Pedestrians: the new kings of smart cities

Michel Bierlaire Marija Nikolic Riccardo Scarinci

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

November 20, 2016
Outline

1. Motivation

2. Fundamental quantities
 - Discretization
 - 3D Voronoi
 - Indicators

3. Moving walkways
Motivation
Motivation

A world of cities

- 2014: 54% of the world’s population lives in cities
 Source: UN

Share of walking trips in cities

- Bangalore, 2011: 26%
- Beijing, 2011: 21%
- Bogota, 2008: 15%
- Delhi, 2011: 21%
- London, 2011: 30%
- New-York, 2010: 39%
- Barcelona, 2006: 38%
- Berlin, 2010: 29%
- Chicago, 2008: 19%
- Madrid, 2006: 36%
- Singapore, 2011: 22%
- Mumbai, 2011: 27%

Source: [LTA Academy, 2011]
Research challenges

- Understand, describe and predict
- Design of facilities
- Management and control
- Information and guidance
In this talk...

1. Characterization of fundamental quantities
2. A futuristic transportation system: a network of moving walkways
Outline

1 Motivation

2 Fundamental quantities
 • Discretization
 • 3D Voronoi
 • Indicators

3 Moving walkways
Fundamental quantities

For pedestrians
- Density k (ped/m2)
- Speed v (m/s)
- Flow q (ped/ms)
Pedestrians ≠ vehicles

Issues
- Scattered fundamental diagram
- Impact of spatial discretization

25603 trajectories, Lausanne train station, February 2013

Source: [Nikolic et al., 2016]
Discretization methods

- Grid-based (GB)
- Range-based (RB)
- Exponentially Weighted (EW)
Discretization methods

Edie (XY-T)

Voronoi-based (VB)
Fundamental quantities

3D Voronoi

Context

Model

- Space-time representation: $\Omega \subset \mathbb{R}^3$
- Units: meters and seconds
- $p = (x, y, t) \in \Omega$: physical position (x, y) in space at a specific time t
- Assumption: Ω is convex (obstacle-free and bounded)

Data: trajectories

- Continuous: $\Gamma_i : \{p_i(t) | p_i(t) = (x_i(t), y_i(t), t)\}$
- Discrete (sample): $\Gamma_i : \{p_{is} | p_{is} = (x_{is}, y_{is}, t_s)\} , t_s = [t_0, t_1, ..., t_f]$
Definition

- For each point \(p \in \Omega \)
- For each trajectory \(\Gamma_i \)
- Define a distance \(D(p, \Gamma_i) \)
- Associate \(p \) with the closest trajectory:

\[
\delta_{\Gamma}(p, \Gamma_i) = \begin{cases}
1, & D(p, \Gamma_i) \leq D(p, \Gamma_j), \forall j \neq i \\
0, & \text{otherwise}
\end{cases}
\]
3D Voronoi diagram

Distance

$$D(p, \Gamma_i) = \min_{p_i \in \Gamma_i} \{d(p, p_i)\},$$

- Various definitions of $d(\cdot, \cdot)$ are possible. [Nikolic and Bierlaire, 2016]
- Voronoi cell for trajectory i:

$$V_i = \{p \in \Omega | \delta_{\Gamma_i}(p, \Gamma_i) = 1\}$$
Intersection with a plane

Notation

\(\mathcal{P}_{(a,b,c),p_0} : \) plane through \(p_0 \) with normal vector \((a, b, c) \)
Intersection with a plane

Intersections

Intersection with $P_{(0,0,1),p_0}$

Intersection with $P_{(a,b,0),p_0}$
Voronoi-based traffic indicators

Consider \((x, y, t) \in \Omega\), and \(i\) such that \((x, y, t) \in V_i\).

Density indicator

\[
k(x, y, t) = \frac{1}{|V_i \cap \mathcal{P}(0,0,1),(x,y,t)|}
\]

Flow indicator

\[
\vec{q}_{(a,b,0)}(x, y, t) = \frac{1}{|V_i \cap \mathcal{P}(a,b,0),(x,y,t)|}
\]

Velocity indicator

\[
\vec{v}_{(a,b,0)}(x, y, t) = \frac{\vec{q}_{(a,b,0)}(x, y, t)}{k(x, y, t)} = \frac{|V_i \cap \mathcal{P}(0,0,1),(x,y,t)|}{|V_i \cap \mathcal{P}(a,b,0),(x,y,t)|}
\]
Main findings

- Data driven discretization.
- Well defined and flexible.
- Robust to noise in the data.
- Robust to sampling of trajectories.
- Details in [Nikolic and Bierlaire, 2016].
Outline

1 Motivation

2 Fundamental quantities
 • Discretization
 • 3D Voronoi
 • Indicators

3 Moving walkways
Cars: kings of our cities

Surface used by streets and parkings

- Houston, TX: 64.7%
- Little Rock, AR: 61.2%
- Milwaukee, WI: 54.1%
- Washington, DC: 44.4%

Source: [Gardner, 2011]
What about a “post car” world?

- Cars are banned from cities.
- The surface of streets is claimed for pedestrians.
- Problem: speed.
- Possible solution: moving walkways
Moving walkways

Paris, 1900

Panoramas de Paris 1900
Moving walkways

Sustainable
- Electric
- No local emission
- Energy efficient

Functional
- Continuous flow
- Speed: accelerated moving walkways
Toronto Airport, today
Costs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.1-6.7</td>
<td>1500</td>
<td>0.09-0.95</td>
</tr>
<tr>
<td>Light rail</td>
<td>8.5-83.5</td>
<td>2800</td>
<td>0.07-0.28</td>
</tr>
<tr>
<td>PRT</td>
<td>6.7-25.4</td>
<td>3500</td>
<td>0.07-0.28</td>
</tr>
<tr>
<td>AMW</td>
<td>34.8-54.4</td>
<td>7300</td>
<td>0.08-0.42</td>
</tr>
</tbody>
</table>

✗ High capital costs

✗ High typical costs

✓ Competitive operational costs
Efficiency

<table>
<thead>
<tr>
<th>System</th>
<th>Average speed [km/h]</th>
<th>Capacity [pax/h]</th>
<th>Corridor width [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>15-20</td>
<td>1,000-4,500</td>
<td>3.0-4.2</td>
</tr>
<tr>
<td>Light rail</td>
<td>15-45</td>
<td>1,000-30,000</td>
<td>2.5-3.2</td>
</tr>
<tr>
<td>PRT</td>
<td>20-25</td>
<td>1,800-7,200</td>
<td>2.5-3.2</td>
</tr>
<tr>
<td>AMW</td>
<td>5-12</td>
<td>4,500-7,500</td>
<td>1.2-2.3</td>
</tr>
</tbody>
</table>

- ✓ Competitive speed
- ✓ High capacity
- ✓ Low space usage
Energy

<table>
<thead>
<tr>
<th>System</th>
<th>Energy use [MJ/pax-km]</th>
<th>Noise level [dB(A)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.30-1.56</td>
<td>70-84</td>
</tr>
<tr>
<td>Light rail</td>
<td>0.70-2.50</td>
<td>60-74</td>
</tr>
<tr>
<td>PRT</td>
<td>0.55</td>
<td>35-65</td>
</tr>
<tr>
<td>AMW</td>
<td>0.11</td>
<td>54</td>
</tr>
</tbody>
</table>

- ✓ Low energy consumption
- ✓ Low noise level
Moving walkways

Network design

Case study; Geneva

- Two objectives: mobility and costs.
- Good trade off with 44 AMWs.
- Details in [Scarinci et al., 2014] and [Scarinci et al., 2016].
Pedestrians: new kings of smart cities?

Data
Pedestrian trajectories

Technology
Accelerated moving walkways

Models
Specification, validation, prediction

Urban Systems
Integration
Gardner, C. (2011). We are the 25%: Looking at street area percentages and surface parking.

