
Building Efficient Query Engines in a High-Level Language

Amir Shaikhha, École Polytechnique Fédérale de Lausanne
Yannis Klonatos, École Polytechnique Fédérale de Lausanne
Christoph Koch, École Polytechnique Fédérale de Lausanne

Abstraction without regret refers to the vision of using high-level programming languages for systems de-
velopment without experiencing a negative impact on performance. A database system designed according
to this vision offers both increased productivity and high performance, instead of sacrificing the former for
the latter as is the case with existing, monolithic implementations that are hard to maintain and extend.

In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a
query engine written in the high-level programming language Scala. The key technique to regain efficiency
is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the
entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how
generative programming allows to easily implement a wide spectrum of optimizations, such as introducing
data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing
low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions
are essential for dealing with the complexity of the optimization effort, shielding developers from compiler
internals and decoupling individual optimizations from each other.

We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations en-
abled, our architecture significantly outperforms a commercial in-memory database as well as an existing
query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implement-
ing the optimizations, instead of complicated low-level code that is required by existing query compilation
approaches. (c) These optimizations may potentially come at the cost of using more system memory for
improved performance. (d) The compilation overhead is low compared to the overall execution time, thus
making our approach usable in practice for compiling query engines.

1. INTRODUCTION
During the last decade, we have witnessed a shift towards the use of high-level
programming languages for systems development. Examples include the Singular-
ity Operating System [Hunt and Larus 2007], the Spark [Zaharia et al. 2010] and
DryadLINQ [Yu et al. 2008] frameworks for efficient, distributed data processing, the
FiST platform for specifying stackable file systems [Zadok et al. 2006] and GPUs pro-
gramming [Holk et al. 2013]. All these approaches collide with the traditional wisdom
which calls for using low-level languages like C for building high-performance systems.

This shift is necessary as the productivity of developers is severely diminished in the
presence of complicated, monolithic, low-level code bases, making their debugging and
maintenance very costly. High-level programming languages can remedy this situation
in two ways. First, by offering advanced software features (modules, interfaces, object
orientation, etc.), they allow the same functionality to be implemented with signifi-
cantly less code (compared to low-level languages). Second, by providing powerful type
systems and well-defined design patterns, they allow programmers not only to create
abstractions and protect them from leaking but also to quickly define system modules
that are reusable (even in contexts very different from the one these were created for)
and easily composable [Odersky and Zenger 2005]. All these properties can reduce the
number of software errors of the systems and facilitate their verification.

Yet, despite these benefits, database systems are still written using low-level languages.

This work was supported by ERC grant 279804 and NCCR MARVEL of the Swiss National Science Foun-
dation.

LegoBase

Handwritten
Query Plans

Query
Compilers

Existing
DBMSes

DBMS in a High-
Level Language

Performance

P
ro

du
ct

iv
it

y

Fig. 1: Comparison of the performance/productivity trade-off for all approaches pre-
sented in this article.

The reason is that increased productivity comes at a cost: high-level languages in-
crease indirection, which in turn has a pronounced negative impact on performance.
For example, abstraction generally necessitates the need of containers, leading to
costly object creation and destruction operations at runtime. Encapsulation is pro-
vided through object copying rather than object referencing, thus similarly introducing
a number of expensive memory allocations on the critical path. Even primitive types
such as integers are often converted to their object counterparts for use with general-
purposes libraries. As a result of these overheads, the use of high-level languages for
developing high-performance databases seems (deceptively) prohibited.

The abstraction without regret vision [Koch 2013; 2014] argues that it is indeed pos-
sible to use high-level languages for building database systems that allow for both
productivity and high performance, instead of trading off the former for the latter. By
programming databases in a high-level style and still being able to get good perfor-
mance, the time saved can be spent implementing more database features and opti-
mizations. In addition, the language features of high-level languages can grant great
flexibility to developers so that they can easily experiment with various design choices.

In this article, we realize the abstraction without regret vision on the domain of
ad-hoc, analytical query processing. We make the following contributions:

— We present LegoBase, an in-memory query execution engine written in the high-
level programming language, Scala, being the first step towards providing a full
DBMS written in a high-level language.
To avoid the overheads of a high-level language (e.g. complicated memory man-
agement) while maintaining well-defined abstractions, we opt for using generative
programming [Taha and Sheard 2000], a technique that allows for programmatic re-
moval of abstraction overhead through source-to-source compilation. This is a key
benefit as, in contrast to traditional, general-purpose compilers – which need to
perform complicated and sometimes brittle analyses before maybe optimizing pro-
grams – generative programming in Scala takes advantage of the type system of the
language to provide programmers with strong guarantees about the structure of the
generated code. For example, developers can specify optimizations that are applied
during compilation in order to ensure that certain abstractions (e.g. generic data
structures and function calls) are definitely optimized away during compilation.
Generative programming can be used to optimize any piece of Scala code. This al-
lows LegoBase to perform whole-system specialization and compile all components,
data structures and auxiliary functions used inside the query engine to efficient

C code. This design significantly contrasts our approach with existing query com-
pilation approaches (e.g. the one proposed in [Neumann 2011]) for three reasons.
First, a compiler that handles only queries cannot optimize and inline their code
with the remaining code of the database system (which is typically precompiled),
thus missing a number of optimization opportunities. Second, in their purest form,
query compilation approaches simply optimize or inline the code of individual op-
erators in the physical query plan, thus making cross-operator code optimization
inside the query compiler impossible. Finally, existing approaches perform compila-
tion using low-level code generation templates. These essentially come in stringified
form, making their development and automatic type checking very difficult1.

— The LegoBase query engine uses a new optimizing compiler called SC. When per-
forming whole-system compilation, an optimizing compiler effectively needs to spe-
cialize high-level systems code which will naturally employ a hierarchy of compo-
nents and libraries from relatively high to very low level of abstraction. To scale to
such complex code bases, an optimizing compiler must guarantee two properties,
not offered by existing compiler frameworks for applying generative programming.
First, to achieve maximum efficiency, developers must have tight control on the com-
piler’s phases – admitting custom optimization phases and phase orderings. This is
necessary as code transformers with different optimization objectives may have to
be combined in every possible ordering, depending on architectural, data, or query
characteristics. However, existing generative programming frameworks do not of-
fer much control over the compilation process2. This absence of control effectively
forces developers to provision for all possible optimization orderings. This pollutes
the code base of individual optimizations, making some of them dependent on other,
possibly semantically independent, optimizations. In general, the code complexity
grows exponentially with the number of supported transformations3.
Second, existing optimizing compilers expose a large number of low-level, compiler
internals such as nodes of an intermediate representation (IR), dependency infor-
mation encoded in IR nodes, and code generation templates to their users. This
interaction with low-level semantics when coding optimizations, but also the intro-
duction of the IR as an additional level of abstraction, both significantly increase the
difficulty of debugging as developers cannot easily track the relationship between
the source code, the optimization for it – expressed using IR constructs – and the
final, generated code [Jovanović et al. 2014; Sujeeth et al. 2013].
Instead, the SC compiler was designed from the beginning so that it allows devel-
opers to have full control over the optimization process without exporting compiler
internals such as code generation templates. It does so by delivering sufficiently
powerful programming abstractions to developers like those afforded by modern

1For example, templates can be used to convert the code of individual query operators – typically written
today in C/C++ – to optimized LLVM code. In that case, developers must handle a number of low-level
concerns themselves, like register allocation.
2For instance, Lightweight Modular Staging (LMS) [Rompf and Odersky 2010] applies all user-specified,
domain-specific optimizations in a single optimization step. It does so to avoid the well-known phase-ordering
problem in compilers, where applying two (or more) optimizations in an improper order can lead not only
to suboptimal performance but also to programs that are semantically incorrect [Rompf 2012]. We analyze
how the design of the new optimizing compiler, SC, differs from that of LMS in Section 2 of this article.
3As an example, consider the case of a compiler that is to support only two optimizations: 1) data-layout
optimizations (i.e. converting a row layout to a column or PAX-like layout [Ailamaki et al. 2001]) and 2)
data-structure specialization (i.e. adapting the definition of a data structure to the particular context in
which it is used). This means that if the second optimization handles three different types of specialization,
one has to provision for 2× 3 = 6 cases to handle all possible combinations of these optimizations.

SELECT * FROM
(SELECT S.D,
SUM(1-S.B) AS E,
SUM(S.A*(1-S.B)),
SUM(S.A*(1-S.B)*(1+S.C))

FROM S
GROUP BY S.D) T, R

WHERE T.E=R.Z AND R.Q=3

./E=Z

ΓD,aggs

S

σQ=3

R

Fig. 2: Motivating example showing missed optimizations opportunities by existing
query compilers that use template expansion.

high-level programming languages. The SC compiler along with all optimizations
are both written in plain Scala, thus allowing developers to be highly productive
when optimizing all components of the query engine.

— We demonstrate the ease of use of the new SC compiler for optimizing system com-
ponents that differ significantly in structure and granularity of operations. We do
so by providing (i) an in-depth presentation of the optimizations applied to the
LegoBase query engine and (b) a description of the high-level compiler interfaces
that database developers need to interact with when coding optimizations.
We show that the design and interfaces of our optimizing compiler provide a number
of nice properties for the LegoBase optimizations. These are expressed as library
components, providing a clean separation from the base code of LegoBase (e.g. that
of query operators), but also from each other. This is achieved, (as explained later
in more detail in Section 2) by applying them in multiple, distinct optimization
phases. Optimizations are (a) adjustable to the characteristics of workloads and
architectures, (b) configurable, so that they can be turned on and off on demand
and (c) composable, so that they can be easily chained but also so that higher-level
optimizations can be built from lower-level ones.
For each such optimization, we present: (a) the domain-specific conditions that need
to be satisfied in order to apply it (if any) and (b) possible trade-offs (e.g. improved
execution time versus increased memory consumption). Finally, we examine which
categories of database systems can benefit from applying each of our optimizations
by providing a classification of the LegoBase optimizations.

— We perform an experimental evaluation in the domain of analytical query pro-
cessing using the TPC-H benchmark [Transaction Processing Performance Council
1999]. We show how our optimizations can lead to a system that has performance
competitive to that of a standard, commercial in-memory database called DBX (that
does not employ compilation) and the code generated by the query compiler of the
HyPer database [Neumann 2011]. In addition, we illustrate that these performance
improvements do not require significant programming effort as even complicated
optimizations can be coded in LegoBase with only a few hundred lines of code. We
also provide insights on the performance characteristics and trade-offs of individ-
ual optimizations. We do so by comparing major architectural decisions as fairly
as possible, using a shared codebase that only differs by the effect of a single opti-
mization. Finally, we conclude our analysis by demonstrating that our whole-system
compilation approach incurs negligible overhead to query execution.

Motivating Example. To better understand the differences of our work with previous
approaches, consider the SQL query shown in Figure 2. This query first calculates
some aggregations from relation S in the group by operator Γ. Then, it joins these

aggregations with relation R, the tuples of which are filtered by the value of column Q.
The results are then returned to the user. Careful examination of the execution plan
of this query, shown in the same figure, reveals the following three basic optimization
opportunities missed by existing query compilers that use template expansion:

— First, the limited scope of existing approaches usually results in performing the
evaluation of aggregations in precompiled DBMS code. Thus, each aggregation is
evaluated consecutively and, as a result, common sub-expression elimination can-
not be performed in this case (e.g. in the calculation of expressions 1-S.B and
S.A*(1-S.B)). This shows that, if we include the evaluation of all aggregations in
the compiled final code, we can get an additional performance improvement. This
motivates us to extend the scope of compilation in this work.

— Second, template-based approaches may result in unnecessary computation. This is
because operators are not aware of each other. In this example, the generated code
includes two materialization points: (a) at the group by and (b) when materializing
the left side of the join. However, there is no need to materialize the tuples of the
aggregation in two different data structures as the aggregations can be immediately
materialized in the data structure of the join. Such inter-operator optimizations are
hard to express using template-based compilers. By high-level programming, we can
instead easily pattern match on the operators, as we show in Section 3.1.

— Finally, the data structures have to be generic enough for all queries. As such,
they incur significant abstraction overhead, especially when these structures are
accessed millions of times during query evaluation. Current query compilers can-
not optimize the data structures since these belong to the precompiled part of the
DBMS. Our approach eliminates these overheads as it performs whole-program op-
timization and compiles, along with the operators, the data structures employed by
a query. This significantly contrasts our approach with previous work.

The rest of this article is organized as follows. Section 2 presents the overall design
of LegoBase, along with a detailed description of the APIs provided by the new SC op-
timizing compiler. Section 3 gives an in-depth presentation of all supported compiler
optimizations of our system in multiple domains. Section 4 presents our evaluation,
where we experimentally show that our approach using the SC optimizing compiler
can lead to significant benefits compared to (i) a commercial DBMS that does not em-
ploy compilation and (ii) a database system that uses low-level, code-generation tem-
plates during query compilation. We also give insights about the memory footprint,
data loading time and programming effort required when working with the LegoBase
system. Section 5 presents related work in the area of compilation and compares our
approach with existing query compilers and engines. Finally, Section 6 concludes.

2. SYSTEM DESIGN
In this section, we present the design of the LegoBase system. First, we describe the
overall system architecture of our approach (Subsection 2.1). Then, we describe in de-
tail the SC compiler that is the core of our proposal (Subsection 2.2) as well as how we
efficiently convert the entire high-level Scala code of the query engine (not just that
of individual operators) to optimized C code for each incoming query (Subsection 2.3).
While doing so, we give concrete code examples of how (a) physical query operators, (b)
physical query plans, and, (c) compiler interfaces look like in our system.

2.1. Overall System Architecture
LegoBase implements the typical query plan operators found in traditional database
systems, including equi, semi, anti, and outer joins, all on a high level. In addition,

Query
Optimizer Parser

SC
Optimizing
Compiler

C Compiler
(GCC / CLang)

Physical
Query
Plan

Scala
Query

Optimized
C Query

SQL
Query

Scala Query
Engine C Binary

Fig. 3: Overall system architecture. The domain-specific optimizations of LegoBase are
applied during the SC compiler optimization phase.

LegoBase supports both a classical Volcano-style [Graefe 1994] query engine as well
as a push-style query interface [Neumann 2011]4.

The overall system architecture of LegoBase is shown in Figure 3. First, for each
incoming SQL query, we must get a query plan which describes the physical query
operators needed to process this query. For this work, we consider traditional query
optimization (e.g. determining join ordering) as an orthogonal problem and we instead
focus more on experimenting with the different optimizations that can be applied after
traditional query optimization. Thus, to obtain a physical query plan, we pass the
incoming query through any existing query optimizer. For example, for our evaluation,
we choose the query optimizer of a commercial, in-memory database system.

Then, we pass the generated physical plan to LegoBase. Our system, in turn,
parses this plan and instantiates the corresponding Scala implementation of the op-
erators. Figure 4 presents an example of how query plans and operators are written
in LegoBase, respectively. That is, the Scala code example shown in Figure 4a loads
the data, builds a functional tree from operator objects and then starts executing the
query by calling next for the root operator.

It is important to note that operator implementations like the one presented in Fig-
ure 4b are exactly what one would write for a simple query engine that does not involve
compilation at all. However, without further optimizations, this engine cannot match
the performance of existing databases: it consists of generic data structures (e.g. the
one declared in line 4 of Figure 4b) and involves expensive memory allocations on the
critical path5, both properties that can significantly affect performance.

However, in our system, the SC optimizing compiler specializes the code of the entire
query engine on the fly (including the code of individual operators, all data structures
used as well as any required auxiliary functions), and progressively optimizes the code
using our domain-specific optimizations (described in detail in Section 3). For example,
it optimizes away the HashMap abstraction and transforms it to efficient low-level con-
structs (Section 3.2). In addition, SC utilizes the available query-specific information
during compilation. For instance, it will inline the code of all individual operators and,
for the example of Figure 4b, it automatically unrolls the loop of lines 8-11, since the
number of aggregations can be statically determined based on how many aggregations
the input SQL query has. Such fine-grained optimizations have a significant effect
on performance, as they improve branch prediction. Finally, our system generates the

4In a push engine, the meaning of child and parent operators is reversed compared to the usual query plan
terminology: Data flows from the leaves (the ancestors, usually being scan operators) to the root (the final
descendant, which computes the final query results that are returned to the user).
5Note that such memory allocations are not always explicit (i.e. at object definition time through the new key-
word in object-oriented languages like Java and Scala). For instance, in line 15 of Figure 4b, the HashMap
data structure may have to expand (in terms of allocated memory footprint) and be reorganized by the Scala
runtime in order to more efficiently store data for future lookup operations. We talk more about this issue
and its consequences to performance later in this article.

1 def Q6() {
2 val lineitemTable = loadLineitem()
3 val scanOp = new ScanOp(lineitemTable)
4 val startDate = parseDate("1996-01-01")
5 val endDate = parseDate("1997-01-01")
6 val selectOp = new SelectOp(scanOp)
7 (x =>
8 x.L_SHIPDATE >= startDate &&
9 x.L_SHIPDATE < endDate &&
10 x.L_DISCOUNT >= 0.08 &&
11 x.L_DISCOUNT <= 0.1 &&
12 x.L_QUANTITY < 24
13)
14 val aggOp = new AggOp(selectOp)
15 (x => "Total")
16 ((t, agg) => { agg +
17 (t.L_EXTENDEDPRICE * t.L_DISCOUNT)
18 })
19 val printOp = new PrintOp(aggOp)(
20 kv => printf("%.4f\n", kv.aggs(0))
21)
22 printOp.open
23 printOp.next
24 }

(a)

1 class AggOp[B](child:Operator, grp:Record=>B,
2 aggFuncs:(Record,Double)=>Double*)
3 extends Operator {
4 val hm = HashMap[B, Array[Double]]()
5 def open() { parent.open }
6 def process(aggs:Array[Double], t:Record){
7 var i = 0
8 aggFuncs.foreach { aggFun =>
9 aggs(i) = aggFun(tuple, aggs(i))
10 i += 1
11 }
12 }
13 def consume(tuple:Record) {
14 val key = grp(tuple)
15 val aggs = hm.getOrElseUpdate(key,
16 new Array[Double](aggFuncs.size))
17 process(aggs, tuple)
18 }
19 def next() : Record = {
20 hm.foreach { pair => child.consume(
21 new AGGRecord(pair._1, pair._2)
22) }
23 }
24 }

(b)

Fig. 4: Example of a query plan and an operator implementation in LegoBase. The SQL
query used as an input here is actually Query 6 of the TPC-H workload. The operator
implementation presented here uses the Push-style interface [Neumann 2011].

optimized C code6, which is compiled using any existing C compiler (e.g. we use the
CLang7 frontend of LLVM [Lattner and Adve 2004] for compiling the generated C code
in our evaluation). We then return the query results to the user.

2.2. The SC Compiler Framework
LegoBase makes key use of the SC framework, which provides runtime compilation
and code generation facilities for the Scala programming language, as follows.

To begin with, in contrast to low-level compilation frameworks like LLVM – which
express optimizations using a low-level, compiler-internal intermediate representa-
tion (IR) that operates on the level of registers and basic blocks – programmers in
SC specify the result of a program transformation as a high-level, compiler-agnostic
Scala program. SC offers two high-level programming primitives named analyze and
rewrite for this purpose, which are illustrated in Figure 5a and which analyze and
manipulate statements and expressions of the input program, respectively. For exam-
ple, our data-structure specialization (Section 3.2.2) replaces operations on hash maps
with operations on native arrays. By expressing optimizations at a high level, our
approach enables a user-friendly way to describe these domain-specific optimizations
that humans can easily identify, without imposing the need to interact with compiler

6In this work, we choose C as our code-generation language as this is the language traditionally used for
building high-performance database systems. However, SC is not particularly aware of C and can be used to
generate programs in other languages as well (e.g. optimized Scala).
7http://clang.llvm.org/

analysis += statement {
case sym -> code"new MultiMap[_, $v]"
if isRecord(v) => allMaps += sym

}
analysis += rule {
case loop @ code"while($cond) $body" =>
currentWhileLoop = loop

}

rewrite += statement {
case sym -> (code"new MultiMap[_, _]")
if allMaps.contains(sym) =>
createPartitionedArray(sym)

}
rewrite += remove {
case code"($map: MultiMap[Any, Any])
.addBinding($elem, $value)"
if allMaps.contains(map) =>

}
rewrite += rule {
case code"($map: MultiMap[Any, Any])
.addBinding($elem, $value)"
if allMaps.contains(map) =>
/* Code for processing add Binding */

}

(a)

pipeline += OperatorInlining
pipeline += SingletonHashMapToValue
pipeline += ConstantSizeArrayToValue
pipeline += ParamPromDCEAndPartiallyEvaluate
if (settings.partitioning) {
pipeline += PartitioningAndDateIndices
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.hashMapLowering)
pipeline += HashMapLowering

if (settings.stringDictionary)
pipeline += StringDictionary

if (settings.columnStore) {
pipeline += ColumnStore
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.dsCodeMotion) {
pipeline += HashMapHoisting
pipeline += MallocHoisting
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.targetIsC)
pipeline += ScalaToCLowering

// else: handle other languages, e.g. Scala
pipeline += ParamPromDCEAndPartiallyEvaluate

(b)

Fig. 5: (a) The analysis and transformation APIs provided by SC. (b) The SC transfor-
mation pipeline used by LegoBase. Details for the optimizations listed in this pipeline
are presented in Section 3.

internals8. We use this optimization interface to provide database-specific optimiza-
tions as a library and to aggressively optimize our query engine.

Then, to allow for maximum efficiency when specializing all components of the query
engine, developers must be able to easily experiment with different optimizations and
optimization orderings (depending on the characteristics of the input query or the
properties of the underlying architecture). In SC, developers do so by explicitly specify-
ing a transformation pipeline. This is a straightforward task as SC transformers act as
black boxes, which can be plugged in at any stage in the pipeline. For instance, for the
transformation pipeline of LegoBase, shown in Figure 5b, Parameter Promotion, Dead
Code Elimination and Partial Evaluation are all applied at the end of each of the cus-
tom, domain-specific optimizations. Through this transformation pipeline, developers
can easily turn optimizations on and off at demand (e.g. by making their application
dependant on simple runtime or configuration conditions) as well as specifying which
optimizations should be applied only for specific hardware platforms.

Even though it has been advocated in previous work [Rompf et al. 2013] that hav-
ing multiple transformers can cause phase-ordering problems, our experience is that
system developers are empowered by the control they have when coding optimizations
with SC and rise to the challenge of specifying a suitable order of transformations as

8Of course, every compiler needs to represent code through an intermediate representation. The difference
between SC and other optimizing compilers is that the IR of our compiler is completely hidden from devel-
opers: both the input source code and all of its optimizations are written in plain Scala code, which is then
translated to an internal IR through Yin-Yang [Jovanović et al. 2014].

Fig. 6: Source-to-source compilation expressed through the progressive lowering ap-
proach – there different optimizations are applied in different optimization stages,
thus guaranteeing the notion of separation of concerns.

they design their system and its compiler optimizations. As we show in Section 4, with
a relatively small number of transformations we can get a significant performance
improvement in LegoBase.

SC already provides many generic compiler optimizations like function inlining,
common subexpression and dead code elimination, constant propagation, scalar re-
placement, partial evaluation, and code motion. In this work, we extend this set to
include DBMS-specific optimizations (e.g. using the popular columnar layout for data
processing). We describe these optimizations in more detail in Section 3.

2.3. Efficiently Compiling High-Level Query Engines
Database systems comprise many components of significantly different nature and
functionality, thus typically resulting in very big code bases. To efficiently optimize
those, developers must be able to express new optimizations without the having to
modify neither (i) the base code of the system nor (ii) previously developed optimiza-
tions. As discussed previously, compilation techniques based on template expansion do
not scale to the task, as their single-pass approach forces developers to deal with a
number of low-level concerns, making their debugging and development costly.

To this end, the SC compiler framework is built around the principle that, instead
of using template expansion to directly generate low-level code from a high-level pro-
gram in a single macro expansion step, an optimizing compiler should instead pro-
gressively lower the level of abstraction until we reach the lowest possible level
of representation, and only then generating the final, low-level code. This design is
illustrated in Figure 6.

Each level of abstraction and all associated optimizations operating in it can be
seen as independent modules, enforcing the principle of separation of concerns. Higher
levels are generally more declarative, thus allowing for increased productivity, while
lower levels are closer to the underlying architecture, thus making it possible to more
easily perform low-level performance tuning. For example, optimizations such as join
reordering are only feasible in higher abstraction levels (where the operator objects
are still present in the code), while register allocation decisions can only be expressed
in very low abstraction levels. This design provides the nice property that generation
of the final code basically becomes a trivial and naive stringification of the lowest level
representation. Table I provides a brief summary of the benefits of imperative and
declarative languages in general.

Paradigm Advantages
Declarative X Concise programs

X Simple to analyze and verify
X Simple to parallelize

Imperative X Efficient data structures
X Precise control of execution flow
X More predictable performance

Table I: Comparison of declarative and imperative language characteristics. We use
both paradigms for different steps of our progressive lowering compilation approach.

More precisely, in order to reach the abstraction level of C code in LegoBase (the
lowest level representation for the purposes of this article), transformations in SC also
include multiple lowering steps that progressively map Scala constructs to (a set) of
C constructs. Most Scala abstractions (e.g. objects, classes, inheritance) are optimized
away in one of these intermediate stages (for example, hash maps are converted to ar-
rays through the domain-specific optimizations described in more detail in Section 3),
and for the remaining constructs (e.g. loops, variables, arrays) there exists a one-to-one
correspondence between Scala and C. SC already offers such lowering transformers for
an important subset of the Scala programming language. For example, classes are con-
verted to structs, strings to arrays of bytes, etc. In general, composite types are handled
in a recursive way, by first lowering their fields and then wrapping the result in a C
struct. The final result is a struct of only primitive C constructs.

This way of lowering does not require any modifications to the database code or ef-
fort from database developers other than just specifying in SC how and after which
abstraction level custom data types and abstractions should be lowered. More impor-
tantly, such a design allows developers to create new abstractions in one of their opti-
mizations, which can be in turn optimized away in subsequent optimization passes.
After all lowering steps have been performed, developers can now apply low-level,
architecture-dependent optimizations, as the code is now close to the semantics offered
by low-level programming languages (e.g. includes pointers for explicitly referencing
memory). Then, a final iteration emits the actual C code.

Finally, there are two additional implementation details of our source-to-source com-
pilation from Scala to C that require special mentioning.

First, the final code produced by LegoBase, with all optimizations enabled, does not
require library function calls. For example, all collection data structures like hash
maps are converted in LegoBase to primitive arrays (Section 3.2). Thus, lowering such
library calls to C is not a big issue. However, we view LegoBase as a platform for easy
experimentation of database optimizations. As a result, our architecture must also
be able to support traditional collections as a library and convert, whenever necessary,
Scala collections to corresponding ones in C. We have found GLib [The GNOME Project
2013] to be efficient enough for this purpose.

Second, and more importantly, the two languages handle memory management in a
totally different way: Scala is garbage collected, while C has explicit memory manage-
ment. Thus, when performing source-to-source compilation from Scala to C, we must
take special care to free the memory that would normally be garbage collected in Scala
in order to avoid memory overflow. This is a hard problem to solve automatically, as
garbage collection may have to occur for objects allocated outside the DBMS code, e.g.
for objects allocated inside the Scala libraries. For the scope of this work, we follow a
conservative approach and make, whenever needed, allocations and deallocations ex-
plicit in the Scala code. We also free the allocated memory after each query execution.

SELECT COUNT(*)
FROM R, S
WHERE R.name == "R1"
AND R.id == S.id

(a) The example query in SQL.

AggOp(HashJoinOp(
SelectOp(ScanOp(R), r => r.name == "R1"),
ScanOp(S), (r,s) => r.id == s.id

), (rec, count) => count + 1)

(b) The physical plan of the example query.

val hm = new MultiMap[Int,R]

for(r <- R) {
if(r.name == "R1") {

hm.addBinding(r.id, r)

}
}
var count = 0
for(s <- S) {

hm.get(s.id) match {
case Some(rList) =>

for(r <- rList) {
if(r.id == s.id)

count += 1
}

case None => ()
}

}
return count

(c)

val MR: Array[Seq[R]] =
new Array[Seq[R]](BUCKETSZ)
for(r <- R) {
if(r.name == "R1") {

MR(r.id) += r

}
}
var count = 0
for(s <- S) {

val rList = MR(s.id)
for(r <- rList) {
if(r.id == s.id)
count += 1

}
}

return count

(d)

val MR: Array[R] =
new Array[R](BUCKETSZ)

for(r <- R) {
if(r.name == "R1") {
if(MR(r.id) == null) {
MR(r.id) = r

} else {
r.next = MR(r.id)
MR(r.id) = r

}
}

}
var count = 0
for(s <- S) {

var r: R = MR(s.id)
while(r != null) {
if(r.id == s.id)
count += 1

r = r.next
}

}

return count

(e)
val MR: Array[Pointer[R]] =
malloc[Pointer[R]](BUCKETSZ)

for(r <- R) {

if(r->name == "R1") {
if(MR(r->id) == null) MR(r->id) = r
else {
r->next = MR(r->id)
MR(r->id) = r

}
}

}
var count = 0
for(s <- S) {

var r: Pointer[R] = MR(s->id)
while(r != null) {
if(r->id == s->id)
count += 1

r = r->next
}

}
return count

(f)

R** MR = (R**)
malloc(BUCKETSZ * sizeof(R*))

for(int i=0; i < R_REL_SIZE; i++) {
R* r = R[i];
if(strcmp(r->name, "R1") == 0) {
if(MR[r->id] == NULL) MR[r->id] = r;
else {
r->next = MR[r->id];
MR[r->id] = r;

}
}

}
int count = 0
for(int i=0; i < S_REL_SIZE; i++) {
S* s = S[i];
R* r = MR[s->id]
while(r != NULL) {
if(r->id == s->id)
count += 1;

r = r->next;
}

}
return count;

(g)
Fig. 7: Progressively lowering an example query to C code with SC.

def Q12() {
val ordersScan = new ScanOp(loadOrders())
val lineitemScan = new ScanOp(loadLineitem())
val lineitemSelect = new SelectOp(lineitemScan)(record =>
record.L_RECEIPTDATE >= parseDate("1994-01-01") &&
record.L_RECEIPTDATE < parseDate("1995-01-01") &&
(record.L_SHIPMODE == "MAIL" || record.L_SHIPMODE == "SHIP") &&
record.L_SHIPDATE < record.L_COMMITDATE && record.L_COMMITDATE < record.L_RECEIPTDATE

)
val jo = new HashJoinOp(ordersScan, lineitemSelect) // Join Predicate and Hash Functions
((ordersRec,lineitemRec) => ordersRec.O_ORDERKEY == lineitemRec.L_ORDERKEY)
(ordersRec => ordersRec.O_ORDERKEY)(lineitemRec => lineitemRec.L_ORDERKEY)

val aggOp = new AggOp(jo)(t => t.L_SHIPMODE) // L-SHIPMODE is the Aggregation Key
((t, agg) => {
if (t.O_ORDERPRIORITY == "1-URGENT" || t.O_ORDERPRIORITY == "2-HIGH") agg + 1 else agg

},
(t, agg) => {
if (t.O_ORDERPRIORITY != "1-URGENT" && t.O_ORDERPRIORITY != "2-HIGH") agg + 1 else agg

})
val sortOp = new SortOp(aggOp)((x, y) => x.key - y.key)
val po = new PrintOp(sortOp)(kv => {
printf("%s|%.0f|%.0f\n", kv.key, kv.aggs(0), kv.aggs(1))

})
po.open
po.next

}

Fig. 8: Example of an input query plan (TPC-H Q12). We use this query to explain
various characteristics of our domain-specific optimizations in Section 3.

2.4. Putting it all together – A compilation example
To better illustrate the various steps of our progressive lowering, we analyze how
LegoBase converts the example SQL query shown in Figure 7a to efficient C code.

To begin with, the query plan, shown in Figure 7b, is parsed and converted to the pro-
gram shown in Figure 7c. This step inlines the code of all relational operators present
in the query plan and implements the equijoin using a hash table. This is the natural
way database developers would typically implement a join operator using high-level
collections programming. Then, this hash-table data structure is lowered to an array
of linked lists (Figure 7d). However, these lists are not really required, as we can chain
the records together using their next pointer. This optimization, which is presented in
more detail in Section 3.2, takes place in the next step (Figure 7e). Finally, the code is
converted to an embedded [Hudak 1996] version of the C language in Scala (Figure 7f)
and, only then, SC generates the final C program out of this embedding (Figure 7g).

This example clearly illustrates that our optimizing compiler applies different op-
timizations in distinct transformation phases, thus guaranteeing the separation of
concerns among different optimizations. For example, operator inlining is applied in
the very first, high-level representation, which only describes operator objects. Per-
formance concerns for data structures are then handled in subsequent optimization
steps. Finally, low-level, code generation concerns are addressed only in the last, low-
level representation. Next, we give more details about our individual optimizations.

3. COMPILER OPTIMIZATIONS
In this section, we present examples of compiler optimizations in six domains: (a) inter-
operator optimizations for query plans, (b) transparent data-structure modifications,

1 def optimize(op: Operator): Operator = op match {
2 case joinOperator@HashJoinOp(aggOp:AggOp, rightChild, joinPred, leftHash, rightHash) =>
3 new HashJoinOp(aggOp.leftChild, rightChild, joinPred, leftHash, rightHash) {
4 override def open() {
5 // leftChild is now the child of aggOp (relation S)
6 leftChild foreach { t =>
7 // leftHash hashes according to the attributes referenced in the join condition
8 val key = leftHash(aggOp.grp(t))
9 // Get aggregations from the hash map of HashJoin

10 val aggs = hm.getOrElseUpdate(key, new Array[Double](aggOp.aggFuncs.size))
11 // Process all aggregations using the original code of Aggregate Operator
12 aggOp.process(aggs,t)
13 }
14 }
15 }
16 case op: Operator =>
17 op.leftChild = optimize(op.leftChild)
18 op.rightChild = optimize(op.rightChild)
19 // Operators with only one child have leftChild set, but rightChild null.
20 case null => null
21 }

Fig. 9: Removing redundant materializations by high-level programming (here be-
tween a group by and a join). The semantics (child-parent relationships) of this code
segment are adapted to a Volcano-style engine. However, the same optimization logic
can be similarly applied to a push engine. The code of the Aggregate Operator is given
in Figure 4b. The next function of the HashJoinOp operator remains the same.

(c) changing the data layout, (d) using string dictionaries for efficient processing of
string operations, (e) domain-specific code motion, and, finally, (f) traditional compiler
optimizations like dead code elimination. The purpose of this section is to demonstrate
the ease-of-use of our methodology: that by programming at the high-level, such op-
timizations are easily expressible without requiring changes to the base code of the
query engine or interaction with compiler internals. Throughout this section we use,
unless otherwise stated, Q12 of TPC-H, shown in Figure 8, as a guiding example in
order to better illustrate various important characteristics of our optimizations.

3.1. Inter-Operator Optimizations – Eliminating Redundant Materializations
Consider again the motivating example of our introduction. We observed that existing
query compilers use template-based generation and, thus, in such schemes operators
are not aware of each other. This can cause redundant computation: in this example
there are two materialization points (in the group by and in the left side of the hash
join) where there could be only a single one.

By expressing optimizations at a higher level, LegoBase can optimize code across
operator interfaces. For this example, we can treat operators as objects in Scala, and
then match specific optimizations to certain chains of operators. Here, we can com-
pletely remove the aggregate operator and merge it with the join, thus eliminating
the need of maintaining two distinct data structures. The code of this optimization is
shown in Figure 9.

This optimization operates as follows. First, we call the optimize function, passing
it the top-level operator as an argument. The function then traverses the tree of Scala
operator objects, until it encounters a proper chain of operators to which the optimiza-
tion can be applied to. In the case of the example this chain is (as shown in line 2 of

Figure 9) a hash-join operator connected to an aggregate operator. When this pattern
is detected, a new HashJoinOp operator object is created, that is not connected to the
aggregate operator, but instead to the child of the latter (first function argument in
line 3 of Figure 9). As a result, the materialization point of the aggregate operator is
completely removed. However, we must still find a place to (a) store the aggregate val-
ues and (b) perform the aggregation. For this purpose we use the hash map of the hash
join operator (line 10), and we just call the corresponding function of the Aggregate
operator (line 12), respectively. The processing of the tuples of the right-side relation
(relation R in Figure 2), alongside with checking the join condition and the rest of join-
related processing, still takes place during the call of next function of the HashJoinOp
operator, similarly to the original query operator code.

We observe that this optimization is programmed in the same level of abstraction
as the rest of the query engine: as normal Scala code. This allows to completely avoid
code duplication during development, but more importantly it demonstrates that when
coding optimizations at a high level of abstraction (e.g. to optimize the operators’ in-
terfaces), developers no longer have to worry about low-level concerns such as code
generation (as is the case with existing approaches) – these concerns are simply ad-
dressed by later stages in the transformation pipeline. Both these properties raise the
productivity provided by our system, showing the merit of developing database sys-
tems using high-level programming languages.

3.2. Data-Structure Specialization
Data-structure optimizations contribute significantly to the complexity of database
systems today, as they tend to be heavily specialized to be workload, architecture
and (even) query-specific. Our experience with the PostgreSQL9 database manage-
ment system reveals that there are many distinct implementations of the memory
page abstraction and B-trees. These versions are slightly divergent from each other,
suggesting that the optimization scope is limited. However, this situation significantly
contributes to a maintenance nightmare as in order to apply any code update, many
different pieces of code have to be modified.

In addition, even though data-structure specialization is important when targeting
high-performance systems, it is not provided, to the best of our knowledge, by any
existing query compilation engine. Since our approach can be used to optimize the
entire Scala code, and not only the operator interfaces, it allows for various degrees of
specialization in data structures, as has been previous shown in [Rompf et al. 2013].

In this article, we demonstrate such possibilities by explaining how our compiler
can be used to: (1) Optimize the data structures used to hold in memory the data of the
input relations, (2) Optimize Hash Maps which are typically used in intermediate com-
putations like aggregations, and, finally, (3) Automatically infer and construct indices
for SQL attributes of date type. We do so in the next three sections.

3.2.1. Data Partitioning. Optimizing the structures that hold the data of the input re-
lations is an important form of data-structure specialization, as such optimizations
generally enable more efficient join processing throughout query execution. We have
observed that this is true even for multi-way, join-intensive queries. In LegoBase, we
perform data partitioning when loading the input data. We analyze this optimization,
the code of which can be found in Appendix B, next.

To begin with, in LegoBase developers can annotate the primary and foreign keys
of their input relations, at schema definition time. Using this information, our system
then creates optimized data structures for those relations, as follows.

9http://www.postgresql.org

First, for each input relation, LegoBase creates a data structure which is accessed
through the primary key specified for that relation. There are two possibilities:

— For single-attribute primary keys, the value of this attribute in each tuple is used
to place the tuple in a continuous 1D-array. For example, for the relations of the
TPC-H workload this is a straightforward task as the primary keys are typically
integer values in the range of [1...#num_tuples]. However, even when the primary
key is not in a continuous value range, LegoBase currently aggressively trades-off
system memory for performance, and stores the input data into a sparse array.

— For composite primary keys (e.g. those of the LINEITEM table of TPC-H), creating
an 1D array does not suffice, as there may be multiple tuples with the same value for
any one of the attributes of the primary key (thus causing conflicts when accessing
the array). One possible solution would be to hash all attributes of the primary key
and guarantee that we get a unique index value to access the 1D-array. However,
deriving such a function in full generality requires knowledge of the whole dataset
in advance (in order to know all possible combinations of the primary key). More
importantly, it introduces additional computation on the critical path in order to
perform the hash, a fact that, according to our observations, can lead to significant,
negative impact on performance. For this reason, LegoBase does not create an 1D
array and, instead, handles such primary keys similarly to the handling of foreign
key, as we discuss shortly.

For the example given in Figure 8, LegoBase creates a 1D array for the ORDERS table,
indexed through the O_ORDERKEY attribute, but does not create a data structure
accessed through the primary key for LINEITEM (as this relation has a composite
primary key of the L_ORDERKEY, L_LINENUMBER attributes).

Second, LegoBase replicates and repartitions the data of the input relations based
on each specified foreign key. This basically leads to the creation of a two-dimensional
array, indexed by the foreign key, where each bucket holds all tuples having a par-
ticular value for that foreign key. We also apply the same partitioning technique for
relations that have composite primary keys, as we mentioned above. We resolve the
case where the foreign key is not in a contiguous value range by trading-off system
memory, in a similar way to how we handled primary keys.

For the example of Q12, LegoBase creates four partitioned tables: one for the foreign
key of the ORDERS table (O_CUSTKEY), one for the composite primary key of the
LINEITEM table (as described above), and, finally, two more for the foreign keys of the
LINEITEM table (on L_ORDERKEY and L_PARTKEY/L_SUPPKEY respectively).

Observe that for relations that have multiple foreign keys, not all corresponding
partitioned input relations need to be kept in memory at the same time, as an incoming
SQL query may not need to use all of them. To decide which partitioned tables to load,
LegoBase depends mainly on the derived physical query execution plan (attributes
referenced as well as select and join conditions of the input query), but also on simple
to estimate statistics, like cardinality estimation of the input relations. For example,
for Q12, out of the two partitioned, foreign-key data structures of LINEITEM, our
optimized generated code for Q12 uses only the partitioned table on L_ORDERKEY,
as there is no reference to attributes L_PARTKEY or L_SUPPKEY in the query.

These data structures can be used to significantly improve join processing, as they
allow to quickly extract matching tuples on a join between two relations on attributes
that have a primary-foreign key relationship. This is best illustrated through our run-
ning example of Q12 and the join between the LINEITEM and ORDERS tables. For
this query, LegoBase (a) infers that the ORDERKEY attribute actually represents a
primary-foreign key relationship and (b) uses statistics to derive that ORDERS is the
smaller of the two tables. By utilizing this information, LegoBase can generate the

1 // Sequential accessing for the ORDERS table (since it has smaller size)
2 for (int idx = 0 ; idx < ORDERS_TABLE_SIZE ; idx += 1) {
3 int O_ORDERKEY = orders_table[idx].O_ORDERKEY;
4 struct LINEITEMTuple* bucket = lineitem_table[O_ORDERKEY];
5 for (int i = 0; i < counts[bucket]; i+=1) {
6 // process bucket[i] -- a tuple of the LINEITEM table
7 }
8 }

Fig. 10: Using primary and foreign keys in order to generate code for high-performance
join processing. The underlying storage layout is that of a row-store for simplicity. The
counts array holds the number of elements that exist in each bucket.

code shown in Figure 10 in order to directly get the corresponding bucket of the ar-
ray of LINEITEM (by using the value of the ORDERKEY attribute), thus avoiding the
processing of a possibly significant number of LINEITEM tuples.

LegoBase uses this approach for multi-way joins as well, to completely eliminate the
overhead of intermediate data structures for most TPC-H queries. This results in sig-
nificant performance improvement as the corresponding tuple copying between these
intermediate data structures is completely avoided, thus reducing memory pressure
and improving cache locality. In addition, a number of expensive system calls respon-
sible for the tuple copying is also avoided by applying this optimization.

After the aforementioned optimization has been performed, LegoBase has removed
the overhead of using generic data structures for join processing, but there are still
some hash maps remaining in the generated code. These are primarily hash maps
which correspond to aggregations, as in this case there is no primary/foreign key infor-
mation that can be used to optimize these data structures away, but also hash maps
which process joins on attributes that are not represented by a primary/foreign key
relationship. In these cases, LegoBase lowers these maps to two-dimensional arrays
as we discuss in our hash map lowering optimization in the next section.

3.2.2. Optimizing Hash Maps. Next, we show how hash maps, which are the most com-
monly used data-structures along with Trees in DBMSes, can be specialized for signif-
icant performance improvement by using schema and query knowledge.

By default, LegoBase uses GLib [The GNOME Project 2013] hash tables for gener-
ating C code out of the HashMap constructs of the Scala language. Close examination
of these generic hash maps in the baseline implementation of our operators (e.g. in the
Aggregation of Figure 4b) reveals the following three main abstraction overheads.

First, for every insert operation, a generic hash map must allocate a container hold-
ing the key, the corresponding value as well as a pointer to the next element in the
hash bucket. This introduces a significant number of expensive memory allocations
on the critical path. Second, hashing and comparison functions are called for every
lookup in order to acquire the correct bucket and element in the hash list. These func-
tion calls are usually virtual, causing significant overhead on the critical path. Finally,
the data structures may have to be resized during runtime in order to efficiently ac-
commodate more data. These operations typically correspond to (a) allocating a bigger
memory space, (b) copying the old data over to the new memory space and, finally, (c)
freeing the old space. These resizing operations are a significant bottleneck, especially
for long-running, computationally expensive queries.

Next, we resolve all these issues with our compiler, without changing a single line
of the base code of the operators that use these data structures, or the code of other
optimizations. This property shows that our approach, which is based on using a high-

1 class HashMapToArray extends RuleBasedTransformer {
2 rewrite += rule {
3 case code"new HashMap[K, V]($size, $hashFunc, $equalFunc)" => {
4 // Create new array for storing only the values
5 val arr = code"new Array[V]($size)"
6 // Keep hash and equal functions in the metadata of the new object
7 arr.attributes += "hash" -> hashFunc
8 arr.attributes += "equals" -> equalFunc
9 arr // Return new object for future reference

10 }
11 }
12 rewrite += rule {
13 case code"($hm: HashMap[K, V]).getOrElseUpdate($key, $value)" => {
14 val arr = transformed(hm) // Get the array representing the original hash map
15 // Extract functions
16 val hashFunc = arr.attributes("hash")
17 val equalFunc = arr.attributes("equals")
18 code"""
19 // Get bucket
20 val h = $hashFunc($value) // Inlines hash function
21 var elem = $arr(h)
22 // Search for element & inline equals function
23 while (elem != null && !$equalFunc(elem, $key))
24 elem = elem.next
25 // Not found: create new elem / update pointers
26 if (elem == null) {
27 elem = $value
28 elem.next = $arr(h)
29 $arr(h) = elem
30 }
31 elem
32 """
33 }
34 }
35 // Lowering of remaining operations is done similarly
36 }

Fig. 11: Specializing HashMaps by converting them to native arrays. The correspond-
ing operations are mapped to a set of primitive C constructs.

level compiler API, is practical for specializing DBMS components. The transforma-
tion, shown in Figure 11, is applied during the lowering phase of the compiler (Sec-
tion 2.3), where high-level Scala constructs are mapped to low-level C constructs. The
optimization lowers Scala HashMaps to native C arrays and inlines the corresponding
operations, by making use of the following three observations:

1. For our workloads, the information stored on the key is usually a subset of the
attributes of the value. Thus, generic hash maps store redundant data. To avoid this,
whenever a functional dependency between key and value is detected, we convert
the hash map to a native array that stores only the values, and not the associated
key (lines 2-11). Then, since the inserted elements are anyway chained together in
a hash list, we provision for the next pointer when these are first allocated (e.g. at
data loading, outside the critical path10). Thus, we no longer need the key-value-next
container and we manage to reduce the amount of memory allocations significantly.

10The transformer shown in Figure 11 is applied only for the code segment that handles basic query pro-
cessing. There is another transformer which handles the provision of the next pointer during data loading.

2. Second, the SC optimizing compiler offers function inlining for any Scala function
out-of-the-box. Thus, our system can automatically inline the body of the hash and
equal functions wherever they are called (lines 20 and 23 of Figure 11). This signifi-
cantly reduces the number of function calls (to almost zero), considerably improving
query execution performance.

3. Finally, to avoid costly maintenance operations on the critical path, we preallocate
in advance all the necessary memory space that may be required for the hash map
during execution. This is done by specifying a size parameter when allocating the
data structure (line 3). Currently, we obtain this size by performing worst-case anal-
ysis on a given query, which means that we possibly allocate much more memory
space that what is actually needed. However, database statistics can make this es-
timation very accurate, as we show in our experiments section where we evaluate
the overall memory consumption of our system in more detail.

For our running example, the aggregation array, created in step 1 above, is accessed
using the integer value obtained from hashing the L_SHIPMODE string. Then, the values
located into the corresponding bucket of the array are checked one by one, in order to
see if the value of L_SHIPMODE exists and if a match is found, the aggregation entries
are updated accordingly, or a new entry is initialized otherwise.

In addition to the above optimizations, the SC optimizing compiler also detects hash
table data structures that receive only a single, statically-known key and converts each
such structure to a single value, thus completely eliminating the unnecessary abstrac-
tion overhead of these tables. In this case, this optimization maps all related HashMap
operations to operations in the single value. For example, we convert a foreach to a
single value lookup. An example of such a lowering is in aggregations which calculate
one single global aggregate (in this case key = ’’TOTAL’’). This happens for example
in Q6 of the TPC-H workload.

Finally, we note that data-structure specialization is an example of intra-operator
optimization and, thus, each operator can specialize its own data-structures by using
similar optimizations as the one shown in Figure 11.

3.2.3. Automatically Inferring Indices on Date Attributes. Assume that an SQL query needs
to fully scan an input relation in order to extract tuples belonging to a particular year.
A naive implementation would simply execute an if condition for each tuple of the
relation and propagate that tuple down the query plan if the check was satisfied. How-
ever, it is our observation that such conditions, as simple as they may be, can have
a pronounced negative impact on performance, as they can significantly increase the
total number of CPU instructions executed in a query.

Thus, for such cases, LegoBase uses the aforementioned partitioning mechanism in
order to automatically create indices, at data loading time, for all attributes of date
type. It does so by grouping the tuples of a date attribute based on the year, thus
forming a two-dimensional array where each bucket holds all tuples of a particular
year. This design allows to immediately skip, at query execution time, all years for
which this predicate is incorrect. That is, as shown in Figure 12, the if condition now
just checks whether the first tuple of a bucket is of a particular year and if not the
whole bucket is skipped, as all of its tuples have the same year and, thus, they all fail
to satisfy the predicate condition.

These indices are particularly important for queries that process large input rela-
tions, whose date values are uniformly distributed across years. This is the case, for
example, for the LINEITEM and ORDERS tables of TPC-H, whose date attributes
are always populated with values ranging from 1992-01-01 to 1998-12-31 [Transaction
Processing Performance Council 1999].

// Sequential scan through table
for (int idx=0 ; idx<TABLE_SIZE ; idx+=1) {

if (table[idx].date >= "01-01-1994" &&
table[idx].date <= "31-12-1994")
// Propagate tuple down the query plan

}

(a) Original, naive code

// Sequential scan through table
for (int idx=0 ; idx<NUM_BUCKETS ; idx+=1) {
// Check only the first entry
if (table[idx][0].date >= "01-01-1994" &&

table[idx][0].date <= "31-12-1994")
// Propage all tuples of table[idx]

}

(b) Optimized code

Fig. 12: Using date indices to speed up selection predicates on large relations.

3.3. Changing Data Layout
A long-running debate in database literature is the one between row and column
stores [Stonebraker et al. 2005; Harizopoulos et al. 2006; Abadi et al. 2008]. Even
though there are many significant differences between the two approaches in all lev-
els of the database stack, the central contrasting point is the data-layout, i.e. the way
data is organized and grouped together. By default LegoBase uses the row layout, since
this intuitive data organization facilitated fast development of the relational opera-
tors. However, we quickly noted the benefits of using a column layout for efficient data
processing. One solution would be to go back and redesign the whole query engine;
however this misses the point of our compiler framework. In this section, we show how
the transition from row to column layout can be expressed as an optimization11.

The optimization of Figure 13 performs a conversion from an array of records (row
layout) to a record of arrays (column layout), where each array in the column layout
stores the values for one attribute. The optimization basically overwrites the default
lowering for arrays, thus providing the new behavior. As with all our optimizations,
type information determines the applicability of an optimization: here it is performed
only if the array elements are of record type (lines 3,13,26). Otherwise, this transfor-
mation is a NOOP and the original code is generated (e.g. an array of Integers remains
unchanged).

Each optimized operation is basically a straightforward rewriting to a set of opera-
tions on the underlying record of arrays. Consider, for example, an update to an array
of records (arr(n) = v), where v is a record. We know that the new representation of
arr will be a record of arrays (column layout), and that v has the same attributes as
the elements of arr. So, for each of those attributes we extract the corresponding array
from arr (line 18) and field from v (line 19); then we can perform the update operation
on the extracted array (line 19) using the same index.

This optimization also reveals another benefit of using an optimizing compiler: de-
velopers can create new abstractions in their optimizations, which will be in turn op-
timized away in subsequent optimization passes. For example, array_apply results in
record reconstruction by extracting the individual record fields from the record of ar-
rays (lines 29-34) and then building a new record to hold the result (line 35). This
intermediate record can be automatically removed using dead code elimination (DCE),
as shown in Figure 14. Similarly, if SC can statically determine that some attribute is
never used (e.g. by having all queries given in advance), then this attribute will just
be an unused field in a record, which the optimizing compiler will be able to optimize
away (e.g. attribute L2 in Figure 14).

11We must note that changing the data layout does not mean that LegoBase becomes a column store. There
are other important aspects which we do not yet handle, and which we plan to investigate in future work.

1 class ColumnarLayoutTransformer extends RuleBasedTransformer {
2 rewrite += rule {
3 case code"new Array[T]($size)" if typeRep[T].isRecord => typeRep[T] match {
4 case RecordType(recordName, fields) => {
5 val arrays =
6 for((name, tp: TypeRep[Tp]) <- fields) yield
7 name -> code"new Array[Tp]($size)"
8 record(recordName, arrays)
9 }
10 }
11 }
12 rewrite += rule {
13 case code"(arr:Array[T]).update($idx,$v)" if typeRep[T].isRecord => typeRep[T] match {
14 case RecordType(recordName, fields) => {
15 val columnarArr = transformed(arr) // Get the record of arrays
16 for((name, tp: TypeRep[Tp]) <- fields) {
17 code """
18 val fieldArr: Array[Tp] = record_field($columnarArr, $name)
19 fieldArr($idx) = record_field($v, $name)
20 """
21 }
22 }
23 }
24 }
25 rewrite += rule {
26 case code"(arr:Array[T]).apply($index)" if typeRep[T].isRecord => typeRep[T] match {
27 case RecordType(recordName, fields) => {
28 val columnarArr = transformed(arr) // Get the record of arrays
29 val elems = for((name, tp: TypeRep[Tp]) <- fields) yield {
30 name -> code """
31 val fieldArr: Array[Tp] = record_field($columnarArr, $name)
32 fieldArr($index)
33 """
34 }
35 record(recordName, elems)
36 }
37 }
38 }
39 // Fill remaining operations accordingly
40 }

Fig. 13: Changing the data layout (from row to column) expressed as an optimization.
Scala’s typeRep carries type information, which is used to differentiate between Ar-
ray[Rec] and other non-record arrays (e.g. an array of integers).

We notice that, as was the case with previously presented optimizations, the trans-
formation described in this section does not have any dependency on other optimiza-
tions or the code of the query engine. This is because it is applied in the distinct op-
timization phase that handles only the optimization of arrays. This separation of con-
cerns leads, as discussed previously, to a significant increase in productivity as, for
example, developers that tackle the optimization of individual query operators do not
have to worry about optimizations handling the data layout (described in this section).

3.4. String Dictionaries
Operations on non-primitive data types, such as strings, incur a very high performance
overhead. This is true for two reasons. First, there is typically a function call required.

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
r.L1

7→

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
e1

7→

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
e1

7→
val a1 = a.L1
val e1 = a1(i)
e1

Fig. 14: Dead code elimination (DCE) can remove intermediate materializations, e.g.
row reconstructions when using a column layout. Here a is a record of arrays (column-
layout) and i is an integer. The records have only two attributes L1 and L2. The nota-
tion L1->v associates the label (attribute name) L1 with value v.

String Integer Dictionary
Operation C code Operation Type
equals strcmp(x, y) == 0 x == y Normal
notEquals strcmp(x, y) != 0 x != y Normal
startsWith strncmp(x, y, strlen(y)) == 0 x>=start && x<=end Ordered
indexOfSlice strstr(x, y) != NULL N/A Word-Token

Table II: Mapping of string operations to integer operations through the corresponding
type of string dictionaries. Variables x and y are strings arguments which are mapped
to integers. The rest of string operations are mapped in a similar way.

Second, most of these operations typically need to execute loops to process the encap-
sulated data. For example, strcmp needs to iterate over the underlying array of char-
acters, comparing one character from each of the two input strings on each iteration.
Thus, such operations significantly affect branch prediction and cache locality.

LegoBase uses String Dictionaries to remove the abstraction overhead of Strings.
Our system maintains one dictionary for every attribute of String type, which gener-
ally operates as follows. First, at data loading time, each string value of an attribute
is mapped to an integer value. This value corresponds to the index of that string in a
single linked-list holding the distinct string values of that attribute. The list basically
constitutes the dictionary itself. In other words, each time a string appears for the first
time during data loading, a unique integer is assigned to it; if the same string value
reappears in a later tuple, the dictionary maps this string to the previously assigned
integer. Then, at query execution time, string operations are mapped to their integer
counterparts, as shown in Table II. This mapping allows to significantly improve the
query execution performance, as it typically eliminates underlying loops and, thus,
significantly reduces the number of CPU instructions executed. For our running ex-
ample, LegoBase compresses the attributes L_SHIPMODE and O_ORDERPRIORITY
by converting the six string equality checks into corresponding integer comparisons.

Special care is needed for string operations that require ordering. For example, Q2
and Q14 of TPC-H need to perform the endsWith and startsWith string operations
with a constant string, respectively. This requires that we utilize a dictionary that
maintains the data in order; that is, if stringx < stringy lexicographically, then Intx <
Inty as well. To do so, we take advantage of the fact that in LegoBase all input data is
already materialized, and thus we can first compute the list of distinct values, as men-
tioned above, then sort this list lexicographically, and afterwords make a second pass
over the data to assign integer values to the string attribute. By doing so, the constant

string is then converted to a [start, end] range, by iterating over the list of distinct
values and finding the first and last strings which start or end with that particular
string. This range is then used when lowering the operation, as shown in Table II.
This two-phase string dictionary allows to map all operations that require some notion
of ordering in string operations.

In addition, there is one additional special case where the string attributes need to
be tokenized on a word granularity. This happens for example in Q13 of TPC-H. This is
because queries like that one need to perform the indexOfSlice string operation, where
the slice represents a word. LegoBase provides a word-tokenizing string dictionary
that contains all words in the strings instead of the string attributes themselves to
handle such cases. Then, searching for a word slice is equal to looking through all the
integer-typed words in that string for a match during query execution. This is the only
case where the integer counterparts of strings operations contain a loop. It is however
our experience, that even with this loop through the integer vales, the obtained perfor-
mance significantly outperforms that of the strstr function call of the C library. This
may be because such loops can be more easily vectorized by an underlying C compiler
like CLang, compared to the corresponding loops using the string types.

Finally, it is important to note that string dictionaries, even though they signif-
icantly improve query execution performance, they have an even more pronounced
negative impact on the performance of data loading. This is particularly true for the
word-tokenizing string dictionaries, as the impact of tokenizing a string is signifi-
cant. In addition, string dictionaries can actually degrade performance when they are
used for primary keys or for attributes that contain many distinct values (as in this
case the string dictionary significantly increases memory consumption). In such cases,
LegoBase can be configured so that it does not use string dictionaries for those at-
tributes, through proper usage of the optimization pipeline described in Section 2.

3.5. Domain-Specific Code Motion
Domain-Specific code motion includes optimizations that remove code segments that
have a negative impact on query execution performance from the critical path and
instead executes the logic of those code segments during data loading. Thus, the opti-
mizations in this category trade-off increased loading time for improved query execu-
tion performance. There are two main optimizations in this category, described next.

3.5.1. Hoisting Memory Allocations. Memory allocations can cause significant perfor-
mance degradation in query execution. Our experience shows that, by taking advan-
tage of type information available in each SQL query, we can completely eliminate
such allocations from the critical path. The LegoBase system provides the following
optimization for this purpose.

At query compilation time, information is gathered regarding the data types used
throughout an incoming SQL query. This is done through an analysis phase, where
the compiler collects all malloc nodes in the program, once the latter has been lowered
to the abstraction level of C code. This is necessary to be done at this level, as high-
level programming languages like Scala provide implicit memory management, which
the SC optimizing compiler cannot currently optimize. The obtained types correspond
either to the initial database relations (e.g. the LINEITEM table of TPC-H) or to types
required for intermediate results, such as aggregations. Based on this information, SC
initializes memory pools during data loading, one for each type.

Then, at query execution time, the corresponding malloc statements are replaced
with references to those memory pools. We have observed that this optimization signif-
icantly reduces the number of CPU instructions executed during the query evaluation,
and significantly contributes to improving cache locality. This is because the memory

space allocated for each pool is contiguous and, thus, each cache miss brings useful
records to the cache (this is not the case for the fragmented memory space returned by
the malloc system calls). We also note that it is necessary to resolve dependencies be-
tween data types. This is particularly true for composite types, which need to reference
the pools of the native types (e.g. the pool for Strings). We resolve such dependencies
by first applying topological sorting on the obtained type information and only then
generating the pools in the proper order.

Finally, we must mention that the size of the memory pools is estimated by perform-
ing worst-case analysis on a given query. This means that LegoBase may allocate much
more space than needed. However, we have confirmed that our estimated statistics are
accurate enough so that the pools do not unnecessarily create memory pressure, thus
negatively affecting query performance.

3.5.2. Hoisting Data-Structure Initialization. The proper initialization and maintenance of
any data structure needed during query execution generally require specific code to
be executed in the critical path. This is typically true for data structures representing
some form of key-value stores, as we describe next.

Consider the case of TPC-H Q12, for which a data structure is needed to store the
results of the aggregate operator. Then, when evaluating the aggregation during query
execution, we must check whether the corresponding key of the aggregation has been
previously inserted in the aggregation data structure. In this case, the code must check
whether a specific value of O_ORDERPRIORITY is already present in the data struc-
ture. If so, it would return the existing aggregation. Otherwise, it would insert a new
aggregation into the data structure. This means that at least one if condition must be
evaluated for every tuple that is processed by the aggregate operator. We have observed
that such if conditions, which exist purely for the purpose of data-structure initializa-
tion, significantly affect branch prediction and overall query execution performance.

LegoBase provides an optimization to remove such data-structure initialization from
the critical path by utilizing domain-specific knowledge. For example, LegoBase takes
advantage of the fact that aggregations can usually be statically initialized with the
value zero, for each corresponding key. To infer all these possible key values (i.e. infer
the domain of that attribute), LegoBase utilizes the statistics collected during data
loading for the input relations. Then, at query execution time, the corresponding if
condition mentioned above no longer needs to be evaluated, as the aggregation already
exists and can be accessed directly. We have observed that by removing code segments
that perform only data-structure initialization, branch prediction is improved and the
total number of CPU instructions executed is significantly reduced as well.

Observe that this optimization is not possible in its full generality, as it directly de-
pends on the ability to predict the possible key values in advance, during data loading.
However, we note three things. First, once our partitioning optimization (Section 3.2.1)
has been applied, LegoBase requires intermediate data structures mostly for aggre-
gate operators, whose initialization code segment we remove, as described above. Sec-
ond, particularly for TPC-H, there is no key that is the result of an intermediate join
operator deeply nested in the query plan. Instead, TPC-H uses attributes of the orig-
inal relations to access most data structures, attributes whose value range can be ac-
curately estimated during data loading through statistics, as we discussed previously.
Finally, for TPC-H queries the key value range is very small, typically ranging up to a
couple of thousand sequential key values12. These three properties allow to completely

12A notable exception is TPC-H Q18 which uses O_ORDERKEY as a key, which has a sparse distribution of
key values. LegoBase generates a specialized data structure for this case.

remove initialization overheads and the associated unnecessary computation for all
TPC-H queries.

3.6. Traditional Compiler Optimizations
In this section, we present a number of traditional compiler optimizations that origi-
nate mostly from work in the PL community. Most of them are generic in nature, and,
thus, they are offered out-of-the-box by the SC optimizing compiler.

3.6.1. Removal of Unused Relational Attributes. In Section 3.3 we mentioned that
LegoBase provides an optimization for removing relational attributes that are not
accessed by a particular SQL query, assuming that this query is known in advance.
For example, the Q12 running example references eight relational attributes. How-
ever, the relations LINEITEM and ORDERS contain 25 attributes in total. LegoBase
avoids loading these unnecessary attributes into memory at data loading time. It does
so by analyzing the input SQL query and removing the set of unused fields from the
record definitions. This reduces memory pressure and improves cache locality.

3.6.2. Removing Unnecessary Let-Bindings. The SC compiler uses the Administrative
Normal Form (ANF) when generating code. This simplifies code generation for the
compiler. However, it has the negative effect of introducing many unnecessary inter-
mediate variables. We have observed that this form of code generation not only affects
code compactness but also significantly increases register pressure. To improve upon
this situation, SC uses a technique first introduced by the programming language com-
munity [Sumii and Kobayashi 2001], which removes any intermediate variable that
satisfies the following three conditions: the variable (a) is set only once, (b) has no side
effects, and, finally, (c) is initialized with a single value (and thus its initialization does
not correspond to executing possibly expensive computation). SC then replaces any ap-
pearance of this variable later in the code with its initialization value. We have noticed
that this optimization makes the generated code much more compact and reduces reg-
ister pressure, resulting in improved performance. Moreover, we have observed that
since the variable initialization time may take place significantly earlier in the code of
the program than its actual use, this does not allow for this optimization opportunity
to be detected by low-level compilers like LLVM.

Finally, our compiler applies a technique known as parameter promotion13. This op-
timization removes structs whose fields can be flattened to local variables. This opti-
mization has the effect of removing a memory access from the critical path as the field
of a struct can be referenced immediately without referencing the variable holding the
struct itself. We have observed that this optimization significantly reduces the number
of memory accesses occurring during query execution.

3.6.3. Fine-grained Compiler Optimizations. Finally, there is a category of fine-grained
compiler optimizations that are applied last in the compilation pipeline. These opti-
mizations target optimizing very small code segments (even individual statements)
under particular conditions. We briefly present three such optimizations next.

First, SC can transform arrays to a set of local variables. This lowering is possible
only when (a) the array size is statically known at compile time, (b) the array is rela-
tively small (to avoid increasing register pressure) and, finally, (c) the index of every
array access can be inferred at compile time (otherwise, the compiler is not able to
know to which local variable an array access should be mapped to).

Second, the compiler provides an optimization to change the boolean condition x
&& y to x & y where x and y both evaluate to boolean and the second operand does not

13This technique is also known as Scalar Replacement in the PL community.

Fig. 15: Classification of LegoBase optimizations.

have any side effect. According to our observations, this optimization can significantly
improve branch prediction, when the aforementioned conditions are satisfied.

Finally, the compiler can be instructed to apply tiling to for loops whose range are
known at compile time (or can be accurately estimated).

It is our observation that all these fine-grained optimizations (as described above),
which can be typically written in less than a hundred lines of code, can help to improve
the performance of certain queries. More importantly, since they have very fine-grained
granularity, their application does not introduce additional performance overheads.

3.7. Discussion
In this section, we classify the LegoBase optimizations according to (a) their generality
and (b) whether they follow the rules of the TPC-H benchmark, which we use in our
evaluation. These two metrics are important for a more thorough understanding of
which categories of database systems can benefit from these optimizations. We detect
six groups of optimizations, illustrated in Figure 15, described next in the order they
appear from left to right in the figure.

Generic Compiler Optimizations: In this category, we include optimizations which
are also applied by traditional compilers, such as LLVM. These include Dead Code
Elimination (DCE), Common Subexpression Elimination (CSE), Partial Evaluation
(PE) and the Scalar Replacement optimization presented in Section 3.6.2. These
optimizations are TPC-H compliant and do not require any particular domain-specific
knowledge; thus they can be applied for optimizing any input query as well as the
code of the query engine.

Fine-grained Optimizations: In this TPC-H compliant category we include, as
described in Section 3.6.3, fine-grained optimizations that aim to transform and
improve the performance of individual statements (or a small number of contiguous
statements). We do not list this category alongside the generic compiler optimizations,
as whether they improve the performance or not depends on the characteristics of
the input query. Thus, SC needs to analyze the program before detecting whether the
application of one of the optimizations in this group is beneficial.

Optimizing Data Accesses: The two optimizations presented in Sections 3.3
and 3.6.2, alongside the generic operator inlining optimization, aim to improve
performance by minimizing the number of function calls and optimizing data accesses
and code compactness. Even though they are coarse-grained in nature, affecting large
code segments, they are still TPC-H compliant, as they are neither query specific nor
depend on type information.

Partitioning and Indexing Optimizations: This class of optimizations, presented
in detail in Section 3.2, aims to improve query execute performance. However,
even though they provide significant performance improvement (as we show in our
evaluation), they are not TPC-H compliant, as this workload does not allow logical
replication of data. Similarly, our HashMap lowering optimization requires knowledge
of the domain of the aggregation keys in advance. Still, there is a class of database
systems that can greatly benefit from such indexing and partitioning transformations.
These include systems that have all their data known in advance (e.g. OLAP style
processing) or systems where we can introduce pre-computed indexing views, as in
the case of Incremental View Maintenance (IVM).

Inter-Operator, String Dictionaries, and Domain-Specific Hoisting Optimiza-
tions: The three optimizations in this category, presented in Sections 3.1, 3.4 and 3.5
respectively, aim to remove unnecessary materialization points and computation from
the critical path. However, they are query specific, as they can only be applied if a
query is known in advance. This is the primary characteristic that differentiates this
category of optimizations from the previous one. They also depend on type information
and introduce auxiliary data structures. Thus, they are not TPC-H compliant.

Struct Field Removal Optimization: The most aggressive optimization that
LegoBase applies removes unnecessary relational attributes from C structs. This opti-
mization is query specific and is highly dependant on type information. It also requires
specializing the data structures during data loading (to remove the unnecessary fields).
Thus, it is not TPC-H compliant.

4. EVALUATION
In this section, we evaluate the realization of the abstraction without regret vision in
the domain of analytical query processing. After briefly presenting our experimental
platform, we address the following topics and open questions related to LegoBase:

(1) How well can general-purpose compilers, such as LLVM or GCC, optimize query
engines? We show that these compilers fail to detect many high-level optimization
opportunities and, thus, they perform poorly compared to our system (Section 4.2).

(2) Is the code generated by LegoBase competitive, performance-wise, to (a) traditional
database systems and (b) query compilers based on template expansion? We show
that by utilizing query-specific knowledge and by extending the scope of compila-
tion to optimize the entire query engine, we can obtain a system that significantly
outperforms both alternative approaches (Section 4.3).

(3) We experimentally validate that the source-to-source compilation from Scala to
efficient, low-level C binaries is necessary as even highly optimized Scala programs
exhibit a considerably worse performance than C (Section 4.4).

(4) What insights can we gain by analyzing the performance improvement of individ-
ual optimizations? Our analysis reveals that important optimization opportunities
have been so far neglected by compilation approaches that optimize only queries. To
demonstrate this, we compare architectural decisions as fairly as possible, using a
shared codebase that only differs by the effect of a single optimization (Section 4.5).

(5) How much are the overall memory consumption and data loading speed of our
system? These two metrics are of importance to main-memory databases, as a query
engine must perform well in both directions to be usable in practice (Section 4.6).

(6) We analyze the amount of effort required when coding query engines in LegoBase
and show that, by programming in the abstract, we can derive a fully functional
system in a relatively short amount of time and coding effort (Section 4.7).

System Description Compiler
optimizations

TPC-H
compliant

Uses query-
specific info

DBX Commercial,
in-memory DBMS

No compilation Yes No

Compiler
of HyPer

Query compiler of the
HyPer DBMS

Operator inlin-
ing, push engine

Yes No

LegoBase
(Naive)

A naive engine with
the minimal number
of optimizations

Operator inlin-
ing, push engine

Yes No

LegoBase
(TPC-H/C)

TPC-H compliant en-
gine

Operator inlin-
ing, push engine,
data partitioning

Yes14 No

LegoBase
(StrDict/C)

Non TPC-H compli-
ant engine with some
optimizations applied

Like above, plus
String Dictionar-
ies

No No

LegoBase
(Opt/C)

Optimized push-style
engine

All optimizations
of this article

No Yes

LegoBase
(Opt/Scala)

Optimized push-style
engine

All optimizations
of this article

No Yes

Table III: Description of all systems evaluated in this section. Unless otherwise stated,
all generated C programs of LegoBase are compiled to a final C binary using CLang.
All listed LegoBase engines and optimizations are written with only high-level Scala
code, which is then optimized and compiled to C or Scala code with SC.

(7) We evaluate the compilation overheads of our approach. We show that SC can
efficiently compile query engines even for the complicated, multi-way join queries
typically found in analytical query processing (Section 4.8).

4.1. Experimental Setup
Our experimental platform consists of a server-type x86 machine equipped with two
Intel Xeon E5-2620 v2 CPUs running at 2GHz each, 256GB of DDR3 RAM at 1600Mhz
and two commodity hard disks of 2TB storing the experimental datasets. The operating
system is Red Hat Enterprise 6.7. For all experiments, we have disabled huge pages in
the kernel, since this provided better results for all tested systems (described in more
detail in Table III). For compiling the generated programs throughout the evaluation
section, we use version 2.11.4 of the Scala compiler and version 3.4.2 of the CLang
front-end for LLVM [Lattner and Adve 2004], with the default optimization flags set for
both compilers. For the Scala programs, we configure the Java Virtual Machine (JVM)
to run with 192GB of heap space, while we use the GLib library (version 2.38.2) [The
GNOME Project 2013] whenever we need to generate generic data structures in C.

For our evaluation, we use the TPC-H benchmark [Transaction Processing Per-
formance Council 1999]. TPC-H is a data warehousing and decision support bench-

14We note that according to the TPC-H specification rules, a database system can employ data partitioning
(as described in Section 3.2.1) and still be TPC-H compliant. This is the case when all input relations are
partitioned on one and only one primary or foreign key attribute across all queries. The LegoBase(TPC-H/C)
configuration of our system follows exactly this partitioning approach, which is also used by the HyPer
system (but in contrast to SC, partitioning in HyPer is not expressed as a compiler optimization).

 2

 4

 8

 16

 32

 64

 128

 256

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

4

Q
1

5

Q
1

6

Q
1

7

Q
1

8

Q
1

9

Q
2

0

Q
2

1

Q
2

2

S
lo

w
d

o
w

n
 t

o
 L

e
g

o
B

a
se

1536

2048

LegoBase(Naive/C) - LLVM LegoBase(Naive/C) - GCC

Fig. 16: Performance of a push-style engine compiled with LLVM and GCC. These
engines are generated using only operator inlining. The baseline is the performance of
the optimal generated code, LegoBase(Opt/C), with all optimizations enabled.

mark that issues business analytics queries to a database with sales information. This
benchmark suite includes 22 queries with a high degree of complexity that express
most SQL features. We use all 22 queries to evaluate various design choices of our
methodology. We execute each query five times and report the average performance of
these runs. Unless otherwise stated, the scaling factor of TPC-H is set to 8 for all ex-
periments. It is important to note that the final generated optimized code of LegoBase
(configurations LegoBase(Opt/C) and LegoBase(Opt/Scala) in Table III) employs ma-
terialization (e.g. for the date indices) and, thus, this version of the code does comply
with the TPC-H implementation rules. However, we also present a TPC-H compliant
configuration, LegoBase(TPC-H/C), for comparison purposes.

As a reference point for most results presented in this section, we use a commercial,
in-memory, row-store database system called DBX, which does not employ compila-
tion. We assign 192GB of DRAM as memory space in DBX, and we use the DBX-
specific data types instead of generic SQL types. As described in Section 2, LegoBase
uses query plans from the DBX database. We also use the query compiler of the HyPer
system [Neumann 2011] (v0.4-452) as a point of comparison with existing query com-
pilation approaches. Since parallel execution is still under development at the time of
writing for LegoBase, all systems have been forced to single-threaded execution, either
by using the execution parameters some of them provide or by manually disabling the
usage of CPU cores in the kernel configuration.

4.2. Optimizing Query Engines Using General-Purpose Compilers
First, we show that low-level, general-purpose compilation frameworks, such as LLVM,
are not adequate for efficiently optimizing query engines. To do so, we use LegoBase to
generate an unoptimized push-style engine with only operator inlining applied, which
is then compiled to a final C binary using LLVM. We choose this engine as a starting
point since it allows the underlying C compiler to be more effective when optimizing
the whole C program (as the presence of procedures may otherwise force the compiler
to make conservative decisions or miss optimization potential during compilation).

As shown in Figure 16, the achieved performance is very poor: the unoptimized
query engine, LegoBase(Naive/C)–LLVM, is significantly slower for all TPC-H queries,

requiring more than 16× the execution time of the optimal LegoBase configuration
in most cases. This is because frameworks like LLVM cannot automatically detect all
optimization opportunities that we support in LegoBase (as described thus far in this
article). This is because either (a) the scope of an optimization is too coarse-grained
to be detected by a low-level compiler or (b) the optimization relies on domain-specific
knowledge that general-purpose optimizing compilers such as LLVM are not aware of.

In addition, as shown in the same figure, compiling with LLVM does not always
yield better results compared to using another traditional compiler like GCC15. We
see that LLVM outperforms GCC for only 15 out of 22 queries (by 1.09× on average)
while, for the remaining ones, the binary generated by GCC performs better (by 1.03×
on average). In general, the performance difference between the two compilers can
be significant (e.g. for Q19, there is a 1.58× difference). We also experimented with
manually specifying optimizations flags to the two compilers, but this turns out to be a
very delicate and complicated task as developers can specify flags which actually make
performance worse. We argue that it is instead more beneficial for developers to invest
their effort in developing high-level optimizations, like those presented in this article.

4.3. Optimizing Query Engines Using Template Expansion
Next, we compare our approach – which compiles the entire query engine and utilizes
query-specific information – with the compiler of the HyPer database [Neumann 2011].
HyPer performs template expansion through LLVM in order to inline the relational
operators of a query executed on a push engine. The results are presented in Figure 17.

We perform this analysis in two steps. First, we generate a query engine that (a) does
not utilize any query-specific information and (b) adheres to the implementation rules
of the TPC-H workload. Such an engine represents a system where data are loaded
only once, and all optimizations are applied before any query arrives (as happens with
HyPer and any other traditional DBMS). We show that this LegoBase configuration,
titled LegoBase(TPC-H/C), has performance competitive to that of the HyPer database
system, and that efficient handling of string operations is essential in order to have
the performance of our system match that of HyPer. Second, we show that by utilizing
query-specific knowledge and performing aggressive materialization and repartition
of input relations based on multiple attributes, we can generate a query engine, titled
LegoBase(Opt/C), which significantly outperforms existing approaches. Such an engine
corresponds to systems that, as discussed previously in Section 3.7, have all queries or
data known in advance.

Figure 17 shows that by using the query compiler of HyPer, performance is im-
proved by 6.4× on average compared to DBX. To achieve this performance improve-
ment, HyPer uses a push engine, operator inlining, and data partitioning. In con-
trast, the TPC-H-compliant configuration of our system, LegoBase(TPC-H/C), which
uses the same optimizations, has an average execution time of only 4.4x the one of
the DBX system, across all TPC-H queries. The main reason behind this significantly
slower performance is, as we mentioned above, the inefficient handling of string op-
erations in LegoBase(TPC-H/C). In this version, LegoBase uses the strcmp function
(and its variants). In contrast, HyPer uses the SIMD instructions found in modern
instructions sets (such as SSE4.2) for efficient string handling [Boncz et al. 2014],
a design choice that can lead to significant performance improvement compared to
LegoBase(TPC-H/C). To validate this analysis, we use a configuration of our system,
called LegoBase(StrDict/C), which additionally applies the string dictionary optimiza-
tion. This configuration is no longer TPC-H-compliant (as it introduces an auxiliary
data structure), but is still does not require query-specific information. We notice that

15For this experiment, we use version 4.4.7 of the GCC compiler.

S
p

e
e
d

u
p

 t
o
 D

B
X

LegoBase(Naive/C) - LLVM
LegoBase(Naive/C) - GCC

Compiler of HyPer

LegoBase(TPC-H/C)
LegoBase(StrDict/C)

LegoBase(Opt/C)

LegoBase(Naive/Scala)
LegoBase(Opt/Scala)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

S
p

e
e
d

u
p

 t
o
 D

B
X

LegoBase(Naive/C) - LLVM
LegoBase(Naive/C) - GCC

Compiler of HyPer

LegoBase(TPC-H/C)
LegoBase(StrDict/C)

LegoBase(Opt/C)

LegoBase(Naive/Scala)
LegoBase(Opt/Scala)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Fig. 17: Performance comparison of various LegoBase configurations (C and Scala pro-
grams) with the code generated by the query compiler of [Neumann 2011]. The base-
line for all systems is the performance of the DBX commercial database system. The
absolute execution times for this figure can be found in Appendix A. This graph also
includes the performance of the naive push-engines of Figure 16 for reference.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

B
ra

n
ch

 M
is

p
re

d
.

 20
 30
 40
 50
 60
 70
 80
 90

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

C
a
ch

e
 M

is
se

s

DBX Compiler of HyPer LegoBase(Opt/C)

Fig. 18: Percentage of cache misses and branch mispredictions for DBX, HyPer and
LegoBase(Opt/C) for all 22 TPC-H queries.

the introduction of this optimization is enough to make LegoBase(StrDict/C) match the
performance of HyPer: the two systems have only a 1.06× difference in performance.

Second, Figure 17 also shows that by using all other optimizations of LegoBase (as
they were presented in Section 3), which are not performed by the query compiler of
HyPer, we can get a total 45.4× performance improvement compared to DBX with

all optimizations enabled. This is because, for example, LegoBase(Opt/C) uses query-
specific information to remove unused relational attributes or hoist out expensive com-
putation (thus reducing memory pressure and decreasing the number of CPU instruc-
tions executed) and aggressively repartitions input data on multiple attributes (thus
allowing for more efficient join processing). Such optimizations result in improved
cache locality and branch prediction, as shown in Figure 18. More specifically, there
is an improvement of 1.68× and 1.31× on average for the two metrics, respectively,
between DBX and LegoBase. In addition, the maximum, average and minimum dif-
ference in the number of CPU instructions executed in HyPer is 3.76×, 1.61×, and
1.08× that executed in LegoBase. These results prove that the optimized code of
LegoBase(Opt/C) is competitive, performance wise, to both traditional database sys-
tems and query compilers based on template expansion.

Finally, we note that we plan to investigate even more aggressive and query-specific
data-structure optimizations in future work. Such optimizations are definitely feasible,
given the easy extensibility of the SC compiler.

4.4. Source-to-Source Compilation from Scala to C
Next, we show that source-to-source compilation from Scala to C is necessary in or-
der to achieve optimal performance in LegoBase. To do so, Figure 17 also presents
performance results for both a naive and an optimized Scala query engine, named
LegoBase(Naive/Scala) and LegoBase(Opt/Scala), respectively. First, we notice that
the optimized generated Scala code is significantly faster than the naive counterpart,
by 40.3× (excluding Q8 whose performance is prohibitively slow in the unoptimized
Scala version). This shows that extensive optimization of the Scala code is essential in
order to achieve high performance. However, we also observe that the performance of
the optimized Scala program cannot compete with that of the optimized C code, and
is on average 10× slower. Profiling information gathered with the perf 16 profiling tool
of Linux reveals the following three reasons for this behavior: (a) Scala causes an in-
crease to branch mispredictions, by 1.8× compared to the branch mispredictions in C,
(b) The percentage of LLC misses is 1.3× to 2.4× those in Scala, and more importantly,
(c) The number of CPU instructions executed in Scala is 6.2× the one executed by the
C binary. Of course, these inefficiencies are to a great part due to the Java Virtual Ma-
chine and not specific to Scala. Note that the optimized Scala program is competitive
to DBX (especially for non-join-intensive queries, e.g. queries that have less than two
joins): for 19 out of 22 queries, Scala outperforms the commercial DBX system. This
is because we remove all abstractions that incur significant overhead for Scala. For
example, the performance of Q18, which builds a large hash map, is improved by 40×
when applying the data-structure specialization provided by SC.

4.5. Impact of Individual Compiler Optimizations
In this section, we provide additional information about the performance improvement
expected when applying one of the compiler optimizations of LegoBase. These results,
illustrated in Figure 19, aim to demonstrate that significant optimization opportuni-
ties have been ignored by existing compilation techniques that handle only queries.

To begin with, we can see in this figure that the most important transformation in
LegoBase is the data-structure specialization (presented in Sections 3.2.1 and 3.2.2).
This form of optimization is not provided by existing approaches, as data structures
are typically precompiled in existing database systems. We see that, in general, when
data-structure specialization is applied, the generated code has an average perfor-
mance improvement of 30× (excluding queries Q8 and Q17 where the partitioning

16https://perf.wiki.kernel.org/index.php/Main_Page.

S
p
e
e
d
u
p

Data-Structure Specialization
Date Indices

Domain-Specific Code Motion
Struct Field Removal

String Dictionaries

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Fig. 19: Impact of different optimizations on query execution time. The baseline is an
engine that does not apply this optimization.

optimization facilitates skipping the processing of the majority of the tuples of the in-
put relations). Moreover, we note that the performance improvement is not directly
dependent on the number of join operators or input relations in the query plan. For
example, join-intensive queries such as Q5, Q7, Q8, Q9, Q21 obtain a speedup of at
least 22× when applying this optimization. However, the single-join queries Q4 and
Q19 also receive similar performance benefit to that of multi-way join queries. This is
because query plans may filter input data early on, thus reducing the need for efficient
join data structures. Thus, selectivity information and analysis of the whole query plan
are essential for analyzing the potential performance benefit of this optimization. Note
that, for similar reasons, date indices (Section 3.2.3) allow to avoid unnecessary tuple
processing and thus lead to increased performance for a number of queries.

For the domain-specific code motion and the removal of unused relational attributes
optimizations, we observe that they both improve performance, by 1.12× and 1.21×, re-
spectively on average for all TPC-H queries. This improvement is not be as pronounced
as that of other optimizations of LegoBase (like the one presented above). However, it
is important to note that they both significantly reduce memory pressure, thus allow-
ing the freed memory space to be used for other optimizations, such as the partitioning
specialization, which in turn provide significant performance improvement. Neverthe-
less, these two optimizations – which are not provided by previous approaches (since
they depend on query-specific knowledge) – can provide considerable performance im-
provement by themselves for some queries. For example, for TPC-H Q1, performing
domain-specific code motion leads to a speedup of 2.96×, while the removal of unused
attributes gives a speedup of 2.11× for Q15.

Moreover, the same figure evaluates the speedup we gain when using string dictio-
naries. We observe that for the TPC-H queries that perform a number of expensive
string operations, using string dictionaries always leads to improved query execution
performance: this speedup ranges from 1.06× to 5.5×, with an average speedup of
2.41×17. We also note that the speedup this optimization provides depends on the
characteristics of the query. More specifically, if the query contains string operations
on scan operators, as is the case with Q8, Q12, Q13, Q16, Q17, and Q19, then this op-
timization provides a greater performance improvement than when string operations
occur in operators appearing later in the query plan. This is because, TPC-H queries
typically filter out more tuples as more operators are applied in the query plan. Stated
otherwise, operators being executed in the last stages of the query plan do not pro-

17The rest of the TPC-H queries (Q1, Q4, Q5, Q6, Q7, Q10, Q11, Q15, Q18, Q21, Q22) either did not have
any string operation or the number of these operations on those queries was negligible.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

M
e
m

o
ry

 C
o
n
su

m
p

ti
o
n
 [

G
B

]

Fig. 20: Memory consumption of LegoBase(Opt/C) for the TPC-H queries.

cess as many tuples as scan operators. Thus, the impact of string operations is more
pronounced when such operations take place in scan operators.

It is important to note that using string dictionaries comes at a price. First, this op-
timization increases the loading time of the query. Second, this optimization requires
keeping a dictionary between strings and integer values, a design choice which re-
quires additional memory. This may, in turn, increase memory pressure, possibly caus-
ing a drop in performance. However, it is our observation that, based on the individual
use case and data characteristics (e.g. number of distinct values of a string attribute),
developers can easily detect whether it makes sense performance-wise to use this opti-
mization or not. We also present a more detailed analysis of the memory consumption
required by the overall LegoBase system later in this section.

Then, the benefit of applying operator inlining (not shown) varies significantly be-
tween different TPC-H queries and ranges from a speedup of 1.07× up to 19.5×, with
an average performance improvement of 3.96×. The speedup gained from applying this
optimization depends on the complexity of the execution path of a query. This is a hard
metric to visualize, as the improvement depends not only on how many operators are
used but also on their type, their position in the overall query plan and how much
each of them affects branch prediction and cache locality. For instance, queries Q5, Q7
and Q9 have the same number of operators, but the performance improvement gained
varies significantly, by 10.4×, 1.4× and 7.5×, respectively. In addition, it is our obser-
vation that the benefit of inlining depends on which operators are being inlined. This
is an important observation, as for very large queries, the compiler may have to choose
which operators to inline (e.g. to avoid the code not fitting in the instruction cache). In
general, when such cases appear, we believe that the compiler framework should merit
inlining joins instead of simpler operators (e.g. scans or aggregations).

Finally, for the column layout optimization (not shown), the performance improve-
ment is generally proportional to the percentage of attributes in the input relations
that are actually used. This is expected as the benefits of the column layout are evi-
dent when this layout can “skip” loading into memory a number of unused attributes,
thus significantly reducing cache misses. Synthetic queries on TPC-H data referenc-
ing 100% of the attributes show that, in this case, the column layout actually yields no
benefit, and it is slightly worse than the row layout. Actual TPC-H queries reference
24% - 68% of the attributes and, for this range, the optimization gives a 2.5× to 1.05×
improvement, which degrades as more attributes are referenced.

 1

 2

 4

 8

 16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Lo
a
d
in

g
 S

lo
w

d
o
w

n

Fig. 21: Slowdown of input data loading occurring from applying all LegoBase opti-
mizations to the C programs of the TPC-H workload (scaling factor 8).

4.6. Memory Consumption and Overhead on Input Data Loading
Figure 20 shows the memory consumption for all TPC-H queries. We use Valgrind
for memory profiling as well as a custom memory profiler, while the JVM is always
first warmed up. We make the following observations. First, the allocated memory is
at most twice the size of the input data for all TPC-H queries (16GB of memory for
8GB of input data for all relations), while the average memory consumption is only
1.16× the total size of the input relations. These results suggest that our approach is
usable in practice, as even for complicated, multi-way join queries the memory used
remains relatively small. The additional memory requirements come as a result of the
fact that LegoBase aggressively repartitions input data in many different ways (as
was described in Section 3.2) in order to achieve optimal performance. Second, when
all optimizations are enabled, LegoBase consumes less memory than the total size of
the input data, for a number of queries. For instance, Q16 consumes merely 2GB for
all necessary data structures. This behavior is a result of removing unused attributes
from relational tables when executing a query. In general, it is our observation that
memory consumption grows linearly with the scaling factor of the TPC-H workload.

In addition, we have mentioned before that applying our compiler optimizations can
lead to an increase in the loading time of the input data. Figure 21 presents the to-
tal slowdown on input data loading when applying all LegoBase optimizations to the
generated C programs (LegoBase(Opt/C)) compared to the loading time of the unopti-
mized C programs (LegoBase(Naive/C)). We observe that the total time spent on data
loading, across all queries and with all optimizations applied, is not (excluding Q13
which applies the word-tokenizing string dictionary) more than 1.5× that of the unop-
timized, push-style generated C code. This means that while our optimizations lead to
significant performance improvement, they do not affect the loading time of input data
significantly (there is an average slowdown of 1.88× including Q13). Based on these
observations, as well as the absolute loading times presented in Appendix A, we can
see that the additional overhead of our optimizations is not prohibitive: it takes in av-
erage less than a minute for LegoBase to load the 8GB TPC-H dataset, repartition the
data, and build all necessary auxiliary data structures for efficient query processing.

4.7. Productivity Evaluation
An important point of this article is that the performance of query engines can be
improved without much programming effort. Next, we present the productivity/perfor-
mance evaluation of our system, which is summarized in Table IV.

Data-Structure Partitioning 505
Automatic Inference of Date Indices 318
Memory Allocation Hoisting 186
Column Store Transformer 184
Constant-Size Array to Local Vars 125
Flattening Nested Structs 118
Horizontal Fusion 152
Scala Constructs to C Transformer 793
Scala Collections to GLib Transformer 411
Scala Scanner Class to mmap Transformer 90
Other miscellaneous optimizations ≈ 200

Total 3082

Table IV: Lines of code of several transformations in LegoBase with the SC compiler.

We observe three things. First, by programming at the high level, we can provide
a fully functional system with a small amount of effort. Less development time was
spent on debugging the system, thus allowing us to focus on developing new useful op-
timizations. Development of the LegoBase query engine alongside the domain-specific
optimizations required, including debugging time, eight months for only two program-
mers. However, the majority of this effort was invested in building the new optimizing
compiler SC (27K LOC) rather than developing the basic, unoptimized, query engine
itself (1K LOC).

Second, each optimization requires only a few hundred lines of high-level code to pro-
vide significant performance improvement. More specifically, for ≈3000 LOC in total,
LegoBase is improved by 45.4× compared to the performance of DBX, as we described
previously. Source-to-source compilation is critical to achieving this behavior, as the
combined size of the operators and optimizations of LegoBase is around 40 times less
than the generated code size for all 22 TPC-H queries written in C.

Finally, from Table IV it becomes clear that new transformations can be introduced
in SC with relative small programming effort. This becomes evident when one consid-
ers complicated transformations like those of Automatic Index Inference and Horizon-
tal Fusion18 which can both be coded for merely ≈500 lines of code. We also observe
that around half of the code-base required to be introduced in SC concerns converting
Scala code to C. However, this is a naïve task to be performed by SC developers, as
it usually results in a one-to-one translation between Scala and C constructs. More
importantly, this is a task that is required to be performed only once for each language
construct, and it needs to be extended only as new constructs are introduced in SC (e.g.
those required for custom data types and operations on those types).

4.8. Compilation Overheads
Finally, we analyze the compilation time for the optimized C programs of
LegoBase(Opt/C) for all TPC-H queries. Our results are presented in Figure 22, where
the y-axis corresponds to the time to (a) optimize a query and generate the C code with
SC, and, (b) the time CLang requires before producing the final C executable.

18To perform a decent loop fusion, the short-cut deforestation is not sufficient. Such techniques only provide
vertical loop fusion, in which one loop uses the result produced by another loop. However, in order to perform
further optimizations one requires to perform horizontal loop fusion, in which different loops iterating over
the same range are fused into one loop [Beeri and Kornatzky 1990; Goldberg and Paige 1984]. A decent loop
fusion is still an open topic in the PL community [Svenningsson 2002; Coutts et al. 2007; Gill et al. 1993].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

C
o
m

p
ila

ti
o
n
 t

im
e
 (

se
co

n
d
s)

SC Optimization CLang C Compilation

Fig. 22: Compilation time (in seconds) of all LegoBase(Opt/C) programs.

We see that, in general, all TPC-H queries require less than 1.2 seconds of compi-
lation time. We argue that this is an acceptable compilation overhead, especially for
analytical queries like those in TPC-H that are typically known in advance and which
process huge amounts of data. In this case, a compilation overhead of some seconds is
negligible compared to the total execution time. This result proves that our approach is
usable in practice for quickly compiling entire query engines written using high-level
programming languages. To achieve these results, special effort was made so that the
SC compiler can quickly optimize input programs. More specifically, our progressive
lowering approach allows for quick application of optimizations, as most of our opti-
mizations operate on a relatively small number of language constructs, thus making
it easy to quickly detect which parts of the input program should be modified at each
transformation step, while the rest of them can be quickly skipped. In addition, we
observe that the CLang C compilation time can be significant. This is because, by ap-
plying all the domain-specific optimizations of LegoBase to an input query, we get an
increase in the total program size that CLang receives from SC.

Finally, we note that if we generate Scala code instead of C, then the time required
for compiling the final optimized Scala programs is 7.2× that of compiling the C pro-
grams with LLVM. To some extent this is expected as calling the Scala compiler is a
heavyweight process: for every query compiled there is significant startup overhead
for loading the necessary Scala and Java libraries. By just optimizing a Scala program
using optimizations written in the same level of abstraction, our architecture allows
us to avoid these overheads, providing a much more lightweight compilation process.

5. RELATED WORK
We outline related work in five areas: (a) Previous compilation approaches, (b) Frame-
works for applying intra-operator optimizations, (c) Orthogonal techniques to speed
up query processing, (d) a brief summary of work on Domain Specific Compilation
in the Programming, and, finally, (e) a comparison with a previous realization of the
abstraction without regret vision Languages (PL) community, a field of study that
closely relates to ours. We briefly discuss these areas below.

Previous Compilation Approaches. Historically, System R [Chamberlin et al. 1981]
first proposed code generation for query optimization. However, the Volcano iterator
model eventually dominated over compilation, since code generation was very expen-
sive to maintain. The Daytona system [Greer 1999] revisited compilation in the late

nineties; however, it heavily relied on the operating system for functionality that is
traditionally provided by the DBMS itself, like buffering.

The shift towards pure in-memory computation in databases, evident in the space
of data analytics and transaction processing has lead developers to revisit compila-
tion. The reason is that, as more and more data is put in memory, query performance
is increasingly determined by the effective throughput of the CPU. In this context,
compilation strategies aim to remove unnecessary CPU overhead. Examples of indus-
trial systems in the area since the mid-2000s include SAP HANA [Färber et al. 2012],
VoltDB [Stonebraker et al. 2007; Kallman et al. 2008] and Oracle’s TimesTen [Ora-
cle Corporation 2006]. In the academic context, interest in query compilation has also
been renewed since 2009 and continues to grow [Rao et al. 2006; Zane et al. 2008;
Ahmad and Koch 2009; Grust et al. 2009; Krikellas et al. 2010; Neumann 2011; Koch
2013; Crotty et al. 2014; Nagel et al. 2014; Viglas et al. 2014; Armbrust et al. 2015;
Crotty et al. 2015; Goel et al. 2015]. We briefly discuss some of these systems next.

Rao et al. propose to remove the overhead of virtual functions in the Volcano iterator
model by using a compiled execution engine built on top of the Java Virtual Machine
(JVM) [Rao et al. 2006]. The HIQUE system takes a step further and completely elim-
inates the Volcano iterator model in the generated code [Krikellas et al. 2010]. It does
so by translating the algebraic representation to C++ code using templates. In addi-
tion, Zane et al. have shown how compilation can also be used to additionally improve
operator internals [Zane et al. 2008].

The query compiler of the HyPer database system also uses query compilation, as
described in [Neumann 2011]. This work targets minimizing the CPU overhead of the
Volcano operator model while maintaining low compilation times. The authors use a
mixed LLVM/C++ execution engine where the algebraic representation of the operators
is first translated to low-level LLVM code, while the complex part of the database (e.g.
management of data structures and memory allocation) is still precompiled C++ code
called periodically from the LLVM code whenever needed. Two basic optimizations are
presented: operator inlining and reversing the data flow (to a push engine).

All these works aim to improve database systems by removing unnecessary abstrac-
tion overheads. However, these template-based approaches require writing low-level
code which is hard to maintain and extend. This fact significantly limits their ap-
plicability. In contrast, our approach advocates a new methodology for programming
query engines where the query engine and its optimizations are written in a high-level
language. This provides a programmer-friendly way to express optimizations and
allows extending the scope of optimization to cover the whole query engine. Finally, in
contrast to previous work, we separate the optimization and code generation phases.
Even though [Neumann 2011] argues that optimizations should happen completely
before code generation (e.g. in the algebraic representation), there exist many opti-
mization opportunities that occur only after one considers the complete generated
code, e.g. after operator inlining. Our compiler can detect such optimizations, thus
providing additional performance improvement over existing techniques.

Frameworks for applying intra-operator optimizations. There has recently
been extensive work on how to specialize the code of query operators in a systematic
way by using an approach called Micro-Specialization [Zhang et al. 2012a; Zhang
et al. 2012b; 2012c]. In this line of work, the authors propose a framework to encode
DBMS-specific intra-operator optimizations, like unrolling loops and removing if
conditions, as precompiled templates in an extensible way. All these optimizations
are performed by default by the SC compiler in LegoBase. However, in contrast to
our work, there are two main limitations in Micro-Specialization. First, the low-level
nature of the approach makes the development process very time-consuming: it can

take days to code a single intra-operator optimization [Zhang et al. 2012a]. Such
optimizations are very fine-grained, and it should be possible to implement them
quickly: for the same amount of time we are able to provide much more coarse-grained
optimizations in LegoBase. Second, the optimizations are limited to those that can
be statically determined by examining the DBMS code and cannot be changed at
runtime. Our architecture maintains all the benefits of Micro-Specialization, while it
is not affected by these two limitations.

Techniques to speed up query processing. There are many works that aim to
speed up query processing in general, by focusing on improving the way data is pro-
cessed rather than individual operators. Examples of such works include block-wise
processing [Padmanabhan et al. 2001], vectorized execution [Sompolski et al. 2011],
compression techniques to provide constant-time query processing [Raman et al. 2008]
or a combination of the above along with a column-oriented data layout [Manegold
et al. 2009]. These approaches are orthogonal to this work as our framework provides
a high-level framework for encoding all such optimizations in a user-friendly way (e.g.
we present the transition from row to column data layout in Section 3.3).

Domain-specific compilation, which admits domain-specific optimizations, is a
topic of great current interest in multiple research communities. Once one limits
the domain or language, program analysis can be more successful. More powerful
and global transformations then become possible, yielding speedups that cannot be
expected from classical compilers for general purpose languages. To this end, multiple
frameworks and research prototypes [Hudak 1996; Faith et al. 1997; van Deursen
et al. 2000; Kennedy et al. 2005; Rompf and Odersky 2010; Ackermann et al. 2012;
Lee et al. 2011; Jovanović et al. 2014; Humer et al. 2014], have been proposed to easily
introduce and perform domain-specific compilation and optimization for systems.
Of interest is the observation that domain-specificity has already benefited query
optimization tremendously: Relational algebra is a domain-specific language, and
yields readily available associativity properties that are the foundation of query
optimization. Optimizing compilers can combine the performance benefits of classical
interpretation-based query engines with the benefits of abstraction and indirection
elimination by compilers. Finally, OCAS [Klonatos et al. 2013] has been developed
within the context of domain-specific synthesis and attempts to automatically gener-
ate optimized out-of-core algorithms for a particular target memory hierarchy.

Previous realization of the abstraction without regret vision. We have previ-
ously realized this vision for query engines in [Klonatos et al. 2014]. In this article,
we provide a from scratch implementation of the vision using a new optimizing com-
piler, called SC, developed specifically to handle the optimization needs of large-scale
software systems. We also present a detailed analysis of the compiler interfaces of SC
as well as a significantly more thorough list of the optimizations supported by the
LegoBase system in order to demonstrate the ease-of-use of our compiler framework
for optimizing database components that differ significantly in granularity and scope
of operations. Finally, we provide a more extensive evaluation where, along with a re-
newed analysis of the previous results, we also evaluate three additional query engine
configurations. We do so in order to compare as fairly as possible the performance of
our system with that of previous work.

6. CONCLUSIONS
LegoBase is a new analytical database system currently under development. In this
article, we presented the current prototype of the query execution subsystem of

LegoBase. Our approach suggests using high-level programming languages for DBMS
development without having to pay the associated abstraction penalty. This vision has
been previously called abstraction without regret. The key technique to admit this
productivity/efficiency combination is to apply generative programming and source-to-
source compile the high-level Scala code to efficient low-level C code. We demonstrate
how state-of-the-art compiler technology allows developers to express database-specific
optimizations naturally at a high level as a library and use it to optimize the entire
query engine. In LegoBase, programmers need to develop just a few hundred lines of
high-level code to implement techniques and optimizations that result in significant
performance improvement. All these properties are very hard to achieve with exist-
ing compilers that handle only queries and which are based on template expansion.
Our experiments show that LegoBase significantly outperforms both a commercial in-
memory database system as well as an existing query compiler.

APPENDIX
A. ABSOLUTE EXECUTION TIMES
For completeness, the following tables present the absolute performance results of all
evaluated systems and metrics in this article.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

DBX 1790 396 1528 960 19879 882 969 2172 3346 985 461
Compiler of HyPer 779 43 892 622 338 198 798 493 2139 565 102
LegoBase
(Naive/C) – LLVM

3140 755 5232 10742 3627 357 2901 23161 26203 3836 409

LegoBase
(Naive/C) – GCC

3140 801 5204 10624 3652 423 2949 19961 25884 3966 445

LegoBase
(Naive/Scala)

3972 6910 11118 30103 10307 874 114677 72587 137369 20353 1958

LegoBase(TPC-H/C) 593 55 767 445 440 199 975 2871 2387 546 98
LegoBase(StrDict/C) 592 47 759 402 439 197 781 346 2027 544 103
LegoBase(Opt/C) 426 42 110 134 126 47 104 18 530 439 49
LegoBase(Opt/Scala)2174 871 352 306 413 356 9496 104 2296 775 197

System Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

DBX 881 13593 823 578 12793 1224 4535 6432 744 1977 447
Compiler of HyPer 485 2333 197 229 590 490 3682 1421 277 1321 212
LegoBase
(Naive/C) – LLVM

3037 12794 1289 889 16362 18893 4135 2810 974 11648 1187

LegoBase
(Naive/C) – GCC

3286 13149 1398 899 16159 18410 4174 4460 1055 11848 1396

LegoBase
(Naive/Scala)

21735 33403 5163 2093 10568 86953 15798 4470 5301 61712 4207

LegoBase(TPC-H/C) 891 5106 244 550 2774 513 2725 2020 370 1992 453
LegoBase(StrDict/C) 688 910 204 535 702 445 2735 1222 370 1706 333
LegoBase(Opt/C) 120 516 11 46 695 11 133 19 130 388 79
LegoBase(Opt/Scala) 604 7743 136 234 2341 274 355 125 700 955 406

Table V: Execution times (in milliseconds) of Figure 16 and Figure 17. The various
configurations of LegoBase are explained in more detail in Table III of this article.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

LegoBase
(Naive/C) – LLVM

3140 755 5232 10742 3627 357 2901 23161 26203 3836 409

+Struct Field Re-
moval

3104 734 4480 10346 2983 202 2394 18707 24125 3323 403

+Domain-Specific
Code Motion

1047 794 4283 10435 2902 196 2203 18507 23854 3177 332

+Data-Structure
Specialization

497 44 918 148 130 172 96 75 498 610 52

+Date Indices 497 47 213 140 131 52 96 60 568 553 49
+String Dictio-
naries

497 43 158 140 130 51 94 17 533 552 47

LegoBase(Opt/C) 426 42 110 134 126 47 104 18 530 439 49

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

LegoBase
(Naive/C) – LLVM

3037 12794 1289 889 16362 18893 4135 2810 974 11648 1187

+Struct Field Re-
moval

2631 11291 812 420 16068 17953 4070 2550 736 10647 970

+Domain-Specific
Code Motion

2553 9415 786 495 15251 18063 3050 2568 742 10386 985

+Data-Structure
Specialization

467 2389 291 277 4243 47 2709 62 168 410 300

+Date Indices 308 2233 38 40 4737 39 2718 46 168 392 291
+String Dictio-
naries

125 1379 16 52 860 13 2730 20 136 389 299

LegoBase(Opt/C) 120 516 11 46 695 11 133 19 130 388 79

Table VI: Execution times (in milliseconds) of TPC-H queries with individual optimiza-
tions applied (as shown in Figure 19 of this article). Each listed optimization is applied
additionally to the set of optimizations applied in the system specified above it.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Memory Consumption 7.86 6.20 10.45 6.39 7.56 10.88 14.51 8.72 15.30 14.35 7.53
Loading Time (No opt.) 34 7 44 42 43 33 43 46 45 44 5
Loading Time (All opt.) 38 10 52 47 49 39 55 56 61 52 10
SC Optimization 429 633 482 323 663 128 547 918 608 498 317
CLang C Compilation 354 509 482 359 418 179 332 346 320 507 378

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Memory Consumption 9.73 8.72 11.06 11.64 1.81 9.26 10.92 7.81 11.77 7.86 5.36
Loading Time (No opt.) 41 9 36 34 7 34 42 35 38 41 9
Loading Time (All opt.) 53 135 42 38 10 47 47 52 53 52 13
SC Optimization 310 215 295 255 518 248 321 357 420 411 389
CLang C Compilation 449 386 454 329 563 461 382 552 566 507 365

Table VII: Memory consumption in GB, input data loading time in seconds, and op-
timization/compilation time in milliseconds as shown in Figure 20, Figure 21, and,
Figure 22 of this article, respectively.

B. CODE SNIPPET FOR THE PARTITIONING TRANSFORMER
Next, we present a portion of the data partitioning transformation, an explanation of
which was given in Section 3.2.1. This code corresponds to the join processing for equi-
joins (and not the actual partitioning of input data), but similar rules are employed for
other join types as well. The aim of this snippet is to demonstrate the ease-of-use of
the SC compiler.

/* A transformer for partitioning and indexing MultiMap data-structures. As a result, this
transformation converts MultiMap operations to native Array operations. */

class HashTablePartitioning extends RuleBasedTransformer {
val allMaps = mutable.Set[Any]()
var currentWhileLoop: While = _

/* ---- ANALYSIS PHASE ---- */
/* Gathers all MultiMap symbols which are holding a record as their value */
analysis += statement {
case sym -> code"new MultiMap[_, $v]" if isRecord(v) => allMaps += sym

}
/* Keeps the closest while loop in scope (used in the next analysis rule)*/
analysis += rule {
case whileLoop @ code"while($cond) $body" => currentWhileLoop = whileLoop

}
/* Maintain necessary information for the left relation */
analysis += rule {
case code"($mm: MultiMap[_,_]).addBinding(struct_field($struct, $fieldName),$value)" =>
mm.attributes("addBindingLoop") = currentWhileLoop

}
/* Maintain necessary information for the right relation */
analysis += rule {
case code"($mm : MultiMap[_, _]).get(struct_field($struct, $fieldName))" =>
mm.attributes("partitioningStruct") = struct
mm.attributes("partitioningFieldName") = fieldName

}

/* ---- REWRITING PHASE ---- */
def shouldBePartitioned(mm: Multimap[Any, Any]) = allMaps.contains(mm)

/* If the left relation should be partitioned, then remove the ‘addBinding‘ and ‘get‘
function calls for this multimap, as well as any related loops. Notice that there is
no need to remove the multimap itself, as DCE will do so once all of its dependent
operations have been removed.*/

rewrite += remove {
case code"($mm: MultiMap[Any, Any]).addBinding($elem, $value)" if
shouldBePartitioned(mm) =>

}
rewrite += remove {
case code"($mm: MultiMap[Any, Any]).get($elem)" if shouldBePartitioned(mm) =>

}
rewrite += remove {
case node @ code"while($cond) $body" if allMaps.exists({
case mm => shouldBePartitioned(mm) && mm.attributes("addBindingLoop") == node

}) =>
}
/* If a MultiMap should be partitioned, instead of the construction of that MultiMap

object, use the corresponding partitioned array constructed during data-loading.
This can be an 1D or 2D array, depending on the properties and relationships of the
primary and foreign keys of that table (described in Section 3.2.1 in more detail). */

rewrite += statement {
case sym -> (code"new MultiMap[_, _]") if shouldBePartitioned(sym) =>

getPartitionedArray(sym)
}

/* Rewrites the logic for extracting matching elements of the left relation (initially
using the HashMap), inside the loop iterating over the right relation. */

rewrite += rule {
case code"($mm:MultiMap[_,_]).get($elem).get.foreach($f)" if shouldBePartitioned(mm) =>{
val leftArray = transformed(mm)
val hashElem = struct_field(mm.attributes("partitioningStruct"),

mm.attributes("partitioningField"))
val leftBucket = leftArray(hashElem)
/* In what follows, we iterate over the elements of the bucket, even though the

partitioned array may be an 1D-array as discussed in Section 3.1.2. There is
another optimization in the pipeline which flattens the for loop of this case. */

for(e <- leftBucket) {
/* Function f corresponds to checking the join condition and creating the join

output. This functionality remains the same, thus, we can simply inline the
related code here as follows */

${f(e)}
}

}
/* For a partitioned relation, there is no need to check for emptiness, due to primary /

foreign key relationship. The if (true) is later removed by another optimization. */
rewrite += rule {
case code"($mm: MultiMap[Any, Any]).get($elem).nonEmpty" if shouldBePartitioned(mm) =>
true

}
}

REFERENCES
Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. 2008. Column-Stores vs. Row-Stores: How Dif-

ferent Are They Really?. In the 2008 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’08). ACM, New York, NY, USA, 967–980. DOI:http://dx.doi.org/10.1145/1376616.1376712

Stefan Ackermann, Vojin Jovanovic, Tiark Rompf, and Martin Odersky. 2012. Jet: An Embedded DSL for
High Performance Big Data Processing. In International Workshop on End-to-end Management of Big
Data (BigData 2012). http://infoscience.epfl.ch/record/181673/files/paper.pdf

Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler for High-performance Delta
Processing in Main-Memory Databases. Proc. VLDB Endow. 2, 2 (Aug. 2009), 1566–1569.
DOI:http://dx.doi.org/10.14778/1687553.1687592

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. 2001. Weaving Relations for
Cache Performance. In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 169–180.
http://research.cs.wisc.edu/multifacet/papers/vldb01_pax.pdf.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xian-
grui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark
SQL: Relational Data Processing in Spark (SIGMOD ’15). ACM, New York, NY, USA, 1383–1394.
DOI:http://dx.doi.org/10.1145/2723372.2742797

Catriel Beeri and Yoram Kornatzky. 1990. Algebraic Optimization of Object-Oriented Query Languages. In
ICDT ’90, Serge Abiteboul and Paris C. Kanellakis (Eds.). Lecture Notes in Computer Science, Vol. 470.
Springer Berlin Heidelberg, Berlin, Heidelberg, 72–88. DOI:http://dx.doi.org/10.1007/3-540-53507-1_71

Peter Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark. Springer International Publishing, Cham, 61–76.
DOI:http://dx.doi.org/10.1007/978-3-319-04936-6_5

Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, James N. Gray, W. Frank King,
Bruce G. Lindsay, Raymond Lorie, James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia Grif-
fiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford W. Wade, and
Robert A. Yost. 1981. A History and Evaluation of System R. Comm. ACM 24, 10 (1981), 632–646.
DOI:http://dx.doi.org/10.1145/358769.358784

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream Fusion: From Lists to Streams to
Nothing at All.. In ICFP (2007-11-06), Ralf Hinze and Norman Ramsey (Eds.). ACM, New York, NY,
USA, 315–326. DOI:http://dx.doi.org/10.1145/1291151.1291199

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Cetintemel, and Stan
Zdonik. 2015. An Architecture for Compiling UDF-centric Workflows. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1466–1477. DOI:http://dx.doi.org/10.14778/2824032.2824045

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel, and Stan Zdonik. 2014.
Tupleware: Redefining Modern Analytics. CoRR abs/1406.6667 (2014). http://arxiv.org/abs/1406.6667

Rickard E. Faith, Lars S. Nyland, and Jan F. Prins. 1997. KHEPERA: A System for Rapid Implementation
of Domain Specific Languages. In Proceedings of the 1997 Conference on Domain-Specific Languages
(DSL’ 97). USENIX Association, Berkeley, CA, USA, 19–19. https://www.usenix.org/legacy/publications/
library/proceedings/dsl97/full_papers/faith/faith.pdf

Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and Wolfgang Lehner.
2012. SAP HANA Database – Data Management for Modern Business Applications. SIGMOD Record
40, 4 (2012), 45–51. DOI:http://dx.doi.org/10.1145/2094114.2094126

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Proceed-
ings of the Conference on Functional Programming Languages and Computer Architecture (FPCA ’93).
ACM, New York, NY, USA, 223–232. DOI:http://dx.doi.org/10.1145/165180.165214

Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz Färber, Francis
Gropengiesser, Christian Mathis, Thomas Bodner, and Wolfgang Lehner. 2015. Towards Scalable Real-
time Analytics: An Architecture for Scale-out of OLxP Workloads. Proc. VLDB Endow. 8, 12 (Aug. 2015),
1716–1727. DOI:http://dx.doi.org/10.14778/2824032.2824069

Allen Goldberg and Robert Paige. 1984. Stream Processing. In Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming (LFP ’84). ACM, New York, NY, USA, 53–62.
DOI:http://dx.doi.org/10.1145/800055.802021

Goetz Graefe. 1994. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on
Knowledge and Data Engineering 6, 1 (Feb 1994), 120–135. DOI:http://dx.doi.org/10.1109/69.273032

Rick Greer. 1999. Daytona And The Fourth-Generation Language Cymbal. In the 1999 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’99). ACM, New York, NY, USA, 525–526.
DOI:http://dx.doi.org/10.1145/304182.304242

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. 2009. FERRY – Database-
supported Program Execution. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’09). ACM, New York, NY, USA, 1063–1066.
DOI:http://dx.doi.org/10.1145/1559845.1559982

Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Madden. 2006. Performance Tradeoffs in
Read-optimized Databases. In Proceedings of the 32nd International Conference on Very Large Data
Bases (VLDB ’06). VLDB Endowment, 487–498. http://dl.acm.org/citation.cfm?id=1182635.1164170

Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D. Matsakis. 2013. GPU
Programming in Rust: Implementing High-Level Abstractions in a Systems-Level Language. In Pro-
ceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing Work-
shops and PhD Forum (IPDPSW ’13). IEEE Computer Society, Washington, DC, USA, 315–324.
DOI:http://dx.doi.org/10.1109/IPDPSW.2013.173

Paul Hudak. 1996. Building Domain-specific Embedded Languages. ACM Comput. Surv. 28, 4es (Dec. 1996).
DOI:http://dx.doi.org/10.1145/242224.242477

Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas Würthinger. 2014. A
Domain-specific Language for Building Self-Optimizing AST Interpreters. In Proceedings of the 2014
International Conference on Generative Programming: Concepts and Experiences (GPCE 2014). ACM,
New York, NY, USA, 123–132. DOI:http://dx.doi.org/10.1145/2658761.2658776

Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software Stack. SIGOPS Oper. Syst.
Rev. 41, 2 (2007), 37–49. DOI:http://dx.doi.org/10.1145/1243418.1243424

Vojin Jovanović, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph Koch, and Martin Odersky.
2014. Yin-Yang: Concealing the Deep Embedding of DSLs. In Proceedings of the 2014 International
Conference on Generative Programming: Concepts and Experiences (GPCE 2014). ACM, New York, NY,
USA, 73–82. DOI:http://dx.doi.org/10.1145/2658761.2658771

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. 2008.
H-Store: A High-Performance, Distributed Main Memory Transaction Processing System. PVLDB 1, 2
(2008), 1496–1499. http://dl.acm.org/citation.cfm?id=1454159.1454211

Ken Kennedy, Bradley Broom, Arun Chauhan, Robert J. Fowler, John Garvin, Charles Koel-
bel, Cheryl McCosh, and John Mellor-Crummey. 2005. Telescoping Languages: A Sys-
tem for Automatic Generation of Domain Languages. Proc. IEEE 93, 2 (2005), 387–408.
DOI:http://dx.doi.org/10.1109/JPROC.2004.840447

Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building Efficient Query Engines
in a High-Level Language. PVLDB 7, 10 (2014), 853–864.

Yannis Klonatos, Andres Nötzli, Andrej Spielmann, Christoph Koch, and Victor Kuncak. 2013. Automatic
Synthesis of Out-of-core Algorithms. In the 2013 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’13). ACM, 133–144. DOI:http://dx.doi.org/10.1145/2463676.2465334

Christoph Koch. 2013. Abstraction without regret in data management systems.. In CIDR. www.cidrdb.org.
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper149.pdf

Christoph Koch. 2014. Abstraction Without Regret in Database Systems Building: a Manifesto. IEEE Data
Eng. Bull. 37, 1 (2014), 70–79. http://sites.computer.org/debull/A14mar/p70.pdf

Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code for holistic query evalu-
ation. In Proceedings of the 26th International Conference on Data Engineering (ICDE ’10). IEEE Com-
puter Society, Washington, DC, USA, 613–624. DOI:http://dx.doi.org/10.1109/ICDE.2010.5447892

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer Society, Washington, DC,
USA, 75–86. http://dl.acm.org/citation.cfm?id=977395.977673

HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Hassan Chafi, Tiark Rompf, Martin Odersky, and
Kunle Olukotun. 2011. Implementing Domain-Specific Languages for Heterogeneous Parallel Comput-
ing. IEEE Micro 31, 5 (Sept. 2011), 42–53. DOI:http://dx.doi.org/10.1109/MM.2011.68

Stefan Manegold, Martin L. Kersten, and Peter Boncz. 2009. Database Architecture Evolution:
Mammals Flourished long before Dinosaurs became Extinct. PVLDB 2, 2 (2009), 1648–1653.
DOI:http://dx.doi.org/10.14778/1687553.1687618

Fabian Nagel, Gavin Bierman, and Stratis D. Viglas. 2014. Code Generation for Efficient
Query Processing in Managed Runtimes. Proc. VLDB Endow. 7, 12 (Aug. 2014), 1095–1106.
DOI:http://dx.doi.org/10.14778/2732977.2732984

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. PVLDB 4, 9
(2011), 539–550. http://www.vldb.org/pvldb/vol4/p539-neumann.pdf

Martin Odersky and Matthias Zenger. 2005. Scalable Component Abstractions. In the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’05). ACM, New York, NY, USA, 41–57. DOI:http://dx.doi.org/10.1145/1094811.1094815

Oracle Corporation. 2006. TimesTen In-Memory Database Architectural Overview. (2006).
http://download.oracle.com/otn_hosted_doc/timesten/603/TimesTen-Documentation/arch.pdf.

Sriram Padmanabhan, Timothy Malkemus, Ramesh C. Agarwal, and Anant Jhingran. 2001. Block oriented
processing of Relational Database operations in modern Computer Architectures. In Proceedings of the
17th International Conference on Data Engineering (ICDE ’01). IEEE Computer Society, Washington,
DC, USA, 567–574. DOI:http://dx.doi.org/10.1109/ICDE.2001.914871

Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald Kossmann, Inderpal
Narang, and Richard Sidle. 2008. Constant-Time Query Processing. In Proceedings of the 24th Inter-
national Conference on Data Engineering (ICDE ’08). IEEE Computer Society, Washington, DC, USA,
60–69. DOI:http://dx.doi.org/10.1109/ICDE.2008.4497414

Jun Rao, Hamid Pirahesh, C. Mohan, and Guy Lohman. 2006. Compiled Query Execution Engine using
JVM. In Proceedings of the 22nd International Conference on Data Engineering (ICDE ’06). IEEE Com-
puter Society, Washington, DC, USA, 23–34. DOI:http://dx.doi.org/10.1109/ICDE.2006.40

Tiark Rompf. 2012. Lightweight Modular Staging and Embedded Compilers: Abstraction Without Regret
for High-Level High-Performance Programming. Ph.D. Dissertation. École Polytechnique Fédérale de
Lausanne (EPFL). DOI:http://dx.doi.org/10.5075/epfl-thesis-5456

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to
Runtime Code Generation and Compiled DSLs. In the ninth international conference on Genera-
tive programming and component engineering (GPCE ’10). ACM, New York, NY, USA, 127–136.
DOI:http://dx.doi.org/10.1145/1868294.1868314

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, HyoukJoong Lee, Manohar
Jonnalagedda, Kunle Olukotun, and Martin Odersky. 2013. Optimizing Data Structures in High-level
Programs: New Directions for Extensible Compilers based on Staging. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’13). ACM, New
York, NY, USA, 497–510. DOI:http://dx.doi.org/10.1145/2429069.2429128

Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization vs. Compilation in Query Exe-
cution. In the Seventh International Workshop on Data Management on New Hardware (DaMoN ’11).
ACM, New York, NY, USA, 33–40. DOI:http://dx.doi.org/10.1145/1995441.1995446

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Fer-
reira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin,
Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-oriented DBMS. In the 31st Inter-
national Conference on Very Large Data Bases (VLDB ’05). VLDB Endowment, 553–564.
http://dl.acm.org/citation.cfm?id=1083592.1083658

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat
Helland. 2007. The end of an architectural era: (it’s time for a complete rewrite). In the 33rd
international conference on Very large data bases (VLDB ’07). VLDB Endowment, 1150–1160.
http://dl.acm.org/citation.cfm?id=1325851.1325981

Arvind K Sujeeth, Austin Gibbons, Kevin J Brown, HyoukJoong Lee, Tiark Rompf, Martin Odersky, and
Kunle Olukotun. 2013. Forge: Generating a High Performance DSL Implementation from a Declarative
Specification. In Proceedings of the 12th international conference on Generative programming: concepts
& experiences. ACM, New York, NY, USA, 145–154. DOI:http://dx.doi.org/10.1145/2517208.2517220

Eijiro Sumii and Naoki Kobayashi. 2001. A Hybrid Approach to Online and Offline
Partial Evaluation. Higher Order Symbol. Comput. 14, 2-3 (Sept. 2001), 101–142.
DOI:http://dx.doi.org/10.1023/A:1012984529382

Josef Svenningsson. 2002. Shortcut Fusion for Accumulating Parameters & Zip-like Functions. In Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02).
ACM, New York, NY, USA, 124–132. DOI:http://dx.doi.org/10.1145/581478.581491

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theor.
Comput. Sci. 248, 1-2 (2000), 211–242. DOI:http://dx.doi.org/10.1016/S0304-3975(00)00053-0

The GNOME Project. 2013. GLib: Library Package for low-level data structures in C – The Reference Man-
ual. (2013). https://developer.gnome.org/glib/2.38/.

Transaction Processing Performance Council. 1999. TPC-H, an ad-hoc, decision support benchmark. (1999).
http://www.tpc.org/tpch

Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific Languages: An Annotated Bibliogra-
phy. SIGPLAN Not. 35, 6 (June 2000), 26–36. DOI:http://dx.doi.org/10.1145/352029.352035

Stratis Viglas, Gavin M. Bierman, and Fabian Nagel. 2014. Processing Declarative Queries Through
Generating Imperative Code in Managed Runtimes. IEEE Data Eng. Bull. 37, 1 (2014), 12–21.
http://sites.computer.org/debull/A14mar/p12.pdf

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon
Currey. 2008. DryadLINQ: A System for General-purpose Distributed Data-parallel Computing
Using a High-level Language. In Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’ 08). USENIX Association, Berkeley, CA, USA, 1–14.
http://dl.acm.org/citation.cfm?id=1855741.1855742

Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, and Charles P. Wright. 2006. On
Incremental File System Development. Transactions on Storage 2, 2 (May 2006), 161–196.
DOI:http://dx.doi.org/10.1145/1149976.1149979

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing (HotCloud’ 10). USENIX Association, Berkeley, CA, USA, 10–10.
http://dl.acm.org/citation.cfm?id=1863103.1863113

Barry M. Zane, James P. Ballard, Foster D. Hinshaw, Dana A. Kirkpatrick, and Less Premanand Yerabothu.
2008. Optimized SQL Code Generation (US Patent 7430549 B2). WO Patent App. US 10/886,011. (Sept.
2008). http://www.google.ch/patents/US7430549

Rui Zhang, Saumya Debray, and Richard T. Snodgrass. 2012a. Micro-Specialization: Dynamic Code
Specialization of Database Management Systems. In the Tenth ACM International Sympo-
sium on Code Generation and Optimization (CGO ’12). ACM, New York, NY, USA, 63–73.
DOI:http://dx.doi.org/10.1145/2259016.2259025

Rui Zhang, Richard T. Snodgrass, and Saumya Debray. 2012b. Application of Micro-specialization
to Query Evaluation Operators. In Proceedings of the 28th International Conference on Data
Engineering Workshops (ICDEW ’12). IEEE Computer Society, Washington, DC, USA, 315–321.
DOI:http://dx.doi.org/10.1109/ICDEW.2012.43

Rui Zhang, Richard T. Snodgrass, and Saumya Debray. 2012c. Micro-Specialization in DBMSes. In ICDE.
IEEE Computer Society, Washington, DC, USA, 690–701. DOI:http://dx.doi.org/10.1109/ICDE.2012.110

