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Abstract

Phonological classes define articulatory-free and articulatory-bound phone attributes. Deep neural
network is used to estimate the probability of phonological classes from the speech signal. In theory, a
unique combination of phone attributes form a phoneme identity. Probabilistic inference of phonolog-
ical classes thus enables estimation of their compositional phoneme probabilities. A novel information
theoretic framework is devised to quantify the information conveyed by each phone attribute, and assess
the speech production quality for perception of phonemes. As a use case, we hypothesize that disruption
in speech production leads to information loss in phone attributes, and thus confusion in phoneme
identification. We quantify the amount of information loss due to dysarthric articulation available in the
TORGO database. A novel information measure is formulated to evaluate the deviation from an ideal

phone attribute production leading us to distinguish healthy production from pathological speech.

Index Terms

Information transmission, Speech production, Speech perception, Motor speech disorders

I. INTRODUCTION

Invariant speech representation is fundamental for speech modeling and classification. In this context,

phonetic and phonological representations are widely regarded as robust representations invariant to
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speaker and acoustic conditions. These representations are also supported by psycho- and neuro- linguistic
studies of speech production and perception. The present paper proposes an information theoretic analysis
of phonetic and phonological representations. We are interested is assessment of speech production quality
and perception. A schematic functional view of production-perception processes is illustrated in Fig. 1.

Speech production is one of the most complex motor coordination processes of human brain. It
involves a networked system of brain areas that each contribute in unique ways [1]. A simplified
psycholinguistic model of speech production [2], [3] typically consists of linguistic, motor planning and
motor programming/execution stages. The linguistic stage is characterized by phonological encoding,
namely the preparation of an abstract speech code. Speech code is an invariant speech representation that
lies in the intersection of the cognitive and motor control processes.

Speech code is greatly debated in motor control, psycholinguistics, neuropsychology and speech
neuroscience. Recent findings suggest that speech code includes articulatory gestures [4]—[7], and auditory
and somatosensory targets [8]. Speech code can be defined at phonetic or phonological levels. In the
present study, we assume that the invariant speech code is defined by composition of phonological classes.
The phonological classes refer to articulatory-free and articulatory-bound phone attributes, and they are
correlated with the auditory and acoustic events [9]. Exploiting phone attributes facilitates development
of our theoretical framework for analysis of speech production and perception. This framework can be
applied for alternative representations.

Speech perception refers to the mapping from sound to the internal linguistic representation. Earlier
studies are conducted in the context of syllable recognition and investigate its relation to the mechanism
of auditory processing. Pioneering work of Harvey Fletcher demonstrated that human recognition acts on
the principle of processing parallels of independent streams enabling partial recognition and merging of
the independent evidences for speech recognition [10], [11]. Although Fletcher established his work for
processing of disjoint frequency ranges (auditory events), the notion of independent processing influenced
later development of speech perception theories regardless of auditory processing [12].

An important perspective to speech perception relies on inverse production processing or phonological
decoding. The decoding process is quite complex and a complete explanation of how humans recognize
syllables and phonemes remains elusive [12]. In this context, the motor theory is probably one of the oldest
that has been re-investigated and revised extensively [12]-[14]. According to the motor theory of speech
perception, the objects of speech perception are articulatory rather than acoustic or auditory events [12],
[15]. Although this theory has been partially controversial, several experimental evidence support the idea

that perception operates on the principle of detecting the underlying structures or articulatory gestures [12],
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Fig. 1. A schematic functional view of speech production and perception.
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[14], [16]. The vocal tract actions (e.g., the closing and opening of the lips during the production of /pa/)
structure the acoustic signal. As noted in [14], “speakers produce phonetic frames as individual or as
coupled gestures of the vocal tract. The gestures cause information in acoustic speech signals for the
segmental structure of utterances, and that experienced listeners are sensitive to that information”.

The psycholinguistic theories assert that a unique binary mapping exists between phonemes and
phonological classes, and speech can be seen as the molecules of alphabetic atoms [14], [17]. However,
accessing the compositional atoms from the speech signal is an open problem. In practice, speech
manifests itself in continuous forms that may be attributed to multiple classes. A great challenge in
this context is pertained to speech coarticulation and supra-segmental variations [16].

The present study builds on the success of deep neural network (DNN) in estimation of class-conditional
posterior probabilities. We apply DNNs for probabilistic characterization of the phonological classes [18],
[19]. We advance the linguistic binary association of the phoneme and phonological classes by considering
the dynamic probabilistic associations adapting to the production condition. We define phonological
compositions as the set of phonological classes forming the phoneme identities.

We consider the linguistic message being present in form of phoneme transcription. The production
machinery is then regarded as a channel that transmit the phoneme information to phonological classes
or phone attributes. Accordingly, the phoneme perception operates on the principle of phonological class
inference and composition for phoneme identification. DNN estimates the phonological class probabilities
from the speech signal. In an ideal speech production condition, high probabilities are estimated whereas
the disruption in production results in small probabilities. We propose an information theoretic approach
to quantify the information content of phone attributes.

As a case study, we exploit the proposed method in the context of production assessment in speech



pathology. This enables us to contrast control/healthy and pathological speech to reveal the degree of
information loss apparent at the level of individual phone attributes. Considering phonemes as composition
of phone attributes, the most informative attributes for phoneme identification are determined. Moreover,
the phonemes mainly affected by production impairment are identified and their information loss is
quantified. We measure the degree of impairment or deviation from an ideal production that enables us
to distinguish healthy speech from impaired production.

The rest of the paper is organized as follows. The framework for estimation of phonological class
probabilities is outlined in Section II. We explain the information theoretic method for assessment of
speech production in terms of phone attribute information in Section III. The measures of information
loss are formulated in Section IV. The numerical results are evaluated in Section V, and finally the

concluding remarks are drawn in Section VI.

II. PHONOLOGICAL POSTERIORS

We use DNN for estimation of class-conditional posterior probabilities [20]. In this framework, K
independent DNNs take as input acoustic features derived from short frames of speech signal, and
estimate the class-conditional posterior probability of K phonological classes given the input acoustic
features. The DNN output probabilities are briefly dubbed phonological posteriors. Each component of
the phonological posterior represents the probability of a phone attribute in the speech signal. These
attributes describe speech segments phonemes using binary labels; for example, phonological classes of
[consonantal], [anterior], [voice] and [nasal] compose phoneme /M/ [20].

Linguistics define two traditional speech structures: (i) cognitive structures represented by (discrete)
canonical representation, and (ii) surface structures exhibited by (continuous) observed representation
patterns. The phonological posteriors are associated with the surface structures. The phonological poste-
riors yield a parametric speech representation, and the trajectories of the articulatory-bound phonological
posteriors correspond to the distal representation of the gestures in the gestural model of speech production
(and perception). Hence, we hypothesize that they represent the probabilistic relation of the canonical
phonetic and phonological classes to a distal representation of the (co-articulated) speech code.

The present study exploits phonological posteriors as essential representations to quantify the informa-
tion content of produced phone attributes and the information loss due to impaired speech production.
To that end, we use information theory for transmission analysis of the production channel as explained

in the following Section III.



III. INFORMATION TRANSMISSION ANALYSIS

In this section, we formulate an information theoretic analysis of speech production and perception.
The proposed approach builds on the seminal work of Miller and Nicely on analysis of perceptual
confusion and information loss in noisy communication systems [21]. The original theory of information
transmission analysis (ITA) is developed for quantification of information conveyed by binary phone
attributes, such as voicing, place and manner of articulation [21].

In practice, however, co-articulation and supra-segmental variations such as stress affect the binary
association between phoneme and phonological classes [22], [23]. Therefore, the present paper adopts
the probabilistic estimation of phone attributes for ITA. DNN provides the phonological posteriors that

quantifies the precision of phonetic attributes detected from the speech signal.

A. Production of Phone Attributes

The following production scenario is considered. A phonetic transcription is provided, which is encoded
through the speech production process in terms of phone attributes as depicted in Fig. 2. A listener (judging

the speech production quality) may detect/infer phone attributes towards recognition of the speech signal.

Phone.m.e Production Channel |—> Phone
Transcription Attributes

Fig. 2. Phone attribute encoding: Speech production channel transmits the source phoneme information through production of

the rarget phone attributes.

It may be noted that the source information can be presented in a larger granularity such as syllables
or words, and the target of speech production can be considered different than phone attributes such as
neuromuscular commands. The scenario hypothesized here (Fig. 2) facilitates derivation of our analysis.
Nevertheless, the theory and algorithm remain applicable for different granularity of source and target
units.

We exploit information theory to quantify the information content of phone attributes to convey

phoneme transcription.

B. ITA of Binary Phonetic-Phonological Association

The analysis is based on the mathematical theory developed by Claude Shannon [24] to calculate the

information quantity transmitted over a noisy channel. This theory is built on the fundamental measure



of information known as the Shannon information index or entropy. Shannon proposed this measure to
quantify the information content or entropy (uncertainty) in strings of text. The idea was that the more
different letters there are, and the more equal their proportional abundances in the string of interest, the
more difficult it is to correctly predict which letter will be the next one in the string.

To apply ITA on binary phonetic-phonological association, we define random variables corresponding
to phoneme categories and phonological classes.

The random variable denoting phoneme categories is an L dimensional random variable S with
categorical distribution (ps,,...,ps,) Where ps, denotes the probability of phoneme s;. This random
variable corresponds to the source input of the speech production channel (c.f. Fig. 2).

At the output, K phonological classes are the targets constituting the set of Q@ = {q1,...,qx}
where every phonological class g is a discrete random variable taking binary values {0,1}, with
probability p(q; = 1) = pg,. The speech production channel is characterized by the joint probabilities
{r(q1,9),...,plax, )}

The goal of applying ITA on binary phonetic-phonological association is to quantify the information
content of every individual phone attribute in phoneme transcription. This procedure relies on two
quantities as explained below.

1. Source information: The quantity H(S) measures the amount of information made available to the
speech production channel by the phonetic transcription .S. It is calculated based on the definition of

entropy for categorical random variables expressed as
L
Hsource = H(S) = Z H(Sl), where (])
=1

H(s;) = —ps, logs ps, - (2)

Speech production transmits this information through phone attributes, and accordingly, the perception
relies on inference of the compositional phonological classes for phoneme identification (more details in
Section IV).

2. Transmitted information: The quantity of information transmitted by the production channel amounts
to the mutual information between phonological classes and phonetic transcription.

In former psycholinguistic studies, the phone attributes are defined as binary variables. Hence, the

information of an individual phonological class gz, Vg € @ is calculated as

H(Qk) = —DPqs 10g2 Pq. — (1 - ka) 10g2(1 - ka) (3)



Algorithm 1 ITA of Phonetic-Phonological Mapping
Input: Table of binary phonetic-phonological association. Phonetic transcription of the data.

Output: Information content of phonetic transcription and phonological classes.

1) Construct matrix M 1, such that every component My,; is O when the phonetic attribute k is missing in phoneme
[, and 1, otherwise.

2) Count the number of times each phoneme is present at the phonetic transcription to form vector N =
Mg, - ng] T

3) p(qx, s1): Convert the frequency matrix F' = M N, to joint probability matrix through normalization P = F/C.
4) p(g): Obtain phonological probabilities via summation of columns of P (marginalization over phonemes).

4) p(s;): Obtain phoneme probabilities via summation of rows of P (marginalization over phonological classes).

Return H(S) using (1)-(2) and I(gy, S) using (3)-(5).

Given the phoneme transcription, the information of phonological classes is obtained as

L

H(qr|S) == par, s1) 102 p(grls1)
=1
L

s S
— =3 plar, s1) logy p(ak, 51)
pet p(st)

The mutual information quantifies the amount of uncertainty resolved by a phone attribute, thus
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calculated as
It]:ansm—binary = I(Qk, S) = H(qk) - H(Qk’S) (5)

The quantity I(gx,S) measures the amount of information made available by the speech production
channel to the listener through phonological class gy.

To implement the binary ITA, the table of phonetic-phonological mapping and the phonetic transcription
of the data are required. The probability of every phone attribute being present can be obtained by
frequency approach based on counting and relative ratios. The summary of this procedure is outlined in
Algorithm 1.

The limitation of the binary association is that it requires detection of the attributes by human subjects,
and measurement of the degree an attribute is present is not feasible [21], [25]. In contrast to the binary
mapping, in practice a complex function governs the phonetic-phonological association that motivates the
use of advanced computational methods for probabilistic characterization. The attributes can be produced
with some precision, where high precision leads to higher amount of information content. The low-

precision indicates that the attribute may contribute less in resolving the confusion between multiple



phoneme identities. In the next Section III-C, we will see how application of ITA on probabilistic
association of phonetic-phonological classes obtained from DNN enables a more practical information

transmission analysis.

C. ITA of Probabilistic Phonetic-Phonological Association

The probabilistic association is obtained from DNN phonological posteriors. Application of DNNs
enables a computerized method of quantifying the accuracy of phone attribute production, that can be
further employed in assessment of speech production quality.

We define z; as the random variable which can take values of the set of phonological classes () =

{q1,--.,qx}; t indexes the time frame. The probabilities of all phonological classes {p(z; = q1|xt),...,p(z =

gr|ze)} are estimated by K DNNs [20] each specifically trained to detect one of the classes from the
input acoustic speech feature x;.

The amount of information transmitted by the speech production channel is estimated as the multivariate
mutual information [26] I(S, g, z¢) between the phonetic transcript, the binary associated phonological

class and the probabilistic presence of all phonological classes as follows
It]fansm -posteriors :I(Sa dk, Zt)a Vk € {1, e 7K}
_H(Sa Qk,Zt) _H(Sv qk) _H(qkazt) (6)

— H(S,z)+ H(qr) + H(S) + H(2)

where
L
H(S, qr2t) = — > p(qk, 51, 2t) 108o p(ak, 1, 2t) (6a)
=1
L
H(S,qr) = =Y pqr, s1) logs par, 51) (6b)
=1
H(qy, zt) = —p(qr, zt) loga p(g, 2t) (6¢)
L
H(S, ) Z p(s1, zt) 1oga p(si, 1) (6d)
H(z) = —p(zt) logy p(zt)dz (6e)

To implement this procedure, the DNN phonological posteriors are used as follows. If the acoustic
frame x; is the result of the production of phone attribute g, we assume that p(x;|z¢, qx) = p(ze|qr);
the intuition is that the physical process leading to the production of z; is guided by g (the linguistic

code) and the variable z; is an abstract notion to exploit probabilistic association of the DNN to all



phonological classes. Hence, given the physical state of gy, the observation x; is independent of z; or
by Bayes theorem p(z¢|qk, zt) = p(z¢|qx). Similarly, if we consider the production of z; associated to
the phoneme s;, the DNN output phonological posteriors yields p(z|s;). Thereby, the joint probabilities
required to calculate (6) are estimated through conditional probabilities as p(qx, z:) = p(z¢|qx)p(qx) and
p(s1, 2¢) = p(z¢|s;)p(s;) where p(qx) and p(s;) are known from phonetic transcription, and p(z¢|q;) and
p(z¢]s;) are directly available from the phonological posteriors.

In general, the multivariate mutual information for three variables can be positive or negative [26].
The positive value indicates a redundancy. In our analysis of the transmitted information, I(.S, gk, z;) is
expected to be positive for all phonological classes. This expectation is due to the redundancy observed
at the level of auditory and cortical processes involved in speech production and perception [27], [28].

The redundancy is further analyzed in the following Section III-D.

D. Redundancy in Production of Phonemes

A composition of multiple phonological classes form a phoneme identity. To quantify the amount
of redundancy pertained to the phonological compositions, we consider a phoneme s; composed of K;
phonological classes. The compositional redundancy can then be obtained as the difference between

constituting phonological information and the phoneme information expressed as
K;
l k
Rphoneme = Z Tiransm- — H(Sl) (7)
k=1

k
where Z7, ..

defined in (5) or (6) respectively; H(s;) is defined in (2).

may be calculated from either binary or probabilistic phonetic-phonological association

The production channel capacity indicates the maximum amount of information that can be transmitted
if no error occurs. This ideal situation corresponds to the binary phonetic-phonological association. In

this case, H (g;|S) = 0 (4), and the capacity amounts to the overall transmitted information Ziyansm-binary =

K k k
Zkzl Itransm-binary where Itransm—binary

has the maximum value H (gy).

Considering the binary association, the theoretical redundancy is obtained, whereas exploiting the
probabilistic association yields an actual redundancy present for perception of phonemes as a composition
of phone attributes. We evaluate this redundancy in Section V, and study the implications for perceptual

loss of phoneme information. In the following Section IV, the information loss objective measures are

derived.
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I'V. INFORMATION LOSS

The proposed information theoretic analysis of probabilistic phonetic-phonological association enables
us to quantify the amount of information conveyed by an individual phone attribute. As a use case,
we calculate the information for healthy and impaired speech production, and measure the amount of
phonological and phonetic information loss due to production disruption. This idea leads to formulation
of a novel compositional information index to assess the production fluency relying on probabilistic

estimation of phone attributes.

A. Phonological Information Loss

We compare two information quantities obtained from healthy speech production and impaired pro-
duction. The difference measures to what extent each of the phone attributes has been disrupted. To state

in formally, we define the phonological information loss as

k __|7k-Healthy k-pathology k
‘Cphonology - ‘Itransm»posteriors - Ztransm»posteriors - [’binary| (8)
where |.| stands for the absolute value. To obtain the phonological information loss E’;honology, the

difference in posterior information content is normalized by the binary difference obtained as

k __ |7k-Healthy k-pathology
Ebinary - ’Itransm—binary - Itransm—binary| (9)

If healthy and pathological speakers read different texts, this quantity is non-zero, so the effect of binary
information difference between healthy and pathological speech is factored out in (8). If the phonetic
transcriptions are the same, .c’ginary =0.

Applying a phoneme perception method operating on the principle of independent processing of

compositional phonological classes provides a measure of the production influency that a listener may

perceive. This idea is described in the following section IV-B.

B. Information Loss in Phoneme Perception

Initial works to understand human perception are conducted on recognition of syllables. A principle
proposal of the studies pioneered by Harvey Fletcher is that humans appear to perform partial recognition
of phonetic units in different frequency ranges independently [10], [11], [29], [30].

Recent studies by Nima Megarani and colleagues [9] suggest that phone attributes contain disjoint
frequency components. The evidence is demonstrated as the weighted average spectro-temporal receptive

fields (STRF) of the neural activities clustered on the phone attributes (cf. Fig. 2 of [9]). Hence, building
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on Fletcher’s proposal, we assume that phonetic perception relies on independent processing of multiple

streams of phone attribute inference as depicted in Fig. 3.

Phoneme
Posteriors

Phonological

. Composition
Posteriors

Fig. 3. Phoneme decoding: Phoneme perception operates on the basis of merging evidences on phone attributes composition.

The goal is to assess speech production quality by drawing inference on the underlying phonemes

using phonological posteriors. We define the I

phonological composition for phoneme s; as the set of
K; phonological classes, thus gs, = {q1,...,qx,}. The probability of erroneous phoneme perception
is obtained as multiplication of the products of errors at individual phonological classes. Hence, the

compositional probability of phoneme perception is expressed as

p(gs;s2t) = 1= (1 —=plar, 2)) - - - (1 = plaxk,, 2t)) (10)

To obtain py, , 2 is marginalized assuming a uniform probability for the available T, frames aligned
(using phonetic transcription) as the phoneme s; via

T
1 1
Pg., = TfZP(Sl,Zt) Vi € {1, . ,L} (11)

Stot=1

That amounts to the phoneme uncertainty calculated as

/Hi)osteriors = — Py, lOgZ Py, Vi e {17 cey L} (12)

The quantity H[l)osteriors determines the uncertainty pertained to perception of an individual phoneme by
processing the inference of the phone attributes obtained in phonological posteriors.

If speech production is performed fluently, the phonological posteriors get close to their ideal binary
values [31]. Due to a unique phonological composition defined for every phoneme, sharp posteriors lead

to a minor uncertainty in phoneme perception. On the other hand, high uncertainty at the level of phone

attributes (small posterior probabilities) leads to a great uncertainty in phoneme identification'.

"'We admit the fact that human perception may not operate at the level of phoneme classification or phonological composition.
Hence, this approach is not a computerized version of quantifying human perception. Rather, it takes an initial step towards
formalizing the speech perception as the process of decoding the speech code that corresponds to the phonological compositions

in the present work. Nevertheless, alternative codes can be considered for information transmission analysis.
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As a use case on pathological speech assessment, we are now able to quantify the level of information
loss in phoneme perception based on the degradation in phonological posteriors. Therefore, we can find
out which phonemes are affected the most due to impaired speech production.

To that end, we calculate H'

posteriors (12) and measure its distance to the information obtained from the

binary (ideal) mapping. The phoneme information loss is thus defined as

ct = | — Hbinary| (13)

phoneme posteriors

where ”H,l)inary = H(s;) as obtained from (2) using the phoneme probabilities estimated in Algorithm 1.
The phonemes with larger distances from the binary canonical information are the ones whose perception
are most distorted.

In the next section, we exploit the uncertainty pertained to phonemes for individual speakers. We
propose a metric to assess production fluency with respect to an ideal speech production that can

distinguish apart healthy and pathological speech.

C. Compositional Information Index

We assume that a speaker has produced Ty, speech frames, resulting in {p(gsl,zt)}tTl"i composi-
tional phoneme probabilities corresponding to {gs,}lL: , obtained from (10). Hence, the speaker-specific

probabilities are estimated through marginalization over z; assuming a uniform probability as

1 npk
Py = 7 > pl9si21) (14)
Pk ¢=1

We define a compositional information (CI) index to assess perception of the production fluency

expressed as

L spk spk
_ >_1=1 Pg., 1082 g,
spk

Cl =
SF pP logy pif

15)

where pZ‘l)k indicates the phoneme probability for a speaker obtained by the frequency approach based on
counting the phonemes in the speaker’s phonetic transcription.

The CI index can be used to determine the degree of fluency in speech production exhibited in
probabilistic phone attribute characterization with respect to the binary mapping in an ideal production
(probabilities equal to 0 or 1). This score is expected to be small as the speech production is disrupted.
We will see through the numerical evaluation in Section V that CI index enables separation of healthy

and pathological speech with a large margin.



13

V. NUMERICAL EVALUATION

Numerical studies are conducted to demonstrate the potential of the proposed information theoretic
framework to assess the quality of speech production based on the notion of information loss exploiting

probabilistic characterization of the phone attributes.

A. Experimental Setup

1) Data: We use the WSJ database [32] to train the DNNs for phonological analysis. The training
set was the 90% subset of the WSJ si_tr_s_284 set, and the remaining 10% subset was used for cross-
validation. The phoneme set comprises 40 phonemes (including “sil”, representing silence) defined by
the CMU pronunciation dictionary.

As evaluation data, we used the TORGO database of dysarthric speech that consists of recordings from
speakers with either cerebral palsy or amyotrophic lateral sclerosis [33], along with Frenchay Dysarthria
Assessment (FDA) [34] done by a speech-language pathologist. Original data include 3 female and 5 male
pathological speakers, and 3 female and 4 male control (healthy) speakers. The recordings of dysarthric
speech have been manually checked, and those with significant clipping waveform distortion have been
removed from further analysis.

The Frenchay assessment includes 28 relevant perceptual dimensions of speech, namely related to the

following dimensions:

o Laryngeal: noting weather the patient has clear phonation with the vocal folds, without huskiness.
o Tongue: noting accurate tongue movements (positions) with correct articulation.

« Palate: noting nasal resonance in spontaneous conversation, without hypernasality or nasal emission.
o Lips: observing the movements of lips in conversation, noting correct shape of lips.

o Respiration: noting running out of breath when speaking, and breathy voice.

2) Training: We use our open-source phonological vocoding platform [20] to perform phonological
analysis. Briefly, the platform is based on cascaded speech analysis and synthesis that works internally
with the phonological speech representation. In the phonological analysis part, phonological posteriors
are extracted from the speech signal by DNNs. We used the binary classification of the eSPE set [19],
and thus each DNN determines the probability of a particular phonological class.

To train the DNNs for phonological analysis, we first trained a phoneme-based automatic speech
recognition system using Mel frequency cepstral coefficients (MFCC) as acoustic features. The three-

state, cross-word triphone models were trained with the HMM-based speech synthesis system (HTS)
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Fig. 4. Ranking of information content in phone attributes: The information quantities (bits) for probabilistic and binary phonetic-
phonological associations are calculated from It’r“ansm_posteﬁors (6) and Lfansm_bmry (5) respectively. We can see that the probabilistic
estimation of information quantity shows a variance greater than the theoretical binary information. The top 4 most important

phone attributes are identified as [continuant], [vowel], [labial], and [voiced].

variant [35] of the Hidden Markov Model Toolkit (HTK) on the WSJ training and cross-validation sets.
The acoustic models were used to get boundaries of the phoneme labels, which were mapped to the eSPE
phonological classes. In total, 21 DNNs were trained as phonological analyzers using the short segment
(frame) alignment with two output labels indicating whether the phonological class exists for the aligned
phoneme or not. In other words, the two DNN outputs correspond to the target class vs. the rest.

Each DNN was trained on the whole training set. The DNNs have an architecture of 351 x 1024 x
1024 x 1024 x 2 neurons, determined empirically based on the authors’ experience. The input vectors
are 39 order MFCC features with the temporal context of 9 successive frames. The parameters were
initialized using deep belief network pre-training following the single-step contrastive divergence (CD-1)
procedure of [36]. The DNNs with the softmax output function were then trained using a mini-batch based
stochastic gradient descent algorithm with the cross-entropy cost function of the KALDI toolkit [37].
The DNN outputs for individual phonological classes determine the phonological posterior probabilities.

Detection accuracies of the eSPE phonological classes are very high (cf. Table III of [38]).
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3) Phonetic Alignment: Evaluation data were aligned using the HTK tools, with the WSJ HMMs and
the CMU dictionary [39]. Overall 6278 utterances were successfully processed, with 4374 recordings

from the control speakers, and 1904 recordings from the speakers with dysarthria.

B. Ranking of Phonological Information

We calculate the information content of the phone attributes. The information can be quantified using
the binary table of phonetic-phonological mapping as summarized in Algorithm 1. The binary maps
used in this work are taken from Appendix A of [19]. The information content of an individual phone

attribute corresponds to Z*

wansm-binary (3)- Alternatively, continuous phonological posteriors can be exploited

to obtain Z*

transm-posteriors (0)- The resulted mutual information is quantified for each frame. Considering a

long duration of multiple frames, we compute an average of the mutual information.

The results are sorted and demonstrated in Fig. 4 for both healthy and pathological speech production.
Comparing the binary and probabilistic information content indicates that the difference between highly
informative attributes such as [continuant] or [vowel] and less informative attributes such as [glottal]
and [dental] is far greater when their probabilities are inferred from the acoustic speech signal through
phonological posteriors. This observation may indicate that some phone attributes make a higher impact
on structure of the speech signal, and they bear more information in detection of the phoneme identities.

The ranking is different for impaired speech production implying that the information loss may not
be equal for all phone attributes. In other words, speech production impairment may be more visible if

a subset of phonological classes is selected [40].

C. Redundancy of Compositional Information

A phoneme identity is defined by composition of a few underlying phonological classes. We calcu-
late the redundancy as the difference between constituting phonological information and the phoneme
information as expressed in (7).

Fig. 5 shows the ranking of redundancy in production of phonemes. A difference is observed between
two groups of the phonemes characterized by the vowels, and the stops and africates. The results imply
that the latter consonantal group of the phonemes is less robust in the presence of distortion. Comparing
the differences of the healthy controls and the speakers with dysarthria, the robustness to distortion is
similar.

Although, the redundancy analysis suggests that a small subset of phonetic attributes may suffice to

determine the phoneme categories, development of speech production involving redundancy [27], [28]
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Fig. 5. Ranking of redundancy in production of phonemes as a combination of multiple phone attributes (7) for (top) healthy
and (bottom) pathological speech production. Phonological posteriors are used to obtain the results illustrated above. Similar

results are obtained for binary phonetic-phonological association. The phone description is according to [39].

TABLE I
CI index calculated from (15) is listed for each speaker. We can see that the healthy and pathological productions can be

distinguished with a large margin.

Condition ‘ ‘ Healthy ‘ ‘ Pathology

Speaker FCO1 | FC0O2 | FCO3 | MCO1 | MC02 | MCO3 || FO1- | FO3- | M05- | MO1- | M02-
CI (15) 291 247 2.10 8.06 3.89 2.58 025 | 0.21 | 0.51 0.18 0.20

may ensure robustness in adverse acoustic conditions.

D. Information Loss

Information loss is the difference between the information content of a phone attribute when it is
obtained from healthy and pathological production. This quantity is calculated based on the expression
in (8). The healthy and pathological speakers read different texts, thus the effect of different underlying
phonetic transcriptions is normalized. Fig. 6 illustrates the information loss due to speech pathology.

The ranking of the phonological classes corresponds to the Frenchay assessment. The [continuant] and
[vowel] classes correspond to the laryngeal dimension, where clear phonation is necessary to produce

correct vowels, without any significant obstruction in the vocal tract. The [labial] class is associated with
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Fig. 6. Phone attribute information loss due to production impairment calculated based on (8).

the lips dimension and the [nasal] class with the palate dimension. The [coronal] and [anterior] classes
are related to the tongue dimension, where the former is related to the tongue-tip, and the latter to the
tongue-blade.

To quantify the effect of phone attribute information loss on phoneme perception, we apply the method
explained in Section IV-C. The quantity of information loss in phoneme perception is calculated from (13).

The results are illustrated in Fig. 7 for the top 20 phoneme categories affected by speech pathology.

Information Loss

EHIHER M N EYOYAE IY AH L R Y DHNGZH Z S TH UH AA

Fig. 7. Phoneme perception information loss due to production impairment calculated based on (13) and demonstrated for the

top 20 most affected phonemes. The phonemes are described in [39].

This observation suggests that the effect of impaired production in perception of phonemes is not
equally distributed and investigations on a selected category of phonemes may bring practical benefits in
assessment of pathological speech production.

The group of the first three top most affected vowels refers to the high-front and the mid-central

phonemes that might be associated with the Tongue dimension of the Frenchay assessment.

E. Detection of Pathological Speech

Finally, we evaluate the proposed CI index for both cases of healthy and pathological speech. Building

on our observation on ranking of the influence of speech production disorder in phoneme categories, CI
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is calculated for phoneme /EH/ which shows the greatest effect. The results are listed in Table I. We can
see that the scores of pathological speech are small (as expected) and they are distinguished from the
healthy CI by a large margin. In this analysis, we provide a single measure for the whole speech data of
each speaker, and the minimum length of the data sufficient for detection remains to be studied in our

future work.

VI. CONCLUDING REMARKS

An information theoretic analysis of speech production and perception is proposed exploiting proba-
bilistic characterization of the phone attributes using DNNs. The resulted framework quantifies the quality
of speech production and measures the amount of information loss due to production inaccuracy. The
information loss in phone attributes enables us to quantify the measure of information loss in perception
of phonemes defined as a composition of phone attributes. In this context, variations is speech production
can be compared and contrasted.

As a case study, we evaluate the proposed method for assessment of information loss due to production
impairment in speech pathology. A novel compositional information (CI) index is defined as the ratio
of speaker’s production information and its information in ideal production. The CI scores low for
pathological production and enables us to distinguish the cases of speech pathology in the TORGO
database from the control healthy speakers.

The applications of this analysis approach may be far beyond in other domains relying on DNN
posterior probabilities such as speech recognition, speech coding, spoken query detection, as well as
language (pronunciation) learning. This framework makes it possible to find the elements of information
loss and degradation through transmission analysis of application-specific channels. It also paves the way

for quantitative and computerized evaluation of neuro-linguistics and phsyco-linguistics experiments.
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