A2)(B). (A2 ⊕ A1)(B) provides the same functionality as A1(B) and also
this additional property.

90

4.6. Discussion

The property “if the elevator is full, it must stop only at floors selected from the cabin
and ignore outside calls” [50, 89], is enforced by applying architecture A3 = ({C3}, P3, γ3)
with C3 shown in Figure 4.5(c), P3 = {add3, sub3, nf 3, do3, dc3, o, c} ∪ {si, fsi | i ∈ [0, 2]} and
γ3 = {∅, add3, sub3, do3o, dc3c} ∪ {si fsi nf 3 | i ∈ [0, 2]}. An elevator is full in our example
if it has two passengers on board, i.e. C3 has reached the bottom right-most state (see
Figure 4.5(c)) by twice firing the port add3 without firing the port sub3 in the meantime. By
Proposition 4.2.7, A3

(
(A1⊕A2)(B)

)
= (A1⊕A2⊕A3)(B). By Theorem 4.3.5, (A1⊕A2⊕A3)(B)

satisfies all three properties.

Finally, we consider the additional property: “requests from the second floor have priority
over all other requests” [50, 89]. This is enforced by the architecture A4 = ({C4}, P4, γ4)
with C4 shown in Figure 4.5(d). P4 consists of all ports of C4 and CS2, and ports o and
dn of E, whereas γ4 = {∅, fc2 req4, ic2 req4, o fr4, dn fr4, fs2 fn4, is2 fn4}. Notice that the
system (A1 ⊕ A2 ⊕ A3 ⊕ A4)(B) has a local deadlock, i.e. a reachable state such that no
transition involving one of the composed components can be taken after reaching this state.
This deadlock occurs when a full elevator is called from the second floor. Once the second
floor is reached, A4 enforces the constraint of not going down, while A3 forbids stopping at
this floor. Hence, the system is in a local deadlock state involving the elevator engine.

4.6 Discussion

Reusable solutions can be modelled by architectures. They are the step towards correct-by-
construction system design. Architecture operators restrict the behaviour of their arguments
enforcing a characteristic property. They can be composed and studied independently.
Using BIP to describe architectures allows to keep a separation between computation and
coordination. The application of architectures does not require any modification of the
atomic components.

Architecture composition allows to build complex architectures from simple ones. It always
preserves safety properties. The preservation of liveness properties is studied in [9]. In
short, the system is live iff it is free of global deadlock and composed architectures are
pairwise non-interfering. Non-interference of two architectures requires that, for each path,
coordinating components of both architectures either be invoked infinitely often or be in idle
states infinitely often or be enabled continuously from some point onwards, i.e. each state of
the path enables every interaction that the coordinator is ready to participate in. Pairwise
non-interference can be checked algorithmically.

In this work, architectures define only synchronisation constraints between coordinated
components but they do not specify data transfer. The extension of architectures with data
is proposed in [48].

However, architectures have an important limitation: an architecture is defined for a specific
number of components. Thus, in order to provide generic solution for mutual exclusion, one

91

Chapter 4. Architecture Composability

has to define architectures for two, three, etc. components or to compose architectures for
each pair of components during the modelling of the system. An alternative solution is the
specification of architecture styles that model generic architectures.

92

5 Configuration Logics

Architectures implicitly define the number of components they can be applied to. Thus, in
order to enforce a property on two components and the same property on three components,
one need two different architectures. The fourth component would require another archi-
tecture. Moreover, there might exist several architectures enforcing the same property on
the same number of components (cf. Figure 1.1). In this chapter, we study modelling of
architecture styles that characterise not a single architecture but a family of architectures
sharing common characteristics such as the type of the involved components and the topology
induced by their coordination structure.

We propose configuration logic, formulas of which specify configuration sets. A configuration
on a set of components represents a particular architecture. Configuration logic is a powerset
extension of interaction logic. First, we introduce a propositional configuration logic whose
formulas represent, for a given set of components, the allowed configuration sets. We provide
its sound and complete axiomatisation and a normal form similar to the disjunctive normal
form in Boolean algebras. The existence of such normal form implies the decidability of
formula equality and the satisfaction of a formula by an architecture model.

To allow genericity of specifications, we study first-order and second-order logics as extensions
of the propositional logic. They are defined for types of components and involve quantification
over component variables and variables for sets of components in the second-order logic.
Second-order logic is needed to express some interesting topological properties, e.g. the
existence of cycles of interactions. We also study an alternative extension of the first-order
logic with ordered components. In this extension, components in the models are ordered
linearly and formulas can have constraints relying on the order. This allows to specify some
styles that are inexpressible in the first-order logic. Specifications of various architecture
styles are illustrated with examples.

We also study the relation between the composition of architectures and conjunction of
configuration logic formulas. For a class of formulas that corresponds to safety properties,
we show that, for two formulas and two architectures satisfying them, the composition of

93

Chapter 5. Configuration Logics

architectures satisfies conjunction of formulas.

5.1 Propositional configuration logic

Syntax. The propositional configuration logic (PCL) is an extension of PIL (cf. Section 2.2.2)
defined by the grammar:

f ::= true | φ | ¬ f | f + f | f � f , (5.1)

where φ is a PIL formula; ¬ , + and � are, respectively, the complementation, coalescing
and union operators.

Additionally, we define the usual notation for intersection and implication:

f1 � f2
def= ¬ (¬ f1 � ¬ f2) ,

f1 ⇒ f2
def= ¬ f1 � f2 .

The language of PCL formulas is generated from PIL formulas by using union, coalescing
and complementation operators. The binding strength of the operators is as follows (in
the decreasing order): PIL negation, complementation, PIL conjunction, PIL disjunction,
coalescing, union.

Henceforth, to avoid confusion, we refer as interaction formulas to the subset of PCL formulas
that syntactically are also PIL formulas. Furthermore, we will use Latin letters f, g, h for
general PCL formulas and Greek letters φ, ψ, ξ for interaction formulas. Interaction formulas
inherit all axioms of PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the lattice of
configuration sets CS(P) = 2C(P)\{∅} (Figure 1.2(c)). The meaning of a PCL formula f is
defined by the following satisfaction relation. Let γ ∈ C(P) be a non-empty configuration.
We define:

γ |= true , always, (5.2)

γ |= φ , if for all a ∈ γ, a |=i=φ, where φ is an interaction formula
and |=i= is the satisfaction relation of PIL,

(5.3)

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P) \ {∅}, such that γ = γ1 ∪ γ2,
γ1 |= f1 and γ2 |= f2,

(5.4)

γ |= f1 � f2 , if γ |= f1 or γ |= f2, (5.5)
γ |= ¬ f , if γ �|= f (i.e. γ |= f does not hold). (5.6)

In particular, the meaning of an interaction formula φ in PCL is the set 2Ia \ {∅}, with

94

5.1. Propositional configuration logic

m1

s1

m2

s2

S2S1

{{s1, m1}, {s2, m2}}

M1 M2

m1 m2

s1 s2

M2

S1

M1

{{s1, m1}, {s2, m1}}
S2

m2

s2

m1

s1

S1 S2

{{s1, m2}, {s2, m1}}

M1 M2

m2

s1 s2

m1

S1 S2

{{s1, m2}, {s2, m2}}

M1 M2

Figure 5.1 – Master/Slave architectures.

Ia = {a ∈ I(P) | a |=i=φ}, of all configurations involving any number of interactions satisfying
φ in PIL.

The semantics of intersection and implication can also be stated directly as follows:

γ |= f1 � f2 , if γ |= f1 and γ |= f2, (5.7)
γ |= f1 ⇒ f2 , if γ �|= f1 or γ |= f2. (5.8)

We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P) such that γ �= ∅,
γ |= f1 ⇔ γ |= f2.

We denote by |f | def= {γ ∈ C(P) \ {∅} | γ |= f} the characteristic configuration set of the
formula f . Clearly f1 ≡ f2 iff |f1| = |f2|.

Proposition 5.1.1. Equivalence ≡ is a congruence w.r.t. all PCL operations.

Proof. In order to prove the proposition, it is sufficient to show that for each binary operator
op from the PCL grammar (5.1), the characteristic configuration set of the formula f1 op f2

can be expressed as a function of characteristic configuration sets of f1 and f2. In other words,
we have to exhibit a binary operator op′ on sets, such that |f1 op f2| = op′(|f1|, |f2|). Similarly,
we have to exhibit an unary operator on sets, expressing the characteristic configuration set
of the formula ¬ f in terms of the characteristic configuration set of f .

Clearly, the set operators corresponding to ¬ and � are, respectively, complementation
with respect to C(P) \ {∅} and set union. For the coalescing operator +, it is easy to see
that, defining

op′
+(X, Y) def= {γ1 ∪ γ2 | γ1 ∈ X, γ2 ∈ Y } ,

we have |f1 + f2| = op′
+
(
|f1|, |f2|

)
.

Example 5.1.2. The Master/Slave architecture style for two masters M1, M2 and two
slaves S1, S2 with ports m1, m2, s1, s2, respectively, characterises the four configurations

95

Chapter 5. Configuration Logics

of Figure 5.1 as the union:⊔
i,j∈{1,2}

(φ1,i + φ2,j),

where φi,j = si ∧mj ∧ si′ ∧mj′ , for i �= i′, j �= j′, is a monomial defining a binary interaction
between ports si and mj .

This formula can be alternatively written as a coalescing of interactions for each slave:

(φ1,1 � φ1,2) + (φ2,1 � φ2,2).

Any configuration satisfying this formula consists of two parts, which satisfy, respectively,
the left and the right terms of the coalescing operator. The left term requires either an
interaction {s1, m1} or an interaction {s1, m2}. Similarly, the right term requires exactly
one interaction among {s2, m1} and {s2, m2}. Therefore, there are four possible pairs of
interactions corresponding to the four configurations of Figure 5.1.

From the PCL semantics of interaction formulas (5.3), it follows immediately that PCL
is a conservative extension of PIL. Below we extend the PIL conjunction and disjunction
operators to PCL.

PCL intersection is a conservative extension of PIL conjunction.

Proposition 5.1.3. φ1 ∧ φ2 ≡ φ1 � φ2, for any interaction formulas φ1, φ2.

Proof. For any two interaction formulas φ1 and φ2, φ1 ∧ φ2 is also an interaction formula.
Hence, by (5.3), γ |= φ1 ∧φ2 iff γ ⊆ {a | a |=i=φ1 ∧ φ2} = {a | a |=i=φ1 ∧ a |=i=φ2}. By (5.7), γ |=
φ1 � φ2 iff γ |= φ1 and γ |= φ2, that is γ ⊆ {a | a |=i=φ1}∩{a | a |=i=φ2} = {a | a |=i=φ1 ∧ a |=i=φ2}.
Since characteristic configuration sets of formulas coincide, φ1 ∧ φ2 ≡ φ1 � φ2.

Thus, conjunction and intersection coincide on interaction formulas. In the rest of the
chapter, we use the same symbol ∧ to denote both operators.

Disjunction can be conservatively extended to PCL with the following semantics: for any
PCL formulas f1 and f2,

γ |= f1 ∨ f2 , if γ |= f1 � f2 � f1 + f2. (5.9)

Proposition 5.1.4. For any interaction formulas φ1 and φ2 and any γ ∈ C(P) \ ∅, we have
γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i=φ1 ∨ φ2.

Proof. The PCL semantics defines γ |= φ1 ∨ φ2 if γ |= φ1 or γ |= φ2 or there exist γ1 and γ2,
such that γ = γ1 ∪ γ2, γ1 |= φ1 and γ2 |= φ2, where γ |= φ if for all a ∈ γ, a |=i=φ. Thus, in

96

5.1. Propositional configuration logic

all three cases all interactions in γ either satisfy φ1 or φ2 and, consequently, for all a ∈ γ,
a |=i=φ1 ∨ φ2.

Conversely, if γ consists of interactions a, such that a |=i=φ1 ∨ φ2, these interactions can be
split into two possibly empty sets γ1 and γ2, such that for all a ∈ γj , where j ∈ [1, 2], a |=i=φj .
If one of these groups is empty then the second one contains all interactions and γ |= φj .
Otherwise, γ1 |= φ1 and γ2 |= φ2, where γ1 ∪ γ2 = γ. In all cases γ |= φ1 ∨ φ2.

5.1.1 Properties of PCL

In this subsection, we present the key properties of PCL operators, which allow us to define
a normal form and a sound and complete axiomatisation of PCL.

Union, complementation and conjunction have the standard set-theoretic meaning.

Proposition 5.1.5. The operators � , ¬ , ∧ satisfy the usual axioms of propositional logic.

Proof. The proof is immediate from the semantics (5.5), (5.6) and (5.7).

Notice that coalescing + combines configurations, as opposed to union � , which combines
configuration sets. Coalescing has the following properties:

Proposition 5.1.6. + is associative, commutative and has an absorbing element false
def=

¬true.

Proof. The proof is immediate from the semantics (5.4).

Coalescing distributes over union, as shown in the following proposition.

Proposition 5.1.7. For any formulas f, f1, f2, the following distributivity result holds:

f + (f1 � f2) ≡ f + f1 � f + f2 .

Proof. If γ |= f + (f1 � f2), then there exist γ1 and γ2, such that γ1 ∪ γ2 = γ, γ1 |= f and
γ2 |= f1 � f2. If γ2 |= f1, then γ |= f + f1. Otherwise, γ2 |= f2 and γ |= f + f2. Combining
these two cases we obtain γ |= f + f1 � f + f2.

If γ |= f + f1 � f + f2, then either γ |= f + f1 or γ |= f + f2. In the first case there exist
γ1 and γ2, such that γ1 ∪ γ2 = γ, γ1 |= f and γ2 |= f1. Since γ2 |= f1 implies γ2 |= f1 � f2,
γ |= f + (f1 � f2). The second case is similar.

Associativity of coalescing and union, together with the distributivity of coalescing over union,
immediately imply the following generalisation of the extended semantics of disjunction
(5.9).

97

Chapter 5. Configuration Logics

Corollary 5.1.8. For any set of formulas {fi}i∈I , we have∨
i∈I

fi ≡
⊔

∅�=J⊆I

∑
j∈J

fj ,

where ∑j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .

Example 5.1.9. A configuration γ satisfying the formula f = f1 ∨f2 ∨f3 can be partitioned
into γ = γ1 ∪ γ2 ∪ γ3, such that γi |= fi. However, by the semantics of disjunction, some
γi can be empty. On the contrary, the semantics of coalescing requires all elements of
such partition to be non-empty. Hence, in order to rewrite f without the disjunction
operator, we take the union of all possible coalescings of f1, f2 and f3. Thus, we have
f ≡ f1 � f2 � f3 � (f1 + f2) � (f1 + f3) � (f2 + f3) � (f1 + f2 + f3).

The following proposition shows distributivity results involving disjunction. In particular, it
shows that disjunction distributes over union and coalescing distributes over disjunction.

Proposition 5.1.10. For any formulas f, f1, f2, the following distributivity results hold:

1. f ∨ (f1 � f2) ≡ (f ∨ f1) � (f ∨ f2),

2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2).

Proof. We have

f ∨ (f1 � f2) ≡ f � (f1 � f2) � f + (f1 � f2)
≡ f � f1 � f + f1 � f � f2 � f + f2 ≡ (f ∨ f1) � (f ∨ f2)

and

f + (f1 ∨ f2) ≡ f + (f1 � f2 � f1 + f2)
≡ f + f1 � f + f2 � f + f1 + f2 ≡ (f + f1) ∨ (f + f2) .

The following example shows that coalescing does not distribute over conjunction.

Example 5.1.11. Let P = {p, q} and consider f = p � q, f1 = p and f2 = q. We then have
(f + f1) ∧ (f + f2) =

(
(p � q) + p

)
∧
(
(p � q) + q

)
and f + (f1 ∧ f2) = (p � q) + (p ∧ q).

The configuration
{
{p}, {q}

}
satisfies the former, but not the latter.

Proposition 5.1.12. For any formulas f, f1, f2, the following implication is true:

f + (f1 ∧ f2) ⇒ (f + f1) ∧ (f + f2) .

98

5.1. Propositional configuration logic

Proof. If γ |= f +(f1 ∧ f2) then there exist γ1 and γ2, such that γ = γ1 ∪γ2, γ1 |= f , γ2 |= f1

and γ2 |= f2. Hence, we have both γ |= f + f1 and γ |= f + f2.

In general, neither conjunction distributes over coalescing nor coalescing over conjunction.
To provide more distributivity results, we introduce the following classes of PCL formulas.

Definition 5.1.13.

• A formula f is downward-closed iff γ |= f implies for all non-empty γ1 ⊆ γ, γ1 |= f .

• A formula f is upward-closed iff γ |= f implies for all γ1 ⊇ γ, γ1 |= f .

• A formula f is ∪-closed iff γ1 |= f and γ2 |= f implies γ1 ∪ γ2 |= f .

Example 5.1.14.

• p � q is downward-closed,

• ¬ (p � q) is upward-closed,

• p ∨ q is ∪-closed.

The following propositions show properties of these classes and their relations.

Proposition 5.1.15. If f and g are downward- (resp. upward-) closed, then f � g and
f ∧ g are also downward- (resp. upward-) closed.

Proof. In the first two parts of the proof formulas f and g are downward-closed, while in
the last two parts they are upward-closed.

If γ |= f � g, then γ |= f or γ |= g. If γ |= f , then ∀γ1 ⊆ γ, γ1 |= f . Thus, γ1 |= f � g. The
case γ |= g is similar.

If γ |= f ∧ g, then γ |= f and γ |= g. If γ |= f , then ∀γ1 ⊆ γ, γ1 |= f and similarly for g.
Thus, γ1 |= f ∧ g.

If γ |= f � g, then γ |= f or γ |= g. If γ |= f , then ∀γ1 ⊇ γ, γ1 |= f . Thus, γ1 |= f � g. The
case γ |= g is similar.

If γ |= f ∧ g, then γ |= f and γ |= g. If γ |= f , then ∀γ1 ⊇ γ, γ1 |= f and similarly for g.
Thus, γ1 |= f ∧ g.

Proposition 5.1.16. For any formula f , the formula f + true is upward-closed.

Proof. Let γ |= f + true. There exists γ1 ⊆ γ, such that γ1 |= f . For any γ2 ⊇ γ holds
γ2 ⊇ γ1 and γ2 |= f + true, since true is satisfied by any configuration.

99

Chapter 5. Configuration Logics

Proposition 5.1.17. If f is upward-closed then f ≡ f + true.

Proof. If γ |= f , then γ ∪ γ = γ |= f + true.
If γ |= f + true, then there exists γ1 ⊆ γ, such that γ1 |= f . Since f is upward-closed, for
any γ ⊇ γ1, holds γ |= f .

Proposition 5.1.18. If f and g are ∪-closed then f + g is also ∪-closed.

Proof. If γ1 |= f + g and γ2 |= f + g, then there exist γ1,1, γ1,2, γ2,1 and γ2,2, such that
γi = γi,1 ∪γi,2, γi,1 |= f and γi,2 |= g for i ∈ {1, 2}. Since f and g are ∪-closed, γ1,1 ∪γ2,1 |= f

and γ1,2 ∪ γ2,2 |= g and, consequently, γ1 ∪ γ2 |= f + g.

The following proposition shows that the complement of a downward-closed formula is an
upward-closed formula.

Proposition 5.1.19. A formula f is downward-closed iff the formula ¬ f is upward-closed.

Proof. Assume that f is downward-closed and ¬ f is not upward-closed. The latter means
that there exist γ1 and γ2 ⊇ γ1, such that γ1 |= ¬ f and γ2 �|= ¬ f . This is equivalent to
γ1 �|= f and γ2 |= f , which contradicts the fact that f is downward-closed.

Conversely, assume that ¬ f is upward-closed and f is not downward-closed. The latter
means that there exist γ1 and γ2 ⊆ γ1, such that γ1 |= f and γ2 �|= f . This is equivalent to
γ1 �|= ¬ f and γ2 |= ¬ f , which contradicts the fact that ¬ f is upward-closed.

The following proposition characterises downward-closed formulas.

Proposition 5.1.20. Any downward-closed formula f can be expressed in the form ⊔
φ∈Φ φ,

where Φ is a set of interaction formulas.

Proof. For a configuration γ, we denote φγ an interaction formula syntactically equal to the
characteristic predicate of γ (Definition 2.2.17). φγ is satisfied by γ and any sub-configuration
of γ.

Let Γ = |f | be a characteristic configuration set of f . Consider a formula f ′ =
⊔

γ∈Γ φγ . By
(5.5) and (5.3), for all γ ∈ Γ, γ |= f ′. By (5.5), a configuration γ′ satisfies f ′ iff γ′ |= φγ for
some γ ∈ Γ. By (5.3), γ′ ⊆ γ. Since f is downward-closed, γ′ ∈ Γ. Thus, f ′ ≡ f .

Proposition 5.1.21. A formula is ∪-closed and downward-closed iff it is an interaction
formula.

100

5.1. Propositional configuration logic

∨
p∈P p

∨
p∈P p

φ∨φ′

φ

φ∧φ′
φ′

∧
p∈P p̄

∧
p∈P p̄

φ∧φ′
φ φ+φ′φ′

φ∨φ′

φ� φ′

Figure 5.2 – Correspondence between the lattices of PIL and PCL.

Proof. Let φ be an interaction formula. Consider two configurations γ1 |= φ and γ2 |= φ.
Any γ′ ⊆ γ1 contains only interactions from γ1, thus, γ′ |= φ. For all a ∈ γ1 ∪ γ2 holds a |=i=φ,
consequently γ1 ∪ γ2 |= φ. This shows that φ is downward-closed and ∪-closed.

Conversely, suppose that f is a ∪-closed and downward-closed formula and consider its
characteristic configuration set |f | = {γ ∈ C(P) \ {∅} | γ |= f}. Let I =

⋃
γ∈|f | γ be the set of

all interactions belonging to configurations satisfying f . Since f is downward-closed, {a} |= f

for any a ∈ I. By the definition of ∪-closed formulas, the union of models is also a model.
Thus, γ |= f , for any ∅ �= γ ⊆ I. Consequently, |f | = {γ ⊆ I | γ �= ∅} and f =

∨
a∈I ma,

where ma denotes the characteristic monomial of the interaction a.

Thus, interaction formulas are represented by formulas that are both downward-closed and
∪-closed. Figure 5.2 shows the correspondence between the PIL lattice and the PCL lattice.
Notice that, in general, φ � φ′ is not ∪-closed and φ + φ′ is not downward-closed. For
example, for P = {p, q}, f1 = pq � p q is not ∪-closed, since {{p}} and {{q}} are models
of f1, but {{p}, {q}} is not a model of f1. Similarly, f2 = pq + p q is not downward-closed,
since {{p}, {q}} is a model of f2, but neither {{p}} nor {{q}} is.

As shown before, conjunction does not distribute over coalescing. Nevertheless, it distributes
for interaction formulas as shown in the following proposition.

Proposition 5.1.22. For any formulas f1, f2 and interaction formula φ, we have:

φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2) .

Proof. If γ is a configuration satisfying φ ∧ (f1 + f2), then γ |= φ and there exist γ1, γ2,
such that γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2. Since φ is an interaction formula, it is
also downward-closed (Proposition 5.1.21). Thus, γ |= φ implies γ1 |= φ and γ2 |= φ.
Consequently, γ1 |= φ ∧ f1 and γ2 |= φ ∧ f2.

101

Chapter 5. Configuration Logics

Conversely, if γ is a configuration satisfying (φ ∧ f1) + (φ ∧ f2) then γ = γ1 ∪ γ2, such
that γ1 |= f1, γ1 |= φ, γ2 |= f2 and γ2 |= φ. Since φ is ∪-closed, γ |= φ and, consequently,
γ |= φ ∧ (f1 + f2).

Notice that coalescing is not idempotent in general, as it is shown in the following example.

Example 5.1.23. (p � q) + (p � q) �≡ p � q. The configuration {{p}, {q}} satisfies
(p � q) + (p � q), but it does not satisfy p � q .

Nevertheless, coalescing is idempotent on ∪-closed formulas.

Proposition 5.1.24. f + f ≡ f for any ∪-closed formula f .

Proof. The implication γ |= f ⇒ γ |= f + f for any γ is trivial.

Conversely, consider a configuration γ |= f + f . By the semantics of coalescing, there
exist γ1, γ2, such that γ = γ1 ∪ γ2, γ1 |= f and γ2 |= f . Since f is ∪-closed, γ1 ∪ γ2 |= f .
Consequently, γ |= f .

Coalescing with true presents a particular interest for writing specifications, since they allow
adding any set of interactions to the configurations satisfying f . Notice that true is not a
neutral element of coalescing: only the implication f ⇒ f + true holds in general.

Definition 5.1.25. For any formula f , the closure operator ∼ is defined by putting ∼f
def=

f + true. We give ∼ the same binding power as ¬ .

Although closure is not a primitive operator of PCL, it is easy to see that the semantics of
closure can be directly defined by putting γ |= ∼f iff exists γ1 ⊆ γ such that γ1 |= f .

Example 5.1.26. For P = {p, q, r} the formula f characterising all configurations such
that p must interact with both q and r, is f = pq + pr + true = ∼(pq + pr). Notice that the
only constraint imposed by the formula f is that configurations that satisfy it must contain
an interaction pqr or both interactions pq and pr. Configurations satisfying f can contain
any additional interactions.

Proposition 5.1.27. ∼∼f ≡ ∼f for any formula f .

Proof. ∼∼f ≡ ∼f + true ≡ f + true + true ≡ f + true ≡ ∼f .

Notice that, as an immediate corollary of Proposition 5.1.17, the closure of any formula
is upward-closed. The following proposition shows that ∼f is the smallest upward-closed
formula greater than f in the lattice of PCL formulas ordered by implication.

102

5.1. Propositional configuration logic

Proposition 5.1.28. For any formula f , holds f ⇒∼ f . Furthermore, for any upward-
closed formula f ′, such that f ⇒ f ′, holds ∼f ⇒ f ′.

Proof. f ⇒ ∼f follows directly from the semantics of the ∼ operator. Assume that there
exists an upward-closed f ′, such that f ⇒ f ′, and a configuration γ, such that γ |= ∼f and
γ �|= f ′. Since γ |= ∼f , there exists γ1 ⊆ γ, such that γ1 |= f . Since f ⇒ f ′, we have γ1 |= f ′.
The formula f ′ is upward-closed, therefore γ1 |= f ′ implies γ |= f ′, which contradicts our
assumption.

The closure operator can be interpreted as a modal operator with existential quantification.
The formula ∼f characterises configurations γ, such that there exists a sub-configuration
of γ satisfying f . Thus, ∼f means “possible f”. Dually ¬ ∼¬ f means “always f” in the
following sense: if a configuration γ satisfies ¬ ∼¬ f , all sub-configurations of γ satisfy f .

Corollary 5.1.29. For any formula f , holds ¬ ∼¬f ⇒ f . Furthermore, for any downward-
closed formula f ′, such that f ′ ⇒ f , holds f ′ ⇒ ¬ ∼¬ f .

Proof. By 5.1.28, for any formula f , we have ¬ f ⇒ ∼ ¬ f , which immediately implies
¬ ∼ ¬ f ⇒ f . For any downward-closed f ′, such that f ′ ⇒ f , we observe that, by
Proposition 5.1.19, ¬ f ′ is upward-closed. Hence, by Proposition 5.1.28, ∼¬ f ⇒ ¬ f ′ and,
consequently, f ′ ⇒ ¬ ∼¬ f .

Clearly, if f is downward-closed then ¬ ∼¬ f ≡ f . However, this is not true in general.
Consider f = ma + mb, where ma and mb are characteristic monomials of interactions a and
b, respectively. The only configuration satisfying f is γ = {a, b}. In particular, none of the
sub-configurations {a}, {b} ⊂ γ satisfies f . Thus, ¬ ∼¬ (ma + mb) ≡ false.

Proposition 5.1.30. For any formulas f1, f2, the following distributivity results hold:

1. ∼(f1 � f2) ≡ ∼f1 � ∼f2 ≡ ∼(f1 ∨ f2),

2. ∼f1 + ∼f2 ≡ ∼(f1 + f2) ≡ ∼f1 ∧ ∼f2.

Proof. We have the following equalities:

∼(f1 � f2) ≡ (f1 � f2) + true ≡ f1 + true � f2 + true ≡ ∼f1 � ∼f2 ,

∼(f1 ∨ f2) ≡ f1 + true � f2 + true � f1 + f2 + true

≡ f1 + true � f2 + true ≡ ∼f1 � ∼f2 ,

∼f1+ ∼f2 ≡ f1 + true + f2 + true ≡ f1 + f2 + true ≡ ∼(f1 + f2) ,

∼f1 ∧ ∼f2 ≡ (f1 + true) ∧ (f2 + true) ≡ f1 + f2 + true ≡ ∼(f1 + f2) .

103

Chapter 5. Configuration Logics

φ

¬ φ ≡ ∼φ

∼φ ≡ ¬ φ

φ ≡ ¬ ∼φ

∼

¬

∼

¬

Figure 5.3 – Correspondence between negation and complementation of interaction formulas.

The following results allow us to address the relation between complementation and negation.

Lemma 5.1.31. For any interaction formula φ, the following holds:

φ � φ � (φ + φ) ≡ true . (5.10)

Proof. The proof is immediate from Corollary 5.1.8 and the fact that φ ∨ φ ≡ true, for any
interaction formula φ.

Notice that the three terms in the left-hand side of (5.10) are mutually disjoint.

Proposition 5.1.32. For any interaction formula φ, holds ¬ φ ≡ ∼φ .

Proof. By Lemma 5.1.31, we have ¬ φ ≡ φ � (φ + φ) ≡ φ + true ≡ ∼φ .

In particular, this means that complementation can also be interpreted as a modality.
Proposition 5.1.32 shows that the complementation of φ represents all configurations that
contain φ . Equivalences ¬ φ ≡ ∼φ, ¬ ∼φ ≡ φ , ¬ ∼φ ≡ φ and ∼¬ φ ≡ ¬ φ, for interaction
formulas φ, are direct corollaries of Proposition 5.1.32 and, for the latter, Proposition 5.1.27.
Figure 5.3 depicts the relations between complementation and negation of the interaction
formulas.

The following lemma expresses coalescing through extended disjunction. Coalescing is more
restrictive than extended disjunction requiring the existence of sub-configurations that satisfy
all operands.

Lemma 5.1.33. For any formulas f , g, we have:

f + g ≡ ∼f ∧ ∼g ∧ (f ∨ g) .

Proof. By (5.9) and Proposition 5.1.30, we have

∼f ∧ ∼g ∧ (f ∨ g) ≡ ∼(f + g) ∧ (f � g � f + g) .

104

5.1. Propositional configuration logic

Notice that γ |= ∼ (f + g) ∧ f iff γ |= f and there exists γ1 ⊆ γ, such that γ1 |= g. Thus,
∼(f + g) ∧ f ≡ f + (f ∧ g). By applying a similar transformation to g, we obtain

∼(f + g) ∧ (f � g � f + g) ≡
(
f + (f ∧ g)

)
�
(
g + (f ∧ g)

)
� (f + g) ≡ f + g ,

where the last equality is an immediate consequence of the fact that f ∧ g ⇒ f and
f ∧ g ⇒ g.

Proposition 5.1.34. For any interaction formulas φ, ψ, the following two formulas are
equivalent:

¬ (φ + ψ) ≡ φ � ψ � ∼(φ ∧ ψ) .

Proof. By Proposition 5.1.33, φ + ψ ≡∼φ∧ ∼ψ ∧ (φ ∨ ψ). Thus, ¬ (φ + ψ) ≡ ¬ (∼φ∧ ∼
ψ ∧ (φ ∨ ψ)) ≡ ¬ ∼φ � ¬ ∼ψ � ¬ (φ ∨ ψ). Since φ, ψ and φ ∨ ψ are interaction formulas,
the application of Proposition 5.1.32 gives ¬ (φ + ψ) ≡ φ � ψ � ∼(φ ∧ ψ)

Proposition 5.1.34 allows the elimination of complementation as shown in the following
example.

Example 5.1.35. Consider a formula f = ¬ (pq + pr) and a configuration γ |= f . The PCL
semantics requires that γ cannot be split into two non-empty parts γ1 |= pq and γ2 |= pr.
This can happen in two cases: 1) there exists a ∈ γ such that a does not satisfy neither pq

nor pr; 2) one of the monomials is not satisfied by any interaction in γ. The former case can
be expressed as ∼(pq pr) and the latter as pq � pr . The union of these formulas gives the
equivalence ¬ (pq + pr) ≡ pq � pr � ∼(pq pr).

Lemma 5.1.33 and Proposition 5.1.34 can be generalised as follows:

Lemma 5.1.36. For any set of formulas F , we have:∑
f∈F

f ≡
∧

f∈F

∼f ∧
∨

f∈F

f .

Proposition 5.1.37. For any set of interaction formulas Φ, the following two formulas are
equivalent:

¬
∑
φ∈Φ

φ ≡
⊔

φ∈Φ
φ � ∼

∧
φ∈Φ

φ .

Proofs of Propositions 5.1.36 and 5.1.37 are similar to the proofs of Propositions 5.1.33 and
5.1.34, respectively.

Conjunction of coalescings of interaction formulas can be eliminated by using the following
distributivity result pushing it down within the formula tree.

105

Chapter 5. Configuration Logics

Proposition 5.1.38. If Φ and Ψ are sets of interaction formulas, then∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

Proof. Notice that∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡ ¬ ¬
(∑

φ∈Φ
φ ∧

∑
ψ∈Ψ

ψ
)

≡ ¬
(
¬
∑
φ∈Φ

φ � ¬
∑
ψ∈Ψ

ψ
)

.

By Proposition 5.1.37, this can be further transformed into

¬

⎛⎝⊔
φ∈Φ

φ � ∼
∧

φ∈Φ
φ �

⊔
ψ∈Ψ

ψ � ∼
∧

ψ∈Ψ
ψ

⎞⎠ ≡ ¬

⎛⎝ ⊔
ξ∈Φ∪Ψ

ξ � ∼
∧

φ∈Φ
φ � ∼

∧
ψ∈Ψ

ψ

⎞⎠ ,

which we further transform by applying twice the De Morgan’s law (once for complementation
and union and once for negation and disjunction) and Proposition 5.1.32:

∧
ξ∈Φ∪Ψ

¬ ξ ∧ ¬
(

∼
∧

φ∈Φ
φ
)
∧ ¬

(
∼
∧

ψ∈Ψ
ψ
)

≡
∧

ξ∈Φ∪Ψ
∼ξ ∧

∧
φ∈Φ

φ ∧
∧

ψ∈Ψ
ψ .

By Proposition 5.1.30 and another application of De Morgan’s law, we obtain

∼
∑

ξ∈Φ∪Ψ
ξ ∧

∨
φ∈Φ

φ ∧
∨

ψ∈Ψ
ψ ≡ ∼

∑
ξ∈Φ∪Ψ

ξ ∧
∨

(φ,ψ)∈Φ×Ψ
(φ ∧ ψ) .

Let γ be a configuration satisfying the formula in the right-hand side of this equation. By
(5.7), any interaction a ∈ γ satisfies the second conjunct in this formula. Hence, there exists
a pair (φ, ψ) ∈ Φ × Ψ, such that a |=i=φ ∧ ψ and, a fortiori, there exists ξ ∈ Φ ∪ Ψ, such that
a |=i=ξ. Thus, the closure operator in the first conjunct of this formula can be discarded.
Finally, by Proposition 5.1.22, we have(∑

ξ∈Φ∪Ψ
ξ
)
∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ) ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)

.

Example 5.1.39. Consider a formula f = (φ1 + φ2) ∧ (φ3 + φ4), where φ1, φ2, φ3 and
φ4 are interaction formulas, and a configuration γ |= f . The semantics requires that there
exist two partitions of γ: γ = γ1 ∪ γ2 and γ = γ3 ∪ γ4, such that γi |= φi for i ∈ [1, 4].
Considering an intersection γi,j = γi ∩ γj , we have γi,j |= φi ∧ φj . Thus, γ =

⋃
γi,j satisfies

φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4 even if some γi,j are empty. Nevertheless, disjunction allows
configurations such that no interaction satisfy one of the disjunction terms and consequently
some φi. A coalescing of φi allows only configurations such that each φi is satisfied by at least

106

5.1. Propositional configuration logic

∼ φ∧ ∼ ψ ≡ ¬ (φ � ψ)

φ ∨ ψ

φ ∧ ψ ∼ (φ ∧ ψ) ≡ ¬ (φ ∨ ψ)

∼ ψ ≡ ¬ ψ

φ + ψ

¬ (φ + ψ)
¬ φ ≡∼ φ ¬ ψ ≡∼ ψ

ψφ
¬ (φ � ψ) ≡∼ φ ∧ ∼ ψ

¬ (φ ∨ ψ) ≡∼ (φ ∧ ψ)

¬ (φ ∧ ψ) ≡ ∼ φ � ∼ ψ

ψφ

φ � ψ

φ ∧ ψ

∼ φ� ∼ ψ ≡ ¬ (φ ∧ ψ)

φ ∨ ψ

φ � ψ

∼ φ ≡ ¬ φ

Figure 5.4 – PCL lattice.

one interaction. Thus, the conjunction of these formulas gives the equivalent representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)
= φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)
+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .

The PCL lattice is illustrated in Figure 5.4. Notice that the PCL lattice has two sub-lattices
generated by monomials:

• through disjunction and negation (isomorphic to the PIL lattice);

• through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-lattices. Although some
formulas involving the closure operator can be expressed in the second sub-lattice, e.g.
∼ φ ≡ ¬ φ, in general this is not the case, e.g. the formulas ∼ (φ ∧ ψ) and ∼ φ � ∼ ψ

are not part of either sub-lattice. However, the closure operator is expressible by taking as
generators the interaction formulas:

Proposition 5.1.40. The lattice generated by interaction formulas through union and
complementation is closed under the closure operator ∼.

Proof. We must prove that, for any formula f in this lattice, the formula ∼f is also in the
lattice.

Since union and complementation satisfy the usual axioms of propositional logic, f can be
represented in the equivalent of the disjunction normal form:

f ≡
⊔
i∈I

(∧
k∈Ki

φk ∧
∧

j∈Ji

¬ φj

)
,

107

Chapter 5. Configuration Logics

where all φj and φk are interaction formulas. Furthermore, since the conjunction of interaction
formulas

∧
k∈Ki

φk is also an interaction formula, we can assume, without loss of generality,
that all Ki are singleton sets and

f ≡
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj

)
.

Applying the closure operator, we then have

∼f ≡ ∼
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj

)
≡
⊔
i∈I

∼
(
φi ∧

∧
j∈Ji

¬ φj

)
// by Proposition 5.1.30

≡
⊔
i∈I

∼
(
φi ∧ ∼

(∑
j∈Ji

φj

))
// by Propositions 5.1.32 and 5.1.30

≡
⊔
i∈I

∼
(
φi +

∑
j∈Ji

(
φi ∧ φj

))
// by Proposition 5.1.22

≡
⊔
i∈I

(
∼φi ∧

∧
j∈Ji

∼
(
φi ∧ φj

))
// by Proposition 5.1.30

≡
⊔
i∈I

(
¬ φi ∧

∧
j∈Ji

¬ φi ∧ φj

)
// by Proposition 5.1.32

≡
⊔
i∈I

¬
(
φi �

⊔
j∈Ji

φi ∧ φj

)
.

Since, for all i and j, both φi and φi ∧ φj are interaction formulas, we conclude that ∼f

belongs to the lattice generated by interaction formulas through union and complementation.

5.1.2 Normal form and axiomatisation of PCL formulas

To simplify the presentation, we assume in this subsection that formulas do not contain
closure operators, i.e. all ∼ f are replaced by f + true, and disjunction can appear only
within interaction formulas, i.e. we do not consider the extension (5.9) of the disjunction
operator to general PCL formulas. We prove that any PCL formula can be expressed in
the following normal form:

⊔
i∈I

∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials. This
normal form can be obtained by using the rewriting system given in Figure 5.5 and usual
Boolean transformations for interaction formulas. Normal form of a formula is computed by
applying the procedure in Figure 5.6 to the root of its Abstract Syntax Tree (AST). Notice
that no two rules in Figure 5.5 can be simultaneously applicable to the same node.

An application of a rule to a node of an AST modifies only the subtree rooted at this node.
In order to simplify the reasoning, we impose the following additional constraint on the
application order of the rules from the rewriting system in Figure 5.5.

108

5.1. Propositional configuration logic

1.

g ∧
⊔
i∈I

fi⊔
i∈I

g ∧ fi

(Proposition 5.1.5)

2.

g +
⊔
i∈I

fi⊔
i∈I

fi + g

(Proposition 5.1.7)

3.

¬
⊔
i∈I

fi∧
i∈I

¬ fi

(Proposition 5.1.5)

4.

¬
∑
φ∈Φ

φ , all φ are interaction formulas

⊔
φ∈Φ

φ �
(∧

φ∈Φ
φ + true

) (Proposition 5.1.37)

5.

∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ , all φ ∈ Φ and ψ ∈ Ψ are
interaction formulas∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
) (Proposition 5.1.38)

Figure 5.5 – Rewriting system for computing the normal form by the procedure in Figure 5.6.

Constraint 5.1.41. We require that any rule be applied to a node n only if no rule can be
applied to any other node in the subtree of n.

Remark 5.1.42. We extend Constraint 5.1.41 to include usual Boolean transformations.
Hence, at every step of the process, all interaction sub-formulas are maintained in Disjunctive
Normal Form.

Example 5.1.43. The following example illustrates the normalisation process:

(pq � r) ∧ (pr + ¬ q) ≡ (pq � r)
∧
(
pr + (q � q + true)

)
// rule 4 with Φ = {q}

≡ (pq � r) ∧ (pr + q + true) // absorption laws1

≡
(
pq ∧ (pr + q + true)

)
�
(
r ∧ (pr + q + true)

)
// rule 1

≡
(
(pq ∧ pr) + (pq ∧ q) + (pq ∧ true)

)
�
(
(r ∧ pr) + (r ∧ q) + (r ∧ true)

)
// rule 5

≡ (pqr + false + pq) � (pr + rq + r) // Boolean laws
≡ pr + rq + r . // absorption and identity laws

The first step removes complementation. Then, the application of distributivity rules pushes
conjunction down in the AST of the formula, to the level of monomials. Finally, the formula
is simplified by observing that false is the absorbing element of coalescing and the identity
of union.

1Absorption laws are not essential for the normalisation process. We use them here to simplify the example.

109

Chapter 5. Configuration Logics

procedure normalise (node)
if (node is an interaction formula)

transform node into DNF;
return;

endif

foreach child of node do
normalise(child);

od

if (no rule applicable to node)
return;

else
apply rule to node;
normalise(node);

endif
end

Figure 5.6 – Procedure for computing the normal form using the rewriting system of
Figure 5.5.

Theorem 5.1.44. Under Constraint 5.1.41, the rewriting system in Figure 5.5 has the
following properties:

1. The rewriting system is terminating and confluent.

2. For any formula f ′ derived from a formula f by the application of rewriting rules, we
have f ′ ≡ f .

3. Any irreducible formula is in the normal form ⊔
i∈I

∑
j∈Ji

∨
k∈Ki,j

mi,j,k.

Proof.
1. In order to prove that the rewriting system is terminating, we define a ranking function on
the AST of a formula, with leaves representing interaction sub-formulas. First, we introduce
the following notations:

• Denote p(n) the number of nodes in the subtree with the root n.

• Denote d(n) the depth of the node n in the AST of the formula.

• Let N =
∑

n p(n)p(n), where the sum is taken over all ¬ -nodes.

• Let C =
∑

n p(n)p(n), where the sum is taken over all ∧ -nodes.

• Let U =
∑

n d(n), where the sum is taken over all � -nodes.

110

5.1. Propositional configuration logic

• Denote A the number of +-nodes in the AST of the formula.

The ranking function associates a tuple to a tree 〈N, C, U, A〉. We use lexicographical order
to compare the values of the function, i.e. 〈a1, a2, a3, a4〉 < 〈b1, b2, b3, b4〉 iff there exists i ≤ 4
such that aj = bj , for all j < i, and ai < bi. We show that the application of each rewriting
rule strictly reduces the value of the ranking function.

• Rule 1 does not change N and reduces C. Let n be the ∧ -node, to which we
apply Rule 1. For each ∧ -node n′, generated by the application of the rule, we
have p(n′) < p(n). The number of generated ∧ -nodes n′ is less than p(n). Hence,
p(n)p(n) > p(n) ∗ p(n′)p(n′), which implies that the value of C decreases after the
application of the rule. Although, application of Rule 1 increases the value of U , the
ranking function decreases by the definition of the lexicographical order.

• The application of Rule 2 increases A, but decreases U as it transforms a non-empty
set of � -nodes into one with smaller depth. This rule does not change the values of N

or C.

• The application of Rule 3 decreases N . A ¬ -node with value p(n)p(n) is transformed
into less than p(n) nodes of value less than p(n′)p(n′) with p(n′) < p(n).

• The application of Rule 4 decreases N . It transforms a ¬ -node into a union of
conjunctions and coalescing.

• The application of Rule 5 decreases C and does not change N . It transforms a ∧ -node
into a coalescing of interaction formulas.

• The application of usual Boolean transformations makes modifications only inside
leaves, thus this rule does not affect the function value.

Since all rewriting rules decrease the rank of the tree and each value is a tuple of finite
natural numbers, any sequence of applications of rewriting rules is finite.

Notice that applications of rules in different subtrees do not interfere and the order of
rule applications between subtrees does not affect the resulting formula. This observation,
together with Constraint 5.1.41, guarantees the confluence of the rewriting system.

2. Since all rewriting rules in Figure 5.5 preserve equivalence and ≡ is a congruence (Propo-
sition 5.1.1), the formula obtained by application of these rules is necessarily equivalent to
the initial one.

3. Let f be an irreducible formula and let T be an AST of f . Any non-leaf node of T can be
represented by the expression x → (n1, . . . , nk), where x ∈ {� , +, ¬ ,∧} is an operator and
(n1, . . . , nk) is the list of child nodes. We call such a node x → (n1, . . . , nk) an x-node. Notice

111

Chapter 5. Configuration Logics

that, since all operators of the Configuration Logic are associative, an x-node can always be
merged with its immediate child x-nodes: let n1 = x → (m1, . . . , ml), then x → (n1, . . . , nk)
can be substituted by x → (m1, . . . , ml, n2, . . . , nk) without changing the meaning of the
formula (similarly for all ni). Henceforth, we assume that no child node of an x-node is an
x-node.

Let n be a ¬ -node in T , such that none of the nodes in the sub-tree rooted in n is a ¬ -node.
Let n′ be a child node of n. Since Rules 3 and 4 cannot be applied to n, the node n′ is
neither a � -node, nor a node representing an interaction formula. Hence, n′ corresponds to
a conjunction or a coalescing of PCL formulas, among which at least one is not an interaction
formula. Notice that in the subtree rooted at n′ there are neither ¬ -nodes by the assumption
that n is the deepest one nor � -nodes since Rules 1, 2 and 3 cannot be applied. Let n′′ be
the deepest +-node in the subtree rooted at n′. Children of n′′ are interaction formulas as
subtrees rooted at n′′ cannot contain ¬ -, � - or +-nodes. The parent node of n′′ cannot
be a negation or a union since they cannot appear in the subtree rooted at n′, it is not a
coalescing due to the form of AST and it is not a conjunction since Rule 5 is not applicable.
This contradicts to the assumption that there are ¬ -nodes in the AST.

Since none of the Rules 1, 2 and 3 are applicable, a � -node can only be the root of the AST
of f . Hence, since Rule 5 is not applicable and there are no ¬ -nodes in the AST of f , a
+-node can only be the root or a child of the � -node. Furthermore, for the same reason, the
children of a +-node can only be interaction formulas.

Since all interaction sub-formulas are in their DNF forms (see Remark 5.1.42), we conclude
that f is in normal form.

A full monomial is a monomial, which involves all ports, i.e. m =
∧

p∈P+ p ∧∧p∈P− p such
that P = P+ ∪ P− and P+ ∩ P− = ∅. We define a full normal form as

⊔
i∈I

∑
j∈J mi,j , where

mi,j are full monomials, mi,j �≡ mi,j′ , for j �= j′, and
∑

j∈Ji
mi,j �≡ ∑

j∈Ji′ mi′,j , for i �= i′.
We show that any formula has an equivalent full normal form.

Lemma 5.1.45.

1. A formula f =
∑

i∈I mi, where mi are full monomials, is satisfied by exactly one
configuration γ = {ai}i∈I , where ai is an interaction, such that mi is its characteristic
monomial.

2. For a configuration γ = {ai}i∈I , there exists a unique2 formula f =
∑

i∈I mi such that
γ |= f .

Proof.
2 In this lemma and the following theorem, uniqueness is up to the order of ports in monomials and the

order of operands in coalescing and union.

112

5.1. Propositional configuration logic

1. Since mi is a full monomial, there exists exactly one valuation of ports such that the
monomial evaluates to true, i.e. there exists exactly one interaction ai, such that
ai |=i=mi.

γ |= ∑i∈I mi iff there exists {γi}i∈I , such that γ =
⋃

i∈I γi and, for all i ∈ I, γi |= mi.
For each mi, there exists only one interaction and consequently only one configuration
γi |= mi. Thus, there exists exactly one γ, such that γ |= f .

2. A characteristic monomial mi of an interaction ai ∈ γ is a full monomial. Thus,
γ = {ai}i∈I |= ∑i∈I mi. Let f ′ =

∑
j∈J m′

j be another formula such that γ |= f ′. By
the first part of this lemma, f ′ is satisfied by a single configuration. Consequently, each
interaction aj ∈ γ corresponds to the full monomial mj . Therefore, f and f ′ consist of
the same full monomials.

Theorem 5.1.46. Any formula f has a unique full normal form.

Proof. By Theorem 5.1.44 any formula f can be rewritten as a formula f ′ ≡ f in normal
form. In f ′, any non-full monomial can be transformed into a disjunction of full monomials,
which, by Corollary 5.1.8, can be further transformed into a union of coalesced full monomials.
The application of Proposition 5.1.7 and absorption of equivalent terms lead to the full
normal form. Uniqueness is a corollary of Lemma 5.1.45.

Example 5.1.47. Let P = {p, q, r} and consider the formula in normal form pr + rq . It
can be transformed into full normal form as follows:

pr + rq ≡ (pqr � pq r � pqr + pq r) + (pq r � p q r � pq r + p q r)
≡ (pqr + pq r) � (pqr + p q r) � (pqr + pq r + p q r) � pq r � (pq r + p q r).

Axioms. PCL operators satisfy the following axioms:

1. The PIL axioms for interaction formulas.

2. The usual axioms of propositional logic for � , ∧ , ¬ .

3. + is associative, commutative and has an absorbing element false.

4. For any formulas f , f1 and f2, holds f + (f1 � f2) ≡ f + f1 � f + f2.

5. For any formulas f1 and f2, holds f1 ∨ f2 ≡ f1 � f2 � f1 + f2.

6. For any sets of interaction formulas Φ and Ψ, holds∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

113

Chapter 5. Configuration Logics

Input: A sub-formula f =
∑

j∈J

∨
k∈Kj

mj,k, and a configuration γ = {a1, . . . , an}.
Output: true if γ |= f , false otherwise.
1. J ′ := ∅; l := 1; b := true;
2. while (l ≤ n and b) do
3. X := {j ∈ J | al |=i=

∨
k∈Kj

mj,k};
4. if (X �= ∅)
5. J ′ := J ′ ∪ X;
6. else
7. b := false;
8. endif
9. l := l + 1;
10. od
11. return J ′ = J ;

Figure 5.7 – Algorithm for checking satisfaction of formulas.

7. For any set of interaction formulas Φ, holds

¬
(∑

φ∈Φ
φ
)

≡
⊔

φ∈Φ
φ � ∼

(∧
φ∈Φ

φ
)

.

Theorem 5.1.48. The above axiomatization is sound and complete for the equivalence in
PCL.

Proof. Soundness of all the above axioms has been proved in Subsection 5.1.1. Completeness
is an immediate consequence of the existence of a unique full normal form.

5.1.3 Checking satisfaction of formulas

We provide a method for checking that a configuration of the form γ = {a1, . . . , an} satisfies
a formula f . Without loss of generality, we assume that the formula is in normal form
f =

⊔
i∈I

∑
j∈Ji

∨
k∈Ki,j

mi,j,k. We have to check that γ satisfies at least one of the terms∑
j∈Ji

∨
k∈Ki,j

mi,j,k, for some i ∈ I. The algorithm in Figure 5.7 performs this verification
for one term (index i is omitted).

We have to check the validity of the following two statements: 1) each interaction satisfies at
least one of the coalesced interaction formula and 2) each interaction formula is satisfied by
at least one interaction. The algorithm iterates through the interactions, checking the first
part and memorising the satisfied interaction formulas. After the iteration stops, it checks
whether all interaction formulas were satisfied by at least one interaction. Configuration γ

satisfies the formula f iff the disjunction of the results of the algorithm in Figure 5.7, for all
terms of the union evaluates to true.

An alternative method for checking satisfaction of a formula f by a configuration γ is based
on the existence of a normal form and the completeness theorem.

114

5.2. Higher order extensions of PCL

Consider a formula f and a configuration γ = {a1, ..., an}. In order to decide whether γ |= f ,
we associate with γ a characteristic formula ϕγ = m1 +· · ·+mn, where mi =

∧
p∈ai

p∧∧p�∈ai
p

are characteristic monomials of the respective interactions ai. Notice that ϕγ has exactly one
model γ (Lemma 5.1.45). If formulas ϕγ and f have a common model then γ is a model of
f . Thus, γ |= f iff ϕγ ∧ f �≡ false. This latter non-equivalence can be decided by verifying
whether at least one term of the normal form of ϕγ ∧f is not equivalent to false. Recall that
the terms of a formula in normal form are coalescings of interaction formulas. Therefore, for
a term to be not equivalent to false, it is necessary that all of its participating interaction
formulas be not equivalent to false. Finally, as in Boolean logics, a disjunction of monomials
is not equivalent to false iff at least one monomial does not contain one of the variables
twice in opposite (positive and negative) forms.

Example 5.1.49. Let P = {p, q, r} and consider f = p q + r p and γ =
{
{p, q, r}, {q, r}

}
.

In order to decide whether γ |= f , we first apply the algorithm in Figure 5.7. This algorithm
iterates through the interactions of γ and monomials of f : {p, q, r} satisfies p q, whereas
{q, r} satisfies r p . For both interactions the sets of monomials are not empty and all
monomials were visited. Hence, γ |= f .

Alternatively, we consider the characteristic formula ϕγ = p q r + q r p and check whether
ϕγ ∧ f = (p q r + q r p) ∧ (p q + r p) �≡ false. We have

(pqr + qrp) ∧ (pq + rp)
≡ (pqr ∧ (pqr ∨ false ∨ false ∨ qrp)) + (qrp ∧ (pqr ∨ false ∨ false ∨ qrp))

+ (pq ∧ (pqr ∨ false ∨ false ∨ qrp)) + (rp ∧ (pqr ∨ false ∨ false ∨ qrp))
≡ pqr + qrp �≡ false .

5.2 Higher order extensions of PCL

PCL is defined for a given set of components and a given set of ports. On the contrary,
architecture styles are defined for arbitrary number of components. In order to specify
architecture styles, we introduce types of components and quantification over component
variables. We make the following assumptions:

• A finite set of component types T = {T1, . . . , Tn} is given. Instances of a component
type have the same interface and behaviour. We write c : T to denote a component c

of type T .

• The interface of each component type has a distinct set of ports. We write c.p to
denote the port p of component c and c.P to denote the set of ports of component c.

115

Chapter 5. Configuration Logics

5.2.1 First-order configuration logic

Syntax. The language of the formulas of the first-order configuration logic extends the PCL
language by allowing an existential quantifier ∃c :T and a specific coalescing quantifier Σc :T
on component variables.

F ::= true | φ | ∃c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F � F | ¬ F | F + F ,

where φ is an interaction formula, c is a component variable and Φ(c) is some set-theoretic
predicate on c (omitted when Φ = true).

Additionally, we define the usual notation for universal quantifier:

∀c :T
(
Φ(c)

)
.F

def= ¬ ∃c :T
(
Φ(c)

)
.¬ F.

Semantics. The semantics is defined for closed formulas, where, for each variable in the
formula, there is a quantifier over this variable in an upper nesting level. Models are pairs
〈B, γ〉, where B is a set of component instances of types from T and γ is a configuration on
the set of ports P of these components. For quantifier-free closed formulas the semantics is
the same as for PCL formulas. For closed formulas with quantifiers the satisfaction relation
is defined by the following rules:

〈B, γ〉 |= ∃c :T
(
Φ(c)

)
. F , iff γ |=

⊔
c′:T ∈B ∧ Φ(c′)

F [c′/c] ,

〈B, γ〉 |= Σc :T
(
Φ(c)

)
. F ,

iff {c′ : T ∈ B | Φ(c′)} �= ∅ ∧ γ |=
∑

c′:T ∈B ∧ Φ(c′)
F [c′/c] ,

where c′ : T ranges over all component instances of type T ∈ T satisfying Φ and F [c′/c] is
obtained by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the following additional notation:

�(c1.p1, . . . , cn.pn) def=
n∧

i=1
ci.pi ∧

n∧
i=1

∧
p∈ci.P \{pi}

ci.p

∧
∧

T ∈T

⎛⎝∀c :T
(
c �∈ {c1, . . . , cn}

)
.
∧

p∈c.P

c.p

⎞⎠ .

The �(c1.p1, . . . , cn.pn) notation expresses an exact interaction, i.e. all ports in the arguments
must participate in the interaction and all other ports of the system cannot participate in

116

5.2. Higher order extensions of PCL

the interaction. If 〈B, γ〉 is a model, it can be shown that:

〈B, γ〉 |= �(c1.p1, c2.p2, . . . , cn.pn)
iff c1, c2, . . . , cn ∈ B and γ =

{
{c1.p1, c2.p2, . . . , cn.pn}

}
.

The following three examples illustrate the specification of simple interactions.

Example 5.2.1 (Single interaction). Assume that there is only one type of components T

with a single port p. We characterise models with a single interaction {c1.p, c2.p}.

The formulas c1.p c2.p and ∼(c1.p c2.p) do not ensure the presence of interaction {c1.p, c2.p},
since the model with γ =

{
{c1.p, c2.p, c3.p}

}
satisfies these formulas. The correct specification

can be expressed by a monomial, which contains all the negated ports that are not included
in the interaction:

c1.p ∧ c2.p ∧ ∀c :T
(
c �∈ {c1, c2}

)
. c.p .

This formula is can be equivalently rewritten using the � notation introduced above:
�(c1.p, c2.p).

Example 5.2.2 (Binary interactions). Assume that there is only one type of components T

with a single port p. We require that all binary interactions among components be included.
The formula �(c1.p, c2.p) represents a binary interaction involving ports c1.p and c2.p. To
obtain the required specification, we use a coalescing quantifier for each pair of components
as follows:

Σc1 : T. Σc2 : T (c1 �= c2). �(c1.p, c2.p).

Example 5.2.3 (No interaction of arity greater than two). Assume again that all components
are of type T with a single port p. We want to express the property that all interactions
involve at most two ports.

If we have three components c1, c2, c3 the formula c1.p c2.p c3.p forbids interactions involving
all of the components. The desired specification is obtained by requiring that this formula
holds for any triple of components:

∀c1 : T. ∀c2 : T (c1 �= c2). ∀c3 :T
(
c3 �∈ {c1, c2}

)
.(c1.p c2.p c3.p).

Alternatively, this property can be reformulated as follows: all interactions are either unary
or binary. The formulas �(c1.p), �(c2.p), �(c1.p, c2.p) allow unary or binary interaction
between the c1.p and c2.p ports. The formula c1.p c2.p forbids interactions involving both
components. Disjunction (5.9) of the four aforementioned formulas allows only unary or
binary interactions between c1 and c2. The desired specification is obtained by requiring

117

Chapter 5. Configuration Logics

p

p

p

p

p

Figure 5.8 – Star architecture.

that disjunction holds for any pair of components:

∀c1 : T. ∀c2 : T (c1 �= c2). (�(c1.p) ∨ �(c2.p) ∨ �(c1.p, c2.p) ∨ c1.p c2.p)).

The following examples illustrate the specification of architecture styles and patterns.

Example 5.2.4. The Star architecture style, illustrated in Figure 5.8, is defined for a set
of components of the same type. One central component s is connected to every other
component through a binary interaction and there are no other interactions. It can be
specified as follows:

∃s :T. ∀c :T (c �= s).
(
∼(c.p s.p) ∧ ∀c′ :T

(
c′ �∈ {c, s}

)
. (c′.p c.p)

)
∧ ¬

(
∃c : T. ∼ �(c.p)

)
. (5.11)

The three conjuncts of this formula express, respectively, the properties: 1) any component
is connected to the center; 2) components other than the center are not connected among
themselves; and 3) unary interactions are forbidden.

Notice that the semantics of the first conjunct in (5.11), ∀c : T (c �= s). ∼ (c.p s.p), is a
conjunction of closure formulas. In this conjunct, the closure operator also allows interactions
in addition to the ones explicitly defined. Therefore, to correctly specify this style, we forbid
all other interactions by using the second and third conjuncts of the specification. A simpler
alternative specification uses the Σ quantifier:

∃s :T. Σc :T (c �= s). �(c.p, s.p) . (5.12)

The � notation requires interactions to be binary and the Σ quantifier allows configurations
that contain only interactions satisfying �(c.p, s.p), for some c. Thus, contrary to (5.11),
we do not need to explicitly forbid unary interactions and connections between non-center
components.

118

5.2. Higher order extensions of PCL

outin

outin

in out

in out

outin in out outin

Pipe

Pipe Filter

Filter

Pipe Filter Pipe

Figure 5.9 – Pipes and Filters architecture.

Example 5.2.5. The Pipes and Filters architecture style [59] involves two types of com-
ponents, P and F , each having two ports in and out. Each input (resp. output) of a filter
is connected to an output (resp. input) of a single pipe. The output of any pipe can be
connected to at most one filter. One possible configuration is shown in Figure 5.9.

This style can be specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p �= p′).
(

f.in p′.out
)

(5.13)
∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p �= p′).

(
f.out p′.in

)
(5.14)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f �= f ′).
(

p.out f ′.in
)

(5.15)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p �= p′).

(
p.in p′.in ∧ p.in p′.out

))
(5.16)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f �= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
, (5.17)

The first conjunct (5.13) requires that the input of each filter be connected to the output of
a single pipe. The second conjunct (5.14) requires that the output of each filter be connected
to the input of a single pipe. The third conjunct (5.15) requires that the output of a pipe
be connected to at most one filter. Finally, the fourth and fifth conjuncts (5.16) and (5.17)
require that pipes only be connected to filters and vice-versa.

Example 5.2.6. In the Blackboard architecture style [45], a blackboard component of type
B holds data3 that may be updated by a group of knowledge sources of type S. A controller
of type C enforces mutual exclusion of write access. Figure 5.10 depicts a model with three
knowledge sources. We provide specifications of models composed of: 1) a single blackboard
b with two ports sh (share) and ctrl (control); 2) a single controller c with a port ctrl; and
3) a set of knowledge sources with a port acc (access). No knowledge can be shared without
taking control of the blackboard through the ctrl port.

The Blackboard architecture style can be specified as follows:

b.ctrl∧ c.ctrl ∧ ∼
(
Σs :S. (s.acc b.sh)

)
∧
(
∀s1 : S. ∀s2 : S(s1 �= s2). (s1.acc s2.acc)

)
.

The first two conjuncts require that the control ports of blackboard and controller components
participate in all interactions. The third conjunct requires that all knowledge sources be
connected to the blackboard. The last conjunct requires that there be no interactions

3We omit the data representation in this example, since only the fact that the data is updated is relevant
and not the data itself.

119

Chapter 5. Configuration Logics

sh

accaccacc

ctrlctrl

s1 s2 s3

b c

Figure 5.10 – Blackboard architecture.

involving two or more knowledge sources.

Example 5.2.7. The Request/Response pattern involves Clients and Services. It is defined
as follows [46]:

“Request/Response begins when the client establishes a connection to the service. Once a
connection has been established, the client sends its request and waits for a response. The
service processes the request as soon as it is received and returns a response over the same
connection. This sequence of client-service activities is considered to be synchronous because
the activities occur in a coordinated and strictly ordered sequence. Once the client submits
a request, it cannot continue until the service provides a response."

From this informal description we can infer the following. There are two types of components:
a client Cl and a service S. Clients have three ports: Cl.con, Cl.req and Cl.rec that
correspond to the connect, request and receive actions defined in the pattern, respectively.
Service components have two ports S.get for receiving a request and S.send for sending a
reply to the client that raised a request.

We use a coordinator of type C to enforce the properties: 1) only one client can be
connected at a time to a service; and 2) a client has to connect to the service before
sending a request. A unique coordinator is needed per service and therefore, the number of
coordinators must match the numbers of services. There can be arbitrarily many clients.
Each coordinator has three ports con, get and dsc that correspond to connect, get a request
and disconnect actions. Notice that the behaviour of a coordinator is cyclic involving the
sequence con → get → dsc → con. The Request/Reply pattern is illustrated in Figure 5.11.

120

5.2. Higher order extensions of PCL

sendget req rec

con

dsc get

con

Coordinator

con

get

dsc

ClientService

Figure 5.11 – Request/Response architecture.

This pattern can be specified as follows:

Σcl :Cl. Σs :S. ∃c :C.
(
�(cl.con, c.con) + �(cl.req, s.get, c.get)

+ �(cl.rec, s.send, c.dsc)
)

∧ Σcl :Cl. Σc :C. ∃s :S.
(
�(cl.con, c.con) + �(cl.req, s.get, c.get)

+ �(cl.rec, s.send, c.dsc)
)

.

(5.18)

Notice that the ∃ quantifier has the semantics of union. Coalescing distributes over union.
Therefore, the meaning of the nested existential quantifier in the first conjunct is several
configurations, where in each configuration a service is connected to a single coordinator.

The property “a unique coordinator is needed per service” is enforced by the formula as
follows: 1) the first conjunct requires that each service be connected to a single coordinator;
and 2) the second conjunct requires that each coordinator be connected to a single service.

Example 5.2.8. The Repository architecture style [44] consists of a repository component
r with a port p and a set of data-accessor components of type A with ports q. The basic
property “there exists a single repository and all interactions involve it” is specified as
follows:

SingleRepo def= ∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′) ,

where the subterm ∀r :R. ∀r′ :R. (r = r′) can be expressed in the logic as ∀r :R. ∀r′ :R(r′ �=
r). false. The additional property “there are some data-accessors and any data-accessor
must be connected to the repository” is enforced by extending the formula as follows:

SingleRepo ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q) .

121

Chapter 5. Configuration Logics

5.2.2 Monadic second-order configuration logic

Properties stating that two components are connected through a chain of interactions, are
essential for architecture style specification. For instance, the property that all components
form a single ring and not several disjoint ones can be reformulated as such a property.
In [78], it is shown that such reachability properties cannot be expressed in the first-order
logic. This motivates the introduction of the monadic second-order configuration logic with
quantification over sets of components.

This logic extends the first-order logic with variables ranging over component sets. We write
C :T to express the fact that all components belonging to C are of type T .

Syntax. The syntax of the monadic second-order configuration logic is defined by:

S ::= true | φ | ∃c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S � S | ¬ S | S + S

| ∃C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,

where φ is an interaction formula, c is a component variable, C is a component set variable
and Φ(c), Ψ(C) are some set-theoretic predicates (omitted when true). Additionally, we
define the usual notation for universal quantifier:

∀C :T
(
Ψ(C)

)
.S

def= ¬ ∃C :T
(
Ψ(C)

)
.¬ S.

Semantics. The semantics is defined for closed formulas, where, for each variable in the
formula, there is a quantifier over this variable in an upper nesting level. Models are pairs
〈B, γ〉, where B is a set of component instances of types from T and γ is a configuration on
the set of ports P of these components. The meaning of quantifier-free formulas or formulas
with quantification only over component variables is as for first-order logic. We define the
meaning of quantifiers over component set variables as follows:

〈B, γ〉 |= ∃C :T
(
Ψ(C)

)
. S , iff γ |=

⊔
C′:T ∈B ∧ Ψ(C′)

S[C ′/C] ,

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
. S ,

iff {C ′ : T ∈ B | Ψ(C ′)} �= ∅ ∧ γ |=
∑

C′:T ∈B ∧ Ψ(C′)
S[C ′/C] ,

where C ′ :T ranges over all sets of components of type T that satisfy Ψ.

In the following three examples, we consider systems consisting of components of a single
type T with two ports in and out. We assume that every interaction has at least one in port
and at least one out port. Alternatively, this assumption can be enforced by the constraint
¬ (∀c :T. c.out) ∧ ¬ (∀c :T. c.in).

Example 5.2.9. The property that the graph, formed by components belonging to a set C

122

5.2. Higher order extensions of PCL

inout

outin outin

inout

Figure 5.12 – Ring architecture.

outin in out in out in out

Figure 5.13 – Linear architecture.

and interactions among their ports, is connected can be expressed as follows:

Connected(C) def= ∀C ′ :T (C ′ � C).(
∃c′ :T (c′ ∈ C ′). ∃c :T (c ∈ C \ C ′). ∼ (c.in c′.out) � ∼ (c′.in c.out)

)
.

In particular, the formula requires that for any subset C ′ of C there exist an interaction that
involves a component that belongs to C ′ and a component that belongs to C \ C ′.

Example 5.2.10. The component connection graph respects the Ring architecture style
(Figure 5.12) if the following predicate is satisfied:

Connected(T) ∧ Σc :T. ∃c′ :T (c �= c′). �(c.in, c′.out)
∧ Σc : T. ∃c′ : T (c �= c′). �(c.out, c′.in) ,

The constraint Connected(T) is used to ensure that all components form a single ring, rather
than several disconnected ones. The second and third conjuncts require that each input port
be connected to a unique output port.

Example 5.2.11. The Linear architecture style, illustrated in Figure 5.13, involves serially
connected components. It is similar to the Ring architecture style: the difference being that
in the Linear architecture style, there are two distinguished components that are the ends of
the line such that the input of the first component and the output of the last component
are not connected. The following formula requires that the components in the C set form a
linear architecture.

Linear(C, out, in) def=

Connected(C) ∧ ∃c1 :T (c1 ∈ C). ∃c2 :T (c2 �= c1 ∧ c2 ∈ C).(
Σc :T (c �= c1 ∧ c ∈ C). ∃c′ :T (c′ �∈ {c, c2} ∧ c′ ∈ C). �(c.in, c′.out)

∧ Σc :T (c �= c2 ∧ c ∈ C). ∃c′ :T (c′ �∈ {c, c1} ∧ c′ ∈ C). �(c.out, c′.in)
)

.

123

Chapter 5. Configuration Logics

r p

s

q

r p

s

q

r p

s

q

r p

s

q

r p

s

q

r p

s

q

r p

s

q

r p

s

q

r p

s

q

Figure 5.14 – Grid architecture.

Example 5.2.12. The Square Grid architecture style, illustrated in Figure 5.14, involves
n2 components of type T , each with four ports p, q, r and s. Adjacent components are
connected through ports p and r in each row of the grid and through ports q and s in each
column. It can be expressed as follows:(

∀c :T.
(
c.p � ∃c′ :T (c �= c′). �(c.p, c′.r) + c.p

)
∧
(
c.q � ∃c′ :T (c �= c′). �(c.q, c′.s) + c.q

)
∧
(
c.r � ∃c′ :T (c �= c′). �(c.r, c′.p) + c.r

)
∧
(
c.s � ∃c′ :T (c �= c′). �(c.s, c′.q) + c.s

))
∧ (

∀c :T. ∃C :T (c ∈ C). MaxLinear(C, p, r)

∧∃C ′ :T (C ′ ∩ C = {c} ∧ |C ′| = |C|). MaxLinear(C ′, q, s)
)

∧ (
∀c1 : T. ∀c2 : T (c1 �= c2).∀c3 :T

(
c3 �∈ {c1, c2}

)
.

∼(c1.p c2.r + c1.q c3.s) ⇒ ∃c4 :T
(
c4 �∈ {c1, c2, c3}

)
. ∼(c2.q c4.s + c3.p c4.r)

∧ ∼(c1.q c2.s + c1.r c3.p) ⇒ ∃c4 :T
(
c4 �∈ {c1, c2, c3}

)
. ∼(c2.r c4.p + c3.q c4.s)

∧ ∼(c1.r c2.p + c1.s c3.q) ⇒ ∃c4 :T
(
c4 �∈ {c1, c2, c3}

)
. ∼(c2.s c4.q + c3.r c4.p)

∧ ∼(c1.s c2.q + c1.p c3.r) ⇒ ∃c4 :T
(
c4 �∈ {c1, c2, c3}

)
. ∼(c2.p c4.r + c3.s c4.q)

)
∧

Connected(T),

where

MaxLinear(C, p1, p2) def= Linear(C, p1, p2) ∧ ∀C ′ :T (C ⊂ C ′).¬ Linear(C ′, p1, p2).

124

5.2. Higher order extensions of PCL

The four big conjuncts represent, respectively, the following constraints:

1. Each port participates in at most one interaction.

2. Each component belongs in one row and one column of equal sizes. The conjunction
with the first constraint ensures that, for any two components, the rows (columns) in
which they belong either coincide or do not intersect.

3. If two components are connected to a third one and all three components do not belong
in the same row or column then there exists a fourth component that is connected
to the first two. The conjunction with the second constraint ensures that given two
adjacent components that belong in the same row (column), all other components that
belong in the columns (rows) of the first two components are pairwise connected.

4. Components form a single grid instead of several ones. Notice that it is not possible to
distinguish a single grid from several small ones in the first-order logic and thus, this
architecture style cannot be expressed in first-order logic.

5.2.3 First-order configuration logic with ordered components

In this subsection, we consider an alternative extension of the first-order logic. We assume
that components in models are ordered linearly and, thus, formulas can contain constraints
based on the order. As a result, several architecture styles, for instance Ring and Linear
architecture styles, that were not expressible in the first-order logic, can be expressed in this
extension.

Syntax. The syntax of the first-order logic with ordered components is defined by:

F ::= true | φ | ∃c[i] :T
(
Φ(i)

)
.F | Σc[i] :T

(
Φ(i)

)
.F | F � F | ¬ F | F + F ,

where φ is an interaction formula; c[i] refers to the ith instance of the component type T ;
Φ(i) is a predicate based on arithmetic operations on indices (omitted when Φ = true).

The universal quantifier is introduced as usual:

∀c[i] :T
(
Φ(i)

)
. F

def= ¬
(
∃c[i] :T

(
Φ(i)

)
. ¬ F

)
.

Semantics. The semantics is defined for closed formulas, where, for each variable in the
formula, there is a quantifier over this variable in an upper nesting level. Models are
pairs 〈B, γ〉, where B is an ordered set of component instances of types from T and γ is a
configuration on the set of ports P of these components.

We denote nT the number of components of type T . Within each component type, components
are ordered linearly, i.e. they can be represented by an array with the index ranging from 1
to nT . We write ci to denote the ith component instance of type T .

125

Chapter 5. Configuration Logics

For quantifier-free closed formulas the semantics is the same as for PCL formulas. For
quantifiers, the satisfaction relation is defined as follows:

〈B, γ〉 |= ∃c[i] :T
(
Φ(i)

)
. F , iff γ |=

⊔
j∈[1,nT]

s.t. Φ(j)

F
[
cj/c[i]

]
,

〈B, γ〉 |= Σc[i] :T
(
Φ(i)

)
. F ,

iff
{
j ∈ [1, nT]

∣∣Φ(j)
}

�= ∅ ∧ γ |=
∑

j∈[1,nT]

s.t. Φ(j)

F
[
cj/c[i]

]
,

where j ranges over all indices of component instances of type T ∈ T , such that j satisfy Φ;
and F

[
cj/c[i]

]
is the formula obtained by replacing all occurrences of the variable c[i] in F

by the instance cj .

Notice that models in this logic differ from models in logics presented in the previous
subsections: their components are ordered linearly. For models with unordered sets of
components, the semantics can be defined by requiring the existence of a component order,
with which the formula is satisfied.

In [78], it was shown that this extension of the first-order logic increases its expressive
power, but it is still less expressive than the monadic second-order logic. In particular,
Example 5.2.14 and Example 5.2.15 show specification of styles that are inexpressible in the
first-order configuration logic. Nevertheless, Example 5.2.9 is inexpressible in this extension.

The following examples illustrate the specification of architecture styles with this extension.

Example 5.2.13. Consider the Request/Response pattern described in Example 5.2.7.
Despite that it was specified in the first-order logic, the specification of this pattern can be
simplified by requiring connections between pairs of services and coordinators with equal
indices. This makes the second conjunct of (5.18) unnecessary. The Request/Response
pattern can be specified in the first-order configuration logic with ordered components as
follows:

Σcl[i] :Cl. Σs[j] :S. ∃c[k] :C(k = j).
(
�(cl[i].con, c[k].con)

+ �(cl[i].req, s[j].get, c[k].get) + �(cl[i].rec, s[j].send, c[k].dsc)
)

.

In the following two examples, we consider systems consisting of components of a single type
T with two ports in and out. We assume that every interaction has at least one in port and
at least one out port. Alternatively, this assumption can be enforced by the constraint

¬
(
∀c[i] :T . c[i].out

)
∧ ¬

(
∀c[i] :T . c[i].in

)
.

126

5.3. Implementation of decision procedure

Example 5.2.14. The Ring architecture style (cf. Example 5.2.10), inexpressible in the first-
order logic, can be specified in the first-order configuration logic with ordered components
as follows:

Σc[i] :T . Σc[j] :T (j = i + 1 mod nT) . �(c[i].out, c[j].in).

The constraint allows only interactions between neighbour components.

Example 5.2.15. The Linear architecture style (cf. Example 5.2.11) can be specified as
follows:

Σc[i] :T . Σc[j] :T (j = i + 1) . �(c[i].out, c[j].in) .

The formula is similar to the specification of the Ring architecture style. Taking equality
instead of the modular one in the constraint forbids the interaction between the first and
the last component.

Example 5.2.16. The Grid architecture style (cf. Example 5.2.12) can be specified as
follows:

Σc[i] :T . Σc[j] :T (j = i + 1 ∧ i �= 0 mod n) . �(c[i].p, c[j].r)
+ Σc[i] : T . Σc[j] : T (j = i + n) . �(c[i].q, c[j].s) ,

where n = √
nT . The formula is based on the specification of the Linear architecture style.

It requires components be arranged in n horizontal and n vertical lines of length n.

5.3 Implementation of decision procedure

The decision procedure is based on the computation of the normal form followed by a
decision whether a model satisfies at least one union term of the normal form or not. We
implemented the decision procedure for PCL using Maude 2.0. Maude is a language and an
efficient rewriting system supporting both equational and rewriting logic specification and
programming for a wide range of applications. The set of rewriting rules in Figure 5.5 were
encoded in Maude. For example, Rule 2 (distributing coalescing over union) is encoded as
follows:

op $Rule2 : Expr Set{Expr} Set{Expr} → Set{Expr}.

eq $Rule2(A, empty, SC) = �(SC).
eq $Rule2(A, (B, SB), SC) = $Rule2(A, SB, (+((A, B)), SC)).
eq A + �(SB) = $Rule2(A, SB, empty).

The first line defines an additional operator for the Rule 2 that takes three arguments: a
formula that is coalesced, a set of formulas that are united and an additional set of formulas

127

Chapter 5. Configuration Logics

0

2

4

6

8

10

12

0 10 20 30 40 50

T
im

e
(s

ec
)

Number of ports

Ring
Star

Blackboard
Repository

Request-Response
Pipes-Filters

Figure 5.15 – Performance of the decision procedure for architecture styles.

that is used for the accumulation. The two following lines define the behaviour of this
operator recursively. A and B are variables for single formulas, while SB and SC are
variables for sets of formulas. Given a set of united formulas SB we take one of them,
coalesce it with A, store the result in the accumulator SC and recursively repeat until there
are no formulas left. The result returned is the union of formulas in the accumulator.

The rest of the rules in Figure 5.5 are defined in a similar manner. The Maude system
can apply all rules to a given formula and return the formula in normal form. If we have
a configuration logic formula in normal form and an encoded model, we can apply the
implementation of the procedure in Figure 5.7 and decide for satisfaction.

In the experimental evaluation we used a set of architecture styles including Star, Ring,
Request-Response pattern, Pipes-Filters, Repository and Blackboard. We used configuration
logic formulas (cf. Section 5.2) and models of different sizes, including both correct and
incorrect models. Quantifiers were eliminated externally and the decision procedure was
applied to quantifier-free formulas. All experiments have been performed on a 64-bit Linux
machine with a 2.8 Ghz Intel i7-2640M CPU with a memory limit of 1Gb and time limit of
600 seconds.

Figure 5.15 shows the average duration of the decision procedure for the six examples, as a
function of the total number of ports involved in the formula. Simple architecture styles
like star are decidable within seconds even for 50 ports. For architecture styles requiring
more complex specifications, the number of ports that can be managed in 600 seconds is
smaller. For the ring architecture the memory limit is attained for the model with 24 ports.
This result shows high correlation between the maximal nesting level of quantifiers and
the decision time. Pipes and Filters and Request-Response architecture styles have three
nested quantifiers, while Star and Blackboard only two. Parsing the formula with eliminated

128

5.4. Composition of architecture styles

quantifiers (thousands of lines) is a computationally expensive operation and is the reason
of the memory limit attainment for the ring architecture. Internal quantifier elimination
should eliminate the parsing overhead. Another possible direction for future optimisation is
to research the possibility to delay the quantifier elimination.

5.4 Composition of architecture styles

Configuration logics can be used to specify families of architectures enforcing the same
characteristic property. For a configuration logic formula f , a model is a pair 〈B, γ〉. Notice
that we neither use components behaviour nor apply glue (configuration) to them. These
components are necessary to define a set of ports for the configuration. Thus, for a model
〈B, γ〉, we can define an architecture A = (∅,

⋃
B∈B PB, γ), where PB is the interface of B,

such that the application of A to B gives a composite component satisfying the desired
property. We say that A satisfies f .

In general, it is not possible to distinguish coordinating components in a model of a
configuration logic formula, thus architectures in this section do not have them. Nevertheless,
architecture styles can specify components of some type as coordinating (see Example 5.2.7)
making possible to take instances of these types as coordinating components.

In order to build a system that satisfy several properties, on the level of architectures we can
compose architectures characterising desired properties with the operator ⊕. On the level of
architecture styles we can compose the corresponding formulas with the operator ∧. In this
section, we study the relation between composed architectures and composed configuration
logic formulas.

In Section 5.2, we have assumed that for a configuration logic formula a set of component
types is predefined. However, sets of component types might not be equal for different
formulas. We define the set of component types for the composition of formulas f1 ∧ f2 as
union of sets for f1 and f2.

In Theorem 4.3.5, we have shown that the composition of architectures preserves safety
properties. One can make an observation that for an architecture A = (C, PA, γ) enforcing a
safety property Φ, an architecture A′ = (C, PA, γ′), with γ′ ⊂ γ allowing less interactions,
also enforces the property Φ. Indeed, any state reachable in the system obtained by the
application of A′ is also reachable in the system obtained by the application of A. Thus, a
family of architectures enforcing a safety property should be specified by a downward-closed
formula. Here we recall the definition of downward-closed formulas.

Definition 5.4.1. A formula f is downward-closed iff 〈B, γ〉 |= f implies for all non-empty
configuration γ1 ⊆ γ, 〈B, γ1〉 |= f .

In this section, we use the following notation: given a formula f defined over a set of types
T1, we denote fe the formula that coincides with f syntactically, but is defined over a set of

129

Chapter 5. Configuration Logics

types T1 ∪ T2 for some T2. We also denote 〈Be, γe〉 models of fe.

Proposition 5.4.2, below, shows the relation between the composition of downward-closed
formulas and the composition of architectures satisfying them.

Proposition 5.4.2. Let f1, f2 be two downward-closed configuration logic formulas defined
over sets of component types T1 and T2, respectively. Let A1 = (∅, P1, γ1) and A2 = (∅, P2, γ2)
be two architectures satisfying f1 and f2, respectively. If the interaction model of the
architecture A1 ⊕ A2 is not empty, then A1 ⊕ A2 satisfies fe

1 ∧ fe
2 , where fe

1 and fe
2 are the

formulas defined over a set of component types T1 ∪ T2.

In order to prove this proposition, we use several lemmas. The first lemma shows the relation
between models of equal formulas defined over different component type sets. The rest of
the lemmas explore properties of downward-closed equal formulas defined over different
component type sets.

Definition 5.4.3. For a model 〈Be, γe〉 with components of types in T1 ∪ T2, its projection
on T1 is a model 〈B, γ〉, where B = {B :T | B ∈ Be, T ∈ T1}, P =

⋃
B∈B PB is a set of ports

in B and γ = {ae ∩ P | ae ∈ γe}. We also say that γ is a projection of γe and ae ∩ P is a
projection of ae.

Lemma 5.4.4. Let f be a configuration formula defined over a set of component types T1.
Then for any set of component types T2, fe defined over T1 ∪ T2 and for any models 〈B, γ〉
and 〈Be, γe〉, where B has components of types in T1, Be has components of types in T1 ∪ T2

and 〈B, γ〉 is a projection of 〈Be, γe〉 on T1, holds:

〈B, γ〉 |= f ⇔ 〈Be, γe〉 |= fe.

Proof. Recall that the semantics of quantifiers is defined by elimination. Notice that f is
initially defined over T1 and it has only quantifiers over component variables of types in
T1. Thus, quantifier elimination from f and fe over B and Be, respectively, results in equal
formulas. Hence, it is sufficient to prove the lemma for quantifier-free formulas. It can be
done by structural induction.

• f = true. Both 〈B, γ〉 |= f and 〈Be, γe〉 |= fe.

• f is an interaction formula. If 〈Be, γe〉 |= fe, then for any ae ∈ γe, ae |=i=fe. The
projection a ∈ γ of ae induces the same valuation of ports of B, thus a |=i=f and,
consequently, 〈B, γ〉 |= f . If 〈B, γ〉 |= f , then for any a ∈ γ, a |=i=f . Since f and fe do
not constrain ports of components Be \ B, for any ae ∈ γe, such that a is a projection
of ae, holds ae |=i=fe. Therefore, 〈Be, γe〉 |= fe.

• f = ¬ f1. Since, by induction hypothesis 〈Be, γe〉 �|= fe
1 ⇔ 〈B, γ〉 �|= f1, we trivially

have 〈Be, γe〉 |= fe ⇔ 〈B, γ〉 |= f .

130

5.4. Composition of architecture styles

• f = f1 + f2. If 〈Be, γe〉 |= fe
1 + fe

2 , then there exist γe
1 and γe

2, such that γe = γe
1 ∪ γe

2,
〈Be, γe

1〉 |= fe
1 and 〈Be, γe

2〉 |= fe
2 . Let γ1 and γ2 be projections of γe

1 and γe
2, respectively.

Notice that γ = γ1 ∪ γ2. By induction hypothesis, 〈B, γ1〉 |= f1 and 〈B, γ2〉 |= f2,
therefore 〈B, γ〉 |= f1 + f2. Similarly, if 〈B, γ〉 |= f1 + f2, then there exist γ1 and γ2

such that γ = γ1 ∪ γ2, 〈B, γ1〉 |= f1 and 〈B, γ2〉 |= f2. Consider the partition of γe into
γe

1 and γe
2, such that γ1 and γ2 are projections of γe

1 and γe
2, respectively. By induction

hypothesis, 〈Be, γe
1〉 |= fe

1 and 〈Be, γe
2〉 |= fe

2 , therefore 〈Be, γe〉 |= fe
1 + fe

2 .

• f = f1 � f2. If both 〈B, γ〉 |= fi and 〈Be, γe〉 |= fe
i , for i ∈ {1, 2}, then both

〈B, γ〉 |= f1 � f2 and 〈Be, γe〉 |= fe
1 � fe

2 . If both do not satisfy neither f1, fe
1 nor

f2, fe
2 , then 〈B, γ〉 �|= f1 � f2 and 〈Be, γe〉 �|= fe

1 � fe
2 .

Thus, by structural induction, 〈B, γ〉 |= f ⇔ 〈Be, γe〉 |= fe.

A particular case of Lemma 5.4.4 is obtained by choosing 〈Be, γe〉 = 〈B, γ〉: for any model
holds 〈B, γ〉 |= f ⇒ 〈B, γ〉 |= fe.

Notice that, by the definition of notation, �(c1.p1, . . . , cn.pn) does not define an exact
interaction for extended set of component types: for a formula defined over a set of component
types T , the notation allows any port to participate in interactions provided the port belong
to a component of type T �∈ T . Thus, the � notation implicitly depends on a set of component
types. Below, in order to make this dependency explicit, we will denote �T (c1.p1, . . . , cn.pn),
showing that it is defined over a set of component types T . For example, consider a
component type T1 with a single port p and a formula f = ∃c : T1 . �{T1}(c.p) ≡ ∃c :
T1 . c.p ∧ (∀c1 :T1(c1 �= c). c1.p) defined over a set of component types {T1}. This formula
allows only unary interactions. For the formula fe defined over a set of component types
{T1, T2} for some component type T2 with a port q, interactions of the form c.p ∪ {ci.q}n

i=1,
where c :T1 and ci :T2 for i ∈ {1, n}, are allowed.

Lemma 5.4.5. Let f be a downward-closed formula defined over a set of component types T1.
Then for any set of component types T2, a formula fe defined over T1 ∪T2 is downward-closed.

Proof. Consider two models 〈Be, γe
1〉 and 〈Be, γe

2〉, such that γe
1 ⊂ γe

2 and 〈Be, γe
2〉 |= fe. By

Lemma 5.4.4, 〈B, γ2〉 |= f , where 〈B, γ2〉 is a projection of 〈Be, γe
2〉 on T1. The formula

f is downward-closed, therefore 〈B, γ1〉 |= f , where 〈B, γ1〉 is a projection of 〈Be, γe
1〉. By

Lemma 5.4.4, 〈Be, γe
1〉 |= fe.

Lemma 5.4.6. Let f be a quantifier-free downward-closed formula defined over a set of
component types T1. Let fe be a formula defined over T1 ∪ T2 for some T2. Then fe can be
expressed in the form ⊔

φ∈Φ φ, where Φ is a set of interaction formulas containing only ports
of components of types in T1

Proof. By Proposition 5.1.20, f can be expressed in the form g =
⊔

φ∈Φ φ, i.e. f ≡ g. Let
ge =

⊔
φ∈Φ φ be a formula defined over T1 ∪ T2. We will prove that fe ≡ ge.

131

Chapter 5. Configuration Logics

By Lemma 5.4.4, if 〈Be, γe〉 |= fe, then its projection 〈B, γ〉 |= f and, consequently, 〈B, γ〉 |= g.
Let P =

⋃
B∈B PB be a set of ports of components in B. By (5.5), there exists φ ∈ Φ such

that 〈B, γ〉 |= φ. Any ae ∈ γe has a projection a ∈ γ. Since φ constrains only ports in P , for
any ae ∈ γe, ae |=i=φ. Therefore, 〈Be, γe〉 |= ge.

If 〈Be, γe〉 |= ge, then there exists a term φ ∈ Φ in ge. such that for all ae ∈ γe, ae |=i=φ.
Since φ constrains only ports in P , for any ae ∈ γe, a |=i=φ, where a = ae ∩ P is a projection
of ae. Thus, a projection of 〈Be, γe〉 satisfies g. By Lemma 5.4.4, 〈Be, γe〉 |= fe.

Proof of Proposition 5.4.2. By the semantics (5.7), A1 ⊕ A2 satisfies fe
1 ∧ fe

2 iff A1 ⊕ A2

satisfies both fe
1 and fe

2 .

Let γ1,2 be the interaction model of A1 ⊕A2 and let, for i ∈ {1, 2}, Bi be a set of components,
such that Pi =

⋃
B∈Bi

PB and 〈Bi, γi〉 |= fi. Let ge
1 be a formula obtained from fe

1 by
quantifier elimination over B1 ∪ B2. By Lemma 5.4.5, fe

1 and ge
1 are downward-closed. By

Lemma 5.4.6, ge
1 can be expressed as a union of interaction formulas, thus ge

1 ≡ ⊔
φ∈Φ φ,

where each φ only has ports in P1. Since 〈B1, γ1〉 |= f1, by Lemma 5.4.4, 〈B1, γ1〉 |= fe
1

and, consequently, 〈B1, γ1〉 |= ge
1. By (5.5), there exists φ ∈ Φ, such that γ1 |= φ. By

Lemma 4.2.2, a ∈ γ1,2 if a ∩ P1 ∈ γ1. Since a ∩ P1 |=i=φ and φ has only ports in P1, a |=i=φ.
Thus, 〈B1 ∪ B2, γ1,2〉 |= φ and, consequently, A1 ⊕ A2 satisfies fe

1 . The proof that A1 ⊕ A2

satisfies fe
2 is symmetrical.

For the formulas that are not downward-closed, Proposition 5.4.2 does not hold in general.
It is possible to find a second formula and a pair of architectures satisfying them, such that
their composition does not satisfy the composition of formulas.

Proposition 5.4.7. Let f1 be a formula defined over a set of component types T1 that is not
downward-closed. Then there exist a set of component types T2, a formula f2 defined over a
set of component types T2 and two architectures Ai = (∅, Pi, γi) satisfying fi, for i ∈ {1, 2},
such that A1 ⊕ A2 does not satisfy fe

1 ∧ fe
2 , where, for i ∈ {1, 2}, fe

i is a formula defined over
a set of component types T1 ∪ T2.

Proof. Since f1 is not downward-closed, there exist two models 〈B, γ〉 satisfying f1 and
〈B, γ′〉 not satisfying f1, such that γ′ ⊂ γ. Consider f2 = true for a set of component types
T1 and consider two architectures A1 = (∅,

⋃
B∈B PB, γ) and A2 = (∅,

⋃
B∈B PB, γ′). By

Lemma 4.2.2, interaction model of A1 ⊕ A2 is γ1,2 = γ′. Since 〈B, γ′〉 �|= f1, A1 ⊕ A2 does
not satisfy fe

1 ∧ fe
2 .

Architectures satisfying the composition of two formulas cannot always be decomposed into
architectures satisfying each of the composed formulas even for downward-closed formulas.
The following example illustrates this fact.

132

5.5. Discussion

T1
n1

T2
n2

mp:dp mq:dq
qp

Figure 5.16 – Architecture diagram.

Example 5.4.8. Consider three component types: T1 with interface {p}, T2 with in-
terface {q} and T3 with interface {r}. Consider a formula f1 = ∃c : T1. c.p defined
over {T1, T2} and a formula f2 = ∃c : T1. c.p defined over {T1, T3}. The architecture
A = (∅, {p1, q1, q2, r1, r2}, {pq1r1, pq2r2}) satisfies f1 ∧ f2. However, it cannot be represented
as A1 ⊕ A2, where Ai satisfies fi for i ∈ {1, 2}.

5.5 Discussion

Among the formal approaches for representing and analysing architecture descriptions, we
distinguish two main categories: extensional and intentional. In extensional approaches
one explicitly defines every object that is needed for the specification, i.e. the connections
inducing interactions among the components. In intentional approaches all connections
among the components are not specified explicitly, but they are derived from a set of
logical constraints, formulating the intentions of the designer. In intentional approaches
specifications are often represented as conjunctions of logical formulas. Configuration logics
encompass both approaches. They allow the description of individual interactions as well as
the specification of configuration sets. Example 5.2.4 illustrates the use of both approaches.

We have shown that configuration logics are a powerful tool for architecture style specification.
Nevertheless, their use may be challenging for engineers. In [80], we have studied an
alternative avenue for architecture style specification based on architecture diagrams. An
architecture diagram consists of a set of component types equipped with a parameter defining
the number of component instances. Connector motifs connect ports of component types
and define configurations. A connector motif specify the number of ports participating in
each interaction with a multiplicity parameter and the number of interactions involving each
port with a degree parameter. A simple architecture diagram is shown in Figure 5.16. This
diagram specify two component types T1 and T2 that have n1 and n2 instances, respectively.
A single connector motif involve ports p and q. m1 and m2 define multiplicities, i.e. each
connector have m1 instances of the port p and m2 instances of the port q. d1 and d2 define
degrees, i.e. each instance of the port p is involved in d1 interactions and each instance of the
port q is involved in d2 interactions. There exist several extensions of architecture diagrams
allowing to use intervals in parameters or constraints based on the order of components.
Architecture diagrams provide a way to graphically specify architecture styles, allow to check
efficiently the satisfaction of models, but, to the best of our knowledge, are less expressive
than configuration logics.

133

6 Conclusion and Future Work

The presented work is a contribution to a long-term research program that have been pursued
for more than 15 years. The program aims at developing the BIP component framework for
rigorous systems design [94]. BIP is a language and a set of supporting tools including code
generators, verification and simulation tools. The theoretical work has focused on the study
of expressive composition frameworks and their algebraic and logical formalisation.

We provided a study of the expressiveness of the BIP glue in two semantics. We provided
theoretical results and examples showing that the classical BIP semantics, where glue
consists of an interaction and a priority models, has compositionality, but does not have
neither flattening, nor full expressiveness w.r.t. BIP-like SOS. We show that the source of
expressiveness limitation is the definition of priority model. The offer semantics, where glue
is represented with an extended interaction model, allows to define any glue expressible as a
set of SOS rules in the format (2.25). In general, the classical and offer semantics are not
comparable. We have presented constraints on components, under which offer semantics
becomes more expressive than the classical one. We have also provided a synthesis procedure
for the extended interaction model from Boolean constraints.

Our work on specification of architectures and architecture styles is a part of a broader
research program investigating correct-by-construction approaches. Our vision is that
systems can be built incrementally by composing architectural solutions ensuring elementary
properties, e.g. mutual exclusion, schedulability, fault-tolerance and timeliness. The desired
global properties can be established as the conjunction of elementary properties.

An architecture A is a solution to a specific coordination problem, characterised by a property.
We specify architectures as triples: a set of coordinating components, a set of ports and a
configuration on these ports. An application of an architecture builds a composite component
that satisfies the characteristic property of the architecture. Architectures can be easily
composed and the composition preserves safety properties. However, an architecture is
applicable to a specific number of components. In order to specify families of architectures
enforcing the same property, we use configuration logics. We study their properties and

135

Chapter 6. Conclusion and Future Work

present a sound and complete axiomatisation for the propositional flavour of logic. Logics
are equipped with a decision procedure for checking that a given architecture model meets
given style requirements.

There exist several directions for future work. Currently, the offer semantics of BIP is a
purely theoretical work. We would like to implement a BIP engine for the offer semantics and
related tools in order to include it in the BIP framework. For the specification of architectures
and architecture styles, we are planning to incorporate connectors as hierarchically structured
interactions and data transfer among the participating ports. We would also like to include
priorities in configuration logics. From the analysis perspective, we will study efficient
techniques for deciding satisfiability of higher-order configuration logics. We would also like
to research methods for proving correctness of architectures. As a result of this, we would be
able to create libraries of architectures and architecture styles for various domains. Another
interesting direction of future work is to provide means for dynamic reconfigurations of
architectures within an architecture style.

136

Bibliography

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting software
architecture to implementation. In Software Engineering, 2002. ICSE 2002. Proceedings
of the 24rd International Conference on, pages 187–197. IEEE, 2002.

[2] Robert Allen and David Garlan. Formalizing architectural connection. In Proceedings
of the 16th international conference on Software engineering, pages 71–80. IEEE
Computer Society Press, 1994.

[3] Farhad Arbab. What do you mean, coordination. Bulletin of the Dutch Association
for Theoretical Computer Science, NVTI, 1122:1–18, 1998.

[4] Farhad Arbab. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[5] Farhad Arbab. Composition of interacting computations. In Interactive computation,
pages 277–321. Springer, 2006.

[6] Farhad Arbab, Christel Baier, Frank de Boer, Jan Rutten, and Marjan Sirjani. Synthesis
of Reo circuits for implementation of component-connector automata specifications. In
Coordination Models and Languages, volume 3454 of LNCS, pages 236–251. Springer,
2005.

[7] Farhad Arbab, Ivan Herman, and Pål Spilling. An overview of manifold and its
implementation. Concurrency: practice and experience, 5(1):23–70, 1993.

[8] Farhad Arbab and Sun Meng. Synthesis of connectors from scenario-based interaction
specifications. In CBSE’08, volume 5282 of LNCS, pages 114–129. Springer, 2008.

[9] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and Joseph Sifakis. A
general framework for architecture composability. In D. Giannakopoulou and G. Salaün,
editors, 12th International Conference on Software Engineering and Formal Methods
(SEFM 2014), number 8702 in LNCS, pages 128–143. Springer, 2014.

[10] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten. Modeling
component connectors in Reo by constraint automata. Sci. Comput. Program., 61(2):75–
113, 2006.

137

Bibliography

[11] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone,
and Alberto Sangiovanni-Vincentelli. Metropolis: an integrated electronic system
design environment. IEEE Computer, 36(4):45–52, 2003.

[12] K. Balasubramanian, A.S. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. Develop-
ing applications using model-driven design environments. IEEE Computer, 39(2):33–40,
2006.

[13] Eduard Baranov and Simon Bliudze. Offer semantics: Achieving compositionality,
flattening and full expressiveness for the glue operators in BIP. Science of Computer
Programming, 109(0):2–35, 2015.

[14] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber,
Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based system design
using the BIP framework. Software, IEEE, 28(3):41–48, 2011.

[15] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in BIP. In 4th IEEE Int. Conf. on Software Engineering and Formal
Methods (SEFM06), pages 3–12, 2006.

[16] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. On the formalization of
architectural types with process algebras. In SIGSOFT FSE, pages 140–148, 2000.

[17] BIP. http://www-verimag.imag.fr/~async/BIP/bip.html

[18] Simon Bliudze. Towards a theory of glue. In ICE 2012: Distributed coordination,
execution models, and resilient interaction, volume 104 of EPTCS, pages 48–66, 2012.

[19] Simon Bliudze and Joseph Sifakis. The algebra of connectors — Structuring interaction
in BIP. In Proc. of the EMSOFT’07, pages 11–20. ACM SigBED, 2007.

[20] Simon Bliudze and Joseph Sifakis. The algebra of connectors—structuring interaction
in BIP. IEEE Transactions on Computers, 57(10):1315–1330, 2008.

[21] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-based
systems. In Franck van Breugel and Marsha Chechik, editors, CONCUR 2008, volume
5201 of LNCS, pages 508–522. Springer, 2008.

[22] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors.
Formal Methods in System Design, 36(2):167–194, 2010.

[23] Simon Bliudze and Joseph Sifakis. Synthesizing glue operators from glue constraints
for the construction of component-based systems. In Sven Apel and Ethan Jackson,
editors, 10th International Conference on Software Composition, volume 6708 of LNCS,
pages 51–67. Springer, 2011.

[24] Simon Bliudze, Joseph Sifakis, Marius Dorel Bozga, and Mohamad Jaber. Architecture
internalisation in BIP. In Proceedings of the 17th International ACM Sigsoft Symposium
on Component-based Software Engineering, CBSE’14, pages 169–178. ACM, 2014.

138

Bibliography

[25] Bard Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-Like Lan-
guages. PhD thesis, Massachusetts Institute of Technology, 1989.

[26] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph
Sifakis. From high-level component-based models to distributed implementations. In
Proceedings of the 10th ACM international conference on Embedded software, EM-
SOFT’10, pages 209–218. ACM, 2010.

[27] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. A model of context-dependent
component connectors. Science of Computer Programming, 77(6):685–706, 2012.

[28] Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified modeling language
user guide. Addison-Welsley Longman Inc, 1999.

[29] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic
architectures using Dy-BIP. In Thomas Gschwind, Flavio Paoli, Volker Gruhn, and
Matthias Book, editors, Software Composition, volume 7306 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2012.

[30] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in BIP. In Industrial Embedded Systems,
2009. SIES’09. IEEE International Symposium on, pages 152–160, 2009.

[31] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard
Stefani. The Fractal component model and its support in Java. Software: Practice
and Experience, 36(11-12):1257–1284, 2006.

[32] Roberto Bruni, Ivan Lanese, and Ugo Montanari. A basic algebra of stateless connectors.
Theor. Comput. Sci., 366(1):98–120, 2006.

[33] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, and Emilio Tuosto. Style-
based architectural reconfigurations. Bulletin of the EATCS, 94:161–180, 2008.

[34] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Connector algebras, petri
nets, and bip. In Edmund Clarke, Irina Virbitskaite, and Andrei Voronkov, editors,
Perspectives of Systems Informatics, volume 7162 of Lecture Notes in Computer Science,
pages 19–38. Springer, 2012.

[35] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature
interaction: a critical review and considered forecast. Computer Networks, 41(1):115–
141, 2003.

[36] Nicholas Carriero and David Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, 1989.

[37] Barbara Chapman, Matthew Haines, Piyush Mehrotra, Hans Zima, and John
Van Rosendale. Opus: A coordination language for multidisciplinary applications.
Scientific Programming, 6(4):345–362, 1997.

139

Bibliography

[38] Dave Clarke. Reasoning about connector reconfiguration ii: Basic reconfiguration
logic. In Electronic Notes in Theoretical Computer Science, volume 159, pages 61–77.
Elsevier, 2006.

[39] Dave Clarke. Coordination: Reo, nets, and logic. In International Symposium on
Formal Methods for Components and Objects, pages 226–256. Springer, 2007.

[40] Dave Clarke. A basic logic for reasoning about connector reconfiguration. Fundamenta
Informaticae, 82(4):361–390, 2008.

[41] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation
and context dependency. Electr. Notes Theor. Comput. Sci., 154(1):101–119, 2006.

[42] Dave Clarke and Jose Proenca. Coordination via interaction constraints i: Local logic.
In Electronic Proceedings in Theoretical Computer Science, volume 12, pages 17–39,
2009.

[43] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. Deconstructing
Reo. ENTCS, 229(2):43–58, 2009.

[44] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers,
and Reed Little. Documenting software architectures: views and beyond. Pearson
Education, 2002.

[45] Daniel D. Corkill. Blackboard systems. AI expert, 6(9):40–47, 1991.

[46] Robert Daigneau. Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services. Addison-Wesley, 2011.

[47] Gero Decker, Frank Puhlmann, and Mathias Weske. Formalizing service interactions.
In Business Process Management, pages 414–419, 2006.

[48] Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon Bliudze. Combine
and conquer: Relating BIP and Reo. Journal of Logical and Algebraic Methods in
Programming, 86(1):134–156, 2017.

[49] Kasper Dokter, Sung-Shik T. Q. Jongmans, Farhad Arbab, and Simon Bliudze. Relating
BIP and reo. In Sophia Knight, Ivan Lanese, Alberto Lluch-Lafuente, and Hugo Torres
Vieira, editors, Proceedings 8th Interaction and Concurrency Experience, ICE 2015,
Grenoble, France, 4-5th June 2015., volume 189 of EPTCS, pages 3–20, 2015.

[50] Deepak D’Souza and Madhu Gopinathan. Conflict-tolerant features. In CAV, volume
5123 of LNCS, pages 227–239. Springer, 2008.

[51] Hartmut Ehrig and Barbara Konig. Deriving bisimulation congruences in the DPO
approach to graph rewriting. In FoSSaCS, volume 2987 of LNCS, pages 151–166.
Springer, 2004.

140

Bibliography

[52] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity: The Ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003.

[53] Matthias Felleisen. On the expressive power of programming languages. In 3rd European
Symposium on Programming (ESOP’90), volume 432 of LNCS, pages 134–151. Springer,
1990.

[54] Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto.
Synchronised hyperedge replacement as a model for service oriented computing. In
Formal Methods for Components and Objects, pages 22–43. Springer, 2006.

[55] José Luis Fiadeiro. Categories for Software Engineering. Springer, 2004.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of reusable object-oriented software. Addison-Wesley, 1995.

[57] David Garlan. Software architecture: a travelogue. In Proceedings of the on Future of
Software Engineering, pages 29–39. ACM, 2014.

[58] David Garlan, Robert Monroe, and David Wile. Acme: An architecture description
interchange language. In Proceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’97, pages 159–173. IBM Press, 1997.

[59] David Garlan and Mary Shaw. An introduction to software architecture. In Advances
in Software Engineering and Knowledge Engineering, pages 1–39. World Scientific
Publishing Company, 1993.

[60] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architectures
for distributed systems. In Proceedings of the first workshop on Self-healing systems,
pages 33–38. ACM, 2002.

[61] Daniele Gorla. Towards a unified approach to encodability and separation results for
process calculi. Information and Computation, 208(9):1031–1053, 2010.

[62] Gregor Gößler and Joseph Sifakis. Priority systems. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal Methods for
Components and Objects, Second International Symposium, FMCO 2003, Leiden, The
Netherlands, November 4-7, 2003, Revised Lectures, volume 3188 of Lecture Notes in
Computer Science, pages 314–329. Springer, 2003.

[63] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving interactions.
SIGSOFT Softw. Eng. Notes, 25(6):110–119, 2000.

[64] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Modeling software architectures
and styles with graph grammars and constraint solving. In Patrick Donohoe, editor,
Software Architecture, volume 12 of IFIP, pages 127–143. Springer, 1999.

141

Bibliography

[65] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall, 1985.

[66] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley, 2003.

[67] Paola Inverardi and Simone Scriboni. Connectors synthesis for deadlock-free component-
based architectures. In ASE ’01, pages 174–181. IEEE Computer Society, 2001.

[68] ISO/IEC/IEEE 42010. Systems and software engineering — Architecture description,
2011.

[69] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

[70] Sung-Shik T.Q. Jongmans, Christian Krause, and Farhad Arbab. Encoding context-
sensitivity in reo into non-context-sensitive semantic models. In Wolfgang De Meuter
and Gruia-Catalin Roman, editors, Coordination Models and Languages, volume 6721
of LNCS, pages 31–48. Springer, 2011.

[71] Tomas Kalibera and Petr Tuma. Distributed component system based on architecture
description: The Sofa experience. In On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, and ODBASE, pages 981–994. Springer, 2002.

[72] Uwe Keller. Some remarks on the definability of transitive closure in first-order logic
and Datalog. Internal report, Digital Enterprise Research Institute (DERI), University
of Innsbruck, 2004.

[73] Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connector rewriting with
high-level replacement systems. Electronic Notes in Theoretical Computer Science,
194(4):77–92, 2008.

[74] Jeff Kramer. Configuration programming — A framework for the development of
distributable systems. In CompEuro’90. Proceedings of the 1990 IEEE International
Conference on Computer Systems and Software Engineering, pages 374–384. IEEE,
1990.

[75] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Modeling
dynamic reconfigurations in Reo using high-level replacement systems. Sci. of Comp.
Prog., 76(1):23–36, 2011.

[76] Daniel Le Métayer. Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7):521–533, 1998.

[77] Zheng Li, Yan Jin, and Jun Han. A runtime monitoring and validation framework for
web service interactions. In ASWEC, pages 70–79, 2006.

[78] Leonid Libkin. Elements of finite model theory. Springer, 2013.

142

Bibliography

[79] Isaac Liu, Jan Reineke, and Edward A. Lee. A PRET architecture supporting concurrent
programs with composable timing properties. In Conference Record of the 44th Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), pages 2111–2115, 2010.

[80] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph Sifakis. Architecture
diagrams: A graphical language for architecture style specification. In Massimo
Bartoletti, Ludovic Henrio, Sophia Knight, and Hugo Torres Vieira, editors, Proceedings
9th Interaction and Concurrency Experience, Heraklion, Greece, 8-9 June 2016, volume
223 of Electronic Proceedings in Theoretical Computer Science, pages 83–97. Open
Publishing Association, 2016.

[81] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

[82] Robin Milner. Communication and Concurrency. Prentice Hall International Series in
Computer Science. Prentice Hall, 1989.

[83] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Automata, Languages and Programming, volume 623 of Lecture Notes in Computer
Science, pages 685–695. Springer, 1992.

[84] MohammadReza Mousavi, Iain Phillips, Michel A. Reniers, and Irek Ulidowski. Se-
mantics and expressiveness of ordered SOS. Information and Computation, 207:85–119,
2009.

[85] MohammadReza Mousavi, Michel A. Reniers, and Jan Friso Groote. SOS formats and
meta-theory: 20 years after. Theoretical Computer Science, 373(3):238–272, 2007.

[86] Mert Ozkaya and Christos Kloukinas. Design-by-contract for reusable components
and realizable architectures. In Proceedings of the 17th international ACM Sigsoft
symposium on Component-based software engineering, pages 129–138. ACM, 2014.

[87] George A Papadopoulos and Farhad Arbab. Coordination models and languages.
Advances in computers, 46:329–400, 1998.

[88] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[89] Malte Plath and Mark Ryan. Feature integration using a feature construct. Science of
Computer Programming, 41(1):53–84, 2001.

[90] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

[91] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize.
Annual IEEE Symposium on Foundations of Computer Science, 2:746–757, 1990.

143

Bibliography

[92] Arnab Ray and Rance Cleaveland. Architectural interaction diagrams: AIDs for system
modeling. In ICSE’03: Proceedings of the 25th International Conference on Software
Engineering, pages 396–406. IEEE Computer Society, 2003.

[93] Joseph Sifakis. A framework for component-based construction. In 3rd IEEE Int. Conf.
on Software Engineering and Formal Methods (SEFM05), pages 293–300, 2005.

[94] Joseph Sifakis. Rigorous system design. Foundations and Trends in Electronic Design
Automation, 6(4):293–362, 2012.

[95] Pawel Sobocinski. A non-interleaving process calculus for multi-party synchronisation.
In ICE, volume 12 of EPTCS, pages 87–98, 2009.

[96] Bridget Spitznagel and David Garlan. A compositional formalization of connector
wrappers. In ICSE, pages 374–384. IEEE Computer Society, 2003.

[97] Eirik Tryggeseth, Bjørn Gulla, and Reidar Conradi. Modelling systems with variability
using the proteus configuration language. In Software Configuration Management,
pages 216–240. Springer, 1995.

[98] Rob J. van Glabbeek. Musings on encodings and expressiveness. 89:81–98, 2012.

[99] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff Magee. The Koala
component model for consumer electronics software. Computer, 33(3):78–85, 2000.

[100] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Precise
Modeling With UML. Addison-Wesley, 1998.

[101] Peter Wegner. Coordination as constrained interaction (extended abstract). In Paolo
Ciancarini and Chris Hankin, editors, Coordination Languages and Models, volume
1061 of Lecture Notes in Computer Science, pages 28–33. Springer, 1996.

[102] Da-Qian Zhang, Kang Zhang, and Jiannong Cao. A context-sensitive graph grammar
formalism for the specification of visual languages. The Computer Journal, 44(3):186–
200, 2001.

144

Eduard Baranov

Personal Data
Address: EPFL IC IINFCOM RISD INJ 337 (Batiment INJ) Station 14 CH-1015 Lausanne
Phone: +41 21 69 32580
email: eduard.baranov@epfl.ch

Education
2012-present École polytechnique fédérale de Lausanne

PhD student in Computer Science

Rigorous System Design laboratory under supervision of Prof. Joseph Sifakis

2007-2012 Saint Petersburg State University
Mathematics & Mechanics Faculty

Specialist degree in Software Engineering: graduation with honours

Professional Experience
2007-2012 Lanit-Tercom Software developer (part-time 50%)

Participated in different projects including

• development of a database migration tool

• software assessment of a huge banking system

• creation of a specific Silverlight control
Used technologies: C#, F#, MSSQL Server, Oracle, C++, Silverlight

Projects
• PhD thesis: A semantic framework for architecture modelling.

My work is focused on the architecture modelling. Architectures organise coordination between components in order
to build complex systems and to make them manageable. An architecture is considered as an operator that, applied
to a set of components, builds a composite component meeting a characteristic property. The underlying concepts
of components and their interactions originate from the BIP Framework. I studied preservation of properties by
composition of architectures, and configuration logics that allow to specify architecture styles representing families
of architectures satisfying the same property.

• Specialist diploma: Automation of QA in the project of DB migration from SQL Server into Oracle.
The goal was to test automatically that migrated database contains the same data as initial one and has the same
functionality. The data comparison was made by checking hashes of each table, while the functionality was tested
by simultaneous execution of pre-generated traces on both databases comparing the results after each trace step.

Main Publications
• Anastasia Mavridou, Eduard Baranov, Simon Bliudze and Joseph Sifakis. Configuration Logics:
Modelling Architecture Styles. In Journal of Logical and Algebraic Methods in Programming, 2016.

• Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, Joseph Sifakis. A General Frame-
work for Architecture Composability. In Formal Aspects of Computing, pp. 125, 2015

• Eduard Baranov, Simon Bliudze. Offer semantics: Achieving compositionality, flattening and full
expressiveness for the glue operators in BIP. In Science of Computer Programming, vol. 109, pp. 235, 2015

Skills
C#, F#, Java, OCaml, Haskell, C
Good knowledge of algorithms, data structures and design patterns

Languages
English: Fluent, IELTS 7.5 in 2012
French: Low Intermediate, B1
Russian: Mothertongue

Awards
Diplomas of Russian Mathematical Olympiad in 2005, 2006, 2007

Summer Schools
2014 Summer School Marktoberdorf

2012, 2013 Nano-Tera/Artist International Summer School
———————————————————————–

