Mechanism of basal-plane antiferromagnetism in the spin-orbit driven iridate Ba2IrO4

By ab initio many-body quantum chemistry calculations, we determine the strength of the symmetric anisotropy in the 5d5 j ~ 1/2 layered material Ba2IrO4. While the calculated anisotropic couplings come out in the range of a few meV, orders of magnitude stronger than in analogous 3d transition-metal compounds, the Heisenberg superexchange still defines the largest energy scale. The ab initio results reveal that individual layers of Ba2IrO4 provide a close realization of the quantum spin-1/2 Heisenberg-compass model on the square lattice. We show that the experimentally observed basal-plane antiferromagnetism can be accounted for by including additional interlayer interactions and the associated order-by-disorder quantum-mechanical effects, in analogy to undoped layered cuprates.

Published in:
Phys. Rev. X, 4, 021051

 Record created 2016-12-20, last modified 2018-10-01

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)